WorldWideScience

Sample records for candidate tumor suppressor

  1. AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira; Lelie`vre, Sophie; Petersen, Ole W; Bissell, Mina J

    2000-02-04

    To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.

  2. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer.

    Science.gov (United States)

    Mercier, Pierre-Luc; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Ghani, Karim; Têtu, Bernard; Bairati, Isabelle; Bachvarov, Dimcho

    2011-10-01

    In attempt to discover novel aberrantly hypermethylated genes with putative tumor suppressor function in epithelial ovarian cancer (EOC), we applied expression profiling following pharmacologic inhibition of DNA methylation in EOC cell lines. Among the genes identified, one of particular interest was DOK1, or downstream of tyrosine kinase 1, previously recognized as a candidate tumor suppressor gene (TSG) for leukemia and other human malignancies. Using bisulfite sequencing, we determined that a 5'-non-coding DNA region (located at nt -1158 to -850, upstream of the DOK1 translation start codon) was extensively hypermethylated in primary serous EOC tumors compared with normal ovarian specimens; however, this hypermethylation was not associated with DOK1 suppression. On the contrary, DOK1 was found to be strongly overexpressed in serous EOC tumors as compared to normal tissue and importantly, DOK1 overexpression significantly correlated with improved progression-free survival (PFS) values of serous EOC patients. Ectopic modulation of DOK1 expression in EOC cells and consecutive functional analyses pointed toward association of DOK1 expression with increased EOC cell migration and proliferation, and better sensitivity to cisplatin treatment. Gene expression profiling and consecutive network and pathway analyses were also confirmative for DOK1 association with EOC cell migration and proliferation. These analyses were also indicative for DOK1 protective role in EOC tumorigenesis, linked to DOK1-mediated induction of some tumor suppressor factors and its suppression of pro-metastasis genes. Taken together, our findings are suggestive for a possible tumor suppressor role of DOK1 in EOC; however its implication in enhanced EOC cell migration and proliferation restrain us to conclude that DOK1 represents a true TSG in EOC. Further studies are needed to more completely elucidate the functional implications of DOK1 and other members of the DOK gene family in ovarian

  3. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers

    OpenAIRE

    Qi, Chao; Zhu, Yiwei Tony; Hu, Liping; Zhu, Yi-Jun

    2009-01-01

    Fat, a candidate tumor suppressor in drosophila, is a component of Hippo signaling pathway involved in controlling organ size. We found that a ~3Mbp deletion in mouse chromosome 3 caused tumorigenesis of a non-tumorigenic mammary epithelial cell line. The expression of Fat4 gene, one member of the Fat family, in the deleted region was inactivated, which resulted from promoter methylation of another Fat4 allele following the deletion of one Fat4 allele. Re-expression of Fat4 in Fat4-deficient ...

  4. Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma1

    OpenAIRE

    Vibhakar, Rajeev; Foltz, Greg; Yoon, Jae-Geun; Field, Lorie; Lee, Hwahyung; Ryu, Gi-Yung; Pierson, Jessica; Davidson, Beverly; Madan, Anup

    2007-01-01

    Medulloblastoma is a heterogeneous pediatric brain tumor with significant therapy-related morbidity, its five-year survival rates ranging from 30% to 70%. Improvement in diagnosis and therapy requires better understanding of medulloblastoma pathology. We used whole-genome microarray analysis to identify putative tumor suppressor genes silenced by epigenetic mechanisms in medulloblastoma. This analysis yielded 714 up-regulated genes in immortalized medulloblastoma cell line D283 on treatment w...

  5. Genetic and Epigenetic Alterations of DLC-1, a Candidate Tumor Suppressor Gene, in Nasopharyngeal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Dan PENG; Cai-Ping REN; Hong-Mei YI; Liang ZHOU; Xu-Yu YANG; Hui LI; Kai-Tai YAO

    2006-01-01

    The DLC-1 gene, located at the human chromosome region 8p22, behaves like a tumor suppressor gene and is frequently deleted in diverse tumors. The deletion of 8p22 is not an uncommon event in nasopharyngeal carcinoma (NPC), therefore we explored the expression levels of the DLC-1 gene in NPCs and NPC cell lines by reverse transcription-polymerase chain reaction. The results showed the mRNA level of DLC-1 was downregulated. To identify the mechanism of DLC-1 downregulation in NPC, we investigated the methylation status of the DLC-1 gene using methylation-specific PCR, and found that 79% (31 of 39) of the NPC tissues and two DLC-1 nonexpressing NPC cell lines, 6-10B and 5-8F, were methylated in the DLC-1 CpG island. Microsatellite PCR was also carried out, and loss of heterozygosity was found at four microsatellite sites (D8S552, D8S1754, D8S1790 and D8S549) covering the whole DLC-1 gene with ratios of 33% (4 of 12 informative cases), 18% (2 of 11), 5% (1 of 18), and 25% (3 of 12), respectively. Taken together, our results suggest that DLC-1 might be an NPC-related tumor suppressor gene affected by aberrant promoter methylation and gene deletion.

  6. Tumor suppressor and hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Juliette Martin; Jean-Frangois Dufour

    2008-01-01

    A few signaling pathways are driving the growth of hepatocellular carcinoma. Each of these pathways possesses negative regulators. These enzymes, which normally suppress unchecked cell proliferation, are circumvented in the oncogenic process, either the over-activity of oncogenes is sufficient to annihilate the activity of tumor suppressors or tumor suppressors have been rendered ineffective. The loss of several key tumor suppressors has been described in hepatocellular carcinoma. Here, we systematically review the evidence implicating tumor suppressors in the development of hepatocellular carcinoma.

  7. Extensive analysis of D7S486 in primary gastric cancer supports TESTIN as a candidate tumor suppressor gene

    Directory of Open Access Journals (Sweden)

    Zhou Zhiwei

    2010-07-01

    Full Text Available Abstract Background High frequency of loss of heterozygosity (LOH was found at D7S486 in primary gastric cancer (GC. And we found a high frequency of LOH region on 7q31 in primary GC from China, and identified D7S486 to be the most frequent LOH locus. This study was aimed to determine what genes were affected by the LOH and served as tumor suppressor genes (TSGs in this region. Here, a high-throughput single nucleotide polymorphisms (SNPs microarray fabricated in-house was used to analyze the LOH status around D7S486 on 7q31 in 75 patients with primary GC. Western blot, immunohistochemistry, and RT-PCR were used to assess the protein and mRNA expression of TESTIN (TES in 50 and 140 primary GC samples, respectively. MTS assay was used to investigate the effect of TES overexpression on the proliferation of GC cell lines. Mutation and methylation analysis were performed to explore possible mechanisms of TES inactivation in GC. Results LOH analysis discovered five candidate genes (ST7, FOXP2, MDFIC, TES and CAV1 whose frequencies of LOH were higher than 30%. However, only TES showed the potential to be a TSG associated with GC. Among 140 pairs of GC samples, decreased TES mRNA level was found in 96 (68.6% tumor tissues when compared with matched non-tumor tissues (p p = 0.001. In addition, immunohistochemical staining result was in agreement with that of RT-PCR and Western blot. Down regulation of TES was shown to be correlated with tumor differentiation (p = 0.035 and prognosis (p = 0.035, log-rank test. Its overexpression inhibited the growth of three GC cell lines. Hypermethylation of TES promoter was a frequent event in primary GC and GC cell lines. However, no specific gene mutation was observed in the coding region of the TES gene. Conclusions Collectively, all results support the role of TES as a TSG in gastric carcinogenesis and that TES is inactivated primarily by LOH and CpG island methylation.

  8. A novel tumor-suppressor candidate gene-ndr2 is differentially expressed between osteoarthritis synovium cells and rheumatoid arthritis synovium fibroblasts

    Institute of Scientific and Technical Information of China (English)

    DENG Yan-chun; WANG Ji-cun; LIU Xin-ping; YAO Li-bo

    2004-01-01

    To test whether the novel tumor-suppressor candidate gene-ndr2 is also differentially expressed between osteoarthritis synovium cells (OASC) and rheumatoid arthritis synovium fibroblasts (RASF), and whether ndr2 can suppress the growth of RASF in vitro. Methods: Dot blotting, cell culture and gene transfection, cell cycle nalysis techniques were applied to investigate the effect of ndr2 on the cell phenotype and cell cycles. Results: ndr2 is expressed in OASC but absent in RASF. Transient transfection of ndr2 into RASF can suppress the growth of RASF from phenotype observation. Cell cycle analysis showed that apoptotic peaks can be detected in RASF cells transfected with ndr2 gene. Conclusion: Novel tumor suppressor candidate ndr2 is not only differentially expressed between OASC and RASF but also can induce the apoptosis of RASF in vitro.

  9. Rapid and reliable diagnosis of murine myeloid leukemia (ML) by FISH of peripheral blood smear using probe of PU. 1, a candidate ML tumor suppressor

    OpenAIRE

    Ban Nobuhiko; Ishida Yuka; Ohmachi Yasushi; Tsuji Satsuki; Kanda Reiko; Shimada Yoshiya

    2008-01-01

    Abstract Background Murine myeloid leukemia (ML) provides a good animal model to study the mechanisms of radiation-induced leukemia in humans. This disease has been cytogenetically characterized by a partial deletion of chromosome 2 with G-banding. For the rapid diagnosis of ML, this study reports a FISH method using spleen cells and peripheral blood smears from ML mice exposed to gamma rays and neutrons with PU.1, a candidate ML tumor suppressor, as a probe. Results Among mice that were tent...

  10. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B

    OpenAIRE

    Tomizawa, Yoshio; Sekido, Yoshitaka; Kondo, Masashi; Gao, Boning; Yokota, Jun; Roche, Joëlle; Drabkin, Harry; Lerman, Michael I; Gazdar, Adi F.; Minna, John D.

    2001-01-01

    Semaphorins SEMA3B and its homologue SEMA3F are 3p21.3 candidate tumor suppressor genes (TSGs), the expression of which is frequently lost in lung cancers. To test the TSG candidacy of SEMA3B and SEMA3F, we transfected them into lung cancer NCI-H1299 cells, which do not express either gene. Colony formation of H1299 cells was reduced 90% after transfection with wild-type SEMA3B compared with the control vector. By contrast, only 30–40% reduction in colony formation was seen after the transfec...

  11. At the double for tumor suppressor

    Science.gov (United States)

    2016-01-01

    Research on zebrafish reveals how a tumor suppressor works in two different types of cells, and how hypotonic stress promotes tumor formation when the function of this tumor suppressor is lost. PMID:27421119

  12. Screening of candidate tumor-suppressor genes in 3p21.3 and investigation of the methylation of gene promoters in oral squamous cell carcinoma.

    Science.gov (United States)

    Wang, Kai; Ling, Tianyou; Wu, Hanjiang; Zhang, Jie

    2013-03-01

    Oral squamous cell carcinoma (OSCC) is the most common type of head and neck malignant tumor. however, its pathological mechanisms have not yet been elucidated. In the present study, we screened for candidate tumor-suppressor genes (TSGs) related to OSCC among 10 candidate genes located in 3p21.3, a region abundant with TSGs based on previous studies, using semi-quantitative reverse transcription PCR (RT-PCR). Three genes, GNAT1, SEMA3B and AXUD1, with low or no expression in OSCC tissues and the cell line TCA8113 were selected, and the promoter methylation status was further analyzed by methylation-specific PCR (MS-PCR). Hypermethylation in the promoter regions of SEMA3B was found in OSCC tissues, and a significant difference in the frequency of methylation of SEMA3B was observed between OSCC and non-cancerous tissues. Furthermore, TCA8113 cells treated with 5-Aza-Cdc started to re-express SEMA3B at a concentration of 5 µM or higher. Our study confirmed that three candidate TSGs with low expression may be involved in OSCC and that hypermethylation in promoter regions may contribute to the low expression of SEMA3B. These findings offer novel insights for clarifying the molecular mechanisms of tumorigenesis of OSCC as well as for aiding in its clinical diagnosis and therapeutic strategy.

  13. Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2006-04-01

    Full Text Available Suppression of ovarian tumor growth by chromosome 3p was demonstrated in a previous study. Deleted in Lung and Esophageal Cancer 1 (DLEC1 on 3p22.3 is a candidate tumor suppressor in lung, esophageal, and renal cancers. The potential involvement of DLEC1 in epithelial ovarian cancer remains unknown. In the present study, DLEC1 downregulation was found in ovarian cancer cell lines and primary ovarian tumors. Focus-expressed DLEC1 in two ovarian cancer cell lines resulted in 41% to 52% inhibition of colony formation. No chromosomal loss of chromosome 3p22.3 in any ovarian cancer cell line or tissue was found. Promoter hypermethylation of DLEC1 was detected in ovarian cancer cell lines with reduced DLEC1 transcripts, whereas methylation was not detected in normal ovarian epithelium and DLEC1-expressing ovarian cancer cell lines. Treatment with demethylating agent enhanced DLEC1 expression in 90% (9 of 10 of ovarian cancer cell lines. DLEC1 promoter methylation was examined in 13 high-grade ovarian tumor tissues with DLEC1 downregulation, in which 54% of the tumors showed DLEC1 methylation. In addition, 80% of ovarian cancer cell lines significantly upregulated DLEC1 transcripts after histone deacetylase inhibitor treatment. Therefore, our results suggested that DLEC1 suppressed the growth of ovarian cancer cells and that its downregulation was closely associated with promoter hypermethylation and histone hypoacetylation.

  14. CDKN1C/p57kip2 is a candidate tumor suppressor gene in human breast cancer

    Directory of Open Access Journals (Sweden)

    Pistey Robert

    2008-03-01

    Full Text Available Abstract Background CDKN1C (also known as p57KIP2 is a cyclin-dependent kinase inhibitor previously implicated in several types of human cancer. Its family members (CDKN1A/p21CIP1 and B/p27KIP1 have been implicated in breast cancer, but information about CDKN1C's role is limited. We hypothesized that decreased CDKN1C may be involved in human breast carcinogenesis in vivo. Methods We determined rates of allele imbalance or loss of heterozygosity (AI/LOH in CDKN1C, using an intronic polymorphism, and in the surrounding 11p15.5 region in 82 breast cancers. We examined the CDKN1C mRNA level in 10 cancers using quantitative real-time PCR (qPCR, and the CDKN1C protein level in 20 cancers using immunohistochemistry (IHC. All samples were obtained using laser microdissection. Data were analyzed using standard statistical tests. Results AI/LOH at 11p15.5 occurred in 28/73 (38% informative cancers, but CDKN1C itself underwent AI/LOH in only 3/16 (19% cancers (p = ns. In contrast, CDKN1C mRNA levels were reduced in 9/10 (90% cancers (p Conclusion CDKN1C is expressed in normal epithelium of most breast cancer cases, mainly in the myothepithelial layer. This expression decreases, at both the mRNA and protein level, in the large majority of breast cancers, and does not appear to be mediated by AI/LOH at the gene. Thus, CDKN1C may be a breast cancer tumor suppressor.

  15. The candidate tumor suppressor CST6 alters the gene expression profile of human breast carcinoma cells: Down-regulation of the potent mitogenic, motogenic, and angiogenic factor autotaxin

    International Nuclear Information System (INIS)

    We recently coined CST6 as a novel candidate tumor suppressor gene for breast cancer. CST6 indeed is expressed in the normal human breast epithelium, but little or not at all in breast carcinomas and breast cancer cell lines. Moreover, ectopic expression of CST6 in human breast cancer cells suppressed cell proliferation, migration, invasion, and orthotopic tumor growth. To obtain insights into the molecular mechanism by which CST6 exhibits its pleiotropic effects on tumor cells, we compared global gene expression profiles in mock- and CST6-transfected human MDA-MB-435S cells. Out of 12,625 transcript species, 61 showed altered expression. These included genes for extracellular matrix components, cytokines, kinases, and phosphatases, as well as several key transcription factors. TaqMan PCR assays were used to confirm the microarray data for 7 out of 11 genes. One down-regulated gene product, secreted autotaxin/lyso-phospholipase D, was of particular interest because its down-regulation by CST6 could explain most of CST6's effect on the breast cancer cells. This study thus provides First evidence that CST6 plays a role in the modulation of genes, particularly, genes that are highly relevant to breast cancer progression

  16. Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene.

    Science.gov (United States)

    Singh, Ratnesh Kumar; Indra, Dipanjana; Mitra, Sraboni; Mondal, Ranajit Kumar; Basu, Partha Sarathi; Roy, Anup; Roychowdhury, Susanta; Panda, Chinmay Kumar

    2007-08-01

    The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35-38%), 4p15.2 (D3: 37-40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37-59%) and 4q35.1 (D6: 40-50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri -->CIN --> CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (-432 to + 55 bp), CC and AA haplotypes were seen in -227 and -195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.

  17. Rapid and reliable diagnosis of murine myeloid leukemia (ML by FISH of peripheral blood smear using probe of PU. 1, a candidate ML tumor suppressor

    Directory of Open Access Journals (Sweden)

    Ban Nobuhiko

    2008-10-01

    Full Text Available Abstract Background Murine myeloid leukemia (ML provides a good animal model to study the mechanisms of radiation-induced leukemia in humans. This disease has been cytogenetically characterized by a partial deletion of chromosome 2 with G-banding. For the rapid diagnosis of ML, this study reports a FISH method using spleen cells and peripheral blood smears from ML mice exposed to gamma rays and neutrons with PU.1, a candidate ML tumor suppressor, as a probe. Results Among mice that were tentatively diagnosed with ML by clinical findings and blood smear examination, 85% carried spleen cells showing the loss of PU.1 although the frequency of these abnormal cells varied among individuals. Mice with very low frequencies of cells showing the loss of one copy of PU.1 (one-PU.1 frequency were later diagnosed pathologically not with ML but with blastic or eosinophilic leukemia. Some neutron-irradiated mice had cells showing translocated PU.1, although no pathological features differentiated these ML mice from ML mice expressing the simple loss of PU.1. The one-PU.1 frequency can be detected from spleen metaphase cells, spleen interphase cells, and blood smears. There was a good correlation between the one-PU.1 frequency in spleen metaphase cells and that in spleen interphase cells (r = 0.96 and between one-PU.1 frequency in spleen interphase cells and that in blood cells (r = 0.83. Conclusion The FISH method was capable of detecting aberration of copy number of the PU.1 gene on murine chromosome 2, and using a peripheral blood smear is more practical and less invasive than conventional pathological diagnosis or the cytogenetic examination of spleen cells.

  18. Molecular Characterization of the Tumor Suppressor Candidate 5 Gene: Regulation by PPARγ and Identification of TUSC5 Coding Variants in Lean and Obese Humans

    Directory of Open Access Journals (Sweden)

    Trina A. Knotts

    2009-01-01

    Full Text Available Tumor suppressor candidate 5 (TUSC5 is a gene expressed abundantly in white adipose tissue (WAT, brown adipose tissue (BAT, and peripheral afferent neurons. Strong adipocyte expression and increased expression following peroxisome proliferator activated receptor γ (PPARγ agonist treatment of 3T3-L1 adipocytes suggested a role for Tusc5 in fat cell proliferation and/or metabolism. However, the regulation of Tusc5 in WAT and its potential association with obesity phenotypes remain unclear. We tested the hypothesis that the TUSC5 gene is a bona fide PPARγ target and evaluated whether its WAT expression or single-nucleotide polymorphisms (SNPs in the TUSC5 coding region are associated with human obesity. Induction of Tusc5 mRNA levels in 3T3-L1 adipocytes by troglitazone and GW1929 followed a dose-response consistent with these agents' binding affinities for PPARγ. Chromatin immunoprecipitation (ChIP experiments confirmed that PPARγ protein binds a ∼−1.1 kb promotor sequence of murine TUSC5 transiently during 3T3-L1 adipogenesis, concurrent with histone H3 acetylation. No change in Tusc5 mRNA or protein levels was evident in type 2 diabetic patients treated with pioglitazone. Tusc5 expression was not induced appreciably in liver preparations overexpressing PPARs, suggesting that tissue-specific factors regulate PPARγ responsiveness of the TUSC5 gene. Finally, we observed no differences in Tusc5 WAT expression or prevalence of coding region SNPs in lean versus obese human subjects. These studies firmly establish the murine TUSC5 gene locus as a PPARγ target, but the significance of Tusc5 in obesity phenotypes or in the pharmacologic actions of PPARγ agonists in humans remains equivocal.

  19. Transformation of MCF-10A cells by random mutagenesis with frameshift mutagen ICR191: A model for identifying candidate breast-tumor suppressors

    Directory of Open Access Journals (Sweden)

    Matsui Sei-Ichi

    2008-06-01

    Full Text Available Abstract Background Widely accepted somatic mutation theory of carcinogenesis states that mutations in oncogenes and tumor suppressor genes in genomes of somatic cells is the cause of neoplastic transformation. Identifying frequent mutations in cancer cells suggests the involvement of mutant genes in carcinogenesis. Results To develop an in vitro model for the analysis of genetic alterations associated with breast carcinogenesis, we used random mutagenesis and selection of human non-tumorigenic immortalized breast epithelial cells MCF-10A in tissue-culture conditions that mimic tumor environment. Random mutations were generated in MCF-10A cells by cultivating them in a tissue-culture medium containing the frameshift-inducing agent ICR191. The first selective condition we used to transform MCF1-10A cells was cultivation in a medium containing mutagen at a concentration that allowed cell replication despite p53 protein accumulation induced by mutagen treatment. The second step of selection was either cell cultivation in a medium with reduced growth-factor supply or in a medium that mimics a hypoxia condition or growing in soft agar. Using mutagenesis and selection, we have generated several independently derived cultures with various degrees of transformation. Gene Identification by Nonsense-mediated mRNA decay Inhibition (GINI analysis has identified the ICR191-induced frameshift mutations in the TP53, smoothelin, Ras association (RalGDS/AF-6 domain family 6 (RASSF6 and other genes in the transformed MCF-10A cells. The TP53 gene mutations resulting in the loss of protein expression had been found in all independently transformed MCF-10A cultures, which form large progressively growing tumors with sustained angiogenesis in nude mice. Conclusion Identifying genes containing bi-allelic ICR191-induced frameshift mutations in the transformed MCF-10A cells generated by random mutagenesis and selection indicates putative breast-tumor suppressors. This

  20. Tumor suppressor identified as inhibitor of inflammation

    Science.gov (United States)

    Scientists at NCI have found that a protein, FBXW7, which acts as a tumor suppressor, is also important for the reduction in strength of inflammatory pathways. It has long been recognized that a complex interaction exists between cancer causing mechanisms

  1. Microbial Regulation of p53 Tumor Suppressor.

    Science.gov (United States)

    Zaika, Alexander I; Wei, Jinxiong; Noto, Jennifer M; Peek, Richard M

    2015-09-01

    p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections. PMID:26379246

  2. Microbial Regulation of p53 Tumor Suppressor.

    Directory of Open Access Journals (Sweden)

    Alexander I Zaika

    2015-09-01

    Full Text Available p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40. Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections.

  3. The new research on tumor suppressor gene in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; YANG Hai-fan; YU Lei; PANG lin-lin; LI Hai-jiao; LIU Guang-da

    2008-01-01

    suppressor gene mutation and loss of allele of KLF6 gene were presented frequently in HCC. These results indicate that KLF6 may be a candidate tumor suppressor gene of HCC and plays a role during the hepatocarcinogenesis and progression of HCC. P 16 gene is also called multiple tumor suppressor l (MTS1). It is the specific inhibitor of CDK4 (cydin dependent kinase 4, CDK 4). It can induce cell cycle arrest in G1 to S phase by inhibiting CDK4. The p16 gene acts in the HCC development and deletion, mutation or methylation of p16 gene are usually found in HCC. In a word, the wild-type p16 may play an important role in tumor suppression and initiate cell senescence beginning by the mechanism of inducing cell telomerie shortening and growth arrest.

  4. Studies of Tumor Suppressor Genes via Chromosome Engineering

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kugoh

    2015-12-01

    Full Text Available The development and progression of malignant tumors likely result from consecutive accumulation of genetic alterations, including dysfunctional tumor suppressor genes. However, the signaling mechanisms that underlie the development of tumors have not yet been completely elucidated. Discovery of novel tumor-related genes plays a crucial role in our understanding of the development and progression of malignant tumors. Chromosome engineering technology based on microcell-mediated chromosome transfer (MMCT is an effective approach for identification of tumor suppressor genes. The studies have revealed at least five tumor suppression effects. The discovery of novel tumor suppressor genes provide greater understanding of the complex signaling pathways that underlie the development and progression of malignant tumors. These advances are being exploited to develop targeted drugs and new biological therapies for cancer.

  5. Tumor suppressors status in cancer cell line Encyclopedia.

    Science.gov (United States)

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J; Tatarinova, Tatiana V

    2013-08-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor-promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss of function mutation, copy number (CN) loss, or loss of heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional "status". This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research.

  6. SOCS1 in cancer: An oncogene and a tumor suppressor.

    Science.gov (United States)

    Beaurivage, Claudia; Champagne, Audrey; Tobelaim, William S; Pomerleau, Véronique; Menendez, Alfredo; Saucier, Caroline

    2016-06-01

    The Suppressor Of Cytokine Signaling 1 (SOCS1) has been extensively investigated in immune cells where it works as a potent inhibitor of inflammation by negative feedback regulation of the cytokine-activated JAK-STAT signaling pathways. SOCS1 is also recognized as a tumor suppressor in numerous cancers and its critical functional relevance in non-immune cells, including epithelial cells, has just begun to emerge. Most notably, conflicting results from clinical and experimental studies suggest that SOCS1 may function as either a tumor suppressor or a tumor promoter, in a cell context-dependent manner. Here, we present an overview of the mechanisms underlying SOCS1 function as a tumor suppressor and discuss the emerging evidences of SOCS1 activity as an oncogene. PMID:26811119

  7. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  8. Induction of myeloid-derived suppressor cells by tumor exosomes

    OpenAIRE

    Xiang, Xiaoyu; Poliakov, Anton; Liu, Cunren; Liu, Yuelong; Deng, Zhong-Bin; wang, Jianhua; Cheng, Ziqiang; Shah, Spandan V.; Wang, Gui-Jun; Zhang, Liming; Grizzle, William E.; Mobley, Jim; Zhang, Huang-Ge

    2009-01-01

    Myeloid-derived suppressor cells (MDSCs) promote tumor progression. The mechanisms of MDSC development during tumor growth remain unknown. Tumor exosomes (T-exosomes) have been implicated to play a role in immune regulation, however the role of exosomes in the induction of MDSCs is unclear. Our previous work demonstrated that exosomes isolated from tumor cells are taken up by bone marrow myeloid cells. Here, we extend those findings showing that exosomes isolated from T-exosomes switch the di...

  9. Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors

    Directory of Open Access Journals (Sweden)

    Boominathan Lakshmanane

    2007-04-01

    Full Text Available Abstract The question of whether p73 is a tumor suppressor gene, is not yet answered with full confidence. The lack of spontaneous tumor formation in p73 null mice and infrequent p73 mutations seen in a variety of cancers analyzed would straightaway negate its role as a primary tumor suppressor gene. However, accumulating evidence suggest that p73 gene and its target genes are hypermethylated in the cancer of lymphoid origin. Here I discuss some facts and thoughts that support the idea that p73 could still be a tumor suppressor gene. The tumor suppressor network in which p73 appears to be a participant involves E2F1, JunB, INK4a/p16, ARF/p19, p57kip2 and BRCA1. Knock out of each gene in E2F-1-p73-JunB-p16INK4a network of tumor suppressor proteins result in lymphoma/leukemia formation. Further, I tried to explain why lymphomas are not seen in p73 null mice and why p73 gene is not prone to frequent mutation.

  10. Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in lung cancer

    Directory of Open Access Journals (Sweden)

    Venditti Julio

    2010-09-01

    Full Text Available Abstract Background Changes in DNA methylation of crucial cancer genes including tumor suppressors can occur early in carcinogenesis, being potentially important early indicators of cancer. The objective of this study was to examine a multiplexed approach to assess the methylation of tumor suppressor genes as tumor stratification and clinical outcome prognostic biomarkers for lung cancer. Methods A multicandidate probe panel interrogated DNA for aberrant methylation status in 18 tumor suppressor genes in lung cancer using a methylation-specific multiplex ligation-dependent probe amplification assay (MS-MLPA. Lung cancer cell lines (n = 7, and primary lung tumors (n = 54 were examined using MS-MLPA. Results Genes frequently methylated in lung cancer cell lines including SCGB3A1, ID4, CCND2 were found among the most commonly methylated in the lung tumors analyzed. HLTF, BNIP3, H2AFX, CACNA1G, TGIF, ID4 and CACNA1A were identified as novel tumor suppressor candidates methylated in lung tumors. The most frequently methylated genes in lung tumors were SCGB3A1 and DLC1 (both 50.0%. Methylation rates for ID4, DCL1, BNIP3, H2AFX, CACNA1G and TIMP3 were significantly different between squamous and adenocarcinomas. Methylation of RUNX3, SCGB3A1, SFRP4, and DLC1 was significantly associated with the extent of the disease when comparing localized versus metastatic tumors. Moreover, methylation of HTLF, SFRP5 and TIMP3 were significantly associated with overall survival. Conclusions MS-MLPA can be used for classification of certain types of lung tumors and clinical outcome prediction. This latter is clinically relevant by offering an adjunct strategy for the clinical management of lung cancer patients.

  11. Tumor-Induced Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    De Sanctis, Francesco; Bronte, Vincenzo; Ugel, Stefano

    2016-06-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.

  12. Tumor Suppressors in Zebrafish: From TP53 to PTEN and Beyond.

    Science.gov (United States)

    den Hertog, Jeroen

    2016-01-01

    Zebrafish are increasingly being used to study cancer. Almost all tumor types have been found in zebrafish. However, tumor incidence is relatively low and tumors develop late in life. Functional inactivation of tumor suppressors is a crucial step in cancer progression and more and more tumor suppressor genes are being studied in zebrafish. Most often tumor suppressors have been inactivated by reverse genetics approaches using targeted disruption. However, some tumor suppressor mutants were identified by forward genetic screens for mutants with a particular phenotype. Some of the latter genes had not been recognized as tumor suppressors yet. Similarly, a screen for genes that suppress tumor formation in zebrafish in vivo led to the identification of a novel tumor suppressor gene. In this review, I will provide an overview of what the zebrafish has taught us about tumor suppressors. PMID:27165350

  13. MyoD is a tumor suppressor gene in Medulloblastoma

    OpenAIRE

    Dey, Joyoti; Dubuc, Adrian M.; Pedro, Kyle D.; Thirstrup, Derek; Mecham, Brig; Northcott, Paul A.; Wu, Xiaochong; Shih, David; Tapscott, Stephen J.; LeBlanc, Michael; Taylor, Michael D.; Olson, James M.

    2013-01-01

    While medulloblastoma, a pediatric tumor of the cerebellum, is characterized by aberrations in developmental pathways, the majority of genetic determinants remain unknown. An unbiased Sleeping Beauty transposon screen revealed MyoD as a putative medulloblastoma tumor suppressor. This was unexpected, as MyoD is a muscle differentiation factor and not previously known to be expressed in cerebellum or medulloblastoma. In response to deletion of one allele of MyoD, two other Sonic hedgehog-driven...

  14. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives

    OpenAIRE

    Zhu, Kevin; Liu, Qi; Zhou, Yubo; Tao, Cui; Zhao, Zhongming; Sun, Jingchun; Xu, Hua

    2015-01-01

    Background Defective tumor suppressor genes (TSGs) and hyperactive oncogenes (OCGs) heavily contribute to cell proliferation and apoptosis during cancer development through genetic variations such as somatic mutations and deletions. Moreover, they usually do not perform their cellular functions individually but rather execute jointly. Therefore, a comprehensive comparison of their mutation patterns and network properties may provide a deeper understanding of their roles in the cancer developm...

  15. The retinoblastoma tumor suppressor and stem cell biology

    OpenAIRE

    Sage, Julien

    2012-01-01

    Stem cells play a critical role during embryonic development and in the maintenance of homeostasis in adult individuals. The retinoblastoma tumor suppressor RB controls the proliferation, differentiation, and survival of cells, and accumulating evidence points to a central role for RB activity in the biology of stem and progenitor cells. In this review by Sage, recent studies investigating the role of RB in embryonic stem cells, adult stem cells, and progenitor cells in plants and mammals is ...

  16. BRCA1 tumor suppressor network: focusing on its tail

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2012-02-01

    Full Text Available Abstract Germline mutations of the BRCA1 tumor suppressor gene are a major cause of familial breast and ovarian cancer. BRCA1 plays critical roles in the DNA damage response that regulates activities of multiple repair and checkpoint pathways for maintaining genome stability. The BRCT domains of BRCA1 constitute a phospho-peptide binding domain recognizing a phospho-SPxF motif (S, serine; P, proline; × varies; F, phenylalanine. The BRCT domains are frequently targeted by clinically important mutations and most of these mutations disrupt the binding surface of the BRCT domains to phosphorylated peptides. The BRCT domain and its capability to bind phosphorylated protein is required for the tumor suppressor function of BRCA1. Through its BRCT phospho-binding ability BRCA1 forms at least three mutually exclusive complexes by binding to phosphorylated proteins Abraxas, Bach1 and CTIP. The A, B and C complexes, at lease partially undertake BRCA1's role in mechanisms of cell cycle checkpoint and DNA repair that maintain genome stability, thus may play important roles in BRCA1's tumor suppressor function.

  17. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    OpenAIRE

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were rep...

  18. High throughput functional genomics: identification of novel genes with tumor suppressor phenotypes.

    Science.gov (United States)

    Koenig-Hoffmann, Kerstin; Bonin-Debs, Angelika L; Boche, Irene; Gawin, Beate; Gnirke, Andrea; Hergersberg, Christoph; Madeo, Frank; Kazinski, Michael; Klein, Matthias; Korherr, Christian; Link, Dieter; Röhrig, Sascha; Schäfer, Rolf; Brinkmann, Ulrich

    2005-01-20

    We have used a combination of high throughput functional genomics, computerized database mining and expression analyses to discover novel human tumor suppressor genes (TSGs). A genome-wide high throughput cDNA phenotype screen was established to identify genes that induce apoptosis or reduce cell viability. TSGs are expressed in normal tissue and frequently act by reduction of growth of transformed cells or induce apoptosis. In agreement with that and thus serving as platform validation, our pro-apoptotic hits included genes for which tumor suppressing activities were known, such as kangai1 and CD81 antigen. Additional genes that so far have been claimed as putative TSGs or associated with tumor inhibitory activities (prostate differentiation factor, hRAS-like suppressor 3, DPH2L1-like and the metastasis inhibitor Kiss1) were confirmed in their proposed TSG-like phenotype by functionally defining their growth inhibitory or pro-apoptotic function towards cancer cells. Finally, novel genes were identified for which neither association with cell growth nor with apoptosis were previously described. A subset of these genes show characteristics of TSGs because they (i) reduce the growth or induce apoptosis in tumor cells; (ii) show reduced expression in tumor vs. normal tissue; and (iii) are located on chromosomal (LOH-) loci for which cancer-associated deletions are described. The pro-apoptotic phenotype and differential expression of these genes in normal and malignant tissue make them promising target candidates for the diagnosis and therapy of various tumors.

  19. RB1: a prototype tumor suppressor and an enigma.

    Science.gov (United States)

    Dyson, Nicholas J

    2016-07-01

    The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene to be molecularly defined. RB1 mutations occur in almost all familial and sporadic forms of retinoblastoma, and this gene is mutated at variable frequencies in a variety of other human cancers. Because of its early discovery, the recessive nature of RB1 mutations, and its frequency of inactivation, RB1 is often described as a prototype for the class of tumor suppressor genes. Its gene product (pRB) regulates transcription and is a negative regulator of cell proliferation. Although these general features are well established, a precise description of pRB's mechanism of action has remained elusive. Indeed, in many regards, pRB remains an enigma. This review summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients? PMID:27401552

  20. Transcriptional Regulation of the p16 Tumor Suppressor Gene.

    Science.gov (United States)

    Kotake, Yojiro; Naemura, Madoka; Murasaki, Chihiro; Inoue, Yasutoshi; Okamoto, Haruna

    2015-08-01

    The p16 tumor suppressor gene encodes a specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 and is found altered in a wide range of human cancers. p16 plays a pivotal role in tumor suppressor networks through inducing cellular senescence that acts as a barrier to cellular transformation by oncogenic signals. p16 protein is relatively stable and its expression is primary regulated by transcriptional control. Polycomb group (PcG) proteins associate with the p16 locus in a long non-coding RNA, ANRIL-dependent manner, leading to repression of p16 transcription. YB1, a transcription factor, also represses the p16 transcription through direct association with its promoter region. Conversely, the transcription factors Ets1/2 and histone H3K4 methyltransferase MLL1 directly bind to the p16 locus and mediate p16 induction during replicative and premature senescence. In the present review, we discuss the molecular mechanisms by which these factors regulate p16 transcription.

  1. Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma

    OpenAIRE

    Briggs, Kimberly J.; Corcoran-Schwartz, Ian M.; Zhang, Wei; Harcke, Thomas; Devereux, Wendy L.; Baylin, Stephen B.; Eberhart, Charles G.; Watkins, D. Neil

    2008-01-01

    Medulloblastoma is an embryonal tumor thought to arise from the granule cell precursors (GCPs) of the cerebellum. PATCHED (PTCH), an inhibitor of Hedgehog signaling, is the best-characterized tumor suppressor in medulloblastoma. However,

  2. Classical Oncogenes and Tumor Suppressor Genes: A Comparative Genomics Perspective

    Directory of Open Access Journals (Sweden)

    Oxana K. Pickeral

    2000-05-01

    Full Text Available We have curated a reference set of cancer-related genes and reanalyzed their sequences in the light of molecular information and resources that have become available since they were first cloned. Homology studies were carried out for human oncogenes and tumor suppressors, compared with the complete proteome of the nematode, Caenorhabditis elegans, and partial proteomes of mouse and rat and the fruit fly, Drosophila melanogaster. Our results demonstrate that simple, semi-automated bioinformatics approaches to identifying putative functionally equivalent gene products in different organisms may often be misleading. An electronic supplement to this article1 provides an integrated view of our comparative genomics analysis as well as mapping data, physical cDNA resources and links to published literature and reviews, thus creating a “window” into the genomes of humans and other organisms for cancer biology.

  3. Oncogenes, protooncogenes, and tumor suppressor genes in acute myelogenous leukemia.

    Science.gov (United States)

    Hijiya, N; Gewirtz, A M

    1995-05-01

    In recent years, our understanding of normal human hematopoiesis has expanded greatly. We have increased our knowledge of regulatory growth factors, the receptors through which they act, and the secondary messengers involved in transducing the growth/differentiation signals from the cytoplasmic membrane to the nucleus. This knowledge has revealed potential mechanisms for inducing the neoplastic transformation of hematopoietic cells. This applies in particular to the role of viral oncogenes and cellular protooncogenes and, more recently, to the role of tumor suppressor genes. Protooncogenes are intimately involved in the processes of cell proliferation and differentiation. Therefore, any amplification, mutation, structural alteration, or change in transcriptional regulation of protooncogenes might lead to or be associated with induction of the malignant phenotype. Based on the importance of these genes in leukemogenesis and the maintenance of the malignant phenotype, it seems reasonable to hypothesize that targeted disruption of leukemogenic genes may be of therapeutic value.

  4. Tumor Suppressors in Zebrafish : From TP53 to PTEN and Beyond

    NARCIS (Netherlands)

    den Hertog, Jeroen

    2016-01-01

    Zebrafish are increasingly being used to study cancer. Almost all tumor types have been found in zebrafish. However, tumor incidence is relatively low and tumors develop late in life. Functional inactivation of tumor suppressors is a crucial step in cancer progression and more and more tumor suppres

  5. The tumor suppressor kinase LKB1: lessons from mouse models

    Institute of Scientific and Technical Information of China (English)

    Saara Ollila; Tomi P. M(a)kel(a)

    2011-01-01

    Mutations in the tumor suppressor gene LKB1 are important in hereditary Peutz-Jeghers syndrome,as well as in sporadic cancers including lung and cervical cancer.LKB1 is a kinase-activating Kinase,and a number of LKB1-dependent phosphorylation cascades regulate fundamental cellular and organismal processes in at least metabolism,polarity,cytoskeleton organization,and proliferation.Conditional targeting approaches are beginning to demonstrate the relevance and specificity of these signaling pathways in development and homeostasis of multiple organs.More than one of the pathways also appear to contribute to tumor growth following Lkb1 deficiencies based on a number of mouse tumor models.Lkb1-dependent activation of AMPK and subsequent inactivation of mammalian target of rapamycin signaling are implicated in several of the models,and other less well characterized pathways are also involved.Conditional targeting studies of Lkb1 also point an important role of LKB1 in epithelial-masenchymal interactions,significantly expanding knowledge on the relevance of LKB1 in human disease.

  6. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei; Kuo, Wen-Lin; Lie, Daniel K.H.; Chua, Constance L.M.; Wong, Chow Yin; Hong, Ga Sze; Gray, Joe; Lee, Ann S.G.

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30 primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.

  7. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential.

    Science.gov (United States)

    Kazanets, Anna; Shorstova, Tatiana; Hilmi, Khalid; Marques, Maud; Witcher, Michael

    2016-04-01

    Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes. PMID:27085853

  8. Tumor suppressor p53 meets microRNAs

    Institute of Scientific and Technical Information of China (English)

    Zhaohui Feng; Cen Zhang; Rui Wu; Wenwei Hu

    2011-01-01

    Tumor suppressor p53 plays a central role in tumor prevention. As a transcription factor, p53 mainly exerts its function through transcription regulation of its target genes to initiate various cellular responses. To maintain its proper function, p53 is tightly regulated by a wide variety of regulators in cells. Thus, p53, its regulators and regulated genes form a complex p53 network which is composed of hundreds of genes and their products. microRNAs (miRNAs) are a class of endogenously expressed, small non-coding RNA molecules which play a key role in regulation of gene expression at the post-transcriptional level. Recent studies have demonstrated that miRNAs interact with p53 and its network at multiple levels. p53 regulates the transcription expression and the maturation of a group of miRNAs. On the other hand, miRNAs can regulate the activity and function of p53 through direct repression of p53 or its regulators in cells. These findings have demonstrated that miRNAs are important components in the p53 network, and also added another layer of complexity to the p53 network.

  9. Epigenetic regulation of putative tumor suppressor TGFBI in human leukemias

    Institute of Scientific and Technical Information of China (English)

    Fang Hongbo; Liu Jing; Guo Dan; Liu Peixiang; Zhao Yongliang

    2014-01-01

    Background Both in vitro and in vivo data have demonstrated the TGFBI gene functions as a putative tumor suppressor and is frequently downregulated in human tumors of different histological types.The hypermethylation of the TGFBI promoter,as one of the main regulatory mechanisms,is associated with TGFBI silencing.In this study,we used a methylation-specific PCR (MSP) method to evaluate the methylation status of the TGFBI promoter in human leukemias.Methods Real-time RT-PCR and methylation-specific PCR approaches were performed to define the TGFBI expression and promoter methylation in human leukemia call lines and clinical samples.Genomic DNA was isolated from peripheral blood mononuclear cells from leukemia patients,bisulfite-converted,and analyzed by the MSP method.Results Hypermethylation of the TGFBI promoter occurred in leukemia cell lines and demethylation treatment reexpressed TGFBI at a substantially increased level in most of leukemia cell lines tested.Furthermore,a much higher level of CpG island methylation and a significantly lower TGFBI expression were also identified in clinical leukemia samples.Conclusion The results suggest an important role of promoter methylation in regulating TGFBI expression in leukemia,which provides a useful diagnostic marker for clinical management of human leukemias.

  10. Tumor Suppressor Function of CYLD in Nonmelanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    K. C. Masoumi

    2011-01-01

    Full Text Available Ubiquitin and ubiquitin-related proteins posttranslationally modify substrates, and thereby alter the functions of their targets. The ubiquitination process is involved in various physiological responses, and dysregulation of components of the ubiquitin system has been linked to many diseases including skin cancer. The ubiquitin pathways activated among skin cancers are highly diverse and may reflect the various characteristics of the cancer type. Basal cell carcinoma and squamous cell carcinoma, the most common types of human skin cancer, are instances where the involvement of the deubiquitination enzyme CYLD has been recently highlighted. In basal cell carcinoma, the tumor suppressor protein CYLD is repressed at the transcriptional levels through hedgehog signaling pathway. Downregulation of CYLD in basal cell carcinoma was also shown to interfere with TrkC expression and signaling, thereby promoting cancer progression. By contrast, the level of CYLD is unchanged in squamous cell carcinoma, instead, catalytic inactivation of CYLD in the skin has been linked to the development of squamous cell carcinoma. This paper will focus on the current knowledge that links CYLD to nonmelanoma skin cancers and will explore recent insights regarding CYLD regulation of NF-κB and hedgehog signaling during the development and progression of these types of human tumors.

  11. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Directory of Open Access Journals (Sweden)

    Su-Chiung Fang

    2006-10-01

    Full Text Available Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  12. The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Minoru; Ishimura, Akihiko; Yoshida, Masakazu [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan); Suzuki, Yutaka; Sugano, Sumio [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba (Japan); Suzuki, Takeshi, E-mail: suzuki-t@staff.kanazawa-u.ac.jp [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan)

    2010-08-20

    Research highlights: {yields} Utx increases expression of Rb and Rbl2 genes through its demethylase activity. {yields} Utx changes histone H3 methylation on the Rb and Rbl2 promoters. {yields} Utx induces decreased cell proliferation of mammalian primary cells. -- Abstract: Utx is a candidate tumor suppressor gene that encodes histone H3 lysine 27 (H3K27) demethylase. In this study, we found that ectopic expression of Utx enhanced the expression of retinoblastoma tumor suppressor gene Rb and its related gene Rbl2. This activation was dependent on the demethylase activity of Utx, and was suggested to contribute to the decreased cell proliferation induced by Utx. A chromatin immunoprecipitation assay showed that over-expressed Utx was associated with the promoter regions of Rb and Rbl2 resulting in the removal of repressive H3K27 tri-methylation and the increase in active H3K4 tri-methylation. Furthermore, siRNA-mediated knockdown of Utx revealed the recruitment of endogenous Utx protein on the promoters of Rb and Rbl2 genes. These results indicate that Rb and Rbl2 are downstream target genes of Utx and may play important roles in Utx-mediated cell growth control.

  13. PML tumor suppressor protein is required for HCV production

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Misao [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Ariumi, Yasuo, E-mail: ariumi@kumamoto-u.ac.jp [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Hijikata, Makoto [Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Ikeda, Masanori; Dansako, Hiromichi [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640 (Japan); Shimotohno, Kunitada [Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516 (Japan); Kato, Nobuyuki [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  14. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications.

    Science.gov (United States)

    Kamada, Rui; Toguchi, Yu; Nomura, Takao; Imagawa, Toshiaki; Sakaguchi, Kazuyasu

    2016-11-01

    Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016. PMID:26572807

  15. Oncogene-tumor suppressor gene feedback interactions and their control.

    Science.gov (United States)

    Aguda, Baltazar D; del Rosario, Ricardo C H; Chan, Michael W Y

    2015-12-01

    We propose the hypothesis that for a particular type of cancer there exists a key pair of oncogene (OCG) and tumor suppressor gene (TSG) that is normally involved in strong stabilizing negative feedback loops (nFBLs) of molecular interactions, and it is these interactions that are sufficiently perturbed during cancer development. These nFBLs are thought to regulate oncogenic positive feedback loops (pFBLs) that are often required for the normal cellular functions of oncogenes. Examples given in this paper are the pairs of MYC and p53, KRAS and INK4A, and E2F1 and miR-17-92. We propose dynamical models of the aforementioned OCG-TSG interactions and derive stability conditions of the steady states in terms of strengths of cycles in the qualitative interaction network. Although these conditions are restricted to predictions of local stability, their simple linear expressions in terms of competing nFBLs and pFBLs make them intuitive and practical guides for experimentalists aiming to discover drug targets and stabilize cancer networks. PMID:26775863

  16. RASSF6; the Putative Tumor Suppressor of the RASSF Family

    Directory of Open Access Journals (Sweden)

    Hiroaki Iwasa

    2015-12-01

    Full Text Available Humans have 10 genes that belong to the Ras association (RA domain family (RASSF. Among them, RASSF7 to RASSF10 have the RA domain in the N-terminal region and are called the N-RASSF proteins. In contradistinction to them, RASSF1 to RASSF6 are referred to as the C-RASSF proteins. The C-RASSF proteins have the RA domain in the middle region and the Salvador/RASSF/Hippo domain in the C-terminal region. RASSF6 additionally harbors the PSD-95/Discs large/ZO-1 (PDZ-binding motif. Expression of RASSF6 is epigenetically suppressed in human cancers and is generally regarded as a tumor suppressor. RASSF6 induces caspase-dependent and -independent apoptosis. RASSF6 interacts with mammalian Ste20-like kinases (homologs of Drosophila Hippo and cross-talks with the Hippo pathway. RASSF6 binds MDM2 and regulates p53 expression. The interactions with Ras and Modulator of apoptosis 1 (MOAP1 are also suggested by heterologous protein-protein interaction experiments. RASSF6 regulates apoptosis and cell cycle through these protein-protein interactions, and is implicated in the NF-κB and JNK signaling pathways. We summarize our current knowledge about RASSF6 and discuss what common and different properties RASSF6 and the other C-RASSF proteins have.

  17. Tumor suppressor p53 protects mice against Listeria monocytogenes infection.

    Science.gov (United States)

    Wang, Shaohui; Liu, Pingping; Wei, Jianchao; Zhu, Zixiang; Shi, Zixue; Shao, Donghua; Ma, Zhiyong

    2016-01-01

    Tumor suppressor p53 is involved in regulating immune responses, which contribute to antitumor and antiviral activity. However, whether p53 has anti-bacterial functions remains unclear. Listeria monocytogenes (LM) causes listeriosis in humans and animals, and it is a powerful model for studying innate and adaptive immunity. In the present study, we illustrate an important regulatory role of p53 during LM infection. p53 knockout (p53KO) mice were more susceptible to LM infection, which was manifested by a shorter survival time and lower survival rate. p53KO mice showed significant impairments in LM eradication. Knockdown of p53 in RAW264.7 and HeLa cells resulted in increased invasion and intracellular survival of LM. Furthermore, the invasion and intracellular survival of LM was inhibited in p53-overexpressing RAW264.7 and HeLa cells. LM-infected p53KO mice exhibited severe clinical symptoms and organ injury, presumably because of the abnormal production of the pro-inflammatory cytokines TNF-α, IL-6, IL-12, and IL-18. Decreased IFN-γ and GBP1 productions were observed in LM-infected p53-deficient mice or cells. The combination of these defects likely resulted in the overwhelming LM infection in the p53KO mice. These observations indicate that p53 serves as an important regulator of the host innate immune that protects against LM infection. PMID:27644341

  18. Mitochondrial dysfunction impairs tumor suppressor p53 expression/function.

    Science.gov (United States)

    Compton, Shannon; Kim, Chul; Griner, Nicholas B; Potluri, Prasanth; Scheffler, Immo E; Sen, Sabyasachi; Jerry, D Joseph; Schneider, Sallie; Yadava, Nagendra

    2011-06-10

    Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy. PMID:21502317

  19. Exclusive Association of p53 Mutation with Super-High Methylation of Tumor Suppressor Genes in the p53 Pathway in a Unique Gastric Cancer Phenotype

    OpenAIRE

    Mina Waraya; Keishi Yamashita; Akira Ema; Natsuya Katada; Shiro Kikuchi; Masahiko Watanabe

    2015-01-01

    Background A comprehensive search for DNA methylated genes identified candidate tumor suppressor genes that have been proven to be involved in the apoptotic process of the p53 pathway. In this study, we investigated p53 mutation in relation to such epigenetic alteration in primary gastric cancer. Methods The methylation profiles of the 3 genes: PGP9.5, NMDAR2B, and CCNA1, which are involved in the p53 tumor suppressor pathway in combination with p53 mutation were examined in 163 primary gastr...

  20. Trophoblast expression dynamics of the tumor suppressor gene gastrokine 2.

    Science.gov (United States)

    Fahlbusch, Fabian B; Ruebner, Matthias; Huebner, Hanna; Volkert, Gudrun; Bartunik, Hannah; Winterfeld, Ilona; Hartner, Andrea; Menendez-Castro, Carlos; Noegel, Stephanie C; Marek, Ines; Wachter, David; Schneider-Stock, Regine; Beckmann, Matthias W; Kehl, Sven; Rascher, Wolfgang

    2015-09-01

    Gastrokines (GKNs) were originally described as stomach-specific tumor suppressor genes. Recently, we identified GKN1 in extravillous trophoblasts (EVT) of human placenta. GKN1 treatment reduced the migration of the trophoblast cell line JEG-3. GKN2 is known to inhibit the proliferation, migration and invasion of gastric cancer cells and may interact with GKN1. Recently, GKN2 was detected in the placental yolk sac of mice. We therefore aimed to further characterize placental GKN2 expression. By immunohistochemistry, healthy first-trimester placenta showed ubiquitous staining for GKN2 at its early gestational stage. At later gestational stages, a more differentiated expression pattern in EVT and villous cytotrophoblasts became evident. In healthy third-trimester placenta, only EVT retained strong GKN2 immunoreactivity. In contrast, HELLP placentas showed a tendency of increased levels of GKN2 expression with a more prominent GKN2 staining in their syncytiotrophoblast. Choriocarcinoma cell lines did not express GKN2. Besides its trophoblastic expression, we found human GKN2 in fibrotic villi, in amniotic membrane and umbilical cord. GKN2 co-localized with smooth muscle actin in villous myofibroblasts and with HLA-G and GKN1 in EVT. In the rodent placenta, GKN2 was specifically located in the spongiotrophoblast layer. Thus, the gestational age-dependent and compartment-specific expression pattern of GKN2 points to a role for placental development. The syncytial expression of GKN2 in HELLP placentas might represent a reduced state of functional differentiation of the syncytiotrophoblast. Moreover, the specific GKN2 expression in the rodent spongiotrophoblast layer (equivalent to human EVT) might suggest an important role in EVT physiology. PMID:26070363

  1. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo, E-mail: yutsudo@biken.osaka-u.ac.jp

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.

  2. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment.

    Science.gov (United States)

    Qu, Peng; Wang, Li-Zhen; Lin, P Charles

    2016-09-28

    Myeloid derived suppressor cells (MDSCs) are a group of immature myeloid cells accumulated in most cancer patients and mouse tumor models. MDSCs suppress host immune response and concurrently promote tumor angiogenesis, thereby promote tumor growth and progression. In this review, we discuss recent progresses in expansion and activity of tumor MDSCs, and describe new findings about immunosuppressive function of different subtypes of MDSCs in cancer. We also discussed tumor angiogenic activities and pro-tumor invasion/metastatic roles of MDSCs in tumor progression. PMID:26519756

  3. Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors

    DEFF Research Database (Denmark)

    Rehfeld, Anders Aagaard; Plass, Mireya; Døssing, Kristina;

    2014-01-01

    The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site...... or 3' untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1, and DACT2. We validated the APA in three out of three cases with quantitative real-time-PCR. Our findings suggest that changes of APA pattern...... in these 16 genes could be involved in the tumorigenesis of SI-NETs. Furthermore, they also point to APA as a new target for both diagnostic and treatment of SI-NETs. The identified genes with APA specific to the SI-NETs could be further tested as diagnostic markers and drug targets for disease prevention...

  4. The role of tumor suppressor p53 in the antioxidant defense and metabolism

    OpenAIRE

    Budanov, Andrei V.

    2014-01-01

    Tumor suppressor p53 is inactivated in most cancers and the critical role of p53 in the suppression of carcinogenesis has been confirmed in many mouse models. The protein product of the tumor suppressor p53 gene works as a transcriptional regulator, activating expression of numerous genes involved in cell death, cell cycle arrest, senescence, DNA-repair and many other processes. In spite of the multiple efforts to characterize the functions of p53, the mechanisms of tumor suppression by p53 a...

  5. CREB Targets Define the Gene Expression Signature of Malignancies Having Reduced Levels of the Tumor Suppressor Tristetraprolin

    OpenAIRE

    Mohammad Fallahi; Amelio, Antonio L.; Cleveland, John L.; Rounbehler, Robert J.

    2014-01-01

    The RNA-binding protein Tristetraprolin (TTP, ZFP36) functions as a tumor suppressor that impairs the development and disables the maintenance of MYC-driven lymphoma. In addition, other human cancers expressed reduced levels of TTP, suggesting that it may function as a tumor suppressor in several malignancies. To identify genes that may be associated with TTP tumor suppressor functions in human cancer, we analyzed The Cancer Genome Atlas (TCGA) breast cancer, lung adenocarcinoma, lung squamou...

  6. Frequent alteration of the tumor suppressor gene APC in sporadic canine colorectal tumors.

    Directory of Open Access Journals (Sweden)

    Lydia Youmans

    Full Text Available Sporadic canine colorectal cancers (CRCs should make excellent models for studying the corresponding human cancers. To molecularly characterize canine CRC, we investigated exonic sequence mutations of adenomatous polyposis coli (APC, the best known tumor suppressor gene of human CRC, in 23 sporadic canine colorectal tumors, including 8 adenomas and 15 adenocarcinomas, via exon-resequencing analysis. As a comparison, we also performed the same sequencing analysis on 10 other genes, either located at human 5q22 (the same locus as APC or 18q21 (also frequently altered in human CRC, or known to play a role in human carcinogenesis. We noted that APC was the most significantly mutated gene in both canine adenomas and adenocarcinomas among the 11 genes examined. Significantly, we detected large deletions of ≥ 10 bases, many clustered near the mutation cluster region, as well as single or two base deletions in ~70% canine tumors of both subtypes. These observations indicate that like in the human, APC is also frequently altered in sporadic colorectal tumors in the dog and its alteration is an early event in canine colorectal tumorigenesis. Our study provides further evidence demonstrating the molecular similarity in pathogenesis between sporadic human and canine CRCs. This work, along with our previous copy number abnormality study, supports that sporadic canine CRCs are valid models of human CRCs at the molecular level.

  7. Correlation of primary tumor size and axillary nodal status with tumor suppressor gene p53 in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Topić Brano

    2002-01-01

    Full Text Available Correlation of standard path morphological prognostic parameters, primary tumor size and axillary nodal status with new prognostic factor in breast carcinoma: tumor suppressor gene p53 was analyzed. The studied sample included 65 women who underwent surgery for breast carcinoma at the Surgical Clinic of Clinical Center Banja Luka, from January 1st 1997 till January 1st 1999. Statistical data analysis was performed and correlation of prognostic factors was determined. The majority of authors in this field agree that the primary tumor size and axillary nodal status are the two most important prognostic factors. These factors are the best predictors of prognosis and survival of women who had the tumor and were operated on. Tumor markers were immunohistochemically determined in the last ten years and, according to the majority of authors, are still considered the additional or relative prognostic factors in breast carcinoma. Their prognostic value and significance increase almost daily. Most frequently determined tumor markers are bcl-2, pS2, Ki-67 and p53. There was a positive, directly proportional relationship between primary tumor size and tumor suppressor gene p53, but there was no positive correlation between the axillary nodal status and tumor suppressor gene p53. Significance of determination of new tumor markers as the prognostic factors was emphasized. These markers represent a powerful tool in the early detection and prevention of breast carcinoma.

  8. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  9. Tumor suppressor p53 and its gain-of-function mutants in cancer

    OpenAIRE

    Liu, Juan; Zhang, Cen; Feng, Zhaohui

    2013-01-01

    Tumor suppressor p53 plays a pivotal role in tumor suppression. p53 is the most frequently mutated gene in cancer. As a transcription factor, p53 mainly exerts its role in tumor suppression through transcriptional regulation of its downstream target genes. Thus, p53 and its target genes form a complex p53 signaling pathway to regulate a wide variety of biological processes to prevent tumorigenesis. Recent studies have revealed that in addition to apoptosis, cell cycle arrest and senescence, p...

  10. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    Science.gov (United States)

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (p<0.0003). There was a variable frequency and individual methylation quotient detected, depending on the TSG and the tumor type. When comparing normal, benign, and malignant SGTs, there was a statistically significant trend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  11. Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in Type 1 diabetes and insulin sensitivity

    DEFF Research Database (Denmark)

    Gylvin, T; Nolsøe, R; Hansen, T;

    2004-01-01

    Beta cell loss in Type 1 and Type 2 diabetes mellitus may result from apoptosis and necrosis induced by inflammatory mediators. The suppressor of cytokine signalling (SOCS)-3 is a natural inhibitor of cytokine signalling and also influences insulin signalling. SOCS3 could therefore be a candidate...

  12. Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer.

    Science.gov (United States)

    Torabi, Keyvan; Miró, Rosa; Fernández-Jiménez, Nora; Quintanilla, Isabel; Ramos, Laia; Prat, Esther; del Rey, Javier; Pujol, Núria; Killian, J Keith; Meltzer, Paul S; Fernández, Pedro Luis; Ried, Thomas; Lozano, Juan José; Camps, Jordi; Ponsa, Immaculada

    2015-10-01

    Colorectal cancer (CRC) is characterized by specific patterns of copy number alterations (CNAs), which helped with the identification of driver oncogenes and tumor suppressor genes (TSGs). More recently, the usage of single nucleotide polymorphism arrays provided information of copy number neutral loss of heterozygosity, thus suggesting the occurrence of somatic uniparental disomy (UPD) and uniparental polysomy (UPP) events. The aim of this study is to establish an integrative profiling of recurrent UPDs/UPPs and CNAs in sporadic CRC. Our results indicate that regions showing high frequencies of UPD/UPP mostly coincide with regions typically involved in genomic losses. Among them, chromosome arms 3p, 5q, 9q, 10q, 14q, 17p, 17q, 20p, 21q and 22q preferentially showed UPDs/UPPs over genomic losses suggesting that tumor cells must maintain the disomic state of certain genes to favor cellular fitness. A meta-analysis using over 300 samples from The Cancer Genome Atlas confirmed our findings. Several regions affected by recurrent UPDs/UPPs contain well-known TSGs, as well as novel candidates such as ARID1A, DLC1, TCF7L2 and DMBT1. In addition, VCAN, FLT4, SFRP1 and GAS7 were also frequently involved in regions of UPD/UPP and displayed high levels of methylation. Finally, sequencing and fluorescence in situ hybridization analysis of the gene APC underlined that a somatic UPD event might represent the second hit to achieve biallelic inactivation of this TSG in colorectal tumors. In summary, our data define a profile of somatic UPDs/UPPs in sporadic CRC and highlights the importance of these events as a mechanism to achieve the inactivation of TSGs. PMID:26243311

  13. Macrophages, Inflammation, and Tumor Suppressors: ARF, a New Player in the Game

    Directory of Open Access Journals (Sweden)

    Paqui G. Través

    2012-01-01

    Full Text Available The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2 characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.

  14. Regulation of Notch signaling and endocytosis by the Lgl neoplastic tumor suppressor

    NARCIS (Netherlands)

    Portela, Marta; Parsons, Linda M.; Grzeschik, Nicola A.; Richardson, Helena E.

    2015-01-01

    The evolutionarily conserved neoplastic tumor suppressor protein, Lethal (2) giant larvae (Lgl), plays roles in cell polarity and tissue growth via regulation of the Hippo pathway. In our recent study, we showed that in the developing Drosophila eye epithelium, depletion of Lgl leads to increased li

  15. Very CIN-ful: whole chromosome instability promotes tumor suppressor loss of heterozygosity.

    Science.gov (United States)

    Sotillo, Rocio; Schvartzman, Juan-Manuel; Benezra, Robert

    2009-12-01

    Mechanisms by which whole chromosome instability lead to tumorigenesis have eluded the cancer research field. In this issue of Cancer Cell, Baker et al. show that CIN induced by a defective mitotic checkpoint, under certain genetic and tissue contexts, leads to accelerated loss of heterozygosity of a tumor suppressor gene.

  16. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma

    NARCIS (Netherlands)

    Choorapoikayil, Suma; Kuiper, Raoul V.; de Bruin, Alain; den Hertog, Jeroen

    2012-01-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena(+/)-ptenb(-/-) or ptena(-/-)ptenb(+/-)) are viable and fertile.

  17. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    Science.gov (United States)

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions.

  18. Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs

    Directory of Open Access Journals (Sweden)

    Sherger Matthew

    2012-10-01

    Full Text Available Abstract Background Myeloid derived suppressor cells (MDSCs are a recently described population of immune cells that significantly contribute to the immunosuppression seen in cancer patients. MDSCs are one of the most important factors that limit the efficacy of cancer immunotherapy (e.g. cancer vaccines and MDSC levels are increased in cancer in multiple species. Identifying and targeting MDSCs is actively being investigated in the field of human oncology and is increasingly being investigated in veterinary oncology. The treatment of canine cancer not only benefits dogs, but is being used for translational studies evaluating and modifcying candidate therapies for use in humans. Thus, it is necessary to understand the immune alterations seen in canine cancer patients which, to date, have been relatively limited. This study investigates the use of commercially available canine antibodies to detect an immunosuppressive (CD11blow/CADO48low cell population that is increased in the peripheral blood of tumor-bearing dogs. Results Commercially available canine antibodies CD11b and CADO48A were used to evaluate white blood cells from the peripheral blood cells of forty healthy control dogs and forty untreated, tumor-bearing dogs. Tumor-bearing dogs had a statistically significant increase in CD11blow/CADO48Alow cells (7.9% as compared to the control dogs (3.6%. Additionally, sorted CD11blow/CADO48Alow generated in vitro suppressed the proliferation of canine lymphocytes. Conclusions The purpose of this study was aimed at identifying potential canine specific markers for identifying MDSCs in the peripheral blood circulation of dogs. This study demonstrates an increase in a unique CD11blow/CADO48Alow cell population in tumor-bearing dogs. This immunophenotype is consistent with described phenotypes of MDSCs in other species (i.e. mice and utilizes commercially available canine-specific antibodies. Importantly, CD11blow/CADO48Alow from a tumor environment

  19. MASSIVE PARALLEL DNA PYROSEQUENCING ANALYSIS OF THE TUMOR SUPPRESSOR BRG1/SMARCA4 IN LUNG PRIMARY TUMORS

    OpenAIRE

    Rodriguez-Nieto, Salvador; Cañanda, Andres; Pros, Eva; Pinto, Ana Isabel; Torres-Lanzas, Juan; Lopez-Rios, Fernando; Sanchez-Verde, Lydia; Pisano, David; Sanchez-Cespedes, Montse

    2010-01-01

    Abstract The tumor suppressor gene, SMARCA4 (or BRG1), which encodes the ATPase component of the chromatin remodeling complex SWI/SNF, is commonly inactivated by mutations and deletions in lung cancer cell lines. However, SMARCA4 alterations appear to be rare in lung primary tumors. Ultra-deep sequencing technologies provide a promising alternative to achieve a sensitivity superior to that of current sequencing strategies. Here we used ultra-deep pyrosequencing to screen for mutati...

  20. Deciphering tumor-suppressor signaling in flies: Genetic link between Scribble/Dlg/Lgl and the Hippo pathways

    Institute of Scientific and Technical Information of China (English)

    Masato Enomoto; Tatsushi Igaki

    2011-01-01

    Loss of apico-basal polarity is one of the crucial factors that drives epithelial tumor progression.scribble/discs large/lethal giant larvae (scrib/dlg/lgl),a group of apico-basal polarity genes,were initially identified as members of “neoplastic” tumor-suppressors in flies.The components of the Hippo signaling pathway,which is crucial for organ size control and cancer development,were also identified through Drosophila genetic screens as members of “hyperplastic” tumor-suppressors.Accumulating evidence in recent studies implies that these two tumor-suppressor signaling pathways are not mutually exclusive but rather cooperatively act to give rise to highly malignant tumors.The interaction of these tumor-suppressor pathways could include deregulations of actin cytoskeleton,cell-cell contact,and apical-domain size of the epithelial cell.

  1. RNA-DNA differences are rarer in proto-oncogenes than in tumor suppressor genes.

    Science.gov (United States)

    Gao, Feng; Lin, Yan; Zhang, Randy Ren

    2012-01-01

    It has long been assumed that DNA sequences and corresponding RNA transcripts are almost identical; a recent discovery, however, revealed widespread RNA-DNA differences (RDDs), which represent a largely unexplored aspect of human genome variation. It has been speculated that RDDs can affect disease susceptibility and manifestations; however, almost nothing is known about how RDDs are related to disease. Here, we show that RDDs are rarer in proto-oncogenes than in tumor suppressor genes; the number of RDDs in coding exons, but not in 3'UTR and 5'UTR, is significantly lower in the former than the latter, and this trend is especially pronounced in non-synonymous RDDs, i.e., those cause amino acid changes. A potential mechanism is that, unlike proto-oncogenes, the requirement of tumor suppressor genes to have both alleles affected to cause tumor 'buffers' these genes to tolerate more RDDs.

  2. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  3. Tumor suppressor microRNAs: Targeted molecules and signaling pathways in breast cancer.

    Science.gov (United States)

    Asghari, F; Haghnavaz, N; Baradaran, B; Hemmatzadeh, M; Kazemi, T

    2016-07-01

    Breast cancer is the most common type of cancer in women whose prevalence is increasing every year. Common strategies for diagnosis, prognosis and specific treatment of breast cancer need improvements to increase patients' survival. For this reason, there is growing number of efforts world-wide with molecular approaches. With the advent of microRNAs (miRNAs), they have been interested for almost all aspects of tumorgenesis and correlation of breast cancer and microRNAs was discovered for the first time in 2005. MiRNAs form a group of small noncoding RNAs which participate in regulation of gene expression and subsequently several biological processes and pathogenesis of various diseases. As other cancers, miRNAs involved in breast cancer are classified in two groups: the first group is tumor inducing miRNAs (also called oncomirs) that can induce tumor initiation and progression, and their expression is increased in cancerous cells. The second group is tumor suppressor miRNAs. In normal situation, tumor suppressor miRNAs prevent beginning and progression of breast cancer through suppressing the expression of various oncogenes. In this review we will give a general overview about miRNAs and breast cancer, and in the following, more discussion about tumor suppressor miRNAs, with focus on the best known of them and their targeted oncogenes and signaling pathways. Finally, we will point to application of this group of miRNAs in diagnosis, prognosis and treatment of patients.

  4. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2010-11-01

    Full Text Available Abstract Background To identify new and useful candidate biomarkers in head and neck squamous cell carcinoma (HNSCC, we performed a genome-wide survey and found that Myelin and lymphocyte-associated protein (MAL was a gene that was markedly down-regulated in HNSCC. Hence, we investigated the mechanism of MAL silencing and the effects of MAL on the proliferation, invasion, and apoptotic potential in HNSCC. Results MAL was significantly down-regulated in 91.7% of HNSCC specimens at the mRNA level as compared with adjacent normal tissues (P = 0.0004. Moreover, the relative transcript levels of the MAL gene were remarkably decreased by five-fold in nine HNSCC cell lines as compared with normal head and neck epithelium cells. MAL gene expression was restored in 44%, 67%, and 89% in HNSCC cell lines treated with TSA, 5-Aza-dC, and TSA plus 5-Aza-dC, respectively. Furthermore, bisulfate-treated DNA sequencing demonstrated that the two CpG islands (that is, M1 and M2 located in MAL promoter region were completely methylated in the HNSCC cell lines (CpG methylated ratio was more than 90%, and only one CpG island (that is, M1 was partially methylated in HNSCC tissues (CpG methylated ratio between 20% and 90%. A significant reduction in cell proliferation and a change in the cell cycle profile were also observed in MAL transfectants. Matrigel assay demonstrated that the invasiveness of HNSCC cells significantly decreased. A significant increase in the population of apoptotic cells was observed in MAL transfected cells. The exogenous expression of the MAL gene suppressed malignant phenotypes, while the cell death induced by MAL gene transfer was a result of apoptosis as demonstrated by the induction of cleavage of the poly (that is, ADP-ribose polymerase. Additionally, tumor growth was suppressed in cells expressing MAL as compared with cells not expressing MAL. Conclusion Our data suggest that the epigenetic inactivation of MAL, as a candidate tumor

  5. OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation.

    Directory of Open Access Journals (Sweden)

    Yan Cui

    Full Text Available Identification of tumor suppressor genes (TSGs silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC. OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction.Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate, lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing.Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies.

  6. A study on tumor suppressor genes mutations associated with different pathological colorectal lesions

    International Nuclear Information System (INIS)

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the Western world. In Egypt; there is an increasing incidence of the disease, especially among patients ≤40 years age. While CRC have been reported in low incidence rate in developing countries, it is the third most common tumor in male and the fifth common tumor in females in Egypt. Early diagnosis and surgical interference guarantee long survival of most CRC patients. Early diagnosis is impeded by the disease onset at young age and imprecise symptoms at the initial stages of the disease. As in most solid tumors, the malignant transformation of colonic epithelial cells is to arise through a multistep process during which they acquire genetic changes involving the activation of proto-oncogenes and the loss of tumor suppressor genes. Recently, a candidate tumor suppressor gene, KLF6, which is mapped to chromosome 10p, was found to be frequently mutated in a number of cancers. There are some evidences suggesting that the disruption of the functional activity of KLF6 gene products may be one of the early events in tumor genesis of the colon. The main objective of the present study was to detect mutational changes of KLF6 tumor suppressor gene and to study the loss of heterozygosity (LOH) markers at chromosome 10p15 (KLF6 locus) in colorectal lesions and colorectal cancer in Egyptian patients. The patients included in this study were 83 presented with different indications for colonoscopic examination. Selecting patients with colorectal pre-cancerous lesions or colorectal cancer was done according to the results of tissue biopsy from lesion and adjacent normal. The patients were classified into three main groups; (G I) Cancerous group, (G II) polyps group including patients with adenomatous polyps (AP), familial adenomatous polyps (FAP) and hyperplastic polyps (HP) and (G III) Inflammatory Bowel Diseases (IBD) including patients with ulcerative colitis (UC) and Crohn's disease (CD

  7. Repression of estrogen receptor {beta} function by putative tumor suppressor DBC1

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Satoshi [Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8655 (Japan); Wada-Hiraike, Osamu, E-mail: osamuwh-tky@umin.ac.jp [Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8655 (Japan); Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi [Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8655 (Japan); Fukuhara, Hiroshi [Department of Urology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8655 (Japan); Nakagawa, Keiichi [Department of Radiology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8655 (Japan); Kato, Shigeaki [SORST, Japan Science and Technology, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 (Japan); Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0034 (Japan); Yano, Tetsu; Taketani, Yuji [Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-8655 (Japan)

    2010-02-12

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) {alpha} appears to promote the proliferation of cancer tissues, while ER{beta} can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ER{alpha} and ER{beta} may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ER{alpha} expression and promotes breast cancer cell survival by binding to ER{alpha}. Here we report an ER{beta}-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ER{beta} and DBC1 interact in a ligand-independent manner similar to ER{alpha}. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ER{beta}. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ER{alpha}, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ER{beta}in vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ER{beta}. These results implicate the principal role of DBC1 in regulating ER{beta}-dependent gene expressions.

  8. Distinct and Competitive Regulatory Patterns of Tumor Suppressor Genes and Oncogenes in Ovarian Cancer

    OpenAIRE

    Zhao, Min; Sun, Jingchun; Zhao, Zhongming

    2012-01-01

    Background So far, investigators have found numerous tumor suppressor genes (TSGs) and oncogenes (OCGs) that control cell proliferation and apoptosis during cancer development. Furthermore, TSGs and OCGs may act as modulators of transcription factors (TFs) to influence gene regulation. A comprehensive investigation of TSGs, OCGs, TFs, and their joint target genes at the network level may provide a deeper understanding of the post-translational modulation of TSGs and OCGs to TF gene regulation...

  9. Stability of the LATS2 Tumor Suppressor Gene Is Regulated by Tristetraprolin*

    OpenAIRE

    Lee, Hyun Hee; Vo, Mai-Tram; Kim, Hyo Jeong; Lee, Unn Hwa; Kim, Chae Won; Kim, Hong Kyeung; Ko, Myoung Seok; Lee, Won Hyuck; Cha, Seung Joo; Min, Young Joo; Choi, Dae Hwa; Suh, Ho Seok; Lee, Byung Ju; Park, Jeong Woo; Cho, Wha Ja

    2010-01-01

    LATS2 is a tumor suppressor gene implicated in the control of cell growth and the cell cycle. Here, we investigated the post-transcriptional regulation of LATS2 expression by tristetraprolin (TTP). Our results show that the expression level of LATS2 is inversely correlated with TTP expression in human cancer cell lines. Overexpression of TTP reduced the expression level of LATS2. Conversely, treatment with small interfering RNA against TTP increased the expression level of LATS2 through stabi...

  10. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    OpenAIRE

    GUO Shuang; Cheng, Xiwen; Lim, Jun-Hee; Yu LIU; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (S...

  11. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma.

    LENUS (Irish Health Repository)

    Tivnan, Amanda

    2011-01-01

    Neuroblastoma is a paediatric cancer which originates from precursor cells of the sympathetic nervous system and accounts for 15% of childhood cancer mortalities. With regards to the role of miRNAs in neuroblastoma, miR-34a, mapping to a chromosome 1p36 region that is commonly deleted, has been found to act as a tumor suppressor through targeting of numerous genes associated with cell proliferation and apoptosis.

  12. Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability

    OpenAIRE

    Iotti, Giorgio; Longobardi, Elena; Masella, Silvia; Dardaei, Leila; De Santis, Francesca; Micali, Nicola; Blasi, Francesco

    2011-01-01

    Prep1 is a homeodomain transcription factor that is essential in embryonic development and functions in the adult as a tumor suppressor. We show here that Prep1 is involved in maintaining genomic stability and preventing neoplastic transformation. Hypomorphic homozygous Prep1i/i fetal liver cells and mouse embryonic fibroblasts (MEFs) exhibit increased basal DNA damage and normal DNA damage response after γ-irradiation compared with WT. Cytogenetic analysis shows the presence of numerous chro...

  13. Grail as a molecular determinant for the functions of the tumor suppressor p53 in tumorigenesis

    OpenAIRE

    Chen, Y-C; Chan, J Y-H; Chiu, Y-L.; Liu, S-T; Lozano, G.; Wang, S-L; Ho, C-L; Huang, S-M

    2013-01-01

    The transcription factor p53 is a multifunctional tumor suppressor that arrests the cell cycle in response to stress and modulates the DNA repair process or induces apoptosis. The cellular level and activity of p53 are tightly controlled to maintain proper functioning. This study identified a novel p53-binding glycoprotein, gene related to anergy in lymphocytes (Grail), which formed a negative feedback loop (similar to that of Mdm2). Grail physically and functionally interacted with the N-ter...

  14. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    OpenAIRE

    Shih, Chi-Tin; Roche, Stephan; Römer, Rudolf A.

    2007-01-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective single-strand or double-strand tight-binding models which simulate hole propagation along the DNA, a statistical analysis of charge transmission modulations associated with all possible point mutations is performed. We find that in contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker {...

  15. Markers for sebaceoma show a spectrum of cell cycle regulators, tumor suppressor genes, and oncogenes

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2015-01-01

    Full Text Available Background: Sebaceoma is a tumor for which the causative oncogenes are not well-understood. Sebaceomas demonstrate some histopathologic features similar to basal cell carcinoma (BCC, such as palisading borders and basaloid cells with additional features, including foamy cytoplasm and indented nuclei. Aims: We examine multiple cell-cycle, oncogene, and tumor suppressor gene markers in sebaceomas, to try to find some suitable biological markers for this tumor, and compare with other published studies. Materials and Methods: We investigated a panel of immunohistochemical (IHC stains that are important for cellular signaling, including a cell cycle regulator, tumor suppressor gene, oncogene, hormone receptor, and genomic stability markers in our cohort of sebaceomas. We collected 30 sebaceomas from three separate USA dermatopathology laboratories. The following IHC panel: Epithelial membrane antigen (EMA/CD227, cytokeratin AE1/AE3, cyclin D1, human breast cancer 1 protein (BRCA-1, C-erb-2, Bcl-2, human androgen receptor (AR, cyclin-dependent kinase inhibitor 1B (p27 kip1 , p53, topoisomerase II alpha, proliferating cell nuclear antigen, and Ki-67 were tested in our cases. Results: EMA/CD227 was positive in the well-differentiated sebaceomas (13/30. Cyclin-dependent kinase inhibitor 1B was positive in tumors with intermediate differentiation (22/30. The less well-differentiated tumors failed to stain with EMA and AR. Most of the tumors with well-differentiated palisaded areas demonstrated positive staining for topoisomerase II alpha, p27 kip1 , and p53, with positive staining in tumoral basaloid areas (22/30. Numerous tumors were focally positive with multiple markers, indicating a significant degree of variability in the complete group. Conclusions: Oncogenes, tumor suppressor genes, cell cycle regulators, and hormone receptors are variably expressed in sebaceomas. Our results suggest that in these tumors, selected marker staining seems to correlate

  16. Dependence receptor TrkC is a putative colon cancer tumor suppressor.

    Science.gov (United States)

    Genevois, Anne-Laure; Ichim, Gabriel; Coissieux, Marie-May; Lambert, Marie-Pierre; Lavial, Fabrice; Goldschneider, David; Jarrosson-Wuilleme, Loraine; Lepinasse, Florian; Gouysse, Géraldine; Herceg, Zdenko; Scoazec, Jean-Yves; Tauszig-Delamasure, Servane; Mehlen, Patrick

    2013-02-19

    The TrkC neurotrophin receptor belongs to the functional dependence receptor family, members of which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer tumor-suppressor activity. Indeed, cells that express these receptors are thought to be dependent on ligand availability for their survival, a mechanism that inhibits uncontrolled tumor cell proliferation and migration. TrkC is a classic tyrosine kinase receptor and therefore generally considered to be a proto-oncogene. We show here that TrkC expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, we show that TrkC silencing by promoter methylation is a selective advantage for colorectal cell lines to limit tumor cell death. Furthermore, reestablished TrkC expression in colorectal cancer cell lines is associated with tumor cell death and inhibition of in vitro characteristics of cell transformation, as well as in vivo tumor growth. Finally, we provide evidence that a mutation of TrkC detected in a sporadic cancer is a loss-of-proapoptotic function mutation. Together, these data support the conclusion that TrkC is a colorectal cancer tumor suppressor. PMID:23341610

  17. KLF10, transforming growth factor-{beta}-inducible early gene 1, acts as a tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki-Duk [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Duk-Jung [The Institute of Hankook Life Science, 7-9 Myungryun-dong, Jongno-gu, Seoul 110-521 (Korea, Republic of); Lee, Jong Eun [Department of Anatomy, College of Medicine, Yonsei University, Seoul 120-752 (Korea, Republic of); Yun, Cheol-Heui [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Lee, Woon Kyu, E-mail: wklee@inha.ac.kr [Laboratory of Developmental Genetics, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of); Brain Korea 21 Center for Advanced Medical Education, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer KLF10{sup -/-} mice exhibited accelerated papilloma development after DMBA/TPA treatment. Black-Right-Pointing-Pointer KLF10{sup -/-} keratinocytes showed increased proliferation and apoptosis. Black-Right-Pointing-Pointer KLF10{sup -/-} MEFs yielded more colonies than wild-type one with H-Ras transfection. Black-Right-Pointing-Pointer KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription. Black-Right-Pointing-Pointer KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription. -- Abstract: Krueppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription, which was independent of p53 and Sp1 binding sites in p21{sup WAF1/CIP1} promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription.

  18. The molecular mechanisms that underlie the tumor suppressor function of LKB1

    Institute of Scientific and Technical Information of China (English)

    Dahua Fan; Chao Ma; Haitao Zhang

    2009-01-01

    Germline mutations of the LKB1 tumor suppressor gene result in Peutz-Jeghers syndrome (PJS) charac-terized by intestinal hamartomas and increased inci-dence of epithelial cancers. Inactivating mutations in LKB1 have also been found in certain sporadic human cancers and with particularly high frequency in lung cancer. LKB1 has now been demonstrated to play a crucial role in pulmonary tumorigenesis, controlling initiation, differentiation, and metastasis. Recent evi-dences showed that LKB1 is a multitasking kinase, with great potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in cell polarity, energy metabolism, apoptosis, cell cycle arrest, and cell proliferation, all of which may require the tumor sup-pressor function of this kinase and/or its catalytic activity. This review focuses on remarkable recent find-ings concerning the molecular mechanism by which the LKB1 protein kinase operates as a tumor suppressor and discusses the rational treatment strategies to indi-viduals suffering from PJS and other common dis-orders related to LKB1 signaling.

  19. SMG1 Acts as a Novel Potential Tumor Suppressor with Epigenetic Inactivation in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Yahui Du

    2014-09-01

    Full Text Available Suppressor with morphogenetic effect on genitalia family member (SMG1 belongs to a family of phosphoinositide 3-kinase-related kinases and is the main kinase involved in nonsense-mediated mRNA decay. Recently, SMG1 was suggested as a novel potential tumor suppressor gene, particularly in hypoxic tumors. To investigate the function of SMG1 in acute myeloid leukemia (AML, we performed methylation-specific polymerase chain reaction and found that SMG1 was hypermethylated in the promoter region. SMG1 hypermethylation was found in 66% (33/50 of AML samples compared with none (0/14 of the normal controls. SMG1 mRNA was down-regulated in AML patients with hypermethylation status whereas it was readily expressed in patients without methylation. Moreover, treatment of AML cells with demethylating agent 5-aza-2'-deoxycytidine (decitabine inhibited AML cell growth and induced apoptosis by reversing SMG1 methylation status and restoring SMG1 expression. On the other hand, knockdown of SMG1 by RNA interference inhibited apoptosis. We also found that mTOR expression level was negatively correlated to SMG1 expression in AML patients which indicated that SMG1 and mTOR maybe act antagonistically to regulate AML cell growth. In conclusion, our results indicate that SMG1 acts as a potential tumor suppressor with epigenetic regulation in AML.

  20. Effect of up-regulated expression of tumor suppressor gene p14ARF on apoptosis of chronic myeloid leukemia cells

    Institute of Scientific and Technical Information of China (English)

    白元松

    2013-01-01

    Objective To investigate the effect of up-regulated expression of tumor suppressor gene p14ARFon apoptosis of chronic myeloid leukemia (CML) cells and its interaction with imatinib.Methods Tumor suppressor gene p14ARFwas transduced into K562 (K562-p14ARF) and 4blast crisis primary CML cells (CML-BC 1-4) using vesicular stomatitis virus glycoprotein (VSV-G)

  1. Identification of TGFβ signaling, p53, and actin stress fibers as targets of LKB1 tumor suppressor activity

    OpenAIRE

    Vaahtomeri, Kari

    2011-01-01

    Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased r...

  2. The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens

    Directory of Open Access Journals (Sweden)

    Luke A. Wiley

    2011-07-01

    We previously found that lenses lacking the Acvr1 gene, which encodes a bone morphogenetic protein (BMP receptor, had abnormal proliferation and cell death in epithelial and cortical fiber cells. We tested whether the tumor suppressor protein p53 (encoded by Trp53 affected this phenotype. Acvr1 conditional knockout (Acvr1CKO mouse fiber cells had increased numbers of nuclei that stained for p53 phosphorylated on serine 15, an indicator of p53 stabilization and activation. Deletion of Trp53 rescued the Acvr1CKO cell death phenotype in embryos and reduced Acvr1-dependent apoptosis in postnatal lenses. However, deletion of Trp53 alone increased the number of fiber cells that failed to withdraw from the cell cycle. Trp53CKO and Acvr1;Trp53DCKO (double conditional knockout, but not Acvr1CKO, lenses developed abnormal collections of cells at the posterior of the lens that resembled posterior subcapsular cataracts. Cells from human posterior subcapsular cataracts had morphological and molecular characteristics similar to the cells at the posterior of mouse lenses lacking Trp53. In Trp53CKO lenses, cells in the posterior plaques did not proliferate but, in Acvr1;Trp53DCKO lenses, many cells in the posterior plaques continued to proliferate, eventually forming vascularized tumor-like masses at the posterior of the lens. We conclude that p53 protects the lens against posterior subcapsular cataract formation by suppressing the proliferation of fiber cells and promoting the death of any fiber cells that enter the cell cycle. Acvr1 acts as a tumor suppressor in the lens. Enhancing p53 function in the lens could contribute to the prevention of steroid- and radiation-induced posterior subcapsular cataracts.

  3. Tumor suppressor p53: analysis of wild-type and mutant p53 complexes.

    OpenAIRE

    Milner, J; Medcalf, E A; Cook, A. C.

    1991-01-01

    It has been suggested that the dominant effect of mutant p53 on tumor progression may reflect the mutant protein binding to wild-type p53, with inactivation of suppressor function. To date, evidence for wild-type/mutant p53 complexes involves p53 from different species. To investigate wild-type/mutant p53 complexes in relation to natural tumor progression, we sought to identify intraspecific complexes, using murine p53. The mutant phenotype p53-246(0) was used because this phenotype is immuno...

  4. Molecular Cloning of a Novel Bovine Homologue of the Drosophila Tumor Suppressor Gene, Lats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Pervious studies demonstrate that lats, also known as warts, is a tumor suppressor gene in Drosophila[1,2]. Mutations of lats lead to an increase in cell number and organ size in Drosophila, indicating lats may be involved in organ size control. Furthermore, the high conservation of sequence and tumor suppression function of lats between Drosophila and human suggests that it may be also involved in organ size control of higher animals[3]. So here we isolated the bovine homologue of Drosophila lats. Sequence analysis indicates the bovine LATS1 to be very similar to other lats proteins.

  5. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs.

    Science.gov (United States)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-07-18

    In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter is activated by E2F only in cancer cells and therefore may be more cancer cell-specific than E2F1 promoter to drive gene expression. We show here that the ARF promoter has lower activity in normal growing fibroblasts and shows higher cancer cell-specificity compared to the E2F1 promoter. We also demonstrate that adenovirus expressing HSV

  6. 转移抑制候选基因 MIM%Tumor metastasis suppressor gene MIM

    Institute of Scientific and Technical Information of China (English)

    柳珂; 王杰军; 于观贞

    2009-01-01

    Tumor metastasis suppressor genes is a kind of genes that only suppresses tumor metastasis without affecting tumorigenesis and tumor growth. MIM ( missing in metastasis ) is a putative tumor metastasis suppressor gene discovered recently, which is thought to be down-regulated generally in some metastatic bladder cancer and prostate cancer cells in comparison with normal bladder and prostate tissue. MIM, localized in chro-mosome 8q24.1, suggests a connection with regulation of cytoskeleton with a proline-rich region and a homology 2 (WH2) domain binding the actin. MIM also has support roles for its multiple-domain. Its potential homo-logue MIM-B is also thought to code a putative tumor metastasis suppressor protein.%转移抑制基因是一类只抑制癌细胞的转移但不影响肿瘤发生和生长的基因.MIM是一种新近发现的肿瘤转移抑制候选基因,所编码的蛋白在转移性膀胱癌和前列腺癌等肿瘤中比其在正常组织中低表达.MIM基因定位于染色体8q24.1上,通过一段富含脯氨酸的序列和具有的WH2结构域结合肌动蛋白,具有调控细胞骨架的作用,其多结构域的特点使其还具备支架作用.MIM可能的同系物MIM-B同样被认为编码一种假定的转移抑制蛋白.

  7. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden.

    Science.gov (United States)

    Rui, Ke; Tian, Jie; Tang, Xinyi; Ma, Jie; Xu, Ping; Tian, Xinyu; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-08-01

    Tumor-elicited immunosuppression is one of the essential mechanisms for tumor evasion of immune surveillance. It is widely thought to be one of the main reasons for the failure of tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of cells that play an important role in tumor-induced immunosuppression. These cells expand in tumor-bearing individuals and suppress T cell responses via various mechanisms. Curdlan, the linear (1 → 3)-β-glucan from Agrobacterium, has been applied in the food industry and other sectors. The anti-tumor property of curdlan has been recognized for a long time although the underlying mechanism still needs to be explored. In this study, we investigated the effect of curdlan on MDSCs and found that curdlan could promote MDSCs to differentiate into a more mature state and then significantly reduce the suppressive function of MDSCs, decrease the MDSCs in vivo and down-regulate the suppression in tumor-bearing mice, thus leading to enhanced anti-tumor immune responses. We, therefore, increase the understanding of further mechanisms by which curdlan achieves anti-tumor effects. PMID:26832917

  8. Tumor suppressor function of Betaig-H3 gene in radiation carcinogenesis

    Science.gov (United States)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-β) DCC (deleted in colorectal cancer), p21 cip1, c-fos , Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor α5β1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin α5β1 receptor. Furthermore, exogenous TGF-β1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-β. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  9. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity

    DEFF Research Database (Denmark)

    Danovi, Davide; Meulmeester, Erik; Pasini, Diego;

    2004-01-01

    Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14(ARF) or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo......). Furthermore, the human Mdmx ortholog, Hdmx, was found to be overexpressed in a significant percentage of various human tumors and amplified in 5% of primary breast tumors, all of which retained wild-type p53. Hdmx was also amplified and highly expressed in MCF-7, a breast cancer cell line harboring wild......-type p53, and interfering RNA-mediated reduction of Hdmx markedly inhibited the growth potential of these cells in a p53-dependent manner. Together, these results make Hdmx a new putative drug target for cancer therapy....

  10. Mutation analysis of novel human liver-related putative tumor suppressor gene in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cheng Liao; Tsai-Ping Li; Mu-Jun Zhao; Jing Zhao; Hai Song; Pascal Pineau; Agnès Marchio; Anne Dejean; Pierre Tiollais; Hong-Yang Wang

    2003-01-01

    AIM: To find the point mutations meaningful for inactivationof liver-related putative tumor suppressor gene (LPTS) gene,a human novel liver-related putative tumor suppressor geneand telomerase inhibitor in hepatocellular carcinoma.METHODS: The entire coding sequence of LPTS genewas examined for mutations by single strand conformationpolymorphism (SSCP) assay and PCR products directsequencing in 56 liver cancer cell lines, 7 ovarian cancerand 7 head & neck tumor cell lines and 70 pairs of HCCtissues samples. The cDNA fragment coding for the mostfrequent mutant protein was subcloned into GST fusionexpression vector. The product was expressed in E. coliand purified by glutathione-agarose column. Telomericrepeat amplification protocol (TRAP) assays wereperformed to study the effect of point mutation totelomerase inhibitory activity.RESULTS: SSCP gels showed the abnormal shifting bandsand DNA sequencing found that there were 5 differentmutations and/or polymorphisms in 12 tumor cell lineslocated at exon2, exon5 and exon7. The main alterationswere A(778)A/G and A(880)T in exon7. The change in siteof 778 could not be found in HCC tissue samples, while themutation in position 880 was seen in 7 (10 %) cases. Themutation in the site of 880 had no effect on telomeraseinhibitory activity.CONCLUSION: Alterations identified in this study arepolymorphisms of LPTS gene. LPTS mutations occur in HCCbut are infrequent and of little effect on the telomeraseinhibitory function of the protein. Epigenetics, such asmethylation, acetylation, may play the key role in inactivationof LPTS.

  11. High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL in cancer.

    Directory of Open Access Journals (Sweden)

    Vladimir I Kashuba

    Full Text Available BACKGROUND: Many different genetic alterations are observed in cancer cells. Individual cancer genes display point mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic hypermutability of proto-oncogenes can induce development of lymphomas. METHODOLOGY/PRINCIPAL FINDINGS: We found an exceptionally high incidence of single-base mutations in the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL both located in 3p21.3 regions, LUCA and AP20 respectively. These regions contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1-2, 129 mutations were detected (mutation frequency, MF = 0.23 per 100 bp and in 98 clones of exons 3-5 we found 146 mutations (MF = 0.29. In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10. The mutations were not cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines. CONCLUSIONS/SIGNIFICANCE: This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes involved in major human malignancies offer a novel insight in cancer development, progression and spread.

  12. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma.

    Science.gov (United States)

    Bray, Isabella; Tivnan, Amanda; Bryan, Kenneth; Foley, Niamh H; Watters, Karen M; Tracey, Lorraine; Davidoff, Andrew M; Stallings, Raymond L

    2011-04-01

    Several studies have implicated the dysregulation of microRNAs in neuroblastoma pathogenesis, an often fatal paediatric cancer arising from precursor cells of the sympathetic nervous system. Our group and others have demonstrated that lower expression of miR-542-5p is highly associated with poor patient survival, indicating a potential tumor suppressive function. Here, we demonstrate that ectopic over-expression of this miRNA decreases the invasive potential of neuroblastoma cell lines in vitro, along with primary tumor growth and metastases in an orthotopic mouse xenograft model, providing the first functional evidence for the involvement of miR-542-5p as a tumor suppressor in any type of cancer.

  13. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2014-01-01

    Full Text Available The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53−/− or Par-4−/− mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors.

  14. Cancer-associated p53 Tetramerization Domain Mutants: QUANTITATIVE ANALYSIS REVEALS A LOW THRESHOLD FOR TUMOR SUPPRESSOR INACTIVATION*

    OpenAIRE

    Kamada, Rui; Nomura, Takao; Anderson, Carl W; Sakaguchi, Kazuyasu

    2010-01-01

    The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lowe...

  15. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  16. Effect of sulfur dioxide on expression of proto-oncogenes and tumor suppressor genes from rats.

    Science.gov (United States)

    Bai, Juli; Meng, Ziqiang

    2010-06-01

    Sulfur dioxide (SO(2)) is a ubiquitous air pollutant that is present in low concentrations in the urban air, and in higher concentrations in the working environment. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 +/- 1.01, 28.00 +/- 1.77 and 56.00 +/- 3.44 mg m(-3) SO(2) for 6 h/day for 7 days, while control group was exposed to filtered air in the same condition. The mRNA and protein levels of proto-oncogenes (c-fos, c-jun, c-myc, and Ki-ras) and tumor suppressor genes (p53, Rb, and p16) were analyzed in lungs using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and Western blot analysis. The results showed that mRNA and protein levels of c-fos, c-jun, c-myc, Ki-ras, and p53 in lungs were increased in a dose-dependent manner, while mRNA and protein levels of Rb and p16 were decreased in lungs of rats after SO(2) inhalation. These results lead to a conclusion that SO(2) exposure could activate expressions of proto-oncogenes and suppress expressions of tumor suppressor genes, which might relate to the molecular mechanism of cocarcinogenic properties and potential carcinogenic effects of SO(2). According to previous studies, the results also indicated that promoter genes of apoptosis and tumor suppressor genes could produce apoptotic signals to antagonize the growth signals that arise from oncogenes. Understanding its molecular controls will benefit development of treatments for many diseases.

  17. SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor

    Directory of Open Access Journals (Sweden)

    Domenici F

    2011-09-01

    Full Text Available Fabio Domenici, Anna Rita Bizzarri, Salvatore Cannistraro Biophysics and Nanoscience Centre, Faculty of Science, Università della Tuscia, Viterbo, Italy Background: One of the main challenges in biomedicine is improvement of detection sensitivity to achieve tumor marker recognition at a very low concentration when the disease is not significantly advanced. A pivotal role in cancer defense is played by the p53 tumor suppressor, therefore its detection with high sensitivity may contribute considerably to early diagnosis of cancer. In this work, we present a new analytical method based on surface-enhanced Raman spectroscopy which could significantly increase the sensitivity of traditional bioaffinity techniques. p53 molecules were anchored to gold nanoparticles by means of the bifunctional linker 4-aminothiophenol (4-ATP. The characteristic vibrational bands of the p53-4-ATP nanoparticle system were then used to identify the p53 molecules when they were captured by a recognition substrate comprising a monolayer of azurin in molecules possessing significant affinity for this tumor suppressor. The Raman signal enhancement achieved by 4-ATP-mediated crosslinking of p53 to 50 nm gold nanoparticles enabled detect of this protein at a concentration down to 5 × 10-13 M. Keywords: surface-enhanced Raman spectroscopy, p53, ultrasensitive detection, atomic force microscopy

  18. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration.

    Science.gov (United States)

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons-in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  19. Lysine methylation-dependent binding of 53BP1 to the pRb tumor suppressor.

    Science.gov (United States)

    Carr, Simon M; Munro, Shonagh; Zalmas, Lykourgos-Panagiotis; Fedorov, Oleg; Johansson, Catrine; Krojer, Tobias; Sagum, Cari A; Bedford, Mark T; Oppermann, Udo; La Thangue, Nicholas B

    2014-08-01

    The retinoblastoma tumor suppressor protein pRb is a key regulator of cell cycle progression and mediator of the DNA damage response. Lysine methylation at K810, which occurs within a critical Cdk phosphorylation motif, holds pRb in the hypophosphorylated growth-suppressing state. We show here that methyl K810 is read by the tandem tudor domain containing tumor protein p53 binding protein 1 (53BP1). Structural elucidation of 53BP1 in complex with a methylated K810 pRb peptide emphasized the role of the 53BP1 tandem tudor domain in recognition of the methylated lysine and surrounding residues. Significantly, binding of 53BP1 to methyl K810 occurs on E2 promoter binding factor target genes and allows pRb activity to be effectively integrated with the DNA damage response. Our results widen the repertoire of cellular targets for 53BP1 and suggest a previously unidentified role for 53BP1 in regulating pRb tumor suppressor activity.

  20. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration

    Science.gov (United States)

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L.; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons—in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  1. Phenotype diversity in familial cylindromatosis: a frameshift mutation in the tumor suppressor gene CYLD underlies different tumors of skin appendages.

    Science.gov (United States)

    Poblete Gutiérrez, Pamela; Eggermann, Thomas; Höller, Daniela; Jugert, Frank K; Beermann, Torsten; Grussendorf-Conen, Elke-Ingrid; Zerres, Klaus; Merk, Hans F; Frank, Jorge

    2002-08-01

    Familial cylindromatosis (turban tumor syndrome; Brooke-Spiegler syndrome) (OMIM numbers 123850, 132700, 313100, and 605041) is a rare autosomal dominantly inherited tumor syndrome. The disorder can present with cutaneous adnexal tumors such as cylindromas, trichoepitheliomas, and spiradenomas, and tumors preferably develop in hairy areas of the body such as head and neck. In affected families, mutations have been demonstrated in the CYLD gene located on chromosome 16q12-13 and reveal the characteristic attributes of a tumor suppressor. Here, we studied familial cylindromatosis in a multigeneration family of German origin. Clinically, some individuals only revealed discrete small skin-colored tumors localized in the nasolabial region whereas one family member showed expansion of multiple big tumors on the trunk and in a turban-like fashion on the scalp. Histologically, cylindromas as well as epithelioma adenoides cysticum were found. We detected a frameshift mutation in the CYLD gene, designated 2253delG, underlying the disorder and were able to show that a single mutation can result in distinct clinical and histologic expression in familial cylindromatosis. The reasons for different expression patterns of the same genetic defect in this disease remain elusive, however. Identification of mutations in the CYLD gene enable us to rapidly confirm putative diagnoses on the genetic level and to provide affected families with genetic counseling.

  2. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB

    OpenAIRE

    Benoit, Valérie; Moraes, E.; Dar, N A; Taranchon, E.; Bours, Vincent; Hautefeuille, A.; Taniere, P; Chariot, Alain; Scoazec, J Y; Gallo, C. V. D.; Merville, Marie-Paule; Hainaut, Pierre

    2006-01-01

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-dama...

  3. Inhibitor of differentiation 4 (Id4 is a potential tumor suppressor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Carey Jason PW

    2009-06-01

    Full Text Available Abstract Background Inhibitor of differentiation 4 (Id4, a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Methods Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS, expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Results Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR, p21, p27 and p53 expression in DU145 cells. Conclusion The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously

  4. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    OpenAIRE

    Ravshan Burikhanov; Tripti Shrestha-Bhattarai; Nikhil Hebbar; Shirley Qiu; Yanming Zhao; Gerard P. Zambetti; Vivek M. Rangnekar

    2014-01-01

    The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice...

  5. In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models

    OpenAIRE

    Brož, Daniela Kenzelmann; Attardi, Laura D.

    2010-01-01

    p53 is a crucial tumor suppressor, as evidenced by the high propensity for p53 mutation during human cancer development. Already more than a decade ago, p53 knockout mice confirmed that p53 is critical for preventing tumorigenesis. More recently, a host of p53 knock-in mouse strains has been generated, with the aim of either more precisely modeling p53 mutations in human cancer or better understanding p53's regulation and downstream activities. In the first category, several mouse strains exp...

  6. Re-Engineered p53 Chimera with Enhanced Homo-Oligomerization That Maintains Tumor Suppressor Activity

    OpenAIRE

    Okal, Abood; Cornillie, Sean; Matissek, Stephan J.; Matissek, Karina J.; Cheatham, Thomas E.; Lim, Carol S

    2014-01-01

    The use of the tumor suppressor p53 for gene therapy of cancer is limited by the dominant negative inactivating effect of mutant endogenous p53 in cancer cells. We have shown previously that swapping the tetramerization domain (TD) of p53 with the coiled-coil (CC) from Bcr allows for our chimeric p53 (p53-CC) to evade hetero-oligomerization with endogenous mutant p53. This enhances the utility of this construct, p53-CC, for cancer gene therapy. Because domain swapping to create p53-CC could r...

  7. Hydroxylation-Dependent Interaction of Substrates to the Von Hippel-Lindau Tumor Suppressor Protein (VHL).

    Science.gov (United States)

    Heir, Pardeep; Ohh, Michael

    2016-01-01

    Oxygen-dependent hydroxylation of critical proline residues, catalyzed by prolyl hydroxylase (PHD1-3) enzymes, is a crucial posttranslational modification (PTM) within the canonical hypoxia-inducible factor (HIF)-centric cellular oxygen-sensing pathway. Alteration of substrates in this way often leads to proteasomal degradation mediated by the von Hippel-Lindau Tumor Suppressor protein (VHL) containing E3-ubiquitin ligase complex known as ECV (Elongins B/C, CUL2, VHL). Here, we outline in vitro protocols to demonstrate the ability of VHL to bind to a prolyl-hydroxylated substrate. PMID:27581016

  8. SUMOylation of the ING1b tumor suppressor regulates gene transcription

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Guérillon, Claire; Kim, Tae-Sun;

    2014-01-01

    The INhibitor of Growth (ING) proteins are encoded as multiple isoforms in five ING genes (ING1 -5) and act as type II tumor suppressors. They are growth inhibitory when overexpressed and are frequently mislocalized or downregulated in several forms of cancer. ING1 and ING2 are stoichiometric mem......1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription....

  9. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations

    DEFF Research Database (Denmark)

    Aslan, Derya; Garde, Christian; Nygaard, Mette Katrine;

    2016-01-01

    ) were developed, and all detected mutations were confirmed by Sanger sequencing. Overall, canonical miRNAs were downregulated in spliceosome mutated samples compared to wild-type (P = 0.002), and samples from spliceosome mutated patients clustered together in hierarchical cluster analyses. Among the...... most downregulated miRNAs were several tumor-suppressor miRNAs, including several let-7 family members, miR-423, and miR-103a. Finally, we observed that the predicted targets of the most downregulated miRNAs were involved in apoptosis, hematopoiesis, and acute myeloid leukemia among other cancer- and...

  10. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.C.; Fasching, C.L.; Stanbridge, E.J. (Univ. of California, Irvine (United States)); Cho, K.; Levy, D.B.; Kinzler, K.W.; Vogelstein, B. (John Hopkins Univ. School of Medicine and Hospital, Baltimore, MD (United States)); Paraskeva, C. (Univ. of Bristol, University Walk, Bristol (United Kingdom))

    1992-03-01

    Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitro and in vivo. To address this question, the authors have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 5 express the APC gene present on that chromosome as well as the endogenous mutant transcript. Expression of the putative tumor suppressor gene, DCC, was seen in the clones containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.

  11. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes.

    Science.gov (United States)

    Zhao, Min; Kim, Pora; Mitra, Ramkrishna; Zhao, Junfei; Zhao, Zhongming

    2016-01-01

    Tumor suppressor genes (TSGs) are a major type of gatekeeper genes in the cell growth. A knowledgebase with the systematic collection and curation of TSGs in multiple cancer types is critically important for further studying their biological functions as well as for developing therapeutic strategies. Since its development in 2012, the Tumor Suppressor Gene database (TSGene), has become a popular resource in the cancer research community. Here, we reported the TSGene version 2.0, which has substantial updates of contents (e.g. up-to-date literature and pan-cancer genomic data collection and curation), data types (noncoding RNAs and protein-coding genes) and content accessibility. Specifically, the current TSGene 2.0 contains 1217 human TSGs (1018 protein-coding and 199 non-coding genes) curated from over 9000 articles. Additionally, TSGene 2.0 provides thousands of expression and mutation patterns derived from pan-cancer data of The Cancer Genome Atlas. A new web interface is available at http://bioinfo.mc.vanderbilt.edu/TSGene/. Systematic analyses of 199 non-coding TSGs provide numerous cancer-specific non-coding mutational events for further screening and clinical use. Intriguingly, we identified 49 protein-coding TSGs that were consistently down-regulated in 11 cancer types. In summary, TSGene 2.0, which is the only available database for TSGs, provides the most updated TSGs and their features in pan-cancer.

  12. Structural and functional characterization of the acidic region from the RIZ tumor suppressor.

    Science.gov (United States)

    Sun, Yizhi; Stine, Jessica M; Atwater, Daniel Z; Sharmin, Ayesha; Ross, J B Alexander; Briknarová, Klára

    2015-02-17

    RIZ (retinoblastoma protein-interacting zinc finger protein), also denoted PRDM2, is a transcriptional regulator and tumor suppressor. It was initially identified because of its ability to interact with another well-established tumor suppressor, the retinoblastoma protein (Rb). A short motif, IRCDE, in the acidic region (AR) of RIZ was reported to play an important role in the interaction with the pocket domain of Rb. The IRCDE motif is similar to a consensus Rb-binding sequence LXCXE (where X denotes any amino acid) that is found in several viral Rb-inactivating oncoproteins. To improve our understanding of the molecular basis of binding of Rb to RIZ, we investigated the interaction between purified recombinant AR and the pocket domain of Rb using nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and fluorescence anisotropy experiments. We show that AR is intrinsically disordered and that it binds the pocket domain with submicromolar affinity. We also demonstrate that the interaction between AR and the pocket domain is mediated primarily by the short stretch of residues containing the IRCDE motif and that the contribution of other parts of AR to the interaction with the pocket domain is minimal. Overall, our data provide clear evidence that RIZ is one of the few cellular proteins that can interact directly with the LXCXE-binding cleft on Rb.

  13. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    2011-03-01

    Full Text Available Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38 was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2 is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target.

  14. Newcomers to the WW Domain-Mediated Network of the Hippo Tumor Suppressor Pathway.

    Science.gov (United States)

    Sudol, Marius

    2010-11-01

    The Hippo tumor suppressor pathway regulates the size of organs by controlling 2 opposing processes: proliferation and apoptosis. The pathway was originally defined in Drosophila, but it is well conserved in mammals. One of the unique features of Hippo signaling is the unusually wide occurrence of WW domains and its cognate PPxY ligand motifs within components of this pathway. Recently, it was proposed that the prevalence of WW domain-mediated complexes in the Hippo signaling pathway should facilitate its molecular analysis and help in the identification of new components of the Hippo-centered network. Indeed, several new members of the Hippo pathway, which form functional complexes with WW domains of YAP and TAZ effectors, were recently described. We focus here on 2 families of such proteins, angiomotins and SMADs, plus 1 regulatory factor, WBP-2, which together shed new light on the rapidly expanding Hippo network. Since the Hippo pathway acts as a tumor suppressor pathway, the complexes described here, which assemble on WW domains of YAP and TAZ, represent potential targets of cancer therapy.

  15. Tumor Suppressor RARRES1 Regulates DLG2, PP2A, VCP, EB1, and Ankrd26

    Directory of Open Access Journals (Sweden)

    Ziad J. Sahab, Michael D. Hall, Lihua Zhang, Amrita K. Cheema, Stephen W. Byers

    2010-01-01

    Full Text Available Retinoic Acid Receptor Responder (RARRES1 initially identified as a novel retinoic acid receptor regulated gene in the skin is a putative tumor suppressor of unknown function. RARRES1 was knocked down in immortalized human prostatic epithelial cell line PWR-1E cells and differential protein expression was identified using differential in-gel electrophoresis (DIGE followed by matrix-assisted laser desorption ionization (MALDI mass spectrometry and western Blot analysis excluding highly abundant proteins routinely identified in almost all proteomics projects. Knock-down of RARRES1: 1- down-regulates PP2A, an enzyme involved in the negative regulation of the growth hormone-stimulated signal transduction pathways; 2- down-regulates Valosin-containing protein causing impaired autophagy; 3- up-regulates the tumor suppressor disks large 2; 4- up-regulates Ankrd26 that belongs to the POTE family of genes that are highly expressed in cancer patients with poor outcome; and 5- down-regulates EB1, a protein that is involved in spindle dynamics and chromosome alignment during mitosis.

  16. Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability.

    Science.gov (United States)

    Iotti, Giorgio; Longobardi, Elena; Masella, Silvia; Dardaei, Leila; De Santis, Francesca; Micali, Nicola; Blasi, Francesco

    2011-07-19

    Prep1 is a homeodomain transcription factor that is essential in embryonic development and functions in the adult as a tumor suppressor. We show here that Prep1 is involved in maintaining genomic stability and preventing neoplastic transformation. Hypomorphic homozygous Prep1(i/i) fetal liver cells and mouse embryonic fibroblasts (MEFs) exhibit increased basal DNA damage and normal DNA damage response after γ-irradiation compared with WT. Cytogenetic analysis shows the presence of numerous chromosomal aberrations and aneuploidy in very early-passage Prep1(i/i) MEFs. In human fibroblasts, acute Prep1 down-regulation by siRNA induces DNA damage response, like in Prep1(i/i) MEFs, together with an increase in heterochromatin-associated modifications: rapid increase of histone methylation and decreased transcription of satellite DNA. Ectopic expression of Prep1 rescues DNA damage and heterochromatin methylation. Inhibition of Suv39 activity blocks the chromatin but not the DNA damage phenotype. Finally, Prep1 deficiency facilitates cell immortalization, escape from oncogene-induced senescence, and H-Ras(V12)-dependent transformation. Importantly, the latter can be partially rescued by restoration of Prep1 level. The results show that the tumor suppressor role of Prep1 is associated with the maintenance of genomic stability. PMID:21715654

  17. Tumor suppressor gene E-cadherin and its role in normal and malignant cells

    Directory of Open Access Journals (Sweden)

    Pećina-Šlaus Nives

    2003-10-01

    Full Text Available Abstract E-cadherin tumor suppressor genes are particularly active area of research in development and tumorigenesis. The calcium-dependent interactions among E-cadherin molecules are critical for the formation and maintenance of adherent junctions in areas of epithelial cell-cell contact. Loss of E-cadherin-mediated-adhesion characterises the transition from benign lesions to invasive, metastatic cancer. Nevertheless, there is evidence that E-cadherins may also play a role in the wnt signal transduction pathway, together with other key molecules involved in it, such as beta-catenins and adenomatous poliposis coli gene products. The structure and function of E-cadherin, gene and protein, in normal as well as in tumor cells are reviewed in this paper.

  18. Frameshift mutation of UVRAG: Switching a tumor suppressor to an oncogene in colorectal cancer.

    Science.gov (United States)

    He, Shanshan; Liang, Chengyu

    2015-01-01

    Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths in the Western world. It has a nearly 50% metastasis rate and only a subset of patients respond to current treatment strategy. UVRAG, a key autophagy effector and a guardian of chromosomal stability, is truncated by a frameshift (FS) mutation in CRC with microsatellite instability (MSI). However, the pathological and clinical significance of this UVRAG truncation remains less understood. Our recent study discovered that this FS mutation yields a much shortened form of the UVRAG protein, which counteracts most of the tumor-suppressor functions of wild-type (WT) UVRAG in autophagy, centrosome stability, and DNA repair in a dominant-negative fashion. Whereas this truncated mutation of UVRAG promotes tumorigenesis, epithelial-to-mesenchymal transition, and metastasis, it appears to sensitize CRC tumors to adjuvant chemotherapy, making it a potential molecular marker to individualize therapeutic approach in CRC.

  19. MFSD2A is a novel lung tumor suppressor gene modulating cell cycle and matrix attachment

    Directory of Open Access Journals (Sweden)

    Shames David S

    2010-03-01

    Full Text Available Abstract Background MFSD2A (major facilitator superfamily domain containing 2 gene maps on chromosome 1p34 within a linkage disequilibrium block containing genetic elements associated with progression of lung cancer. Results Here we show that MFSD2A expression is strongly downregulated in non-small cell lung cancer cell lines of different histotypes and in primary lung adenocarcinomas. Experimental modulation of MFSD2A in lung cancer cells is associated with alteration of mRNA levels of genes involved in cell cycle control and interaction with the extracellular matrix. Exogenous expression of MFSD2A in lung cancer cells induced a G1 block, impaired adhesion and migration in vitro, and significantly reduced tumor colony number in vitro (4- to 27-fold, P in vivo (~3-fold, P Conclusion Together these data suggest that MFSD2A is a novel lung cancer tumor suppressor gene that regulates cell cycle progression and matrix attachment.

  20. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  1. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  2. LATS1 tumor suppressor is a novel actin-binding protein and negative regulator of actin polymerization

    Institute of Scientific and Technical Information of China (English)

    Stacy Visser-Grieve; Zhonghua Zhou; Yi-Min She; He Huang; Terry D Cyr; Tian Xu; Xiaolong Yang

    2011-01-01

    Dear Editor,The LATS tumor suppressor,conserved from Drosophila (dlats) to humans (LATS1,LATS2),plays a vital role in maintaining cellular homeostasis in humans since loss of either LATS1 or LATS2 leads to the development of numerous cancer types such as breast cancer and leukemia [1].Apart from its roles as a Ser/Thr kinase within the emerging Hippo pathway regulating cell proliferation and apoptosis,ultimately leading to the control of organ size and tumorigenesis [2],LATS is also implicated in a broad range of functions including regulation of genetic stability,transcription,and protein stability [1 ].Recently,tumor suppressors have also been shown to affect the later stages of tumorigenesis,including metastasis.Among this group of metastasis regulators are genes that can directly affect actin dynamics by binding to F-actin,such as the tumor suppressors p53 [3],NF2 [4] and APC [5].

  3. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors.

    Science.gov (United States)

    Martínez-Cruz, Ana Belén; Santos, Mirentxu; Lara, M Fernanda; Segrelles, Carmen; Ruiz, Sergio; Moral, Marta; Lorz, Corina; García-Escudero, Ramón; Paramio, Jesús M

    2008-02-01

    Squamous cell carcinomas (SCC) represent the most aggressive type of nonmelanoma skin cancer. Although little is known about the causal alterations of SCCs, in organ-transplanted patients the E7 and E6 oncogenes of human papillomavirus, targeting the p53- and pRb-dependent pathways, have been widely involved. Here, we report the functional consequences of the simultaneous elimination of Trp53 and retinoblastoma (Rb) genes in epidermis using Cre-loxP system. Loss of p53, but not pRb, produces spontaneous tumor development, indicating that p53 is the predominant tumor suppressor acting in mouse epidermis. Although the simultaneous inactivation of pRb and p53 does not aggravate the phenotype observed in Rb-deficient epidermis in terms of proliferation and/or differentiation, spontaneous SCC development is severely accelerated in doubly deficient mice. The tumors are aggressive and undifferentiated and display a hair follicle origin. Detailed analysis indicates that the acceleration is mediated by premature activation of the epidermal growth factor receptor/Akt pathway, resulting in increased proliferation in normal and dysplastic hair follicles and augmented tumor angiogenesis. The molecular characteristics of this model provide valuable tools to understand epidermal tumor formation and may ultimately contribute to the development of therapies for the treatment of aggressive squamous cancer. PMID:18245467

  4. Negative Regulation of the Stability and Tumor Suppressor Function of Fbw7 by the Pin1 Prolyl Isomerase

    OpenAIRE

    Min, Sang-Hyun; Lau, Alan W.; Lee, Tae Ho; Inuzuka, Hiroyuki; Wei, Shuo; Huang, Pengyu; Shaik, Shavali; Lee, Daniel Yenhong; Finn, Greg; Balastik, Martin; Chen, Chun-Hau; Luo, Manli; Tron, Adriana E.; DeCaprio, James A.; Zhou, Xiao Zhen

    2012-01-01

    Fbw7 is the substrate recognition component of the SCF (Skp1-Cullin-F-box)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers, however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively reg...

  5. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens

    DEFF Research Database (Denmark)

    Deichmann, M; Mollenhauer, J; Helmke, B;

    2002-01-01

    from the majority of naevi from which melanomas frequently arise, making down-regulation of gene transcription during transformation from naevus to melanoma unlikely. Immunohistochemistry showed nerves, sweat glands and the stratum spinosum of the epidermis to be DMBT1 protein positive, whereas......Deleted in malignant brain tumours 1 (DMBT1), a candidate tumour suppressor gene located on chromosome 10q25.3-q26.1, has recently been identified and found to be deleted in several different types of human tumours. In melanomas, the chromosomal region 10q22-qter is commonly affected by losses...... the gene, suggesting loss of 1 DMBT1 allele. Three further melanomas showed LOH at 1 informative locus but were heterozygous for the second marker. Applying reverse-transcription polymerase chain reaction (RT-PCR), DMBT1 transcription was not found in melanomas. However, DMBT1 transcription was also absent...

  6. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Francis, R.; Schedl, T. [Washington Univ. School of Medicine, St. Louis, MO (United States); Barton, M.K.; Kimble, J. [Univ. of Wisconsin, Madison, WI (United States)

    1995-02-01

    We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1 (null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1 (null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells. 69 refs., 10 figs., 8 tabs.

  7. Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Matteo Forloni

    2016-07-01

    Full Text Available Oncogene-induced DNA methylation-mediated transcriptional silencing of tumor suppressors frequently occurs in cancer, but the mechanism and functional role of this silencing in oncogenesis are not fully understood. Here, we show that oncogenic epidermal growth factor receptor (EGFR induces silencing of multiple unrelated tumor suppressors in lung adenocarcinomas and glioblastomas by inhibiting the DNA demethylase TET oncogene family member 1 (TET1 via the C/EBPα transcription factor. After oncogenic EGFR inhibition, TET1 binds to tumor suppressor promoters and induces their re-expression through active DNA demethylation. Ectopic expression of TET1 potently inhibits lung and glioblastoma tumor growth, and TET1 knockdown confers resistance to EGFR inhibitors in lung cancer cells. Lung cancer samples exhibited reduced TET1 expression or TET1 cytoplasmic localization in the majority of cases. Collectively, these results identify a conserved pathway of oncogenic EGFR-induced DNA methylation-mediated transcriptional silencing of tumor suppressors that may have therapeutic benefits for oncogenic EGFR-mediated lung cancers and glioblastomas.

  8. Cdh11 acts as a tumor suppressor in a murine retinoblastoma model by facilitating tumor cell death.

    Directory of Open Access Journals (Sweden)

    Mellone N Marchong

    2010-04-01

    Full Text Available CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01. Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8 (p = 0.01 and had fewer multifocal tumors at PND28 (p = 0.016, compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003. In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers, while proliferation in vivo remained unaffected (p = 0.121. Activated caspase-3 was significantly decreased and beta-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death.

  9. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  10. The ARF tumor suppressor regulates bone remodeling and osteosarcoma development in mice.

    Directory of Open Access Journals (Sweden)

    Daniel A Rauch

    Full Text Available The ARF tumor suppressor regulates p53 as well as basic developmental processes independent of p53, including osteoclast activation, by controlling ribosomal biogenesis. Here we provide evidence that ARF is a master regulator of bone remodeling and osteosarcoma (OS development in mice. Arf(-/- mice displayed increased osteoblast (OB and osteoclast (OC activity with a significant net increase in trabecular bone volume. The long bones of Arf(-/- mice had increased expression of OB genes while Arf(-/- OB showed enhanced differentiation in vitro. Mice transgenic for the Tax oncogene develop lymphocytic tumors with associated osteolytic lesions, while Tax+Arf(-/- mice uniformly developed spontaneous OS by 7 months of age. Tax+Arf(-/- tumors were well differentiated OS characterized by an abundance of new bone with OC recruitment, expressed OB markers and displayed intact levels of p53 mRNA and reduced Rb transcript levels. Cell lines established from OS recapitulated characteristics of the primary tumor, including the expression of mature OB markers and ability to form mineralized tumors when transplanted. Loss of heterozygosity in OS tumors arising in Tax+Arf(+/- mice emphasized the necessity of ARF-loss in OS development. Hypothesizing that inhibition of ARF-regulated bone remodeling would repress development of OS, we demonstrated that treatment of Tax+Arf(-/- mice with zoledronic acid, a bisphosphonate inhibitor of OC activity and repressor of bone turnover, prevented or delayed the onset of OS. These data describe a novel role for ARF as a regulator of bone remodeling through effects on both OB and OC. Finally, these data underscore the potential of targeting bone remodeling as adjuvant therapy or in patients with genetic predispositions to prevent the development of OS.

  11. Somatic mutation analysis of p53 and ST7 tumor suppressor genes in gastric carcinoma by DHPLC

    Institute of Scientific and Technical Information of China (English)

    Chong Lu; Hui-Mian Xu; Qun Ren; Yang Ao; Zhen-Ning Wang; Xue Ao; Li Jiang; Yang Luo; Xue Zhang

    2003-01-01

    AIM: To verify the effectiveness of denaturing highperformance liquid chromatography (DHPLC) in detecting somatic mutation of p53 gene in gastric carcinoma tissues.The superiority of this method has been proved in the detection of germline mutations, but it was not very affirmative with respect to somatic mutations in tumor specimens. ST7 gene, a candidate tumor suppressor gene identified recently at human chromosome 7q31.1, was also detected because LOH at this site has also been widely reported in stomach cancer.METHODS: DNA was extracted from 39 cases of surgical gastric carcinoma specimen and their correspondent normal mucosa. Seven fragments spanning the 11 exons were used to detect the mutation of p53 gene and the four exons reported to have mutations in ST7 gene were amplified by PCR and directly analyzed by DHPLC without mixing with wild-type allele.RESULTS: In the analysis of p53 gene mutation, 9 aberrant DHPLC chromatographies were found in tumor tissues, while their normal-adjacent counterparts running in parallel showed a normal shape. Subsequent sequencing revealed nine sequence variations, 1 polymorphism and 8 mutations including 3 mutations not reported before. The mutation rate of p53 gene (21%) was consistent with that previously reported. Furthermore, no additional aberrant chromatography was found when wild-type DNA was added into the DNA of other 30 tumor samples that showed normal shapes previously. The positivity of p53 mutations was significantly higher in intestinal-type carcinomas (40 %) than that in diffuse-type (8.33 %) carcinomas of the stomach. No mutation of ST7 gene was found.CONCLUSION: DHPLC is a very convenient method for the detection of somatic mutations in gastric carcinoma. The amount of wild type alleles supplied by the non-tumorous cells in gastric tumor specimens is enough to form heteroduplex with mutant alleles for DHPLC detection. ST7 gene may not be the target gene of inactivation at 7q31 site in gastric carcinoma.

  12. The tumor suppressor gene lkb1 is essential for glucose homeostasis during zebrafish early development.

    Science.gov (United States)

    Kuang, Xia; Liu, Chao; Fang, Junshun; Ma, Weirui; Zhang, Jian; Cui, Sheng

    2016-07-01

    The liver kinase B1 (LKB1) is encoded by tumor suppressor gene STK11, which is mutated in Peutz-Jeghers syndrome patients. Lkb1 plays indispensable roles in energy homeostasis. However, how Lkb1 regulates energy homeostasis in vivo remains to be fully understood. We found that inactivation of zebrafish Lkb1 upregulates pyruvate dehydrogenase kinase 2 expression and inactivates pyruvate dehydrogenase complex by increasing phosphorylation of pyruvate dehydrogenase. As a result, glycolysis is significantly enhanced as indicated by increased lactate production, which resembles the Warburg effect in cancer cells. Inhibition of Pdk2 in lkb1 mutants with dichloroacetate, a promising anticancer drug, rescued the lactate production to wild-type level, suggesting the lkb1 mutant may be used to screen compounds targeting aerobic glycolysis in cancer therapy. PMID:27264935

  13. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    Science.gov (United States)

    Guo, Shuang; Cheng, Xiwen; Lim, Jun-Hee; Liu, Yu; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity. PMID:24943846

  14. Analysis of tumor suppressor genes based on gene ontology and the KEGG pathway.

    Directory of Open Access Journals (Sweden)

    Jing Yang

    Full Text Available Cancer is a serious disease that causes many deaths every year. We urgently need to design effective treatments to cure this disease. Tumor suppressor genes (TSGs are a type of gene that can protect cells from becoming cancerous. In view of this, correct identification of TSGs is an alternative method for identifying effective cancer therapies. In this study, we performed gene ontology (GO and pathway enrichment analysis of the TSGs and non-TSGs. Some popular feature selection methods, including minimum redundancy maximum relevance (mRMR and incremental feature selection (IFS, were employed to analyze the enrichment features. Accordingly, some GO terms and KEGG pathways, such as biological adhesion, cell cycle control, genomic stability maintenance and cell death regulation, were extracted, which are important factors for identifying TSGs. We hope these findings can help in building effective prediction methods for identifying TSGs and thereby, promoting the discovery of effective cancer treatments.

  15. PTEN: a default gate-keeping tumor suppressor with a versatile tail

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation to ensure its proper function. Defects in PTEN regulation have a profound impact on carcinogenesis. In this review, we briefly discuss recent advances concerning PTEN regulation and how such knowledge facilitates our understanding and further exploration of PTEN biology. The carboxyl-tail of PTEN, which appears to be associated with multiple types of posttranslational regulation, will be under detailed scrutiny. Further, a comparative analysis of PTEN and p53 suggests while p53 needs to be activated to suppress tumorigenesis (a dormant gatekeeper), PTEN is probably a constitutive surveillant against cancer development, thus a default gatekeeper.

  16. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development.

    Science.gov (United States)

    Zhang, Bao-Gui; Hu, Lei; Zang, Ming De; Wang, He-Xiao; Zhao, Wei; Li, Jian-Fang; Su, Li-Ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-Gang; Yan, Min; Liu, Bingya

    2016-03-01

    Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway. PMID:26848521

  17. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene.

    Directory of Open Access Journals (Sweden)

    John H Ludes-Meyers

    Full Text Available WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoiesis, leukopenia, and splenic atrophy. Impaired hematopoiesis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.

  18. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells.

    Directory of Open Access Journals (Sweden)

    Michelle L Churchman

    2011-07-01

    Full Text Available The mammalian Cdkn2a (Ink4a-Arf locus encodes two tumor suppressor proteins (p16(Ink4a and p19(Arf that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb and the p53 transcription factor in response to oncogenic stress. Although p19(Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.

  19. Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Yang

    Full Text Available OBJECTIVE: The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS: The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR, immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR. Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS: The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (P<0.005. KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (P<0.01 and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486, P = 0.003. Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza, the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased, the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION: KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.

  20. Multistep Phosphorylation by Oncogenic Kinases Enhances the Degradation of the NF2 Tumor Suppressor Merlin

    Directory of Open Access Journals (Sweden)

    Minja Laulajainen

    2011-07-01

    Full Text Available Mutations in the Neurofibromatosis 2 gene (NF2 predispose to tumors of the nervous system, mainly schwannomas and meningiomas. The NF2 gene encodes for the tumor suppressor protein merlin (moesin-ezrin-radixin-like protein, which functions as a linker between the plasma membrane and the cytoskeleton. Carboxyterminal phosphorylation affects merlin activity, but many open questions on the regulation of merlin function still remain. The phosphoinositide 3-kinase/Akt pathway is activated in human vestibular schwannoma, suggesting a role for Akt-dependent merlin regulation in the formation of these tumors. In this study, we identify merlin serine 10 as a novel substrate for Akt phosphorylation. We demonstrate that this N-terminal phosphorylation directs merlin for proteasome-mediated degradation and affects merlin binding to the E3 ligase component DCAF1. Our data indicate that sequential phosphorylation of merlin C- and N-terminus by different oncogenic kinases targets merlin for degradation and thus downregulates its activity. On the basis of these findings, we propose a model for a posttranslational mechanism of merlin inactivation.

  1. Enhancement of the RAD51 Recombinase Activity by the Tumor Suppressor PALB2

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Etchin, Julia; Wiese, Claudia; Saro, Dorina; Williams, Gareth J.; Hammel, Michal; Yu, Xiong; Galkin, Vitold E.; Liu, Dongqing; Tsai, Miaw-Sheue; Sy, Shirley M-H.; Egelman, Edward; Chen, Junjie; Sung, Patrick; Schild, D.

    2010-08-24

    Homologous recombination mediated by the RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-stranded breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2 in the enhancement of RAD51's ability to form the D-loop. We show that PALB2 binds DNA and physically interacts with RAD51. Importantly, while PALB2 alone stimulates D-loop formation, a cooperative effect is seen with RAD51AP1, an enhancer of RAD51. This stimulation stems from PALB2's ability to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results help unveil a multi-faceted role of PALB2 in chromosome damage repair. Since PALB2 mutations can cause breast and other tumors or lead to Fanconi anemia, our findings are important for understanding the mechanism of tumor suppression in humans.

  2. In vivo RNAi screening for the identification of oncogenes and tumor suppressors in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Ge, Ying

    splicing factors or epigenetic regulators for AML maintenance, we used a pool-based shRNA in vivo screens in a mouse model of human CEBPA mutated AML. Through these approaches, we found the splicing factor RBM25, and the histone methyltransferase SUV39H1 are of functional importance in AML progression......-apoptotic isoform BCL‐xL, and consequently RBM25 knockdown cells are partially resistant to ABT‐263 mediated inhibition of BCL‐xL. All in all, the newly identified tumor suppressor gene RBM25 has great clinical values as a potential predictive biomarker. By systematical analysis of SUV39H1 using in vivo murine AML...... models and in vitro human leukemic cell lines, we demonstrated that low expression of Suv39H1 leads to ablated tumor progression and the growth inhibition of leukemic cells. This might take place via partial differentiation of the leukemic cells. Thus, we provide evidence for a role of SUV39H1 as a tumor...

  3. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  4. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    International Nuclear Information System (INIS)

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer

  5. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Hildegard I.D.; Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu

    2013-11-15

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer.

  6. Inhibition of cellular proliferation by the Wilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70

    OpenAIRE

    Maheswaran, Shyamala; Englert, Christoph; Zheng, Gang; Lee, Sean Bong; Wong, Jenise; Harkin, D Paul; Bean, James; Ezzell, Robert; Garvin, A. Julian; McCluskey, Robert T.; DeCaprio, James A.; Haber, Daniel A.

    1998-01-01

    The Wilms tumor suppressor WT1 encodes a zinc finger transcription factor that is expressed in glomerular podocytes during a narrow window in kidney development. By immunoprecipitation and protein microsequencing analysis, we have identified a major cellular protein associated with endogenous WT1 to be the inducible chaperone Hsp70. WT1 and Hsp70 are physically associated in embryonic rat kidney cells, in primary Wilms tumor specimens and in cultured cells with inducible expression of WT1. Co...

  7. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    OpenAIRE

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Steven X Hou

    2010-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-t...

  8. Treatment of tumors with vitamin E suppresses myeloid derived suppressor cells and enhances CD8+ T cell-mediated antitumor effects.

    Directory of Open Access Journals (Sweden)

    Tae Heung Kang

    Full Text Available Vitamin E has been shown to have strong anticarcinogenic properties, including antioxidant characteristics, making it an ideal candidate for use in combination with immunotherapies that modify the tumor microenvironment. The tumor microenvironment contains immunosuppressive components, which can be diminished, and immunogenic components, which can be augmented by immunotherapies in order to generate a productive immune response. In the current study, we employ the α-tocopherol succinate isomer of vitamin E to reduce immunosuppression by myeloid derived suppressor cells (MDSCs as well as adoptive transfer of antigen-specific CD8+ T cells to generate potent antitumor effects against the HPV16 E7-expressing TC-1 tumor model. We show that vitamin E alone induces necrosis of TC-1 cells and elicits antitumor effects in TC-1 tumor-bearing mice. We further demonstrate that vitamin E reverses the suppression of T cell activation by MDSCs and that this effect is mediated in part by a nitric oxide-dependent mechanism. Additionally, treatment with vitamin E reduces the percentage of MDSCs in tumor loci, and induces a higher percentage of T cells, following T cell adoptive transfer. Finally, we demonstrate that treatment with vitamin E followed by E7-specific T cell adoptive transfer experience elicits potent antitumor effects in tumor-bearing mice. Our data provide additional evidence that vitamin E has anticancer properties and that it has promise for use as an adjuvant in combination with a variety of cancer therapies.

  9. The Drosophila Netrin receptor frazzled/DCC functions as an invasive tumor suppressor

    Directory of Open Access Journals (Sweden)

    Duman-Scheel Molly

    2011-06-01

    Full Text Available Abstract Background Loss of heterozygosity at 18q, which includes the Deleted in Colorectal Cancer (DCC gene, has been linked to many human cancers. However, it is unclear if loss of DCC is the specific underlying cause of these cancers. The Drosophila imaginal discs are excellent systems in which to study DCC function, as it is possible to model human tumors through the generation of somatic clones of cells bearing multiple genetic lesions. Here, these attributes of the fly system were utilized to investigate the potential tumor suppressing functions of the Drosophila DCC homologue frazzled (fra during eye-antennal disc development. Results Most fra loss of function clones are eliminated during development. However, when mutant clone cells generated in the developing eye were rescued from death, partially differentiated eye cells were found outside of the normal eye field, and in extreme cases distant sites of the body. Characterization of these cells during development indicates that fra mutant cells display characteristics of invasive tumor cells, including increased levels of phospho-ERK, phospho-JNK, and Mmp-1, changes in cadherin expression, remodeling of the actin cytoskeleton, and loss of polarity. Mutation of fra promotes basement membrane degradation and invasion which are repressed by inhibition of Rho1 signaling. Although inhibition of JNK signaling blocks invasive phenotypes in some metastatic cancer models in flies, blocking JNK signaling inhibits fra mutant cell death, thereby enhancing the fra mutant phenotype. Conclusions The results of this investigation provide the first direct link between point mutations in fra/DCC and metastatic phenotypes in an animal model and suggest that Fra functions as an invasive tumor suppressor during Drosophila development.

  10. Hypermethylation of tumor suppressor genes in gastric cancer: associations with demographic and clinicopathological characteristics

    Directory of Open Access Journals (Sweden)

    Binnur Bagci

    2016-06-01

    Full Text Available Background: Gastric cancer (GC is one of the most common cancers worldwide. Despite the declining prevalence in Western countries, it is still a major health problem in Turkey and Asian countries. In the current study, we investigated the hypermethylation status of 25 TSGs in GC. Furthermore, the association between hypermethylation status of these TSGs and some demographic and clinicopathological characteristics were investigated. Methods: Formalin-fixed paraffin-embedded tissue samples obtained from 27 patients with GC and genomic DNA isolated from these tissues. To compare the methylation status of 25 TSGs, methylation-specific multiplex ligation-dependent probe amplification (MS and ndash;MLPA technique was used. Results were evaluated in terms of age, gender, positive lymph node status, lymphovascular invasion, perineural invasion, mortality and five-years of survival, retrospectively. Results: Tumor suppressor gene hypermethylation was detected 16 (59.3% of 27 GC tissues. Patients with hypermethylation-detected and patients with no hypermethylation-detected in their TSGs were classified as group 1 and group 2, respectively. The mean age of group 1 was 66.38+/-7.43 and the mean age of group 2 was found as 58.18+/-11.12 (p= 0.03. Hypermethylation was detected in 12 of 25 TSGs in patients with GC. Hypermethylation was detected as 51.8% for WT1, 40.7% for ESR1, 18.5% for CDH13, 14.8% for MSH6 and CD44, 7.4% for TP73 and PAX5 genes in the tumor tissues of patients with GC. Mean positive lymph node number was 8.81+/-5.38 in group 1 and 4.81+/-3.21 in group 2 (p= 0.037. Lymphovascular invasion, perineural invasion, mortality and five-years of mean survival were not statistically different between group 1 and group 2 (p>0.05 for all comparisons. Conclusions: Hypermethylation frequency of certain tumor suppressor genes may increase with advancing age and with positive lymph nodes in gastric cancer patients. [Int J Res Med Sci 2016; 4(6.000: 2185-2192

  11. KCTD11 tumor suppressor gene expression is reduced in prostate adenocarcinoma.

    Science.gov (United States)

    Zazzeroni, Francesca; Nicosia, Daniela; Tessitore, Alessandra; Gallo, Rita; Verzella, Daniela; Fischietti, Mariafausta; Vecchiotti, Davide; Ventura, Luca; Capece, Daria; Gulino, Alberto; Alesse, Edoardo

    2014-01-01

    Prostate cancer is the most common noncutaneous cancer among men in the United States. A genetic contribution to prostate cancer risk has been documented, but knowledge of the molecular mechanisms involved in prostate cancer initiation is still not well understood. Loss of heterozygosity (LOH) of chromosomal regions is crucial in tumor progression. In human prostate cancer, several chromosomal regions demonstrating a high frequency of LOH have been previously identified. KCTD11 (REN) is a tumor suppressor gene mapping on human chromosome 17p13.2, whose expression is frequently lost in human medulloblastoma and in several other cancer types. KCTD11 acts as a negative regulator of the Hedgehog (Hh) signaling. Here, we demonstrated that KCTD11 LOH is a common genetic lesion in human prostate adenocarcinoma. Indeed, nuclear KCTD11 protein expression is strongly reduced in primary prostate cancer, and this event correlated with overexpression of proteins acting into the Hedgehog pathway. Low levels of KCTD11 mRNA have been also observed in prostatic cancer cells, and ectopic overexpression of KCTD11 led to growth arrest. Our study demonstrates and supports that KCTD11, as well as negatively regulated downstream effectors belonging to Hh signaling, plays a role in prostate cancer pathogenesis. This could be suitable to characterize new diagnostic and therapeutic markers. PMID:25045667

  12. The tumor suppressor PP2A Abeta regulates the RalA GTPase.

    Science.gov (United States)

    Sablina, Anna A; Chen, Wen; Arroyo, Jason D; Corral, Laura; Hector, Melissa; Bulmer, Sara E; DeCaprio, James A; Hahn, William C

    2007-06-01

    The serine-threonine protein phosphatase 2A (PP2A) is a heterotrimeric enzyme family that regulates numerous signaling pathways. Biallelic mutations of the structural PP2A Abeta subunit occur in several types of human tumors; however, the functional consequences of these cancer-associated PP2A Abeta mutations in cell transformation remain undefined. Here we show that suppression of PP2A Abeta expression permits immortalized human cells to achieve a tumorigenic state. Cancer-associated Abeta mutants fail to reverse tumorigenic phenotype induced by PP2A Abeta suppression, indicating that these mutants function as null alleles. Wild-type PP2A Abeta but not cancer-derived Abeta mutants form a complex with the small GTPase RalA. PP2A Abeta-containing complexes dephosphorylate RalA at Ser183 and Ser194, inactivating RalA and abolishing its transforming function. These observations identify PP2A Abeta as a tumor suppressor gene that transforms immortalized human cells by regulating the function of RalA. PMID:17540176

  13. TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells.

    Directory of Open Access Journals (Sweden)

    Tiffany M Scharadin

    Full Text Available TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.

  14. Hsf1 Is Required for the Nuclear Translocation of p53 Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2008-10-01

    Full Text Available Although the p53 tumor suppressor is most frequently inactivated by genetic mutations, exclusion from the nucleus is also seen in human tumors. We have begun to examine p53 nuclear importation by isolating a series of mutant cells in which the temperature-sensitive murine p53Val135 mutant is sequestered in the cytoplasm. We previously showed that that three of them (ALTR12, ALTR19, and ALTR25 constituted a single complementation group. Here, we found that ALTR12 cells are more sensitive to heat stress than either ALTR19 or ALTR25 and that there was a complete lack of induction of Hsp70 in response to heat shock. Western blot analysis showed no expression of the Hsf1 transcription factor, and neither heat shock nor azetidine could induce p53 nuclear localization in ALTR12 cells but did in parental A1–5 cells. Suppression of Hsf1 in A1–5 cells with quercetin or an Hsf1 siRNA reduced p53 nuclear importation and inhibited p53-mediated activation of a p21 reporter. Most convincingly, p53 nuclear importation could be restored in ALTR12 cells by introducing an exogenous Hsf1 gene. Collectively, our result suggests that Hsf1 is required for p53 nuclear importation and activation and implies that heat shock factors play a role in the regulation of p53.

  15. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2015-01-01

    Full Text Available The cell cycle (or cell-division cycle is a series of events that take place in a cell, leading to its division and duplication. Cell division requires cell cycle checkpoints (CPs that are used by the cell to both monitor and regulate the progress of the cell cycle. Tumor-suppressor genes (TSGs or antioncogenes are genes that protect the cell from a single event or multiple events leading to cancer. When these genes mutate, the cell can progress to a cancerous state. We aimed to perform a narrative review, based on evaluation of the manuscripts published in MEDLINE-indexed journals using the Medical Subject Headings (MeSH terms "tumor suppressor′s genes," "skin," and "cell cycle regulatory checkpoints." We aimed to review the current concepts regarding TSGs, CPs, and their association with selected cutaneous diseases. It is important to take into account that in some cell cycle disorders, multiple genetic abnormalities may occur simultaneously. These abnormalities may include intrachromosomal insertions, unbalanced division products, recombinations, reciprocal deletions, and/or duplication of the inserted segments or genes; thus, these presentations usually involve several genes. Due to their complexity, these disorders require specialized expertise for proper diagnosis, counseling, personal and family support, and genetic studies. Alterations in the TSGs or CP regulators may occur in many benign skin proliferative disorders, neoplastic processes, and genodermatoses.

  16. CDK5 is a major regulator of the tumor suppressor DLC1.

    Science.gov (United States)

    Tripathi, Brajendra K; Qian, Xiaolan; Mertins, Philipp; Wang, Dunrui; Papageorge, Alex G; Carr, Steven A; Lowy, Douglas R

    2014-12-01

    DLC1 is a tumor suppressor protein whose full activity depends on its presence at focal adhesions, its Rho-GTPase activating protein (Rho-GAP) function, and its ability to bind several ligands, including tensin and talin. However, the mechanisms that regulate and coordinate these activities remain poorly understood. Here we identify CDK5, a predominantly cytoplasmic serine/threonine kinase, as an important regulator of DLC1 functions. The CDK5 kinase phosphorylates four serines in DLC1 located N-terminal to the Rho-GAP domain. When not phosphorylated, this N-terminal region functions as an autoinhibitory domain that places DLC1 in a closed, inactive conformation by efficiently binding to the Rho-GAP domain. CDK5 phosphorylation reduces this binding and orchestrates the coordinate activation DLC1, including its localization to focal adhesions, its Rho-GAP activity, and its ability to bind tensin and talin. In cancer, these anti-oncogenic effects of CDK5 can provide selective pressure for the down-regulation of DLC1, which occurs frequently in tumors, and can contribute to the pro-oncogenic activity of CDK5 in lung adenocarcinoma. PMID:25452387

  17. TCP10L acts as a tumor suppressor by inhibiting cell proliferation in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Jie; Cai, Hao; Wu, Yanhua; Ma, Haijie; Jiang, Wei; Liu, Chao; Han, Dingding; Ji, Guoqing [State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433 (China); Yu, Long, E-mail: longyu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2014-03-28

    Highlights: • TCP10L was down-regulated in clinical hepatocellular carcinoma (HCC). • Expression of TCP10L correlated significantly with tumor size and Milan criteria. • Overexpression of TCP10L attenuated growth of HCC cells both in vitro and in vivo. • Knocking down TCP10L promoted cell proliferation and tumorigenesis of HCC cells. - Abstract: TCP10L (T-complex 10 (mouse)-like) has been identified as a liver and testis-specific gene. Although a potential transcriptional suppression function of TCP10L has been reported previously, biological function of this gene still remains largely elusive. In this study, we reported for the first time that TCP10L was significantly down-regulated in clinical hepatocellular carcinoma (HCC) samples when compared to the corresponding non-tumorous liver tissues. Furthermore, TCP10L expression was highly correlated with advanced cases exceeding the Milan criteria. Overexpression of TCP10L in HCC cells suppressed colony formation, inhibited cell cycle progression through G0/G1 phase, and attenuated cell growth in vivo. Consistently, silencing of TCP10L promoted cell cycle progression and cell growth. Therefore, our study has revealed a novel suppressor role of TCP10L in HCC, by inhibiting proliferation of HCC cells, which may facilitate the diagnosis and molecular therapy in HCC.

  18. Effect of tumor suppressor in lung cancer-1 on growth inhibition of MG63 cell line

    Institute of Scientific and Technical Information of China (English)

    Li Qin; Yang Lin; Wenjian Chen; Wentao Zhu

    2013-01-01

    Objective: The aim of this study was to establish the osteosarcoma cell sublines which stably expressing tumor suppressor in lung cancer-1 (TSLC1) gene and evaluate its effect on growth inhibition of human osteosarcoma cell line MG63. Methods: The recombinant plasmid pCI-TSLC1 was stably transfected into MG63 cells with Lipofectamine 2000. The positive clones were developed by selection by G418. Biological characteristics of one of the 6 cell lines which highly expressing TSLC1, namely, the M8T were studied. Cell growth was analyzed with MTT assay. 2 × 107 cells suspended in 0.2 mL phosphate buffered saline (PBS) were injected into the two flanks of 5-6-week-old female BALB/C nu/nu athymic nude mice. The volumes of subcutaneous of tumor growth were evaluated and calculated by the formula V= Length × Width × Height × 0.5 once a week. Results: The M8T cell subline which stably expressing TSLC1 was characterized by Western blot. The genetic stability and purity of M8T cells were stable. TSLC1 significantly suppressed the growth of M8T cells in vitro. Moreover, the tumorigenicity of M8T cells was suppressed in vivo. Conclusion: The osteosarcoma cell sublines M8T which stably expressing TSLC1 had been successfully established. The ability of growth and metastasis of M8T was significantly suppressed both in vitro and in vivo.

  19. KCTD11 Tumor Suppressor Gene Expression Is Reduced in Prostate Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Francesca Zazzeroni

    2014-01-01

    Full Text Available Prostate cancer is the most common noncutaneous cancer among men in the United States. A genetic contribution to prostate cancer risk has been documented, but knowledge of the molecular mechanisms involved in prostate cancer initiation is still not well understood. Loss of heterozygosity (LOH of chromosomal regions is crucial in tumor progression. In human prostate cancer, several chromosomal regions demonstrating a high frequency of LOH have been previously identified. KCTD11 (REN is a tumor suppressor gene mapping on human chromosome 17p13.2, whose expression is frequently lost in human medulloblastoma and in several other cancer types. KCTD11 acts as a negative regulator of the Hedgehog (Hh signaling. Here, we demonstrated that KCTD11 LOH is a common genetic lesion in human prostate adenocarcinoma. Indeed, nuclear KCTD11 protein expression is strongly reduced in primary prostate cancer, and this event correlated with overexpression of proteins acting into the Hedgehog pathway. Low levels of KCTD11 mRNA have been also observed in prostatic cancer cells, and ectopic overexpression of KCTD11 led to growth arrest. Our study demonstrates and supports that KCTD11, as well as negatively regulated downstream effectors belonging to Hh signaling, plays a role in prostate cancer pathogenesis. This could be suitable to characterize new diagnostic and therapeutic markers.

  20. A kinase shRNA screen links LATS2 and the pRB tumor suppressor

    Science.gov (United States)

    Tschöp, Katrin; Conery, Andrew R.; Litovchick, Larisa; DeCaprio, James A.; Settleman, Jeffrey; Harlow, Ed; Dyson, Nicholas

    2011-01-01

    pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRB's ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells. PMID:21498571

  1. A kinase shRNA screen links LATS2 and the pRB tumor suppressor.

    Science.gov (United States)

    Tschöp, Katrin; Conery, Andrew R; Litovchick, Larisa; Decaprio, James A; Settleman, Jeffrey; Harlow, Ed; Dyson, Nicholas

    2011-04-15

    pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRB's ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells. PMID:21498571

  2. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer.

    Science.gov (United States)

    Geng, Chuandong; Rajapakshe, Kimal; Shah, Shrijal S; Shou, John; Eedunuri, Vijay Kumar; Foley, Christopher; Fiskus, Warren; Rajendran, Mahitha; Chew, Sue Anne; Zimmermann, Martin; Bond, Richard; He, Bin; Coarfa, Cristian; Mitsiades, Nicholas

    2014-10-01

    Somatic missense mutations in the substrate-binding pocket of the E3 ubiquitin ligase adaptor SPOP are present in up to 15% of human prostate adenocarcinomas, but are rare in other malignancies, suggesting a prostate-specific mechanism of action. SPOP promotes ubiquitination and degradation of several protein substrates, including the androgen receptor (AR) coactivator SRC-3. However, the relative contributions that SPOP substrates may make to the pathophysiology of SPOP-mutant (mt) prostate adenocarcinomas are unknown. Using an unbiased bioinformatics approach, we determined that the gene expression profile of prostate adenocarcinoma cells engineered to express mt-SPOP overlaps greatly with the gene signature of both SRC-3 and AR transcriptional output, with a stronger similarity to AR than SRC-3. This finding suggests that in addition to its SRC-3-mediated effects, SPOP also exerts SRC-3-independent effects that are AR-mediated. Indeed, we found that wild-type (wt) but not prostate adenocarcinoma-associated mutants of SPOP promoted AR ubiquitination and degradation, acting directly through a SPOP-binding motif in the hinge region of AR. In support of these results, tumor xenografts composed of prostate adenocarcinoma cells expressing mt-SPOP exhibited higher AR protein levels and grew faster than tumors composed of prostate adenocarcinoma cells expressing wt-SPOP. Furthermore, genetic ablation of SPOP was sufficient to increase AR protein levels in mouse prostate. Examination of public human prostate adenocarcinoma datasets confirmed a strong link between transcriptomic profiles of mt-SPOP and AR. Overall, our studies highlight the AR axis as the key transcriptional output of SPOP in prostate adenocarcinoma and provide an explanation for the prostate-specific tumor suppressor role of wt-SPOP.

  3. A kinase shRNA screen links LATS2 and the pRB tumor suppressor.

    Science.gov (United States)

    Tschöp, Katrin; Conery, Andrew R; Litovchick, Larisa; Decaprio, James A; Settleman, Jeffrey; Harlow, Ed; Dyson, Nicholas

    2011-04-15

    pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRB's ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells.

  4. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells.

    Science.gov (United States)

    Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger

    2013-04-17

    We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.

  5. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma

    International Nuclear Information System (INIS)

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein–Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5′ azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL

  6. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma

    Science.gov (United States)

    Zhang, T; Ma, J; Nie, K; Yan, J; Liu, Y; Bacchi, C E; Queiroga, E M; Gualco, G; Sample, J T; Orazi, A; Knowles, D M; Tam, W

    2014-01-01

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein–Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5′ azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL. PMID:25382611

  7. Prognostic value of tumor suppressors in osteosarcoma before and after neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Primary bone cancers are among the deadliest cancer types in adolescents, with osteosarcomas being the most prevalent form. Osteosarcomas are commonly treated with multi-drug neoadjuvant chemotherapy and therapy success as well as patient survival is affected by the presence of tumor suppressors. In order to assess the prognostic value of tumor-suppressive biomarkers, primary osteosarcoma tissues were analyzed prior to and after neoadjuvant chemotherapy. We constructed a tissue microarray from high grade osteosarcoma samples, consisting of 48 chemotherapy naïve biopsies (BXs) and 47 tumor resections (RXs) after neoadjuvant chemotherapy. We performed immunohistochemical stainings of P53, P16, maspin, PTEN, BMI1 and Ki67, characterized the subcellular localization and related staining outcome with chemotherapy response and overall survival. Binary logistic regression analysis was used to analyze chemotherapy response and Kaplan-Meier-analysis as well as the Cox proportional hazards model was applied for analysis of patient survival. No significant associations between biomarker expression in BXs and patient survival or chemotherapy response were detected. In univariate analysis, positive immunohistochemistry of P53 (P = 0.008) and P16 (P16; P = 0.033) in RXs was significantly associated with poor survival prognosis. In addition, presence of P16 in RXs was associated with poor survival in multivariate regression analysis (P = 0.003; HR = 0.067) while absence of P16 was associated with good chemotherapy response (P = 0.004; OR = 74.076). Presence of PTEN on tumor RXs was significantly associated with an improved survival prognosis (P = 0.022). Positive immunohistochemistry (IHC) of P16 and P53 in RXs was indicative for poor overall patient survival whereas positive IHC of PTEN was prognostic for good overall patient survival. In addition, we found that P16 might be a marker of osteosarcoma chemotherapy resistance. Therefore, our study supports the use of tumor RXs to

  8. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma

    LENUS (Irish Health Repository)

    Tivnan, Amanda

    2011-01-25

    ABSTRACT Background Neuroblastoma is a paediatric cancer which originates from precursor cells of the sympathetic nervous system and accounts for 15% of childhood cancer mortalities. With regards to the role of miRNAs in neuroblastoma, miR-34a, mapping to a chromosome 1p36 region that is commonly deleted, has been found to act as a tumor suppressor through targeting of numerous genes associated with cell proliferation and apoptosis. Methods A synthetic miR-34a (or negative control) precursor molecule was transfected into NB1691luc and SK-N-ASluc neuroblastoma cells. Quantitative PCR was used to verify increased miR-34a levels in NB1691luc and SK-N-ASluc cell lines prior to in vitro and in vivo analysis. In vitro analysis of the effects of miR-34a over expression on cell growth, cell cycle and phosphoprotein activation in signal transduction pathways was performed. Neuroblastoma cells over expressing miR-34a were injected retroperitoneally into immunocompromised CB17-SCID mice and tumor burden was assessed over a 21 day period by measuring bioluminescence (photons\\/sec\\/cm2). Results Over expression of miR-34a in both NB1691luc and SK-N-ASluc neuroblastoma cell lines led to a significant decrease in cell number relative to premiR-negative control treated cells over a 72 hour period. Flow cytometry results indicated that miR-34a induced cell cycle arrest and subsequent apoptosis activation. Phosphoprotein analysis highlighted key elements involved in signal transduction, whose activation was dysregulated as a result of miR-34a introduction into cells. As a potential mechanism of miR-34a action on phosphoprotein levels, we demonstrate that miR-34a over-expression results in a significant reduction of MAP3K9 mRNA and protein levels. Although MAP3K9 is a predicted target of miR-34a, direct targeting could not be validated with luciferase reporter assays. Despite this fact, any functional effects of reduced MAP3K9 expression as a result of miR-34a would be expected to

  9. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Alcock Leah C

    2011-01-01

    Full Text Available ABSTRACT Background Neuroblastoma is a paediatric cancer which originates from precursor cells of the sympathetic nervous system and accounts for 15% of childhood cancer mortalities. With regards to the role of miRNAs in neuroblastoma, miR-34a, mapping to a chromosome 1p36 region that is commonly deleted, has been found to act as a tumor suppressor through targeting of numerous genes associated with cell proliferation and apoptosis. Methods A synthetic miR-34a (or negative control precursor molecule was transfected into NB1691luc and SK-N-ASluc neuroblastoma cells. Quantitative PCR was used to verify increased miR-34a levels in NB1691luc and SK-N-ASluc cell lines prior to in vitro and in vivo analysis. In vitro analysis of the effects of miR-34a over expression on cell growth, cell cycle and phosphoprotein activation in signal transduction pathways was performed. Neuroblastoma cells over expressing miR-34a were injected retroperitoneally into immunocompromised CB17-SCID mice and tumor burden was assessed over a 21 day period by measuring bioluminescence (photons/sec/cm2. Results Over expression of miR-34a in both NB1691luc and SK-N-ASluc neuroblastoma cell lines led to a significant decrease in cell number relative to premiR-negative control treated cells over a 72 hour period. Flow cytometry results indicated that miR-34a induced cell cycle arrest and subsequent apoptosis activation. Phosphoprotein analysis highlighted key elements involved in signal transduction, whose activation was dysregulated as a result of miR-34a introduction into cells. As a potential mechanism of miR-34a action on phosphoprotein levels, we demonstrate that miR-34a over-expression results in a significant reduction of MAP3K9 mRNA and protein levels. Although MAP3K9 is a predicted target of miR-34a, direct targeting could not be validated with luciferase reporter assays. Despite this fact, any functional effects of reduced MAP3K9 expression as a result of miR-34a would

  10. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Directory of Open Access Journals (Sweden)

    Maher Kurdi

    2014-01-01

    Full Text Available Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53 gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa.

  11. Interferon-Inducible Protein 16: Insight into the Interaction with Tumor Suppressor p53

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jack C.C.; Lam, Robert; Brazda, Vaclav; Duan, Shili; Ravichandran, Mani; Ma, Justin; Xiao, Ting; Tempel, Wolfram; Zuo, Xiaobing; Wang, Yun-Xing; Chirgadze, Nickolay Y.; Arrowsmith, Cheryl H. (Toronto); (NCI)

    2011-08-24

    IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 {angstrom} resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.

  12. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap.

    Science.gov (United States)

    Lavado, Alfonso; Ware, Michelle; Paré, Joshua; Cao, Xinwei

    2014-11-01

    The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development.

  13. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    Science.gov (United States)

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  14. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant.

    Science.gov (United States)

    Colombo, Emanuela; Martinelli, Paola; Zamponi, Raffaella; Shing, Danielle C; Bonetti, Paola; Luzi, Lucilla; Volorio, Sara; Bernard, Loris; Pruneri, Giancarlo; Alcalay, Myriam; Pelicci, Pier Giuseppe

    2006-03-15

    One third of acute myeloid leukemias (AMLs) are characterized by the aberrant cytoplasmic localization of nucleophosmin (NPM) due to mutations within its putative nucleolar localization signal. NPM mutations are mutually exclusive with major AML-associated chromosome rearrangements and are frequently associated with a normal karyotype, suggesting that they are critical during leukemogenesis. The underlying molecular mechanisms are, however, unknown. NPM is a nucleocytoplasmic shuttling protein that has been implicated in several cellular processes, including ribosome biogenesis, centrosome duplication, cell cycle progression, and stress response. It has been recently shown that NPM is required for the stabilization and proper nucleolar localization of the tumor suppressor p19(Arf). We report here that the AML-associated NPM mutant localizes mainly in the cytoplasm due to an alteration of its nucleus-cytoplasmic shuttling equilibrium, forms a direct complex with p19(Arf), but is unable to protect it from degradation. Consequently, cells or leukemic blasts expressing the NPM mutant have low levels of cytoplasmic Arf. Furthermore, we show that expression of the NPM mutant reduces the ability of Arf to initiate a p53 response and to induce cell cycle arrest. Inactivation of p19(Arf), a key regulator of the p53-dependent cellular response to oncogene expression, might therefore contribute to leukemogenesis in AMLs with mutated NPM.

  15. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.

    Science.gov (United States)

    Benoit, V; de Moraes, E; Dar, N A; Taranchon, E; Bours, V; Hautefeuille, A; Tanière, P; Chariot, A; Scoazec, J-Y; de Moura Gallo, C V; Merville, M-P; Hainaut, P

    2006-09-21

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P<0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. PMID:16682957

  16. SUSD2 is frequently downregulated and functions as a tumor suppressor in RCC and lung cancer.

    Science.gov (United States)

    Cheng, Yingying; Wang, Xiaolin; Wang, Pingzhang; Li, Ting; Hu, Fengzhan; Liu, Qiang; Yang, Fan; Wang, Jun; Xu, Tao; Han, Wenling

    2016-07-01

    Sushi domain containing 2 (SUSD2) is type I membrane protein containing domains inherent to adhesion molecules. There have been few reported studies on SUSD2, and they have mainly focused on breast cancer, colon cancer, and HeLa cells. However, the expression and function of SUSD2 in other cancers remain unclear. In the present study, we conducted an integrated bioinformatics analysis based on the array data from the GEO database and found a significant downregulation of SUSD2 in renal cell carcinoma (RCC) and lung cancer. Western blotting and quantitative RT-PCR (qRT-PCR) confirmed that SUSD2 was frequently decreased in RCC and lung cancer tissues compared with the corresponding levels in normal adjacent tissues. The restoration of SUSD2 expression inhibited the proliferation and clonogenicity of RCC and lung cancer cells, whereas the knockdown of SUSD2 promoted A549 cell growth. Our findings suggested that SUSD2 functions as a tumor suppressor gene (TSG) in RCC and lung cancer. PMID:26815503

  17. CHROMOSOME 3 MAY HARBOR MULTIPLE TUMOR SUPPRESSOR GENES ASSOCIATED WITH PRIMARY GLIOBLASTOMA MULTIFORME

    Institute of Scientific and Technical Information of China (English)

    胡杰; 江澄川; 吴浩强; 彭颂先; 唐婉君; 陈商群

    2002-01-01

    Objective: To investigate whether deletion of chromosome 3 is involved in the carcinogenesis of primary glioblastoma multiforme (GBM) and to localize the possible common deletion region in the aforementioned chromosome. Methods: PCR based microsatellite polymorphism analyses were performed to detect loss of heterozygosity (LOH). Twenty-three loci on chromosome 3 were examined in 20 cases of GBM. Fluorescence-labeled primers and Perkin Elmer 377 DNA Sequencer were applied. Results: 50% informative cases of GBM displayed LOH on chromosome 3. 50% of informative cases displayed LOH on 3q and 35% on 3p. 25.6% of informative loci showed LOH in our series, in which frequent LOH were observed in the chromosomal region from loci D3S1614 (42.9%) to D3S1565 (35.3%) on 3q24(27 and at loci D3S1569 (35.3%) on 3q22(23 and D3S1289 (33.3%) on 3p14.1(14.3. Conclusion: Loss of genetic material on chromosome 3 may play an important part in the tumorigenesis of GBM. The chromosomal regions from loci D3S1614 to D3S1565 on 3q24(27 and at loci D3S1569 on 3q22(23 and D3S1289 on 3p14.1(14.3 are potential sites for novel tumor suppressor genes associated with GBM.

  18. Isolation of a rice gene homologous to the human putative tumor suppressor gene QM

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    QM gene was originally isolated from human by Dowdy et al during a search for a wilms′ tumor suppressor gene. Researches of QM gene focused mainly on animals and yeasts, little was known about plant QM gene. For better understanding of QM gene in rice, a QM homologous fragment was used as a probe to screen rice (Oryza sativa subsp. indica c.v. Guanglu′ ai 4) genomic DNA library,and two clones were obtained. One of them, OSQM2, encoded a highly basic protein of 184 amino acids, the sequence was about 3.1 kb long with a very special promoter region compared with other known QM genes. Seven potential G boxes could be found between -690 and -230. G box, which contains a ACGT core motif, had been reported in many plants to act as a cis acting DNA element in the regulation of genes in a variety of environmental conditions, such as ABA regulated gene expression, red light, UV light, anaerobiosis, and wounding etc. Two closely linked DRE related motifs (dehydration responsive element) could also be found between -182 and 173, which had a CCGAC conserved sequence and had been identified in many cold and drought responsive genes in Arabidopsis. Six MYC recognition sequences with the conserved motif NCANNTGN were also presented, which might be essential for ABA and drought responsive expression of the plant genes.

  19. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Institute of Scientific and Technical Information of China (English)

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  20. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies

  1. Regulatory roles of tumor-suppressor proteins and noncoding RNA in cancer and normal cell functions.

    Science.gov (United States)

    Garen, Alan; Song, Xu

    2008-04-15

    We describe a mechanism for reversible regulation of gene transcription, mediated by a family of tumor-suppressor proteins (TSP) containing a DNA-binding domain (DBD) that binds to a gene and represses transcription, and RNA-binding domains (RBDs) that bind RNA, usually a noncoding RNA (ncRNA), forming a TSP/RNA complex that releases the TSP from a gene and reverses repression. This mechanism appears to be involved in the regulation of embryogenesis, oncogenesis, and steroidogenesis. Embryonic cells express high levels of RNA that bind to a TSP and prevent repression of proto-oncogenes that drive cell proliferation. The level of the RNA subsequently decreases in most differentiating cells, enabling a TSP to repress proto-oncogenes and stop cell proliferation. Oncogenesis can result when the level of the RNA fails to decrease in a proliferating cell or increases in a differentiated cell. This mechanism also regulates transcription of P450scc, the first gene in the steroidogenic pathway.

  2. New insights from animal models of colon cancer: inflammation control as a new facet on the tumor suppressor APC gem

    Directory of Open Access Journals (Sweden)

    Zeineldin M

    2015-01-01

    Full Text Available Maged Zeineldin, Kristi L Neufeld Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA Abstract: Colorectal cancer (CRC is one of the most common causes of cancer-related deaths worldwide. As with other cancers, CRC is a genetic disease, however, several risk factors including diet and chronic colitis predispose to the disease. Mutations in the tumor suppressor adenomatous polyposis coli (APC initiate most cases of CRC. Recent data from mouse models suggest that APC mutations and colitis are not completely independent factors in colorectal carcinogenesis. Here, we review the evidence supporting an interaction between APC mutations and chronic colitis. We will also discuss possible pathophysiologic mechanisms behind this interaction. Keywords: rodent model, colon cancer, adenomatous polyposis coli, APC, tumor suppressor, inflammatory bowel disease 

  3. The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function.

    OpenAIRE

    Sheng, Q.; Denis, D; Ratnofsky, M; Roberts, T.M.; DeCaprio, J A; Schaffhausen, B

    1997-01-01

    Tumor suppressors of the retinoblastoma susceptibility gene family regulate cell growth and differentiation. Polyomavirus large T antigens (large T) bind Rb family members and block their function. Mutations of large T sequences conserved with the DnaJ family affect large T binding to a cellular DnaK, heat shock protein 70. The same mutations abolish large T activation of E2F-containing promoters and Rb binding-dependent large T activation of cell cycle progression. Cotransfection of a cellul...

  4. Skeletons in the p53 tumor suppressor closet: genetic evidence that p53 blocks bone differentiation and development

    OpenAIRE

    Zambetti, Gerard P; Horwitz, Edwin M.; Schipani, Ernestina

    2006-01-01

    A series of in vitro tissue culture studies indicated that the p53 tumor suppressor promotes cellular differentiation, which could explain its role in preventing cancer. Quite surprisingly, however, two new in vivo studies (Lengner et al., 2006; Wang et al., 2006) provide genetic evidence that p53 blocks osteoblast differentiation and bone development. These interesting results and their biological and clinical implications are the focus of this comment.

  5. Altered Ca(2+) signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors.

    Science.gov (United States)

    Akl, Haidar; Bultynck, Geert

    2013-04-01

    Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca(2+) signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca(2+)-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca(2+) transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca(2+) from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca(2+) homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca(2+) signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca(2+) homeostasis, thereby decreasing mitochondrial Ca(2+) uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca(2+) homeostasis and dynamics.

  6. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    Directory of Open Access Journals (Sweden)

    Meehan Maria

    2012-02-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA, an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA's primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  7. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  8. The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukaemias

    Directory of Open Access Journals (Sweden)

    Maher Eamonn R

    2009-07-01

    Full Text Available Abstract Background The Ras-assocation family (RASSF of tumour suppressor genes (TSGs contains 10 members that encode proteins containing Ras-assocation (RA domains. Several members of the RASSF family are frequently epigenetically inactivated in cancer, however, their role in leukaemia has remained largely uninvestigated. Also, RASSF10 is a predicted gene yet to be experimentally verified. Here we cloned, characterised and demonstrated expression of RASSF10 in normal human bone marrow. We also determined the methylation status of CpG islands associated with RASSF1–10 in a series of childhood acute lymphocytic leukaemias (ALL and normal blood and bone marrow samples. Results COBRA and bisulphite sequencing revealed RASSF6 and RASSF10 were the only RASSF members with a high frequency of leukaemia-specific methylation. RASSF6 was methylated in 94% (48/51 B-ALL and 41% (12/29 T-ALL, whilst RASSF10 was methylated in 16% (8/51 B-ALL and 88% (23/26 T-ALL. RASSF6 and RASSF10 expression inversely correlated with methylation which was restored by treatment with 5-aza-2'deoxycytidine (5azaDC. Conclusion This study shows the hypermethylation profile of RASSF genes in leukaemias is distinct from that of solid tumours and represents the first report of inactivation of RASSF6 or RASSF10 in cancer. These data show epigenetic inactivation of the candidate TSGs RASSF6 and RASSF10 is an extremely frequent event in the pathogenesis of childhood leukaemia. This study also warrants further investigation of the newly identified RASSF member RASSF10 and its potential role in leukaemia.

  9. Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Min Zhao

    Full Text Available BACKGROUND: So far, investigators have found numerous tumor suppressor genes (TSGs and oncogenes (OCGs that control cell proliferation and apoptosis during cancer development. Furthermore, TSGs and OCGs may act as modulators of transcription factors (TFs to influence gene regulation. A comprehensive investigation of TSGs, OCGs, TFs, and their joint target genes at the network level may provide a deeper understanding of the post-translational modulation of TSGs and OCGs to TF gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a novel computational framework for identifying target genes of TSGs and OCGs using TFs as bridges through the integration of protein-protein interactions and gene expression data. We applied this pipeline to ovarian cancer and constructed a three-layer regulatory network. In the network, the top layer was comprised of modulators (TSGs and OCGs, the middle layer included TFs, and the bottom layer contained target genes. Based on regulatory relationships in the network, we compiled TSG and OCG profiles and performed clustering analyses. Interestingly, we found TSGs and OCGs formed two distinct branches. The genes in the TSG branch were significantly enriched in DNA damage and repair, regulating macromolecule metabolism, cell cycle and apoptosis, while the genes in the OCG branch were significantly enriched in the ErbB signaling pathway. Remarkably, their specific targets showed a reversed functional enrichment in terms of apoptosis and the ErbB signaling pathway: the target genes regulated by OCGs only were enriched in anti-apoptosis and the target genes regulated by TSGs only were enriched in the ErbB signaling pathway. CONCLUSIONS/SIGNIFICANCE: This study provides the first comprehensive investigation of the interplay of TSGs and OCGs in a regulatory network modulated by TFs. Our application in ovarian cancer revealed distinct regulatory patterns of TSGs and OCGs, suggesting a competitive

  10. MTUS1 tumor suppressor and its miRNA regulators in fibroadenoma and breast cancer.

    Science.gov (United States)

    Kara, Murat; Kaplan, Mehmet; Bozgeyik, Ibrahim; Ozcan, Onder; Celik, Ozgur Ilhan; Bozgeyik, Esra; Yumrutas, Onder

    2016-08-10

    Breast cancer is major public health problem predominantly effects female population. Current therapeutic approaches to deal with breast cancer are still lack of effectiveness. Thus, identifying/developing novel strategies to fight against breast cancer is very important. The frequent deletions at 8p21.3-22 chromosomal location nearby D8S254 marker enabled the discovery of a novel tumor suppressor gene, MTUS1. Subsequently, MTUS1 was demonstrated to be less expressed in a variety cancer types including breast cancer. Also, it is obvious that gene expression is widely regulated by miRNAs. Here, we aimed to report differential expression of MTUS1 and its regulatory miRNAs in breast cancer and fibroadenoma tissues. Dynamic analysis of MTUS1 expression levels and its miRNAs regulators were attained by Fluidigm 96×96 Dynamic Array Expression chips and reactions were performed in Fluidigm BioMark™ HD System qPCR. Consequently, MTUS1 mRNA levels were significantly diminished in breast cancer tissues and elevated in fibroadenoma tissues. Also, among MTUS1 targeting miRNAs, miR-183-5p was identified to be overexpressed in breast cancer and down-regulated in fibroadenoma tissues. Also, expression levels of MTUS1 and miR-183-5p were well correlated with clinical parameters. In particular, MTUS1 expression was found to be diminished and miR-183-5p expression was elevated with the advancing stage. In conclusion, as a potential therapeutic target, miR-183-5p can be a chief regulator of MTUS1 and MTUS1-miR-183-5p axis may have significant influence in the pathology of breast cancer. PMID:27155522

  11. Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.

    Science.gov (United States)

    McDonald, Caleb B; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I; Nawaz, Zafar; Farooq, Amjad

    2012-09-01

    The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. PMID:22634283

  12. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Science.gov (United States)

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis. PMID:20739667

  13. Interaction of hepatitis B virus with tumor suppressor gene p53: its significance and biological function

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanism of the interaction of hepatitis B virus (HBV) with tumor suppressor p53 and its role in the hepatocarcinogenesis have been studied by PCR-directed sequencing, gel shift assays and in situ ultraviolet cross-linking assay. The biological function of the interaction of HBV with p53 gene was investigated by co-transfection of chloramphenicol acetyltransferase (CAT) reporter gene, p53 and HBV DNA, and quantitative PCR. Among the 16 primary hepatocellular carcinoma (PHC) samples, 13 were HBV-DNA positive,10 HBxAg positive and 9 p53 protein positive. The p53 gene point mutation was found in 5 samples, one of which had a G to T substitution located at codon 249. After analyzing the HBV genome by a computer program, a p53 response element binding sequence was found in HBV genome at upstream of enhancer I, from 1047 to 1059 nucleotides. This sequence could specifically bind to p53 protein, increase p53 protein accumulation in the PHC cells and stimulate the transactivating activity of p53 and HBV replication .The results also revealed that HBxAg could combine with p53 protein to form a complex in the cells and enhance CAT expression. Immunocytochemical staining showed that p53 protein complex was located in the cytoplasm and the process of p53 entry to nuclei was, in part, blocked. From our results, we conclude that the mutation of p53 gene at codon 249 is infrequent in HBV-associated PHC, the DNA-protein binding between HBV and p53, and the protein-protein binding between HBxAg and p53 might lead to the reduction or inactivation of p53 protein, which in turn resulting in HBV-associated hepatocarcinogenesis.

  14. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    Directory of Open Access Journals (Sweden)

    Lu Xin

    2009-06-01

    Full Text Available Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea. Results We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6. We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA. Conclusion These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.

  15. In Vitro and In Vivo Effects of Tumor Suppressor Gene PTEN on Endometriosis: An Experimental Study

    Science.gov (United States)

    Lv, Juan; Zhu, Qiaoying; Jia, Xuemei; Yu, Ningzhu; Li, Qian

    2016-01-01

    Background Endometriosis can cause dysmenorrhea and infertility. Its pathogenesis has not yet been clarified and its treatment continues to pose enormous challenges. The protein tyrosine phosphatase (PTEN) gene is a tumor suppressor gene. The aim of this study was to investigate the role and significance of PTEN protein in the occurrence, development, and treatment of endometriosis through changes in apoptosis rate, cell cycle, and angiogenesis. Material/Methods PTEN was overexpressed and silenced in lentiviral vectors and inserted into primary endometrial cells. The changes in cell cycle and apoptosis in the different PTEN expression groups were evaluated using flow cytometry. Vessel growth mimicry was observed using 3-dimensional culture. A human-mouse chimeric endometriosis model was constructed using SCID mice. Hematoxylin and eosin staining and immunohistochemistry were used to detect pathological changes in ectopic endometrial tissues and the expression of VEGF protein in a human-mouse chimeric endometriosis mouse model. Results PTEN overexpression significantly increased apoptosis and inhibited the cell cycle compared with the silenced and control groups. Furthermore, cells expressing low PTEN levels were better able to undergo vasculogenic mimicry, and exhibited significantly increased angiogenesis compared to cells overexpressing PTEN. We found that ectopic foci were more easily formed in the endometrial tissue of SCID mice with low PTEN expression, and the VEGF expression in this group was relatively high. Conclusions PTEN inhibits the occurrence and development of endometriosis by regulating angiogenesis and the apoptosis and cell cycle of endometrial cells; therefore, we propose that the PTEN gene can be used to treat endometriosis. PMID:27744455

  16. Insights into the biology and prevention of tumor metastasis provided by the Nm23 metastasis suppressor gene.

    Science.gov (United States)

    Marino, Natascia; Nakayama, Joji; Collins, Joshua W; Steeg, Patricia S

    2012-12-01

    Metastatic disease is the major cause of death among cancer patients. A class of genes, named metastasis suppressors, has been described to specifically regulate the metastatic process. The metastasis suppressor genes are downregulated in the metastatic lesion compared to the primary tumor. In this review, we describe the body of research surrounding the first metastasis suppressor identified, Nm23. Nm23 overexpression in aggressive cancer cell lines reduced their metastatic potential in vivo with no significant reduction in primary tumor size. A complex mechanism of anti-metastatic action is unfolding involving several known Nm23 enzymatic activities (nucleotide diphosphate kinase, histidine kinase, and 3'-5' exonuclease), protein-protein interactions, and downstream gene regulation properties. Translational approaches involving Nm23 have progressed to the clinic. The upregulation of Nm23 expression by medroxyprogesterone acetate has been tested in a phase II trial. Other approaches with significant preclinical success include gene therapy using traditional or nanoparticle delivery, and cell permeable Nm23 protein. Recently, based on the inverse correlation of Nm23 and LPA1 expression, a LPA1 inhibitor has been shown to both inhibit metastasis and induce metastatic dormancy. PMID:22706779

  17. Alcohol interacts with genetic alteration of the Hippo tumor suppressor pathway to modulate tissue growth in Drosophila.

    Directory of Open Access Journals (Sweden)

    Anoj Ilanges

    Full Text Available Alcohol-mediated cancers represent more than 3.5% of cancer-related deaths, yet how alcohol promotes cancer is a major open question. Using Drosophila, we identified novel interactions between dietary ethanol and loss of tumor suppressor components of the Hippo Pathway. The Hippo Pathway suppresses tumors in flies and mammals by inactivating transcriptional co-activator Yorkie, and the spectrum of cancers associated with impaired Hippo signaling overlaps strikingly with those associated with alcohol. Therefore, our findings may implicate loss of Hippo Pathway tumor suppression in alcohol-mediated cancers. Ethanol enhanced overgrowth from loss of the expanded, hippo, or warts tumor suppressors but, surprisingly, not from over-expressing the yorkie oncogene. We propose that in parallel to Yorkie-dependent overgrowth, impairing Hippo signaling in the presence of alcohol may promote overgrowth via additional alcohol-relevant targets. We also identified interactions between alcohol and Hippo Pathway over-activation. We propose that exceeding certain thresholds of alcohol exposure activates Hippo signaling to maintain proper growth control and prevent alcohol-mediated mis-patterning and tissue overgrowth.

  18. Angiocrine factors modulate tumor proliferation and motility through EphA2 repression of Slit2 tumor suppressor function in endothelium.

    Science.gov (United States)

    Brantley-Sieders, Dana M; Dunaway, Charlene M; Rao, Meghana; Short, Sarah; Hwang, Yoonha; Gao, Yandong; Li, Deyu; Jiang, Aixiang; Shyr, Yu; Wu, Jane Y; Chen, Jin

    2011-02-01

    It is well known that tumor-derived proangiogenic factors induce neovascularization to facilitate tumor growth and malignant progression. However, the concept of "angiocrine" signaling, in which signals produced by endothelial cells elicit tumor cell responses distinct from vessel function, has been proposed, yet remains underinvestigated. Here, we report that angiocrine factors secreted from endothelium regulate tumor growth and motility. We found that Slit2, which is negatively regulated by endothelial EphA2 receptor, is one such tumor suppressive angiocrine factor. Slit2 activity is elevated in EphA2-deficient endothelium. Blocking Slit activity restored angiocrine-induced tumor growth/motility, whereas elevated Slit2 impaired growth/motility. To translate our findings to human cancer, we analyzed EphA2 and Slit2 expression in human cancer. EphA2 expression inversely correlated with Slit2 in the vasculature of invasive human ductal carcinoma samples. Moreover, analysis of large breast tumor data sets revealed that Slit2 correlated positively with overall and recurrence-free survival, providing clinical validation for the tumor suppressor function for Slit2 in human breast cancer. Together, these data support a novel, clinically relevant mechanism through which EphA2 represses Slit2 expression in endothelium to facilitate angiocrine-mediated tumor growth and motility by blocking a tumor suppressive signal.

  19. Mast Cells Mobilize Myeloid-Derived Suppressor Cells and Treg Cells in Tumor Microenvironment via IL-17 Pathway in Murine Hepatocarcinoma Model

    OpenAIRE

    Zhuoshun Yang; Biao Zhang; Dapeng Li; Meng Lv; Chunmei Huang; Guan-Xin Shen; Bo Huang

    2010-01-01

    Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs) and regu...

  20. UV irradiation leads to transient changes in phosphorylation and stability of tumor suppressor protein p53.

    Science.gov (United States)

    Scheidtmann, K; Landsberg, G

    1996-12-01

    Tumor suppressor protein p53 is thought to play a crucial role in maintaining the integrity of the genome. DNA damage caused by genotoxic drugs, UV or gamma-irradiation leads to accumulation of p53 and activation of its DNA binding and transcriptional activities and subsequently to cell cycle arrest or apoptosis. We investigated whether the apparent activation of p53 might be due to post-translational modification. The rat fibroblast cell lines REF52, 208F, and rat1 were irradiated with W-A and the synthesis, stability and phosphorylation state of p53 were investigated by pulse chase experiments, SDS-PAGE and two-dimensional phosphopeptide mapping. The three cell lines exhibited different sensitivities and biological responses to UV irradiation, REF52 cells responded with a growth arrest whereas 208F and rat1 cells underwent apoptosis. The fate of p53 was similar in all cases. Both the stability of p53 and its phosphorylation increased instantaneously but transiently. However, the amount of p53 that accumulated after UV treatment was much higher in 208F and rat1 than in REF52 cells. Interestingly, p53 that was synthesized early after irradiation was stable for more than 14 h whereas molecules synthesized 8 or more hours post irradiation were increasingly susceptible to degradation. Moreover, between 14 and 20 h after treatment, the rate of synthesis of p53 decreased to a level lower than in untreated cells suggesting negative feed back control. The expression of different p53-responsive genes, waf1/cip1, Gadd45, and bax was investigated by protein analyses. Surprisingly, p21(waf1) was expressed only in REF52 cells but not in the others. Furthermore, UV irradiation led only to a moderate increase of p21(waf1) expression. Expression of Gadd45 and box was detectable in both cell types but its expression did not change significantly upon UV treatment. Our results suggest i) that both cell types share a common pathway which upon UV irradiation results in enhanced

  1. Functional Analysis of In-frame Indel ARID1A Mutations Reveals New Regulatory Mechanisms of Its Tumor Suppressor Functions

    Directory of Open Access Journals (Sweden)

    Bin Guan

    2012-10-01

    Full Text Available AT-rich interactive domain 1A (ARID1A has emerged as a new tumor suppressor in which frequent somatic mutations have been identified in several types of human cancers. Although most ARID1A somatic mutations are frame-shift or nonsense mutations that contribute to mRNA decay and loss of protein expression, 5% of ARID1A mutations are in-frame insertions or deletions (indels that involve only a small stretch of peptides. Naturally occurring in-frame indel mutations provide unique and useful models to explore the biology and regulatory role of ARID1A. In this study, we analyzed indel mutations identified in gynecological cancers to determine how these mutations affect the tumor suppressor function of ARID1A. Our results demonstrate that all in-frame mutants analyzed lost their ability to inhibit cellular proliferation or activate transcription of CDKN1A, which encodes p21, a downstream effector of ARID1A. We also showed that ARID1A is a nucleocytoplasmic protein whose stability depends on its subcellular localization. Nuclear ARID1A is less stable than cytoplasmic ARID1A because ARID1A is rapidly degraded by the ubiquitin-proteasome system in the nucleus. In-frame deletions affecting the consensus nuclear export signal reduce steady-state protein levels of ARID1A. This defect in nuclear exportation leads to nuclear retention and subsequent degradation. Our findings delineate a mechanism underlying the regulation of ARID1A subcellular distribution and protein stability and suggest that targeting the nuclear ubiquitin-proteasome system can increase the amount of the ARID1A protein in the nucleus and restore its tumor suppressor functions.

  2. The retinoblastoma protein: a master tumor suppressor acts as a link between cell cycle and cell adhesion

    Directory of Open Access Journals (Sweden)

    Engel BE

    2014-12-01

    Full Text Available Brienne E Engel,1 W Douglas Cress,1 Pedro G Santiago-Cardona2 1Molecular Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; 2Department of Biochemistry, Ponce School of Medicine, Ponce, Puerto Rico, USA Abstract: RB1 was the first tumor suppressor gene discovered. Over 4 decades of work have revealed that the Rb protein (Rb is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability, and apoptosis. While these many processes may account for a significant portion of RB1's potency as a tumor suppressor, a small but growing stream of evidence suggests that RB1 also significantly influences how a cell interacts with its environment, including cell-to-cell and cell-to-extracellular matrix interactions. This review will highlight Rb’s role in the control of cell adhesion and how alterations in the adhesive properties of tumor cells may drive the deadly process of metastasis. Keywords: cadherin, integrin, Rb, cancer, aggressiveness, metastasis

  3. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  4. The Tumor Suppressor RASSF1A Prevents Dephosphorylation of the Mammalian STE20-like Kinases MST1 and MST2*

    OpenAIRE

    Guo, Cai; Zhang, Xiaoying; Pfeifer, Gerd P.

    2011-01-01

    The RASSF1A tumor suppressor protein interacts with the pro-apoptotic mammalian STE20-like kinases MST1 and MST2 and induces their autophosphorylation and activation, but the mechanism of how RASSF1A activates MST1/2 is unclear. Okadaic acid treatment and PP2A knockdown promoted MST1/2 phosphorylation. Data from dephosphorylation assays and reduced activation of MST1/2 seen after RASSF1A depletion suggest that dephosphorylation of MST1/2 on Thr-183 and Thr-180 by PP2A is prevented by RASSF1A,...

  5. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis

    OpenAIRE

    Phillips, Kristine; Kedersha, Nancy; Shen, Lily; Blackshear, Perry J.; Anderson, Paul

    2004-01-01

    TIA-1 and TTP are AU-rich element-binding proteins that prevent the pathological overexpression of tumor necrosis factor α (TNF-α). TIA-1 inhibits the translation of TNF-α transcripts, whereas TTP promotes the degradation of TNF-α transcripts. Here we show that TIA-1 and TTP function as arthritis suppressor genes: TIA-1–/– mice develop mild arthritis, TTP–/– mice develop severe arthritis, and TIA-1–/–TTP–/– mice develop very severe arthritis. Peritoneal macrophages derived from all three geno...

  6. Dissecting functions of the retinoblastoma tumor suppressor and the related pocket proteins by integrating genetic, cell biology, and electrophoretic techniques

    DEFF Research Database (Denmark)

    Hansen, Klaus; Lukas, J; Holm, K;

    1999-01-01

    The members of the 'pocket protein' family, comprising the retinoblastoma tumor suppressor (pRB) and its relatives, p107 and p130, negatively regulate cell proliferation and modulate fundamental biological processes including embryonic development, differentiation, homeostatic tissue renewal...... phosphorylation events on multiple serine and threonine residues of pRB, p107, and p130, events which are carried out, at least in part, by the cyclin-dependent kinases that form the key elements of the cell cycle machinery. Here we discuss the recently obtained new insights into the diverse functions of the pRB...

  7. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin cancer

  8. Activation of the Retinoblastoma Tumor Suppressor Mediates Cell Cycle Inhibition and Cell Death in Specific Cervical Cancer Cell Lines

    OpenAIRE

    Bourgo, Ryan J.; Braden, Wesley A.; Wells, Susanne I.; Knudsen, Erik S.

    2009-01-01

    High-risk human papilloma virus (HPV) encodes two oncoproteins, E6 and E7, which are vital to viral replication and contribute to the development of cervical cancer. HPV16 E7 can target over 20 cellular proteins, but is best known for inactivating the retinoblastoma (RB) tumor suppressor. RB functions by restraining cells from entering S-phase of the cell cycle, thus preventing aberrant proliferation. While it is well established that HPV16 E7 facilitates the degradation of the RB protein, th...

  9. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States); Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  10. Loss of the retinoblastoma tumor suppressor correlates with improved outcome in patients with lung adenocarcinoma treated with surgery and chemotherapy.

    Science.gov (United States)

    Cecchini, Matthew J; Ishak, Charles A; Passos, Daniel T; Warner, Andrew; Palma, David A; Howlett, Christopher J; Driman, David K; Dick, Frederick A

    2015-12-01

    The retinoblastoma tumor suppressor pathway is frequently inactivated in human cancer, enabling unrestrained proliferation. Most cancers, however, maintain expression of a wild-type (WT) retinoblastoma tumor suppressor protein (pRB). It is generally in a hyperphosphorylated state (ppRB) because of mutations in upstream regulators such as p16 and cyclin D. Hyperphosphorylated ppRB is considered inactive, although data are emerging that suggest it can retain some function. To test the clinical relevance of pRB status, we obtained archival tissue sections from 91 cases of lung adenocarcinoma resected between 2003 and 2008. All cases received platinum doublet chemotherapy, and the median survival was 5.9 years. All cases were assessed for pRB and ppRB using immunohistochemistry and quantified based on intensity of signal and proportion of positive cells. pRB expression was lost in 15% of lung adenocarcinoma cases. In tumors that did not express pRB, the survival rate was significantly improved (hazard ratio, 0.21; 95% confidence interval, 0.06-0.69; P = .01) in comparison to tumors that express pRB. pRB status was found to be an independent predictor of overall survival on multivariate analysis (hazard ratio, 0.22; 95% confidence interval, 0.07-0.73; P = .01) along with increased stage and age. pRB status did not alter baseline levels of apoptotic or proliferative markers in these tumors, but the DNA damage response protein 53BP1 was higher in cancers with high levels of pRB. In summary, loss of pRB expression is associated with improved survival in patients treated with surgical resection and chemotherapy. This may be useful in classifying patients at greatest benefit for aggressive treatment regimes. PMID:26475095

  11. A 5'-region polymorphism modulates promoter activity of the tumor suppressor gene MFSD2A

    Directory of Open Access Journals (Sweden)

    Kunitoh Hideo

    2011-07-01

    Full Text Available Abstract Background The MFSD2A gene maps within a linkage disequilibrium block containing the MYCL1-EcoRI polymorphism associated with prognosis and survival in lung cancer patients. Survival discrepancies between Asians and Caucasians point to ethnic differences in allelic frequencies of the functional genetic variations. Results Analysis of three single-nucleotide polymorphisms (SNPs mapping in the MFSD2A 5'-regulatory region using a luciferase reporter system showed that SNP rs12072037, in linkage disequilibrium with the MYCL1-EcoRI polymorphism and polymorphic in Asians but not in Caucasians, modulated transcriptional activity of the MFSD2A promoter in cell lines expressing AHR and ARNT transcription factors, which potentially bind to the SNP site. Conclusion SNP rs12072037 modulates MFSD2A promoter activity and thus might affect MFSD2A levels in normal lung and in lung tumors, representing a candidate ethnically specific genetic factor underlying the association between the MYCL1 locus and lung cancer patients' survival.

  12. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation

    Science.gov (United States)

    Du, Zhenfang; Li, Lili; Huang, Xin; Jin, Jie; Huang, Suming; Zhang, Qian; Tao, Qian

    2016-01-01

    Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors. PMID:26943038

  13. DESC1, a novel tumor suppressor, sensitizes cells to apoptosis by downregulating the EGFR/AKT pathway in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Ng, Hoi Yan; Ko, Josephine Mun-Yee; Yu, Valen Zhuoyou; Ip, Joseph Chok Yan; Dai, Wei; Cal, Santiago; Lung, Maria Li

    2016-06-15

    Esophageal cancer is ranked as the eighth most common cancer and the sixth leading cause of cancer deaths worldwide. To identify candidate tumor suppressor genes related to esophageal squamous cell carcinoma (ESCC) development, a cDNA microarray analysis was performed using paired tumor and nontumor tissue samples from ESCC patients. Differentially expressed in squamous cell carcinoma 1 (DESC1), which belongs to the Type II transmembrane serine protease family, was frequently downregulated in ESCC. This study aims to elucidate the molecular mechanism for the tumor suppressive function of DESC1 in ESCC. We show that DESC1 reduced cell viability and sensitized cells to apoptosis, when cells were under apoptotic stimuli. The proapoptotic effect of DESC1 was mediated through downregulating AKT1 activation and the restoration of AKT activation by the introduction of the constitutively active AKT, myr-AKT, abolished the apoptosis-sensitizing effect of DESC1. DESC1 also reduced EGFR protein level, which was abrogated when the proteolytic function of DESC1 was lost, suggesting that DESC1 cleaved EGFR and downregulated the EGFR/AKT pathway to favor apoptosis. The transmembrane localization and the structural domains provide an opportunity for DESC1 to interact with the extracellular environment. The importance of such interaction was highlighted by the finding that DESC1 reduced cell colony formation ability in three-dimensional culture. In line with this, DESC1 reduced tumor growth kinetics in the in vivo orthotopic tumorigenesis assay. Taken together, our novel findings suggest how DESC1 may suppress ESCC development by sensitizing cells to apoptosis under an apoptotic stimulus through downregulating the EGFR/AKT signaling pathway.

  14. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  15. Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase.

    Science.gov (United States)

    Min, Sang-Hyun; Lau, Alan W; Lee, Tae Ho; Inuzuka, Hiroyuki; Wei, Shuo; Huang, Pengyu; Shaik, Shavali; Lee, Daniel Yenhong; Finn, Greg; Balastik, Martin; Chen, Chun-Hau; Luo, Manli; Tron, Adriana E; Decaprio, James A; Zhou, Xiao Zhen; Wei, Wenyi; Lu, Kun Ping

    2012-06-29

    Fbw7 is the substrate recognition component of the Skp1-Cullin-F-box (SCF)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers; however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1. Pin1 interacts with Fbw7 in a phoshorylation-dependent manner and promotes Fbw7 self-ubiquitination and protein degradation by disrupting Fbw7 dimerization. Consequently, overexpressing Pin1 reduces Fbw7 abundance and suppresses Fbw7's ability to inhibit proliferation and transformation. By contrast, depletion of Pin1 in cancer cells leads to elevated Fbw7 expression, which subsequently reduces Mcl-1 abundance, sensitizing cancer cells to Taxol. Thus, Pin1-mediated inhibition of Fbw7 contributes to oncogenesis, and Pin1 may be a promising drug target for anticancer therapy. PMID:22608923

  16. Negative Regulation of the Stability and Tumor Suppressor Function of Fbw7 by the Pin1 Prolyl Isomerase

    Science.gov (United States)

    Min, Sang-Hyun; Lau, Alan W.; Lee, Tae Ho; Inuzuka, Hiroyuki; Wei, Shuo; Huang, Pengyu; Shaik, Shavali; Lee, Daniel Yenhong; Finn, Greg; Balastik, Martin; Chen, Chun-Hau; Luo, Manli; Tron, Adriana E.; DeCaprio, James A.; Zhou, Xiao Zhen; Wei, Wenyi; Lu, Kun Ping

    2012-01-01

    SUMMARY Fbw7 is the substrate recognition component of the SCF (Skp1-Cullin-F-box)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers, however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1. Pin1 interacts with Fbw7 in a phoshorylation-dependent manner and promotes Fbw7 self-ubiquitination and protein degradation by disrupting Fbw7 dimerization. Consequently, over-expressing Pin1 reduces Fbw7 abundance and suppresses Fbw7’s ability to inhibit proliferation and transformation. By contrast, depletion of Pin1 in cancer cells leads to elevated Fbw7 expression, which subsequently reduces Mcl-1 abundance, sensitizing cancer cells to Taxol. Thus, Pin1-mediated inhibition of Fbw7 contributes to oncogenesis and Pin1 may be a promising drug target for anti-cancer therapy. PMID:22608923

  17. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    Science.gov (United States)

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  18. ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL: Implication in Clear Cell Renal Carcinoma

    Directory of Open Access Journals (Sweden)

    Laura Arias-González

    2013-06-01

    Full Text Available Extracellular signal-regulated kinase 5 (ERK5, also known as big mitogen-activated protein kinase (MAPK 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas.

  19. TRIM31 is downregulated in non-small cell lung cancer and serves as a potential tumor suppressor.

    Science.gov (United States)

    Li, Hui; Zhang, Yi; Zhang, Yue; Bai, Xue; Peng, Yang; He, Ping

    2014-06-01

    The present study aims to investigate expression pattern and biological roles of TRIM31 in human non-small cell lung cancer (NSCLC). We examined TRIM31 expression in 116 NSCLC tissues and 20 corresponding normal lung tissues by immumohistochemistry. We found TRIM31 downregulation in 47 out of 116 (40.5 %) cancer samples, which correlated with tumor status (p=0.0132), advanced p-TNM stage (p=0.001), and nodal metastasis (p=0.0382). TRIM31 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TRIM31 plasmid was performed in H157 and H1299 cells. TRIM31 overexpression inhibited cell growth rate and colony formation ability in both cell lines. In addition, expression of cell cycle regulator cyclin D1 and cyclin E were decreased after TRIM31 transfection. In conclusion, TRIM31 might serve as a tumor suppressor in non-small cell lung cancer. PMID:24566900

  20. Genetic analysis of tumorigenesis: a conserved region in the human and Chinese hamster genomes contains genetically identified tumor-suppressor genes

    International Nuclear Information System (INIS)

    Regional chromosome homologies were found in a comparison of human 11p with Chinese hamster 3p. By use of probes that recognize six genes of human 11p (INS, CAT, HBBC, CALC, PTH, and HRAS), the corresponding genes were localized by in situ hybridization on Chinese hamster chromosome 3. INS and CAT were located close to the centromere on 3p, whereas HBBC, CALC, and PTH were at 3q3-4 and HRAS at 3q4. Extensive prior data from chromosome studies of tumorigenic and tumor-derived Chinese hamster cells have suggested the presence of a tumor-suppressor gene on 3p. Two tumor-suppressor genes have been described on human 11p, one linked to CAT and one to INS. The present study raises the possibility that the Chinese hamster suppressor may be closely linked to INS or CAT

  1. Understanding the Significance of Mutations in Tumor Suppressor Genes Identified Using Next-Generation Sequencing: A Case Report

    Science.gov (United States)

    Sorscher, Steven

    2016-01-01

    Next-generation sequencing (NGS) of tumors has been heralded as a promising tool to identify ‘actionable’ abnormalities susceptible to therapies targeting these mutated genes. Inhibiting the oncoprotein expressed from a single dominant mutated gene (oncogene) forms the basis for the success of most of the targeted gene therapies approved in the last several years. The well over 20 FDA-approved kinase inhibitors for cancer treatment are examples [Janne et al.: Nat Rev Drug Discov 2009;8: 709–723]. These and other similar agents in development might prove effective therapies for tumors originating from tissues other than those for which these drugs are currently approved. Finding such mutations in tumors of patients through NGS is being aggressively pursued by patients and their oncologists. For identified mutated tumor suppressor genes (TSG) the challenge is really the opposite. Rather than inhibiting the action of an oncoprotein, targeting would involve restoring the activity of the wild-type (WT) TSG function [Knudson: Proc Natl Acad Sci USA 1971;249: 912–915]. Here, a case is reported that illustrates the implications of a mutated TSG (BRIP1) identified by NGS as potentially actionable. In such cases, measuring allelic mutation frequency potentially allows for the identification of tumors where the loss of heterozygosity of a TSG exists. Without substantial loss of expression of the WT TSG product, it would seem very unlikely that ‘replacing’ a WT TSG product that is not a lost product would be a useful therapy. PMID:27462233

  2. Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma

    International Nuclear Information System (INIS)

    The prognosis of patients with hepatocellular carcinoma (HCC) still remains very dismal, which is mainly due to metastasis. In our previous studies, we found that chromosome 8p deletions might contribute to metastasis of HCC. In this study, we aimed to identify the candidate metastatic suppressor gene on chromosome 8p. Oligo-nucleotide microarrays which included 322 genes on human chromosome 8p were constructed to analyze the difference in gene expression profiles between HCC tissues with and without metastasis. The leading differentially expressed genes were identified and selected for further analysis by real-time PCR and Western blotting. Recombinant expression plasmid vectors for each target gene were constructed and transfected into HCC cells and its in vitro effects on proliferation and invasion of HCC cells were also investigated. Sixteen leading differentially expressed genes were identified from the HCC tissues with metastasis compared with those without metastasis (p < 0.01, q < 16 %). Among of the 10 significantly down-regulated genes in HCC with metastasis, methionine sulfoxide reductase A (MSRA) had the lowest p value and false discovery rate (FDR), and was considered as a potential candidate for metastasis suppressor gene. Real-time PCR and Western blotting confirmed that the mRNA and protein expression levels of MSRA were significantly decreased in HCC with metastasis compared with those without metastasis (p < 0.001), and MSRA mRNA level in HCCLM6 cells (with high metastatic potential) was also much lower than that of other HCC cell lines. Transfection of a recombinant expression plasmid vector and overexpression of MSRA gene could obviously inhibit cell colony formation (4.33 ± 2.92 vs. 9.17 ± 3.38, p = 0.008) and invasion (7.40 ± 1.67 vs. 17.20 ± 2.59, p= 0.0001) of HCCLM6 cell line. MSRA gene on chromosome 8p might possess metastasis suppressor activity in HCC

  3. Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Sun Hui-Chuan

    2007-09-01

    Full Text Available Abstract Background The prognosis of patients with hepatocellular carcinoma (HCC still remains very dismal, which is mainly due to metastasis. In our previous studies, we found that chromosome 8p deletions might contribute to metastasis of HCC. In this study, we aimed to identify the candidate metastatic suppressor gene on chromosome 8p. Methods Oligo-nucleotide microarrays which included 322 genes on human chromosome 8p were constructed to analyze the difference in gene expression profiles between HCC tissues with and without metastasis. The leading differentially expressed genes were identified and selected for further analysis by real-time PCR and Western blotting. Recombinant expression plasmid vectors for each target gene were constructed and transfected into HCC cells and its in vitro effects on proliferation and invasion of HCC cells were also investigated. Results Sixteen leading differentially expressed genes were identified from the HCC tissues with metastasis compared with those without metastasis (p q MSRA had the lowest p value and false discovery rate (FDR, and was considered as a potential candidate for metastasis suppressor gene. Real-time PCR and Western blotting confirmed that the mRNA and protein expression levels of MSRA were significantly decreased in HCC with metastasis compared with those without metastasis (p MSRA mRNA level in HCCLM6 cells (with high metastatic potential was also much lower than that of other HCC cell lines. Transfection of a recombinant expression plasmid vector and overexpression of MSRA gene could obviously inhibit cell colony formation (4.33 ± 2.92 vs. 9.17 ± 3.38, p = 0.008 and invasion (7.40 ± 1.67 vs. 17.20 ± 2.59, p= 0.0001 of HCCLM6 cell line. Conclusion MSRA gene on chromosome 8p might possess metastasis suppressor activity in HCC.

  4. Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma

    Institute of Scientific and Technical Information of China (English)

    David Cogdell; Woonbok Chung; Yuexin Liu; Matthew McDonald; Kenneth Aldape; Jean-Pierre J. Issa; Gregory N. Fuller; Wei Zhang

    2011-01-01

    Allelic loss of the short arm of chromosome 1 has been observed frequently in a wide spectrum of cancers, most frequently in oligodendroglioma. In our previous studies, we evaluated 177 oligodendroglial tumor samples and identified the AJAP1 gene (formerly Shrew1) in the consensus region of deletion.AJAP1 is a transmembrane protein found in adheren junctions and functions to inhibit glioma cell adhesion and migration. Whereas a putative tumor suppressor gene, we did not detect AJAP1 gene mutations. In subsequent studies, we found that AJAP1 was underexpressed in oligodendrogliomas relative to normal brain tissues. Bioinformatic analysis revealed the presence of CpG islands in the promoter of AJAP1.Methylation analysis of the AJAP1 promoter identified hypermethylation in 21% of oligodendrogliomas (n = 27), and the degree of methylation correlated with Iow levels of AJAP1 expression (P = 0.045). The AJAP1 promoter was also highly methylated in a wide spectrum of cell lines (n = 22), including cell lines of glioblastoma. Analysis of the National Cancer Institute's REMBRANDT dataset, which contains 343 glioma samples, indicated that Iow AJAP1 gene expression was associated with decreased survival. Thus,both genetic (gene deletion) and epigenetic alterations (promoter methylation) are likely mechanisms that inactivate the putative tumor suppressor AJAP1 in gliomas, which contributes to poor prognosis.

  5. Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma.

    Science.gov (United States)

    Cogdell, David; Chung, Woonbok; Liu, Yuexin; McDonald, J Matthew; Aldape, Kenneth; Issa, Jean-Pierre J; Fuller, Gregory N; Zhang, Wei

    2011-04-01

    Allelic loss of the short arm of chromosome 1 has been observed frequently in a wide spectrum of cancers, most frequently in oligodendroglioma. In our previous studies, we evaluated 177 oligodendroglial tumor samples and identified the AJAP1 gene (formerly Shrew1) in the consensus region of deletion. AJAP1 is a transmembrane protein found in adheren junctions and functions to inhibit glioma cell adhesion and migration. Whereas a putative tumor suppressor gene, we did not detect AJAP1 gene mutations. In subsequent studies, we found that AJAP1 was underexpressed in oligodendrogliomas relative to normal brain tissues. Bioinformatic analysis revealed the presence of CpG islands in the promoter of AJAP1. Methylation analysis of the AJAP1 promoter identified hypermethylation in 21% of oligodendrogliomas (n =27), and the degree of methylation correlated with low levels of AJAP1 expression (P = 0.045). The AJAP1 promoter was also highly methylated in a wide spectrum of cell lines (n = 22), including cell lines of glioblastoma. Analysis of the National Cancer Institute's REMBRANDT dataset, which contains 343 glioma samples, indicated that low AJAP1 gene expression was associated with decreased survival. Thus, both genetic (gene deletion) and epigenetic alterations (promoter methylation) are likely mechanisms that inactivate the putative tumor suppressor AJAP1 in gliomas, which contributes to poor prognosis.

  6. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyichenben@163.com [Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101 (China); He, Du, E-mail: hdu1234@163.com [Department of Oncology, The Central Hospital of Enshi Autonomous of Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, 445000 (China); Yang, Liang, E-mail: yliang0689@163.com [Department of Oncology, Qianjiang Central Hospital, Qianjiang, Hubei, 433100 (China); Wen, Bo, E-mail: tjwb001@126.com [Department of Urology, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101 (China); Dai, Jinfen, E-mail: brilliant_510@126.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060 (China); Zhang, Qian, E-mail: anny9655@126.com [Department of Immunology, School of Basic Medicine, Wuhan University, Wuhan, Hubei, 430071 (China); Kang, Jian, E-mail: 984190619@qq.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060 (China); He, Weiyang, E-mail: 996114664@qq.com [Department of Immunology, School of Basic Medicine, Wuhan University, Wuhan, Hubei, 430071 (China); Ding, Qianshan, E-mail: iamdqs@163.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060 (China); He, De, E-mail: 18938027146@126.com [Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101 (China)

    2015-07-31

    Hepatocellular carcinoma (HCC) is the one of the most common malignancies worldwide and its prognosis is extremely poor. Tripartite motif (TRIM) proteins play crucial roles in cancer cell biology but the function of tripartite motif 26 (TRIM26) has not been investigated. We demonstrated that low expression level of TRIM26 in tumor samples was significantly correlated with worse prognosis in HCC patients. We also demonstrated its expression level was associated with several clinicopathologic features such as AFP level and T stage of HCC patients. Furthermore, we validated that TRIM26 was significantly downregulated in HCC tissue compared with normal liver tissue. To further clarify the functional role of TRIM26 in HCC, We confirmed that TRIM26 silencing can promote cancer cell proliferation, colony forming, migration and invasion in vitro with HCC cell lines HepG2 and Bel-7402. Then we utilized bioinformatic tool to predict gene influenced by TRIM26, showing TRIM26 could modulate gene sets about cancer cell metabolism. In conclusion, we proved that TRIM26 is a novel tumor suppressor modulating multiple metabolism-related pathways in HCC. To our best knowledge, this is the first study to investigate the function of TRIM26 in cancer biology. Our findings provide useful insight into the mechanism of HCC origin and progression. Moreover, TRIM26 may represent a novel therapeutic target for HCC. - Highlights: • TRIM26 is down-regulated in liver cancer samples and functions as a novel tumor suppressor. • Down-regulation of TRIM26 is associated with worse prognosis of hepatocellular carcinoma (HCC). • Knockdown of TRIM26 promotes the proliferation and metastasis of HCC cells. • TRIM26 may function in abnormal metabolic progress of HCC.

  7. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14ARF tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Dimri, Goberdhan P.; Itahana, Koji; Acosta, Meileen; Campisi, Judith

    1999-11-05

    Normal cells do not divide indefinitely due to a process known as replicative senescence. Human cells arrest growth with a senescent phenotype when they acquire one or more critically short telomere as a consequence of cell division. Recent evidence suggests that certain types of DNA damage, chromatin remodeling, or oncogenic forms of Rasor Raf can also elicit a senescence response. We show here that E2F1, a multifunctional transcription factor that binds the retinoblastoma (pRb) tumor suppressor and can either promote or suppress tumorigenesis, induces a senescent phenotype when overexpressed in normal human fibroblasts. Normal human cells stably arrested proliferation and expressed several markers of replicative senescence in response to E2F1. This activity of E2F1 was independent of its pRb binding activity, but dependent on its ability to stimulate gene expression. The E2F1 target gene critical for the senescence response appeared to be the p14ARF tumor suppressor. Replicatively senescent human fibroblasts overexpressed p14ARF, and ectopic expression of p14ARF in presenescent cells induced a phenotype similar to that induced by E2F1. Consistent with a critical role for p14ARF, cells with compromised p53 function were immune to senescence induction by E2F1, as were cells deficient in p14ARF. Our findings support the idea that the senescence response is a critical tumor suppressive mechanism, provide an explanation for the apparently paradoxical roles of E2F1 in oncogenesis, and identify p14ARF as a potentially important mediator of the senescent phenotype.

  8. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis

    International Nuclear Information System (INIS)

    Hepatocellular carcinoma (HCC) is the one of the most common malignancies worldwide and its prognosis is extremely poor. Tripartite motif (TRIM) proteins play crucial roles in cancer cell biology but the function of tripartite motif 26 (TRIM26) has not been investigated. We demonstrated that low expression level of TRIM26 in tumor samples was significantly correlated with worse prognosis in HCC patients. We also demonstrated its expression level was associated with several clinicopathologic features such as AFP level and T stage of HCC patients. Furthermore, we validated that TRIM26 was significantly downregulated in HCC tissue compared with normal liver tissue. To further clarify the functional role of TRIM26 in HCC, We confirmed that TRIM26 silencing can promote cancer cell proliferation, colony forming, migration and invasion in vitro with HCC cell lines HepG2 and Bel-7402. Then we utilized bioinformatic tool to predict gene influenced by TRIM26, showing TRIM26 could modulate gene sets about cancer cell metabolism. In conclusion, we proved that TRIM26 is a novel tumor suppressor modulating multiple metabolism-related pathways in HCC. To our best knowledge, this is the first study to investigate the function of TRIM26 in cancer biology. Our findings provide useful insight into the mechanism of HCC origin and progression. Moreover, TRIM26 may represent a novel therapeutic target for HCC. - Highlights: • TRIM26 is down-regulated in liver cancer samples and functions as a novel tumor suppressor. • Down-regulation of TRIM26 is associated with worse prognosis of hepatocellular carcinoma (HCC). • Knockdown of TRIM26 promotes the proliferation and metastasis of HCC cells. • TRIM26 may function in abnormal metabolic progress of HCC

  9. TR4 nuclear receptor functions as a tumor suppressor for prostate tumorigenesis via modulation of DNA damage/repair system.

    Science.gov (United States)

    Lin, Shin-Jen; Lee, Soo Ok; Lee, Yi-Fen; Miyamoto, Hiroshi; Yang, Dong-Rong; Li, Gonghui; Chang, Chawnshang

    2014-06-01

    Testicular nuclear receptor 4 (TR4), a member of the nuclear receptor superfamily, plays important roles in metabolism, fertility and aging. The linkage of TR4 functions in cancer progression, however, remains unclear. Using three different mouse models, we found TR4 could prevent or delay prostate cancer (PCa)/prostatic intraepithelial neoplasia development. Knocking down TR4 in human RWPE1 and mouse mPrE normal prostate cells promoted tumorigenesis under carcinogen challenge, suggesting TR4 may play a suppressor role in PCa initiation. Mechanism dissection in both in vitro cell lines and in vivo mice studies found that knocking down TR4 led to increased DNA damage with altered DNA repair system that involved the modulation of ATM expression at the transcriptional level, and addition of ATM partially interrupted the TR4 small interfering RNA-induced tumorigenesis in cell transformation assays. Immunohistochemical staining in human PCa tissue microarrays revealed ATM expression is highly correlated with TR4 expression. Together, these results suggest TR4 may function as a tumor suppressor to prevent or delay prostate tumorigenesis via regulating ATM expression at the transcriptional level. PMID:24583925

  10. The growth and tumor suppressors NORE1A and RASSF1A are targets for calpain-mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Sergey Kuznetsov

    Full Text Available BACKGROUND: NORE1A and RASSF1A are growth and tumour suppressors inactivated in a variety of cancers. Methylation of NORE1A and RASSF1A promoters is the predominant mechanism for downregulation of these proteins; however, other mechanisms are likely to exist. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a proteolysis of NORE1A and RASSF1A by calpains as alternative mechanism of their downregulation. Extracts of H358 cell line, a human bronchoalveolar carcinoma, and H460, a large cell carcinoma, were capable of proteolysis of NORE1A protein in the calpain-dependent manner. Likewise, RASSF1A tumor suppressor was proteolyzed by the H358 cell extract. Addition of calpain inhibitor to H358 and H460 cells growing in tissue culture resulted in re-expression of endogenous NORE1A. A survey of 10 human lung tumours revealed that three of them contain an activity capable of inducing NORE1A degradation. CONCLUSIONS/SIGNIFICANCE: Thus, degradation by calpains is a novel mechanism for downregulation of NORE1A and RASSF1A proteins and might be the mechanism allowing cancer cells to escape growth suppression.

  11. Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer

    Science.gov (United States)

    Wang, Qian; Li, Zexin; Yang, Yiqiong; Chen, Zhiguo; Wang, Jianguo; Zhao, Weixing; Zhang, Huijuan; Chen, Jiwang; Dong, Huali; Shen, Kui; Diamond, Alan M.; Yang, Wancai

    2016-01-01

    PRSS8 is a membrane-anchored serine protease prostasin and has been shown an association with carcinogenesis. Herein we found that PRSS8 expression was significantly reduced in colorectal adenomas and adenocarcinomas. The decreased PRSS8 was well correlated with clinical stages, poor differentiation and shorter survival time of colorectal cancer. Furthermore, increase of PRSS8 led to the inhibition of colorectal cancer cell proliferation, knockdown of PRSS8 accelerated cell proliferation in vitro, and overexpressing PRSS8 retarded cancer cell growth in nude mice. Mechanistic studies revealed that PRSS8 inhibited Sphk1/S1P/Stat3/Akt signaling pathway, in terms of inverse association between PRSS8 and Sphk1 in human colorectal cancers and in Sphk1-/− mice. In conclusion, PRSS8 acts as a tumor suppressor by inhibiting Sphk1/S1P/Stat3/Akt signaling pathway, and could be used as a biomarker to monitor colorectal carcinogenesis and predict outcomes. PMID:27050145

  12. Tumor suppressor Nf2/merlin drives Schwann cell changes following electromagnetic field exposure through Hippo-dependent mechanisms.

    Science.gov (United States)

    Colciago, A; Melfi, S; Giannotti, G; Bonalume, V; Ballabio, M; Caffino, L; Fumagalli, F; Magnaghi, V

    2015-01-01

    Previous evidence showed mutations of the neurofibromin type 2 gene (Nf2), encoding the tumor suppressor protein merlin, in sporadic and vestibular schwannomas affecting Schwann cells (SCs). Accordingly, efforts have been addressed to identify possible factors, even environmental, that may regulate neurofibromas growth. In this context, we investigated the exposure of SC to an electromagnetic field (EMF), which is an environmental issue modulating biological processes. Here, we show that SC exposed to 50 Hz EMFs changes their morphology, proliferation, migration and myelinating capability. In these cells, merlin is downregulated, leading to activation of two intracellular signaling pathways, ERK/AKT and Hippo. Interestingly, SC changes their phenotype toward a proliferative/migrating state, which in principle may be pathologically relevant for schwannoma development. PMID:27551454

  13. Tumor suppressor DYRK1A effects on proliferation and chemoresistance of AML cells by downregulating c-Myc.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available Acute myeloid leukemia (AML, caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of c-Myc by DYRK1A, through mediating its degradation. Moreover, overexpression of c-Myc markedly reversed AML cell growth inhibition induced by DYRK1A. DYRK1A also had significantly lower expression in relapsed/refractory AML patients, comparing to newly-diagnosed AML patients, which indicated the role of DYRK1A in chemoresistance of AML. Our study provided functional evidences for DYRK1A as a potential tumor suppressor in AML.

  14. The Role of Tumor Suppressor Gene TIP30 in tumorigenesis and metastasis

    Institute of Scientific and Technical Information of China (English)

    Jian ZHAO; Yajun GUO

    2009-01-01

    @@ Background: Malignant tumors are characterized by dysregulated growth control, the overcoming of replicative senescence, evasion of apoptnsis, tis-sue invasion and metastasis, and sustained angiogenesis.

  15. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.L.

    2002-03-01

    The neurofibromatosis-2 (NF2) gene encodes merlin, an ezrin-radixin-moesin-(ERM)-related protein, that functions as a tumor suppressor. I found that merlin plays a critical role in the establishment and maintenance of contact inhibition of growth. At high cell density, merlin is activated and blocks profileration with corresponding changes in cell cycle parameters. Merlin interfered with growth factor receptor or Ras-dependent signal transduction of MAP kinase and the step of interference was located downstream of Ras and Raf and upstream of MEK. Merlins growth inhibiting function depended on interaction with a specific domain of the cytoplasmic tail of CD44. In addition merlin activity and phosphorylation status depended on the extracellular ligand associated with the N-terminus of CD44. At high cell densities, in the presence of the extracellular ligand HA, merlin was dephosphorylated and bound directly to a basic amino acid motif in the cytoplasmic tail of CD44. Ezrin and moesin, which are also known to bind to the same basic amino acid motif in CD44 were absent within this growth inhibitory complex. Alternatively in logarithmically growing cells, merlin was inactive, phosphorylated and in a complex with ezrin and moesin. This growth permissive complex was also associated with the cytoplasmic tail of CD44. My data provide not only significant clues about how merlin functions as a tumor suppressor but revealed the existence of a novel molecular switch that, under the influence of ligands in the microenvironment, controls a cell decision to proliferate or growth arrest. (orig.)

  16. Effects of sulfur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells.

    Science.gov (United States)

    Qin, Guohua; Meng, Ziqiang

    2009-04-01

    Sulfur dioxide (SO(2)) is a major air pollutant suspected to act as a promoter or co-carcinogen. The present study was designed to investigate whether SO(2) derivatives (bisulfite and sulfite) had effects on the expression of several proto-oncogenes and tumor suppressor genes in cultured human bronchial epithelial (BEP2D) cells. The mRNA and protein levels were measured by real-time RT-PCR and western blotting, respectively, following exposure to differing SO(2)-derivative concentrations and exposure times. SO(2) derivatives caused mRNA and protein over-expression of c-fos, c-jun, and c-myc at all tested doses (0.001-2mM). Over-expression of H-ras and p53 were observed in cells receiving the highest concentration (0.1-2mM), as well as the under-expression of p16 and Rb. The over-expression of c-fos and c-jun was observed after 24h recovery. The expression of c-myc and H-ras decreased to base line levels while the p53 expression decreased compared with control after 24h recovery. The mRNA and protein expression of p16 and Rb remained at initial levels after 24h recovery. The data support the hypothesis that SO(2) derivatives could cause the activation of proto-oncogenes and inactivation of tumor suppressor genes and SO(2) derivatives may play a role in the pathogenesis of SO(2)-associated lung cancer.

  17. Wnt inhibitory factor-1 functions as a tumor suppressor through modulating Wnt/β-catenin signaling in neuroblastoma.

    Science.gov (United States)

    Zhang, Jiao; Zhou, Bin; Liu, Yinghua; Chen, Keling; Bao, Pingqian; Wang, Yi; Wang, Jiaxiang; Zhou, Zongguang; Sun, Xiaofeng; Li, Yuan

    2014-06-28

    Neuroblastoma is the most common extracranial solid tumor in childhood and is associated with serious morbidity and mortality. The effective treatment of neuroblastoma remains one of the major challenges in pediatric oncology. The Wnt signaling pathway has been shown to play a significant role in the pathogenesis of adult and pediatric tumors. WIF-1 has been identified as an important Wnt antagonist which inhibits Wnt/β-catenin signaling by directly binding to Wnt proteins. However, the expression and function of WIF-1 in neuroblastoma remains unknown. The present study showed that WIF-1 was downregulated with high level promoter methylation in neuroblastoma cells, and was significantly upregulated after exposure to demethylating agent. This finding suggests that downregulation of WIF-1 was associated with its promoter methylation in neuroblastoma. To further study the potential function of WIF-1 in neuroblastoma, we constructed a plasmid that over-expressed WIF-1 and transfected the plasmid into one neuroblastoma cell line SK-N-SH. We found that restoration of WIF-1 inhibited the growth and proliferation of neuroblastoma cells in vitro. Moreover, Wnt/β-catenin signaling activity and target genes expression were reduced by WIF-1 restoration. These results provide support that WIF-1 is downregulated and functions as a tumor suppressor by antagonizing Wnt/β-catenin signaling in neuroblastoma, suggesting a potential role as a therapeutic target in neuroblastoma. PMID:24561119

  18. Absence of mutations in the coding sequence of the potential tumor suppressor 3pK in metastatic melanoma

    Directory of Open Access Journals (Sweden)

    Houben Roland

    2005-12-01

    Full Text Available Abstract Background Activation of Ras or Raf contributes to tumorigenesis of melanoma. However, constitutive Raf activation is also a characteristic of the majority of benign melanocytic nevi and high intensity signaling of either Ras or Raf was found to induce growth inhibition and senescence rather than transformation. Since the chromosome 3p kinase (3pK is a target of the Ras/Raf/Mek/Erk signaling pathway which antagonizes the function of the oncogene and anti-differentiation factor Bmi-1, 3pK may function as a tumor suppressor in tumors with constitutive Ras/Raf activation. Consequently, we tested whether inactivating 3pK mutations are present in melanoma. Methods 30 metastatic melanoma samples, which were positive for activating mutations of either BRaf or NRas, were analyzed for possible mutations in the 3pk gene. The 10 coding exons and their flanking intron sequences were amplified by PCR and direct sequencing of the PCR products was performed. Results This analysis revealed that besides the presence of some single nucleotide polymorphisms in the 3pk gene, we could not detect any possible loss of function mutation in any of these 30 metastatic melanoma samples selected for the presence of activating mutations within the Ras/Raf/Mek/Erk signaling pathway. Conclusion Hence, in melanoma with constitutively active Ras/Raf inactivating mutations within the 3pk gene do not contribute to the oncogenic phenotype of this highly malignant tumor.

  19. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  20. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    2008-12-01

    Full Text Available Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  1. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    International Nuclear Information System (INIS)

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance

  2. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Qiu, Yongming, E-mail: qiuzhoub@hotmail.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China); Mao, Qing, E-mail: maoq@netease.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China)

    2013-11-08

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.

  3. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N;

    2006-01-01

    To understand better T-cell lymphomagenesis, we examined promoter CpG methylation and mRNA expression of closely related genes encoding p16, p15, and p14 tumor suppressor genes in cultured malignant T-cells that were derived from cutaneous, adult type, and anaplastic lymphoma kinase (ALK)-express...

  4. Identification of Tumor Suppressors and Oncogenes from Genomic and Epigenetic Features in Ovarian Cancer

    NARCIS (Netherlands)

    Wrzeszczynski, K.O.; Varadan, V.; Byrnes, J.; Lum, E.; Kamalakaran, S.; Levine, D.A.; Dimitrova, N.; Zhang, M.Q.; Lucito, R.

    2011-01-01

    The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes criticalto the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact ongene function within the tumor

  5. A Novel Mutation in the Von Hippel-Lindau Tumor Suppressor Gene Identified in a Patient Presenting with Gestational Diabetes Mellitus

    OpenAIRE

    Ku, Yun Hyi; Ahn, Chang Ho; Jung, Chan-Hyeon; Lee, Jie Eun; Kim, Lee-Kyung; Kwak, Soo Heon; Jung, Hye Seung; Park, Kyong Soo; Cho, Young Min

    2013-01-01

    Background Von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited, multisystemic tumor syndrome caused by mutations in the VHL gene. To date, more than 1,000 germline and somatic mutations of the VHL gene have been reported. We present a novel mutation in the VHL tumor suppressor gene that presented with gestational diabetes mellitus. Methods A 30-year-old woman presented with gestational diabetes mellitus. She sequentially showed multiple pancreatic cysts, spinal cord hemangiob...

  6. Δ122p53, a mouse model of Δ133p53α, enhances the tumor-suppressor activities of an attenuated p53 mutant

    OpenAIRE

    Slatter, T L; Hung, N. Van; Bowie, S; Campbell, H.; Rubio, C; Speidel, D; Wilson, M.; Baird, M.; Royds, J. A.; Braithwaite, A W

    2015-01-01

    Growing evidence suggests the Δ133p53α isoform may function as an oncogene. It is overexpressed in many tumors, stimulates pathways involved in tumor progression, and inhibits some activities of wild-type p53, including transactivation and apoptosis. We hypothesized that Δ133p53α would have an even more profound effect on p53 variants with weaker tumor-suppressor capability. We tested this using a mouse model heterozygous for a Δ133p53α-like isoform (Δ122p53) and a p53 mutant with weak tumor-...

  7. Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model.

    Directory of Open Access Journals (Sweden)

    Zhuoshun Yang

    Full Text Available Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs and regulatory T (Treg cells. Our data showed that mast cells mobilized the infiltration of MDSCs to tumor and induced the production of IL-17 by MDSCs; MDSCs-derived IL-17 indirectly attracted Treg cells, enhanced their suppressor function, and induced the IL-9 production by Treg cells; in turn, IL-9 strengthened the survival and protumor effect of mast cells in tumor microenvironment. Our findings disclose a closed loop among mast cells, MDSCs and Treg cells in tumor microenvironment, which provides a new insight into the paralleled developments of inflammation and immunosuppression in tumor microenvironment. Based on these findings, we propose that targeting tumor inflammation might be a potential strategy to reverse the immunosuppression of tumor microenvironment, thus facilitating cancer immunotherapy.

  8. Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model.

    Science.gov (United States)

    Yang, Zhuoshun; Zhang, Biao; Li, Dapeng; Lv, Meng; Huang, Chunmei; Shen, Guan-Xin; Huang, Bo

    2010-01-01

    Tumor immunosuppression is commonly braided with chronic inflammation during tumor development. However, the relationship between immunosuppression and inflammation in tumor microenvironment is still unclear. We have demonstrated that mast cells are accumulated and exacerbate the inflammation and immunosuppression in tumor microenvironment via SCF/c-kit signaling pathway. Here, we further elucidate the underlying mechanism, which involves both myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our data showed that mast cells mobilized the infiltration of MDSCs to tumor and induced the production of IL-17 by MDSCs; MDSCs-derived IL-17 indirectly attracted Treg cells, enhanced their suppressor function, and induced the IL-9 production by Treg cells; in turn, IL-9 strengthened the survival and protumor effect of mast cells in tumor microenvironment. Our findings disclose a closed loop among mast cells, MDSCs and Treg cells in tumor microenvironment, which provides a new insight into the paralleled developments of inflammation and immunosuppression in tumor microenvironment. Based on these findings, we propose that targeting tumor inflammation might be a potential strategy to reverse the immunosuppression of tumor microenvironment, thus facilitating cancer immunotherapy. PMID:20111717

  9. Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation

    Directory of Open Access Journals (Sweden)

    Marie-Claude Gingras

    2016-02-01

    Full Text Available The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis.

  10. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy

    OpenAIRE

    Klebanoff, Christopher A.; Khong, Hung T.; Antony, Paul A.; Douglas C Palmer; Restifo, Nicholas P

    2005-01-01

    Lymphodepletion followed by adoptive cell transfer (ACT) of autologous, tumor-reactive T cells boosts antitumor immunotherapeutic activity in mouse and in humans. In the most recent clinical trials, lymphodepletion together with ACT has an objective response rate of 50% in patients with solid metastatic tumors. The mechanisms underlying this recent advance in cancer immunotherapy are beginning to be elucidated and include: the elimination of cellular cytokine ‘sinks’ for homeostatic γC-cytoki...

  11. Neurofibromatosis type 2 tumor suppressor protein, NF2, induces proteasome-mediated degradation of JC virus T-antigen in human glioblastoma.

    Directory of Open Access Journals (Sweden)

    Sarah Beltrami

    Full Text Available Neurofibromatosis type 2 protein (NF2 has been shown to act as tumor suppressor primarily through its functions as a cytoskeletal scaffold. However, NF2 can also be found in the nucleus, where its role is less clear. Previously, our group has identified JC virus (JCV tumor antigen (T-antigen as a nuclear binding partner for NF2 in tumors derived from JCV T-antigen transgenic mice. The association of NF2 with T-antigen in neuronal origin tumors suggests a potential role for NF2 in regulating the expression of the JCV T-antigen. Here, we report that NF2 suppresses T-antigen protein expression in U-87 MG human glioblastoma cells, which subsequently reduces T-antigen-mediated regulation of the JCV promoter. When T-antigen mRNA was quantified, it was determined that increasing expression of NF2 correlated with an accumulation of T-antigen mRNA; however, a decrease in T-antigen at the protein level was observed. NF2 was found to promote degradation of ubiquitin bound T-antigen protein via a proteasome dependent pathway concomitant with the accumulation of the JCV early mRNA encoding T-antigen. The interaction between T-antigen and NF2 maps to the FERM domain of NF2, which has been shown previously to be responsible for its tumor suppressor activity. Co-immunoprecipitation assays revealed a ternary complex among NF2, T-antigen, and the tumor suppressor protein, p53 within a glioblastoma cell line. Further, these proteins were detected in various degrees in patient tumor tissue, suggesting that these associations may occur in vivo. Collectively, these results demonstrate that NF2 negatively regulates JCV T-antigen expression by proteasome-mediated degradation, and suggest a novel role for NF2 as a suppressor of JCV T-antigen-induced cell cycle regulation.

  12. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daya-Grosjean, Leela [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: daya@igr.fr; Sarasin, Alain [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  13. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    International Nuclear Information System (INIS)

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis

  14. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors.

    Directory of Open Access Journals (Sweden)

    Xing-sheng Shu

    Full Text Available BACKGROUND: PRDM (PRDI-BF1 and RIZ domain containing proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. METHODOLOGY/PRINCIPAL FINDINGS: Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation, including 80% (4/5 nasopharyngeal, 44% (8/18 esophageal, 76% (13/17 gastric, 50% (2/4 cervical, and 25% (3/12 hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be restored by 5-aza-2'-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently detected by methylation-specific PCR (MSP in multiple primary tumors, including 93% (43/46 nasopharyngeal, 58% (25/43 esophageal, 88% (37/42 gastric and 63% (29/46 hepatocellular tumors. PRDM5 was further found a stress-responsive gene, but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor cell clonogenicity, accompanied by the inhibition of TCF/β-catenin-dependent transcription and downregulation of CDK4, TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between the expression of PRDM5 and activated β-catenin was also observed in cell lines. CONCLUSIONS/SIGNIFICANCE: PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/β-catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses, which could serve as a tumor biomarker.

  15. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas.

    Science.gov (United States)

    Lassmann, Silke; Weis, Roland; Makowiec, Frank; Roth, Jasmine; Danciu, Mihai; Hopt, Ulrich; Werner, Martin

    2007-03-01

    DNA copy number changes represent molecular fingerprints of solid tumors and are as such relevant for better understanding of tumor development and progression. In this study, we applied genome-wide array comparative genomic hybridization (aCGH) to identify gene-specific DNA copy number changes in chromosomal (CIN)- and microsatellite (MIN)-unstable sporadic colorectal cancers (sCRC). Genomic DNA was extracted from microdissected, matching normal colorectal epithelium and invasive tumor cells of formalin-fixed and paraffin-embedded tissues of 22 cases with colorectal cancer (CIN = 11, MIN = 11). DNA copy number changes were determined by aCGH for 287 target sequences in tumor cell DNAs, using pooled normal DNAs as reference. aCGH data of tumor cell DNAs was confirmed by fluorescence in situ hybridization (FISH) for three genes on serial tissues as those used for aCGH. aCGH revealed DNA copy number changes previously described by metaphase CGH (gains 7, 8q, 13q, and 20q; losses 8p, 15q, 18q, and 17p). However, chromosomal regions 20q, 13q, 7, and 17p were preferentially altered in CIN-type tumors and included DNA amplifications of eight genes on chromosome 20q (TOP1, AIB1, MYBL2, CAS, PTPN1, STK15, ZNF217, and CYP24), two genes on chromosome 13q (BRCA2 and D13S25), and three genes on chromosome 7 (IL6, CYLN2, and MET) as well as DNA deletions of two genes on chromosome 17p (HIC1 and LLGL1). Finally, additional CIN-tumor-associated DNA amplifications were identified for EXT1 (8q24.11) and MYC (8q24.12) as well as DNA deletions for MAP2K5 (15q23) and LAMA3 (18q11.2). In contrast, distinct MIN-tumor-associated DNA amplifications were detected for E2F5 (8p22-q21.3), GARP (11q13.5-q14), ATM (11q22.3), KAL (Xp22.3), and XIST (Xq13.2) as well as DNA deletions for RAF1 (3p25), DCC (18q21.3), and KEN (21q tel). aCGH revealed distinct DNA copy number changes of oncogenes and tumor suppressor genes in CIN- and MIN-type sporadic colorectal carcinomas. The identified candidate

  16. Tumor diagnosis in the adult liver transplant candidate

    Energy Technology Data Exchange (ETDEWEB)

    Mahfouz, A.E. [Department of Radiology, Humboldt Univ. (Germany)]|[Department of Radiology, Cairo University Hospital, Cairo (Egypt); Vogl, T. [Department of Radiology, Humboldt Univ., Berlin (Germany).; Hamm, B. [Department of Radiology, Humboldt Univ. (Germany)

    1999-06-01

    Hepatic transplantation has emerged as a potentially curative treatment of certain malignant hepatic neoplasms such as hepatocellular carcinoma, bile duct carcinoma, fibrolamellar hepatocellular carcinoma, metastases from neuroendocrine tumors, and epithelioid hemangioendothelioma. In the early years of hepatic transplantation, there was great enthusiasm to cure patients with unresectable hepatobiliary malignancy. This early enthusiasm was tempered by the unfavorable outcome of transplantation in advanced cases of malignancy and the organ-donor shortage. Presently, patients have to be selected with predictable likelihood for long-term survival. Pre-transplantation imaging is indispensable for detection, characterization, staging, and surgical road-mapping before the procedure. The present article focuses on the role of imaging modalities in these different aspects of preoperative assessment. (orig.) With 12 figs., 2 tabs., 66 refs.

  17. Tumor suppressor gene NGX6 induces changes in protein expression profiles in colon cancer HT-29 cells

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Yuan Luo; Xiaoyan Wang; Shourong Shen; Haibo yu; Jing Yang; Zheng Su

    2012-01-01

    Nasopharyngeal carcinoma-associated gene 6 (NGX6;syn.transmembrane protein 8B,TMEM8B) is a recently identified tumor suppressor gene.The underlying mechanisms by which the gene inhibits tumor development are not completely known.To further understand the function of the gene's protein product NGX6,in the present study,we employed two-dimensional difference gel electrophoresis to analyze the protein expression profiles of colon cancer HT-29 cells stably transfected with the gene NGX6.The differentially expressed proteins were selected and identified by matrix-assisted laser desorption/ionization coupled with time-of-flight tandem mass spectrometry.The results showed that 12 proteins were down-regulated and 4 were up-regulated in NGX6-transfected HT-29 cells,compared with vector-transfected HT-29 cells.The MS results were verified by western blot.Bioinformatic analysis showed that these proteins are involved in cell proliferation,metastasis,apoptosis,cytoskeletal structure,metabolism,and signal transduction,suggesting that NGX6 may inhibit colon cancer through the regulation of these biological processes.

  18. The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling.

    Science.gov (United States)

    Forsberg, Kirsi; Wuttke, Anja; Quadrato, Giorgia; Chumakov, Peter M; Wizenmann, Andrea; Di Giovanni, Simone

    2013-09-01

    Mounting evidence points to a role for endogenous reactive oxygen species (ROS) in cell signaling, including in the control of cell proliferation, differentiation, and fate. However, the function of ROS and their molecular regulation in embryonic mouse neural progenitor cells (eNPCs) has not yet been clarified. Here, we describe that physiological ROS are required for appropriate timing of neurogenesis in the developing telencephalon in vivo and in cultured NPCs, and that the tumor suppressor p53 plays a key role in the regulation of ROS-dependent neurogenesis. p53 loss of function leads to elevated ROS and early neurogenesis, while restoration of p53 and antioxidant treatment partially reverse the phenotype associated with premature neurogenesis. Furthermore, we describe that the expression of a number of neurogenic and oxidative stress genes relies on p53 and that both p53 and ROS-dependent induction of neurogenesis depend on PI3 kinase/phospho-Akt signaling. Our results suggest that p53 fine-tunes endogenous ROS levels to ensure the appropriate timing of neurogenesis in eNPCs. This may also have implications for the generation of tumors of neurodevelopmental origin.

  19. The Neurofibromatosis 2 Tumor Suppressor Gene Product, Merlin, Regulates Human Meningioma Cell Growth by Signaling through YAP

    Directory of Open Access Journals (Sweden)

    Katherine Striedinger

    2008-11-01

    Full Text Available Neurofibromatosis type 2 (NF2 is an autosomal dominant disorder characterized by the occurrence of schwannomas and meningiomas. Several studies have examined the ability of the NF2 gene product, merlin, to function as a tumor suppressor in diverse cell types; however, little is known about merlin growth regulation in meningiomas. In Drosophila, merlin controls cell proliferation and apoptosis by signaling through the Hippo pathway to inhibit the function of the transcriptional coactivator Yorkie. The Hippo pathway is conserved in mammals. On the basis of these observations, we developed human meningioma cell lines matched for merlin expression to evaluate merlin growth regulation and investigate the relationship between NF2 status and Yes-associated protein (YAP, the mammalian homolog of Yorkie. NF2 loss in meningioma cells was associated with loss of contact-dependent growth inhibition, enhanced anchorage-independent growth and increased cell proliferation due to increased S-phase entry. In addition, merlin loss in both meningioma cell lines and primary tumors resulted in increased YAP expression and nuclear localization. Finally, siRNA-mediated reduction of YAP in NF2-deficient meningioma cells rescued the effects of merlin loss on cell proliferation and S-phase entry. Collectively, these results represent the first demonstration that merlin regulates cell growth in human cancer cells by suppressing YAP.

  20. MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia.

    Science.gov (United States)

    Xishan, Zhu; Ziying, Lin; Jing, Du; Gang, Liu

    2015-01-01

    Accumulating evidences demonstrated that the induction of epithelial-mesenchymal transition (EMT) and aberrant expression of microRNAs (miRNAs) are associated with tumorigenesis, tumor progression, metastasis and relapse in cancers, including chronic myeloid leukemia (CML). We found that miR-320a expression was reduced in K562 and in CML cancer stem cells. Moreover, we found that miR-320a inhibited K562 cell migration, invasion, proliferation and promoted apoptosis by targeting BCR/ABL oncogene. As an upstream regulator of BCR/ABL, miR-320a directly targets BCR/ABL. The enhanced expression of miR-320a inhibited the phosphorylation of PI3K, AKT and NF-κB; however, the expression of phosphorylated PI3K, AKT and NF-κB were restored by the overexpression of BCR/ABL. In K562, infected with miR-320a or transfected with SiBCR/ABL, the protein levels of fibronectin, vimentin, and N-cadherin were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-320a-expressing cells was restored to normal levels by the restoration of BCR/ABL expression. Generally speaking, miR-320a acts as a novel tumor suppressor gene in CML and miR-320a can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as CML EMT, by attenuating the expression of BCR/ABL oncogene.

  1. Expression level of novel tumor suppressor gene FATS is associated with the outcome of node positive breast cancer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; GU Lin; ZHAO Lu-jun; ZHANG Xi-feng; QIU Li; LI Zheng

    2011-01-01

    Background Recently, we reported the identification of a previously uncharacterized and evolutionarily conserved gene, fragile-site associated tumor suppressor (FATS), at a frequently deleted region in irradiation (IR)-induced tumors.However, the role of FATS in breast cancer development and its clinical significance has not been defined. The aim of this study was to determine the role of FA7S in breast cancer development and to evaluate its clinical significance in breast cancer.Methods The expression level of FATS mRNA was determined in 106 breast carcinomas and 23 paired normal breast tissues using quantitative real time reverse transcription-polymerase chain reaction (RT-PCR). The relationship between FATS expression and clinicopathological parameters were also analyzed.Results The mRNA level of FATS was down-regulated in breast cancer compared with paired normal tissues. Low expression of FATS was correlated with high nuclear grade. There was a tendency to a favorable outcome for patients with high expression of FATS (P=0.346). However, low expression of FATS was associated with poor outcome of breast cancer patients with node positive (P=0.011). Furthermore, the mRNA level of FATS showed an independent value in predicting the outcome of breast cancer patients with positive lymph nodes.Conclusion FATS is involved in the carcinogenesis and development of breast cancer and could be a potential biomarker and prognostic factor for breast cancer therapy.

  2. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Directory of Open Access Journals (Sweden)

    You Me Sung

    Full Text Available The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  3. In Vivo Assays for Assessing the Role of the Wilms' Tumor Suppressor 1 (Wt1) in Angiogenesis.

    Science.gov (United States)

    McGregor, Richard J; Ogley, R; Hadoke, Pwf; Hastie, Nicholas

    2016-01-01

    The Wilms' tumor suppressor gene (WT1) is widely expressed during neovascularization, but it is almost entirely absent in quiescent adult vasculature. However, in vessels undergoing angiogenesis, WT1 is dramatically upregulated. Studies have shown Wt1 has a role in both tumor and ischemic angiogenesis, but the mechanism of Wt1 action in angiogenic tissue remains to be elucidated. Here, we describe two methods for induction of in vivo angiogenesis (subcutaneous sponge implantation, femoral artery ligation) that can be used to assess the influence of Wt1 on new blood vessel formation. Subcutaneously implanted sponges stimulate an inflammatory and fibrotic response including cell infiltration and angiogenesis. Femoral artery ligation creates ischemia in the distal hindlimb and produces an angiogenic response to reperfuse the limb which can be quantified in vivo by laser Doppler flowmetry. In both of these models, the role of Wt1 in the angiogenic process can be assessed using histological/immunohistochemical staining, molecular analysis (qPCR) and flow cytometry. Furthermore, combined with suitable genetic modifications, these models can be used to explore the causal relationship between Wt1 expression and angiogenesis and to trace the lineage of cells expressing Wt1. This approach will help to clarify the importance of Wt1 in regulating neovascularization in the adult, and its potential as a therapeutic target.

  4. Advances in the Research of Tumor Suppressor Gene ARHI%抑癌基因ARHI研究进展

    Institute of Scientific and Technical Information of China (English)

    唐海灵

    2011-01-01

    ARHI (aplasia ras homologue member I)/NOEY2 is a novel maternally imprinted tumor suppressor gene discovered in 1999. It is located in human chromosome Ip31. The ARHI gene encodes a 26 kDa small GTP-binding protein. It is a member of ras/ rap superfamily, which has 50%-60% homology and share similar GTP/GDP-binding domains with the ras/rap superfamily. Unlike other members, however, it acts as a tumor suppressor gene and is the first reported tumor suppressor gene in the ras/rap family. The ARHI gene encodes protein that is widely expressed in most types of human tissues, but it often reduced or absent in human ovarian, breast, pancreas, and liver cancer, and other tumors, which suggests that it is closely related to the occurrence and development of tumors. Affecting cyclin D1, ARHI is a negative regulator of the cell cycle and blocks the cell growth at the G1 phase. ARHI induces cell apopto-sis through the caspase and calpain cell signal transduction pathway. In addition, the ARHI gene functions as a tumor suppressor gene by inhibiting the activation of STAT3. It also regulates autophagy and tumor dormancy. Studies have shown that the loss of ARHI expression can occur through genetic events and epigenetic mechanisms, including DNA aberrant methylation, loss of heterozygosity, low-level expression of acetylation histone, and gene mutation. This issue needs further research. Further studies on the ARHI gene will provide new ideas and theories for the early diagnosis and treatment of tumors.%ARHI(aplasia ras homologue member I)/NOEY2是1999年新发现的一个母源性抑癌印迹基因,位于人染色体1p31,编码一个相对分子量为26kD的小GTP结合蛋白.ARHI属ras/rap超家族成员,与该家族成员有50%~60%的同源性并且两者具有相似的GTP/GDP结合域,但与该家族其它成员不同,ARHI发挥抑癌基因作用,是该家族第一个被报道的肿瘤抑制基因.ARHI基因编码的蛋白在人类多种组织表达,而该基因在人卵

  5. The Oncogenic STP Axis Promotes Triple-Negative Breast Cancer via Degradation of the REST Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Kristen L. Karlin

    2014-11-01

    Full Text Available Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC. SCYL1, TEX14, and PLK1 (“STP axis” cooperatively trigger degradation of the REST tumor suppressor protein, a frequent event in human TNBC. The STP axis induces REST degradation by phosphorylating a conserved REST phospho-degron and bridging REST interaction with the ubiquitin-ligase βTRCP. Inhibition of the STP axis leads to increased REST protein levels and impairs TNBC transformation, tumor progression, and metastasis. Expression of the STP axis correlates with low REST protein levels in human TNBCs and poor clinical outcome for TNBC patients. Our findings demonstrate that the STP-REST axis is a molecular driver of human TNBC.

  6. Mutational myriad of tumor suppressor p53 in Filipino breast cancer: results and perspectives in molecular pathology and epidemiology

    International Nuclear Information System (INIS)

    The p53 tumor suppressor is by far the most widely mutated gene in human cancers. p53 encodes a 53-kDa phosphoprotein, transcription-activator whose targets include genes and gene products that orchestrate genomic stability, cellular response to DNA damage, cell cycle progression apoptosis and aging (senescence). Analysis of the p53 gene profile has previously resulted in identifying several cancer-causative factors in the human setting, as well as, in creating a unique molecular profile of a tumor useful in the design of tailored-therapies for individual cancer patients. Our results in screening for p53 abnormalities in 140 Filipino patients with primary breast lesions confined from 1997-1998 in 5 major hospitals in Manila reveal that p53 plays an important role in the development and progression of breast cancer in at least 48% of all cases. Two methods of p53 analysis are employed, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction-temporal temperature gradient electrophoresis (PCR-TTGE). Inter-comparisons of method exhibit 63.3% concordance in 21 fresh breast carcinoma samples, with ELISA demonstrating 14% false-positives and 10% false-negatives. Only mutations in exon 7 (p=0.063) in the tumor samples how significant correlation with abnormal cellular elevation of p53. PCR-TTGE screening in a large series of 140 patients show that most genetic lesions are localized in exons 5 (41% of the total cases) and 6 (27% of the total cases). No mutations are, however, detected in the transactivation (exons 2-4) and oligomerization (exons 10-11) domains. Invasive carcinomas (stages II and III) are characterized with more frequent and diverse genetic alterations compared with benign tumors, most significantly at exon 5B (p=0.066) and at independently multiple sites (p=0.066). Earlier-onset cases (age of diagnosis < 50 yrs), known to be more clinico-pathologically aggressive, are diagnosed harboring more frequent p53 mutations centered at exon 7 (p=0

  7. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer.

    Science.gov (United States)

    Svoronos, Alexander A; Engelman, Donald M; Slack, Frank J

    2016-07-01

    MicroRNAs (miRNA) are short, noncoding RNAs whose dysregulation has been implicated in most, if not all, cancers. They regulate gene expression by suppressing mRNA translation and reducing mRNA stability. To this end, there is a great deal of interest in modifying miRNA expression levels for the treatment of cancer. However, the literature is fraught with inconsistent accounts as to whether various miRNAs are oncogenic or tumor suppressive. In this review, we directly examine these inconsistencies and propose several mechanisms to explain them. These mechanisms include the possibility that specific miRNAs can simultaneously produce competing oncogenic and tumor suppressive effects by suppressing both tumor suppressive mRNAs and oncogenic mRNAs, respectively. In addition, miRNAs can modulate tumor-modifying extrinsic factors, such as cancer-immune system interactions, stromal cell interactions, oncoviruses, and sensitivity to therapy. Ultimately, it is the balance between these processes that determines whether a specific miRNA produces a net oncogenic or net tumor suppressive effect. A solid understanding of this phenomenon will likely prove valuable in evaluating miRNA targets for cancer therapy. Cancer Res; 76(13); 3666-70. ©2016 AACR. PMID:27325641

  8. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5'UTRs of Selected Tumor Suppressors.

    Directory of Open Access Journals (Sweden)

    Adam Master

    gene therapy strategies to enhance expression of proteins including tumor suppressors.

  9. The tumor suppressor gene KCTD11REN is regulated by Sp1 and methylation and its expression is reduced in tumors.

    Science.gov (United States)

    Mancarelli, M Michela; Zazzeroni, Francesca; Ciccocioppo, Lucia; Capece, Daria; Po, Agnese; Murgo, Simona; Di Camillo, Raffaello; Rinaldi, Christian; Ferretti, Elisabetta; Gulino, Alberto; Alesse, Edoardo

    2010-01-01

    A hallmark of several human cancers is loss of heterozygosity (LOH) of chromosome 17p13. The same chromosomal region is also frequently hypermethylated in cancer. Although loss of 17p13 has been often associated with p53 genetic alteration or Hypermethylated in Cancer 1 (HIC1) gene hypermethylation, other tumor suppressor genes (TSGs) located in this region have critical roles in tumorigenesis. A novel TSG mapping on human chromosome 17p13.2 is KCTD11REN (KCTD11). We have recently demonstrated that KCTD11 expression is frequently lost in human medulloblastoma (MB), in part by LOH and in part by uncharacterized epigenetic events. Using a panel of human 177 tumor samples and their normal matching samples representing 18 different types of cancer, we show here that the down-regulation of KCTD11 protein level is a specific and a diffusely common event in tumorigenesis. Additionally, in order to characterize the regulatory regions in KCTD11 promoter, we identified a CpG island and several Sp1 binding sites on this promoter, and demonstrated that Sp1 transcription factor and DNA methylation contribute, at least in part, to regulate KCTD11 expression. Our findings identify KCTD11 as a widely down-regulated gene in human cancers, and provide a basis to understand how its expression might be deregulated in tumor cells. PMID:20591193

  10. The tumor suppressor gene KCTD11REN is regulated by Sp1 and methylation and its expression is reduced in tumors

    Directory of Open Access Journals (Sweden)

    Rinaldi Christian

    2010-06-01

    Full Text Available Abstract A hallmark of several human cancers is loss of heterozygosity (LOH of chromosome 17p13. The same chromosomal region is also frequently hypermethylated in cancer. Although loss of 17p13 has been often associated with p53 genetic alteration or Hypermethylated in Cancer 1 (HIC1 gene hypermethylation, other tumor suppressor genes (TSGs located in this region have critical roles in tumorigenesis. A novel TSG mapping on human chromosome 17p13.2 is KCTD11REN (KCTD11. We have recently demonstrated that KCTD11 expression is frequently lost in human medulloblastoma (MB, in part by LOH and in part by uncharacterized epigenetic events. Using a panel of human 177 tumor samples and their normal matching samples representing 18 different types of cancer, we show here that the down-regulation of KCTD11 protein level is a specific and a diffusely common event in tumorigenesis. Additionally, in order to characterize the regulatory regions in KCTD11 promoter, we identified a CpG island and several Sp1 binding sites on this promoter, and demonstrated that Sp1 transcription factor and DNA methylation contribute, at least in part, to regulate KCTD11 expression. Our findings identify KCTD11 as a widely down-regulated gene in human cancers, and provide a basis to understand how its expression might be deregulated in tumor cells.

  11. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis

    Science.gov (United States)

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with “stemness.” These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) “cancer stem cells.” These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies. PMID:23047602

  12. Mutational Analysis of p27 (CDKN1 B and p18 (CDKN2C in Sporadic Pancreatic Endocrine Tumors Argues against Tumor-Suppressor Function

    Directory of Open Access Journals (Sweden)

    Daniel Lindberg

    2007-07-01

    Full Text Available Pancreatic endocrine tumors (PETs arise sporadically or are associated with multiple endocrine neoplasia type 1 (MENi syndrome or von Hippel-Lindau syndrome. About 90% of patients with familial MENi display detectable MEN1 gene (menin mutations. The cyclin-dependent kinase inhibitor p27 (CDKN1 B is a downstream target of menin and has been recently shown to be responsible for the multiple endocrine neoplasia-like syndrome in rats, where affected animals develop multiple tumors and hyperplasia in endocrine tissues, including the pancreatic islets of Langerhans. A germline nonsense truncation mutation of p27 has been recently described in a suspected MENi family without MENi mutation, raising the possibility that p27 mutation could be responsible for MENi phenotype. Somatic MENi mutations occur at low frequency in sporadic PETs; here, we subjected p27 to mutational analysis in 27 sporadic PETs. As an additional menin target, analysis of the p18(CDKN2C gene was included. In the p27 gene, one common polymorphism (V1 09G and one novel polymorphism (g/a in the noncoding part of exon 2 were identified. Three known polymorphisms were found in the p18 gene. These data suggest that p27 and p18 are unlikely to present classic tumor-suppressor genes in sporadic PETs.

  13. Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas

    Directory of Open Access Journals (Sweden)

    Luković Ljiljana

    2006-01-01

    Full Text Available Background/aim: Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH in the regions of the genes p53 and BRCA1 in ovarian carcinomas, and to analyze the association of LOH with the disease stage and prognosis. Methods. We analyzed 20 patients with a confirmed diagnosis of epithelilal ovarian carcinoma. DNA for molecular-genetic analysis was extracted from the tumor tissue and blood as normal tissue of each person. Microsatellite markers of the regions of genes p53 and BRCA1 were amplified by PCR method. The determination of allelic status of microsatellites and detection of LOH was performed after PAA gel electroforesis. Results. Both of the analyzed microsatellite markers were informative in 13/20 (65% cases. In the region of gene p53, LOH was established in 4/13 (30.7% tumors. One of them had histological gradus G1, one had gradus G2, and two of them had gradus G3, while all were with the International Federation of Gynecology and Obstetrics (FIGO IIIc stage. In the region of gene BRCA1, LOH was detected in 5/13 (38.5% tumors. Four of them had histological gradus G2, and one had gradus G3, while by the (FIGO classification one was with stage Ib, one was with stage IIIb, while the three were with stage IIIc. LOH in both of the analyzed regions was detected in one tumor (7.7%, with histological gradus G3 and the FIGO IIIc stage. Conclusion. The frequency of LOH in epthelial ovarian carcinomas was 30.7% and 38.5% for p53 and BRCA1 gene regions, respectively. Most of tumors with LOH had histological gradus G2 or G3, and the clinical FIGO stage IIIc, suggesting the

  14. Hypoxia Inducible Factor-independent functions for the von Hippel-Lindau tumor suppressor gene

    NARCIS (Netherlands)

    Lolkema, Martijn Paul Jung Kyu

    2006-01-01

    Inactivating mutations of the von Hippel-Lindau gene (VHL) on chromosome 3p have been associated with the autosomal dominant VHL disease, characterized by extensively vascularized tumors and cysts in different organs, as well as the majority of conventional kidney cancers. The VHL gene product regul

  15. miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer.

    Science.gov (United States)

    Letelier, Pablo; García, Patricia; Leal, Pamela; Álvarez, Héctor; Ili, Carmen; López, Jaime; Castillo, Jonathan; Brebi, Priscilla; Roa, Juan Carlos

    2014-01-01

    The development of miRNA-based therapeutics represents a new strategy in cancer treatment. The objectives of this study were to evaluate the differential expression of microRNAs in gallbladder cancer (GBC) and to assess the functional role of miR-1 and miR-145 in GBC cell behavior. A profile of miRNA expression was determined using DharmaconTM microarray technology. Differential expression of five microRNAs was validated by TaqMan reverse transcription quantitative-PCR in a separate cohort of 8 tumors and 3 non-cancerous samples. Then, we explored the functional role of miR-1 and miR-145 in tumor cell behavior by ectopic in vitro expression in the GBC NOZ cell line. Several miRNAs were found to be aberrantly expressed in GBC; most of these showed a significantly decreased expression compared to non-neoplastic tissues (Q valueanalysis revealed that the most deregulated miRNAs (miR-1, miR-133, miR-143 and miR-145) collectively targeted a number of genes belonging to signaling pathways such as TGF-β, ErbB3, WNT and VEGF, and those regulating cell motility or adhesion. The ectopic expression of miR-1 and miR-145 in NOZ cells significantly inhibited cell viability and colony formation (P<0.01) and reduced gene expression of VEGF-A and AXL. This study represents the first investigation of the miRNA expression profile in gallbladder cancer, and our findings showed that several miRNAs are deregulated in this neoplasm. In vitro functional assays suggest that miR-1 and miR-145 act as tumor suppressor microRNAs in GBC. PMID:24966896

  16. Different prognostic roles of tumor suppressor gene BAP1 in cancer: A systematic review with meta-analysis.

    Science.gov (United States)

    Luchini, Claudio; Veronese, Nicola; Yachida, Shinichi; Cheng, Liang; Nottegar, Alessia; Stubbs, Brendon; Solmi, Marco; Capelli, Paola; Pea, Antonio; Barbareschi, Mattia; Fassan, Matteo; Wood, Laura D; Scarpa, Aldo

    2016-10-01

    Biallelic inactivation of the tumor suppressor gene BRCA1-associated protein 1 (BAP1) has been demonstrated in several cancers, but its prognostic role has not been completely explained. We aimed to investigate the risk associated with loss of BAP1 (BAP1-) for all-cause mortality, cancer-specific mortality and recurrence of disease in subjects with cancer. PubMed and SCOPUS were searched from database inception until 09/15/2015 without language restrictions. Prospective studies reporting data on prognostic parameters in subjects with cancer, comparing participants with presence of BAP1 (BAP1+) vs. BAP1- were included. Data were summarized using risk ratios (RR) for number of deaths/recurrences and hazard ratios (HR) for time-dependent risk related to BAP1- adjusted for potential confounders. From 261 hits, 12 studies (including 13 cohorts) with 3,447 participants (BAP1-: n = 697; BAP1+: n = 2,750), with a median follow-up over 60 months, were meta-analyzed. Compared to BAP1+, BAP1- significantly increased all-cause mortality, cancer-specific mortality and risk of recurrence in all the tumor types analyzed, except for mesothelioma, in which the presence of BAP1 mutations correlates with a better prognosis. Furthermore, we demonstrated that BAP1 mutated colorectal and renal carcinomas are associated with high-tumor grading (P < 0.0001), and that BAP1 mutated is more common in women than in men (P < 0.0001). In conclusion, on the basis of our meta-analysis, we have demonstrated a peculiar role of BAP1 in influencing the prognosis in cancer. Thus, BAP1 could be considered as an important potential target for personalized medicine. © 2016 Wiley Periodicals, Inc. PMID:27223342

  17. Caffeine mediates sustained inactivation of breast cancer-associated myofibroblasts via up-regulation of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Mysoon M Al-Ansari

    Full Text Available BACKGROUND: Active cancer-associated fibroblasts (CAFs or myofibroblasts play important roles not only in the development and progression of breast carcinomas, but also in their prognosis and treatment. Therefore, targeting these cells through suppressing their supportive procarcinogenic paracrine effects is mandatory for improving the current therapies that are mainly targeting tumor cells. To this end, we investigated the effect of the natural and pharmacologically safe molecule, caffeine, on CAF cells and their various procarcinogenic effects. METHODOLOGY/PRINCIPAL FINDINGS: We have shown here that caffeine up-regulates the tumor suppressor proteins p16, p21, p53 and Cav-1, and reduces the expression/secretion of various cytokines (IL-6, TGF-β, SDF-1 and MMP-2, and down-regulates α-SMA. Furthermore, caffeine suppressed the migratory/invasiveness abilities of CAF cells through PTEN-dependent Akt/Erk1/2 inactivation. Moreover, caffeine reduced the paracrine pro-invasion/-migration effects of CAF cells on breast cancer cells. These results indicate that caffeine can inactivate breast stromal myofibroblasts. This has been confirmed by showing that caffeine also suppresses the paracrine pro-angiogenic effect of CAF cells through down-regulating HIF-1αand its downstream effector VEGF-A. Interestingly, these effects were sustained in absence of caffeine. CONCLUSION/SIGNIFICANCE: The present findings provide a proof of principle that breast cancer myofibroblasts can be inactivated, and thereby caffeine may provide a safe and effective prevention against breast tumor growth/recurrence through inhibition of the procarcinogenic effects of active stromal fibroblasts.

  18. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Kook [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Henry, Jon C. [Department of Surgery, Ohio State University, Columbus, OH 43210 (United States); Jiang, Jinmai [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Esau, Christine [Regulus Therapeutics, Carlsbad, CA (United States); Gusev, Yuriy [Lombardi Cancer Center, Georgetown University, Washington, DC (United States); Lerner, Megan R. [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Postier, Russell G. [Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Brackett, Daniel J. [Veterans Affairs Medical Center, Oklahoma City, OK (United States); Schmittgen, Thomas D., E-mail: Schmittgen.2@osu.edu [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States)

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.

  19. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2 tumor-suppressor gene

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2005-12-01

    Full Text Available Abstract Background Merlin, the product of the Neurofibromatosis type 2 (NF2 tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa. Results By combining bioinformatic and phylogenetic approaches, we demonstrate that merlin homologs are present across a wide range of metazoan lineages. While the phylogenetic tree shows a monophyletic origin of the ERM family, the origin of the merlin proteins is robustly separated from that of the ERM proteins. The derivation of merlin is thought to be in early metazoa. We have also observed the expansion of the ERM-like proteins within the vertebrate clade, which occurred after its separation from Urochordata (Ciona intestinalis. Amino acid sequence alignment reveals the absence of an actin-binding site in the C-terminal region of all merlin proteins from various species but the presence of a conserved internal binding site in the N-terminal domain of the merlin and ERM proteins. In addition, a more conserved pattern of amino acid residues is found in the region containing the so-called "Blue Box," although some amino acid substitutions in this region exist in the merlin sequences of worms, fish, and Ciona. Examination of sequence variability at functionally significant sites, including the serine-518 residue, the phosphorylation of which modulates merlin's intra-molecular association and function as a tumor suppressor, identifies several potentially important sites that are conserved among all merlin proteins but divergent in the ERM proteins. Secondary structure prediction reveals the presence of a conserved α-helical domain in the central to C-terminal region of the merlin proteins of various species. The

  20. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    International Nuclear Information System (INIS)

    Research highlights: → The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. → miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. → miR-132 and miR-212 expression is increased by a β2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G2/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the β2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The β2 adrenergic pathway may play an important role in this novel mechanism.

  1. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex.

    Directory of Open Access Journals (Sweden)

    Lakshmanane Boominathan

    Full Text Available The tumor suppressors p53, p73, and p63 are known to function as transcription factors. They promote either growth arrest or apoptosis, depending upon the DNA damage. A number of microRNAs (miRNAs have been shown to function as transcriptional targets of p53 and they appear to aid p53 in promoting growth arrest and apoptosis. However, the question of p53/p63/p73 regulating the miRNA processing complex has not been addressed in depth so far. Comparative/computational genomic analysis was performed using Target scan, Mami, and Diana software to identify miRNAs that regulate the miRNA processing complex. Here, I present evidence for the first time that the tumor suppressors p53, p63, and p73 function as both positive and negative regulators of the miRNA processing components. Curated p53-dependent miRNA expression data was used to identify p53-miRs that target the components of the miRNA-processing complex. This analysis suggests that most of the components (mRNAs' 3'UTR of the miRNA processing complex are targeted by p53-miRs. Remarkably, this data revealed the conserved nature of p53-miRs in targeting a number of components of the miRNA processing complex. p53/p73/p63 appears to regulate the major components of the miRNA processing, such as Drosha-DGCR8, Dicer-TRBP2, and Argonaute proteins. In particular, p53/p73/p63 appears to regulate the processing of miRNAs, such as let-7, miR-200c, miR-143, miR-107, miR-16, miR-145, miR-134, miR-449a, miR-503, and miR-21. Interestingly, there seems to be a phenotypic similarity between p63(-/- and dicer(-/- mice, suggesting that p63 and dicer could regulate each other. In addition, p63, p73, and the DGCR8 proteins contain a conserved interaction domain. Further, promoters of a number of components of the miRNA processing machinery, including dicer and P2P-R, contain p53-REs, suggesting that they could be direct transcriptional targets of p63/p73/p53. Together, this study provides mechanistic insights into

  2. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Wang, Li; Xing, Jie; Cheng, Rui; Shao, Ying; Li, Peng; Zhu, Shengtao; Zhang, Shutian

    2015-01-01

    Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC) is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  3. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  4. KCTD11 Tumor Suppressor Gene Expression Is Reduced in Prostate Adenocarcinoma

    OpenAIRE

    Francesca Zazzeroni; Daniela Nicosia; Alessandra Tessitore; Rita Gallo; Daniela Verzella; Mariafausta Fischietti; Davide Vecchiotti; Luca Ventura; Daria Capece; Alberto Gulino; Edoardo Alesse

    2014-01-01

    Prostate cancer is the most common noncutaneous cancer among men in the United States. A genetic contribution to prostate cancer risk has been documented, but knowledge of the molecular mechanisms involved in prostate cancer initiation is still not well understood. Loss of heterozygosity (LOH) of chromosomal regions is crucial in tumor progression. In human prostate cancer, several chromosomal regions demonstrating a high frequency of LOH have been previously identified. KCTD11 (REN) is a tum...

  5. The tumor suppressor PP2A Aβ regulates the RalA GTPase

    OpenAIRE

    Sablina, Anna A; Chen, Wen; Arroyo, Jason D; Corral, Laura; Hector, Melissa; Bulmer, Sara E; DeCaprio, James A.; Hahn, William C.

    2007-01-01

    The serine-threonine protein phosphatase 2A (PP2A) is a heterotrimeric enzyme family that regulates numerous signaling pathways. Biallelic mutations of the structural PP2A Aβ subunit occur in several types of human tumors; however, the functional consequences of these cancer-associated PP2A Aβ mutations in cell transformation remain undefined. Here we show that suppression of PP2A Aβ expression permits immortalized human cells to achieve a tumorigenic state. Cancer-associated Aβ mutants fail ...

  6. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaspar

    2009-07-01

    Full Text Available Germline mutations in the adenomatous polyposis coli (APC gene are responsible for familial adenomatous polyposis (FAP, an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.

  7. Molecular analysis of the NF2 tumor-suppressor gene in schwannomatosis.

    OpenAIRE

    Jacoby, L. B.; Jones, D; Davis, K.; Kronn, D; Short, M. P.; Gusella, J; MacCollin, M

    1997-01-01

    Patients with multiple schwannomas without vestibular schwannomas have been postulated to compose a distinct subclass of neurofibromatosis (NF), termed "schwannomatosis." To compare the molecular-genetic basis of schwannomatosis with NF2, we examined the NF2 locus in 20 unrelated schwannomatosis patients and their affected relatives. Tumors from these patients frequently harbored typical truncating mutations of the NF2 gene and loss of heterozygosity of the surrounding region of chromosome 22...

  8. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein.

    Science.gov (United States)

    Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus

    2015-06-01

    The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. PMID:25363753

  9. Genetic interactions between the Drosophila tumor suppressor gene ept and the stat92E transcription factor.

    Directory of Open Access Journals (Sweden)

    M Melissa Gilbert

    Full Text Available BACKGROUND: Tumor Susceptibility Gene-101 (TSG101 promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept develop as enlarged undifferentiated tumors, indicating that the gene can have anti-growth properties in a simple metazoan. A full understanding of pathways deregulated by loss of Drosophila ept will aid in understanding potential links between mammalian TSG101 and growth control. PRINCIPAL FINDINGS: We have taken a genetic approach to the identification of pathways required for excess growth of Drosophila eye-antennal imaginal discs lacking ept. We find that this phenotype is very sensitive to the genetic dose of stat92E, the transcriptional effector of the Jak-Stat signaling pathway, and that this pathway undergoes strong activation in ept mutant cells. Genetic evidence indicates that stat92E contributes to cell cycle deregulation and excess cell size phenotypes that are observed among ept mutant cells. In addition, autonomous Stat92E hyper-activation is associated with altered tissue architecture in ept tumors and an effect on expression of the apical polarity determinant crumbs. CONCLUSIONS: These findings identify ept as a cell-autonomous inhibitor of the Jak-Stat pathway and suggest that excess Jak-Stat signaling makes a significant contribution to proliferative and tissue architectural phenotypes that occur in ept mutant tissues.

  10. The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor.

    Science.gov (United States)

    Ecker, Andrea; Simma, Olivia; Hoelbl, Andrea; Kenner, Lukas; Beug, Hartmut; Moriggl, Richard; Sexl, Veronika

    2009-01-01

    Stat transcription factors have been implicated in tumorigenesis in mice and men. Stat3 and Stat5 are considered powerful proto-oncogenes, whereas Stat1 has been demonstrated to suppress tumor formation. We demonstrate here for the first time that a constitutive active version of Stat3alpha (Stat3alphaC) may also suppress transformation. Mouse embryonic fibroblasts (MEFs) deficient for p53 can be transformed with either c-myc or with rasV12 alone. Interestingly, transformation by c-myc is efficiently suppressed by co-expression of Stat3alphaC, but Stat3alphaC does not interfere with transformation by the rasV12-oncogene. In contrast, transplantation of bone marrow cells expressing Stat3alphaC induces the formation of a highly aggressive T cell leukemia in mice. The leukemic cells invaded multiple organs including lung, heart, salivary glands, liver and kidney. Interestingly, transplanted mice developed a similar leukemia when the bone marrow cells were transduced with Stat3beta, which is also constitutively active when expressed at significant levels. Our experiments demonstrate that Stat3 has both - tumor suppressing and tumor promoting properties.

  11. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    Full Text Available BACKGROUND: ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated. METHODOLOGY/PRINCIPAL FINDINGS: We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2. CONCLUSIONS/SIGNIFICANCE: These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic

  12. Altered microRNA Expression Profiles and Regulation of INK4A/CDKN2A Tumor Suppressor Genes in Canine Breast Cancer Models.

    Science.gov (United States)

    Lutful Kabir, Farruk Mohammad; DeInnocentes, Patricia; Bird, Richard Curtis

    2015-12-01

    microRNA (miRNA) expression profiling of cancer versus normal cells may reveal the characteristic regulatory features that can be correlated to altered gene expression in both human and animal models of cancers. In this study, the comprehensive expression profiles of the 277 highly characterized miRNAs from the canine genome were evaluated in spontaneous canine mammary tumor (CMT) models harboring defects in a group of cell cycle regulatory and potent tumor suppressor genes of INK4/CDKN2 family including p16/INK4A, p14ARF, and p15/INK4B. A large number of differentially expressed miRNAs were identified in three CMT cell lines to potentially target oncogenes, tumor suppressor genes and cancer biomarkers. A group of the altered miRNAs were identified by miRNA target prediction tools for regulation of the INK4/CDKN2 family tumor suppressor genes. miRNA-141 was experimentally validated for INK4A 3'-UTR target binding in the CMT cell lines providing an essential mechanism for the post-transcriptional regulation of the INK4A tumor suppressor gene in CMT models. A well-recognized group of miRNAs including miR-21, miR-155, miR-9, miR-34a, miR-143/145, and miR-31 were found to be altered in both CMTs and human breast cancer. These altered miRNAs might serve as potential targets for advancing the development of future therapeutic reagents. These findings further strengthen the validity and use of canine breast cancers as appropriate models for the study of human breast cancers. PMID:26095675

  13. A kinase shRNA screen links LATS2 and the pRB tumor suppressor

    OpenAIRE

    Tschöp, Katrin; Conery, Andrew R.; Litovchick, Larisa; DeCaprio, James A.; Settleman, Jeffrey; Harlow, Ed; Dyson, Nicholas

    2011-01-01

    pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRB's ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of L...

  14. Tumor suppressor U19/EAF2 regulates thrombospondin-1 expression via p53

    OpenAIRE

    Su, Fei; Laura E Pascal; Xiao, Wuhan; Zhou WANG

    2009-01-01

    Inactivation of U19/EAF2 has been shown previously to lead to tumorigenesis in multiple organs; however the mechanism of U19/EAF2 tumor suppression remains unclear. In this paper we report that the expression of an anti-angiogenic protein, thrombospondin-1 (TSP-1) is down-regulated in the prostate and liver of U19/EAF2 knockout mouse. The U19/EAF2 knockout liver displayed increased CD31-positive blood vessels, suggesting that the TSP-1 down-regulation can contribute to increased angiogenesis....

  15. Detection of Tumor Suppressor Gene and Oncogene in SO-Rb_(50) Human Retinoblastoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    Retinoblastoma (Rb) is the most common malignant'cancer of eye. So-Rb_(50) is the first Rb cell line established in China in 1988. It has passed to the 387th passage now. We collected cells of the 327th passage of SO-Rb_(50), purified its genomic DNA and detected it with Rb and c-myc cDNA probes respectively (normal human white blood cells DNA was the control). We found the Rb gene was deleted while c-myc gene was amplified three times. This provides a basis for further study of the regulation of tumor ...

  16. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sunaoshi, Masaaki [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J. [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Morioka, Takamitsu [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kaminishi, Mutsumi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shang, Yi [Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tachibana, Akira [Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); and others

    2015-09-15

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  17. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    International Nuclear Information System (INIS)

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  18. The MicroRNA-217 Functions as a Potential Tumor Suppressor in Gastric Cancer by Targeting GPC5.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Gastric cancer (GC is one of the most common malignancies worldwide. Emerging evidence has shown that aberrant expression of microRNAs (miRNAs plays important roles in cancer progression. However, little is known about the potential role of miR-217 in GC. In this study, we investigated the role of miR-217 on GC cell proliferation and invasion. The expression of miR-217 was down-regulated in GC cells and human GC tissues. Enforced expression of miR-217 inhibited GC cells proliferation and invasion. Moreover, Glypican-5 (GPC5, a new ocncogene, was identified as the potential target of miR-217. In addition, overexpression of miR-217 impaired GPC5-induced promotion of proliferation and invasion in GC cells. In conclusion, these findings revealed that miR-217 functioned as a tumor suppressor and inhibited the proliferation and invasion of GC cells by targeting GPC5, which might consequently serve as a therapeutic target for GC patients.

  19. Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage.

    Science.gov (United States)

    Wichmann, Ignacio A; Zavala, Kattina; Hoffmann, Federico G; Vandewege, Michael W; Corvalán, Alejandro H; Amigo, Julio D; Owen, Gareth I; Opazo, Juan C

    2016-10-10

    Genes related to human diseases should be natural targets for evolutionary studies, since they could provide clues regarding the genetic bases of pathologies and potential treatments. Here we studied the evolution of the reprimo gene family, a group of tumor-suppressor genes that are implicated in p53-mediated cell cycle arrest. These genes, especially the reprimo duplicate located on human chromosome 2, have been associated with epigenetic modifications correlated with transcriptional silencing and cancer progression. We demonstrate the presence of a third reprimo lineage that, together with the reprimo and reprimo-like genes, appears to have been differentially retained during the evolutionary history of vertebrates. We present evidence that these reprimo lineages originated early in vertebrate evolution and expanded as a result of the two rounds of whole genome duplications that occurred in the last common ancestor of vertebrates. The reprimo gene has been lost in birds, and the third reprimo gene lineage has been retained in only a few distantly related species, such as coelacanth and gar. Expression analyses revealed that the reprimo paralogs are mainly expressed in the nervous system. Different vertebrate lineages have retained different reprimo paralogs, and even in species that have retained multiple copies, only one of them is heavily expressed. PMID:27432065

  20. miR-370 targeted FoxM1 functions as a tumor suppressor in laryngeal squamous cell carcinoma (LSCC).

    Science.gov (United States)

    Yungang, Wu; Xiaoyu, Li; Pang, Taizhong; Wenming, Li; Pan, Xinliang

    2014-03-01

    microRNAs, a family of small non-coding RNAs, involve in the pathogenesis of several types of cancers, including laryngeal squamous cell carcinoma (LSCC). MiR-370 is frequently aberrant expressed in various types of human cancer including LSCC. However, the role for miR-370 in LSCC remains elusive. Here, we demonstrate that miR-370 was down-regulated in human LSCC tissues. Furthermore, there was an inverse relationship between Forkhead Box ml (FoxM1), which was up-regulated and miR-370 expression in LSCC tissues. FoxM1 was subsequently predicted by bioinformatics and verified to be a target of miR-370 by Luciferase reporter assay. Restored expression of miR-370 in Hep2 cells significantly inhibited cell proliferation. In conclusion, our results suggest that miR-370 may function as a tumor suppressor in LSCC through downregulation of FoxM1, suggesting that miR-370 could serve as a novel potential maker for LSCC therapy. PMID:24055400

  1. Structure-function analysis of the retinoblastoma tumor suppressor protein – is the whole a sum of its parts?

    Directory of Open Access Journals (Sweden)

    Dick Frederick A

    2007-09-01

    Full Text Available Abstract Biochemical analysis of the retinoblastoma protein's function has received considerable attention since it was cloned just over 20 years ago. During this time pRB has emerged as a key regulator of the cell division cycle and its ability to block proliferation is disrupted in the vast majority of human cancers. Much has been learned about the regulation of E2F transcription factors by pRB in the cell cycle. However, many questions remain unresolved and researchers continue to explore this multifunctional protein. In particular, understanding how its biochemical functions contribute to its role as a tumor suppressor remains to be determined. Since pRB has been shown to function as an adaptor molecule that links different proteins together, or to particular promoters, analyzing pRB by disrupting individual protein interactions holds tremendous promise in unraveling the intricacies of its function. Recently, crystal structures have reported how pRB interacts with some of its molecular partners. This information has created the possibility of rationally separating pRB functions by studying mutants that disrupt individual binding sites. This review will focus on literature that investigates pRB by isolating functions based on binding sites within the pocket domain. This article will also discuss the prospects for using this approach to further explore the unknown functions of pRB.

  2. Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling.

    Science.gov (United States)

    Wang, Jiaojiao; Liu, Zhiping; Feng, Xiaojun; Gao, Si; Xu, Suowen; Liu, Peiqing

    2014-11-15

    Cardiac hypertrophy, an adaptive growth process that occurs in response to various pathophysiological stimuli, constitutes an important risk factor for the development of heart failure. However, the molecular mechanisms that regulate this cardiac growth response are not completely understood. Here we revealed that ING3 (inhibitor of growth family, member 3), a type II tumor suppressor, plays a critical role in the regulation of cardiac hypertrophy. ING3 expression was present in relatively high abundance in the heart, and was prominently upregulated in hypertrophic agonists angiotensin II (Ang II), phenylephrine (PE), or isoproterenol (ISO)-stimulated cardiomyocytes and in hearts of rat undergoing abdominal aortic constriction (AAC) surgery. In cardiomyocytes, overexpression of ING3 caused an increase in ANP, BNP and β-MHC mRNA levels and cell surface area, while depletion of ING3 attenuated PE-induced cardiomyocyte hypertrophy. Mechanistically, we have demonstrated that overexpression of ING3 could inactivate the AMPK and activate the canonical p38 MAPK signaling. Remarkably, AMPK agonist AICAR or p38 MAPK inhibitor SB203580 abrogated ING3-induced hypertrophic response in cardiomyocytes. In summary, our data disclose a novel role of ING3 as an inducer of pathological cardiac hypertrophy, suggesting that silencing of ING3 may be explored as a potential therapeutic target in preventing cardiac hypertrophy.

  3. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Xiao Xu

    2015-11-01

    Full Text Available Background/Aims: Promyelocytic leukemia (PML protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα to contribute to the initiation of acute promyelocytic leukemia (APL. Arsenic trioxide (ATO upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Methods: Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. Results: ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conclusion: These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts.

  4. Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells.

    Science.gov (United States)

    Boice, Michael; Salloum, Darin; Mourcin, Frederic; Sanghvi, Viraj; Amin, Rada; Oricchio, Elisa; Jiang, Man; Mottok, Anja; Denis-Lagache, Nicolas; Ciriello, Giovanni; Tam, Wayne; Teruya-Feldstein, Julie; de Stanchina, Elisa; Chan, Wing C; Malek, Sami N; Ennishi, Daisuke; Brentjens, Renier J; Gascoyne, Randy D; Cogné, Michel; Tarte, Karin; Wendel, Hans-Guido

    2016-10-01

    The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (TFH) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM((P37-V202))) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein.

  5. Down-regulation of the oncogene PTTG1 via the KLF6 tumor suppressor during induction of myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Chen

    Full Text Available The aberrant expression of proto-oncogenes is involved in processes that are responsible for cellular proliferation and the inhibition of myeloid differentiation in acute myeloid leukemia (AML. Pituitary Tumor-Transforming gene 1 (PTTG1, an oncogenic transcription factor, is abundantly expressed in various human cancers and hematopoietic malignancies. However, its expression in normal leukocytes and most normal tissues is very low or undetectable. The mechanism by which PTTG1 overexpression modifies myeloid cell development and promotes leukemogenesis remain unclear. To investigate the mechanistic links between PTTG1 overexpression and leukemia cell differentiation, we utilized phorbol 12-myristate 13-acetate (PMA, a well-known agent that triggers monocyte/macrophage differentiation, to analyze the expression patterns of PTTG1 in PMA-induced myeloid differentiation. We found that PTTG1 is down-regulated at the transcriptional level in PMA-treated HL-60 and THP1 cells. In addition, we identified a binding site for a tumor suppressor protein, Kruppel-like factor 6 (KLF6, in the PTTG1 promoter. We found that KLF6 could directly bind and repress PTTG1 expression. In HL-60 and THP1 cells, KLF6 mRNA and protein levels are up-regulated with a concordant reduction of PTTG1 expression upon treatment with PMA. Furthermore, KLF6 knockdown by shRNA abolished the suppression of PTTG1 and reduced the activation of the differentiation marker CD11b in PMA-primed cells. The protein kinase C (PKC inhibitor and the MAPK/ERK kinase (MEK inhibitor significantly blocked the potentiation of PMA-mediated KLF6 induction and the down-regulation of PTTG1, indicating that PTTG1 is suppressed via the activation of PKC/ERK/KLF6 pathway. Our findings suggest that drugs that increase the KLF6 inhibition of PTTG1 may have a therapeutic application in AML treatment strategies.

  6. How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40.

    Science.gov (United States)

    DeCaprio, James A

    2009-02-20

    The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation. PMID:19150725

  7. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    OpenAIRE

    MARSIT, CARMEN J.; E. Andres Houseman; Nelson, Heather H; Karl T Kelsey

    2008-01-01

    Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, ...

  8. Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Bornholdt, Jette; Heikkilä, Pirjo;

    2010-01-01

    The causal role of work-related exposure to wood dust in the development of sinonasal cancer has long been established by numerous epidemiologic studies. To study molecular changes in these tumors, we analyzed TP53 gene mutations in 358 sinonasal cancer cases with or without occupational exposure...... occurred in all histologies, with an overall frequency of 77%. TP53 mutation positive status was most common in adenocarcinoma (OR 2.0, 95% CI, 1.1-3.7; compared with squamous cell carcinoma), and mutation positivity showed an overall, nonsignificant association with wood-dust exposure (OR 1.6, 95% CI, 0...... affected the ORs only slightly. Smoking did not influence the occurrence of TP53 mutation; however, it was associated with multiple mutations (p = 0.03). As far as we are aware, this is the first study to demonstrate a high prevalence of TP53 mutation-positive cases in a large collection of sinonasal...

  9. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator

    Science.gov (United States)

    Zhou, Xiang; Hao, Qian; Liao, Peng; Luo, Shiwen; Zhang, Minhong; Hu, Guohui; Liu, Hongbing; Zhang, Yiwei; Cao, Bo; Baddoo, Melody; Flemington, Erik K; Zeng, Shelya X; Lu, Hua

    2016-01-01

    Cancer develops and progresses often by inactivating p53. Here, we unveil nerve growth factor receptor (NGFR, p75NTR or CD271) as a novel p53 inactivator. p53 activates NGFR transcription, whereas NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin-dependent proteolysis and by directly binding to its central DNA binding domain and preventing its DNA-binding activity. Inversely, NGFR ablation activates p53, consequently inducing apoptosis, attenuating survival, and reducing clonogenic capability of cancer cells, as well as sensitizing human cancer cells to chemotherapeutic agents that induce p53 and suppressing mouse xenograft tumor growth. NGFR is highly expressed in human glioblastomas, and its gene is often amplified in breast cancers with wild type p53. Altogether, our results demonstrate that cancers hijack NGFR as an oncogenic inhibitor of p53. DOI: http://dx.doi.org/10.7554/eLife.15099.001 PMID:27282385

  10. MicroRNA-135b Regulates Leucine Zipper Tumor Suppressor 1 in Cutaneous Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Edit B Olasz

    Full Text Available Cutaneous squamous cell carcinoma (cSCC is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001 in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness.

  11. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors.

    Directory of Open Access Journals (Sweden)

    Qi-Liang Cai

    2006-10-01

    Full Text Available Cellular protein degradation pathways can be utilized by viruses to establish an environment that favors their propagation. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV-encoded latency-associated nuclear antigen (LANA directly functions as a component of the EC5S ubiquitin complex targeting the tumor suppressors von Hippel-Lindau (VHL and p53 for degradation. We have characterized a suppressor of cytokine signaling box-like motif within LANA composed of an Elongin B and C box and a Cullin box, which is spatially located at its amino and carboxyl termini. This motif is necessary for LANA interaction with the Cul5-Elongin BC complex, to promote polyubiquitylation of cellular substrates VHL and p53 in vitro via its amino- and carboxyl-terminal binding domain, respectively. In transfected cells as well as KSHV-infected B lymphoma cells, LANA expression stimulates degradation of VHL and p53. Additionally, specific RNA interference-mediated LANA knockdown stabilized VHL and p53 in primary effusion lymphoma cells. Thus, manipulation of tumor suppressors by LANA potentially provides a favorable environment for progression of KSHV-infected tumor cells.

  12. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3

    Directory of Open Access Journals (Sweden)

    Marx Stephen J

    2008-08-01

    Full Text Available Abstract Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3, but not with non-muscle alpha-actinins (actinin-1 and actinin-4. The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells, but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin participate in sequestering parafibromin in the cytoplasmic compartment.

  13. MiR-145 functions as a tumor suppressor targeting NUAK1 in human intrahepatic cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xinkui; Sun, Daoyi; Chai, Hao; Shan, Wengang [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Yu, Yue [Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Pu, Liyong [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Cheng, Feng, E-mail: docchengfeng@njmu.edu.cn [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China)

    2015-09-18

    The dysregulation of micro (mi)RNAs is associated with cancer development. The miRNA miR-145 is downregulated in intrahepatic cholangiocarcinoma (ICC); however, its precise role in tumor progression has not yet been elucidated. Novel (nua) kinase family (NUAK)1 functions as an oncogene in various cancers and is a putative target of miR-145 regulation. In this study, we investigated the regulation of NUAK1 by miR-145 in ICC. We found that miR-145 level was significantly decreased in ICC tissue and cell lines, which corresponded with an increase in NUAK1 expression. NUAK1 was found to be a direct target of miR-145 regulation. The overexpression of miR-145 in ICC cell lines inhibited proliferation, growth, and invasion by suppressing NUAK1 expression, which was associated with a decrease in Akt signaling and matrix metalloproteinase protein expression. Similar results were observed by inhibiting NUAK1 expression. These results demonstrate that miR-145 can prevent ICC progression by targeting NUAK1 and its downstream effectors, and can therefore be useful for clinical diagnosis and targeted therapy of ICC. - Highlights: • MiR-145 suppresses ICC proliferation and invasion abilities. • We demonstrated that miR-145 directly targets NUAK1 in ICC. • MiR-145 expression in ICC was associated with Akt signaling and MMPs expression.

  14. CHROMOSOME 17P MAY HARBOR MULTIPLE TUMOR SUPPRESSOR GENES ASSOCIATED WITH PRIMARY GLIOBLASTOMA MULTIFORME

    Institute of Scientific and Technical Information of China (English)

    胡杰; 江澄川; 吴浩强; 彭颂先; 唐婉君

    2002-01-01

    Objective: To investigate whether deletion of chromosome 17 is involved in the carcinogenesis of primary glioblastoma multiforme and to localize the possible common deletion region in the aforementioned chromosome. Methods: Polymerase chain reaction-based microsatellite analysis was used to assess loss of heterozygosity (LOH) on chromosome 17 in 20 primary glioblastoma multiforme (GBM). Fifteen fluorescent dye-labeled polymorphic markers were used. Results: Thirteen of twenty (65%) GBM displayed LOH on at least one marker of chromosome 17p. Two tumors showed either LOH or non-informativeness on all markers tested. The most frequent LOH was observed at loci including D17s799 (53.3%), Dl7s1852 (53.8%), Dl7s938 (63.20/o), Dl7s831 (55.6%). The loci D17s831 (on 17pl3) and D17s799(Dl7sl852 (17p11.2(pl2) are distal and proximal to p53 respectively. The frequencies of LOH at all loci examined on chromosome 17q were relatively low (<30%). None of informative loci exhibited microsatellite instability in this study. Conclusion: Loss of genetic material on chromosome 17p may play an important role in the pathogenesis of GBM. Besides the well-known TSG p53 on 17p, other unknown TSCs associated with GBM may be present on the chromosomal regions 17pl3 and 17p11.2(pl2, which are distal and proximal to p53 respectively.

  15. BEX1 acts as a tumor suppressor in acute myeloid leukemia.

    Science.gov (United States)

    Lindblad, Oscar; Li, Tianfeng; Su, Xianwei; Sun, Jianmin; Kabir, Nuzhat N; Levander, Fredrik; Zhao, Hui; Lu, Gang; Rönnstrand, Lars; Kazi, Julhash U

    2015-08-28

    Acute myeloid leukemia (AML) is a heterogeneous disease of the myeloid lineage. About 35% of AML patients carry an oncogenic FLT3 mutant making FLT3 an attractive target for treatment of AML. Major problems in the development of FLT3 inhibitors include lack of specificity, poor response and development of a resistant phenotype upon treatment. Further understanding of FLT3 signaling and discovery of novel regulators will therefore help to determine additional pharmacological targets in FLT3-driven AML. In this report, we identified BEX1 as a novel regulator of oncogenic FLT3-ITD-driven AML. We showed that BEX1 expression was down-regulated in a group of AML patients carrying FLT3-ITD. Loss of BEX1 expression resulted in poor overall survival (hazard ratio, HR = 2.242, p = 0.0011). Overexpression of BEX1 in mouse pro-B and myeloid cells resulted in decreased FLT3-ITD-dependent cell proliferation, colony and tumor formation, and in increased apoptosis in vitro and in vivo. BEX1 localized to the cytosolic compartment of cells and significantly decreased FLT3-ITD-induced AKT phosphorylation without affecting ERK1/2 or STAT5 phosphorylation. Our data suggest that the loss of BEX1 expression in FLT3-ITD driven AML potentiates oncogenic signaling and leads to decreased overall survival of the patients. PMID:26046670

  16. Fbxw7 Tumor Suppressor: A Vital Regulator Contributes to Human Tumorigenesis.

    Science.gov (United States)

    Cao, Jun; Ge, Ming-Hua; Ling, Zhi-Qiang

    2016-02-01

    Rapidly accumulating data indicate that F-box/WD repeat-containing protein 7 (Fbxw7) is one of the most frequently mutated genes in human cancers and regulates a network of crucial oncoproteins. These studies have generated important new insights into tumorigenesis and may soon enable therapies targeting the Fbxw7 pathway. We searched PubMed, Embase, and ISI Web of Science databases (1973-2015, especially recent 5 years) for articles published in the English language using the key words "Fbxw7," "Fbw7," "hCDC4," and "Sel-10," and we reviewed recent developments in the search for Fbxw7. Fbxw7 coordinates the ubiquitin-dependent proteolysis of several critical cellular regulators, thereby controlling essential processes, such as cell cycle, differentiation, and apoptosis. Fbxw7 contains 3 isoforms (Fbxw7α, Fbxw7β, and Fbxw7γ), and they are differently regulated in subtract recognition. Besides those, Fbxw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates in a variety of human solid tumor types, including glioma malignancy, nasopharyngeal carcinoma, osteosarcoma, melanoma as well as colorectal, lung, breast, gastric, liver, pancreatic, renal, prostate, endometrial, and esophageal cancers. Fbxw7 is strongly associated with tumorigenesis, and the mechanisms and consequences of Fbxw7 deregulation in cancers may soon enable the development of novel therapeutic approaches. PMID:26886596

  17. Validation of whole genome amplification for analysis of the p53 tumor suppressor gene in limited amounts of tumor samples.

    Science.gov (United States)

    Hasmats, Johanna; Green, Henrik; Solnestam, Beata Werne; Zajac, Pawel; Huss, Mikael; Orear, Cedric; Validire, Pierre; Bjursell, Magnus; Lundeberg, Joakim

    2012-08-24

    Personalized cancer treatment requires molecular characterization of individual tumor biopsies. These samples are frequently only available in limited quantities hampering genomic analysis. Several whole genome amplification (WGA) protocols have been developed with reported varying representation of genomic regions post amplification. In this study we investigate region dropout using a φ29 polymerase based WGA approach. DNA from 123 lung cancers specimens and corresponding normal tissue were used and evaluated by Sanger sequencing of the p53 exons 5-8. To enable comparative analysis of this scarce material, WGA samples were compared with unamplified material using a pooling strategy of the 123 samples. In addition, a more detailed analysis of exon 7 amplicons were performed followed by extensive cloning and Sanger sequencing. Interestingly, by comparing data from the pooled samples to the individually sequenced exon 7, we demonstrate that mutations are more easily recovered from WGA pools and this was also supported by simulations of different sequencing coverage. Overall this data indicate a limited random loss of genomic regions supporting the use of whole genome amplification for genomic analysis.

  18. Construction and Expression of Human PTEN Tumor Suppressor Gene Recombinant Adenovirus Vector

    Institute of Scientific and Technical Information of China (English)

    CHEN Qingyong; WANG Chunyou; CHEN Daoda; CHEN Jianying; JIANG Chunfang; ZHENG Hai

    2006-01-01

    The recombinant defective adenovirus vector carrying human PTEN tumor suppres sor gene was constructed by using AdEasy-1 system and its expression was detected in human breast cancer cell line MDA-MB-468. Human PTEN cDNA was cloned into adenovirus shuttle plasmid pAdTrack-CMV to generate a recombinant plasmid pAdTrack-CMV-PTEN, then homologeous recombination was carried out in the E. coli BJ5183 by contransforming linearized shuttle vector with adenovirus backbone plasmid pAdEasy-1. The newly recombined defective adenovirus vector AdPTEN containing green fluorescent protein (GFP) was packaged and propagated in 293 cells. After being purified by cesium chloride gradient centrifugation, the adenovirus was transfected into human breast cancer cell line MDA-MB-468 in vitro. The expression of PTEN mRNA and protein in infected human breast cancer cell line MDA-MB-468 was detected by RT-PCR and Western blot respectively. The recombinant defective adenovirus vector carrying PTEN gene was constructed successfully. The viral titer of purified adenovirus was 2.5×1010 pfu/mL, and about 70 % breast cancer cells were infected with Ad PTEN when multiplicity of infection (MOI) reached 50. The exogenous PTEN mRNA and protein were expressed in MDA-MB-468 cells infected with Ad-PTEN by RT-PCR and Western blot. The recombinant defective adenovirus vector of PTEN gene was constructed successfully using AdEasy-1 system rapidly, which paved a sound foundation for gene study of breast cancer.

  19. Truncation of the Catalytic Domain of the Cylindromatosis Tumor Suppressor Impairs Lung Maturation

    Directory of Open Access Journals (Sweden)

    Eirini Trompouki

    2009-05-01

    Full Text Available Cyld encodes a 956-amino acid deubiquitinating enzyme (CYLD, which is a negative regulator of nuclear factor κB and mitogen-activated protein kinase pathways. Mutations that truncate and inactivate the carboxyl-terminal deubiquitinating domain of CYLD underlie the development of skin appendage tumors in humans, whereas down-regulation of Cyld expression has been associated with the development of various types of human malignancies including lung cancer. To establish an animal model of human CYLD inactivation and characterize the biological role of CYLD in vivo, we generated mice carrying a homozygous deletion of Cyld exon 9 (CyldΔ9/Δ9 mice using a conditional approach. Deletion of exon 9 would cause a carboxyl-terminal truncation of CYLD and inactivation of its deubiquitinating activity. In accordance with previous studies, fibroblasts from CyldΔ9/Δ9 embryos had hyperactive nuclear factor κB and c-Jun kinase pathways compared with control fibroblasts. CyldΔ9/Δ9 newborn mice were smaller than wild-type littermates with a short and kinky tail and nomajor developmental defects. However, CyldΔ9/Δ9 mice died shortly after birth from apparent respiratory dysfunction. Histological examination of E18.5 CyldΔ9/Δ9 lungs demonstrated an immature phenotype characterized by hyperplasic mesenchyme but apparently normal epithelial, smooth muscle. and endothelial structures. Our study identifies an important role of CYLD in lung maturation, which may underlie the development of many cases of lung cancer.

  20. LGR6 is a high affinity receptor of R-spondins and potentially functions as a tumor suppressor.

    Directory of Open Access Journals (Sweden)

    Xing Gong

    Full Text Available BACKGROUND: LGR6 (leucine-rich repeat containing, G protein-coupled receptor 6 is a member of the rhodopsin-like seven transmembrane domain receptor superfamily with the highest homology to LGR4 and LGR5. LGR6 was found as one of the novel genes mutated in colon cancer through total exon sequencing and its promoter region is hypermethylated in 20-50% of colon cancer cases. In the skin, LGR6 marks a population of stem cells that can give rise to all cell lineages. Recently, we and others demonstrated that LGR4 and LGR5 function as receptors of R-spondins to potentiate Wnt/β-catenin signaling. However, the binding affinity and functional response of LGR6 to R-spondins, and the activity of colon cancer mutants of LGR6 have not been determined. PRINCIPAL FINDINGS: We found that LGR6 also binds and responds to R-spondins 1-3 with high affinity to enhance Wnt/β-catenin signaling through increased LRP6 phosphorylation. Similar to LGR4 and LGR5, LGR6 is not coupled to heterotrimeric G proteins or to β-arrestin following R-spondin stimulation. Functional and expression analysis of three somatic mutations identified in colon cancer samples indicates that one mutant fails to bind and respond to R-spondin (loss-of-function, but the other two have no significant effect on receptor function. Overexpression of wild-type LGR6 in HeLa cells leads to increased cell migration following co-treatment with R-spondin1 and Wnt3a when compared to vector control cells or cells overexpressing the loss-of-function mutant. CONCLUSIONS: LGR6 is a high affinity receptor for R-spondins 1-3 and potentially functions as a tumor suppressor despite its positive effect on Wnt/β-catenin signaling.

  1. Menin: a tumor suppressor that mediates postsynaptic receptor expression and synaptogenesis between central neurons of Lymnaea stagnalis.

    Directory of Open Access Journals (Sweden)

    Nichole Flynn

    Full Text Available Neurotrophic factors (NTFs support neuronal survival, differentiation, and even synaptic plasticity both during development and throughout the life of an organism. However, their precise roles in central synapse formation remain unknown. Previously, we demonstrated that excitatory synapse formation in Lymnaea stagnalis requires a source of extrinsic NTFs and receptor tyrosine kinase (RTK activation. Here we show that NTFs such as Lymnaea epidermal growth factor (L-EGF act through RTKs to trigger a specific subset of intracellular signalling events in the postsynaptic neuron, which lead to the activation of the tumor suppressor menin, encoded by Lymnaea MEN1 (L-MEN1 and the expression of excitatory nicotinic acetylcholine receptors (nAChRs. We provide direct evidence that the activation of the MAPK/ERK cascade is required for the expression of nAChRs, and subsequent synapse formation between pairs of neurons in vitro. Furthermore, we show that L-menin activation is sufficient for the expression of postsynaptic excitatory nAChRs and subsequent synapse formation in media devoid of NTFs. By extending our findings in situ, we reveal the necessity of EGFRs in mediating synapse formation between a single transplanted neuron and its intact presynaptic partner. Moreover, deficits in excitatory synapse formation following EGFR knock-down can be rescued by injecting synthetic L-MEN1 mRNA in the intact central nervous system. Taken together, this study provides the first direct evidence that NTFs functioning via RTKs activate the MEN1 gene, which appears sufficient to regulate synapse formation between central neurons. Our study also offers a novel developmental role for menin beyond tumour suppression in adult humans.

  2. miR-422a is an independent prognostic factor and functions as a potential tumor suppressor in colorectal cancer

    Science.gov (United States)

    Zheng, Gui-Xi; Qu, Ai-Lin; Yang, Yong-Mei; Zhang, Xin; Zhang, Shou-Cai; Wang, Chuan-Xin

    2016-01-01

    AIM: To determine the expression of miR-422a in colorectal cancer (CRC) tissues and to further explore the prognostic value and function of miR-422a in CRC carcinogenesis. METHODS: miR-422a expression was analyzed in 102 CRC tissues and paired normal mucosa adjacent to carcinoma by quantitative real-time PCR. The relationship of miR-422a expression with clinicopathological parameters was also analyzed. Kaplan-Meier analysis and Cox multivariate analysis were performed to estimate the potential role of miR-422a. Cell proliferation, migration, and invasion were used for in vitro functional analysis of miR-422a. RESULTS: The levels of miR-422a were dramatically reduced in CRC tissues compared with normal mucosa (P < 0.05), and significantly correlated with local invasion (P = 0.004) and lymph node metastasis (P < 0.001). Kaplan-Meier survival and Cox regression multivariate analyses revealed that miR-422a expression (HR = 0.568, P = 0.015) and clinical TNM stage (HR = 2.942, P = 0.003) were independent prognostic factors for overall survival in CRC patients. Furthermore, in vitro experiments showed that overexpression of miR-422a inhibited the proliferation, migration, and invasion of SW480 and HT-29 cells. CONCLUSION: Down-regulation of miR-422a may serve as an independent prognosis factor in CRC. MiR-422a functions as a tumor suppressor and regulates progression of CRC. PMID:27350737

  3. Effects of DNA methylation on expression of tumor suppressor genes and proto-oncogene in human colon cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Jing-Yuan Fang; Juan Lu; Ying-Xuan Chen; Li Yang

    2003-01-01

    AIM: To investigate the effects of DNA methylation on the expression of tumor suppressor genes and proto-oncogene in human colon cancer cell lines.METHODS: Three colon cancer cell lines (HT-29, SW1116and Colo-320) treated with different concentrations of DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC)were used to induce DNA demethylation. The expressions of p16INK4A, p21WAF1, APC and c-myc genes were observed by using RT-PCR. The methylation status of p161NK4A promoter in HT-29 cells was also determined by methylation-specific PGR (MSP).RESULTS: Weak expressions of p16INK4A and APC in the three colon cancer cells were detected, and p21WAF1 expression was not found in SW1116 and Colo-320 ceils before treatment. After treatment of 1μmol/L but not 10 μmol/L of 5-aza-dC, the methylation level of p16INK4A gene promoter decreased significantly, and the hypomethylation led to the up-regulation of p16INK4A gene transcription in HT-29 cells.In the cell lines of SW1116 and Colo-320, p16INK4A and APC mRNA expressions were obviously enhanced after treatment of either 10 μmol/L or 5 μmol/L 5-aza-dC for 24 h. However,no evidence was found that methylation regulated the expression of p21WAF1 and c-mycgenes in human colon cancer cell lines.CONCLUSION: Expression of p16INK4A and APC genes is regulated by DNA methylation in three human colon cancer cell lines.

  4. Retroviral insertional mutagenesis in telomerase-immortalized hepatocytes identifies RIPK4 as novel tumor suppressor in human hepatocarcinogenesis.

    Science.gov (United States)

    Heim, D; Cornils, K; Schulze, K; Fehse, B; Lohse, A W; Brümmendorf, T H; Wege, H

    2015-01-15

    Carcinogenesis is a multistep process involving alterations in various cellular pathways. The critical genetic events driving the evolution of primary liver cancer, specifically hepatoblastoma and hepatocellular carcinoma (HCC), are still poorly understood. However, telomere stabilization is acknowledged as prerequisite for cancer progression in humans. In this project, human fetal hepatocytes were utilized as a cell culture model for untransformed, proliferating human liver cells, with telomerase activation as first oncogenic hit. To elucidate critical downstream genetic events driving further transformation of immortalized liver cells, we used retroviral insertional mutagenesis as an unbiased approach to induce genetic alterations. Following isolation of hyperproliferating, provirus-bearing cell clones, we monitored cancer-associated growth properties and characterized changes toward a malignant phenotype. Three transformed clones with the ability to form colonies in soft agar were expanded. As proof-of-principle for our experimental setup, we identified a transforming insertion on chromosome 8 within the pleiomorphic adenoma gene 1 (PLAG1), resulting in a 20-fold increase in PLAG1 expression. Upregulation of PLAG1 has already been described to promote human hepatoblastoma development. In a separate clone, a transforming insertion was detected in close proximity to the receptor-interacting serine-threonine kinase 4 (RIPK4) with an approximately eightfold suppression in RIPK4 expression. As validation for this currently unknown driver in hepatocarcinogenesis, we examined RIPK4 expression in human HCC samples and confirmed a significant suppression of RIPK4 in 80% of the samples. Furthermore, overexpression of RIPK4 in transformed human fetal hepatocytes resulted in an almost complete elimination of anchorage-independent growth. On the basis of these data, we propose RIPK4 as a novel putative tumor suppressor in human hepatocarcinogenesis. PMID:24413083

  5. Protection against HPV-16-Associated Tumors Requires the Activation of CD8+ Effector Memory T Cells and the Control of Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Diniz, Mariana O; Sales, Natiely S; Silva, Jamile R; Ferreira, Luís Carlos S

    2016-08-01

    Active anticancer immunotherapeutic approaches have been shown to induce cellular or humoral immune responses in patients, but, thus far, the observed outcomes did not ensure their recommendation for clinical use. The induction of tumor-specific CD8(+) T cells, although required for the clearance of most solid tumors, was shown to be insufficient for the development of a successful immunotherapeutic approach. The suppressive immune environment triggered by tumors, including the expansion of myeloid-derived suppressor cells (MDSC), is detrimental to the development of antitumor immune responses and precludes the generation of more promising clinical outcomes. In this work, we characterized the CD8(+) T-cell population specifically involved in the control of tumor growth and the role of MDSCs after administration of an antitumor therapeutic DNA vaccine targeting human papillomavirus type 16 (HPV-16)-associated tumors. Activation of cytotoxic high-avidity CD8(+) T cells with an effector memory phenotype was found in mice grafted with tumor cells expressing the HPV-16 oncoproteins. In addition, MDSC antibody depletion further enhanced the immunotherapeutic effects of the vaccine, resulting in the complete eradication of tumor cells. Collectively, the current results indicate that the simultaneous control of MDSCs and activation of high-avidity tumor-specific effector memory CD8(+) T cells are key features for tumor protection by immunotherapeutic approaches and deserve further testing under clinical conditions. Mol Cancer Ther; 15(8); 1920-30. ©2016 AACR. PMID:27222537

  6. GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN.

    Science.gov (United States)

    Chen, W-T; Zhu, G; Pfaffenbach, K; Kanel, G; Stiles, B; Lee, A S

    2014-10-16

    Glucose-regulated protein 78 (GRP78), a molecular chaperone widely elevated in human cancers, is critical for endoplasmic reticulum (ER) protein folding, stress signaling and PI3K/AKT activation. Genetic knockout models of GRP78 revealed that GRP78 maintains homeostasis of metabolic organs, including liver, pancreas and adipose tissues. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the most common liver cancers. There is a lack of effective therapeutics for HCC and CC, highlighting the need to further understand liver tumorigenic mechanisms. PTEN (phosphatase and tenson homolog deleted on chromosome 10), a tumor suppressor that antagonizes the PI3K/AKT pathway, is inactivated in a wide range of tumors, including 40-50% of human liver cancers. To elucidate the role of GRP78 in liver cancer, we created a mouse model with biallelic liver-specific deletion of Pten and Grp78 mediated by Albumin-Cre-recombinase (cP(f/f)78(f/f)). Interestingly, in contrast to PTEN, deletion of GRP78 was progressive but incomplete. At 3 months, cP(f/f)78(f/f) livers showed hepatomegaly, activation of lipogenic genes, exacerbated steatosis and liver injury, implying that GRP78 protects the liver against PTEN-null-mediated pathogenesis. Furthermore, in response to liver injury, we observed increased proliferation and expansion of bile duct and liver progenitor cells in cP(f/f)78(f/f) livers. Strikingly, bile duct cells in cP(f/f)78(f/f) livers maintained wild-type (WT) GRP78 level, whereas adjacent areas showed GRP78 reduction. Analysis of signaling pathways revealed selective JNK activation, β-catenin downregulation, along with PDGFRα upregulation, which was unique to cP(f/f)78(f/f) livers at 6 months. Development of both HCC and CC was accelerated and was evident in cP(f/f)78(f/f) livers at 8-9 months, coinciding with intense GRP78 expression in the cancer lesions, and GRP78 expression in adjacent normal areas reverted back to the WT level. In contrast, c78(f/f) livers

  7. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  8. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1.

    Science.gov (United States)

    Silvis, Mark R; Kreger, Bridget T; Lien, Wen-Hui; Klezovitch, Olga; Rudakova, G Marianna; Camargo, Fernando D; Lantz, Dan M; Seykora, John T; Vasioukhin, Valeri

    2011-05-24

    The Hippo pathway regulates contact inhibition of cell proliferation and, ultimately, organ size in diverse multicellular organisms. Inactivation of the Hippo pathway promotes nuclear localization of the transcriptional coactivator Yap1, a Hippo pathway effector, and can cause cancer. Here, we show that deletion of αE (α epithelial) catenin in the hair follicle stem cell compartment resulted in the development of skin squamous cell carcinoma in mice. Tumor formation was accelerated by simultaneous deletion of αE-catenin and the tumor suppressor-encoding gene p53. A small interfering RNA screen revealed a functional connection between αE-catenin and Yap1. By interacting with Yap1, αE-catenin promoted its cytoplasmic localization, and Yap1 showed constitutive nuclear localization in αE-catenin-null cells. We also found an inverse correlation between αE-catenin abundance and Yap1 activation in human squamous cell carcinoma tumors. These findings identify αE-catenin as a tumor suppressor that inhibits Yap1 activity and sequesters it in the cytoplasm.

  9. Aberrant methylation of the 3q25 tumor suppressor gene PTX3 in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jun-Xiong Wang; Yuan-Long He; Sheng-Tao Zhu; Shuo Yang; Shu-Tian Zhang

    2011-01-01

    AIM: To identify the novel methylation-silenced gene pentraxin 3 (PTX3) in esophageal squamous cell carcinoma (ESCC). METHODS: PTX3 mRNA expression was examined in six human ESCC cell lines, one human immortalized normal esophageal epithelial cell line, primary ESCC tumor tissue, and paired adjacent nontumor tissue using reverse transcription polymerase chain reaction (RT-PCR). Semi-quantitative immunohistochemistry was used to examine cellular localisation and protein levels. Methylation specific PCR and bisulphite genomic sequencing were employed to investigate the methylation of the candidate gene. RESULTS: In the majority of ESCC cell lines, we found that PTX3 expression was down-regulated due to gene promoter hypermethylation, which was further confirmed by bisulphite genomic sequencing. Demethyl-ation treatment with 5-aza-2'-deoxycytidine restored PTX3 mRNA expression in ESCC cell lines. Methylation was more common in tumor tissues (85%) than in adjacent nontumor tissues (25%) (P < 0 .01). CONCLUSION: PTX3 is down-regulated through promoter hypermethylation in ESCC, and could potentially serve as a biomarker of ESCC.

  10. Reductions in Myeloid-Derived Suppressor Cells and Lung Metastases using AZD4547 Treatment of a Metastatic Murine Breast Tumor Model

    Directory of Open Access Journals (Sweden)

    Li Liu

    2014-03-01

    Full Text Available Background: AZD4547, a small-molecule inhibitor targeting the tyrosine kinase of Fibroblast Growth Factor Receptors (FGFRs, is currently under phase II clinical study for human subjects having breast cancer, while the underlying mechanism remains elusive. The aim of this study is to explore the potential mechanism by which AZD4547 inhibits breast tumor lung metastases at the level of the tumor microenvironment. Methods: First, through in vitro experiments, we investigated the efficacy of the FGFRs inhibitor AZD4547 on 4T1 tumor cells for their proliferation, apoptosis, migration, and invasion. Second, by in vivo animal experiments, we evaluated the effects of AZD4547 on tumor growth and lung metastases in 4T1 tumor-bearing mice. Finally, we examined the impact of AZD4547 on the infiltration of myeloid-derived suppressor cells (MDSCs in lung, spleens, peripheral blood and tumor. Results: Through this study we found that AZD4547 could efficiently suppress tumor 4T1 cells through restraining their proliferation, blocking migration and invasion, and inducing apoptosis in vitro. In animal model we also demonstrated that AZD4547 was able to inhibit tumor growth and lung metastases, consistent with the decreased MDSCs accumulation in the tumor and lung tissues, respectively. Moreover, the reduced number of MDSCs in peripheral blood and spleens were also observed in the AZD4547-treated mice. Importantly, through the AZD4547 treatment, the CD4+ and CD8+ T-cells were significantly increased in tumor and spleens. Conclusion: Our studies showed that AZD4547 can inhibit breast cancer cell proliferation, induce its apoptosis and block migration and invasion in vitro and suppress tumor growth and lung metastases by modulating the tumor immunologic microenvironment in vivo.

  11. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thejaswini Venkatesh

    Full Text Available Mutations in the MCPH1 (microcephalin 1 gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC samples, and observed that 14/71 (19.72% informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22% and 19/25 (76% OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10% tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

  12. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays.

    Science.gov (United States)

    García, Juan F; Camacho, Francisca I; Morente, Manuel; Fraga, Máximo; Montalbán, Carlos; Alvaro, Tomás; Bellas, Carmen; Castaño, Angel; Díez, Ana; Flores, Teresa; Martin, Carmen; Martinez, Miguel A; Mazorra, Francisco; Menárguez, Javier; Mestre, Maria J; Mollejo, Manuela; Sáez, Ana I; Sánchez, Lydia; Piris, Miguel A

    2003-01-15

    Tumoral cells in Hodgkin lymphoma (HL) display an increased growth fraction and diminished apoptosis, implying a profound disturbance of the cell cycle and apoptosis regulation. However, limitations of molecular techniques have prevented the analysis of the tumor suppressor pathways and cell-cycle checkpoints. Tissue microarray (TMA) is a powerful tool for analyzing a large number of molecular variables in a large series of tumors, although the feasibility of this technique has not yet been demonstrated in heterogeneous tumors. The expression of 29 genes regulating the cell cycle and apoptosis were analyzed by immunohistochemistry and in situ hybridization in 288 HL biopsies using TMA. The sensitivity of the technique was validated by comparing the results with those obtained in standard tissue sections. The results revealed multiple alterations in different pathways and checkpoints, including G1/S and G2/M transition and apoptosis. Striking findings were the overexpression of cyclin E, CDK2, CDK6, STAT3, Hdm2, Bcl2, Bcl-X(L), survivin, and NF-kappaB proteins. A multiparametric analysis identified proteins associated with increased growth fraction (Hdm2, p53, p21, Rb, cyclins A, B1, D3, and E, CDK2, CDK6, SKP2, Bcl-X(L), survivin, STAT1, and STAT3), and proteins associated with apoptosis (NF-kappaB, STAT1, and RB). The analysis also demonstrated that Epstein-Barr virus (EBV)-positive cases displayed a characteristic profile, confirming the pathogenic role of EBV in HL. Survival probability depends on multiple biologic factors, including overexpression of Bcl2, p53, Bax, Bcl-X(L), MIB1, and apoptotic index. In conclusion, Hodgkin and Reed-Sternberg cells harbor concurrent and overlapping alterations in the major tumor suppressor pathways and cell-cycle checkpoints. This appears to determine the viability of the tumoral cells and the clinical outcome.

  13. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc.

  14. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. PMID:26923760

  15. Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells.

    Science.gov (United States)

    Narita, Yoshinori; Wakita, Daiko; Ohkur, Takayuki; Chamoto, Kenji; Nishimura, Takashi

    2009-02-01

    Evaluation of immunosuppressive tumor-escape mechanisms in tumor-bearing hosts is of great importance for the development of an efficient tumor immunotherapy. We document here the functional characteristics of CD11b(+)Gr-1(+) immature myeloid cells (ImC), which increase abnormally in tumor-bearing mice. Although it has been reported that ImC exhibit a strong immunosuppressive activity against T cell responses, we demonstrate that ImC derived from tumor-bearing mouse spleens (TB-SPL) did not exhibit a strong inhibitory activity against CTL generation in MLR. However, ImC isolated from TB-SPL and induced to differentiate into CD11b(+)Gr-1(+)F4/80(+) suppressor macrophages (MPhi) under the influence of tumor-derived factors were immunosuppressive. Furthermore, we also demonstrate that ImC isolated from TB-SPL had a capability of differentiating into immunostimulatory dendritic cells (DC1) supportive of the generation of IFN-gamma producing CTL if the ImC were cultured with Th1 cytokines plus GM-CSF and IL-3. Thus, our findings indicate that tumor bearing mouse-derived CD11b(+)Gr-1(+) ImC are not committed to development into immunosuppressor cells but have dual differentiation ability into both immunosuppressive myeloid cells and immunostimulatory DC1.

  16. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.

    Directory of Open Access Journals (Sweden)

    J Saadi Imam

    Full Text Available Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF, a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

  17. Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494.

    Science.gov (United States)

    Wang, Y; Xu, J; Gao, G; Li, J; Huang, H; Jin, H; Zhu, J; Che, X; Huang, C

    2016-08-01

    Emerging evidence from The Cancer Genome Atlas has revealed that nuclear factor κB2 (nfκb2) gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the antitumorigenic action of p100 remains poorly understood. Here we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100's inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of extracellular signal-regulated kinase 2 (ERK2), in turn leading to inhibition of c-Jun/activator protein-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor-suppressive role for NFκB2 p100. PMID:26686085

  18. Molecular insights into the association of obesity with breast cancer risk: relevance to xenobiotic metabolism and CpG island methylation of tumor suppressor genes.

    Science.gov (United States)

    Naushad, Shaik Mohammad; Hussain, Tajamul; Al-Attas, Omar S; Prayaga, Aruna; Digumarti, Raghunadha Rao; Gottumukkala, Suryanarayana Raju; Kutala, Vijay Kumar

    2014-07-01

    Obesity, genetic polymorphisms of xenobiotic metabolic pathway, hypermethylation of tumor suppressor genes, and hypomethylation of proapoptotic genes are known to be independent risk factors for breast cancer. The objective of this study is to evaluate the combined effect of these environmental, genetic, and epigenetic risk factors on the susceptibility to breast cancer. PCR-RFLP and multiplex PCR were used for the genetic analysis of six variants of xenobiotic metabolic pathway. Methylation-specific PCR was used for the epigenetic analysis of four genetic loci. Multifactor dimensionality reduction analysis revealed a significant interaction between the body mass index (BMI) and catechol-O-methyl transferase H108L variant alone or in combination with cytochrome P450 (CYP) 1A1m1 variant. Women with "Luminal A" breast cancer phenotype had higher BMI compared to other phenotypes and healthy controls. There was no association between the BMI and tumor grade. The post-menopausal obese women exhibited lower glutathione levels. BMI showed a positive association with the methylation of extracellular superoxide dismutase (r = 0.21, p obesity increases the breast cancer susceptibility by two possible mechanisms: (i) by interacting with xenobiotic genetic polymorphisms in inducing increased oxidative DNA damage and (ii) by altering the methylome of several tumor suppressor genes.

  19. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    OpenAIRE

    Cai, Liquan; Wang, Dan; Fisher, Alfred L.; Zhou WANG

    2014-01-01

    The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in C. elegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to contr...

  20. The Retinoblastoma Tumor Suppressor Protein (pRb)/E2 Promoter Binding Factor 1 (E2F1) Pathway as a Novel Mediator of TGFβ-induced Autophagy.

    Science.gov (United States)

    Korah, Juliana; Canaff, Lucie; Lebrun, Jean-Jacques

    2016-01-29

    TGFβ is a multifunctional cytokine that regulates cell proliferation, cell immortalization, and cell death, acting as a key homeostatic mediator in various cell types and tissues. Autophagy is a programmed mechanism that plays a pivotal role in controlling cell fate and, consequently, many physiological and pathological processes, including carcinogenesis. Although autophagy is often considered a pro-survival mechanism that renders cells viable in stressful conditions and thus might promote tumor growth, emerging evidence suggests that autophagy is also a tumor suppressor pathway. The relationship between TGFβ signaling and autophagy is context-dependent and remains unclear. TGFβ-mediated activation of autophagy has recently been suggested to contribute to the growth inhibitory effect of TGFβ in hepatocarcinoma cells. In the present study, we define a novel process of TGFβ-mediated autophagy in cancer cell lines of various origins. We found that autophagosome initiation and maturation by TGFβ is dependent on the retinoblastoma tumor suppressor protein/E2 promoter binding factor (pRb/E2F1) pathway, which we have previously established as a critical signaling axis leading to various TGFβ tumor suppressive effects. We further determined that TGFβ induces pRb/E2F1-dependent transcriptional activation of several autophagy-related genes. Together, our findings reveal that TGFβ induces autophagy through the pRb/E2F1 pathway and transcriptional activation of autophagy-related genes and further highlight the central relevance of the pRb/E2F1 pathway downstream of TGFβ signaling in tumor suppression.

  1. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng.

    Science.gov (United States)

    Yousef, Mokhtar I; Hussien, Hend M

    2015-04-01

    Cisplatin is an effective chemotherapeutic agent successfully used in the treatment of a wide range of solid tumors, while its usage is limited due to its nephrotoxicity. The present study was undertaken to examine the effectiveness of ginseng to ameliorate the renal nephrotoxicity, damage in kidney genomic DNA, tumor necrosis factor-α, interleukin 6, tumor suppressor P53, histological changes and oxidative stress induced by cisplatin in rats. Cisplatin caused renal damage, including DNA fragmentation, upregulates gene expression of tumor suppressor protein p53 and tumor necrosis factor-α and IL-6. Cisplatin increased the levels of kidney TBARS, xanthine oxidase, nitric oxide, serum urea and creatinine. Cisplatin decreased the activities of antioxidant enzymes (GST, GPX, CAT and SOD), ATPase and the levels of GSH. A microscopic examination showed that cisplatin caused kidney damage including vacuolization, severe necrosis and degenerative changes. Ginseng co-treatment with cisplatin reduced its renal damage, oxidative stress, DNA fragmentation and induced DNA repair processes. Also, ginseng diminished p53 activation and improved renal cell apoptosis and nephrotoxicity. It can be concluded that, the protective effects of ginseng against cisplatin induced-renal damage was associated with the attenuation of oxidative stress and the preservation of antioxidant enzymes.

  2. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Dandan Lv; Ha-Jeong Kim; Robert A Kurt; Wen Bu; Yi Li; Xiaojing Ma

    2013-01-01

    CCL5 is a member of the CC chemokine family expressed in a wide array of immune and non-immune cells in response to stress signals.CCL5 expression correlates with advanced human breast cancer.However,its functional significance and mode of action have not been established.Here,we show that CCL5-deficient mice are resistant to highly aggressive,triple-negative mammary tumor growth.Hematopoietic CCL5 is dominant in this phenotype.The absence of hematopoietic CCL5 causes aberrant generation of CD11b+/Gr-1+,myeloid-derived suppressor cells (MDSCs) in the bone marrow in response to tumor growth by accumulating Ly6Chi and Ly6G+ MDSCs with impaired capacity to suppress cytotoxicity of CD8+ T cells.These properties of CCL5 are observed in both orthotopic and spontaneous mammary tumors.Antibody-mediated systemic blockade of CCL5 inhibits tumor progression and enhances the efficacy of therapeutic vaccination against non-immunogenic tumors.CCL5 also helps maintain the immunosuppressive capacity of human MDSCs.Our study uncovers a novel,chemokine-independent activity of the hematopoietically derived CCL5 that promotes mammary tumor progression via generating MDSCs in the bone marrow in cooperation with tumor-derived colony-stimulating factors.The study sheds considerable light on the interplay between the hematopoietic compartment and tumor niche.Because of the apparent dispensable nature of this molecule in normal physiology,CCL5 may represent an excellent therapeutic target in immunotherapy for breast cancer as well as a broad range of solid tumors that have significant amounts of MDSC infiltration.

  3. Regulation of APCCdh1 E3 ligase activity by the Fbw7/cyclin E signaling axis contributes to the tumor suppressor function of Fbw7

    Institute of Scientific and Technical Information of China (English)

    Alan W Lau; Hiroyuki Inuzuka; Hidefumi Fukushima; Lixin Wan; Pengda Liu; Daming Gao; Yi Sun

    2013-01-01

    Fbw7 and Cdh1 are substrate-recognition subunits of the SCF-and APC-type E3 ubiquitin ligases,respectively.There is emerging evidence suggesting that both Fbw7 and Cdh1 function as tumor suppressors by targeting oncoproteins for destruction.Loss of Fbw7,but not Cdh1,is frequently observed in various human tumors.However,it remains largely unknown how Fbw7 mechanistically functions as a tumor suppressor and whether there is a signaling crosstalk between Fbw7 and Cdh1.Here,we report that Fbw7-deficient cells not only display elevated expression levels of SCFFbw7 substrates,including cyclin E,but also have increased expression of various APCdh1 substrates.We further defined cyclin E as the critical signaling link by which Fbw7 governs APCCdh1 activity,as depletion of cyclin E in Fbw7-deficient cells results in decreased expression of APCdh1 substrates to levels comparable to those in wildtype (WT) cells.Conversely,ectopic expression of cyclin E recapitulates the aberrant APCdh1 substrate expression observed in Fbw7-deficient cells.More importantly,4A-Cdh1 that is resistant to Cdk2/cyclin E-mediated phosphorylation,but not WT-Cdh1,reversed the elevated expression of various APCCdh1 substrates in Fbw7-deficient cells.Overexpression of 4A-Cdh1 also resulted in retarded cell growth and decreased anchorage-independent colony formation.Altogether,we have identified a novel regulatory mechanism by which Fbw7 governs Cdh1 activity in a cyclin E-dependent manner.As a result,loss of Fbw7 can lead to aberrant increase in the expression of both SCFFbw7and APCCdh1 substrates.Our study provides a better understanding of the tumor suppressor function of Fbw7,and suggests that Cdk2/cyclin E inhibitors could serve as effective therapeutic agents for treating Fbw7-deficient tumors.

  4. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Kundu, Chanakya N. [School of Biotechnology, KIIT University, Bhubaneswar (India); Verma, Subhash C. [Department of Microbiology and Immunology, University of Nevada, School of Medicine, Reno, NV 89557 (United States); Choudhuri, Tathagata, E-mail: tatha@ils.res.in [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Department of Biotechnology, Siksha Bhavana, Visva Bharati, Santiniketan, Bolpur (India)

    2014-01-05

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.

  5. Science Letters: IGFBP7 plays a potential tumor suppressor role against colorectal carcinogenesis with its expression associated with DNA hypomethylation of exon 1

    Institute of Scientific and Technical Information of China (English)

    RUAN Wen-jing; CUI Jing; DI Mei-juan; DONG Jian-kang; LAI Mao-de; LIN Jie; XU En-ping; XU Fang-ying; MA Yu; DENG Hong; HUANG Qiong; LV Bing-jian; HU Hu

    2006-01-01

    Insulin-like growth factor binding-protein-7 (IGFBP7) was obtained from our previous colonic adenocarcinoma (CRC)and normal mucosa suppression subtraction hybridization (SSH) cDNA libraries. By RT-PCR and immunohistochemistry, we found that IGFBP7 was overexpressed in CRC tissue compared to normal tissue. However, our in vitro experiments performed in 10 CRC cell lines showed that IGFBP7 expressed only in SW480 and Caco2 cell lines, which implied an underlying reversible regulatory mechanism. Using methylation-specific PCR (MSP) and bisulfite sodium PCR (BSP), we found that its expression was associated with DNA hypomethylation of exon 1. This was further supported by the in vitro study which showed restored IGFBP7expression after demethylation agent 5-aza-2'-deoxycytidine treatment. Correlation analysis between IGFBP7 expression and prognosis indicated that overexpression of IGFBP7 in CRC tissue correlated with favourable survival. Investigation of the functional role of IGFBP7 through transfecfion studies showed that IGFBP7 protein could inhibit growth rate, decrease colony formation activity, and induce apoptosis in RKO and SW620 cells, suggesting it a potential tumor suppressor protein in colorectal carcinogenesis. In conclusion, our study clearly demonstrated that IGFBP7 plays a potential tumor suppressor role against colorectal carcinogenesis and its expression is associated with DNA hypomethylation of exon 1.

  6. MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer

    Directory of Open Access Journals (Sweden)

    W Dong-xu

    2015-01-01

    Full Text Available OBJECTIVE: The deregulation of microRNA-185 (miR-185 has been showed to be associated with many cancers and act as a tumor suppressor in many types of human malignancies. We hence tried to find out its role in human colorectal cancer (CRC. MATERIALS AND METHODS: miR-185 expression was investigated by real-time quantitative polymerase chain reaction. We carried out transfections to overexpress or knockdown of miR-185 by mimics or inhibitor, respectively. Functional study like cell counting kit-8 assay was performed to evaluate the proliferation. For addressing the impact of miR-185 on Wnt/β-catenin signaling, we further applied luciferase reporter assay and Western blotting for specific proteins in this pathway. RESULTS: miR-185 was decreased in CRC cell lines when compared with corresponding control cell line. We also proved that its overexpression in LoVo cells could remarkably suppress cell proliferation whereas knocked it down in SW480 cells has the opposite effect in vitro. Mechanically, we demonstrated that miR-185 could suppress the Wnt/β-catenin signaling and modulate the transcription and translation level of downstream molecules of this pathway, including MYC and CCND1. CONCLUSION: Taken together, these results suggested that miR-185 exerts its tumor suppressor activities probably through a negative modulation of the Wnt/β-catenin pathway.

  7. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein.

    Science.gov (United States)

    Bromley, Dennis; Bauer, Matthias R; Fersht, Alan R; Daggett, Valerie

    2016-09-01

    The p53 tumor suppressor protein performs a critical role in stimulating apoptosis and cell cycle arrest in response to oncogenic stress. The function of p53 can be compromised by mutation, leading to increased risk of cancer; approximately 50% of cancers are associated with mutations in the p53 gene, the majority of which are in the core DNA-binding domain. The Y220C mutation of p53, for example, destabilizes the core domain by 4 kcal/mol, leading to rapid denaturation and aggregation. The associated loss of tumor suppressor functionality is associated with approximately 75 000 new cancer cases every year. Destabilized p53 mutants can be 'rescued' and their function restored; binding of a small molecule into a pocket on the surface of mutant p53 can stabilize its wild-type structure and restore its function. Here, we describe an in silico algorithm for identifying potential rescue pockets, including the algorithm's integration with the Dynameomics molecular dynamics data warehouse and the DIVE visual analytics engine. We discuss the results of the application of the method to the Y220C p53 mutant, entailing finding a putative rescue pocket through MD simulations followed by an in silico search for stabilizing ligands that dock into the putative rescue pocket. The top three compounds from this search were tested experimentally and one of them bound in the pocket, as shown by nuclear magnetic resonance, and weakly stabilized the mutant.

  8. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Ming [Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu (China); Gao, Wen; Xu, Jing; Wang, Ping [Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China); Shu, Yongqian, E-mail: shuyongqian39000@163.com [Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-06-06

    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.

  9. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy

  10. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    International Nuclear Information System (INIS)

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways

  11. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia

    Institute of Scientific and Technical Information of China (English)

    LiYu; ChunhuiLiu; JeffVandeusen; BrianBecknell; ZunyanDai; Yue-ZhongWu; AparnaRaval; Te-HuiLiu; WeiDing; CharleneMao; ShujunLiu; LauraTSmith; StephenLee; LauraRassenti; GuidoMarcucci; JohnByrd; MichaelACaligiuri; ChristophPlass

    2005-01-01

    DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.

  12. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Ouyang, Haoxu;

    2010-01-01

    normal-malignant lung tissues from mice and humans. Engineered knockdown of miR-31, but not other highlighted miRNAs, substantially repressed lung cancer cell growth and tumorigenicity in a dose-dependent manner. Using a bioinformatics approach, we identified miR-31 target mRNAs and independently...... confirmed them as direct targets in human and mouse lung cancer cell lines. These targets included the tumor-suppressive genes large tumor suppressor 2 (LATS2) and PP2A regulatory subunit B alpha isoform (PPP2R2A), and expression of each was augmented by miR-31 knockdown. Their engineered repression...... antagonized miR-31-mediated growth inhibition. Notably, miR-31 and these target mRNAs were inversely expressed in mouse and human lung cancers, underscoring their biologic relevance. The clinical relevance of miR-31 expression was further independently and comprehensively validated using an array containing...

  13. Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5

    OpenAIRE

    Fushimi, Kazuo; Ray, Payal; Kar, Amar; Wang, Lei; Sutherland, Leslie C.; Jane Y Wu

    2008-01-01

    Similar to many genes involved in programmed cell death (PCD), the caspase 2 (casp-2) gene generates both proapoptotic and antiapoptotic isoforms by alternative splicing. Using a yeast RNA–protein interaction assay, we identified RBM5 (also known as LUCA-15) as a protein that binds to casp-2 pre-mRNA. In both transfected cells and in vitro splicing assay, RBM5 enhances the formation of proapoptotic Casp-2L. RBM5 binds to a U/C-rich sequence immediately upstream of the previously identified In...

  14. Mosaic zebrafish transgenesis for functional genomic analysis of candidate cooperative genes in tumor pathogenesis.

    Science.gov (United States)

    Ung, Choong Yong; Guo, Feng; Zhang, Xiaoling; Zhu, Zhihui; Zhu, Shizhen

    2015-01-01

    Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic "drivers" among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has

  15. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors*S⃞

    OpenAIRE

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-01-01

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at ...

  16. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice.

    Science.gov (United States)

    Jeanbart, Laura; Kourtis, Iraklis C; van der Vlies, André J; Swartz, Melody A; Hubbell, Jeffrey A

    2015-08-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c(hi) Ly6g(-) monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 days post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c(lo) Ly6g(+) granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1(int) Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c(hi) macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8(+) T cells in melanoma cells expressing OVA. These findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies. PMID:25982370

  17. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  18. The p53 target gene desmocollin 3 acts as a novel tumor suppressor through inhibiting EGFR/ERK pathway in human lung cancer.

    Science.gov (United States)

    Cui, Tiantian; Chen, Yuan; Yang, Linlin; Knösel, Thomas; Huber, Otmar; Pacyna-Gengelbach, Manuela; Petersen, Iver

    2012-12-01

    Desmosomes are intercellular junctions that confer strong cell-cell adhesion. Altered expression of desmocollin 3 (DSC3), a member of the desmosomal cadherin family, was found in various cancers; however, its functional involvement in carcinogenesis has not yet been elucidated. Expression/localization of DSC3 was analyzed by real-time reverse transcription-PCR, western blotting, immunofluorescence and immunohistochemistry. Methylation status of DSC3 was examined by demethylation tests, methylation-specific PCR and bisulfite sequencing. It turned out that downregulation of DSC3 in lung cancer cells was associated with DNA hypermethylation. In primary lung tumors, DSC3 was a potential diagnostic marker for lung squamous cell carcinoma, and DSC3 DNA hypermethylation was correlated with poor clinical outcome. To investigate the effect of the tumor suppressor gene p53 on DSC3, transient transfection with a wild-type p53-expression vector was performed. Overexpression of p53 resulted in an increased expression of DSC3 in a DSC3-unmethylated lung cancer cell line H2170, but not in H1299, a DSC3-methylated cell line. However, combination of p53 transfection with demethylation agent 5-aza-2'-deoxycytidine treatment led to increased expression of DSC3 in H1299 cells. Furthermore, functional studies after stable transfection of a DSC3 expression vector showed that ectopic expression of DSC3 inhibited cell proliferation, anchorage-independent growth, migration, as well as invasion, and most interestingly led to reduced phosphorylation levels of extracellular signal-regulated kinase1/2. Taken together, our data suggested that DSC3 acts as a novel tumor suppressor gene through inhibition of epidermal growth factor receptor/extracellular signal-regulated kinase signaling in lung cancer cells. PMID:22941060

  19. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    Directory of Open Access Journals (Sweden)

    Zhang Xiangning

    2012-06-01

    Full Text Available Abstract Background Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. Methods BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. Results BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. Conclusions BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression.

  20. 大肠癌与抑癌基因相关性的研究现状%Association between colorectal cancer and tumor suppressor genes: recent research progress

    Institute of Scientific and Technical Information of China (English)

    项芳芳; 毛高平

    2012-01-01

    Colorectal cancer is a common high-risk gastrointestinal cancer, and approximately 1.2 million new cases are diagnosed each year worldwide. In recent years, due to the improvement of people's living standards and changes in dietary habits and structure, the incidence and mortality rate of colorectal cancer increase rapidly in China. Moreover, patients have a significantly earlier age of onset. At present, the median age of colorectal cancer onset in China is 58 years old, 12 to 18 years earlier than other countries in Europe and America. The development of colorectal cancer is a complex multi-stage process involving multiple genetic alterations. Many studies have shown that colorectal carcinogenesis involves activation of oncogenes and inactivation of tumor suppressor genes. Tumor suppressor genes associated with colorectal carcinogenesis include p53, APC, DCC, and MMR, and proto-oncogenes include K-ras andc-myc. In this paper, we discuss the association between tumor suppressor genes and colorectal carcinogenesis.%大肠癌是常见的高危害消化系恶性肿瘤,全球每年新发病例约为120万例.近年来,随着人们生活水平的提高,饮食习惯和结构的改变,我国大肠癌的发病率和死亡率增长迅速,而且,发病年龄明显提前,目前,我国大肠癌中位发病年龄为58岁,比欧美等国家提前12-18年.大肠癌的发生是一个多阶段多步骤的、涉及多个基因改变的复杂过程.许多研究表明,结直肠癌变是一个涉及原癌基因激活、抑癌基因失活等多基因、多阶段、多步骤渐进演化的积累过程.与结直肠癌相关的抑癌基因有P53、APC、DCC、MMR等,原癌基因k-ras、c-myc等.本文就以上基因改变与大肠癌的发生发展相关性的研究现状作一简单复习.

  1. The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a

    Directory of Open Access Journals (Sweden)

    Mann Graham J

    2009-01-01

    Full Text Available Abstract Background CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. Results We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. Conclusion This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance.

  2. HPV16-associated tumors control myeloid cell homeostasis in lymphoid organs, generating a suppressor environment for T cells.

    Science.gov (United States)

    Stone, Simone Cardozo; Rossetti, Renata Ariza Marques; Bolpetti, Aline; Boccardo, Enrique; Souza, Patricia Savio de Araujo; Lepique, Ana Paula

    2014-10-01

    Tumors are complex structures containing different types of cells and molecules. The importance of the tumor microenvironment in tumor progression, growth, and maintenance is well-established. However, tumor effects are not restricted to the tumor microenvironment. Molecules secreted by, as well as cells that migrate from tumors, may circulate and reach other tissues. This may cause a series of systemic effects, including modulation of immune responses, and in some cases, leukocytosis and metastasis promotion. Leukocytosis has been described as a poor prognostic factor in patients with cervical cancer. The main etiological factor for cervical cancer development is persistent infection with high oncogenic risk HPV. Our laboratory has been exploring the effects of high oncogenic risk, HPV-associated tumors on lymphoid organs of the host. In the present study, we observed an increase in myeloid cell proliferation and alteration in cell signaling in APCs in the spleen of tumor-bearing mice. In parallel, we characterized the cytokines secreted in the inflammatory and tumor cell compartments in the tumor microenvironment and in the spleen of tumor-bearing mice. We show evidence of constitutive activation of the IL-6/STAT3 signaling pathway in the tumor, including TAMs, and in APCs in the spleen. We also observed that IL-10 is a central molecule in the tolerance toward tumor antigens through control of NF-κB activation, costimulatory molecule expression, and T cell proliferation. These systemic effects over myeloid cells are robust and likely an important problem to be addressed when considering strategies to improve anti-tumor T cell responses.

  3. The tumor suppressor gene KCTD11REN is regulated by Sp1 and methylation and its expression is reduced in tumors

    OpenAIRE

    Rinaldi Christian; Di Camillo Raffaello; Murgo Simona; Po Agnese; Capece Daria; Ciccocioppo Lucia; Zazzeroni Francesca; Mancarelli M Michela; Ferretti Elisabetta; Gulino Alberto; Alesse Edoardo

    2010-01-01

    Abstract A hallmark of several human cancers is loss of heterozygosity (LOH) of chromosome 17p13. The same chromosomal region is also frequently hypermethylated in cancer. Although loss of 17p13 has been often associated with p53 genetic alteration or Hypermethylated in Cancer 1 (HIC1) gene hypermethylation, other tumor suppressor genes (TSGs) located in this region have critical roles in tumorigenesis. A novel TSG mapping on human chromosome 17p13.2 is KCTD11REN (KCTD11). We have recently de...

  4. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors.

    Science.gov (United States)

    Zhao, Hongling; Bauzon, Frederick; Fu, Hao; Lu, Zhonglei; Cui, Jinhua; Nakayama, Keiko; Nakayama, Keiich I; Locker, Joseph; Zhu, Liang

    2013-11-11

    pRb and p53 are two major tumor suppressors. Here, we found that p53 activates expression of Pirh2 and KPC1, two of the three ubiquitin ligases for p27. Loss of p53 in the absence of Skp2, the third ubiquitin ligase for p27, shrinks the cellular pool of p27 ubiquitin ligases to accumulate p27 protein. In the absence of pRb and p53, p27 was unable to inhibit DNA synthesis in spite of its abundance, but could inhibit division of cells that maintain DNA replication with rereplication. This mechanism blocked pRb/p53 doubly deficient pituitary and prostate tumorigenesis lastingly coexistent with bromodeoxyuridine-labeling neoplastic lesions, revealing an unconventional cancer cell vulnerability when pRb and p53 are inactivated.

  5. Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Marmorstein, Ronen (UPENN)

    2008-04-02

    The adenovirus (Ad) E1A (Ad-E1A) oncoprotein mediates cell transformation, in part, by displacing E2F transcription factors from the retinoblastoma protein (pRb) tumor suppressor. In this study we determined the crystal structure of the pRb pocket domain in complex with conserved region 1 (CR1) of Ad5-E1A. The structure and accompanying biochemical studies reveal that E1A-CR1 binds at the interface of the A and B cyclin folds of the pRb pocket domain, and that both E1A-CR1 and the E2F transactivation domain use similar conserved nonpolar residues to engage overlapping sites on pRb, implicating a novel molecular mechanism for pRb inactivation by a viral oncoprotein.

  6. Restoration of tumor suppressor gene function by gene replacement or small molecule strategies for the treatment of small cell lung cancer

    DEFF Research Database (Denmark)

    Zandi, Roza

    2011-01-01

    as potential therapeutic strategies for SCLC. However, as mutant p53 proteins tend to accumulate in SCLC cells, reintroduction of wild-type p53 may not be effective due to dominant-negative effects of the mutant protein. Therefore, a more effective approach would be to reactivate the endogenous mutant p53......Small cell lung cancer (SCLC) is a highly malignant disease with no current satisfactory treatments. Identification of new therapeutic targets and treatment strategies are therefore in great demand for the improvement or replacement of current available treatment regimes. Molecular mechanisms...... altered in SCLC include loss of tumor suppressor genes (TSGs), making restoration of normal TSG function a potential therapeutic strategy. One of the TSGs most frequently inactivated in SCLC is the transcription factor p53 (>90%). The majority of the mutations found in the p53 gene are in the DNA binding...

  7. The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth.

    Directory of Open Access Journals (Sweden)

    Wendy M McKimpson

    Full Text Available Multiple endocrine neoplasia type 1 (MEN1 is a genetic disorder characterized by tissue-specific tumors in the endocrine pancreas, parathyroid, and pituitary glands. Although tumor development in these tissues is dependent upon genetic inactivation of the tumor suppressor Men1, loss of both alleles of this gene is not sufficient to induce these cancers. Men1 encodes menin, a nuclear protein that influences transcription. A previous ChIP on chip analysis suggested that menin binds promoter sequences of nol3, encoding ARC, which is a cell death inhibitor that has been implicated in cancer pathogenesis. We hypothesized that ARC functions as a co-factor with Men1 loss to induce the tissue-restricted distribution of tumors seen in MEN1. Using mouse models that recapitulate this syndrome, we found that biallelic deletion of Men1 results in selective induction of ARC expression in tissues that develop tumors. Specifically, loss of Men1 in all cells of the pancreas resulted in marked increases in ARC mRNA and protein in the endocrine, but not exocrine, pancreas. Similarly, ARC expression increased in the parathyroid with inactivation of Men1 in that tissue. To test if ARC contributes to MEN1 tumor development in the endocrine pancreas, we generated mice that lacked none, one, or both copies of ARC in the context of Men1 deletion. Studies in a cohort of 126 mice demonstrated that, although mice lacking Men1 developed insulinomas as expected, elimination of ARC in this context did not significantly alter tumor load. Cellular rates of proliferation and death in these tumors were also not perturbed in the absence of ARC. These results indicate that ARC is upregulated by loss Men1 in the tissue-restricted distribution of MEN1 tumors, but that ARC is not required for tumor development in this syndrome.

  8. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death.

    Science.gov (United States)

    Bhatelia, Khyati; Singh, Aru; Tomar, Dhanendra; Singh, Kritarth; Sripada, Lakshmi; Chagtoo, Megha; Prajapati, Paresh; Singh, Rochika; Godbole, Madan M; Singh, Rajesh

    2014-02-01

    Emerging evidences suggest that chronic inflammation is one of the major causes of tumorigenesis. The role of inflammation in regulation of breast cancer progression is not well established. Recently Mediator of IRF3 Activation (MITA) protein has been identified that regulates NF-κB and IFN pathways. Role of MITA in the context of inflammation and cancer progression has not been investigated. In the current report, we studied the role of MITA in the regulation of cross talk between cell death and inflammation in breast cancer cells. The expression of MITA was significantly lower on in estrogen receptor (ER) positive breast cancer cells than ER negative cells. Similarly, it was significantly down regulated in tumor tissue as compared to the normal tissue. The overexpression of MITA in MCF-7 and T47D decreases the cell proliferation and increases the cell death by activation of caspases. MITA positively regulates NF-κB transcription factor, which is essential for MITA induced cell death. The activation of NF-κB induces TNF-α production which further sensitizes MITA induced cell death by activation of death receptor pathway through capsase-8. MITA expression decreases the colony forming units and migration ability of MCF-7 cells. Thus, our finding suggests that MITA acts as a tumor suppressor which is down regulated during tumorigenesis providing survival advantage to tumor cell.

  9. A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells.

    Science.gov (United States)

    Leotta, Marzia; Biamonte, Lavinia; Raimondi, Lavinia; Ronchetti, Domenica; Di Martino, Maria Teresa; Botta, Cirino; Leone, Emanuela; Pitari, Maria Rita; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Amodio, Nicola

    2014-12-01

    The analysis of deregulated microRNAs (miRNAs) is emerging as a novel approach to disclose the regulation of tumor suppressor or tumor promoting pathways in tumor cells. Targeting aberrantly expressed miRNAs is therefore a promising strategy for cancer treatment. By miRNA profiling of primary plasma cells from multiple myeloma (MM) patients, we previously reported increased miR-125a-5p levels associated to specific molecular subgroups. On these premises, we aimed at investigating the biological effects triggered by miR-125a-5p modulation in MM cells. Expression of p53 pathway-related genes was down-regulated in MM cells transfected with miR-125a-5p mimics. Luciferase reporter assays confirmed specific p53 targeting at 3'UTR level by miR-125a-5p mimics. Interestingly, bone marrow stromal cells (BMSCs) affected the miR-125a-5p/p53 axis, since adhesion of MM cells to BMSCs strongly up-regulated miR-125a-5p levels, while reduced p53 expression. Moreover, ectopic miR-125a-5p reduced, while miR-125-5p inhibitors promoted, the expression of tumor suppressor miR-192 and miR-194, transcriptionally regulated by p53. Lentiviral-mediated stable inhibition of miR-125a-5p expression in wild-type p53 MM cells dampened cell growth, increased apoptosis and reduced cell migration. Importantly, inhibition of in vitro MM cell proliferation and migration was also achieved by synthetic miR-125a-5p inhibitors and was potentiated by the co-expression of miR-192 or miR-194. Taken together, our data indicate that miR-125a-5p antagonism results in the activation of p53 pathway in MM cells, underlying the crucial role of this miRNA in the biopathology of MM and providing the molecular rationale for the combinatory use of miR-125a inhibitors and miR-192 or miR-194 mimics for MM treatment. PMID:24819167

  10. Detection of mutations within exons 4 to 8 of the p53 tumor suppressor gene in canine mammary glands

    Directory of Open Access Journals (Sweden)

    D.M.B. Souza

    2012-04-01

    Full Text Available Fifteen female canines with mammary tumors and 6 normal females were used to study mutations in exons 4 to 8 of the p53 gene. DNA samples from the tumors, respective adjacent normal mammary tissue and mammary glands from healthy animals were sequenced and analyzed for the presence of mutations. Mutations were found in 71.8% of the samples and the most frequent were missense mutations. The most attacked exons in the mammary tumor were 5, 7 and 8, with 23.4, 31.6 and 23.4% mutations, respectively. Canine mammary tumors are related to mutations in gene p53 and mutations mostly occur in the region of the protein that is linked to the DNA in the cell nucleus, which can change the functionality of the cell and propitiate tumor growth. Despite being macroscopically normal, the mammary tissue adjacent to the tumors has mutations that can lead to recurrence if not removed together with the tumor.

  11. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment

    OpenAIRE

    Mikyšková, R; Indrová, M. (Marie); Vlková, V. (Veronika); Bieblová, J. (Jana); Šímová, J; Paračková, Z. (Zuzana); Pajtasz-Piasecka, E.; Rossowska, J.; Reiniš, M

    2014-01-01

    MDSCs represent one of the key players mediating immunosuppression. These cells accumulate in the TME, lymphoid organs, and blood during tumor growth. Their mobilization was also reported after CY therapy. DNMTi 5AC has been intensively studied as an antitumor agent. In this study, we examined, using two different murine tumor models, the modulatory effects of 5AC on TU-MDSCs and CY-MDSCs tumor growth and CY therapy. Indeed, the percentage of MDSCs in the TME and spleens of 5AC-treated mice b...

  12. Wnt inhibitory factor-1 functions as a tumor suppressor through modulating Wnt/β-catenin signaling in neuroblastoma

    OpenAIRE

    Zhang, Jiao; Zhou, Bin; Liu, Yinghua; Chen, Keling; Bao, Pingqian; Wang, Yi; Wang, Jiaxiang; Zhou, Zongguang; Sun, Xiao-Feng; Li, Yuan

    2014-01-01

    Neuroblastoma is the most common extracranial solid tumor in childhood and is associated with serious morbidity and mortality. The effective treatment of neuroblastoma remains one of the major challenges in pediatric oncology. The Wnt signaling pathway has been shown to play a significant role in the pathogenesis of adult and pediatric tumors. WIF-1 has been identified as an important Wnt antagonist which inhibits Wnt/β-catenin signaling by directly binding to Wnt proteins. However, the expre...

  13. Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene

    OpenAIRE

    Carretero, J.; Medina, P.P. (Pedro P.); Pio, R. (Rubén); Montuenga, L M; Sanchez-Cespedes, M.

    2004-01-01

    Germline mutations of the LKB1 gene are responsible for Peutz-Jeghers syndrome (PJS), an autosomal dominant inherited disorder bestowing an increased risk of cancer. We have recently demonstrated that LKB1 inactivating mutations are not confined to PJS, but also appear in lung adenocarcinomas of sporadic origin, including primary tumors and lung cancer cell lines. To accurately determine the frequency of inactivating LKB1 gene mutations in lung tumors we have sequenced the complete coding reg...

  14. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment.

    Science.gov (United States)

    Mikysková, Romana; Indrová, Marie; Vlková, Veronika; Bieblová, Jana; Símová, Jana; Paracková, Zuzana; Pajtasz-Piasecka, Elzbieta; Rossowska, Joanna; Reinis, Milan

    2014-01-01

    MDSCs represent one of the key players mediating immunosuppression. These cells accumulate in the TME, lymphoid organs, and blood during tumor growth. Their mobilization was also reported after CY therapy. DNMTi 5AC has been intensively studied as an antitumor agent. In this study, we examined, using two different murine tumor models, the modulatory effects of 5AC on TU-MDSCs and CY-MDSCs tumor growth and CY therapy. Indeed, the percentage of MDSCs in the TME and spleens of 5AC-treated mice bearing TRAMP-C2 or TC-1/A9 tumors was found decreased. The changes in the MDSC percentage were accompanied by a decrease in the Arg-1 gene expression, both in the TME and spleens. CY treatment of the tumors resulted in additional MDSC accumulation in the TME and spleens. This accumulation was subsequently inhibited by 5AC treatment. A combination of CY with 5AC led to the highest tumor growth inhibition. Furthermore, in vitro cultivation of spleen MDSCs in the presence of 5AC reduced the percentage of MDSCs. This reduction was associated with an increased percentage of CD11c(+) and CD86(+)/MHCII(+) cells. The observed modulatory effect on MDSCs correlated with a reduction of the Arg-1 gene expression, VEGF production, and loss of suppressive capacity. Similar, albeit weaker effects were observed when MDSCs from the spleens of tumor-bearing animals were cultivated with 5AC. Our findings indicate that beside the direct antitumor effect, 5AC can reduce the percentage of MDSCs accumulating in the TME and spleens during tumor growth and CY chemotherapy, which can be beneficial for the outcome of cancer therapy. PMID:24389335

  15. The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weidong; Jin, Xuejun; Deng, Xubin [Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou (China); Zhang, Gong [Department of Radiotherapy, People’s Hospital of Shanxi Province, Taiyuan (China); Zhang, Bingqian [Cancer Research Institution, Southern Medical University, Guangzhou (China); Ma, Lei, E-mail: malei01@yeah.net [Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou (China)

    2014-06-27

    Highlights: • MiR-497 expression was down-regulated in GC patients and GC cell lines. • MiR-497 inhibited cell proliferation and invasion of GC cells in vitro. • MiR-497 modulated eIF4E expression in GC cells. • Restoration of miR-497 decreased tumor growth and metastasis in vivo. - Abstract: Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associated with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3′-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients.

  16. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    Science.gov (United States)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  17. Myb-binding protein 1A (MYBBP1A is essential for early embryonic development, controls cell cycle and mitosis, and acts as a tumor suppressor.

    Directory of Open Access Journals (Sweden)

    Silvia Mori

    Full Text Available MYBBP1A is a predominantly nucleolar transcriptional regulator involved in rDNA synthesis and p53 activation via acetylation. However little further information is available as to its function. Here we report that MYBBP1A is developmentally essential in the mouse prior to blastocyst formation. In cell culture, down-regulation of MYBBP1A decreases the growth rate of wild type mouse embryonic stem cells, mouse embryo fibroblasts (MEFs and of human HeLa cells, where it also promotes apoptosis. HeLa cells either arrest at G2/M or undergo delayed and anomalous mitosis. At mitosis, MYBBP1A is localized to a parachromosomal region and gene-expression profiling shows that its down-regulation affects genes controlling chromosomal segregation and cell cycle. However, MYBBP1A down-regulation increases the growth rate of the immortalized NIH3T3 cells. Such Mybbp1a down-regulated NIH3T3 cells are more susceptible to Ras-induced transformation and cause more potent Ras-driven tumors. We conclude that MYBBP1A is an essential gene with novel roles at the pre-mitotic level and potential tumor suppressor activity.

  18. Trefoil factor 3 is required for differentiation of thyroid follicular cells and acts as a context-dependent tumor suppressor.

    Science.gov (United States)

    Abols, A; Ducena, K; Andrejeva, D; Sadovska, L; Zandberga, E; Vilmanis, J; Narbuts, Z; Tars, J; Eglitis, J; Pirags, V; Line, A

    2015-01-01

    Trefoil factor 3 (TFF3) is overexpressed in a variety of solid epithelial cancers, where it has been shown to promote migration, invasion, proliferation, survival and angiogenesis. On the contrary, in the majority of thyroid tumors, it is downregulated, yet its role in the development of thyroid cancer remains unknown. Here we show that TFF3 exhibits strong cytoplasmic staining of normal thyroid follicular cells and colloid and the staining is increased in hyperfunctioning thyroid nodules, while it is decreased in all thyroid cancers of follicular cell origin. By meta-analysis of gene expression datasets, we found that in the thyroid cancer, conversely to the breast cancer, the expression of TFF3 mRNA was downregulated by estrogen signaling and confirmed this by treating thyroid cancer cells with estradiol. Forced expression of TFF3 in anaplastic thyroid cancer cells resulted in decreased cell proliferation, clonal spheroid formation and entry into the S phase. Furthermore, it induced acquisition of epithelial-like cell morphology and expression of the differentiation markers of thyroid follicular cells and transcription factors implicated in the thyroid morphogenesis and function. Taken together, this study provides the first evidence that TFF3 may act as a tumor suppressor or an oncogene depending on the cellular context.

  19. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers

    Institute of Scientific and Technical Information of China (English)

    Yunneng Tang; Guangwen Shu; Xinwang Yuan; Naihe Jing; Jianguo Song

    2011-01-01

    The forkhead box transcription factor A2(FOXA2)is an important regulator in animal development and body homeostasis.However,whether FOXA2 is involved in transforming growth factor β1(TGF-β1)-mediated epithelialto-mesenchymal transition(EMT)and tumor metastasis remains unknown.The present study showed that in human lung cancer cell lines,the abundance of FOXA2 positively correlates with epithelial phenotypes and negatively correlates with the mesenchymal phenotypes of cells,and TGF-β1 treatment decreased FOXA2 protein level.Consistently,knockdown of FOXA2 promoted EMT and invasion of lung cancer cells,whereas overexpression of FOXA2 reduced the invasion and suppressed TGF-β1-induced EMT.in addition,knockdown of FOXA2 induced slug expression,and ectopic expression of FOXA2 inhibited slug transcription.Furthermore,we identified that FOXA2 can bind to slug promoter through a conserved binding site,and that the DNA-binding region and transactivation region Ⅱ of FOXA2 are required for repression of the slug promoter.These data demonstrate that FOXA2 functions as a suppressor of tumor metastasis by inhibition of EMT.

  20. NLRX1 Acts as an Epithelial-Intrinsic Tumor Suppressor through the Modulation of TNF-Mediated Proliferation

    Directory of Open Access Journals (Sweden)

    Ivan Tattoli

    2016-03-01

    Full Text Available The mitochondrial Nod-like receptor protein NLRX1 protects against colorectal tumorigenesis through mechanisms that remain unclear. Using mice with an intestinal epithelial cells (IEC-specific deletion of Nlrx1, we find that NLRX1 provides an IEC-intrinsic protection against colitis-associated carcinogenesis in the colon. These Nlrx1 mutant mice have increased expression of Tnf, Egf, and Tgfb1, three factors essential for wound healing, as well as increased epithelial proliferation during the epithelial regeneration phase following injury triggered by dextran sodium sulfate. In primary intestinal organoids lacking Nlrx1, stimulation with TNF resulted in exacerbated proliferation and expression of the intestinal stem cell markers Olfm4 and Myb. This hyper-proliferation response was associated with increased activation of Akt and NF-κB pathways in response to TNF stimulation. Together, these results identify NLRX1 as a suppressor of colonic tumorigenesis that acts by controlling epithelial proliferation in the intestine during the regeneration phase following mucosal injury.

  1. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Pamela Maris

    2015-09-01

    survival (hazard ratio = 0.58; 95% CI 0.37-0.91; p = 0.017. Although these data highlight the potential of asporin to serve as a prognostic marker, confirmation of the clinical value would require a prospective study on a much larger patient cohort.Our data show that asporin is a stroma-derived inhibitor of TGF-β1 and a tumor suppressor in breast cancer. High asporin expression is significantly associated with less aggressive tumors, stratifying patients according to the clinical outcome. Future pre-clinical studies should consider options for increasing asporin expression in TNBC as a promising strategy for targeted therapy.

  2. Decreased expression of type Ⅱ tumor suppressor gene RARRES3 in tissues of hepatocellular carcinoma and cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Shun-Yuan Jiang; Jung-Mao Chou; Fur-Jiang Leu; Yu-Yen Hsu; Yu-Lung Shih; Jyh-Cherng Yu; Meei-Shyuan Lee; Rong-Yaun Shyu

    2005-01-01

    AIM: To analyze the expression of retinoic acid receptor responder 3 (RARRES3) protein in paraffin-embedded tissues of hepatocellular carcinoma (HCC) and cholangiocarcinoma(CC), and the correlation of RARRES3 production with tumor differentiation.METHODS: Expression of RARRES3 in tissues from 21CC (10 well-, 7 moderately- and 4 poorly-differentiated)and 32 HCC was determined by immunohistochemistry.RESULTS: Among 21 CC tissues, RARRES3 was detected in 8 (80%) of 10 well-differentiated tumors. Only 2 (18.2%)out of 11 tumors with moderate or poor differentiation showed positive RARRES3 expression. RARRES3 expression in well-differentiated CC was significantly higher than that in tumors with moderate or poor differentiation (Fisher exact test, P<0.01). Expression of RARRES3 was not different between early (Ⅰ and Ⅱ) and late (Ⅲ and Ⅳ) stages of CC.Among 30 HCC tissues, 17 (56.7%) weakly expressed RARRES3 in HCC cells, and 25 (83.3%) normal tissues adjacent to HCC expressed the protein. RARRES3 expression was significantly decreased in HCC tissues compared to that in adjacent normal tissues (logistic regression analysis, OR = 0.27, 95% CI (0.11-0.62), P<0.01).CONCLUSION: Expression of RARRES3 is positively correlated to well-differentiated CC, which supports the role of RARRES3 in malignant epithelial differentiation of the tumor. The decrease in RARRES3 expression in tissues of HCC and CC with moderate and poor differentiation suggests that altered RARRES3 expression may play a role in the carcinogenesis of the liver and biliary tract.

  3. Expression level and methylation status of three tumor suppressor genes, DLEC1, ITGA9 and MLH1, in non-small cell lung cancer.

    Science.gov (United States)

    Pastuszak-Lewandoska, Dorota; Kordiak, Jacek; Antczak, Adam; Migdalska-Sęk, Monika; Czarnecka, Karolina H; Górski, Paweł; Nawrot, Ewa; Kiszałkiewicz, Justyna M; Domańska-Senderowska, Daria; Brzeziańska-Lasota, Ewa

    2016-07-01

    Despite therapeutic advances, lung cancer remains one of the most common causes of cancer-related death in the world. There is a need to develop biomarkers of diagnostic and/or prognostic value and to translate findings in basic science research to clinical application. Tumor suppressor genes (TSGs) represent potential useful markers for disease detection, progression and treatment target. We tried to elucidate the role of three 3p21.3 TSGs: DLEC1, ITGA9 and MLH1, in non-small cell lung cancer (NSCLC). We assessed their expression pattern by qPCR in 59 NSCLC tissues and in the matched macroscopically unchanged lung tissues. Additionally, we analyzed gene promoter methylation status by methylation-specific PCR in NSCLC samples. We did not find significant correlations between gene expression and methylation. In case of DLEC1 and ITGA9, expression levels were decreased in 71-78 % of tumor samples and significantly different between tumor and normal tissues (P = 0.0001). It could point to their diagnostic value. ITGA9 could also be regarded as a diagnostic marker differentiating NSCLC subtypes, as its expression level was significantly lower in squamous cell carcinoma (P = 0.001). The simultaneous down-regulation of DLEC1 and ITGA9 was observed in 52.5 % of NSCLCs. MSPs revealed high frequencies of gene promoter methylation in NSCLCs: 84 % for DLEC1 and MLH1 and 57 % for ITGA9. Methylation indexes reflected moderate gene methylation levels: 34 % for ITGA9, 27 % for MLH1 and 26 % for DLEC1. However, frequent simultaneous methylation of the studied genes in more than 50 % of NSCLCs suggests the possibility of consider them as a panel of epigenetic markers. PMID:27287342

  4. Epigenetic silencing of the 3p22 tumor suppressor DLEC1 by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas

    Directory of Open Access Journals (Sweden)

    Wang Zhaohui

    2012-10-01

    Full Text Available Abstract Background Inactivaion of tumor suppressor genes (TSGs by promoter CpG methylation frequently occurs in tumorigenesis, even in the early stages, contributing to the initiation and progression of human cancers. Deleted in lung and esophageal cancer 1 (DLEC1, located at the 3p22-21.3 TSG cluster, has been identified frequently silenced by promoter CpG methylation in multiple carcinomas, however, no study has been performed for lymphomas yet. Methods We examined the expression of DLEC1 by semi-quantitative reverse transcription (RT-PCR, and evaluated the promoter methylation of DLEC1 by methylation-specific PCR (MSP and bisulfite genomic sequencing (BGS in common lymphoma cell lines and tumors. Results Here we report that DLEC1 is readily expressed in normal lymphoid tissues including lymph nodes and PBMCs, but reduced or silenced in 70% (16/23 of non-Hodgkin and Hodgkin lymphoma cell lines, including 2/6 diffuse large B-cell (DLBCL, 1/2 peripheral T cell lymphomas, 5/5 Burkitt, 6/7 Hodgkin and 2/3 nasal killer (NK/T-cell lymphoma cell lines. Promoter CpG methylation was frequently detected in 80% (20/25 of lymphoma cell lines and correlated with DLEC1 downregulation/silencing. Pharmacologic demethylation reversed DLEC1 expression in lymphoma cell lines along with concomitant promoter demethylation. DLEC1 methylation was also frequently detected in 32 out of 58 (55% different types of lymphoma tissues, but not in normal lymph nodes. Furthermore, DLEC1 was specifically methylated in the sera of 3/13 (23% Hodgkin lymphoma patients. Conclusions Thus, methylation-mediated silencing of DLEC1 plays an important role in multiple lymphomagenesis, and may serve as a non-invasive tumor marker for lymphoma diagnosis.

  5. Inactivation of the tumor suppressor Krüppel-like factor 6 (KLF6) by mutation or decreased expression in hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    PAN Xiu-cheng; CHEN Zhi; CHEN Feng; CHEN Xiao-hong; JIN Han-yin; XU Xiao-yan

    2006-01-01

    Background and aim: The Krüppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of heterozygosity (LOH). However,there is no data reporting the levels of KLF6 both mRNA and protein in hepatocellular carcinomas (HCCs). We therefore detected mutations and expression of KLF6 in HCC tissues and further observed the effect of it on cell growth in HCC cell lines. Methods:We analyzed the exon-2 of KLF6 gene by direct DNA sequencing, and detected the expression of KLF6 by RT-PCR and Western blot in 23 HCC tissues and corresponding nontumorous tissues. Loss of growth suppressive effect of the HCC-derived KLF6 mutant was characterized by in vitro growth curves plotted, flow cytometry and Western blotting. Results: KLF6 mutations were found in 2 of 23 HCC tissues and one of mutations was missense. Expression of KLF6 mRNA or protein was down-regulated in 8 (34.7%) or 9 (39.1%) of 23 HCC tissues. Wild-type KLF6 (wtKLF6) inhibited cellular proliferation and prolonged G1-S transition by inducing the expression of p21WAF 1 following stable transfection into cultured HepG2 cells, but tumor-derived KLF6 mutant (mKLF6) had no effects. Conclusion: Our findings suggest that KLF6 may be involved in pathogenesis of HCC.

  6. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  7. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To identify the relationship between DNA hypermethylation and histone modification at a hypermethylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification.METHODS: We used chromatin immunoprecipitation(ChIP) assay to assess the status of histone acetylation and methylation in promoter regions of the p16 and mutL homolog 1(MLH1) genes in 2 gastric cancer cell lines, SGC-7901 and MGC-803. We used methylationspecific PCR (MSP) to evaluate the effect of 5-Aza-2'-deoxycytidine (5-Aza-dC), trichostatin A (TSA) or their combination treatment on DNA methylation status.We used RT-PCR to determine whether alterations of histone modification status after 5-Aza-dC and TSA treatment are reflected in gene expression.RESULTS: For the p16 and MLH1 genes in two cell lines,silenced loci associated with DNA hypermethylation were characterized by histone H3-K9 hypoacetylation and hypermethylation and histone H3-K4 hypomethylation.Treatment with TSA resulted in moderately increased histone H3-K9 acetylation at the silenced loci with no effect on histone H3-K9 methylation and minimal effects on gene expression. In contrast, treatment with 5-Aza-dC rapidly reduced histone H3-K9 methylation at the silenced loci and resulted in reactivation of the two genes. Combined treatment with 5-Aza-dC and TSA was synergistic in reactivating gene expression at the loci showing DNA hypermethylation. Similarly, histone H3-K4 methylation was not affected after TSA treatment, and increased moderately at the silenced loci after 5-Aza-dC treatment.CONCLUSION: Hypermethylation of DNA in promoter CpG islands is related to transcriptional silencing of tumor suppressor genes. Histone H3-K9 methylation in different regions of the promoters studied correlates with DNA methylation status of each gene in gastric cancer cells. However, histone H3-K9 acetylation and H3-K4 methylation inversely

  8. LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Changhua, E-mail: chkoukou@hotmail.com [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Zhou, Tian [Department of Gastroenterology, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Han, Xilin; Zhuang, Huijie [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Qian, Haixin, E-mail: qianhaixin@hotmail.com [The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000 (China)

    2015-08-21

    Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling. - Highlights: • Promoter methylation of LRIG1 occurred in colorectal cancer cells and tumors. • Restoration of LRIG1 inhibits tumor growth in vitro and in vivo. • Overexpression or knockdown of LRIG1 regulates EGFR/AKT and downstream apoptosis. • Methylation of LRIG1 correlates with its mRNA and protein downregulation. • LRIG1 was firstly identified as an epigenetic target in cancer.

  9. RhoB Acts as a Tumor Suppressor That Inhibits Malignancy of Clear Cell Renal Cell Carcinoma

    Science.gov (United States)

    Ma, Xin; Zhang, Peng; Gao, Yu; Fan, Yang; Pang, Haigang; Gong, Huijie; Shen, Donglai; Gu, Liangyou; Zhang, Yu

    2016-01-01

    This study aims to investigate the biological role of RhoB in clear cell renal cell carcinoma (ccRCC). The expression of RhoB was examined in specimens of patients and cell lines by Western blot and Immunohistochemistry. The correlation between RhoB expression and clinicopathologic variables was also analyzed. The effects of RhoB on cell proliferation, cell cycle, cell apoptosis, and invasion/migration were detected by over-expression and knockdown of RhoB level in ccRCC cells via plasmids and RNAi. The results showed that RhoB was low-expressed in ccRCC surgical specimens and cell lines compared with adjacent normal renal tissues and normal human renal proximal tubular epithelial cell lines (HKC), and its protein expression level was significantly associated with the tumor pathologic parameter embracing tumor size(P = 0.0157), pT stage(P = 0.0035), TNM stage(P = 0.0024) and Fuhrman tumor grade(P = 0.0008). Further, over-expression of RhoB remarkably inhibited the cancer cell proliferation, colony formation and promoted cancer cell apoptosis, and aslo reduced the invasion and migration ability of ccRCC cells. Interestingly, up-regulation of RhoB could induce cell cycle arrest in G2/M phase and led to cell cycle regulators(CyclineB1,CDK1) and pro-apoptotic protein(casp3,casp9) aberrant expression. Moreover, knockdown of RhoB in HKC cells promoted cell proliferation and migration. Taken together, our study indicates that RhoB expression is decreased in ccRCC carcinogenesis and progression. Up-regulation of RhoB significantly inhibits ccRCC cell malignant phenotype. These findings show that RhoB may play a tumor suppressive role in ccRCC cells, raising its potential value in futural therapeutic target for the patients of ccRCC. PMID:27384222

  10. Genetic modelling of PIM proteins in cancer: proviral tagging, cooperation with oncogenes, tumor suppressor genes and carcinogens.

    Directory of Open Access Journals (Sweden)

    Enara eAguirre

    2014-05-01

    Full Text Available The PIM proteins, which were initially discovered as proviral insertion sites in Moloney murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anticancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim and a third group of genes (including bmi1 and gfi1 as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all 3 isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.

  11. 抑癌基因CpG岛甲基化与结直肠癌关系的研究进展%CpG island methylation of tumor suppressor genes in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    彭星宇

    2012-01-01

    CpG island methylation can lead to epigenetic transcription inactivation of the tumor suppressor gene, and in some circumstances it maybe the only mechanism of tumor suppressor gene inactivation, which directly results in the occurrence of the tumors. This paper overviews the relations of the CpG island methylation of the tumor suppressor gene such as Syk; and of pi5 with colorectal cancer, and also presents related problems and future considerations.%CpG岛甲基化可导致抑癌基因的表观遗传学转录失活,在某些情况下可能是抑癌基因失活的惟一机制,直接导致肿瘤的发生.笔者对Syk,p15,hMLH1,APC,DCC,p16等抑癌基因CpG岛甲基化与结直肠癌的关系进行简要综述,并提出存在的问题和展望.

  12. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lin FO

    2014-09-01

    Full Text Available Feiou Lin,1 Linjie Yao,2 Jin Xiao,3 DengFeng Liu,3 Zhenyu Ni11Department of Orthodontics, 2Department of Pedodontics, 3Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of ChinaPurpose: MicroRNA-206 (miR-206 has been proven to be downregulated in many human malignancies and is correlated with tumor progression. However, the roles of miR-206 and its related molecular mechanisms in oral squamous cell carcinoma (OSCC are still unclear. Thus, the aim of this study was to explore the effects of miR-206 in OSCC tumorigenesis and development.Methods: Quantitative real-time polymerase chain reaction was used to detect miR-206 expression in OSCC cell lines and primary tumor tissues. The association of miR-206 expression with clinicopathological factors and prognosis was also analyzed. In addition, the effects of miR-206 on the biological behavior of OSCC cells were investigated. Lastly, the potential regulatory function of miR-206 on K-Ras expression was confirmed.Results: MiR-206 expression was significantly downregulated in OSCC tissue samples and cell lines (both P<0.001. Decreased miR-206 expression was significantly associated with advanced tumor node metastasis (TNM stage, advanced T classifications (ie, size and/or extent of the primary tumor, positive N classification (ie, spread to regional lymph nodes, and shorter overall survival. In addition, upregulation of miR-206 in Tca8113 cells was able to reduce cell proliferation, invasion, and migration and promote cell apoptosis in vitro. Further, K-Ras was confirmed as a direct target of miR-206 by using luciferase reporter assay.Conclusion: These findings indicate that miR-206 may act as a tumor suppressor in OSCC and could serve as a novel therapeutic agent for miR-based therapy.Keywords: miR-206, oral squamous cell carcinoma, prognosis, proliferation, apoptosis, invasion

  13. A conditional mouse mutant in the tumor suppressor SdhD gene unveils a link between p21(WAF1/Cip1 induction and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Africa Millán-Uclés

    Full Text Available Mutations in mitochondrial complex II (MCII; succinate dehydrogenase, Sdh genes cause familiar pheochromocytoma/paraganglioma tumors. Several mechanisms have been proposed to account for Sdh-mutation-induced tumorigenesis, the most accepted of which is based on the constitutive expression of the hypoxia-inducible factor 1α (Hif1α at normal oxygen tension, a theory referred to as "pseudo-hypoxic drive". Other molecular processes, such as oxidative stress, apoptosis, or chromatin remodeling have been also proposed to play a causative role. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. Moreover, the biological factors that determine the tissue-specificity of these tumors have not been identified. In this work, we made use of the inducible SDHD-ESR mouse, a conditional mutant in the SdhD gene, which encodes the small subunit of MCII, and that acts as a tumor suppressor gene in humans. The analysis of the Hif1α pathway in SDHD-ESR tissues and in two newly derived cell lines after complete SdhD loss -a requirement for hereditary paraganglioma type-1 tumor formation in humans- partially recapitulated the "pseudo-hypoxic" response and rendered inconsistent results. Therefore, we performed microarray analysis of adrenal medulla and kidney in order to identify other early gene expression changes elicited by SdhD deletion. Our results revealed that each mutant tissue displayed different variations in their gene expression profiles affecting to different biological processes. However, we found that the Cdkn1a gene was up-regulated in both tissues. This gene encodes the cyclin-dependent kinase inhibitor p21(WAF1/Cip1, a factor implicated in cell cycle, senescence, and cancer. The two SDHD-ESR cell lines also showed accumulation of this protein. This new and unprecedented evidence for a link between SdhD dysfunction and p21(WAF1/Cip1 will open new avenues for the study of the mechanisms that cause

  14. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments

    Science.gov (United States)

    Yu, Lan; Shang, Zeng-Fu; Abdisalaam, Salim; Lee, Kyung-Jong; Gupta, Arun; Hsieh, Jer-Tsong; Asaithamby, Aroumougame; Chen, Benjamin P.C.; Saha, Debabrata

    2016-01-01

    Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability. PMID:27568005

  15. Loss of heterozygosity on 10q23.3 and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions

    Institute of Scientific and Technical Information of China (English)

    Yi-Ling Li; Zhong Tian; Dong-Ying Wu; Bao-Yu Fu; Yan Xin

    2005-01-01

    AIM: To investigate the loss of heterozygosity (LOH) and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions.METHODS: Thirty cases of normal gastric mucosa, advanced and early stage gastric cancer, intestinal metaplasia, atrophic gastritis, and atypical hyperplasia were analyzed for PTEN LOH and mutations within the entire coding region of PTEN gene by PCR-SSCP denaturing PAGE gel electrophoresis,and PTEN mutation was detected by PCR-SSCP sequencing followed by silver staining.RESULTS: LOH rate found in respectively atrophic gastritis was 10% (3/30), intestinal metaplasia 10% (3/30), atypical hyperpiasia 13.3% (4/30), early stage gastric cancer 20%(6/30), and advanced stage gastric cancer 33.3% (9/30),None of the precancerous lesions and early stage gastric cancer showed PTEN mutations, but 10% (3/30) of the advanced stage gastric cancers, which were all positive for LOH, showed PTEN mutation.CONCLUSION: LOH of PTEN gene appears in precancerous lesions, and PTEN mutations are restricted to advanced gastric cancer, LOH and mutation of PTEN gene are closely related to the infiltration and metastasis of gastric cancer.

  16. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21.

    LENUS (Irish Health Repository)

    Sheedy, FJ

    2009-11-29

    The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.

  17. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Munawwar Ali Khan

    2015-01-01

    Full Text Available Sulforaphane (SFN may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs and histone deacetylases (HDACs were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.

  18. MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase

    Science.gov (United States)

    Kaur, Mandeep; Cole, Michael D.

    2012-01-01

    The control of normal cell growth is a balance between stimulatory and inhibitory signals. MYC is a pleiotropic transcription factor that both activates and represses a broad range of target genes and is indispensable for cell growth. While much is known about gene activation by MYC, there is no established mechanism for the majority of MYC repressed genes. We report that MYC transcriptionally activates the PTEN tumor suppressor in normal cells to inactivate the PI3K pathway, thus suppressing AKT activation. Suppression of AKT enhances the activity of the EZH2 histone methyltransferase, a subunit of the epigenetic repressor Polycomb Repressive Complex 2 (PRC2), while simultaneously stabilizing the protein. MYC mediated enhancement in EZH2 protein level and activity results in local and genome-wide elevation in the repressive H3K27me3 histone modification, leading to widespread gene repression including feedback autoregulation of the MYC gene itself. Depletion of either PTEN or EZH2 and inhibition of the PI3K/AKT pathway leads to gene derepression. Importantly, expression of a phospho-defective EZH2 mutant is sufficient to recapitulate nearly half of all MYC-mediated gene repression. We present a novel epigenetic model for MYC-mediated gene repression and propose that PTEN and MYC exist in homeostatic balance to control normal growth which is disrupted in cancer cells. PMID:23135913

  19. Silibinin modulates caudal-type homeobox transcription factor (CDX2), an intestine specific tumor suppressor to abrogate colon cancer in experimental rats.

    Science.gov (United States)

    Sangeetha, N; Nalini, N

    2015-01-01

    To authenticate the colon cancer preventive potential of silibinin, the efficacy of silibinin needs to be tested by evaluating an organ-specific biomarker. The aim of this study was to evaluate the impact of silibinin on the colonic expression of the caudal-type homeobox transcription factor (CDX2) an intestine specific tumor suppressor gene and its downstream targets in the colon of rats challenged with 1,2 dimethyl hydrazine (DMH). Rats of groups 1 and 2 were treated as control and silibinin control. Rats under groups 3 and 4 were given DMH (20 mg/kg body weight (b.w.) subcutaneously) once a week for 15 consecutive weeks from the 4th week of the experimental period. In addition, group 4 rats alone were treated with silibinin (50 mg/kg b.w. per os) everyday throughout the study period of 32 weeks. Histological investigation and messenger RNA and protein expression studies were performed in the colonic tissues of experimental rats. Findings of the study revealed that DMH administration significantly decreased the expression of CDX2 and Guanylyl cyclase C (GCC) in the colon of experimental rats. Further the decreased levels of CDX2 protein, colonic mucin content, and increased number of mast cells in the colon of DMH alone-administered rats reflects the onset of carcinogenesis. The pathological changes caused due to CDX2 suppression were attenuated by silibinin supplementation. PMID:24740923

  20. Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumor suppressor miR-200 family.

    Science.gov (United States)

    Suliman, Mohammed A; Zhang, Zhenxing; Na, Heya; Ribeiro, Ailton L L; Zhang, Yu; Niang, Bachir; Hamid, Abdu Salim; Zhang, Hua; Xu, Lijie; Zuo, Yunfei

    2016-09-01

    Colorectal cancer (CRC) is among the most frequent causes of cancer-related deaths worldwide. Thus, there is a need for the development of new therapeutic approaches for the treatment of CRC. Accumulating evidence has revealed that niclosamide, an anthelminthic drug, exerts antitumor activity in several types of cancer, including colon cancer. However, the underlying molecular mechanisms responsible for the effects of this drug remain elusive. Previous studies have shown that the aberrant Notch signaling pathway contributes to the carcinogenesis of colon cancer. Herein, we examined the effects of niclosamide on the growth, migration and apoptosis of colon cancer cells, and the role of the Notch signaling pathway. By performing MTT, wound-healing and Transwell migration assays, we observed that niclosamide suppressed the growth and migration of colon cancer cells, and flow cytometry demonstrated that cell apoptosis was induced. This was associated with the decreased protein expression of Notch1, Notch2, Notch3 and Hey1, and the increased expression of the tumor suppressor microRNA (miR or miRNA)‑200 family members (miR‑200a, miR-200b, miR-200c, miR-141 and miR-429) that are typically downregulated in colon cancer. Collectively, these findings demonstrate that niclosamide potentially inhibits the progression of colon cancer by downregulating Notch signaling and by upregulating the miR-200 family members. PMID:27460529

  1. Transcription of the Tumor Suppressor Genes p53 and RB in Lymphocytes from Patients with Chronic Kidney Disease: Evidence of Molecular Senescence?

    Directory of Open Access Journals (Sweden)

    Vasileios Kordinas

    2012-01-01

    Full Text Available Patients suffering from renal failure exhibit an impaired immune system function. We wanted to investigate the transcription of the tumor suppressor genes p53 and RB to record, if these cells could be stimulated in vitro in order to divide, after the addition of antigenic and inflammatory factors. This expression was measured by real-time PCR in peripheral blood mononuclear cells (PBMCs from three different groups: ten healthy individuals, ten patients with chronic kidney disease (CKD, and ten dialysis patients with end stage renal disease (ESRD. The transcription rate of these genes was also measured after the cultivation of PBMCs under four different conditions: just with the culture medium, with lipopolysaccharide (LPS, with C-reactive protein (CRP, and with lipoxin A4 (LXA4-LPS. Our results show that in most cases after the cultivation with additives, the transcription levels were higher in dialysis patients compared to those of the other two groups. Our findings serve as indications of cellular senescence on a molecular level, while it seems that these cells are less easily stimulated in vitro in order to duplicate.

  2. 肺癌相关抑癌基因的研究进展%Research advancement on tumor suppressor gene in lung caner

    Institute of Scientific and Technical Information of China (English)

    陈波; 吴剑卿

    2008-01-01

    The pathogenesis of lung cancer involves a multistep process of genetic and molecular changes in multigenes.Effects of conventional therapies are not obvious.therefore the critical-gene therapy comes into being because of demand.The defection of tumor suppressor genes is one of causative agents in lung cancer,which is also a key target in gene therapy.This article reviews the current research progresses in anti-oncogenes of lung cancer.%肺癌的发病是多基因共同作用的结果,涉及到多个基因的遗传与分子变化.传统疗法效果不佳,因此针对问题基因进行治疗的手段应运而生.抑癌基因的失活是肺癌的重要致病因素之一,是基因治疗的一个重要靶点.本文就肺癌中具有重要意义的抑癌基因的最新研究进展作一综述.

  3. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation

    Science.gov (United States)

    le Sage, Carlos; Nagel, Remco; Egan, David A; Schrier, Mariette; Mesman, Elly; Mangiola, Annunziato; Anile, Corrado; Maira, Giulio; Mercatelli, Neri; Ciafrè, Silvia Anna; Farace, Maria Giulia; Agami, Reuven

    2007-01-01

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of protein coding genes. Patterns of misexpression of miRNAs in cancer suggest key functions of miRNAs in tumorigenesis. However, current bioinformatics tools do not entirely support the identification and characterization of the mode of action of such miRNAs. Here, we used a novel functional genetic approach and identified miR-221 and miR-222 (miR-221&222) as potent regulators of p27Kip1, a cell cycle inhibitor and tumor suppressor. Using miRNA inhibitors, we demonstrate that certain cancer cell lines require high activity of miR-221&222 to maintain low p27Kip1 levels and continuous proliferation. Interestingly, high levels of miR-221&222 appear in glioblastomas and correlate with low levels of p27Kip1 protein. Thus, deregulated expression of miR-221&222 promotes cancerous growth by inhibiting the expression of p27Kip1. PMID:17627278

  4. The CREB Coactivator CRTC2 is a Lymphoma Tumor Suppressor that Preserves Genome Integrity Through Transcription of DNA Mismatch Repair Genes

    Science.gov (United States)

    Fang, Minggang; Pak, Magnolia L.; Chamberlain, Lynn; Xing, Wei; Yu, Hongbo; Green, Michael R.

    2015-01-01

    SUMMARY The CREB-regulated transcription coactivator CRTC2 stimulates CREB target gene expression and has a well-established role in modulating glucose and lipid metabolism. Here we find, unexpectedly, that loss of CRTC2, as well as CREB1 and its coactivator CREB-binding protein (CBP), results in a deficiency in DNA mismatch repair (MMR) and a resultant increased mutation frequency. We show that CRTC2, CREB1 and CBP are transcriptional activators of well-established MMR genes, including EXO1, MSH6, PMS1 and POLD2. Mining of expression profiling databases and analysis of patient samples reveal that CRTC2 and its target MMR genes are down-regulated in specific T-cell lymphoma subtypes, which are microsatellite unstable. The levels of acetylated histone H3 on the CRTC2 promoter are significantly reduced in lymphoma compared to normal tissue, explaining the decreased CRTC2 expression. Our results establish a role for CRTC2 as a lymphoma tumor suppressor gene that preserves genome integrity by stimulating transcription of MMR genes. PMID:26004186

  5. A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1 to inhibit cancer cell growth in esophageal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhou Yun

    2011-02-01

    Full Text Available Abstract Background The esophageal carcinoma related gene 4 (ECRG4 was initially identified and cloned from human normal esophageal epithelium in our laboratory (GenBank accession no.AF325503. ECRG4 has been described as a novel tumor suppressor gene associated with prognosis in esophageal squamous cell carcinoma (ESCC. Methods In this study, binding affinity assay in vitro and co-immunoprecipitation experiment in vivo were utilized to verify the physical interaction between ECRG4 and transmembrane protease, serine 11A (TMPRSS11A, also known as ECRG1, GenBank accession no. AF 071882. Then, p21 protein expression, cell cycle and cell proliferation regulations were examined after ECRG4 and ECRG1 co-transfection in ESCC cells. Results We revealed for the first time that ECRG4 interacted directly with ECRG1 to inhibit cancer cell proliferation and induce cell cycle G1 phase block in ESCC. Binding affinity and co-immunoprecipitation assays demonstrated that ECRG4 interacted directly with ECRG1 in ESCC cells. Furthermore, the ECRG4 and ECRG1 co-expression remarkably upregulatd p21 protein level by Western blot (P Conclusions ECRG4 interacts directly with ECRG1 to upregulate p21 protein expression, induce cell cycle G1 phase block and inhibit cancer cells proliferation in ESCC.

  6. Loss of heterozygosity on chromosome 10q23 and mutation of the phosphatase and tensin homolog deleted from chromosome 10 tumor suppressor gene in Korean hepatocellular carcinoma patients.

    Science.gov (United States)

    Bae, Jei-Jun; Rho, Jin-Woo; Lee, Tae-Jin; Yun, Sung-Su; Kim, Hong-Jin; Choi, Joon-Hyuk; Jeong, Daewon; Jang, Byeong-Churl; Lee, Tae-Yoon

    2007-10-01

    Loss of heterozygosity (LOH) in the 10q23 chromosomal region was analyzed in 18 tissue samples from Korean hepatocellular carcinoma (HCC) patients. LOH at the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) region (D10S215, AFMa086wg9 and D10S541) was found in 8 of the 18 (44.4%) HCCs. LOH (20%) and microsatellite instability (26.7%) were also frequently found at the D10S2177 locus, which is located on the telomere side of the PTEN region. LOH was found in other loci, such as AFM280we1 and D10S2281. The presence of LOH in regions other than the PTEN region on chromosome 10q23 suggested the presence of additional tumor suppressor gene(s). PTEN mutation was found in only a subset of HCCs: A single base insertion at the end of the 5'-end splice signal (AG-GUAAGUU) in intron 5 and a silent mutation in exon 6 (codon 188, CTG-Val to CTA). Our data collectively suggest that the genetic alterations of chromosome 10q23, including the PTEN gene, could be important in hepatocarcinogenesis in the Korean population. PMID:17786367

  7. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance.

    Science.gov (United States)

    Sun, Fan; Xiao, Yadong; Qu, Zhaoxia

    2015-03-20

    Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.

  8. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    Science.gov (United States)

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p smoking for more than 40 pack-years (OR = 4.21, p smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC.

  9. Drosophila endocytic neoplastic tumor suppressor genes regulate Sav/Wts/Hpo signaling and the c-Jun N-terminal kinase pathway.

    Science.gov (United States)

    Robinson, Brian S; Moberg, Kenneth H

    2011-12-01

    Genetic screens in the fruit fly Drosophila melanogaster have identified a class of neoplastic tumor suppressor genes (endocytic nTSGs), which encode proteins that localize to endosomes and facilitate the trafficking of membrane-bound receptors and adhesion molecules into the degradative lysosome. Loss of endocytic nTSGs transforms imaginal disc epithelia into highly proliferative, invasive tissues that fail to differentiate and display defects in cellular apicobasal polarity, adhesion and tissue architecture. As vertebrate homologs of some Drosophila nTSGs are linked to tumor formation, identifying molecular changes in signaling associated with nTSG loss could inform understanding of neoplastic transformation in vertebrates. Here we show that mutations in genes that act at multiple steps of the endolysosomal pathway lead to autonomous activation of the Sav/Wts/Hpo (SWH) transcriptional effector Yki (YAP/TAZ in vertebrates) and the Jun N-terminal kinase (JNK), which is known to promote Yki activity in cells with disrupted polarity. Yki and JNK activity are elevated by mutations at multiple steps in the endolysosomal pathway including mutations in the AP-2σ gene, which encodes a component of the AP-2 adaptor complex that recruits cargoes into clathrin-coated pits for subsequent internalization. Moreover, reduction of JNK activity can decrease elevated Yki-signaling caused by altered endocytosis. These studies reveal a broad requirement for components of the endocytic pathway in regulating SWH and JNK outputs, and place Drosophila endocytic nTSGs into a network that involving two major signaling pathways implicated in oncogenesis. PMID:22101275

  10. The Human Homolog of Drosophila Headcase Acts as a Tumor Suppressor through Its Blocking Effect on the Cell Cycle in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available The molecular pathogenesis of hepatocellular carcinoma (HCC is heterogeneous and extremely complex. Thus, for individual molecular targeted therapy, novel molecular markers are needed. The abnormal expression of the human homolog of Drosophila headcase (HECA homo has been found in pancreatic, colorectal, and oral squamous cell carcinoma. Studies of oral squamous cell carcinoma have also demonstrated that the HECA homo protein can be negatively controlled by the Wnt-pathway and transcription factor 4 (TCF4 and can slow cell division by interacting with cyclins and CDKs. However, the role of HECA in HCC has not been reported elsewhere. Here, immunohistochemical analysis revealed that the downregulation of HECA homo protein occurred in 71.0% (66/93 of HCC cases and was positively correlated with a poorly differentiated grade, high serum AFP level, liver cirrhosis and large tumor size. The expression of HECA homo was detected in five live cell lines. In vitro, the overexpression of HECA homo in HepG2, Huh-7 and MHCC-97H cells could inhibit cell proliferation and colony formation and induce G1 phase arrest. In contrast, the downregulation of HECA homo could promote cell proliferation, colony formation and the cell cycle process. However, neither the overexpression nor downregulation of HECA homo in the three cell lines could affect cell migration or invasion. Collectively, HECA homo is regularly expressed in normal live cells, and the HECA homo protein level is heterogeneously altered in HCC, but the downregulation of HECA homo is more common and positively correlated with several malignant phenotypes. The HECA homo protein can slow cell proliferation to some extent primarily through its blocking effect on the cell cycle. Hence, the HECA homo protein may act as a tumor suppressor in HCC and might be a potential molecular marker for diagnostic classification and targeted therapy in HCC.

  11. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: SAGE (serial analysis of gene expression is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. METHODOLOGY/PRINCIPAL FINDINGS: To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. CONCLUSIONS/SIGNIFICANCE: The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  12. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas.

    Science.gov (United States)

    Byun, Do-Sun; Cho, Kyucheol; Ryu, Byung-Kyu; Lee, Min-Goo; Kang, Min-Ju; Kim, Hak-Ryul; Chi, Sung-Gil

    2003-11-01

    X-linked inhibitor of apoptosis (XIAP) is the most potent member of the IAP family that exerts antiapoptotic effects by interfering with the activities of caspases. Recently, XIAP-associated factor 1 (XAF1) and two mitochondrial proteins, Smac/DIABLO and HtrA2, have been identified to negatively regulate the caspase-inhibiting activity of XIAP. To explore the candidacy of XAF1, Smac/DIABLO, and HtrA2 as a tumor suppressor in gastric tumorigenesis, we investigated the expression and mutation status of the genes in 123 gastric tissues and 15 cancer cell lines. Whereas Smac/DIABLO and HtrA2 transcripts were normally expressed in all cancer specimens we examined, XAF1 transcript was not expressed or present at extremely low levels in 40% (6 of 15) of cancer cell lines and in 23% (20 of 87) of primary carcinomas. Abnormal reduction of XAF1 expression showed a strong correlation with stage and grade of tumors, and a tumor-specific down-regulation of XAF1 was observed in 45% (9 of 20) of matched sets. Unlike XAF1, XIAP expression exhibited no detectable alteration in cancers. Whereas loss of heterozygosity within the XAF1 region or somatic mutations of the gene was not detected, expression of XAF1 transcript was reactivated in all nonexpressor cell lines after 5-aza-2-deoxycytidine treatment. The 5' upstream region of the XAF1 gene encompasses no gastric cell-rich region that rigorously satisfies the formal criteria for CpG islands. However, bisulfite DNA sequencing analysis for 34 CpG sites in the promoter region revealed a strong association between hypermethylation and gene silencing. Moreover, transcriptional silencing of XAF1 was tightly associated with hypermethylation of seven CpGs located in the 5' proximal region (nucleotides -23 to -234). Additionally, loss or abnormal reduction of XAF1 expression was found to inversely correlate with p53 mutations, suggesting that epigenetic inactivation of XAF1 and mutational alteration of p53 might be mutually exclusive

  13. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Coskun, Mehmet; Bzorek, Michael;

    2013-01-01

    Wnt signaling is often constitutively active in colorectal cancer cells. The expression of the intestinal specific transcription factor CDX2 is found to be transiently decreased in invasive cells at the tumor/stroma interface. A recent ChIP-Seq study has indicated that several Wnt signaling......-related genes are regulated by CDX2. The aim was to investigate the role of decreased CDX2 level on the expression of APC, AXIN2 and GSK3β in migrating colon cancer cells at the invasive front. CDX2-bound promoter and enhancer regions from APC, AXIN2 and GSK3β were analyzed for gene regulatory activity...... and the expression pattern of APC and GSK3β at the invasive front was evaluated by immunohistochemical procedures. Transfection of intestinal and non-intestinal cell lines demonstrated that CDX2 activated APC and AXIN2 promoter activities via intestinal cell-specific enhancer elements. Suppressed CDX2 expression...

  14. Expression of von Hippel-Lindau tumor suppressor and tumor-associated carbonic anhydrases Ⅸ and Ⅻ in normal and neoplastic colorectal mucosa

    Institute of Scientific and Technical Information of China (English)

    Antti J. Kivela; Abdul Waheed; William S. Sly; Hannu Rajaniemi; Silvia Pastorekova; Jaromir Pastorek; Seppo Parkkila; Juha Saarnio; Tuomo J. Karttunen; Jyrki Kivela; Anna-Kaisa Parkkila; Maria Bartosova; Vojtech Mucha; Michal Novak

    2005-01-01

    AIM: To analyze possible relationships between CA Ⅸ/ CA Ⅻ and pVHL expression in normal and neoplastic colorectal mucosa.METHODS: Immunohistochemical staining of 42 tissue specimens obtained from 17 cancer patients was performed to evaluate the distribution and semi-quantitatively assess the levels of CA Ⅸ, CA Ⅻ and pVHL. VHL mRNAs from 14fresh-frozen tumors was amplified by RT-PCR and subjected to sequencing. CA9 and CA12 mRNA levels were analyzed by semi-quantitative RT-PCR in comparison with VEGF as an indicator of hypoxia that uncouples the pVHL control.RESULTS: Tumor tissues were associated with a borderline increase of CA Ⅸ staining signal and slight but significant decrease of CA Ⅻ immunoreactivity, whereas no association was found for pVHL. Sequence analysis of RT-PCR-amplified VHL mRNAs revealed no deletions/ mutations, suggesting that they were VHL-competent. We did not observe any correlation between pVHL andCA Ⅸ/CA Ⅻ proteins as well as between VEGF and CA9mRNAs, but the tumor-associated changes in mRNA levels of VEGF and CA12showed a significant inverse relationship. CONCLUSION: Our results indicate that CA9 and CA12 are regulated by different intratumoral factors and that lack of apparent relationship between the levels of CA Ⅸ/CA Ⅻ and pVHL cannot be fully assigned to uncoupling of negative regulatory function of pVHL by tumor hypoxia signified by induced VEGF transcription. The interplay between the functional pVHL and CA Ⅸ/CA Ⅻ in colorectal tumors seems rather complex and is not evident merely at the expression levels.

  15. The FBXO4 Tumor Suppressor Functions as a Barrier to BrafV600E-Dependent Metastatic Melanoma

    Science.gov (United States)

    Lee, Eric K.; Lian, Zhaorui; D'Andrea, Kurt; Letrero, Richard; Sheng, WeiQi; Liu, Shujing; Diehl, J. Nathaniel; Pytel, Dariusz; Barbash, Olena; Schuchter, Lynn; Amaravaradi, Ravi; Xu, Xiaowei; Herlyn, Meenhard; Nathanson, Katherine L.

    2013-01-01

    Cyclin D1–cyclin-dependent kinase 4/6 (CDK4/6) dysregulation is a major contributor to melanomagenesis. Clinical evidence has revealed that p16INK4A, an allosteric inhibitor of CDK4/6, is inactivated in over half of human melanomas, and numerous animal models have demonstrated that p16INK4A deletion promotes melanoma. FBXO4, a specificity factor for the E3 ligase that directs timely cyclin D1 proteolysis, has not been studied in melanoma. We demonstrate that Fbxo4 deficiency induces Braf-driven melanoma and that this phenotype depends on cyclin D1 accumulation in mice, underscoring the importance of this ubiquitin ligase in tumor suppression. Furthermore, we have identified a substrate-binding mutation, FBXO4 I377M, that selectively disrupts cyclin D1 degradation while preserving proteolysis of the other known FBXO4 substrate, TRF1. The I377M mutation and Fbxo4 deficiency result in nuclear accumulation of cyclin D1, a key transforming neoplastic event. Collectively, these data provide evidence that FBXO4 dysfunction, as a mechanism for cyclin D1 overexpression, is a contributor to human malignancy. PMID:24019069

  16. The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-dependent metastatic melanoma.

    Science.gov (United States)

    Lee, Eric K; Lian, Zhaorui; D'Andrea, Kurt; Letrero, Richard; Sheng, WeiQi; Liu, Shujing; Diehl, J Nathaniel; Pytel, Dariusz; Barbash, Olena; Schuchter, Lynn; Amaravaradi, Ravi; Xu, Xiaowei; Herlyn, Meenhard; Nathanson, Katherine L; Diehl, J Alan

    2013-11-01

    Cyclin D1-cyclin-dependent kinase 4/6 (CDK4/6) dysregulation is a major contributor to melanomagenesis. Clinical evidence has revealed that p16(INK4A), an allosteric inhibitor of CDK4/6, is inactivated in over half of human melanomas, and numerous animal models have demonstrated that p16(INK4A) deletion promotes melanoma. FBXO4, a specificity factor for the E3 ligase that directs timely cyclin D1 proteolysis, has not been studied in melanoma. We demonstrate that Fbxo4 deficiency induces Braf-driven melanoma and that this phenotype depends on cyclin D1 accumulation in mice, underscoring the importance of this ubiquitin ligase in tumor suppression. Furthermore, we have identified a substrate-binding mutation, FBXO4 I377M, that selectively disrupts cyclin D1 degradation while preserving proteolysis of the other known FBXO4 substrate, TRF1. The I377M mutation and Fbxo4 deficiency result in nuclear accumulation of cyclin D1, a key transforming neoplastic event. Collectively, these data provide evidence that FBXO4 dysfunction, as a mechanism for cyclin D1 overexpression, is a contributor to human malignancy.

  17. Detection of a Tumor Suppressor Gene Variant Predisposing to Colorectal Cancer in an 18th Century Hungarian Mummy.

    Directory of Open Access Journals (Sweden)

    Michal Feldman

    Full Text Available Mutations of the Adenomatous polyposis coli (APC gene are common and strongly associated with the development of colorectal adenomas and carcinomas. While extensively studied in modern populations, reports on visceral tumors in ancient populations are scarce. To the best of our knowledge, genetic characterization of mutations associated with colorectal cancer in ancient specimens has not yet been described. In this study we have sequenced hotspots for mutations in the APC gene isolated from 18th century naturally preserved human Hungarian mummies. While wild type APC sequences were found in two mummies, we discovered the E1317Q missense mutation, known to be a colorectal cancer predisposing mutation, in a large intestine tissue of an 18th century mummy. Our data suggests that this genetic predisposition to cancer already existed in the pre-industrialization era. This study calls for similar investigations of ancient specimens from different periods and geographical locations to be conducted and shared for the purpose of obtaining a larger scale analysis that will shed light on past cancer epidemiology and on cancer evolution.

  18. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2

    DEFF Research Database (Denmark)

    Jansson, M D; Djodji Damas, Nkerorema; Lees, M;

    2014-01-01

    proliferation in response to stress and represents the most commonly lost and mutated gene in human cancers. The function of p53 is inhibited by the MDM2 oncoprotein. Using a high-throughput screening approach, we identified miR-339-5p as a regulator of the p53 pathway. We demonstrate that this regulation...... occurs via the ability of miR-339-5p to target directly the 3'-untranslated region of MDM2 mRNA, reducing MDM2 expression and thus promoting p53 function. Consequently, overexpression of miR-339-5p positively impacts on p53-governed cellular responses such as proliferation arrest and senescence, whereas...... inhibition of miR-339-5p function perturbs the p53 response in cancer cells, allowing an increased proliferation rate. In addition, miR-339-5p expression is downregulated in tumors harboring wild-type TP53, suggesting that reduction of miR-339-5p level helps to suppress the p53 response in p53-competent...

  19. WISP3 (CCN6 Is a Secreted Tumor-Suppressor Protein that Modulates IGF Signaling in Inflammatory Breast Cancer

    Directory of Open Access Journals (Sweden)

    Celina G. Kleer

    2004-03-01

    Full Text Available Inflammatory breast cancer (IBC is the most lethal form of locally advanced breast cancer. We have found that WISP3 is lost in 80% of human IBC tumors and that it has growth- and angiogenesis-inhibitory functions in breast cancer in vitro and in vivo. WISP3 is a cysteine-rich, putatively secreted protein that belongs to the CCN family. It contains a signal peptide at the N-terminus and four highly conserved motifs. Here, for the first time, we investigate the function of WISP3 protein in relationship to its structural features. We found that WISP3 is secreted into the conditioned media and into the lumens of normal breast ducts. Once secreted, WISP3 was able to decrease, directly or through induction of other molecule(s, the IGF-1-induced activation of the IGF-IR, and two of its main downstream signaling molecules, IRS1 and ERK-1/2, in SUM149 IBC cells. Furthermore, WISP3 containing conditioned media decreased the growth rate of SUM149 cells. This work sheds light into the mechanism of WISP3 function by demonstrating that it is secreted and that, once in the extracellular media, it induces a series of molecular events that leads to modulation of IGF-IR signaling pathways and cellular growth in IBC cells.

  20. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells.

    Science.gov (United States)

    Wong, Vincent Kam Wai; Dong, Hang; Liang, Xu; Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang

    2016-03-01

    Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418

  1. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Gestl, Erin E., E-mail: egestl@wcupa.edu [Department of Biology, West Chester University, 750 S Church Street, West Chester, PA 19383 (United States); Anne Boettger, S., E-mail: aboettger@wcupa.edu [Department of Biology, West Chester University, 750 S Church Street, West Chester, PA 19383 (United States)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53

  2. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22(q24.13;q11.21 in a young girl with dysgerminoma

    Directory of Open Access Journals (Sweden)

    Fiorio Patrizia

    2009-07-01

    Full Text Available Abstract Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22 in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN, a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.

  3. MicroRNA-375 Functions as a Tumor-Suppressor Gene in Gastric Cancer by Targeting Recepteur d’Origine Nantais

    Science.gov (United States)

    Lian, Sen; Park, Jung Sun; Xia, Yong; Nguyen, Thi Thinh; Joo, Young Eun; Kim, Kyung Keun; Kim, Hark Kyun; Jung, Young Do

    2016-01-01

    Emerging evidence supports a fundamental role for microRNAs (miRNA) in regulating cancer metastasis. Recently, microRNA-375 (miR-375) was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d’Origine Nantais (RON), a receptor tyrosine kinase, has been reported in tumors. However, the function of miR-375 and RON expression in gastric cancer metastasis has not been sufficiently studied. In silico analysis identified miR-375 binding sites in the 3′-untranslated regions (3′-UTR) of the RON-encoding gene. Expression of miR-375 resulted in reduced activity of a luciferase reporter containing the 3′-UTR fragments of RON-encoding mRNA, confirming that miR-375 directly targets the 3′-UTR of RON mRNA. Moreover, we found that overexpression of miR-375 inhibited mRNA and protein expression of RON, which was accompanied by the suppression of cell proliferation, migration, and invasion in gastric cancer AGS and MKN-28 cells. Ectopic miR-375 expression also induced G1 cell cycle arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of retinoblastoma (Rb). Knockdown of RON by RNAi, similar to miR-375 overexpression, suppressed tumorigenic properties and induced G1 arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of Rb. Thus, our study provides evidence that miR-375 acts as a suppressor of metastasis in gastric cancer by targeting RON, and might represent a new potential therapeutic target for gastric cancer. PMID:27689991

  4. The tumor suppressor p53 guides GluA1 homeostasis through Nedd4-2 during chronic elevation of neuronal activity.

    Science.gov (United States)

    Jewett, Kathryn A; Zhu, Jiuhe; Tsai, Nien-Pei

    2015-10-01

    Chronic activity perturbation in neurons can trigger homeostatic mechanisms to restore the baseline function. Although the importance and dysregulation of neuronal activity homeostasis has been implicated in neurological disorders such as epilepsy, the complete signaling by which chronic changes in neuronal activity initiate the homeostatic mechanisms is unclear. We report here that the tumor suppressor p53 and its signaling are involved in neuronal activity homeostasis. Upon chronic elevation of neuronal activity in primary cortical neuron cultures, the ubiquitin E3 ligase, murine double minute- 2 (Mdm2), is phosphorylated by the kinase Akt. Phosphorylated Mdm2 triggers the degradation of p53 and subsequent induction of a p53 target gene, neural precursor cell expressed developmentally down-regulated gene 4-like (Nedd4-2). Nedd4-2 encodes another ubiquitin E3 ligase. We identified glutamate receptor subunit 1 (GluA1), subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as a novel substrate of Nedd4-2. The regulation of GluA1 level is known to be crucial for neuronal activity homeostasis. We confirmed that, by pharmacologically inhibiting Mdm2-mediated p53 degradation or genetically reducing Nedd4-2 in a mouse model, the GluA1 ubiquitination and down-regulation induced by chronically elevated neuronal activity are both attenuated. Our findings demonstrate the first direct function of p53 in neuronal homeostasis and elucidate a new mechanism by which cortical neurons respond to chronic activity perturbation. PMID:26250624

  5. Metallothionein 1G functions as a tumor suppressor in thyroid cancer through modulating the PI3K/Akt signaling pathway

    International Nuclear Information System (INIS)

    MT1G inactivation mediated by promoter methylation has been reported in thyroid cancer. However, the role of MT1G in thyroid carcinogenesis remains unclear. The aim of this study is to examine the biological functions and related molecular mechanisms of MT1G in thyroid cancer. Methylation-specific PCR (MSP) was performed to analyze promoter methylation of MT1G and its relationship with clinicopathological characteristics of papillary thyroid cancer (PTC) patients. Conventional and real-time quantitative RT-PCR assays were used to evaluate mRNA expression. The functions of ectopic MT1G expression were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. MT1G expression was frequently silenced or down-regulated in thyroid cancer cell lines, and was also significantly decreased in primary thyroid cancer tissues compared with non-malignant thyroid tissues. Promoter methylation, along with histone modification, contributes to MT1G inactivation in thyroid tumorigenesis. Moreover, our data showed that MT1G hypermethylation was significantly positively associated with lymph node metastasis in PTC patients. Importantly, restoring MT1G expression in thyroid cancer cells dramatically suppressed cell growth and invasiveness, and induced cell cycle arrest and apoptosis through inhibiting phosphorylation of Akt and Rb. We have for the first time revealed that MT1G appears to be functional tumor suppressor involved in thyroid carcinogenesis mainly through modulating the phosphatidylinositol-3-kinase (PI3K)/Akt pathway and partially through regulating the activity of Rb/E2F pathway in this study

  6. Molecular cloning, characterization and expression analysis of tumor suppressor protein p53 from orange-spotted grouper, Epinephelus coioides in response to temperature stress.

    Science.gov (United States)

    Qi, Zeng-Hua; Liu, Yu-Feng; Luo, Sheng-Wei; Chen, Chu-Xian; Liu, Yuan; Wang, Wei-Na

    2013-11-01

    The tumor suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. In the present study, the cDNA of p53 from the orange-spotted grouper (Epinephelus coioides) (Ec-p53) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of Ec-p53 was of 1921 bp, including an open reading frame (ORF) of 1143 bp encoding a polypeptide of 380 amino acids with predicted molecular weight of 42.3 kDa and theoretical isoelectric point of 7.0. Quantitative real-time PCR (qRT-PCR) assays revealed that Ec-p53 was ubiquitously expressed in all the examined tissues but with high levels in intestine and liver of the orange-spotted grouper. In addition, we measured the DNA damage and apoptosis in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in grouper in conditions where the temperature was 15 ± 0.5 °C. Furthermore, qRT-PCR and western blot confirmed that low temperature stress induced upregulation of Ec-p53 in the mRNA and protein levels. These results suggest that low temperature-induced oxidative stress may cause DNA damage or apoptosis, and cooperatively stimulate the expression of Ec-p53, which plays a critical role in immune defense and antioxidant responses.

  7. The tyrosine 343 residue of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) is important for its interaction with SHP1, a cytoplasmic tyrosine phosphatase with tumor suppressor functions.

    Science.gov (United States)

    Hegazy, Samar A; Wang, Peng; Anand, Mona; Ingham, Robert J; Gelebart, Pascal; Lai, Raymond

    2010-06-25

    The cytoplasmic tyrosine phosphatase SHP1 has been shown to inhibit the oncogenic fusion protein nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), and loss of SHP1 contributes to NPM-ALK-mediated tumorigenesis. In this study, we aimed to further understand how SHP1 interacts and regulates NPM-ALK. We employed an in vitro model in which GP293 cells were transfected with various combinations of NPM-ALK (or mutants) and SHP1 (or mutants) expression vectors. We found that SHP1 co-immunoprecipitated with NPM-ALK, but not the enzymatically inactive NPM-ALK(K210R) mutant, or the mutant in which all three functionally important tyrosine residues (namely, Tyr(338), Tyr(342), and Tyr(343)) in the kinase activation loop (KAL) of ALK were mutated. Interestingly, whereas mutation of Tyr(338) or Tyr(342) did not result in any substantial change in the NPM-ALK/SHP1 binding (assessed by co-immunoprecipitation), mutation of Tyr(343) abrogated this interaction. Furthermore, the NPM-ALK/SHP1 binding was readily detectable when each of the remaining 8 tyrosine residues known to be phosphorylated were mutated. Although the expression of SHP1 effectively reduced the level of tyrosine phosphorylation of NPM-ALK, it did not affect that of the NPM-ALK(Y343F) mutant. In soft agar clonogenic assay, SHP1 expression significantly reduced the tumorigenicity of NPM-ALK but not that of NPM-ALK(Y343F). In conclusion, we identified Tyr(343) of NPM-ALK as the crucial site for mediating the NPM-ALK/SHP1 interaction. Our results also support the notion that the tumor suppressor effects of SHP1 on NPM-ALK are dependent on its ability to bind to this oncogenic protein.

  8. Tumor Suppressor Density-enhanced Phosphatase-1 (DEP-1) Inhibits the RAS Pathway by Direct Dephosphorylation of ERK1/2 Kinases*

    Science.gov (United States)

    Sacco, Francesca; Tinti, Michele; Palma, Anita; Ferrari, Emanuela; Nardozza, Aurelio P.; van Huijsduijnen, Rob Hooft; Takahashi, Takamune; Castagnoli, Luisa; Cesareni, Gianni

    2009-01-01

    Density-enhanced phosphatase-1 (DEP-1) is a trans-membrane receptor protein-tyrosine phosphatase that plays a recognized prominent role as a tumor suppressor. However, the mechanistic details underlying its function are poorly understood because its primary physiological substrate(s) have not been firmly established. To shed light on the mechanisms underlying the anti-proliferative role of this phosphatase, we set out to identify new DEP-1 substrates by a novel approach based on screening of high density peptide arrays. The results of the array experiment were combined with a bioinformatics filter to identify eight potential DEP-1 targets among the proteins annotated in the MAPK pathway. In this study we show that one of these potential targets, the ERK1/2, is indeed a direct DEP-1 substrate in vivo. Pulldown and in vitro dephosphorylation assays confirmed our prediction and demonstrated an overall specificity of DEP-1 in targeting the phosphorylated tyrosine 204 of ERK1/2. After epidermal growth factor stimulation, the phosphorylation of the activation loop of ERK1/2 can be modulated by changing the concentration of DEP-1, without affecting the activity of the upstream kinase MEK. In addition, we show that DEP-1 contains a KIM-like motif to recruit ERK1/2 proteins by a docking mechanism mediated by the common docking domain in ERK1/2. ERK proteins that are mutated in the conserved docking domain become insensitive to DEP-1 de-phosphorylation. Overall this study provides novel insights into the anti-proliferative role of this phosphatase and proposes a new mechanism that may also be relevant for the regulation of density-dependent growth inhibition. PMID:19494114

  9. Utility of Serum miR-125b as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer.

    Science.gov (United States)

    Zuberi, Mariyam; Khan, Imran; Mir, Rashid; Gandhi, Gauri; Ray, Prakash Chandra; Saxena, Alpana

    2016-01-01

    MicroRNAs (miRNAs) have been found to be dysregulated in epithelial ovarian cancer (EOC) and may function as either tumor suppressor genes (TSGs) or as oncogenes. Hypermethylation of miRNA silences the tumour suppressive function of a miRNA or hypermethylation of a TSG regulating that miRNA (or vice versa) leads to its loss of function. The present study aims to evaluate the impact of aberrant microRNA-125b (miR-125b) expression on various clinicopathological features in epithelial ovarian cancer and its association with anomalous methylation of several TSGs. We enrolled 70 newly diagnosed cases of epithelial ovarian cancer, recorded their clinical history and 70 healthy female volunteers. Serum miR-125b levels were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the methylation status of various TSGs was investigated by methylation specific PCR. ROC curves were constructed to estimate the diagnostic and prognostic usefulness of miR-125b. The Kaplan-Meier method was applied to compare survival curves. Expression of miR-125b was found to be significantly upregulated (pmiR-125b was found to be significantly associated with FIGO stage, lymph node and distant metastasis. ROC curve for diagnostic potential yielded significant AUC with an equitable sensitivity and specificity. ROC curves for prognosis yielded significant AUCs for histological grade, distal metastasis, lymph node status and survival. The expression of miR-125b also correlated significantly with the hypermethylation of TSGs. Our results indicate that DNA hypermethylation may be involved in the inactivation of miR-125b and miR-125b may function as a potential independent biomarker for clinical outcome in EOC.

  10. miR-483-3p plays an oncogenic role in esophageal squamous cell carcinoma by targeting tumor suppressor EI24.

    Science.gov (United States)

    Ma, Jiaojiao; Hong, Liu; Xu, Guanghui; Hao, Junfeng; Wang, Rui; Guo, Hao; Liu, Jinqiang; Zhang, Yujie; Nie, Yongzhan; Fan, Daiming

    2016-04-01

    microRNAs (miRNAs), through negatively regulating their target genes, influence the development and progression of many cancers. Previously, we found miR-483 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues, and its overexpression was negatively correlated with the prognosis and positively correlated with multidrug resistance of ESCC, but whether it could affect the biological role of proliferation and migration in ESCC cell lines is unknown. In the present study, we found miR-483-3p was overexpressed in ESCC cell lines as compared with the normal esophageal squamous epithelial cell line. Functional experiments in vitro showed that miR-483-3p could promote the proliferation, migration, transformation of cell cycle from G1 phase to G2 phase of ESCC cells and could inhibit cells' sensitivity to chemotherapy drugs. Nude mouse tumorigenicity assay indicated that miR-483-3p could promote the growth of ESCC cells in vivo. Western blot assay showed that ectopic expression of miR-483-3p in ESCC cells could downregulate the protein level of etoposide induced 2.4 (EI24), which is a tumor suppressor and has not been reported in ESCC. Luciferase reporter assay demonstrated that EI24 was a direct target of miR-483-3p. Collectively, our study demonstrated that miR-483-3p could promote ESCC progression at least in part through directly targeting EI24, supplying a potential strategy for miRNA-based ESCC therapy.

  11. Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis.

    Science.gov (United States)

    Afonja, Olubunmi; Juste, Dominique; Das, Sharmistha; Matsuhashi, Sachiko; Samuels, Herbert H

    2004-10-21

    The growth of human breast tumor cells is regulated through signaling involving cell surface growth factor receptors and nuclear receptors of the steroid/thyroid/retinoid receptor gene family. Retinoic acid receptors (RARs), members of the steroid/thyroid hormone receptor gene family, are ligand-dependent transcription factors, which have in vitro and in vivo growth inhibitory activity against breast cancer cells. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. Additionally, RAR-agonists and synthetic retinoids such as Ferentinide have been shown to induce apoptosis in malignant breast cells but not normal breast cells. To better define the genes involved in RAR-mediated growth inhibition of breast cancer cells, we used oligonucleotide microarray analysis to create a database of genes that are potentially regulated by RAR-agonists in breast cancer cells. We found that PDCD4 (programmed cell death 4), a tumor suppressor gene presently being evaluated as a target for chemoprevention, was induced about three-fold by the RARalpha-selective agonist Am580, in T-47D breast cancer cells. RAR pan-agonists and Am580, but not retinoid X receptors (RXR)-agonists, stimulate the expression of PDCD4 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not induce PDCD4 expression in breast cancer cell lines, which were not growth inhibited by retinoids. We also observed that antiestrogen and the HER-2/neu antagonist, Herceptin (Trastuzumab), also induced PDCD4 expression in T-47D cells, suggesting that PDCD4 may play a central role in growth inhibition in breast cancer cells. Transient overexpression of PDCD4 in T-47D (ER+, RAR+) and MDA-MB-231 (ER-, RAR-) cells resulted in apoptotic death, suggesting a role for PDCD4 in mediating apoptosis in breast cancer cells. PDCD4 protein expression has previously been reported in small ductal

  12. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    International Nuclear Information System (INIS)

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4

  13. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Shen, Chengwu [Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Wang, Lin [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Research Center for Medicinal Biotechnology, Shandong Academy of Medicinal Sciences, Jinan 250012 (China); Ma, Quanping [Department of Clinical Laboratory, The Fourth People’s Hospital of Jinan, Jinan 250031 (China); Xia, Pingtian; Qi, Mei; Yang, Muyi [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Han, Bo, E-mail: boh@sdu.edu.cn [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  14. Glioblastoma, brain metastases and soft tissue sarcoma of extremities: Candidate tumors for BNCT

    International Nuclear Information System (INIS)

    10B-concentration ratios between human glioblastoma multiforme (U87MG), sarcoma (S3) and melanoma (MV3) xenografted in nu/nu mice and selected normal tissues were investigated to test for preferential 10B-accumulation. Animals received BSH, BPA or both compounds sequentially. Mean 10B-concentration ratios between tumor and normal tissues above 2 were found indicating therapeutic ratios. In addition to glioblastoma, brain metastases and soft tissue sarcoma appear to be promising targets for future BNCT research. - Highlights: • BSH leads to high 10B concentration ratios between sarcoma, muscle and brain as well as between glioblastoma and brain. • The 10B concentration in tumors is quite low as is the 10B concentration ratio between tumors and blood. • BPA-f leads to 10B accumulation in tumors relative to blood and advantageous absolute 10B concentrations in tumors. • The 10B concentration ratios between tumors and brain and sarcoma and muscle, are modest. • The advantage of the sequential injection of both compounds is an enhanced intratumoral 10B concentration

  15. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior

    Directory of Open Access Journals (Sweden)

    Abadie Jerome

    2011-05-01

    Full Text Available Abstract Background Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Methods Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Results Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. Conclusions The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model

  16. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior

    International Nuclear Information System (INIS)

    Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS) is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs) that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model for the human counterpart, providing additional evidence towards

  17. Prevalence of the Prefoldin Subunit 5 Gene Deletion in Canine Mammary Tumors

    OpenAIRE

    Silvia Hennecke; Julia Beck; Kirsten Bornemann-Kolatzki; Stephan Neumann; Hugo Murua Escobar; Ingo Nolte; Susanne Conradine Hammer; Marion Hewicker-Trautwein; Johannes Junginger; Franz-Josef Kaup; Bertram Brenig; Ekkehard Schütz

    2015-01-01

    Background A somatic deletion at the proximal end of canine chromosome 27 (CFA27) was recently reported in 50% of malignant mammary tumors. This region harbours the tumor suppressor gene prefoldin subunit 5 (PFDN5) and the deletion correlated with a higher Ki-67 score. PFDN5 has been described to repress c-MYC and is, therefore, a candidate tumor-suppressor and cancer-driver gene in canine mammary cancer. Aim of this study was to confirm the recurrent deletion in a larger number of tumors. Me...

  18. 视肉膜母细胞瘤(RB)抑癌基因治疗原理及策略%Principles and Strategies for Approaching Retinoblastoma (RB) Tumor Suppressor Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    徐洪基; 缪庆; 胡诗学; 刘秉慈

    1999-01-01

    The retinoblastoma (RB) gene was the first tumor suppressor gene identified.It encodes a nuclear phosphoprotein which is differentially phosphorylated during the cell cycle.And the RB gene apparently plays a key role in cell growth regulation.Mutations in RB are seen in virtually all cases of retinoblastoma,and loss of RB gene function has been implicated in the progression of many common human cancers.A number of studies have indicated that replacement of the normal RB gene in RB-defective tumor cells could suppress their tumorigenic activity in nude mice.Preclinical studies also demonstrated that treatment of established human xenograft tumors in nude mice by recombinant adenovirus vectors expressing RB protein resulted in regression of the treated tumor.These studies make the emerging RB gene therapy even more attraction.

  19. Association of the hypermethylation status of PTEN tumor suppressor gene with the risk of breast cancer among Kurdish population from Western Iran.

    Science.gov (United States)

    Yari, Kheirollah; Payandeh, Mehrdad; Rahimi, Zohreh

    2016-06-01

    Breast cancer is the most common cancer with high morbidity and mortality among women worldwide. Aberrant hypermethylation in promoter regions of the tumor suppressor genes such as PTEN gene is a key event in the progression and development of breast cancer. The aim of the present study was to evaluate an association between PTEN gene methylation status with the risk of breast cancer in an Iranian population. We studied 255 individuals, including 103 patients with breast cancer, 102 first-degree female relatives of patients (mother, sister, or daughter of patients), and 50 healthy individuals as a control group. Genomic DNA was extracted from peripheral blood leukocytes, and the PTEN promoter methylation status was detected using methylation-specific PCR (MSP) method with specific methylated and unmethylated primers. In some samples, direct DNA sequencing was used to confirm the results obtained by the MSP method. The frequency of PTEN-methylated (MM) genotype was 6 % in the healthy control group, 23.3 % in relatives of patients, and 41.7 % in patients (χ (2) = 24.62, p < 0.001). There were significant differences in the frequency of PTEN-methylated genotype between healthy control compared to that in patients (χ (2) = 15.1, p < 0.001) and also compared to that in relatives of patients (χ (2) = 6.9, p = 0.009). In the presence of PTEN MM genotype, there was a 3.1-fold susceptibility to breast cancer compared to the UU genotype (p < 0.001). Also, in the presence of PTEN M allele, the risk of breast cancer was 2.71-fold compared to the presence of U allele (p < 0.001). Our findings indicated increased frequency of hypermethylation of PTEN promoter in the studied patients and their relatives that could be considered as one of the epigenetic factors affecting the risk of breast cancer in Iranians. PMID:26715274

  20. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Liquan; Wang, Dan [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); Fisher, Alfred L., E-mail: fishera2@uthscsa.edu [Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229 (United States); Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States); Wang, Zhou, E-mail: wangz2@upmc.edu [Department of Urology, The University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15216 (United States); GRECC, STVAHCS, San Antonio, TX 78229 (United States)

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  1. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells.

    Science.gov (United States)

    Cai, Liquan; Wang, Dan; Fisher, Alfred L; Wang, Zhou

    2014-05-01

    The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in controlling the growth and survival of prostate cancer cells. Together these findings identify a novel physical and functional interaction between EAF2 and the Rb pathway.

  2. The important tumor suppressor role of PER1 in regulating the cyclin–CDK–CKI network in SCC15 human oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Fu XJ

    2016-04-01

    cells was significantly enhanced by PER1 downregulation (P<0.05.Conclusion: PER1 is an important tumor suppressor gene which acts by regulating the Cyclin-CDK-cyclin-dependent kinase inhibitor regulatory network. An in-depth characterization of this gene may further illuminate the molecular mechanisms responsible for the development and progression of cancer, thus providing novel molecular targets for cancer treatment. Keywords: oral cancer, cell cycle, circadian clock, PER1, gene

  3. The important tumor suppressor role of PER1 in regulating the cyclin–CDK–CKI network in SCC15 human oral squamous cell carcinoma cells

    Science.gov (United States)

    Fu, Xiao-Juan; Li, Han-Xue; Yang, Kai; Chen, Dan; Tang, Hong

    2016-01-01

    Background Accumulating evidence suggests that the abnormal expression of the circadian clock gene PER1 is closely related to the development and progression of cancer. However, the exact molecular mechanism by which the abnormal expression of PER1 induces carcinogenesis is unclear. This study was conducted to investigate the alterations in downstream cell cycle genes, cell cycle distribution, cell proliferation, apoptosis, and in vivo tumorigenicity in SCC15 oral squamous cell carcinoma cells after PER1 downregulation. Materials and methods A stable SCC15 cell line was established to constitutively express shRNA targeting PER1. Quantitative real-time polymerase chain reaction (PCR) and Western blot analyses were conducted to estimate PER1 mRNA and protein expression. The expression of PER1, P53, CyclinD1, CyclinE, CyclinA2, CyclinB1, cyclin-dependent kinase (CDK) 1, CDK2, CDK4, CDK6, P16, P21, WEE1, and CDC25 mRNA was detected by quantitative real-time PCR. Cell cycle distribution, cell proliferation, and apoptosis were determined by flow cytometry. The in vivo tumorigenicity of SCC15 cells was evaluated in female BALB/c nu/nu mice. Results PER1 downregulation resulted in significantly increased mRNA expression levels of CyclinD1, CyclinE, CyclinB1, CDK1, and WEE1 (P<0.05), and significantly decreased mRNA expression levels of P53, CyclinA2, P16, P21, and CDC25 (P<0.05) compared to control cells. Additionally, PER1 downregulation led to significantly fewer cells in S phase (P<0.05), but significantly more cells in G2/M phase (P<0.05) compared to the control group. After PER1 downregulation, the cell proliferation index was significantly higher (P<0.05), and the apoptotic index was significantly lower (P<0.05). The in vivo tumorigenicity of SCC15 cells was significantly enhanced by PER1 downregulation (P<0.05). Conclusion PER1 is an important tumor suppressor gene which acts by regulating the Cyclin-CDK-cyclin-dependent kinase inhibitor regulatory network. An in

  4. Solvent effects on structural and thermochemical properties of p53 tumor-suppressor gene: a molecular modeling approach in drug design

    Directory of Open Access Journals (Sweden)

    Irani S

    2011-09-01

    Full Text Available Shiva Irani1, Seyed Mohammad Atyabi2, Houri Mivehchi3, Seyed Davar Siadat2, Mohammad Reza Aghasadeghi2, Ali Farhangi21Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; 2Department of Pilot Biotechnology, Pasteur Institute of Iran, Tehran, Iran; 3Department of Novel Drug Delivery System, Iran Polymer and Petrochemical Institute, Tehran, IranAbstract: The p53 tumor-suppressor protein is a cellular phosphoprotein and a negative regulator of cell growth. Most p53 mutations occur in exons 5–8 within the DNA-binding domain. Therefore, p53 can potentially be targeted with novel drugs designed to bind to a mutation and restore its stability or wild-type conformation. For the current study, Hartree–Fock calculations were used to investigate the solvent-induced effects of five different solvent media (acetone, ethanol, methanol, dimethyl sulfoxide, and water on the thermochemical parameters and relative energies, and on the multinuclear nuclear magnetic resonance shielding tensors of oxygen, nitrogen, and phosphorus nuclei, of GAT. To understand how the solvent affects the mutation region (the “hot spot” of p53, the relative energies of GAT in selected solvent media were determined. Some biological evidence suggested the structural stabilities of hot spots of GAT have the optimum temperature and solvent type for mutation. All the authors’ findings are in accordance with common biological phenomena. Another important objective of this study was to compare the hydration Gibbs free energies of CUA and GAT in water using two different approaches where the solvent was treated as a continuum of the constant at different levels of Hartree–Fock theory. The Gibbs hydration energy values obtained in water with the polarized continuum model directly applied on the isolated CUA and GAT sequences were compared with those determined from the hydrated models with four, six, and eight water molecule clusters around the

  5. Novel miR-5582-5p functions as a tumor suppressor by inducing apoptosis and cell cycle arrest in cancer cells through direct targeting of GAB1, SHC1, and CDK2.

    Science.gov (United States)

    An, Hyun-Ju; Kwak, Seo-Young; Yoo, Je-Ok; Kim, Jae-Sung; Bae, In-Hwa; Park, Myung-Jin; Cho, Mee-Yon; Kim, Joon; Han, Young-Hoon

    2016-10-01

    MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells. GAB1, SHC1, and CDK2 were identified as direct targets of miR-5582-5p. Knockdown of GAB1/SHC1 or CDK2 phenocopied the apoptotic or cell cycle arrest-inducing function of miR-5582-5p, respectively. The expression of miR-5582-5p was lower in tumor tissues than in adjacent normal tissues of colorectal cancer patients, while the expression of the target proteins exhibited patterns opposite to that of miR-5582-5p. Intratumoral injection of a miR-5582-5p mimic or induced expression of miR-5582-5p in tumor cells suppressed tumor growth in HCT116 xenografts. Collectively, our results suggest a novel tumor suppressive function for miR-5582-5p and its potential applicability for tumor control.

  6. Salivary agglutinin/DMBT1SAG expression is up-regulated in the presence of salivary gland tumors

    DEFF Research Database (Denmark)

    Bikker, F J; van der Wal, J E; Ligtenberg, A J M;

    2004-01-01

    Salivary agglutinin (SAG) is encoded by the gene Deleted in Malignant Brain Tumors 1 (DMBT1) and represents the salivary variant of DMBT1 (DMBT1(SAG)). While SAG is a bona fide anti-caries factor, DMBT1 was proposed as a candidate tumor-suppressor for brain, digestive tract, and lung cancer. Though...

  7. SSeCKS, a Major Protein Kinase C Substrate with Tumor Suppressor Activity, Regulates G1→S Progression by Controlling the Expression and Cellular Compartmentalization of Cyclin D

    OpenAIRE

    Lin, Xueying; Nelson, Peter; Gelman, Irwin H.

    2000-01-01

    SSeCKS, first isolated as a G1→S inhibitor that is downregulated in src- and ras-transformed cells, is a major cytoskeleton-associated PKC substrate with tumor suppressor and kinase-scaffolding activities. Previous attempts at constitutive expression resulted in cell variants with truncated ectopic SSeCKS products. Here, we show that tetracycline-regulated SSeCKS expression in NIH 3T3 cells induces G1 arrest marked by extracellular signal-regulated kinase 2-dependent decreases in cyclin D1 ex...

  8. Microcell-Mediated Chromosome Transfer Identifies EPB41L3 as a Functional Suppressor of Epithelial Ovarian Cancers

    OpenAIRE

    Dimitra Dafou; Barbara Grun; John Sinclair; Kate Lawrenson; Benjamin, Elizabeth C; Estrid Hogdall; Susanne Kruger-Kjaer; Lise Christensen; Sowter, Heidi M.; Ahmed Al-Attar; Richard Edmondson; Stephen Darby; Andrew Berchuck; Laird, Peter W; C. Leigh Pearce

    2010-01-01

    We used a functional complementation approach to identify tumor-suppressor genes and putative therapeutic targets for ovarian cancer. Microcell-mediated transfer of chromosome 18 in the ovarian cancer cell line TOV21 G induced in vitro and in vivo neoplastic suppression. Gene expression microarray profiling in TOV21 +19 hybrids identified 14 candidate genes on chromosome 18 that were significantly overexpressed and therefore associated with neoplastic suppression. Further analysis of messenge...

  9. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells

    NARCIS (Netherlands)

    M. Ansems (Marleen); J.N. Søndergaard (Jonas Nørskov); A.M. Sieuwerts (Anieta); M.W.G. Looman (Maaike W. G.); M. Smid (Marcel); A.M.A. de Graaf (Annemarie M. A.); V. de Weerd (Vanja); M. Zuidscherwoude (Malou); J.A. Foekens (John); J.W.M. Martens (John); G.J. Adema (Gosse J.)

    2015-01-01

    textabstractBreast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prog

  10. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERalpha-positive breast cancer cells

    NARCIS (Netherlands)

    Ansems, M.; Sondergaard, J.N.; Sieuwerts, A.M.; Looman, M.W.G.; Smid, M.; Graaf, A.M.A. de; Weerd, V. de; Zuidscherwoude, M.; Foekens, J.A.; Martens, J.W.; Adema, G.J.

    2015-01-01

    Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERalpha) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERalpha and as a strong and independent prognost

  11. PGP9.5 As a Candidate Tumor Marker for Non-Small-Cell Lung Cancer

    OpenAIRE

    Hibi, Kenji; Westra, William H.; Borges, Michael; Goodman, Steve; Sidransky, David; Jen, Jin

    1999-01-01

    PGP9.5 is a neurospecific peptide that functions to remove ubiquitin from ubiquitinated proteins and prevents them from targeted degradation by proteasomes. Using the serial analysis of gene expression method (SAGE), we observed that the PGP9.5 transcript was highly expressed in primary lung cancers and lung cancer cell lines but was not detectable in the normal lung. Here we examined the expression of PGP9.5 protein in normal lung epithelium, lung tumor cell lines, and 98 resected primary no...

  12. Suppressor Screens in Arabidopsis.

    Science.gov (United States)

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  13. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors.

    Science.gov (United States)

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-11-28

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp -308 to -188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp -65 to -56) and GC-box 2 (bp -18 to -9), the latter of which is also bound by FBI-1. We found that FRE3 (bp -244 to -236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  14. Analyses of susceptibility to radiation-induced tumors: Prkdc, a candidate modifier of lymphomas

    International Nuclear Information System (INIS)

    BALB/cHeA (BALB/c) mice are susceptible to radiation-induced lymphomas, while STS/A (STS) mice are resistant. To analyze the difference in susceptibility between these two strains of mice, we have performed 3 independent studies: 1) mapping of apoptosis susceptibility gene Rapopl (chromosome 16) and identification of Prkdc as a candidate modifier of apoptosis as well as lymphomas, 2) analysis of congenic lines for Lyr, a gene responsible for the lymphoma resistance of STS mice on chromosome 4, 3) genetic analyses of lymphoma susceptibility using a backcross [(BALB/c x STS)F1 x STS]. Analysis of Rapopl congenic lines indicated a minor contribution of the STS allele at the Rapopl (Prkdc) locus to the lymphoma resistance of STS mice. On the other hand, homozygous STS alleles at Lyr had a substantial, but less potent, effect on radiation lymphomagenesis. Furthermore, there was no single marker where the potent resistance of the STS mice was achieved with the homozygous STS alleles. These results suggest potential involvement of another loci in the resistance of STS mice. (author)

  15. p73:a tumor suppressor gene in human non-small cell lung cancer cell lines%p73:人类非小细胞肺癌细胞株中的肿瘤抑制基因

    Institute of Scientific and Technical Information of China (English)

    刘凯珊; 詹美意; 郑佩娥

    2008-01-01

    AIM,To verify whether p73;a homologue of p53,which supposed]y acts as a tumor suppressor gene in neuroblastoma,might also be a tumor suppressor in non-small cell lung cancer.METHODS:The allelic expres-sion of p73 in the six non-small cell lung cancer cell lines was studied by Sty I polymorphism analysis.The P73 gene ex.pressions in these six cell lines were examined by reverse transcription-PCR,the expressions of P73 protein in the five cell lines inducing tumor8 were also determined by immunohistochemistry.RESULTS:Homozygous allelic expression was dem.onstrated in all six cell lines and the GC/GC genotype Was the predominant type.Complete loss of the p73 expression both at mRNA and the protein level was revealed.CONCLUSION:Taken together,our data suggest that p73 might play a role as a tumor suppressor gene in human non-small cell lung cancer cell lines.%目的:p73基因是与p53相类似的基因,在人类神经母细胞瘤中被假定作为肿瘤抑制基因.为了证实p73在非小细胞肺癌中是否也是肿瘤抑制基因,我们应用Sty I内切酶多态分析法研究了6株非小细胞肺癌细胞的等位基因表达模式.方法:利用RT-PCR检测p73基因在这6株肺癌细胞中转录水平的表达,同时用免疫组织化学方法检测5株非小细胞肺癌细胞所诱发的裸鼠种植瘤中P73蛋白的表达.结果:p73基因在这6株非小细胞肺癌中均为纯合性等位基因表达,而GC/GC基因型为主要类型.p73基因在转录水平和蛋白水平完全丧失表达.结论:根据实验结果可推测,p73在这6株非小细胞肺癌细胞中仍扮演了肿瘤抑制基因的角色.

  16. Down-regulation of the Tumor Suppressor C-terminal Src Kinase (Csk)-binding Protein (Cbp)/PAG1 Is Mediated by Epigenetic Histone Modifications via the Mitogen-activated Protein Kinase (MAPK)/Phosphatidylinositol 3-Kinase (PI3K) Pathway*

    OpenAIRE

    Suzuki, Kei; Oneyama, Chitose; Kimura, Hironobu; Tajima, Shoji; Okada, Masato

    2011-01-01

    The transmembrane adaptor protein Cbp (or PAG1) functions as a suppressor of Src-mediated tumor progression by promoting the inactivation of Src. The expression of Cbp is down-regulated in Src-transformed cells and in various human cancer cells, suggesting a potential role for Cbp as a tumor suppressor. However, the mechanisms underlying the down-regulation of Cbp remain unknown. The present study shows that Cbp expression is down-regulated by epigenetic histone modifications via the MAPK/PI3...

  17. Tumor necrosis factor receptor superfamily 10B (TNFRSF10B): an insight from structure modeling to virtual screening for designing drug against head and neck cancer

    OpenAIRE

    Tahir, Rana Adnan; Sehgal, Sheikh Arslan; Khattak, Naureen Aslam; Khan Khattak, Jabar Zaman; Mir, Asif

    2013-01-01

    Background Head and neck cancer (HNC) belongs to a group of heterogeneous disease with distinct patterns of behavior and presentation. TNFRSF10B, a tumor suppressor gene mapped on chromosome 8. Mutation in candidate gene is responsible for the loss of chromosome p arm which is frequently observed in head and neck tumors. TNFRSF10B inhibits tumor formation through apoptosis but deregulation encourages metastasis, migration and invasion of tumor cell tissues. Results Structural modeling was per...

  18. Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1

    OpenAIRE

    Liu, Yuan; Mayo, Marty W.; Nagji, Alykhan S.; Smith, Philip W.; Ramsey, Catherine S.; Li, Duo; David R Jones

    2011-01-01

    The majority of patients with lung cancer present with metastatic disease. Chronic inflammation and subsequent activation of NF-κB have been associated the development of cancers. The RelA/p65 subunit of NF-κB is typically associated with transcriptional activation. In this report we show that RelA/p65 can function as an active transcriptional repressor through enhanced methylation of the BRMS1 metastasis suppressor gene promoter via direct recruitment of DNMT-1 to chromatin in response to TN...

  19. Effects of si-DNMT1 to Methylation of Tumor Suppressor Genes of Hilar Cholangiocarcinoma%si-DNMT1对肝门部胆管癌细胞抑癌基因甲基化的作用

    Institute of Scientific and Technical Information of China (English)

    向吉锋; 罗放; 王济明; 李修红

    2011-01-01

    Objective To study the effect of RNA interference on hypermethylation of tumor suppressor genes of hilar cholangiocarcinoma cell line QBC939,to explore its value in the treatment of rholangiocarcinoma. Methods hairpin siRNA expression vector targeting hDNMTl was constructed ,and then transfected into hilar cholangiocareinoma cell line QBC939 using liposome. The expression level of hDNMTl,CDH1 , pl5 was detected by RT-PCR at different time points. The methylation status of tumor suppressor genes CDH1 ,p15 was detected by MSP. The cell proliferation ability was detected by MTT. Results 1 ) Targeted gene knockout of hDNMTl restored the expression level of tumor suppressor genes CDH1 and pl5. 2 ) The expression silencing of CDH1 ,pl5 is caused by promoter hypermethylation. 3 ) Transfection with hairpin siR-NA plasmid expression vector targeting hDNMTl can effectively inhibit the cell proliferation ability of QBC939. Conclusion The transfection of hairpin siRNA plasmid expression vector targeting hDNMTl can play a effective,sustainable and stable role on gene silencing,and restore the expression level of tumor suppressor,thereby,inhibit the proliferation of QBC939.%目的 研究RNA干扰对肝门部胆管癌细胞株QBC939抑癌基因甲基化的影响,初步探讨其在胆管癌治疗中的价值.方法 构建靶向hDNMT1的发夹式siRNA表达载体;运用脂质体介导法将其转染人胆管癌细胞QBC939;RT-PCR法检测不同时间点hDNMT1、CDH1、p15的表达水平;MSP方法检测转染前后抑癌基因CDH1、p15的甲基化状态;MTT检测各组细胞的增殖能力.结果1) hDNMT1的基因沉默恢复了抑癌基因CDH1、p15的表达水平;2)CDH1、p15的表达沉默是由启动予高甲基化导致的;3)转染靶向hDNMT1的发夹式siRNA表达载体能有效地抑制QBC939的增殖能力.结论 靶向hDNMT1的发夹式siRNA表达载体能有效、持续、稳定发挥对hDNMT1的基因沉默作用,恢复抑癌基因CDH1、p15

  20. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...