WorldWideScience

Sample records for candidate spacecraft electronics

  1. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  2. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  3. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  4. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; hide

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.

  5. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  6. Application of advanced electronics to a future spacecraft computer design

    Science.gov (United States)

    Carney, P. C.

    1980-01-01

    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  7. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach

    2005-03-01

    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  8. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  9. Electromagnetic Dissociation and Spacecraft Electronics Damage

    Science.gov (United States)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  10. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    2001-09-01

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  11. Charge Dissipating Transparent Conformal Coatings for Spacecraft Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The space environment poses significant challenges to spacecraft electronics in the form of electrostatic discharge (ESD) as a result of exposure to highly charged...

  12. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  13. Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft

    Science.gov (United States)

    Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.

    Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.

  14. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  15. Electronic Systems for Spacecraft Vehicles: Required EDA Tools

    Science.gov (United States)

    Bachnak, Rafic

    1999-01-01

    The continuous increase in complexity of electronic systems is making the design and manufacturing of such systems more challenging than ever before. As a result, designers are finding it impossible to design efficient systems without the use of sophisticated Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and lead to a correct by design methodology. This report identifies the EDA tools that would be needed to design, analyze, simulate, and evaluate electronic systems for spacecraft vehicles. In addition, the report presents recommendations to enhance the current JSC electronic design capabilities. This includes cost information and a discussion as to the impact, both positive and negative, of implementing the recommendations.

  16. Injection of an electron beam into a plasma and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Kan, J.R.

    1987-01-01

    Injection of a nonrelativistic electron beam into a fully ionized plasma from a spacecraft including the effect of charging has been studied using a one-dimensional particle simulation model. It is found that the spacecraft charging remains negligible and the beam can propagate into a plasma, if the beam density is much smaller than the ambient density. When the injection current is increased by increasing the beam density, significant spacecraft charging takes place and the reflection of beam electrons back to the spacecraft reduces the beam current significantly. On the other hand, if the injection current is increased by increasing the beam energy, spacecraft charging remains negligible and a beam current much larger than the thermal return current can be injected. It is shown that the electric field caused by the beam--plasma instability accelerates the ambient electrons toward the spacecraft thereby enhancing the return current

  17. Semi-Automated Diagnosis, Repair, and Rework of Spacecraft Electronics

    Science.gov (United States)

    Struk, Peter M.; Oeftering, Richard C.; Easton, John W.; Anderson, Eric E.

    2008-01-01

    NASA's Constellation Program for Exploration of the Moon and Mars places human crews in extreme isolation in resource scarce environments. Near Earth, the discontinuation of Space Shuttle flights after 2010 will alter the up- and down-mass capacity for the International Space Station (ISS). NASA is considering new options for logistics support strategies for future missions. Aerospace systems are often composed of replaceable modular blocks that minimize the need for complex service operations in the field. Such a strategy however, implies a robust and responsive logistics infrastructure with relatively low transportation costs. The modular Orbital Replacement Units (ORU) used for ISS requires relatively large blocks of replacement hardware even though the actual failed component may really be three orders of magnitude smaller. The ability to perform in-situ repair of electronics circuits at the component level can dramatically reduce the scale of spares and related logistics cost. This ability also reduces mission risk, increases crew independence and improves the overall supportability of the program. The Component-Level Electronics Assembly Repair (CLEAR) task under the NASA Supportability program was established to demonstrate the practicality of repair by first investigating widely used soldering materials and processes (M&P) performed by modest manual means. The work will result in program guidelines for performing manual repairs along with design guidance for circuit reparability. The next phase of CLEAR recognizes that manual repair has its limitations and some highly integrated devices are extremely difficult to handle and demand semi-automated equipment. Further, electronics repairs require a broad range of diagnostic capability to isolate the faulty components. Finally repairs must pass functional tests to determine that the repairs are successful and the circuit can be returned to service. To prevent equipment demands from exceeding spacecraft volume

  18. Triple-root jump in spacecraft potential due to electron beam emission or impact

    International Nuclear Information System (INIS)

    Lai, S.T.

    1992-01-01

    Triple-root jump in spacecraft potential is well understood in the double Maxwellian model of the natural space environment. In this paper, however, the author points out that triple-root jumps in spacecraft potential may also occur during photoemission or electron beam emission from a spacecraft. Impact of an incoming electron beam on a spacecraft may also cause triple-root jumps provided that the beam, ambient plasma, and surface parameters satisfy certain inequality conditions. The parametric conditions under which such beam induced triple-root jumps may occur are presented

  19. Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion

    Science.gov (United States)

    Costogue, E. N.; Lindena, S.

    1976-01-01

    A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.

  20. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  1. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    Science.gov (United States)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  2. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  3. Electric potential structures and propagation of electron beams injected from a spacecraft into a plasma

    International Nuclear Information System (INIS)

    Singh, Nagendra; Hwang, K.S.

    1988-01-01

    The propagation of electron beams injected from a spacecraft into an ambient plasma and the associated potential structures are investigated by one-dimensional Vlasov simulations. For moderate beams, for which the time average spacecraft potential (Φ sa ) lies in the range T e much-lt eΦ sa approx-lt W B , where T e is the electron temperature in energy units and W B is the average beam energy, a double layer forms near the beam head which propagates into the ambient plasma much more slowly than the initial beam velocity. The double layer formation is being reported for the first time. For weak beams, for which |eΦ sa | approx-lt T e , the beam propagates with the initial beam velocity, and no double layer formation occurs. On the other hand, for strong beams for which eΦ sa > W B , the bulk of the beam is returned to the spacecraft, and the main feature of the potential structure is a sheath formation with an intense electric field limited to distances d near the spacecraft surface. These features of the potential structures are compared with those seen in laboratory and space experiments on electron beam injections

  4. How to emit a high-power electron beam from a magnetospheric spacecraft?

    Science.gov (United States)

    Delzanno, G. L.; Lucco Castello, F.; Borovsky, J.; Miars, G.; Leon, O.; Gilchrist, B. E.

    2017-12-01

    The idea of using a high-power electron beam to actively probe magnetic-field-line connectivity in space has been discussed since the 1970's. It could solve longstanding questions in magnetospheric/ionospheric physics by establishing causality between phenomena occurring in the magnetosphere and their image in the ionosphere. However, this idea has never been realized onboard a magnetospheric spacecraft because the tenuous magnetospheric plasma cannot provide the return current necessary to keep the charging of the spacecraft under control. Recently, Delzanno et al. [1] have proposed a spacecraft-charging mitigation scheme to enable the emission of a high-power electron beam from a magnetospheric spacecraft. It is based on the plasma contactor, i.e. a high-density neutral plasma emitted prior to and with the electron beam. The contactor acts as an ion emitter (not as an electron collector, as previously thought): a high ion current can be emitted off the quasi-spherical contactor surface, without the strong space-charge limitations typical of planar ion beams, and the electron-beam current can be successfully compensated. In this work, we will discuss our theoretical/simulation effort to improve the understanding of contactor-based ion emission. First, we will present a simple mathematical model useful for the interpretation of the results of [1]. The model is in spherical geometry and the contactor dynamics is described by only two surfaces (its quasi-neutral surface and the front of the outermost ions). It captures the results of self-consistent Particle-In-Cell (PIC) simulations with good accuracy and highlights the physics behind the charge-mitigation scheme clearly. PIC simulations connecting the 1D model to the actual geometry of the problem will be presented to obtain the scaling of the spacecraft potential varying contactor emission area. Finally, results for conditions relevant to an actual mission will also be discussed. [1] G. L. Delzanno, J. E. Borovsky

  5. The Use of Liquid Isopropyl Alcohol and Hydrogen Peroxide Gas Plasma to Biologically Decontaminate Spacecraft Electronics

    Science.gov (United States)

    Bonner, J. K.; Tudryn, Carissa D.; Choi, Sun J.; Eulogio, Sebastian E.; Roberts, Timothy J.; Tudryn, Carissa D.

    2006-01-01

    Legitimate concern exists regarding sending spacecraft and their associated hardware to solar system bodies where they could possibly contaminate the body's surface with terrestrial microorganisms. The NASA approved guidelines for sterilization as set forth in NPG 8020.12C, which is consistent with the biological contamination control objectives of the Committee on Space Research (COSPAR), recommends subjecting the spacecraft and its associated hardware to dry heat-a dry heat regimen that could potentially employ a temperature of 110(deg)C for up to 200 hours. Such a temperature exposure could prove detrimental to the spacecraft electronics. The stimulated growth of intermetallic compounds (IMCs) in metallic interconnects and/or thermal degradation of organic materials composing much of the hardware could take place over a prolonged temperature regimen. Such detrimental phenomena would almost certainly compromise the integrity and reliability of the electronics. Investigation of sterilization procedures in the medical field suggests that hydrogen peroxide (H202) gas plasma (HPGP) technology can effectively function as an alternative to heat sterilization, especially for heat-sensitive items. Treatment with isopropyl alcohol (IPA) in liquid form prior to exposure of the hardware to HPGP should also prove beneficial. Although IPA is not a sterilant, it is frequently used as a disinfectant because of its bactericidal properties. The use of IPA in electronics cleaning is widely recognized and has been utilized for many years with no adverse affects reported. In addition, IPA is the principal ingredient of the test fluid used in ionic contamination testers to assess the amount of ionic contamination found on the surfaces of printed wiring assemblies. This paper will set forth experimental data confirming the feasibility of the IPA/H202 approach to reach acceptable microbial reduction (MR) levels of spacecraft electronic hardware. In addition, a proposed process flow in

  6. Development and qualification of materials and processes for radiation shielding of Galileo spacecraft electronic components

    International Nuclear Information System (INIS)

    Hribar, F.; Bauer, J.L.; O'Donnell, T.P.

    1990-01-01

    Several materials and processing methods were evaluated for use on the JPL Galileo spacecraft in the area of radiation shielding for electronics. Development and qualification activities involving an aluminum structural laminate are described. These activities included requirements assessment, design tradeoffs, materials selection, adhesive bonding development, mechanical properties measurements, thermal stability assessment, and nondestructive evaluation. This paper presents evaluation of three adhesives for bonding tantalum to aluminum. The concept of combining a thin sheet of tantalum with two outer aluminum face sheets using adhesive bonding was developed successfully. This radiation shield laminate also provides a structural shear plate for mounting electronic assemblies

  7. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    Science.gov (United States)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  8. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  9. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  10. Spacecraft observations of a Maxwell Demon coating the separatrix of asymmetric magnetic reconnection with crescent-shaped electron distributions

    Science.gov (United States)

    Egedal, J.; Le, A.; Daughton, W.; Wetherton, B.; Cassak, Pa; Chen, Lj; Lavraud, B.; Dorell, J.; Avanov, L.; Gershman, D.

    2016-10-01

    During asymmetric magnetic reconnection in the dayside magnetopause in situ spacecraft mea- surements show that electrons from the high density inflow penetrate some distance into the low density inflow. Supported by a kinetic simulation, we present a general derivation of an exclusion energy parameter, which provides a lower kinetic energy bound for an electron to jump across the reconnection region from one inflow region to the other. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, strongly impacting the form of the electron distribution function observed along the low density side separatrix. The dynamics produce two distinct flavors of crescent-shaped electron distributions in a thin boundary layer along the separatrix between the magnetospheric inflow and the reconnection exhaust. The analytical model presented relates these salient details of the distribution function to the electron dynamics in the inner reconnection region.

  11. Search for new candidates for the neutrino-oriented mass determination by electron-capture

    CERN Multimedia

    Herfurth, F; Boehm, C; Blaum, K; Beck, D

    2008-01-01

    This proposal is part of an extended program dedicated to the neutrino-mass determination in the electron-capture sector, which aims at ultra-precise mass measurements by Penning traps in combination with cryogenic micro-calorimetry for atomic de-excitation measurements. Here, precise mass measurements with ISOLTRAP are proposed for the orbital electron-capture nuclides $^{194}$Hg and $^{202}$Pb, as well as their daughters, with the goal to determine accurately their Q-values. These values are expected to be the smallest ones among a great variety of known electron-capture precursors. Therefore, these nuclides are strong candidates for an improved electron-neutrino mass determination. We ask for 8 shifts of on-line beam at ISOLDE for mass measurements of $^{194}$Hg, $^{194}$ Au, $^{202}$Pb, and $^{202}$Tl at ISOLTRAP.

  12. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.

    1991-01-01

    V, it is shown that secondary electrons supply a significant contribution to the return current to the spacecraft and thereby reduce the spacecraft potential. Our numerical results are in good agreement with observations from the CHARGE-2 sounding rocket experiment.A more detailed study of the BAI as it relates...

  13. MULTI-SPACECRAFT OBSERVATIONS AND TRANSPORT MODELING OF ENERGETIC ELECTRONS FOR A SERIES OF SOLAR PARTICLE EVENTS IN AUGUST 2010

    Energy Technology Data Exchange (ETDEWEB)

    Dröge, W.; Kartavykh, Y. Y. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Dresing, N.; Klassen, A. [Institut für Experimentelle und Angewandte Physik, Universität Kiel, D-24118 Kiel (Germany)

    2016-08-01

    During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magnetic field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ {sub ∥} in the range of 0.15–0.6 au, and values of λ {sub ⊥} in the range of 0.005–0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.

  14. Fast solar electrons, interplanetary plasma and km-wave type-III radio bursts observed from the IMP-6 spacecraft

    International Nuclear Information System (INIS)

    Alvarez, H.; Lin, R.P.

    1975-01-01

    IMP-6 spacecraft observations of low frequency radio emission, fast electrons, and solar wind plasma are used to examine the dynamics of the fast electron streams which generate solar type-III radio bursts. Of twenty solar electron events observed between April 1971 and August 1972, four were found to be amenable to detailed analysis. Observations of the direction of arrival of the radio emission at different frequencies were combined with the solar wind density and velocity measurements at 1 AU to define an Archimedean spiral trajectory for the radio burst exciter. The propagation characteristics of the exciter and of the fast electrons observed at 1 AU were then compared. It is found that: (1) the fast electrons excite the radio emission at the second harmonic; (2) the total distance travelled by the electrons was between 30 and 70% longer than the length of the smooth spiral defined by the radio observations; (3) this additional distance travelled is the result of scattering of the electrons in the interplanetary medium; (4) the observations are consistent with negligible true energy loss by the fast electrons.(Auth.)

  15. Electronic learning in advanced resuscitation training: The perspective of the candidate.

    Science.gov (United States)

    Lockey, Andrew S; Dyal, Laura; Kimani, Peter K; Lam, Jenny; Bullock, Ian; Buck, Dominic; Davies, Robin P; Perkins, Gavin D

    2015-12-01

    Studies have shown that blended approaches combining e-learning with face-to-face training reduces costs whilst maintaining similar learning outcomes. The preferences in learning approach for healthcare providers to this new style of learning have not been comprehensively studied. The aim of this study is to evaluate the acceptability of blended learning to advanced resuscitation training. Participants taking part in the traditional and blended electronic advanced life support (e-ALS) courses were invited to complete a written evaluation of the course. Participants' views were captured on a 6-point Likert scale and in free text written comments covering the content, delivery and organisation of the course. Proportional-odds cumulative logit models were used to compare quantitative responses. Thematic analysis was used to synthesise qualitative feedback. 2848 participants from 31 course centres took part in the study (2008-2010). Candidates consistently scored content delivered face-to-face over the same content delivered over the e-learning platform. Candidates valued practical hands on training which included simulation highly. Within the e-ALS group, a common theme was a feeling of "time pressure" and they "preferred the face-to-face teaching". However, others felt that e-ALS "suited their learning style", was "good for those recertifying", and allowed candidates to "use the learning materials at their own pace". The e-ALS course was well received by most, but not all participants. The majority felt the e-learning module was beneficial. There was universal agreement that the face-to-face training was invaluable. Individual learning styles of the candidates affected their reaction to the course materials. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2009-08-01

    Full Text Available An electric solar wind sail is a recently introduced propellantless space propulsion method whose technical development has also started. The electric sail consists of a set of long, thin, centrifugally stretched and conducting tethers which are charged positively and kept in a high positive potential of order 20 kV by an onboard electron gun. The positively charged tethers deflect solar wind protons, thus tapping momentum from the solar wind stream and producing thrust. The amount of obtained propulsive thrust depends on how many electrons are trapped by the potential structures of the tethers, because the trapped electrons tend to shield the charged tether and reduce its effect on the solar wind. Here we present physical arguments and test particle calculations indicating that in a realistic three-dimensional electric sail spacecraft there exist a natural mechanism which tends to remove the trapped electrons by chaotising their orbits and causing them to eventually collide with the conducting tethers. We present calculations which indicate that if these mechanisms were able to remove trapped electrons nearly completely, the electric sail performance could be about five times higher than previously estimated, about 500 nN/m, corresponding to 1 N thrust for a baseline construction with 2000 km total tether length.

  17. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Science.gov (United States)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  18. Miniaturized Spacecraft Platform for Command, Data Handling and Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microelectronics Research Development Corporation (Micro RDC) proposes to develop a platform of low mass/volume/power, reliable miniaturized electronic modules that...

  19. Implosion lessons from national security, high reliability spacecraft, electronics, and the forces which changed them

    CERN Document Server

    Temple, L Parker

    2012-01-01

    Implosion is a focused study of the history and uses of high-reliability, solid-state electronics, military standards, and space systems that support our national security and defense. This book is unique in combining the interdependent evolution of and interrelationships among military standards, solid-state electronics, and very high-reliability space systems. Starting with a brief description of the physics that enabled the development of the first transistor, Implosion covers the need for standardizing military electronics, which began during World War II and continu

  20. The Jovian and galactic electrons in the heliosphere as seen by the KET experiment on board the spacecraft named ULYSSE

    International Nuclear Information System (INIS)

    Rastoin, Cecile

    1995-01-01

    The KET electron telescope onboard the Ulysse spacecraft flawlessly provides measurements of electrons, protons and alphas of energies above some MeV. This present work focuses on the electron data analysis and interpretation from the Ulysse's launch in 90 to the beginning of 95. The first stage of the odyssey was the Jovian encounter in February 92. The MeV electrons are here used as markers of the magnetic field global structure. We specially study the complex and highly dynamic outer magnetosphere. With reference of previous fly-by, the KET observations permit to characterize the 10-hour modulation of the Jovian electron flux and spectrum and suggest a mechanism involving the rotation of the north low-latitude polar cap. The boundary layers are seen as thick regions with transitions from magnetosheath to magnetospheric particle populations and field properties. The electron anisotropy and flux discontinuities are investigated with support of field data and provide the first evidence of magnetic reconnection occurring around the Jovian magnetopause. Taking advantage of the gravity assistance of the giant planet, Ulysse dipped towards the south heliospheric regions. Along its trajectory KET has detected Jovian electrons in interplanetary space. The first type of events is non-diffusive, with rapid increases discovered by KET at less than 1 AU from the magnetosphere: Jovian electrons have probably escaped through reconnection process which preserves their spectrum modulation and anisotropy characteristics. The events of second category are diffusive, observed since launch up to 30 degrees south. This work highlights the roles of interplanetary shocks and of the heliospheric current sheet in the propagation. A 3D transport model including adiabatic deceleration is presented here and accounts for the Jovian electron flux detected along the Ulysse's trajectory. New estimates of the 3D diffusion coefficients are performed for MeV electrons: K(perpendicular) = 8 * 10

  1. Electron number density profiles derived from radio occultation on the CASSIOPE spacecraft

    DEFF Research Database (Denmark)

    Shume, E. B.; Vergados, P.; Komjathy, A.

    2017-01-01

    This paper presents electron number density profiles derived from high resolution Global Positioning System (GPS) radio occultation (RO) observations performed using the Enhanced Polar Outflow Probe (e-POP) payload on the high inclination CAScade, Smallsat and IOnospheric Polar Explorer (CASSIOPE...... good agreement with density profiles estimated from ionosonde data, measured over nearby stations to the latitude and longitude of the RO tangent points, (2) in good agreement with density profiles inferred from GPS RO measured by the Constellation Observing System for Meteorology, Ionosphere...

  2. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  3. Bulk and surface electron transport in topological insulator candidate YbB{sub 6-δ}

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, Vladimir V.; Demishev, Sergey V.; Sluchanko, Nikolay E. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Bozhko, Alexey D.; Bogach, Alexey V.; Semeno, Alexey V.; Voronov, Valeriy V. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Dukhnenko, Anatoliy V.; Filipov, Volodimir B.; Shitsevalova, Natalya Yu. [Frantsevich Institute for Problems of Materials Science NAS, Krzhyzhanovsky str. 3, 03680, Kiev (Ukraine); Kondrin, Mikhail V. [Vereshchagin Institute of High Pressure Physics of RAS, 142190, Troitsk, Moscow (Russian Federation); Kuznetsov, Alexey V.; Sannikov, Ilia I. [National Research Nuclear University ' ' MEPhI' ' , Kashirskoe Shosse 31, 115409, Moscow (Russian Federation)

    2016-04-15

    We report the study of transport and magnetic properties of the YbB{sub 6-δ}single crystals grown by inductive zone melting. A strong disparity in the low temperature resistivity, Seebeck and Hall coefficients is established for the samples with the different level of boron deficiency. The effective parameters of the charge transport in YbB{sub 6-δ} are shown to depend on the concentration of intrinsic defects, which is estimated to range from 0.09% to 0.6%. The pronounced variation of Hall mobility μ{sub H} found for bulk holes is induced by the decrease of transport relaxation time from τ ∼ 7.7 fs for YbB{sub 5.994} to τ ∼ 2.2 fs for YbB{sub 5.96}. An extra contribution to conductivity from electrons with μ{sub H}∼ -1000 cm{sup 2} V{sup -1} s{sup -1} and the very low concentration n /n{sub Yb}∼ 10{sup -6} discovered below 20 K for all the single crystals under investigation is suggested to arise from the surface electron states appeared in the inversion layer due to the band bending. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Magnetic and electronic properties of the Cu-substituted Weyl semimetal candidate ZrCo2Sn.

    Science.gov (United States)

    Kushwaha, S K; Wang, Zhijun; Kong, Tai; Cava, Robert

    2018-01-04

    We report that the partial substitution of Cu for Co has a significant impact on the magnetic properties of the Heusler-phase Weyl fermion candidate ZrCo2Sn. Polycrystalline samples of ZrCo2-xCuxSn (x = 0.0 to 1.0) exhibited a linearly decreasing ferromagnetic transition temperature and similarly decreasing saturated magnetic moment on increasing Cu substitution x. Materials with Cu contents near x = 1 and several other quaternary materials synthesized at the same x (ZrCoT'Sn (T' = Rh, Pd, Ni)) display what appears to be non-ferromagnetic magnetization behavior with spin glass characteristics. Electronic structure calculations suggest that the half-metallic nature of unsubstituted ZrCo2Sn is disrupted significantly by the Cu substitutions, leading to the breakdown of the magnetization vs. electron count guidelines usually followed by Heusler phases, and a more typical metallic non-spin-polarized electronic structure at high x. © 2018 IOP Publishing Ltd.

  5. Initial Results from the Miniature Imager for Neutral Ionospheric Atoms and Magnetospheric Electrons (MINI-ME) on the FASTSAT Spacecraft

    Science.gov (United States)

    Collier, Michael R.; Rowland, Douglas; Keller, John W.; Chornay, Dennis; Khazanov, George; Herrero, Federico; Moore, Thomas E.; Kujawski, Joseph; Casas, Joseph C.; Wilson, Gordon

    2011-01-01

    The MINI-ME instrument is a collaborative effort between NASA's Goddard Space Flight Center (GSFC) and the U.S. Naval Academy, funded solely through GSFC Internal Research and Development (IRAD) awards. It detects neutral atoms from about 10 eV to about 700 eV (in 30 energy steps) in its current operating configuration with an approximately 10 degree by 360 degree field-of-view, divided into six sectors. The instrument was delivered on August 3, 2009 to Marshall Space Flight Center (MSFC) for integration with the FASTSAT-HSV01 small spacecraft bus developed by MSFC and a commercial partner, one of six Space Experiment Review Board (SERB) experiments on FASTSAT and one of three GSFC instruments (PISA and TTI being the other two). The FASTSAT spacecraft was launched on November 21, 2010 from Kodiak, Alaska on a Minotaur IV as a secondary payload and inserted into a 650 km, 72 degree inclination orbit, very nearly circular. MINI-ME has been collecting science data, as spacecraft resources would permit, in "optimal science mode" since January 20, 2011. In this presentation, we report initial science results including the potential first observations of neutral molecular ionospheric outflow. At the time of this abstract, we have identified 15 possible molecular outflow events. All these events occur between about 65 and 82 degrees geomagnetic latitude and most map to the auroral oval. The MINI-ME results provide an excellent framework for interpretation of the MILENA data, two instruments almost identical to MINI-ME that will launch on the VISIONS suborbital mission

  6. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  7. Comparative Genomic Analysis of Neutrophilic Iron(II Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer

    Directory of Open Access Journals (Sweden)

    Shaomei He

    2017-08-01

    Full Text Available Extracellular electron transfer (EET is recognized as a key biochemical process in circumneutral pH Fe(II-oxidizing bacteria (FeOB. In this study, we searched for candidate EET genes in 73 neutrophilic FeOB genomes, among which 43 genomes are complete or close-to-complete and the rest have estimated genome completeness ranging from 5 to 91%. These neutrophilic FeOB span members of the microaerophilic, anaerobic phototrophic, and anaerobic nitrate-reducing FeOB groups. We found that many microaerophilic and several anaerobic FeOB possess homologs of Cyc2, an outer membrane cytochrome c originally identified in Acidithiobacillus ferrooxidans. The “porin-cytochrome c complex” (PCC gene clusters homologous to MtoAB/PioAB are present in eight FeOB, accounting for 19% of complete and close-to-complete genomes examined, whereas PCC genes homologous to OmbB-OmaB-OmcB in Geobacter sulfurreducens are absent. Further, we discovered gene clusters that may potentially encode two novel PCC types. First, a cluster (tentatively named “PCC3” encodes a porin, an extracellular and a periplasmic cytochrome c with remarkably large numbers of heme-binding motifs. Second, a cluster (tentatively named “PCC4” encodes a porin and three periplasmic multiheme cytochromes c. A conserved inner membrane protein (IMP encoded in PCC3 and PCC4 gene clusters might be responsible for translocating electrons across the inner membrane. Other bacteria possessing PCC3 and PCC4 are mostly Proteobacteria isolated from environments with a potential niche for Fe(II oxidation. In addition to cytochrome c, multicopper oxidase (MCO genes potentially involved in Fe(II oxidation were also identified. Notably, candidate EET genes were not found in some FeOB, especially the anaerobic ones, probably suggesting EET genes or Fe(II oxidation mechanisms are different from the searched models. Overall, based on current EET models, the search extends our understanding of bacterial EET and

  8. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations of a four-zone structure using five spacecraft and the VERB code

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y. Y.; Kondrashov, D.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2014-11-01

    Obtaining the global state of radiation belt electrons through reanalysis is an important step toward validating our current understanding of radiation belt dynamics and for identification of new physical processes. In the current study, reanalysis of radiation belt electrons is achieved through data assimilation of five spacecraft with the 3-D Versatile Electron Radiation Belt (VERB) code using a split-operator Kalman filter technique. The spacecraft data are cleaned for noise, saturation effects, and then intercalibrated on an individual energy channel basis, by considering phase space density conjunctions in the T96 field model. Reanalysis during the CRRES era reveals a never-before-reported four-zone structure in the Earth's radiation belts during the 24 March 1991 shock-induced injection superstorm: (1) an inner belt, (2) the high-energy shock-injection belt, (3) a remnant outer radiation belt, and (4) a second outer radiation belt. The third belt formed near the same time as the second belt and was later enhanced across keV to MeV energies by a second particle injection observed by CRRES and the Northern Solar Terrestrial Array riometer network. During the recovery phase of the storm, the fourth belt was created near L*=4RE, lasting for several days. Evidence is provided that the fourth belt was likely created by a dominant local heating process. This study outlines the necessity to consider all diffusive processes acting simultaneously and the advantage of supporting ground-based data in quantifying the observed radiation belt dynamics. It is demonstrated that 3-D data assimilation can resolve various nondiffusive processes and provides a comprehensive picture of the electron radiation belts.

  9. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  10. Independence and Interdependence: An Analysis of Pre-Service Candidates' Use of Focused Assignments on an Electronic Discussion Forum during the Initial Field Experience

    Science.gov (United States)

    Fisch, Audrey A.; Bennett, Deborah J.

    2011-01-01

    This article describes a case study using an electronic learning platform for creating an interactive learning community through asynchronous discussion to enhance the initial field experience of secondary math and English teacher candidates enrolled in Field Experience. We identified three problems with the field experience course--lack of…

  11. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    Science.gov (United States)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  12. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  13. Assessment of homogeneity of candidate reference material at the nanogram level and investigation on representativeness of single particle analysis using electron probe X ray microanalysis

    International Nuclear Information System (INIS)

    Ro, Chul-Un; Hoornaerta, S.; Griekena, R. van

    2002-01-01

    Particulate samples of a candidate reference material are evaluated on their homogeneity from bottle to bottle using electron probe X ray microanalysis technique. The evaluation on the homogeneity is done by the utilization of the Kolmogorov-Smirnov statistics to the processing of the quantitative electron probe X ray microanalysis data. Due to a limitation, existing even in computer controlled electron probe X ray microanalysis, in terms of analysis time and expenses, the number of particles analyzed is much smaller compared to that in the sample. Therefore, it is investigated whether this technique provides representative analysis results for the characteristics of the sample, even though a very small portion of the sample is really analyzed. Furthermore, the required number of particles for the analysis, to insure a certain level of reproducibility, e.g. 5% relative standard deviation, is determined by the application of the Ingamells sampling theory. (author)

  14. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  15. Electron diffraction determination of 11.5 Å and HySo structures: candidate water carriers to the Upper Mantle

    Czech Academy of Sciences Publication Activity Database

    Gemmi, M.; Merlini, M.; Palatinus, Lukáš; Fumagalli, P.; Hanfland, M.

    2016-01-01

    Roč. 101, č. 12 (2016), s. 2645-2654 ISSN 0003-004X Institutional support: RVO:68378271 Keywords : subduction * MASH system * electron diffraction tomography Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.021, year: 2016

  16. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  17. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  18. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  19. Wedge-Shaped GaN Nanowalls: A Potential Candidate for Two-Dimensional Electronics and Spintronics

    Science.gov (United States)

    Deb, Swarup; Dhar, Subhabrata

    Schrödingerand Poisson equations are solved self-consistently in order to obtain the potential and charge density distribution in n-type GaN nanowalls tapered along c-axis by different angles. The study shows two-dimensional (2D) quantum confinement of electrons in the central vertical plane of the wall for the entire range of tapering. Calculation of room temperature electron mobility in the 2D channel shows a steady decrease with the increase of the inclination angle of the side facets with respect to the base. However, it is interesting to note that the mobility remains to be much larger than that of bulk GaN even for the inclination angle of 65∘. The properties of high mobility and the vertical orientation of the 2DEG plane in this system can be exploited in fabricating highly conducting transparent interconnects and field effect transistors, which can lead to large scale integration of 2D devices in future.

  20. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  1. Spectrum of allergenic pollen in Karachi and their characterization using conventional and electron microscopy: Potential candidates for allergy vaccines

    International Nuclear Information System (INIS)

    Parveen, A.; Noori, M.Y.; Qureshi, M.A.

    2015-01-01

    Objective: To study the distribution of naturally growing plants with possible allergenic potential and study their pollen morphology in Karachi, Pakistan. Methodology: We performed field surveys of naturally growing plants with possible allergenic potential and studied their pollen morphology using conventional (light) as well as scanning electron microscopy. Results: About 80 allergenic pollen producing species were identified which are distributed in 45 genera and 9 angiospermic families. Grasses belonging to Graminae are most abundant followed by plants from family Fabaceae (Leguminosae). Highly allergenic weeds were also found widely growing in the city areas belonging to Amaranthaceae/Chenopodiaceae family. Conclusion: Our study provides an updated information about the allergenic plants growing in Karachi city. All desensitization efforts should be designed in accordance to the available information regarding the prevalent allergens in the environment so that appropriate therapy can be given to the affected population. (author)

  2. Particle-in-Cell Simulation Study on the Floating Potential of Spacecraft in the Low Earth Orbit

    International Nuclear Information System (INIS)

    Tang Daotan; Yang Shengsheng; Zheng Kuohai; Qin Xiaogang; Li Detian; Liu Qing; Zhao Chengxuan; Du Shanshan

    2015-01-01

    In order to further understand the characteristics of the floating potential of low earth orbit spacecraft, the effects of the electron current collection area, background electron temperature, photocurrent emission, spacecraft wake, and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit. The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft. By increasing the electron current collection area or background electron temperature, the spacecraft will float at a lower electric potential with respect to the surrounding plasma. However, the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft. The emission of the photocurrent from the spacecraft surface, which compensates for the electrons collected from background plasma, causes the floating potential to increase. The shape of the spacecraft is also an important factor influencing the floating potential. (paper)

  3. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  4. Investigation of a novel protonic/electronic ceramic composite material as a candidate for hydrogen separation membranes

    Science.gov (United States)

    Fish, Jason S.

    A novel ceramic protonic/electronic conductor composite BaCe 0.2Zr0.7Y0.1O3-delta / Sr0.95 Ti0.9Nb0.1O3-delta (BCZY27/STN95: BS27) has been synthesized, and its electrical properties and hydrogen permeability have been investigated. The volume ratio of the STN95 phase was varied from 50 - 70 % to test the effects on conductivity and hydrogen permeability. BCZY27 and STN95 powders were prepared by solid-state reaction, and membrane samples were fabricated through conventional and spark plasma sintering techniques. The phase composition, density, and microstructure were compared between the sintering methodologies. Total conductivities of 0.01 - 0.06 S·cm -1 were obtained in wet (+1 % H2O) dilute H2/(N 2, He, Ar) from 600 - 800 °C for 50 volume % STN95. With increasing STN content (60 and 70 volume %), conductivity generally increased, though remained lower than predicted by standard effective medium models, even at 70 volume % STN95. A new effective medium model was proposed, which accounted for an interfacial resistance term associated with the heterojunctions formed between the BCZY27 and STN95 phases. Better fits for the measured data were achieved with this new method, although some effects remain unexplained. Discrepancies between the model and experiment were attributed to space charge effects, grain boundary resistances, and insulating impurity phase formation during synthesis. Dense BS27 samples were tested for high-temperature hydrogen permeation and a measured flux of 0.006 mumol·cm-2·s -1 was recorded for a 50 volume % STN95 sample at 700 °C, using dry argon as a sweep gas. This value represents a modest improvement on other ceramic composite membranes, but remains short of targets for commercialization. Persistent leaks in the flux experiments generated a shallower hydrogen gradient across the samples, although this p(H2) on the sweep side simultaneously decreased the oxygen partial pressure gradient across the sample and preserved the reduced state

  5. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  6. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  7. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  8. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  9. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  10. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  11. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  12. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  13. Electron pitch angle variations recorded at the high magnetic latitude boundary layer by the NUADU instrument on the TC-2 spacecraft

    Directory of Open Access Journals (Sweden)

    L. Lu

    2005-11-01

    Full Text Available The NUADU (NeUtral Atom Detector Unit experiment aboard TC-2 recorded, with high temporal and spatial resolution, 4π solid angle images of electrons (~50-125 keV spiraling around geomagnetic field lines at high northern magnetic latitudes (L>10, during its in-orbit commissioning phase (September 2004. The ambient magnetic field, as well as electrons in other energy ranges, were simultaneously measured by the TC-2 magnetometer (FGM, the plasma electron and current experiment (PEACE, the low energy ion detector (LEID and the high energy electron detector (HEED. The NUADU data showed that up-flowing electron beams could form "ring-like" and "dumbbell-type" pitch angle distributions (PADs in the region sampled. Changes in these pitch angle distributions due to transient magnetic variations are suggested to have been associated with electron acceleration along the geomagnetic field lines. A nested magnetic bottle configuration that formed due to the propagation towards the Earth of a magnetic pulse, is proposed to have been associated with this process.

  14. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  15. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    Science.gov (United States)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  16. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  17. Electron Pitch Angle Variations Recorded at the High Magnetic Latitude Boundary Layer by the NUADU Instrument on the TC-2 Spacecraft

    Science.gov (United States)

    Lu, L.; McKenna-Lawlor, S.; Barabash, S.; Liu, Z.; Balaz, J.; Brinkfeldt, K.; Strhansky, I.; Shen, C.; Shi, J.; Cao, J.; Pu, Z.; Fu, S.; Gunell, H.; Kudela, K.; Roelof, E. C.; Brandt, P. C.; Dandouras, I.; Zhang, T.; Carr, C.; Fazakerley, A.

    2005-12-01

    During the first on orbit commission, with the deflection high voltage zero, the NUADU (NeUtral Atom Detector Unit) instrument aboard TC-2, with its high temporal-spatial resolution recorded 4d solid angle images of energetic particles spiraling around the geomagnetic field lines with different configuration at high northern magnetic latitude L>10. The ambient magnetic field and particles in different energy spectrum were simultaneously measured by the magnetometer experiment (FGM), the plasma electron and current experiment (PEACE), the low energy ion detector (LEID), and the high energy electron detector (HEED). The up-flowing electron beams made the pitch angle distribution (PAD) ring like configuration, and even concentrated toward the field lines to form a dumbbell-type PAD. In integration of the variations of ambient magnetic field and particles in different energy spectrums, a temporal string magnetic bottle model was proposed which might be formed by the disturbance of the magnetic pulse. Changes in the particle pitch angle diffusion may be associated with electron acceleration along the geomagnetic field lines.

  18. Comparison between the 30- to 80-keV electron channels at ATS 6 and 1976-059A during conjunction and application to spacecraft charging prediction

    International Nuclear Information System (INIS)

    Garrett, H.B.; Schwank, D.C.; Higbie, P.R.; Baker, D.N.

    1980-01-01

    The ATS 6 satellite, during an orbital maneuver in September 1976, passed within a few hundred kilometers of the geosynchronous satellite 1976-059A. Analysis of the 30- to 80-keV electron data from the University of California at San Diego (UCSD) electrostatic analyzers on ATS 6 and the 30- to 300-keV electron data from the Los Alamos Scientific Laboratory instrument on 1976-059A during this period reveals good agreement between the two instruments even when the separation is +- 7 0 . The low-energy UCSD ion data from ATS 6 allow a simultaneous determination of the potential difference between ATS 6 and th ambient medium. Use of the 1976-059A electron data to approximate the ambient plasma electron density and temperature during these charging periods indicates sufficient information exists in order to estimate the maximum potentials to which ATS 6 charges in sunlight an eclipse. As data from 1976-059A and similar satellites are potentially available in real time, the information therefore exists to create a satellite charging index for the geosynchronous regime that would be valid within at least +- 7 0 longitude of the position of each measurement

  19. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  20. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  1. Overview of SDCM - The Spacecraft Design and Cost Model

    Science.gov (United States)

    Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.

    1988-01-01

    The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.

  2. Accelerated life testing of spacecraft subsystems

    Science.gov (United States)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  3. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  4. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  5. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  6. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  7. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets a...

  8. Study of the Spacecraft Potential Under Active Control and Plasma Density Estimates During the MMS Commissioning Phase

    Science.gov (United States)

    Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.

    2016-01-01

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  9. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  10. Compact Chemical Monitor for Silver Ions in Spacecraft Water Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified silver ions as the best candidate biocide for use in the potable water system on next-generation spacecraft. Though significant work has been...

  11. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  12. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  13. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  14. Research on spacecraft electrical power conversion

    Science.gov (United States)

    Wilson, T. G.

    1983-01-01

    The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.

  15. Low cost spacecraft computers: Oxymoron or future trend?

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  16. Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Chen Bi-Juan; Deng Zheng; Wang Xian-Cheng; Feng Shao-Min; Yuan Zhen; Zhang Si-Jia; Liu Qing-Qing; Jin Chang-Qing

    2016-01-01

    The layered semiconductor BaFZnAs with the tetragonal ZrCuSiAs-type structure has been successfully synthesized. Both the in-situ high-pressure synchrotron x-ray diffraction and the high-pressure Raman scattering measurements demonstrate that the structure of BaFZnAs is stable under pressure up to 17.5 GPa at room temperature. The resistivity and the magnetic susceptibility data show that BaFZnAs is a non-magnetic semiconductor. BaFZnAs is recommended as a candidate of the host material of diluted magnetic semiconductor. (special topic)

  17. Limit on the Two-Photon Production of the Glueball Candidate fJ(2220) at the Cornell Electron Storage Ring

    International Nuclear Information System (INIS)

    Godang, R.; Kinoshita, K.; Lai, I.C.; Pomianowski, P.; Schrenk, S.; Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Barish, B.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Asner, D.M.; Bliss, D.W.; Brower, W.S.; Masek, G.; Paar, H.P.; Prell, S.; Sivertz, M.; Sharma, V.; Gronberg, J.; Hill, T.S.; Kutschke, R.; Lange, D.J.; Menary, S.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Qiao, C.; Richman, J.D.; Roberts, D.; Ryd, A.; Witherell, M.S.; Balest, R.; Behrens, B.H.; Cho, K.; Ford, W.T.; Park, H.; Rankin, P.; Roy, J.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Dickson, M.; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Elia, R.; Foland, A.D.; Gaidarev, P.; Galik, R.S.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H.

    1997-01-01

    We use the CLEO detector at the Cornell e + e - storage ring, CESR, to search for the two-photon production of the glueball candidate f J (2220) in its decay to K s K s . We present a restrictive upper limit on the product of the two-photon partial width and the K s K s branching fraction, (Γ γγ B K s K s ) f J(2220) . We use this limit to calculate a lower limit on the stickiness, which is a measure of the two-gluon coupling relative to the two-photon coupling. This limit on stickiness indicates that the f J (2220) has substantial glueball content. copyright 1997 The American Physical Society

  18. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  19. CMS Higgs Search in 2011 and 2012 data: candidate ZZ event (8 TeV) with two electrons and two muons

    CERN Multimedia

    McCauley, T

    2012-01-01

    Event recorded with the CMS detector in 2012 at a proton-proton centre of mass energy of 8 TeV. The event shows characteristics expected from the decay of the SM Higgs boson to a pair of Z bosons, one of which subsequently decays to a pair of electrons (green lines and green towers) and the other Z decays to a pair of muons (red lines). The event could also be due to known standard model background processes.

  20. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  1. Citizen Candidates Under Uncertainty

    OpenAIRE

    Eguia, Jon X.

    2005-01-01

    In this paper we make two contributions to the growing literature on "citizen-candidate" models of representative democracy. First, we add uncertainty about the total vote count. We show that in a society with a large electorate, where the outcome of the election is uncertain and where winning candidates receive a large reward from holding office, there will be a two-candidate equilibrium and no equilibria with a single candidate. Second, we introduce a new concept of equilibrium, which we te...

  2. Polyurethane Membranes Modified with Isopropyl Myristate as a Potential Candidate for Encapsulating Electronic Implants: A Study of Biocompatibility and Water Permeability

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2010-07-01

    Full Text Available Medical polyurethanes have shown good bio-stability and mechanical properties and have been used as coating for implantable medical devices. However, despite their excellent properties, they are relatively permeable to liquid water and water vapour which is a drawback for electronic implant encapsulation. In this study polyether polyurethanes with different soft segment molecular weights were modified by incorporating isopropyl myristate (IPM, as a hydrophobic modifying agent, and the effect of IPM on water resistant and biocompatibility of membranes were investigated. IPM changed the surface properties of the polyurethane film and reduced its surface energy. Polyurethane films were found to be stable with IPM concentrations of 1–5 wt% based upon their chemistry; however it leached out in BSA at higher concentrations. Though, low concentrations of IPM reduced both liquid water and water vapour permeability; at higher IPM content liquid permeability did not improved significantly. In general, the polyurethane materials showed much lower water permeability compared with currently used silicone packaging material for electronic implants. In addition, cytotoxicity assessment of IPM containing polyurethanes showed no evidence of cytotoxcity up to 5 wt% IPM.

  3. Topology Control Algorithms for Spacecraft Formation Flying Networks Under Connectivity and Time-Delay Constraints, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI is proposing to develop a set of topology control algorithms for a formation flying spacecraft that can be used to design and evaluate candidate formation...

  4. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  5. SSS-A spacecraft and experiment description.

    Science.gov (United States)

    Longanecker, G. W.; Hoffman, R. A.

    1973-01-01

    The scientific objectives of the Explorer-45 mission are discussed. The primary objective is the study of the ring current responsible for the main phase of magnetic storms. Closely associated with this objective is the determination of the relationship between magnetic storms, substorms, and the acceleration of charged particles in the magnetosphere. Further objectives are the measurement of a wide range of proton, electron and alpha-particle energies, and studies of wave-particle interactions responsible for particle transport and loss in the inner magnetosphere. The orbital parameters, the spacecraft itself, and some of its unique features, such as the data handling system, which is programmable from the ground, are described.

  6. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  7. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  8. LDEF materials results for spacecraft applications: Executive summary

    Science.gov (United States)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  9. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  10. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  11. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  12. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  13. Cross-field gradients: general concept, importance of multi-spacecraft measurements and study at 1 AU of the source intensity gradient for E > 30 keV solar event electrons

    Directory of Open Access Journals (Sweden)

    P. A. Chaizy

    Full Text Available Three main physical processes (and associated properties are currently used to describe the flux and anisotropy time profiles of solar energetic par- ticle events, called SEP profiles. They are (1 the particle scattering (due to magnetic waves, (2 the particle focusing (due to the decrease of the amplitude of the interplanetary magnetic field (IMF with the radial distance to the Sun and (3 the finite injection profile at the source. If their features change from one field line to another, i.e. if there is a cross IMF gradient (CFG, then the shape of the SEP profiles will depend, at onset time, on the relative position of the spacecraft to the IMF and might vary significantly on small distance scale (e.g. 106 km. One type of CFG is studied here. It is called intensity CFG and considers variations, at the solar surface, only of the intensity of the event. It is shown here that drops of about two orders of magnitude over distances of ~104 km at the Sun (1° of angular distance can influence dramatically the SEP profiles at 1 AU. This CFG can lead to either an under or overestimation of both the parallel mean free path and of the injection parameters by factor up to, at least, ~2-3 and 18, respectively. Multi-spacecraft analysis can be used to identify CFG. Three basic requirements are proposed to identify, from the observation, the type of the CFG being measured.

    Key words: Solar physics, astrophysics, and astronomy (energetic particles; flares and mass ejections - Space plasma physics (transport processes

  14. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the cabin (both air and its structure if manned) and electronic equipment within a narrow temperature range even though...

  15. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  16. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  17. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    2002-07-01

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  18. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  19. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  20. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  1. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  2. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  3. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  4. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  5. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  6. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  7. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  8. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  9. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  10. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  11. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  12. Environmentally-induced discharge transient coupling to spacecraft

    Science.gov (United States)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  13. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  14. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  15. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  16. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  17. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  18. Optimized candidal biofilm microtiter assay

    NARCIS (Netherlands)

    Krom, Bastiaan P.; Cohen, Jesse B.; Feser, Gail E. McElhaney; Cihlar, Ronald L.

    Microtiter based candidal biofilm formation is commonly being used. Here we describe the analysis of factors influencing the development of candidal biofilms such as the coating with serum, growth medium and pH. The data reported here show that optimal candidal biofilm formation is obtained when

  19. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  20. Materials and processes for spacecraft and high reliability applications

    CERN Document Server

    D Dunn, Barrie

    2016-01-01

    The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Sp...

  1. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  2. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  3. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  4. Omni-directional Particle Detector (ODPD) on Tiangong-2 Spacecraft

    Science.gov (United States)

    Guohong, S.; Zhang, S.; Yang, X.; Wang, C.

    2017-12-01

    Tiangong-2 spacecraft is the second space laboratory independently developed by china after Tiangong-1, which was launched on 15 September 2016. It is also the first real space laboratory in china, which will be used to further validate the space rendezvous and docking technology and to carry out a series of space tests. The spacecraft's orbit is 350km height and 42° inclination. The omni-directional particle detector (ODPD) on Tiangong-2 spacecraft is a new instrument developed by China. Its goal is the anisotropy and energy spectra of space particles on manned space flight orbit. The ODPD measures the energy spectra and pitch angle distributions of high energy electrons and protons. It consists of one electron spectrum telescope, one proton spectrum telescope and sixteen directional flux telescopes. The ODPD is designed to measure the protons spectrum from 2.5MeV to 150MeV, electrons spectrum from 0.2MeV to 1.5MeV, the flux of electrons energy >200keV and protons energy>1.5MeV on 2∏ space, also the ODPD has a small sensor to measure the LET spectrum from 1-100MeV/cm2sr. The primary advantage can give the particle's pitch angle distributions at any time because of the sixteen flux telescopes arrange form 0 to 180 degree. This is the first paper dealing with ODPD data, so we firstly spend some time describing the instrument, its theory of operation and its calibration. Then we give the preliminary detecting results.

  5. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  6. DELPHI: Higgs candidate

    CERN Multimedia

    2001-01-01

    This track is an example of real data collected from the DELPHI detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. Its topology is compatible with what is expected from the associated production of a Z boson and Higgs boson of mass 113 GeV that each decay into two jets. A different pairing of the jets could lead to an interpretation compatible with the production of two Z bosons.

  7. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  8. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  9. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    International Nuclear Information System (INIS)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Cochran, William D.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.

    2012-01-01

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  10. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  11. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    Science.gov (United States)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  12. Recent Observations of Energetic Particles from the Voyager Spacecraft

    Science.gov (United States)

    Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.; Webber, W. R.

    2013-05-01

    The Voyager spacecraft have been exploring the heliosheath since their crossings of the solar wind termination shock on December 2004 (Voyager 1) and August 2007 (Voyager 2). Starting on 7 May 2012, dramatic short-term changes in the intensities of heliospheric particles and galactic cosmic rays have been occurring periodically at Voyager 1. In July, a series of encounters with a heliospheric depletion region occurred, culminating on 25 August 2012 with the durable entry into the region by Voyager 1 (durable at least through the time of this writing in early February 2012). This depletion region is characterized by the disappearance of particles accelerated in the heliosphere, the anomalous cosmic rays and termination shock particles, and the increased intensity of galactic cosmic ray nuclei and electrons. The result is that the low-energy part of the galactic cosmic ray spectra is being revealed for the first time. Data from the magnetometer experiment on Voyager 1 implies that the spacecraft is not yet in the interstellar medium, but it apparently has a good connection path to it. At Voyager 2, dramatic changes haven't occurred but there are longer-term trends in the intensities that are different from what were observed on Voyager 1. We will report on the recent observations of energetic particles from both spacecraft. This work was supported by NASA under contract NNN12AA012.

  13. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  14. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  15. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  16. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  17. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  18. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  19. Computational Model for Spacecraft/Habitat Volume

    Data.gov (United States)

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...

  20. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  1. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  2. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  3. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  4. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  5. Manned spacecraft electrical power systems

    Science.gov (United States)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  6. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  7. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  8. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  9. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  10. Computational design of molecules for an all-quinone redox flow battery† †Electronic supplementary information (ESI) available: The list of computationally predicted candidate quinone molecules with interesting redox properties. See DOI: 10.1039/c4sc03030c Click here for additional data file.

    Science.gov (United States)

    Er, Süleyman; Suh, Changwon; Marshak, Michael P.

    2015-01-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships. PMID:29560173

  11. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  12. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  13. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  14. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    Science.gov (United States)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  15. Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind

    Science.gov (United States)

    Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.

    2017-12-01

    We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.

  16. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  17. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  18. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    Science.gov (United States)

    Javadi, M.; Abdi, Y.

    2015-08-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  19. Monte Carlo random walk simulation of electron transport in confined porous TiO{sub 2} as a promising candidate for photo-electrode of nano-crystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir [Nanophysics Research Laboratory, Department of Physics, University of Tehran, North Kargar, Tehran (Iran, Islamic Republic of)

    2015-08-14

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  20. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    International Nuclear Information System (INIS)

    Javadi, M.; Abdi, Y.

    2015-01-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO 2 . In this work, we have introduced a columnar structure instead of the thick layer of porous TiO 2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm 2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure

  1. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  2. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  3. SSTL based thermal and power efficient RAM design on 28nm FPGA for spacecraft

    DEFF Research Database (Denmark)

    Kalia, Kartik; Pandey, Bishwajeet; Hussain, D. M.A.

    2016-01-01

    In this paper, an approach is made to design a Thermal and Power efficient RAM for that reason we have used DDR4L memory and six different members of SSTL I/Os standards on 28nm technology. Every spacecraft requires most energy efficient electronic system and for that very purpose we have designe...

  4. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  5. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  6. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  7. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  8. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  9. Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment

    International Nuclear Information System (INIS)

    Wu, Wan-fan; Liu, Na; Cheng, Wen-long; Liu, Yi

    2013-01-01

    Highlights: ► A shape-stabilized PCM is used to protect the spacecraft attacked by high energy. ► Taking a satellite as example, it proves the solution given in the work is feasible. ► Low thermal conductivity makes the material above its thermal stability limit. ► It provides guidance on how to choose the shape-stabilized PCM for similar problems. - Abstract: In space, the emergencies such as short-term high heat flux is prone to cause spacecraft thermal control system faults, resulting in temperature anomalies of electronic equipment of the spacecraft and even failures in them. In order to protect the spacecraft attacked by the high energy, a new guard method is proposed. A shape-stabilized phase change material (PCM), which has high thermal conductivity and does not require being tightly packaged, is proposed to be used on the spacecraft. To prove the feasibility of using the material on spacecraft attacked by high energy, the thermal responses for spacecraft with shape-stabilized PCM are investigated in situations of normal and short-term high heat flux, in contrast to that with conventional thermal control system. The results indicate that the shape-stabilized PCM can effectively absorb the heat to prevent the thermal control system faults when the spacecraft’s outer heat flux changes dramatically and has no negative effect on spacecraft in normal heat flux. Additionally the effect of thermal conductivity of PCM on its application effectiveness is discussed

  10. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  11. Testing programs for the Multimission Modular Spacecraft

    Science.gov (United States)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  12. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  13. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  14. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  15. CMS Higgs Search in 2011 and 2012 data: candidate ZZ event (8 TeV) with two electrons and two muons: 3D perspective, r-phi and r-z views

    CERN Multimedia

    Mc Cauley, Thomas

    2012-01-01

    Event recorded with the CMS detector in 2012 at a proton-proton centre of mass energy of 8 TeV. The event shows characteristics expected from the decay of the SM Higgs boson to a pair of Z bosons, one of which subsequently decays to a pair of electrons (green lines and green towers) and the other Z decays to a pair of muons (red lines). The event could also be due to known standard model background processes.

  16. MXene: a potential candidate for yarn supercapacitors.

    Science.gov (United States)

    Zhang, Jizhen; Seyedin, Shayan; Gu, Zhoujie; Yang, Wenrong; Wang, Xungai; Razal, Joselito M

    2017-12-07

    The increasing developments in wearable electronics demand compatible power sources such as yarn supercapacitors (YSCs) that can effectively perform in a limited footprint. MXene nanosheets, which have been recently shown in the literature to possess ultra-high volumetric capacitance, were used in this study for the fabrication of YSCs in order to identify their potential merit and performance in YSCs. With the aid of a conductive binder (PEDOT-PSS), YSCs with high mass loading of MXene are demonstrated. These MXene-based YSCs exhibit excellent device performance and stability even under bending and twisting. This study demonstrates that MXene is a promising candidate for YSCs and its further development can lead to flexible power sources with sufficient performance for powering miniaturized and/or wearable electronics.

  17. Simulated Aging of Spacecraft External Materials on Orbit

    Science.gov (United States)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  18. On the Electronic Structure of mer,trans-[RuCl3(1H-indazole)2(NO)], a Hypothetical Metabolite of the Antitumor Drug Candidate KP1019: An Experimental and DFT Study

    Czech Academy of Sciences Publication Activity Database

    Bučinský, L.; Buchel, G.E.; Ponec, Robert; Rapta, P.; Breza, M.; Kožíšek, J.; Gall, M.; Biskupič, S.; Fronc, M.; Schiessl, K.; Cuzan, O.; Prodius, D.; Turta, C.; Shova, S.; Zajac, D.A.; Arion, V.B.

    2013-01-01

    Roč. 14, MAY (2013), s. 2505-2519 ISSN 1434-1948 R&D Projects: GA ČR GA203/09/0118 Grant - others:GA SK(SK) 1/0679/11; GA SK(SK) 1/0289/12; GA SK(SK) 1/0327/12; AAIM(AT) SK-03; ASF(AT) I 374-N19 Institutional support: RVO:67985858 Keywords : ruthenium * electronic structure * antitumor agents Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.965, year: 2013

  19. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  20. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  1. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  2. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  3. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  4. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  5. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  6. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  7. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  8. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  9. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  10. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  11. Spacecraft Fire Safety 1956 to 1999: An Annotated Bibliography

    Science.gov (United States)

    Friedman, Robert; Ruff, Gary A.

    2013-01-01

    Knowledge of fire safety in spacecraft has resulted from over 50 years of investigation and experience in space flight. Current practices and procedures for the operation of the Space Transportation System (STS) shuttle and the International Space Station (ISS) have been developed from this expertise, much of which has been documented in various reports. Extending manned space exploration from low Earth orbit to lunar or Martian habitats and beyond will require continued research in microgravity combustion and fire protection in low gravity. This descriptive bibliography has been produced to document and summarize significant work in the area of spacecraft fire safety that was published between 1956 and July 1999. Although some important work published in the late 1990s may be missing, these citations as well as work since 2000 can generally be found in Web-based resources that are easily accessed and searched. In addition to the citation, each reference includes a short description of the contents and conclusions of the article. The bibliography contains over 800 citations that are cross-referenced both by topic and the authors and editors. There is a DVD that accompanies this bibliography (available by request from the Center for Aerospace Information) containing the full-text articles of selected citations as well as an electronic version of this report that has these citations as active links to their corresponding full-text article.

  12. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  13. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    Science.gov (United States)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  14. At the edge of the earth's magnetosphere: a survey by the AMPTE UKS spacecraft

    International Nuclear Information System (INIS)

    Bryant, D.A.; Riggs, S.

    1988-10-01

    A survey is made, using measurements from the AMPTE-UKS spacecraft, of the interaction between plasmas of solar and terrestrial origin at the outer edge of the Earth's magnetosphere. The first results are presented of a new type of analysis which aims to clarify the nature of the boundary layer that develops between the two plasmas by re-ordering, on the basis of a consistent relationship between electron density and temperature and the normally erratic progress made by a spacecraft across the constantly moving region. Distinctive patterns found consistently for the electron and ion transitions suggest that diffusion, viscosity and loss to the atmosphere govern the boundary layer. Electron acceleration within the boundary layer is identified; and its cause, and relevance to dayside auroral precipitation are discussed. (author)

  15. Teacher Candidate Selection and Evaluation.

    Science.gov (United States)

    Collins, Mary Lynn; And Others

    Summaries are presented of three papers presented at a summer workshop on Quality Assurance in Teacher Education conducted by the Association of Teacher Educators. The general topic covered by these presentations was teacher candidate selection and evaluation. Papers focused upon the following questions: (1) What entry level criteria should be…

  16. Candidate Prediction Models and Methods

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik

    2005-01-01

    This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....

  17. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  18. Simulation of Tomographic Reconstruction of Magnetosphere Plasma Distribution By Multi-spacecraft Systems.

    Science.gov (United States)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Zelenyi, L.; Veselov, M.; Galperin, Y.; Buchner, J.

    A satellite radiotomography method for electron density distributions was recently proposed for closely-space multi-spacecraft group of high-altitude satellites to study the physics of reconnection process. The original idea of the ROY project is to use a constellation of spacecrafts (one main and several sub-satellites) in order to carry out closely-spaced multipoint measurements and 2D tomographic reconstruction of elec- tron density in the space between the main satellite and the subsatellites. The distances between the satellites were chosen to vary from dozens to few hundreds of kilometers. The easiest data interpretation is achieved when the subsatellites are placed along the plasma streamline. Then, whenever a plasma density irregularity moves between the main satellite and the subsatellites it will be scanned in different directions and we can get 2D distribution of plasma using these projections. However in general sub- satellites are not placed exactly along the plasma streamline. The method of plasma velocity determination relative to multi-spacecraft systems is considered. Possibilities of 3D tomographic imaging using multi-spacecraft systems are analyzed. The model- ing has shown that efficient scheme for 3D tomographic imaging would be to place spacecrafts in different planes so that the angle between the planes would make not more then ten degrees. Work is supported by INTAS PROJECT 2000-465.

  19. Effects of Space Weather on Geosynchronous Electromagnetic Spacecraft Perturbations Using Statistical Fluxes

    Science.gov (United States)

    Hughes, J.; Schaub, H.

    2017-12-01

    Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.

  20. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  1. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    Science.gov (United States)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  2. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  3. Space tribology: its role in spacecraft mechanisms

    International Nuclear Information System (INIS)

    Roberts, E W

    2012-01-01

    The subject of tribology encompasses the friction, wear and lubrication of mechanical components such as bearings and gears. Tribological practices are aimed at ensuring that such components operate with high efficiency (low friction) and achieve long lives. On spacecraft mechanisms the route to achieving these goals brings its own unique challenges. This review describes the problems posed by the space environment, the types of tribological component used on spacecraft and the approaches taken to their lubrication. It is shown that in many instances lubrication needs can be met by synthetic oils having exceedingly low volatilities, but that at temperature extremes the only means of reducing friction and wear is by solid lubrication. As the demands placed on space engineering increase, innovatory approaches will be needed to solve future tribological problems. The direction that future developments might take is anticipated and discussed.

  4. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  5. Galileo spacecraft power management and distribution system

    International Nuclear Information System (INIS)

    Detwiler, R.C.; Smith, R.L.

    1990-01-01

    It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware

  6. Improved techniques for predicting spacecraft power

    International Nuclear Information System (INIS)

    Chmielewski, A.B.

    1987-01-01

    Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance

  7. Data combinations accounting for LISA spacecraft motion

    International Nuclear Information System (INIS)

    Shaddock, Daniel A.; Tinto, Massimo; Estabrook, Frank B.; Armstrong, J.W.

    2003-01-01

    The laser interferometer space antenna is an array of three spacecraft in an approximately equilateral triangle configuration which will be used as a low-frequency gravitational wave detector. We present here new generalizations of the Michelson- and Sagnac-type time-delay interferometry data combinations. These combinations cancel laser phase noise in the presence of different up and down propagation delays in each arm of the array, and slowly varying systematic motion of the spacecraft. The gravitational wave sensitivities of these generalized combinations are the same as previously computed for the stationary cases, although the combinations are now more complicated. We introduce a diagrammatic representation to illustrate that these combinations are actually synthesized equal-arm interferometers

  8. The Stardust spacecraft arrives at KSC

    Science.gov (United States)

    1998-01-01

    After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re- entry capsule to be jettisoned from Stardust as it swings by in January 2006.

  9. Close-Range Photogrammetry & Next Generation Spacecraft

    Science.gov (United States)

    Pappa, Richard S.

    2002-01-01

    NASA is focusing renewed attention on the topic of large, ultra-lightweight space structures, also known as 'gossamer' spacecraft. Nearly all of the details of the giant spacecraft are still to be worked out. But it's already clear that one of the most challenging aspects will be developing techniques to align and control these systems after they are deployed in space. A critical part of this process is creating new ground test methods to measure gossamer structures under stationary, deploying and vibrating conditions for validation of corresponding analytical predictions. In addressing this problem, I considered, first of all, the possibility of simply using conventional displacement or vibration sensor that could provide spatial measurements. Next, I turned my attention to photogrammetry, a method of determining the spatial coordinates of objects using photographs. The success of this research and development has convinced me that photogrammetry is the most suitable method to solve the gossamer measurement problem.

  10. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  11. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  12. FORTE spacecraft vibration mitigation. Final report

    International Nuclear Information System (INIS)

    Maly, J.R.

    1996-02-01

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure

  13. Redundancy for electric motors in spacecraft applications

    Science.gov (United States)

    Smith, Robert J.; Flew, Alastair R.

    1986-01-01

    The parts of electric motors which should be duplicated in order to provide maximum reliability in spacecraft application are identified. Various common types of redundancy are described. The advantages and disadvantages of each are noted. The principal types are illustrated by reference to specific examples. For each example, constructional details, basic performance data and failure modes are described, together with a discussion of the suitability of particular redundancy techniques to motor types.

  14. Schema for Spacecraft-Command Dictionary

    Science.gov (United States)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse

    2008-01-01

    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  15. Additive Manufacturing: Ensuring Quality for Spacecraft Applications

    Science.gov (United States)

    Swanson, Theodore; Stephenson, Timothy

    2014-01-01

    Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.

  16. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  17. The Manned Spacecraft Center and medical technology

    Science.gov (United States)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  18. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  19. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  20. Economic analysis of open space box model utilization in spacecraft

    Science.gov (United States)

    Mohammad, Atif F.; Straub, Jeremy

    2015-05-01

    It is a known fact that the amount of data about space that is stored is getting larger on an everyday basis. However, the utilization of Big Data and related tools to perform ETL (Extract, Transform and Load) applications will soon be pervasive in the space sciences. We have entered in a crucial time where using Big Data can be the difference (for terrestrial applications) between organizations underperforming and outperforming their peers. The same is true for NASA and other space agencies, as well as for individual missions and the highly-competitive process of mission data analysis and publication. In most industries, conventional opponents and new candidates alike will influence data-driven approaches to revolutionize and capture the value of Big Data archives. The Open Space Box Model is poised to take the proverbial "giant leap", as it provides autonomic data processing and communications for spacecraft. We can find economic value generated from such use of data processing in our earthly organizations in every sector, such as healthcare, retail. We also can easily find retailers, performing research on Big Data, by utilizing sensors driven embedded data in products within their stores and warehouses to determine how these products are actually used in the real world.

  1. Radioisotope AMTEC power system designs for spacecraft applications

    International Nuclear Information System (INIS)

    Ivanenok, J.F. III; Sievers, R.K.; Hunt, T.K.; Johnson, G.A.

    1993-01-01

    The Alkali Metal Thermal to Electric Converter (AMTEC) system is an exceptional candidate for high performance spacecraft power systems including small systems powered by General Purpose Heat Sources (GPHS). The AMTEC converter is best described as a thermally regenerative electrochemical concentration cell. AMTEC is a static energy conversion device and can operate at efficiencies between 15% and 30%. The single tube, remote condensed, wick return minicell design has been incorporated into a radioisotope powered system model. Reported cell efficiencies used for these system design studies ranged from 15% to 25%. This efficiency is significantly higher than other static conversion systems operating at the same temperatures. Savings in mass and cost, relative to other more conventional static conversion systems, have also been shown. The minicell used for this system study has many advanced features not combined in previous designs, including wick return, remote condensing, and hot zone feedthroughs. All of these features significantly enhance the performance of the AMTEC cell. Additionally, the cell end provides enough area for adequate heat transfer from the GPHS module, eliminating the need for a ''hot shoe'', and reducing the complexity and weight of the system. This paper describes and compares small (two module) and larger (16 module) AMTEC radioisotope powered systems and describes the computer model developed to predict their performance

  2. Evaluating Fault Management Operations Concepts for Next-Generation Spacecraft: What Eye Movements Tell Us

    Science.gov (United States)

    Hayashi, Miwa; Ravinder, Ujwala; McCann, Robert S.; Beutter, Brent; Spirkovska, Lily

    2009-01-01

    Performance enhancements associated with selected forms of automation were quantified in a recent human-in-the-loop evaluation of two candidate operational concepts for fault management on next-generation spacecraft. The baseline concept, called Elsie, featured a full-suite of "soft" fault management interfaces. However, operators were forced to diagnose malfunctions with minimal assistance from the standalone caution and warning system. The other concept, called Besi, incorporated a more capable C&W system with an automated fault diagnosis capability. Results from analyses of participants' eye movements indicate that the greatest empirical benefit of the automation stemmed from eliminating the need for text processing on cluttered, text-rich displays.

  3. Spacecraft early design validation using formal methods

    International Nuclear Information System (INIS)

    Bozzano, Marco; Cimatti, Alessandro; Katoen, Joost-Pieter; Katsaros, Panagiotis; Mokos, Konstantinos; Nguyen, Viet Yen; Noll, Thomas; Postma, Bart; Roveri, Marco

    2014-01-01

    The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed – with challenging requirements from the European space industry – a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested)

  4. Determination of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  5. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  6. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  7. Delamination Assessment Tool for Spacecraft Composite Structures

    Science.gov (United States)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  8. Halopentacenes: Promising Candidates for Organic Semiconductors

    International Nuclear Information System (INIS)

    Gong-He, Du; Zhao-Yu, Ren; Ji-Ming, Zheng; Ping, Guo

    2009-01-01

    We introduce polar substituents such as F, Cl, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that halopentacenes have rather small reorganization energies (< 0.2 eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  9. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  10. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  11. Candidate genes in panic disorder

    DEFF Research Database (Denmark)

    Howe, A. S.; Buttenschön, Henriette N; Bani-Fatemi, A.

    2016-01-01

    The utilization of molecular genetics approaches in examination of panic disorder (PD) has implicated several variants as potential susceptibility factors for panicogenesis. However, the identification of robust PD susceptibility genes has been complicated by phenotypic diversity, underpowered...... association studies and ancestry-specific effects. In the present study, we performed a succinct review of case-control association studies published prior to April 2015. Meta-analyses were performed for candidate gene variants examined in at least three studies using the Cochrane Mantel-Haenszel fixed......-effect model. Secondary analyses were also performed to assess the influences of sex, agoraphobia co-morbidity and ancestry-specific effects on panicogenesis. Meta-analyses were performed on 23 variants in 20 PD candidate genes. Significant associations after correction for multiple testing were observed...

  12. The Near-Earth Space Radiation for Electronics Environment

    Science.gov (United States)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  13. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  14. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  15. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  16. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  17. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  18. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  19. Single event effect ground test results for a fiber optic data interconnect and associated electronics

    International Nuclear Information System (INIS)

    LaBel, K.A.; Hawkins, D.K.; Cooley, J.A.; Stassinopoulos, E.G.; Seidleck, C.M.; Marshall, P.; Dale, C.; Gates, M.M.; Kim, H.S.

    1994-01-01

    As spacecraft unlock the potential of fiber optics for spaceflight applications, system level bit error rates become of concern to the system designer. The authors present ground test data and analysis on candidate system components

  20. Computing in the presence of soft bit errors. [caused by single event upset on spacecraft

    Science.gov (United States)

    Rasmussen, R. D.

    1984-01-01

    It is shown that single-event-upsets (SEUs) due to cosmic rays are a significant source of single bit error in spacecraft computers. The physical mechanism of SEU, electron hole generation by means of Linear Energy Transfer (LET), it discussed with reference made to the results of a study of the environmental effects on computer systems of the Galileo spacecraft. Techniques for making software more tolerant of cosmic ray effects are considered, including: reducing the number of registers used by the software; continuity testing of variables; redundant execution of major procedures for error detection; and encoding state variables to detect single-bit changes. Attention is also given to design modifications which may reduce the cosmic ray exposure of on-board hardware. These modifications include: shielding components operating in LEO; removing low-power Schottky parts; and the use of CMOS diodes. The SEU parameters of different electronic components are listed in a table.

  1. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  2. Spacecraft computer technology at Southwest Research Institute

    Science.gov (United States)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  3. Soyuz Spacecraft Transported to Launch Pad

    Science.gov (United States)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  4. Effects of Spacecraft Landings on the Moon

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.

    2013-01-01

    The rocket exhaust of spacecraft landing on the Moon causes a number of observable effects that need to be quantified, including: disturbance of the regolith and volatiles at the landing site; damage to surrounding hardware such as the historic Apollo sites through the impingement of high-velocity ejecta; and levitation of dust after engine cutoff through as-yet unconfirmed mechanisms. While often harmful, these effects also beneficially provide insight into lunar geology and physics. Some of the research results from the past 10 years is summarized and reviewed here.

  5. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2002-01-01

    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  6. Aircraft, ships, spacecraft, nuclear plants and quality

    International Nuclear Information System (INIS)

    Patrick, M.G.

    1984-05-01

    A few quality assurance programs outside the purview of the Nuclear Regulatory Commission were studied to identify features or practices which the NRC could use to enhance its program for assuring quality in the design and construction of nuclear power plants. The programs selected were: the manufacture of large commercial transport aircraft, regulated by the Federal Aviation Administration; US Navy shipbuilding; commercial shipbuilding regulated by the Maritime Administration and the US Coast Guard; Government-owned nuclear plants under the Department of Energy; spacecraft under the National Aeronautics and Space Administration; and the construction of nuclear power plants in Canada, West Germany, France, Japan, Sweden, and the United Kingdom

  7. Alternative dark matter candidates. Axions

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2017-01-01

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10 9 GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  8. Alternative dark matter candidates. Axions

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2017-01-15

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10{sup 9} GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  9. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  10. Time delay interferometry with moving spacecraft arrays

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2004-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac

  11. Relativistic effects of spacecraft with circumnavigating observer

    Science.gov (United States)

    Shanklin, Nathaniel; West, Joseph

    A variation of the recently introduced Trolley Paradox, itself is a variation of the Ehrenfest Paradox is presented. In the Trolley Paradox, a ``stationary'' set of observers tracking a wheel rolling with a constant velocity find that the wheel travels further than its rest length circumference during one revolution of the wheel, despite the fact that the Lorentz contracted circumference is less than its rest value. In the variation presented, a rectangular spacecraft with onboard observers moves with constant velocity and is circumnavigated by several small ``sloops'' forming teams of inertial observers. This whole precession moves relative to a set of ``stationary'' Earth observers. Two cases are presented, one in which the sloops are evenly spaced according to the spacecraft observers, and one in which the sloops are evenly spaced according to the Earth observes. These two cases, combined with the rectangular geometry and an emphasis on what is seen by, and what is measured by, each set of observers is very helpful in sorting out the apparent contradictions. To aid in the visualizations stationary representations in excel along with animation in Visual Python and Unity are presented. The analysis presented is suitable for undergraduate physics majors.

  12. Spacecraft Dynamic Characterization by Strain Energies Method

    Science.gov (United States)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven

  13. 11 CFR 100.154 - Candidate debates.

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Candidate debates. 100.154 Section 100.154 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Expenditures § 100.154 Candidate debates. Funds used to defray costs incurred in staging candidate debates in...

  14. 11 CFR 100.92 - Candidate debates.

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Candidate debates. 100.92 Section 100.92 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Contributions § 100.92 Candidate debates. Funds provided to defray costs incurred in staging candidate debates...

  15. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    Directory of Open Access Journals (Sweden)

    Xiaokun Liu

    2016-04-01

    Full Text Available A gyrowheel (GW is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  16. Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natalie M.; /San Jose State U.; Rowe, Jason F.; /NASA, Ames; Bryson, Stephen T.; /NASA, Ames; Barclay, Thomas; /NASA, Ames; Burke, Christopher J.; /NASA, Ames; Caldwell, Douglas A.; /NASA, Ames; Christiansen, Jessie L.; /NASA, Ames; Mullally, Fergal; /NASA, Ames; Thompson, Susan E.; /NASA, Ames; Brown, Timothy M.; /Las Cumbres Observ.; Dupree, Andrea K.; /Harvard-Smithsonian Ctr. Astrophys. /UC, Santa Cruz

    2012-02-01

    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T{sub 0}, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R{sub P}/R{sub {star}}), reduced semi-major axis (d/R{sub {star}}), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2R{sub {circle_plus}} compared to 52% for candidates larger than 2R{sub {circle_plus}}) and those at longer orbital periods (123% for candidates outside of 50 day orbits versus 85% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1 - Quarter 5) to sixteen months (Quarter 1 - Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.

  17. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  18. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  19. Printed Electronics

    Science.gov (United States)

    Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian

    2018-04-01

    The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.

  20. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    Science.gov (United States)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  1. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  2. [Obesity studies in candidate genes].

    Science.gov (United States)

    Ochoa, María del Carmen; Martí, Amelia; Martínez, J Alfredo

    2004-04-17

    There are more than 430 chromosomic regions with gene variants involved in body weight regulation and obesity development. Polymorphisms in genes related to energy expenditure--uncoupling proteins (UCPs), related to adipogenesis and insulin resistance--hormone-sensitive lipase (HLS), peroxisome proliferator-activated receptor gamma (PPAR gamma), beta adrenergic receptors (ADRB2,3), and alfa tumor necrosis factor (TNF-alpha), and related to food intake--ghrelin (GHRL)--appear to be associated with obesity phenotypes. Obesity risk depends on two factors: a) genetic variants in candidate genes, and b) biographical exposure to environmental risk factors. It is necessary to perform new studies, with appropriate control groups and designs, in order to reach relevant conclusions with regard to gene/environmental (diet, lifestyle) interactions.

  3. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    Science.gov (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  4. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  5. Determining Spacecraft Reaction Wheel Friction Parameters

    Science.gov (United States)

    Sarani, Siamak

    2009-01-01

    Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.

  6. A spacecraft computer repairable via command.

    Science.gov (United States)

    Fimmel, R. O.; Baker, T. E.

    1971-01-01

    The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.

  7. Cometary dust size distributions from flyby spacecraft

    International Nuclear Information System (INIS)

    Divine, N.

    1988-01-01

    Pior to the Halley flybys in 1986, the distribution of cometary dust grains with particle size were approximated using models which provided reasonable fits to the dynamics of dust tails, anti-tails, and infrared spectra. These distributions have since been improved using fluence data (i.e., particle fluxes integrated over time along the flyby trajectory) from three spacecraft. The fluence derived distributions are appropriate for comparison with simultaneous infrared photometry (from Earth) because they sample the particles in the same way as the IR data do (along the line of sight) and because they are directly proportional to the concentration distribution in that region of the coma which dominates the IR emission

  8. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  9. Planning Inmarsat's second generation of spacecraft

    Science.gov (United States)

    Williams, W. P.

    1982-09-01

    The next generation of studies of the Inmarsat service are outlined, such as traffic forecasting studies, communications capacity estimates, space segment design, cost estimates, and financial analysis. Traffic forecasting will require future demand estimates, and a computer model has been developed which estimates demand over the Atlantic, Pacific, and Indian ocean regions. Communications estimates are based on traffic estimates, as a model converts traffic demand into a required capacity figure for a given area. The Erlang formula is used, requiring additional data such as peak hour ratios and distribution estimates. Basic space segment technical requirements are outlined (communications payload, transponder arrangements, etc), and further design studies involve such areas as space segment configuration, launcher and spacecraft studies, transmission planning, and earth segment configurations. Cost estimates of proposed design parameters will be performed, but options must be reduced to make construction feasible. Finally, a financial analysis will be carried out in order to calculate financial returns.

  10. Flight mission control for multiple spacecraft

    Science.gov (United States)

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  11. High Gain Antenna Calibration on Three Spacecraft

    Science.gov (United States)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  12. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  13. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  14. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  15. Optimal trajectories of aircraft and spacecraft

    Science.gov (United States)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful

  16. Radiation shielding calculations for the vista spacecraft

    International Nuclear Information System (INIS)

    Sahin, Suemer; Sahin, Haci Mehmet; Acir, Adem

    2005-01-01

    The VISTA spacecraft design concept has been proposed for manned or heavy cargo deep space missions beyond earth orbit with inertial fusion energy propulsion. Rocket propulsion is provided by fusion power deposited in the inertial confined fuel pellet debris and with the help of a magnetic nozzle. The calculations for the radiation shielding have been revised under the fact that the highest jet efficiency of the vehicle could be attained only if the propelling plasma would have a narrow temperature distribution. The shield mass could be reduced from 600 tons in the original design to 62 tons. Natural and enriched lithium were the principle shielding materials. The allowable nuclear heating in the superconducting magnet coils (up to 5 mW/cm 3 ) is taken as the crucial criterion for dimensioning the radiation shielding structure of the spacecraft. The space craft mass is 6000 tons. Total peak nuclear power density in the coils is calculated as ∼5.0 mW/cm 3 for a fusion power output of 17 500 MW. The peak neutron heating density is ∼2.0 mW/cm 3 , and the peak γ-ray heating density is ∼3.0 mW/cm 3 (on different points) using natural lithium in the shielding. However, the volume averaged heat generation in the coils is much lower, namely 0.21, 0.71 and 0.92 mW/cm 3 for the neutron, γ-ray and total nuclear heating, respectively. The coil heating will be slightly lower if highly enriched 6 Li (90%) is used instead of natural lithium. Peak values are then calculated as 2.05, 2.15 and 4.2 mW/cm 3 for the neutron, γ-ray and total nuclear heating, respectively. The corresponding volume averaged heat generation in the coils became 0.19, 0.58 and 0.77 mW/cm 3

  17. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  18. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  19. Characterisation of a candidate dual AGN

    Science.gov (United States)

    Lena, D.; Panizo-Espinar, G.; Jonker, P. G.; Torres, M.; Heida, M.

    2018-05-01

    We present Chandra and optical observations of a candidate dual AGN discovered serendipitously while searching for recoiling black holes via a cross-correlation between the serendipitous XMM source catalog (2XMMi) and SDSS-DR7 galaxies with a separation no larger than ten times the sum of their Petrosian radii. The system has a stellar mass ratio M1/M2 ≈ 0.7. One of the galaxies (Source 1) shows clear evidence for AGN activity in the form of hard X-ray emission and optical emission-line diagnostics typical of AGN ionisation. The nucleus of the other galaxy (Source 2) has a soft X-ray spectrum, bluer colours, and optical emission line ratios dominated by stellar photoionisation with a "composite" signature, which might indicate the presence of a weak AGN. When plotted on a diagram with X-ray luminosity vs [OIII] luminosity both nuclei fall within the locus defined by local Seyfert galaxies. From the optical spectrum we estimate the electron densities finding n1 active nature of Source 1 can be established with confidence, whether the nucleus of Source 2 is active remains a matter of debate. Evidence that a faint AGN might reside in its nucleus is, however, tantalising.

  20. Physiological responses of astronaut candidates to simulated +Gx orbital emergency re-entry.

    Science.gov (United States)

    Wu, Bin; Xue, Yueying; Wu, Ping; Gu, Zhiming; Wang, Yue; Jing, Xiaolu

    2012-08-01

    We investigated astronaut candidates' physiological and pathological responses to +Gx exposure during simulated emergency return from a running orbit to advance astronaut +Gx tolerance training and medical support in manned spaceflight. There were 13 male astronaut candidates who were exposed to a simulated high +Gx acceleration profile in a spacecraft during an emergency return lasting for 230 s. The peak value was 8.5 G. Subjective feelings and symptoms, cardiovascular and respiratory responses, and changes in urine component before, during, and after +Gx exposure were investigated. Under high +Gx exposure, 15.4% of subjects exhibited arrhythmia. Heart rate (HR) increased significantly and four different types of HR response curves were distinguished. The ratio of QT to RR interval on the electrocardiograms was significantly increased. Arterial oxygen saturation (SaO2) declined with increasing G value and then returned gradually. SaO2 reached a minimum (87.7%) at 3 G during the decline phase of the +Gx curve. Respiratory rate increased significantly with increasing G value, while the amplitude and area of the respiratory waves were significantly reduced. The overshoot appeared immediately after +Gx exposure. A few subjects suffered from slight injuries, including positive urine protein (1/13), positive urinary occult blood (1/13), and a large area of petechiae on the back (1/13). Astronaut candidates have relatively good tolerance to the +Gx profile during a simulation of spacecraft emergent ballistic re-entry. However, a few subjects exhibited adverse physiological responses and slight reversible pathological injuries.

  1. Production of activation products in space-craft components by protons in low earth orbit

    International Nuclear Information System (INIS)

    Normand, E.; Johnson, M.L.

    1986-01-01

    A spacecraft orbiting the Earth through trapped radiation belts will be subject to an induced effect as well as to the direct irradiation by the protons and electrons of the trapped belts. This induced effect is activation of the spacecraft materials by the trapped belt protons. This activation will produce many radioisotopes having half-lives ranging from seconds to millions of years, and emitting various types of radiation. Of primary concern are radioisotopes that emit gamma rays and have half-lives of several years or less. Cross-section data sets are currently being compiled for proton-induced activation products by the Los Alamos National Laboratory. Despite uncertainties in cross-section data, it is instructive to illustrate the magnitude of activation levels and the resulting dose rates calculated in an approximate manner. A number of simplifying assumptions are made

  2. Three Canted Radiator Panels to Provide Adequate Cooling for Instruments on Slewing Spacecraft in LEO

    Science.gov (United States)

    Choi, Michael K.

    2012-01-01

    Certain free-flying spacecraft in low Earth orbit (LEO) or payloads on the International Space Station (ISS) are required to slew to point the telescopes at targets. Instrument detectors and electronics require cooling. Traditionally a planar thermal radiator is used. The temperature of such a radiator varies significantly when the spacecraft slews because its view factors to space vary significantly. Also for payloads on the ISS, solar impingement on the radiator is possible. These thermal adversities could lead to inadequate cooling for the instrument. This paper presents a novel thermal design concept that utilizes three canted radiator panels to mitigate this problem. It increases the overall radiator view factor to cold space and reduces the overall solar or albedo flux absorbed per unit area of the radiator.

  3. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  4. Rockets and spacecraft: Sine qua non of space science

    Science.gov (United States)

    1980-01-01

    The evolution of the national launch vehicle stable is presented along with lists of launch vehicles used in NASA programs. A partial list of spacecraft used throughout the world is also given. Scientific spacecraft costs are presented along with an historial overview of project development and funding in NASA.

  5. Design feasibility via ascent optimality for next-generation spacecraft

    Science.gov (United States)

    Miele, A.; Mancuso, S.

    This paper deals with the optimization of the ascent trajectories for single-stage-sub-orbit (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem is studied for different values of the engine specific impulse and spacecraft structural factor. The main conclusions are that: feasibility of SSSO spacecraft is guaranteed for all the parameter combinations considered; feasibility of SSTO spacecraft depends strongly on the parameter combination chosen; not only feasibility of TSTO spacecraft is guaranteed for all the parameter combinations considered, but the TSTO payload is several times the SSTO payload. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, aerodynamic improvements do not yield significant improvements in payload. For SSSO, SSTO, and TSTO spacecraft, simple engineering approximations are developed connecting the maximum payload weight to the engine specific impulse and spacecraft structural factor. With reference to the specific impulse/structural factor domain, these engineering approximations lead to the construction of zero-payload lines separating the feasibility region (positive payload) from the unfeasibility region (negative payload).

  6. Spacecraft Charging Modeling -- Nascap-2k 2014 Annual Report

    Science.gov (United States)

    2014-09-19

    appears to work similarly in Internet Explorer, FireFox , and Opera, but fails in Safari and Chrome. Note that the SEE Spacecraft Charging Handbook is... Characteristics of Spacecraft Charging in Low Earth Orbit, J Geophys Res. 11 7, doi: 10.1029/20 11JA016875, 2012. 2 M. Cho, K. Saito, T. Hamanaga, Data

  7. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.

    2006-01-01

    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  8. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  9. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  10. Studies on black anodic coatings for spacecraft thermal control applications

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Subba Rao, Y.; Sharma, A.K. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group

    2011-10-15

    An inorganic black colouring process using nickel sulphate and sodium sulphide was investigated on anodized aluminium alloy 6061 to provide a flat absorber black coating for spacecraft thermal control applications. Influence of colouring process parameters (concentration, pH) on the physico-optical properties of black anodic film was investigated. The nature of black anodic film was evaluated by the measurement of film thickness, micro hardness and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy studies confirmed the presence of nickel and sulphur in the black anodic coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion resistance of the coating. The environmental tests, namely, humidity, corrosion resistance, thermal cycling and thermo vacuum performance tests were used to evaluate the space worthiness of the coating. Optical properties of the film were measured before and after each environmental test to ascertain its stability in harsh space environment. The black anodic films provide higher thermal emittance ({proportional_to} 0.90) and solar absorptance ({proportional_to} 0.96) and their high stability during the environmental tests indicated their suitability for space and allied applications. (orig.)

  11. Correlation of spacecraft thermal mathematical models to reference data

    Science.gov (United States)

    Torralbo, Ignacio; Perez-Grande, Isabel; Sanz-Andres, Angel; Piqueras, Javier

    2018-03-01

    Model-to-test correlation is a frequent problem in spacecraft-thermal control design. The idea is to determine the values of the parameters of the thermal mathematical model (TMM) that allows reaching a good fit between the TMM results and test data, in order to reduce the uncertainty of the mathematical model. Quite often, this task is performed manually, mainly because a good engineering knowledge and experience is needed to reach a successful compromise, but the use of a mathematical tool could facilitate this work. The correlation process can be considered as the minimization of the error of the model results with regard to the reference data. In this paper, a simple method is presented suitable to solve the TMM-to-test correlation problem, using Jacobian matrix formulation and Moore-Penrose pseudo-inverse, generalized to include several load cases. Aside, in simple cases, this method also allows for analytical solutions to be obtained, which helps to analyze some problems that appear when the Jacobian matrix is singular. To show the implementation of the method, two problems have been considered, one more academic, and the other one the TMM of an electronic box of PHI instrument of ESA Solar Orbiter mission, to be flown in 2019. The use of singular value decomposition of the Jacobian matrix to analyze and reduce these models is also shown. The error in parameter space is used to assess the quality of the correlation results in both models.

  12. BEEF CATTLE MUSCULARITY CANDIDATE GENES

    Directory of Open Access Journals (Sweden)

    Irida Novianti

    2010-04-01

    Full Text Available Muscularity is a potential indicator for the selection of more productive cattle. Mapping quantitative trait loci (QTL for traits related to muscularity is useful to identify the genomic regions where the genes affecting muscularity reside. QTL analysis from a Limousin-Jersey double backcross herd was conducted using QTL Express software with cohort and breed as the fixed effects. Nine QTL suggested to have an association with muscularity were identified on cattle chromosomes BTA 1, 2, 3, 4, 5, 8, 12, 14 and 17. The myostatin gene is located at the centromeric end of chromosome 2 and not surprisingly, the Limousin myostatin F94L variant accounted for the QTL on BTA2. However, when the myostatin F94L genotype was included as an additional fixed effect, the QTL on BTA17 was also no longer significant. This result suggests that there may be gene(s that have epistatic effects with myostatin located on cattle chromosome 17. Based on the position of the QTL in base pairs, all the genes that reside in the region were determined using the Ensembl data base (www.ensembl.org. There were two potential candidate genes residing within these QTL regions were selected. They were Smad nuclear interacting protein 1 (SNIP1 and similar to follistatin-like 5 (FSTL5. (JIIPB 2010 Vol 20 No 1: 1-10

  13. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  14. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  15. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  16. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Marcy, Geoffrey W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen (Denmark); Ciardi, David R. [Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Cochran, William D. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Ford, Eric B.; Morehead, Robert C. [University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Gilliland, Ronald L., E-mail: Jack.Lissauer@nasa.gov [Space Telescope Science Institute, Baltimore, MD 21218 (United States); and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  17. Study of the space environmental effects on spacecraft engineering materials

    Science.gov (United States)

    Obrien, Susan K.; Workman, Gary L.; Smith, Guy A.

    1995-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the current estimates of the integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/sq cm/day. and the proton integral fluence is above 1 x 109 protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are worth performing in order to simulate at some level the effect of the environment. For example the effect of protons and electrons impacting structural materials are easily simulated through experiments using the Van de Graff and Pelletron accelerators currently housed in the Environmental Effects Facility at MSFC. Proton fluxes with energies of 700 Kev-2.5 Mev can be generated and used to impinge on sample targets to determine the effects of the particles. Also the Environmental Effects Facility has the capability to generate electron beams with energies from 700 Kev to 2.5 Mev. These facilities will be used in this research to simulate space environmental effects from energetic particles. Ultraviolet radiation, particularly in the ultraviolet (less than 400 nm wavelength) is less well characterized at this time. The Environmental Effects Facility has a vacuum system dedicated to studying the effects of ultraviolet radiation on specific surface materials. This particular system was assembled in a previous study (NAS8-38609) in order to

  18. A Technology Program that Rescues Spacecraft

    Science.gov (United States)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  19. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  20. An AFDX Network for Spacecraft Data Handling

    Science.gov (United States)

    Deredempt, Marie-Helene; Kollias, Vangelis; Sun, Zhili; Canamares, Ernest; Ricco, Philippe

    2014-08-01

    In aeronautical domain, ARINC-664 Part 7 specification (AFDX) [4] provides the enabling technology for interfacing equipment in Integrated Modular Avionics (IMA) architectures. The complementary part of AFDX for a complete interoperability - Time and Space Partitioning (ARINC 653) concepts [1]- was already studied as part of space domain ESA roadmap (i.e. IMA4Space project)Standardized IMA based architecture is already considered in aeronautical domain as more flexible, reliable and secure. Integration and validation become simple, using a common set of tools and data base and could be done by part on different means with the same definition (hardware and software test benches, flight control or alarm test benches, simulator and flight test installation).In some area, requirements in terms of data processing are quite similar in space domain and the concept could be applicable to take benefit of the technology itself and of the panel of hardware and software solutions and tools available on the market. The Mission project (Methodology and assessment for the applicability of ARINC-664 (AFDX) in Satellite/Spacecraft on-board communicatION networks), as an FP7 initiative for bringing terrestrial SME research into the space domain started to evaluate the applicability of the standard in space domain.

  1. Spacecraft attitude and velocity control system

    Science.gov (United States)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  2. Humidity Testing for Human Rated Spacecraft

    Science.gov (United States)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  3. Kalman Filter for Spinning Spacecraft Attitude Estimation

    Science.gov (United States)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  4. NASA Medical Response to Human Spacecraft Accidents

    Science.gov (United States)

    Patlach, Robert

    2011-01-01

    This slide presentation reviews NASA's role in the response to spacecraft accidents that involve human fatalities or injuries. Particular attention is given to the work of the Mishap Investigation Team (MIT), the first response to the accidents and the interface to the accident investigation board. The MIT does not investigate the accident, but the objective of the MIT is to gather, guard, preserve and document the evidence. The primary medical objectives of the MIT is to receive, analyze, identify, and transport human remains, provide assistance in the recovery effort, and to provide family Casualty Coordinators with latest recovery information. The MIT while it does not determine the cause of the accident, it acts as the fact gathering arm of the Mishap Investigation Board (MIB), which when it is activated may chose to continue to use the MIT as its field investigation resource. The MIT membership and the specific responsibilities and tasks of the flight surgeon is reviewed. The current law establishing the process is also reviewed.

  5. Medical Significance of Microorganisms in Spacecraft Environment

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  6. Programs To Optimize Spacecraft And Aircraft Trajectories

    Science.gov (United States)

    Brauer, G. L.; Petersen, F. M.; Cornick, D.E.; Stevenson, R.; Olson, D. W.

    1994-01-01

    POST/6D POST is set of two computer programs providing ability to target and optimize trajectories of powered or unpowered spacecraft or aircraft operating at or near rotating planet. POST treats point-mass, three-degree-of-freedom case. 6D POST treats more-general rigid-body, six-degree-of-freedom (with point masses) case. Used to solve variety of performance, guidance, and flight-control problems for atmospheric and orbital vehicles. Applications include computation of performance or capability of vehicle in ascent, or orbit, and during entry into atmosphere, simulation and analysis of guidance and flight-control systems, dispersion-type analyses and analyses of loads, general-purpose six-degree-of-freedom simulation of controlled and uncontrolled vehicles, and validation of performance in six degrees of freedom. Written in FORTRAN 77 and C language. Two machine versions available: one for SUN-series computers running SunOS(TM) (LAR-14871) and one for Silicon Graphics IRIS computers running IRIX(TM) operating system (LAR-14869).

  7. Spaceborne intensity interferometry via spacecraft formation flight

    Science.gov (United States)

    Ribak, Erez N.; Gurfil, Pini; Moreno, Coral

    2012-07-01

    Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

  8. Spacecraft with gradual acceleration of solar panels

    Science.gov (United States)

    Merhav, Tamir R. (Inventor); Festa, Michael T. (Inventor); Stetson, Jr., John B. (Inventor)

    1996-01-01

    A spacecraft (8) includes a movable appendage such as solar panels (12) operated by a stepping motor (28) driven by pulses (311). In order to reduce vibration andor attitude error, the drive pulses are generated by a clock down-counter (312) with variable count ratio. Predetermined desired clock ratios are stored in selectable memories (314a-d), and the selected ratio (R) is coupled to a comparator (330) together with the current ratio (C). An up-down counter (340) establishes the current count-down ratio by counting toward the desired ratio under the control of the comparator; thus, a step change of solar panel speed never occurs. When a direction change is commanded, a flag signal generator (350) disables the selectable memories, and enables a further store (360), which generates a count ratio representing a very slow solar panel rotational rate, so that the rotational rate always slows to a low value before direction is changed. The principles of the invention are applicable to any movable appendage.

  9. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  10. Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Directory of Open Access Journals (Sweden)

    S. E. Haaland

    2004-04-01

    Full Text Available In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM or the Electric Field Experiment (EFW instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.

    Key words. Magnetospheric physics (magnetopause, cusp and

  11. Space Environmental Effects Testing and Characterization of the Candidate Solar Sail Material Aluminized Mylar

    Science.gov (United States)

    Edwards, D. L.; Hubbs, W. S.; Wertz, G. E.; Alstatt, R.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The usage of solar sails as a propellantless propulsion system has been proposed for many years. The technical challenges associated with solar sails are fabrication of ultralightweight films, deploying the sails and controlling the spacecraft. Integral to all these challenges is the mechanical property integrity of the sail while exposed to the harsh environment of space. This paper describes testing and characterization of a candidate solar sail material, Aluminized Mylar. This material was exposed to a simulated Geosynchronous Transfer Orbit (GTO) and evaluated by measuring thermooptical and mechanical property changes. Testing procedures and results are presented.

  12. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Science.gov (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  13. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    Science.gov (United States)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  14. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  15. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display (side view) of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks of the two electron pairs are colored red and blue, respectively. Electron clusters in the LAr calorimeter are colored darkgreen. The three displays on the right-hand side show the r-phi view of the event (top), a zoom into the vertex region, indicating that the 4 electrons originate from the same primary vertex (middle), and a Lego plot indicating the amount of transverse energy Et measured in the calorimeters (bottom).

  16. 11 CFR 110.13 - Candidate debates.

    Science.gov (United States)

    2010-01-01

    ... debates include at least two candidates; and (2) The staging organization(s) does not structure the... PROHIBITIONS § 110.13 Candidate debates. (a) Staging organizations. (1) Nonprofit organizations described in 26..., subparts D and E. (b) Debate structure. The structure of debates staged in accordance with this section and...

  17. A possible candidate for cold dark matter

    Indian Academy of Sciences (India)

    This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of is achieved by the application of Z 2 symmetry on . Considering as a possible candidate of CDM, Boltzmann's equation is solved to find the freeze-out temperature and relic density of for Higgs mass 120 GeV in the scalar ...

  18. 76 FR 36130 - Call for Candidates

    Science.gov (United States)

    2011-06-21

    ... financial information in decision-making. The Board meets in Washington, DC, for two days every other month... FEDERAL ACCOUNTING STANDARDS ADVISORY BOARD Call for Candidates AGENCY: Federal Accounting... candidates. Any applicant who provided the Federal Accounting Standards Advisory Board (FASAB or the Board...

  19. Evaluating historical candidate genes for schizophrenia

    DEFF Research Database (Denmark)

    Farrell, M S; Werge, T; Sklar, P

    2015-01-01

    Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of thes...

  20. 11 CFR 9003.2 - Candidate certifications.

    Science.gov (United States)

    2010-01-01

    ... funds under 11 CFR 9003.2(c)(3) shall not count against such candidate's $50,000 expenditure limitation... expenditures. (8) Expenditures made using a credit card for which the candidate is jointly or solely liable will count against the limits of this section to the extent that the full amount due, including any...

  1. Research on intelligent power distribution system for spacecraft

    Science.gov (United States)

    Xia, Xiaodong; Wu, Jianju

    2017-10-01

    The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.

  2. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  3. Ad hoc laser networks component technology for modular spacecraft

    Science.gov (United States)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  4. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  5. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    Teflon (AGT5, Ag-FEP) Thermal control surface (radiator) Spacecraft Exposure Soda-lime glass (74% SiO2 , 13% Na2O, 8% CaO, 4% MgO, 1% other oxide... Glass Solar panel cover Spacecraft Exposure Buna-N (acrylonitrile butadiene rubber) Seals Iodine Feed System Carbon fiber composite (epoxy resin...Fe Propellant isolator Spacecraft Exposure Lanthanum Hexaboride, LaB6 Cathode emitter Inside Cathode Yes MACOR (46% SiO2 , 17% MgO, 16% Al2O3, 10

  6. Cooper-Harper Experience Report for Spacecraft Handling Qualities Applications

    Science.gov (United States)

    Bailey, Randall E.; Jackson, E. Bruce; Bilimoria, Karl D.; Mueller, Eric R.; Frost, Chad R.; Alderete, Thomas S.

    2009-01-01

    A synopsis of experience from the fixed-wing and rotary-wing aircraft communities in handling qualities development and the use of the Cooper-Harper pilot rating scale is presented as background for spacecraft handling qualities research, development, test, and evaluation (RDT&E). In addition, handling qualities experiences and lessons-learned from previous United States (US) spacecraft developments are reviewed. This report is intended to provide a central location for references, best practices, and lessons-learned to guide current and future spacecraft handling qualities RDT&E.

  7. Spacecraft charging and related effects during Halley encounter

    International Nuclear Information System (INIS)

    Young, D.T.

    1983-01-01

    Hypervelocity (69 km/s) impact of cometary material with surfaces of the GIOTTO spacecraft will induce a number of spurious and possibly harmful phenomena. The most serious of these is likely to be spacecraft charging that results from impact-produced plasma distributions surrounding GIOTTO. The ESA Plasma Environment Working Group, whose studies are the basis for this report, finds that charging may become significant within approx. 10 5 km of the nucleus where potentials of approx. = +20 V are to be expected. In addition to spacecraft charging, impact produced plasma may interfere with in situ plasma measurements, particularly those of ion plasma analyzers and mass spectrometers

  8. Status of Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  9. Electron and Photon ID

    CERN Document Server

    Hryn'ova, Tetiana; The ATLAS collaboration

    2017-01-01

    The identification of prompt photons and the rejection of background coming mostly from photons from hadron decays relies on the high granularity of the ATLAS calorimeter. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. Several methods are used to measure with data the efficiency of the photon identification requirements, to cover a broad energy spectrum. At low energy, photons from radiative Z decays are used. In the medium energy range, similarities between electrons and photon showers are exploited using Z->ee decays. At high energy, inclusive photon samples are used. The measurement of the efficiencies of the electron identification and isolation cuts are performed with the data using tag and probe techniques with large statis...

  10. Electrostatic Charging of Spacecraft in Geosynchronous Orbit

    Science.gov (United States)

    1992-12-17

    cycle variations, the transitions into and out of region I are very sharpl !,, defined, particularly for the higher Kp ranges where the mean boundary...spectrometer data. The electron beam tests would not have possible without the enthusiastic support of Mike Duck of Chemistry Division, Harwell

  11. Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft

    Directory of Open Access Journals (Sweden)

    Liu Zhang

    2017-01-01

    Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.

  12. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  13. RFP to work on formation flying capabilities for spacecrafts for the GRACE project

    DEFF Research Database (Denmark)

    Riis, Troels; Thuesen, Gøsta; Kilsgaard, Søren

    1999-01-01

    The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts.......The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts....

  14. First Results from ARTEMIS, A New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    Science.gov (United States)

    Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.; hide

    2014-01-01

    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at approximately 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.

  15. Use of Faraday-rotation data from beacon satellites to determine ionospheric corrections for interplanetary spacecraft navigation

    Science.gov (United States)

    Royden, H. N.; Green, D. W.; Walson, G. R.

    1981-01-01

    Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.

  16. Project Overview of the Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment

    National Research Council Canada - National Science Library

    Reuer, Charles

    2001-01-01

    The Naval Postgraduate School's current attempt at getting another spacecraft into orbit is focusing on Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment (NPSAT1...

  17. The solar wind on 1 November 1984: observations by the AMPTE-UKS spacecraft

    International Nuclear Information System (INIS)

    Bryant, D.A.; Bingham, R.; Farrugia, C.J.

    1988-01-01

    The AMPTE-UKS spacecraft was well place to monitor the solar wind and its variations during the unusual compression of the earth's magnetosphere on 1 November 1984. Ions, electrons, magnetic fields and plasma waves observed between 0815 and 1300 UT upstream from the bow shock at geocentric distances of 14-19 Rsub(e) and magnetic local times ∼ 0900 MLT are reported and assessed with respect to magnetopause and bow-shock crossings closer to the earth by the AMPTE-CCE. (author)

  18. Integrating Standard Operating Procedures with Spacecraft Automation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation can be used to greatly reduce the demands on crew member and flight controllers time and attention. Automation can monitor critical resources,...

  19. A small spacecraft for multipoint measurement of ionospheric plasma

    Science.gov (United States)

    Roberts, T. M.; Lynch, K. A.; Clayton, R. E.; Weiss, J.; Hampton, D. L.

    2017-07-01

    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  20. High-Performance Contaminant Monitor for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vision for Space Exploration demands increasing reliance on real-time trace gas monitors onboard spacecraft. Present grab samples and badges will be inadequate...

  1. LP MOON SPACECRAFT ATTITUDE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Prospector attitude data set consists of values for the spacecraft spin rate and spin axis orientation (attitude) as a function of time. These values are...

  2. Odor Control in Spacecraft Waste Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  3. Internal Mass Motion for Spacecraft Dynamics and Control

    National Research Council Canada - National Science Library

    Hall, Christopher D

    2008-01-01

    We present a detailed description of the application of a noncanonical Hamiltonian formulation to the modeling, analysis, and simulation of the dynamics of gyrostat spacecraft with internal mass motion...

  4. A Sustainable Spacecraft Component Database Solution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous spacecraft component databases have been developed to support NASA, DoD, and contractor design centers and design tools. Despite the clear utility of...

  5. Passive Devices for Advanced Fluid Management aboard Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acute challenges are faced by the designers of fluid systems for spacecraft because of the persistently unfamiliar and unforgiving low-g environment. For example,...

  6. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  7. Applicability of ISO 16697 Data to Spacecraft Fire Fighting Strategies

    Science.gov (United States)

    Hirsch, David B.; Beeson, Harold D.

    2012-01-01

    Presentation Agenda: (1) Selected variables affecting oxygen consumption during spacecraft fires, (2) General overview of ISO 16697, (3) Estimated amounts of material consumed during combustion in typical ISS enclosures, (4) Discussion on potential applications.

  8. Trace Contaminant Monitor for Air in Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  9. Nuclear-powered Hysat spacecraft: comparative design study

    International Nuclear Information System (INIS)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements

  10. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft

    Science.gov (United States)

    Imamura, M. S.; Skelly, L.; Weiner, H.

    1977-01-01

    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  11. Hard-real-time resource management for autonomous spacecraft

    Science.gov (United States)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  12. Spacecraft Water Regeneration by Catalytic Wet Air Oxidation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop advanced catalysts for a volatile removal assembly used to purify spacecraft water. The innovation of the proposed...

  13. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  14. Triple3 Redundant Spacecraft Subsystems (T3RSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Redefine Technologies, along with researchers at the University of Colorado, will use three redundancy methods to decrease the susceptibility of a spacecraft, on a...

  15. The Physics and Technology of Solar Sail Spacecraft.

    Science.gov (United States)

    Dwivedi, B. N.; McInnes, C. R.

    1991-01-01

    Various aspects of the solar sail spacecraft such as solar sailing, solar sail design, navigation with solar sails, solar sail mission applications and future prospects for solar sailing are described. Several possible student projects are suggested. (KR)

  16. Micro GC's for Contaminant Monitoring in Spacecraft Air, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to create new gas chromatographs (GCs) for contaminant monitoring in spacecraft air that do not require any reagents or special...

  17. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  18. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  19. Passive Wireless Sensors for Spacecraft Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — New classes of sensors are needed on spacecraft that can be interrogated remotely using RF signals and respond with the sensor's identity as well as the...

  20. Stability Analysis of Spacecraft Motion in the Vicinity of Asteroids

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of my proposal is to determine the stability of a spacecraft when in the vicinity of an asteroid. Orbiting an asteroid is a difficult task. The unique...

  1. A Fault-tolerant RISC Microprocessor for Spacecraft Applications

    Science.gov (United States)

    Timoc, Constantin; Benz, Harry

    1990-01-01

    Viewgraphs on a fault-tolerant RISC microprocessor for spacecraft applications are presented. Topics covered include: reduced instruction set computer; fault tolerant registers; fault tolerant ALU; and double rail CMOS logic.

  2. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    Science.gov (United States)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    instruments or user-provided instruments. Rapid turnaround will depend only on flight frequency. Data are stored on-board for retrieval when the spacecraft lands. We provide robust instrumentation that can survive suborbital spaceflight, assessment of the feasibility of the requested observations, rigorous scripting of the telescope operation, integration of the telescope plus instrument in a provider spacecraft, and periodic preventive maintenance for the telescope and instrument suite. XCOR Aerospace's Lynx III spacecraft is the best candidate vehicle to host a suborbital astronomical observatory. Unlike other similar vehicles, the Lynx will operate with only 1 or 2 people onboard (the pilot and an operator), allowing for each mission to be totally dedicated to the observation (no tourists will be bumping about; no other experiments will affect spacecraft pointing). A stable platform, the Lynx can point to an accuracy of ± 0.5o. Fine pointing is done by the telescope system. Best of all, the Lynx has a dorsal pod that opens directly to space. For astronomical observations, the best window is NO window. Currently, we plan to deploy a 20" diameter telescope in the Lynx III dorsal pod. XCOR Aerospace has the goal of eventually maintaining a Lynx flight frequency capability of 4 times/day. As with any observatory, Atsa will be available for observations by the community at large.

  3. Revamping Spacecraft Operational Intelligence with Splunk

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    So what is Splunk? Instead of giving the technical details, which you can find online, I'll tell you what it did for me. Splunk slapped everything into one place, with one uniform format, and gave me the ability to forget about all these annoying details of where it is, how to parse it, and all that. Instead, I only need to interact with Splunk to find the data I need. This sounds simple and obvious, but it's surprising what you can do once you all of your data is indexed in one place. By having your data organized, querying becomes much easier. Let's say that I want to search telemetry for a sensor_name gtemp_1 h and to return all data that is at most five minutes old. And because Splunk can hook into a real ]time stream, this data will always be up-to-date. Extending the previous example, I can now aggregate all types of data into one view based in time. In this picture, I've got transaction logs, telemetry, and downlinked files all in one page, organized by time. Even though the raw data looks completely than this, I've defined interfaces that transform it into this uniform format. This gives me a more complete picture for the question what was the spacecraft doing at this particular time? And because querying data is simple, I can start with a big block of data and whiddle it down to what I need, rather than hunting around for the individual pieces of data that I need. When we have all the data we need, we can begin widdling down the data with Splunk's Unix-like search syntax. These three examples highlights my trial-and-error attempts to find large temperature changes. I begin by showing the first 5 temperatures, only to find that they're sorted chronologically, rather than from highest temperatures to lowest temperatures. The next line shows sorting temperatures by their values, but I find that that fs not really what I want either. I want to know the delta temperatures between readings. Looking through Splunk's user manual, I find the delta function, which

  4. NASA Spacecraft Fault Management Workshop Results

    Science.gov (United States)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the findings and recommendations from that workshop, as well as opportunities identified for future investment in tools, processes, and products to facilitate the development of space flight fault management capabilities.

  5. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    Science.gov (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  6. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Science.gov (United States)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  7. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  8. Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation

    Science.gov (United States)

    Wright, Jack; Rothery, David A.; Balme, Matthew R.; Conway, Susan J.

    2018-04-01

    Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late-stage, postimpact effusive volcanic deposits. The European Space Agency/Japan Aerospace Exploration Agency BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices; search for other, as-yet unrecognized edifices beneath the detection limits of MESSENGER data; and test our hypothesis that edifice construction is favored by late-stage, low-volume effusive eruptions.

  9. Status of the ESA L1 mission candidate ATHENA

    Science.gov (United States)

    Rando, N.; Martin, D.; Lumb, D.; Verhoeve, P.; Oosterbroek, T.; Bavdaz, M.; Fransen, S.; Linder, M.; Peyrou-Lauga, R.; Voirin, T.; Braghin, M.; Mangunsong, S.; van Pelt, M.; Wille, E.

    2012-09-01

    ATHENA (Advanced Telescope for High Energy Astrophysics) was an L class mission candidate within the science programme Cosmic Vision 2015-2025 of the European Space Agency, with a planned launch by 2022. ATHENA was conceived as an ESA-led project, open to the possibility of focused contributions from JAXA and NASA. By allowing astrophysical observations between 100 eV and 10 keV, it would represent the new generation X-ray observatory, following the XMM-Newton, Astro-H and Chandra heritage. The main scientific objectives of ATHENA include the study of large scale structures, the evolution of black holes, strong gravity effects, neutron star structure as well as investigations into dark matter. The ATHENA mission concept would be based on focal length of 12m achieved via a rigid metering tube and a twoaperture, x-ray telescope. Two identical x-ray mirrors would illuminate fixed focal plane instruments: a cryogenic imaging spectrometer (XMS) and a wide field imager (WFI). The S/C is designed to be fully compatible with Ariane 5 ECA. The observatory would operate at SE-L2, with a nominal lifetime of 5 yr. This paper provides a summary of the reformulation activities, completed in December 2011. An overview of the spacecraft design and of the payload is provided, including both telescope and instruments. Following the ESA Science Programme Committee decision on the L1 mission in May 2012, ATHENA was not selected to enter Definition Phase.

  10. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng

    2017-01-01

    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  11. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  12. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    OpenAIRE

    Li, Dong-Xu; Liu, Wang; Hao, Dong

    2017-01-01

    Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections b...

  13. Darwinian Spacecraft: Soft Computing Strategies Breeding Better, Faster Cheaper

    Science.gov (United States)

    Noever, David A.; Baskaran, Subbiah

    1999-01-01

    Computers can create infinite lists of combinations to try to solve a particular problem, a process called "soft-computing." This process uses statistical comparables, neural networks, genetic algorithms, fuzzy variables in uncertain environments, and flexible machine learning to create a system which will allow spacecraft to increase robustness, and metric evaluation. These concepts will allow for the development of a spacecraft which will allow missions to be performed at lower costs.

  14. Optical protocols for advanced spacecraft networks

    Science.gov (United States)

    Bergman, Larry A.

    1991-01-01

    Most present day fiber optic networks are in fact extensions of copper wire networks. As a result, their speed is still limited by electronics even though optics is capable of running three orders of magnitude faster. Also, the fact that photons do not interact with one another (as electrons do) provides optical communication systems with some unique properties or new functionality that is not readily taken advantage of with conventional approaches. Some of the motivation for implementing network protocols in the optical domain, a few possible approaches including optical code-division multiple-access (CDMA), and how this class of networks can extend the technology life cycle of the Space Station Freedom (SSF) with increased performance and functionality are described.

  15. Optical protocols for advanced spacecraft networks

    Science.gov (United States)

    Bergman, Larry A.

    1991-09-01

    Most present day fiber optic networks are in fact extensions of copper wire networks. As a result, their speed is still limited by electronics even though optics is capable of running three orders of magnitude faster. Also, the fact that photons do not interact with one another (as electrons do) provides optical communication systems with some unique properties or new functionality that is not readily taken advantage of with conventional approaches. Some of the motivation for implementing network protocols in the optical domain, a few possible approaches including optical code-division multiple-access (CDMA), and how this class of networks can extend the technology life cycle of the Space Station Freedom (SSF) with increased performance and functionality are described.

  16. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks of the two electron pairs are colored red, the clusters in the LAr calorimeter are colored darkgreen.

  17. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. Zoom into the tracking detector and the LAr calorimeter where its detailed structure is highlighted. The tracks and clusters of the two electron pairs are colored red and blue, respectively.

  18. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks and clusters of the two electron pairs are colored red and blue, respectively.

  19. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. Zoom into the tracking detector. The tracks and clusters of the two electron pairs are colored red and blue, respectively.

  20. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  1. Time maintenance system for the BMDO MSX spacecraft

    Science.gov (United States)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  2. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  3. Solar corona electron density distribution

    International Nuclear Information System (INIS)

    Esposito, P.B.; Edenhofer, P.; Lueneburg, E.

    1980-01-01

    Three and one-half months of single-frequency (f= 0 2.2 x 10 9 Hz) time delay data (earth-to-spacecraft and return signal travel time) were acquired from the Helios 2 spacecraft around the time of its solar occupation (May 16, 1976). Following the determination of the spacecraft trajectory the excess time delay due to the integrated effect of free electrons along the signal's ray path could be separated and modeled. An average solar corona, equatorial, electron density profile, during solar minimum, was deduced from time delay measurements acquired within 5--60 solar radii (R/sub S/) of the sun. As a point of reference, at 10 R/sub S/ from the sun we find an average electron density of 4500 el cm -3 . However, there appears to be an asymmtry in the electron density as the ray path moved from the west (preoccultation) to east (post-occulation) solar limb. This may be related to the fact that during entry into occulation the heliographic latitude of the ray path (at closes approach to the sun) was about 6 0 , whereas during exit it became -7 0 . The Helios electron density model is compared with similar models deduced from a variety of different experimental techniques. Within 5--20 R/sub S/ of the sun the models separate according to solar minimum or maximum conditions; however, anomalies are evident

  4. 76 FR 4896 - Call for Candidates

    Science.gov (United States)

    2011-01-27

    ... designated to establish generally accepted accounting principles for federal government entities. Generally, non-federal Board members are selected from the general financial community, the accounting and... FEDERAL ACCOUNTING STANDARDS ADVISORY BOARD Call for Candidates AGENCY: Federal Accounting...

  5. Updated candidate list for engineered barrier materials

    International Nuclear Information System (INIS)

    McCright, R.D.

    1995-10-01

    This report describes candidate materials to be evaluated over the next several years during advanced design phases for the waste package to be used for the underground disposal of high-level radioactive wastes at the Yucca Mountain facility

  6. Characterization of nanoparticles as candidate reference materials

    International Nuclear Information System (INIS)

    Martins Ferreira, E.H.; Robertis, E. de; Landi, S.M.; Gouvea, C.P.; Archanjo, B.S.; Almeida, C.A.; Araujo, J.R. de; Kuznetsov, O.; Achete, C.A.

    2013-01-01

    We report the characterization of three different nanoparticles (silica, silver and multi-walled carbon nanotubes) as candidate reference material. We focus our analysis on the size distribution of those particles as measured by different microscopy techniques. (author)

  7. Pulmonary Rehabilitation in Lung Transplant Candidates: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Stefanie Tonguino Rosero

    2013-09-01

    Full Text Available Pulmonary rehabilitation (PR aims to improve physical fitness and to decrease symptoms in patients with chronic lung disease; however there is not clear evidence regarding the benefits of PR in candidates for lung transplantation (LT. Objective. To determine the effectiveness of PR in LT candidates and also to find out how quality of life and exercise tolerance affects the survival of these patients. Methodology. Electronic databases (Medline, Cochrane, PEDro, Scient Direct and SciELO Search of articles in spanish, english or portuguese; controlled clinical trials and cohort studies published between 2000-2011 regarding PR in candidates for LT, the model of Cochrane systematic reviews was used. Results. The papers included were four cohort, two of which regarded of survival pre LT using the six minutes walking test (6MWT; a study of quality of life related to post LT survival and an exercise tolerance study. Controlled clinical trial was not found. Conclusions. The information found in the included studies had clinical and methodological heterogeneity therefore a meta-analysis could not been undertaken. The PR should be considered as an essential part to maintain the exercise tolerance and the patient’s survival. Research regarding this subject is important and should be carried out.

  8. Indico CONFERENCE: Candidate participant's registration/application

    CERN Multimedia

    CERN. Geneva; Ferreira, Pedro

    2017-01-01

    In this tutorial you are going to learn how to apply as a candidate participant (if the event requires approval from the event manager) or to register (if participation to the event doesn't require approval from an event manager) to the conference using the registration form for the event. You are also going to learn how to approve a candidate participant's application as an event manager.

  9. Do People 'Like' Candidates on Facebook?

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    The online popularity of a few exceptional candidates has led many to suggest that social media have given politicians powerful ways of communicating directly with voters. In this paper, we examine whether this is happening on a significant scale and show, based on analysis of 224 candidates....... We therefore suggest that the political implications of social media are generally better understood in terms of facilitating indirect communication and institutional change than in terms of direct communication....

  10. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  11. Topology Optimization of Spacecraft Transfer Compartment

    Directory of Open Access Journals (Sweden)

    A. A. Borovikov

    2016-01-01

    Full Text Available IntroductionThe subject of this research is topology optimization of the adapter of a spacecraft transfer compartment. The finite element topology optimization [1] is widely used for simple structure elements [6, 7]. It is argued that using this method in conjunction with additive technology (3D - printing it is possible to create construction designs with the best weight characteristics. However, the paper shows that when applying this method to a complex construction design the optimization results are highly sensitive to optimization algorithm parameters. The goal of this research is to study parameters of the topology optimization algorithm and the influence of their variations on results.1.      Problem formulation   A commercial software Altair HyperWorks/OptiStruct (student’s license performed numerical calculations. The paper presents a detailed description of the finite element model.The main features of the proposed model are as follows:-          Simplicity with non-complicated geometry;-          Building a finite element model in terms of computing time minimization;-          Using the lumped mass elements to simulate the impacts of the conjugates on the adapter;-          A limit of material strength, decreased by an order of magnitude, to eliminate stress concentrators;-          The gravitational load applied corresponds to the loads for the Angara-A5 launcher [8]. 2.      Method of solutionA brief description of the SIMP-method realized in the Altair HyperWorks/OptiStruct software is given.3.      ResultsPerformed numerical calculations, and shown the influence of variations of algorithm parameters (DISCRETE, MATINIT, MINDIM, MAXDIM on construction design as well as the parameters SINGLE and SPLIT used to reveal restrictions on manufacturing.Shown that, depending on variations of parameters, an adapter construction strives to «truss» or «shell» type. Described

  12. Proceedings of the Spacecraft Charging Technology Conference Held in Monterey, California on 31 October - 3 November 1989. Volume 1

    Science.gov (United States)

    1989-11-01

    Technical Note I (Chapter 4), ESA Contract 8011/88. IASB , 1989. Williams, D..., E. Keppler, T.A. Fritz, B. Wilken and G. Wibberenz, The ISEE 1 and 2...either detector. 112 IV. THE HYPOTHESIS The above observations indicated that electrons played a role , ruled out cosmic-ray showers (i.e. pairing...F2 studies, in particular the role of spacecraft charging in generating the anomalies and the possibility of deep dielectric charging as an

  13. A New Way to Confirm Planet Candidates

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully

  14. Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft

    Science.gov (United States)

    Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.

    2018-03-01

    The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the

  15. Event display of a H -> 4e candidate event

    CERN Multimedia

    ATLAS, Collaboration

    2012-01-01

    Event display of a H -> 4e candidate event with m(4l) = 124.5 (124.6) GeV without (with) Z mass constraint. The masses of the lepton pairs are 70.6 GeV and 44.7 GeV. The event was recorded by ATLAS on 18-May-2012, 20:28:11 CEST in run number 203602 as event number 82614360. The tracks and clusters of the two electron pairs are colored red and blue, respectively. The three displays on the right-hand side show the r-phi view of the event (top), a zoom into the vertex region, indicating that the 4 electrons originate from the same primary vertex (middle), and a Lego plot indicating the amount of transverse energy Et measured in the calorimeters (bottom).

  16. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  17. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Science.gov (United States)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  18. JELLYFISH GALAXY CANDIDATES AT LOW REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Poggianti, B. M.; Fasano, G.; Omizzolo, A.; Gullieuszik, M.; Bettoni, D.; Paccagnella, A. [INAF-Astronomical Observatory of Padova (Italy); Moretti, A.; D’Onofrio, M. [Physics and Astronomy Department, University of Padova (Italy); Jaffé, Y. L. [Department of Astronomy, Universidad de Concepción, Concepción (Chile); Vulcani, B. [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), the University of Tokyo, Kashiwa, 277-8582 (Japan); Fritz, J. [Centro de Radioastronomía y Astrofísica, CRyA, UNAM, Michoacán (Mexico); Couch, W. [Australian Astronomical Observatory, North Ryde, NSW 1670 (Australia)

    2016-03-15

    Galaxies that are being stripped of their gas can sometimes be recognized from their optical appearance. Extreme examples of stripped galaxies are the so-called “jellyfish galaxies” that exhibit tentacles of debris material with a characteristic jellyfish morphology. We have conducted the first systematic search for galaxies that are being stripped of their gas at low-z (z = 0.04−0.07) in different environments, selecting galaxies with varying degrees of morphological evidence for stripping. We have visually inspected B- and V-band images and identified 344 candidates in 71 galaxy clusters of the OMEGAWINGS+WINGS sample and 75 candidates in groups and lower mass structures in the PM2GC sample. We present the atlas of stripping candidates and a first analysis of their environment and their basic properties, such as morphologies, star formation rates and galaxy stellar masses. Candidates are found in all clusters and at all clustercentric radii, and their number does not correlate with the cluster velocity dispersion σ or X-ray luminosity L{sub X}. Interestingly, convincing cases of candidates are also found in groups and lower mass halos (10{sup 11}−10{sup 14}M{sub ⊙}), although the physical mechanism at work needs to be securely identified. All the candidates are disky, have stellar masses ranging from log M/M{sub ⊙} < 9 to > 11.5 and the majority of them form stars at a rate that is on average a factor of 2 higher (2.5σ) compared to non-stripped galaxies of similar mass. The few post-starburst and passive candidates have weak stripping evidence. We conclude that disturbed morphologies suggestive of stripping phenomena are ubiquitous in clusters and could be present even in groups and low mass halos. Further studies will reveal the physics of the gas stripping and clarify the mechanisms at work.

  19. Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2004-01-01

    Full Text Available We report on recent measurements of solitary waves made by the Wideband Plasma Wave Receiver located on each of the four Cluster spacecraft at 4.5-6.5RE (well above the auroral acceleration region as they cross field lines that map to the auroral zones. These solitary waves are observed in the Wideband data as isolated bipolar and tripolar waveforms. Examples of the two types of pulses are provided. The time durations of the majority of both types of solitary waves observed in this region range from about 0.3 up to 5ms. Their peak-to-peak amplitudes range from about 0.05 up to 20mV/m, with a few reaching up to almost 70mV/m. There is essentially no potential change across the bipolar pulses. There appears to be a small, measurable potential change, up to 0.5V, across the tripolar pulses, which is consistent with weak or hybrid double layers. A limited cross-spacecraft correlation study was carried out in order to identify the same solitary wave on more than one spacecraft. We found no convincing correlations of the bipolar solitary waves. In the two cases of possible correlation of the tripolar pulses, we found that the solitary waves are propagating at several hundred to a few thousand km/s and that they are possibly evolving (growing, decaying as they propagate from one spacecraft to the next. Further, they have a perpendicular (to the magnetic field width of 50km or greater and a parallel width of about 2-5km. We conclude, in general, however, that the Cluster spacecraft at separations along and perpendicular to the local magnetic field direction of tens of km and greater are too large to obtain positive correlations in this region. Looking at the macroscale of the auroral zone at 4.5-6.5RE, we find that the onsets of the broadband electrostatic noise associated with the solitary waves observed in the spectrograms of the WBD data are generally consistent with propagation of the solitary waves up the field lines (away from Earth, or with

  20. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Science.gov (United States)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  1. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  2. Telemetry Timing Analysis for Image Reconstruction of Kompsat Spacecraft

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2000-06-01

    Full Text Available The KOMPSAT (KOrea Multi-Purpose SATellite has two optical imaging instruments called EOC (Electro-Optical Camera and OSMI (Ocean Scanning Multispectral Imager. The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transferred from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  3. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  4. Scalar tetraquark candidates on the lattice

    International Nuclear Information System (INIS)

    Berlin, Joshua

    2017-01-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a 0 (980), an isovector in the nonet of light scalars (J P =0 + ). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a 0 (980) and f 0 (980) feature a surprising mass degeneracy. For this reasons the a 0 (980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  5. Scalar tetraquark candidates on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Joshua

    2017-07-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a{sub 0}(980), an isovector in the nonet of light scalars (J{sup P}=0{sup +}). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a{sub 0}(980) and f{sub 0}(980) feature a surprising mass degeneracy. For this reasons the a{sub 0}(980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  6. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  7. Comparison of media for detection of fungi on spacecraft

    Science.gov (United States)

    Herring, C. M.; Brandsberg, J. W.; Oxborrow, G. S.; Puleo, J. R.

    1974-01-01

    Five media, including Trypticase soy agar (TSA; BBL) pour plates, spread plates of TSA, Mycophil agar with chloromycetin, Mycophil agar with chloromycetin and Actidione, and cornmeal agar with chloromycetin were quantitatively and qualitatively compared for the detection of fungi on spacecraft. Cornmeal agar with chloromycetin yielded the highest number of fungal colonies, although not always significantly higher than Mycophil agar with chloromycetin or TSA spread plates. Cornmeal agar with chloromycetin also gave the best qualitative representation of fungi on the spacecraft, recovering 68% of the genera found from all media. This medium yielded 10 times the number of fungal colonies and 3 times the number of genera found on TSA pour plates as currently used for spacecraft assay.

  8. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  9. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  10. Multiple spacecraft configuration designs for coordinated flight missions

    Science.gov (United States)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  11. Trajectories of inner and outer heliospheric spacecraft: Predicted through 1999

    Science.gov (United States)

    Parthasarathy, R.; King, Joseph H.

    1991-01-01

    Information is presented in tabular and graphical form on the trajectories of the international fleet of spacecraft that will be probing the far reaches of the heliosphere during the 1990s. In particular, the following spacecraft are addressed: Pioneer 10 and 11, Pioneer Venus Orbiter (PVO), Voyager 1 and 2, Galileo, Ulysses, Suisei, Sakigake, Giotto, International Cometary Explorer (ICE), and Interplanetary Monitoring Platform 8 (IMP 8). Yearly resolution listing of position information in inertial space are given for Pioneer and Voyager spacecraft from the times of their launches in the 1970s. One series of plots shows the radial distances, latitudes, and longitudes of the Pioneers and Voyagers. The solar ecliptic inertial coordinate system is used. In this system, the Z axis is normal to the ecliptic plane and the X axis is towards the first point of Aries (from Sun to Earth on the vernal equinox).

  12. Developing Potential Candidates of Preclinical Preeclampsia

    Directory of Open Access Journals (Sweden)

    Sandra Founds

    2015-11-01

    Full Text Available The potential for developing molecules of interest in preclinical preeclampsia from candidate genes that were discovered on gene expression microarray analysis has been challenged by limited access to additional first trimester trophoblast and decidual tissues. The question of whether these candidates encode secreted proteins that may be detected in maternal circulation early in pregnancy has been investigated using various proteomic methods. Pilot studies utilizing mass spectrometry based proteomic assays, along with enzyme linked immunosorbent assays (ELISAs, and Western immunoblotting in first trimester samples are reported. The novel targeted mass spectrometry methods led to robust multiple reaction monitoring assays. Despite detection of several candidates in early gestation, challenges persist. Future antibody-based studies may lead to a novel multiplex protein panel for screening or detection to prevent or mitigate preeclampsia.

  13. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  14. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  15. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  16. Deep Space Networking Experiments on the EPOXI Spacecraft

    Science.gov (United States)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  17. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  18. Relativity time-delay experiments utilizing 'Mariner' spacecraft

    Science.gov (United States)

    Esposito, P. B.; Anderson, J. D.

    1974-01-01

    Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.

  19. Application of square-root filtering for spacecraft attitude control

    Science.gov (United States)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  20. Multi-kilowatt modularized spacecraft power processing system development

    International Nuclear Information System (INIS)

    Andrews, R.E.; Hayden, J.H.; Hedges, R.T.; Rehmann, D.W.

    1975-07-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

  1. Space environment studies for the SZ-4 spacecraft

    International Nuclear Information System (INIS)

    Ye Zonghai

    2004-01-01

    The space environment, especially the solar-terrestrial space environment, has close bearings on mankind's astronautical activities. An overview is presented of the space environment and safeguard services on the 'SZ' series of spacecraft, with special reference to the SZ-4 spacecraft. These include monitoring of the space environment on SZ-4, studies on its distribution, variation and effects on astronautical performance, as well as space environment forecasts for safe launching, normal operation and safe return of SZ-4. Current progress both in China and overseas is covered

  2. Heat pipe applications for future Air Force spacecraft

    International Nuclear Information System (INIS)

    Mahefkey, T.; Barthelemy, R.R.

    1980-01-01

    This paper summarizes the envisioned, future usage of high and low temperature heat pipes in advanced Air Force spacecraft. Thermal control requirements for a variety of communications, surveillance, and space defense missions are forecast. Thermal design constraints implied by survivability to potential weapons effects are outlined. Applications of heat pipes to meet potential low and high power spacecraft mission requirements and envisioned design constraints are suggested. A brief summary of past Air Force sponsored heat pipe development efforts is presented and directions for future development outlined, including those applicable to advanced photovoltaic and nuclear power subsystem applications of heat pipes

  3. Issue-Advocacy versus Candidate Advertising: Effects on Candidate Preferences and Democratic Process.

    Science.gov (United States)

    Pfau, Michael; Holbert, R. Lance; Szabo, Erin Alison; Kaminski, Kelly

    2002-01-01

    Examines the influence of soft-money-sponsored issue-advocacy advertising in U.S. House and Senate campaigns, comparing its effects against candidate-sponsored positive advertising and contrast advertising on viewers' candidate preferences and on their attitude that reflect democratic values. Reveals no main effects for advertising approach on…

  4. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  5. Magnetopause boundary structure deduced from the high-time resolution particle experiment on the Equator-S spacecraft

    Directory of Open Access Journals (Sweden)

    G. K. Parks

    1999-12-01

    Full Text Available An electrostatic analyser (ESA onboard the Equator-S spacecraft operating in coordination with a potential control device (PCD has obtained the first accurate electron energy spectrum with energies ≈7 eV–100 eV in the vicinity of the magnetopause. On 8 January, 1998, a solar wind pressure increase pushed the magnetopause inward, leaving the Equator-S spacecraft in the magnetosheath. On the return into the magnetosphere approximately 80 min later, the magnetopause was observed by the ESA and the solid state telescopes (the SSTs detected electrons and ions with energies ≈20–300 keV. The high time resolution (3 s data from ESA and SST show the boundary region contains of multiple plasma sources that appear to evolve in space and time. We show that electrons with energies ≈7 eV–100 eV permeate the outer regions of the magnetosphere, from the magnetopause to ≈6Re. Pitch-angle distributions of ≈20–300 keV electrons show the electrons travel in both directions along the magnetic field with a peak at 90° indicating a trapped configuration. The IMF during this interval was dominated by Bx and By components with a small Bz.Key words. Magnetospheric physics (magnetopause · cusp · and boundary layers; magnetospheric configuration and dynamics; solar wind · magnetosphere interactions

  6. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm.

    Science.gov (United States)

    Varsani, A; Nakamura, R; Sergeev, V A; Baumjohann, W; Owen, C J; Petrukovich, A A; Yao, Z; Nakamura, T K M; Kubyshkina, M V; Sotirelis, T; Burch, J L; Genestreti, K J; Vörös, Z; Andriopoulou, M; Gershman, D J; Avanov, L A; Magnes, W; Russell, C T; Plaschke, F; Khotyaintsev, Y V; Giles, B L; Coffey, V N; Dorelli, J C; Strangeway, R J; Torbert, R B; Lindqvist, P-A; Ergun, R

    2017-11-01

    During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 R E .

  7. Electronics Modernization

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need to reduce mass and volume on any spacecraft whether for earth orbit insertion or travel within the solar system. Less mass and a smaller volume can...

  8. Risks and reliability of manufacturing processes as related to composite materials for spacecraft structures

    Science.gov (United States)

    Bao, Han P.

    1995-01-01

    Fabricating primary aircraft and spacecraft structures using advanced composite materials entail both benefits and risks. The benefits come from much improved strength-to-weight ratios and stiffness-to-weight ratios, potential for less part count, ability to tailor properties, chemical and solvent resistance, and superior thermal properties. On the other hand, the risks involved include high material costs, lack of processing experience, expensive labor, poor reproducibility, high toxicity for some composites, and a variety of space induced risks. The purpose of this project is to generate a manufacturing database for a selected number of materials with potential for space applications, and to rely on this database to develop quantitative approaches to screen candidate materials and processes for space applications on the basis of their manufacturing risks including costs. So far, the following materials have been included in the database: epoxies, polycyanates, bismalemides, PMR-15, polyphenylene sulfides, polyetherimides, polyetheretherketone, and aluminum lithium. The first four materials are thermoset composites; the next three are thermoplastic composites, and the last one is is a metal. The emphasis of this database is on factors affecting manufacturing such as cost of raw material, handling aspects which include working life and shelf life of resins, process temperature, chemical/solvent resistance, moisture resistance, damage tolerance, toxicity, outgassing, thermal cycling, and void content, nature or type of process, associate tooling, and in-process quality assurance. Based on industry experience and published literature, a relative ranking was established for each of the factors affecting manufacturing as listed above. Potential applications of this database include the determination of a delta cost factor for specific structures with a given process plan and a general methodology to screen materials and processes for incorporation into the current

  9. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  10. 47 CFR 73.1942 - Candidate rates.

    Science.gov (United States)

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1942 Candidate rates. (a) Charges for use of stations... periods. Any station practices offered to commercial advertisers that enhance the value of advertising...

  11. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    Rietman, M.L.; Sommeijer, J.-P.; Levelt, C.N.; Heimel, J.A.; Brussaard, A.B.; Borst, J.G.G.; Elgersma, Y.; Galjart, N.; van der Horst, G.T.; Pennartz, C.M.; Smit, A.B.; Spruijt, B.M.; Verhage, M.; de Zeeuw, C.I.

    2012-01-01

    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  12. Fuzzy Treatment of Candidate Outliers in Measurements

    Directory of Open Access Journals (Sweden)

    Giampaolo E. D'Errico

    2012-01-01

    Full Text Available Robustness against the possible occurrence of outlying observations is critical to the performance of a measurement process. Open questions relevant to statistical testing for candidate outliers are reviewed. A novel fuzzy logic approach is developed and exemplified in a metrology context. A simulation procedure is presented and discussed by comparing fuzzy versus probabilistic models.

  13. Gallium-67 imaging in candidal esophagitis

    International Nuclear Information System (INIS)

    Rundback, J.H.; Goldfarb, C.R.; Ongseng, F.

    1990-01-01

    Ga-67 scanning has been used to evaluate esophageal carcinoma. It has demonstrated candidal infection in other body sites and, in one previous case, in the esophagus. The authors present a case of diffuse esophageal uptake of Ga-67 in esophageal candidiasis

  14. Gallium-67 imaging in candidal esophagitis

    Energy Technology Data Exchange (ETDEWEB)

    Rundback, J.H.; Goldfarb, C.R.; Ongseng, F. (Beth Israel Medical Center, New York, NY (USA))

    1990-01-01

    Ga-67 scanning has been used to evaluate esophageal carcinoma. It has demonstrated candidal infection in other body sites and, in one previous case, in the esophagus. The authors present a case of diffuse esophageal uptake of Ga-67 in esophageal candidiasis.

  15. Towards Treating Chemistry Teacher Candidates as Human

    Science.gov (United States)

    Lewthwaite, Brian Ellis

    2008-01-01

    This research inquiry investigates the factors influencing chemistry teacher candidates' development during their extended practica in the second and final year of an After-Degree Bachelor of Education at a university in central Canada. A variety of data sources are used to identify the risk and protective factors impeding and contributing to the…

  16. Promoting Team Leadership Skills in Doctoral Candidates

    Science.gov (United States)

    Suleiman, Mahmoud; Whetton, Danny

    2014-01-01

    Doctoral programs can serve as an optimal opportunity for candidates to engage in tasks and activities to transform them and their schools. The paradigm shifts in such preparation involve moving from sitting and getting to making and taking. Most importantly, it requires building leadership skills and styles necessary to bring about desired change…

  17. Query by image example: The CANDID approach

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, M. [Los Alamos National Lab., NM (United States). Computer Research and Applications Group; Hush, D.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering

    1995-02-01

    CANDID (Comparison Algorithm for Navigating Digital Image Databases) was developed to enable content-based retrieval of digital imagery from large databases using a query-by-example methodology. A user provides an example image to the system, and images in the database that are similar to that example are retrieved. The development of CANDID was inspired by the N-gram approach to document fingerprinting, where a ``global signature`` is computed for every document in a database and these signatures are compared to one another to determine the similarity between any two documents. CANDID computes a global signature for every image in a database, where the signature is derived from various image features such as localized texture, shape, or color information. A distance between probability density functions of feature vectors is then used to compare signatures. In this paper, the authors present CANDID and highlight two results from their current research: subtracting a ``background`` signature from every signature in a database in an attempt to improve system performance when using inner-product similarity measures, and visualizing the contribution of individual pixels in the matching process. These ideas are applicable to any histogram-based comparison technique.

  18. Waiting narratives of lung transplant candidates.

    Science.gov (United States)

    Yelle, Maria T; Stevens, Patricia E; Lanuza, Dorothy M

    2013-01-01

    Before 2005, time accrued on the lung transplant waiting list counted towards who was next in line for a donor lung. Then in 2005 the lung allocation scoring system was implemented, which meant the higher the illness severity scores, the higher the priority on the transplant list. Little is known of the lung transplant candidates who were listed before 2005 and were caught in the transition when the lung allocation scoring system was implemented. A narrative analysis was conducted to explore the illness narratives of seven lung transplant candidates between 2006 and 2007. Arthur Kleinman's concept of illness narratives was used as a conceptual framework for this study to give voice to the illness narratives of lung transplant candidates. Results of this study illustrate that lung transplant candidates expressed a need to tell their personal story of waiting and to be heard. Recommendation from this study calls for healthcare providers to create the time to enable illness narratives of the suffering of waiting to be told. Narrative skills of listening to stories of emotional suffering would enhance how healthcare providers could attend to patients' stories and hear what is most meaningful in their lives.

  19. Waiting Narratives of Lung Transplant Candidates

    Directory of Open Access Journals (Sweden)

    Maria T. Yelle

    2013-01-01

    Full Text Available Before 2005, time accrued on the lung transplant waiting list counted towards who was next in line for a donor lung. Then in 2005 the lung allocation scoring system was implemented, which meant the higher the illness severity scores, the higher the priority on the transplant list. Little is known of the lung transplant candidates who were listed before 2005 and were caught in the transition when the lung allocation scoring system was implemented. A narrative analysis was conducted to explore the illness narratives of seven lung transplant candidates between 2006 and 2007. Arthur Kleinman’s concept of illness narratives was used as a conceptual framework for this study to give voice to the illness narratives of lung transplant candidates. Results of this study illustrate that lung transplant candidates expressed a need to tell their personal story of waiting and to be heard. Recommendation from this study calls for healthcare providers to create the time to enable illness narratives of the suffering of waiting to be told. Narrative skills of listening to stories of emotional suffering would enhance how healthcare providers could attend to patients’ stories and hear what is most meaningful in their lives.

  20. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    Science.gov (United States)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown

  1. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    Science.gov (United States)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  2. Spacecraft on-orbit deployment anomalies - What can be done?

    Science.gov (United States)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  3. Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Science.gov (United States)

    Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael

    2018-01-01

    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.

  4. Precision pointing of imaging spacecraft using gyro-based attitude ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    three-axis attitude of the spacecraft is required continuously for the controller. Gyros provide .... Right ascension of ascending node ( ). 78·1290476 ... U = {ω1 + ω0X,ω2 + ω0Y ,ω3 + ω0Z,} are the process inputs and the matrices A, B and G.

  5. Autonomous spacecraft landing through human pre-attentive vision

    International Nuclear Information System (INIS)

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; De Croon, Guido C H E

    2012-01-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting. (paper)

  6. Attitude tracking control of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  7. Time-dependent polar distribution of outgassing from a spacecraft

    Science.gov (United States)

    Scialdone, J. J.

    1974-01-01

    A technique has been developed to obtain a characterization of the self-generated environment of a spacecraft and its variation with time, angular position, and distance. The density, pressure, outgassing flux, total weight loss, and other important parameters were obtained from data provided by two mass measuring crystal microbalances, mounted back to back, at distance of 1 m from the spacecraft equivalent surface. A major outgassing source existed at an angular position of 300 deg to 340 deg, near the rocket motor, while the weakest source was at the antennas. The strongest source appeared to be caused by a material diffusion process which produced a directional density at 1 m distance of about 1.6 x 10 to the 11th power molecules/cu cm after 1 hr in vacuum and decayed to 1.6 x 10 to the 9th power molecules/cu cm after 200 hr. The total average outgassing flux at the same distance and during the same time span changed from 1.2 x 10 to the minus 7th power to 1.4 x to the minus 10th power g/sq cm/s. These values are three times as large at the spacecraft surface. Total weight loss was 537 g after 10 hr and about 833 g after 200 hr. Self-contamination of the spacecraft was equivalent to that in orbit at about 300-km altitude.

  8. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    Science.gov (United States)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  9. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...

  10. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft

    Science.gov (United States)

    Medina, Alberto; Tomassini, Angelo; Suatoni, Matteo; Avilés, Marcos; Solway, Nick; Coxhill, Ian; Paraskevas, Iosif S.; Rekleitis, Georgios; Papadopoulos, Evangelos; Krenn, Rainer; Brito, André; Sabbatinelli, Beatrice; Wollenhaupt, Birk; Vidal, Christian; Aziz, Sarmad; Visentin, Gianfranco

    2017-05-01

    Exploitation of space must benefit from the latest advances in robotics. On-orbit servicing is a clear candidate for the application of autonomous rendezvous and docking mechanisms. However, during the last three decades most of the trials took place combining extravehicular activities (EVAs) with telemanipulated robotic arms. The European Space Agency (ESA) considers that grasping and refuelling are promising near-mid-term capabilities that could be performed by servicing spacecraft. Minimal add-ons on spacecraft to enhance their serviceability may protect them for a changing future in which satellite servicing may become mainstream. ESA aims to conceive and promote standard refuelling provisions that can be installed in present and future European commercial geostationary orbit (GEO) satellite platforms and scientific spacecraft. For this purpose ESA has started the ASSIST activity addressing the analysis, design and validation of internal provisions (such as modifications to fuel, gas, electrical and data architecture to allow servicing) and external provisions (such as integrated berthing fixtures with peripheral electrical, gas, liquid connectors, leak check systems and corresponding optical and radio markers for cooperative rendezvous and docking). This refuelling approach is being agreed with European industry (OHB, Thales Alenia Space) and expected to be consolidated with European commercial operators as a first step to become an international standard; this approach is also being considered for on-orbit servicing spacecraft, such as the SpaceTug, by Airbus DS. This paper describes in detail the operational means, structure, geometry and accommodation of the system. Internal and external provisions will be designed with the minimum possible impact on the current architecture of GEO satellites without introducing additional risks in the development and commissioning of the satellite. End-effector and berthing fixtures are being designed in the range of few

  11. Short rendezvous missions for advanced Russian human spacecraft

    Science.gov (United States)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  12. Electoral Competition when Candidates are Better Informed than Voters

    DEFF Research Database (Denmark)

    Jensen, Thomas

    candidates are both completely office-motivated but differ in state-dependent quality. Voters have some information about the state but candidates are better informed. If voters' information is unknown to the candidates when they take positions and sufficiently accurate then candidates will, in refined...

  13. Candidate marketing takes the guessing game out of choosing employers.

    Science.gov (United States)

    Russell, Judith; Havel, Stacey

    2010-01-01

    Candidate marketing builds a foundation for relationships between employers and potential employees. Additionally, candidate marketing differentiates organizations in the marketplace. Organizations using candidate marketing to communicate the employer brand can expect a higher quality of candidates, and new employees are better prepared for the work environment and culture. Today, organizations can use a variety of integrated tools and techniques to communicate and build relationships with candidates. Candidate marketing demonstrates an organization's willingness towards transparency, and ability to invite open conversations between candidates and members of the organizations.

  14. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on

  15. Electron plasma oscillations in the Venus foreshock

    Science.gov (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  16. Electron plasma oscillations in the Venus foreshock

    International Nuclear Information System (INIS)

    Crawford, G.K.; Strangeway, R.J.; Russell, C.T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations

  17. Spectroscopic follow up of Kepler planet candidates

    DEFF Research Database (Denmark)

    Latham..[], D. W.; Cochran, W. D.; Marcy, G.W.

    2010-01-01

    Spectroscopic follow-up observations play a crucial role in the confirmation and characterization of transiting planet candidates identified by Kepler. The most challenging part of this work is the determination of radial velocities with a precision approaching 1 m/s in order to derive masses from...... spectroscopic orbits. The most precious resource for this work is HIRES on Keck I, to be joined by HARPS-North on the William Herschel Telescope when that new spectrometer comes on line in two years. Because a large fraction of the planet candidates are in fact stellar systems involving eclipsing stars...... and not planets, our strategy is to start with reconnaissance spectroscopy using smaller telescopes, to sort out and reject as many of the false positives as possible before going to Keck. During the first Kepler observing season in 2009, more than 100 nights of telescope time were allocated for this work, using...

  18. Discriminating dark matter candidates using direct detection

    International Nuclear Information System (INIS)

    Belanger, G.; Nezri, E.; Pukhov, A.

    2009-01-01

    We examine the predictions for both the spin-dependent and spin-independent direct detection rates in a variety of new particle physics models with dark matter candidates. We show that a determination of both spin-independent and spin-dependent amplitudes on protons and neutrons can in principle discriminate different candidates of dark matter up to a few ambiguities. We emphasize the importance of making measurements with different spin-dependent sensitive detector materials and the need for significant improvement of the detector sensitivities. Scenarios where exchange of new colored particles contributes significantly to the elastic scattering cross sections are often the most difficult to identify, the LHC should give an indication whether such scenarios are relevant for direct detection.

  19. Warm Debris Disk Candidates from WISE

    Science.gov (United States)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  20. The surgical residency interview: a candidate-centered, working approach.

    Science.gov (United States)

    Seabott, Heather; Smith, Ryan K; Alseidi, Adnan; Thirlby, Richard C

    2012-01-01

    The interview process is a pivotal, differentiating component of the residency match. Our bias is toward a working interview, producing better fulfillment of the needs of both parties, and a more informed match selection for the candidates and program. We describe a "candidate-centered" approach for integrating applicant interviews into our daily work schedule. Applicants are informed upon accepting the interview of the working interview model. Our program offers 33 interview days over a 12-week period. A maximum of 5 applicants are hosted per day. Applicants are assigned to 1 of our general, thoracic, vascular, or plastic surgery teams. The interview day begins with the applicant changing into scrubs, attending a morning conference, and taking part in a program overview by a Chief Resident. Applicants join their host team where 4-8 hours are spent observing the operative team, on rounds and sharing lunch. The faculty and senior residents are responsible for interviewing and evaluating applicants though the Electronic Residency Application Service. A total of 13 surgeons are involved in the interview process resulting in broad-based evaluations. Each surgeon interviewed between 3 and 12 applicants. Faculty rate this interview approach highly because it allows them to maintain a rigorous operative schedule while interacting with applicants. Current residents are engaged in welcoming applicants to view the program. Faculty and residents believe cooperating in a real world manner aids their assessment of the applicant. Applicants routinely provide positive feedback, relaying this approach is informative, transparent, and should be the "standard." Applicants believe they are presented a realistic view of the program. Ultimately, this candidate-centered process may be attributable to our resident cohort who exhibit high satisfaction, excellent resident morale, and very low dropout rate. We present a candidate-centered, working interview approach used in the selection of

  1. Candidates for non-baryonic dark matter

    International Nuclear Information System (INIS)

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes

  2. Candidates for non-baryonic dark matter

    OpenAIRE

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes.

  3. Educational intervention for liver transplantation candidates

    OpenAIRE

    Mendes,Karina Dal Sasso; Silva Junior,Orlando de Castro e; Ziviani,Luciana da Costa; Rossin,Fabiana Murad; Zago,Márcia Maria Fontão; Galvão,Cristina Maria

    2013-01-01

    OBJECTIVE: The objective in this study was to analyze candidates' knowledge on the liver transplantation process before and after putting in practice an educational intervention. METHOD: A quasi-experimental, one-group pretest-posttest research design was adopted. The final sample included 15 subjects. Research data were collected between January and March 2010 in three phases, which were: pretest, implementation of the educational intervention (two meetings) and posttest. RESULTS: The result...

  4. Energy Beverage Consumption Among Naval Aviation Candidates.

    Science.gov (United States)

    Sather, Thomas E; Delorey, Donald R

    2016-06-01

    Since the debut of energy beverages, the consumption of energy beverages has been immensely popular with young adults. Research regarding energy beverage consumption has included college students, European Union residents, and U.S. Army military personnel. However, energy beverage consumption among naval aviation candidates in the United States has yet to be examined. The purpose of this study was to assess energy beverage consumption patterns (frequency and volume) among naval aviation candidates, including attitudes and perceptions regarding the benefits and safety of energy beverage consumption. A 44-item survey was used to assess energy beverage consumption patterns of 302 students enrolled in the Aviation Preflight Indoctrination Course at Naval Air Station Pensacola, FL. Results indicated that 79% of participants (N = 239) reported consuming energy beverages within the last year. However, of those who reported consuming energy beverages within the last year, only 36% (N = 85) reported consuming energy beverages within the last 30 d. Additionally, 51% (N = 153) of participants reported no regular energy beverages consumption. The majority of participants consumed energy beverages for mental alertness (67%), mental endurance (37%), and physical endurance (12%). The most reported side effects among participants included increased mental alertness (67%), increased heart rate (53%), and restlessness (41%). Naval aviation candidates appear to use energy drinks as frequently as a college student population, but less frequently than expected for an active duty military population. The findings of this study indicate that naval aviation candidates rarely use energy beverages (less than once per month), but when consumed, they use it for fatigue management.

  5. Reducing stigma and discrimination: Candidate interventions

    OpenAIRE

    Thornicroft, Graham; Brohan, Elaine; Kassam, Aliya; Lewis-Holmes, Elanor

    2008-01-01

    Abstract This paper proposes that stigma in relation to people with mental illness can be understood as a combination of problems of knowledge (ignorance), attitudes (prejudice) and behaviour (discrimination). From a literature review, a series of candidate interventions are identified which may be effective in reducing stigmatisation and discrimination at the following levels: individuals with mental illness and their family members; the workplace; and local, national and international. The ...

  6. Various Approaches for Targeting Quasar Candidates

    Science.gov (United States)

    Zhang, Y.; Zhao, Y.

    2015-09-01

    With the establishment and development of space-based and ground-based observational facilities, the improvement of scientific output of high-cost facilities is still a hot issue for astronomers. The discovery of new and rare quasars attracts much attention. Different methods to select quasar candidates are in bloom. Among them, some are based on color cuts, some are from multiwavelength data, some rely on variability of quasars, some are based on data mining, and some depend on ensemble methods.

  7. Caffeine Consumption Among Naval Aviation Candidates.

    Science.gov (United States)

    Sather, Thomas E; Williams, Ronald D; Delorey, Donald R; Woolsey, Conrad L

    2017-04-01

    Education frequently dictates students need to study for prolonged periods of time to adequately prepare for examinations. This is especially true with aviation preflight indoctrination (API) candidates who have to assimilate large volumes of information in a limited amount of time during API training. The purpose of this study was to assess caffeine consumption patterns (frequency, type, and volume) among naval aviation candidates attending API to determine the most frequently consumed caffeinated beverage and to examine if the consumption of a nonenergy drink caffeinated beverage was related to energy drink consumption. Data were collected by means of an anonymous 44-item survey administered and completed by 302 students enrolled in API at Naval Air Station Pensacola, FL. Results indicated the most frequently consumed caffeinated beverage consumed by API students was coffee (86.4%), with daily coffee consumption being approximately 28% and the most frequent pattern of consumption being 2 cups per day (85%). The least frequently consumed caffeinated beverages reported were energy drinks (52%) and energy shots (29.1%). The present study also found that the consumption patterns (weekly and daily) of caffeinated beverages (coffee and cola) were positively correlated to energy drink consumption patterns. Naval aviation candidates' consumption of caffeinated beverages is comparable to other college and high school cohorts. This study found that coffee and colas were the beverages of choice, with energy drinks and energy shots being the least frequently reported caffeinated beverages used. Additionally, a relationship between the consumption of caffeinated beverages and energy drinks was identified.Sather TE, Williams RD, Delorey DR, Woolsey CL. Caffeine consumption among naval aviation candidates. Aerosp Med Hum Perform. 2017; 88(4):399-405.

  8. Final results of the Resonance spacecraft calibration effort

    Science.gov (United States)

    Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.

    2010-05-01

    We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the

  9. Upper gastrointestinal alterations in kidney transplant candidates.

    Science.gov (United States)

    Homse Netto, João Pedro; Pinheiro, João Pedro Sant'Anna; Ferrari, Mariana Lopes; Soares, Mirella Tizziani; Silveira, Rogério Augusto Gomes; Maioli, Mariana Espiga; Delfino, Vinicius Daher Alvares

    2018-05-14

    The incidence of gastrointestinal disorders among patients with chronic kidney disease (CKD) is high, despite the lack of a good correlation between endoscopic findings and symptoms. Many services thus perform upper gastrointestinal (UGI) endoscopy on kidney transplant candidates. This study aims to describe the alterations seen on the upper endoscopies of 96 kidney-transplant candidates seen from 2014 to 2015. Ninety-six CKD patients underwent upper endoscopic examination as part of the preparation to receive kidney grafts. The data collected from the patients' medical records were charted on Microsoft Office Excel 2016 and presented descriptively. Mean values, medians, interquartile ranges and 95% confidence intervals of the clinic and epidemiological variables were calculated. Possible associations between endoscopic findings and infection by H. pylori were studied. Males accounted for 54.17% of the 96 patients included in the study. Median age and time on dialysis were 50 years and 50 months, respectively. The most frequent upper endoscopy finding was enanthematous pangastritis (57.30%), followed by erosive esophagitis (30.20%). Gastric intestinal metaplasia and peptic ulcer were found in 8.33% and 7.30% of the patients, respectively. H. pylori tests were positive in 49 patients, and H. pylori infection was correlated only with non-erosive esophagitis (P = 0.046). Abnormal upper endoscopy findings were detected in all studied patients. This study suggested that upper endoscopy is a valid procedure for kidney transplant candidates. However, prospective studies are needed to shed more light on this matter.

  10. Pulmonary rehabilitation in lung transplant candidates.

    Science.gov (United States)

    Li, Melinda; Mathur, Sunita; Chowdhury, Noori A; Helm, Denise; Singer, Lianne G

    2013-06-01

    While awaiting lung transplantation, candidates may participate in pulmonary rehabilitation to improve their fitness for surgery. However, pulmonary rehabilitation outcomes have not been systematically evaluated in lung transplant candidates. This investigation was a retrospective cohort study of 345 pre-transplant pulmonary rehabilitation participants who received a lung transplant between January 2004 and June 2009 and had available pre-transplant exercise data. Data extracted included: 6-minute walk tests at standard intervals; exercise training details; health-related quality-of-life (HRQL) measures; and early post-transplant outcomes. Paired t-tests were used to examine changes in the 6MW distance (6MWD), exercise training volume and HRQL during the pre-transplant period. We evaluated the association between pre-transplant 6MWD and transplant hospitalization outcomes. The final 6MWD prior to transplantation was only 15 m less than the listing 6MWD (n = 200; p = 0.002). Exercise training volumes increased slightly from the start of the pulmonary rehabilitation program until transplant: treadmill, increase 0.69 ml/kg/min (n = 238; p volumes are well preserved among lung transplant candidates participating in pulmonary rehabilitation, even in the setting of severe, progressive lung disease. Participants with greater exercise capacity prior to transplantation have more favorable early post-transplant outcomes. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Nuclear safety in EU candidate countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    Nuclear safety in the candidate countries to the European Union is a major issue that needs to be addressed in the framework of the enlargement process. Therefore WENRA members considered it was their duty to offer their technical assistance to their Governments and the European Union Institutions. They decided to express their collective opinion on nuclear safety in those candidate countries having at least one nuclear power plant: Bulgaria, the Czech Republic, Hungary, Lithuania, Romania, Slovakia and Slovenia. The report is structured as follows: A foreword including background information, structure of the report and the methodology used, General conclusions of WENRA members reflecting their collective opinion, For each candidate country, an executive summary, a chapter on the status of the regulatory regime and regulatory body, and a chapter on the nuclear power plant safety status. Two annexes are added to address the generic safety characteristics and safety issues for RBMK and VVER plants. The report does not cover radiation protection and decommissioning issues, while safety aspects of spent fuel and radioactive waste management are only covered as regards on-site provisions. In order to produce this report, WENRA used different means: For the chapters on the regulatory regimes and regulatory bodies, experts from WENRA did the work. For the chapters on nuclear power plant safety status, experts from WENRA and from French and German technical support organisations did the work. Taking into account the contents of these chapters, WENRA has formulated its general conclusions in this report.

  12. Molecular candidates of MTV in air

    Science.gov (United States)

    Dam, Nico; Mirzaei, Mehrnoosh; van de Water, Willem

    2011-11-01

    In molecular tagging velocimetry (MTV), the molecules of a gas are used as flow tracers. These tracers can be produced at will by illumination with a laser which promotes molecules to a long- lived excited state, fuses N2 and N2 to NO, or makes molecules phosphoresce. A while later these tagged molecules can be visualized by laser-induced fluorescence, or by just watching them while they phosphoresce. Candidates for MTV in turbulence research must be arranged in structures narrower than the Kolmogorov scale, which remain narrow as time progresses, and must live longer than the Kolmogorov time. These requirements invalidate many candidates, candidates once deemed successful. They do so in various surprising manners that involve a combination of fluid flow and molecular dynamics. Rather than velocimetry in turbulence, MTV techniques offer a unique view on basic dispersion processes at the smallest scales of turbulence. In this way we have measured the spreading of clouds whose size is a few times the Kolmogorov length and the Batchelor dispersion of objects whose size is inside the inertial range.

  13. Nuclear safety in EU candidate countries

    International Nuclear Information System (INIS)

    2000-10-01

    Nuclear safety in the candidate countries to the European Union is a major issue that needs to be addressed in the framework of the enlargement process. Therefore WENRA members considered it was their duty to offer their technical assistance to their Governments and the European Union Institutions. They decided to express their collective opinion on nuclear safety in those candidate countries having at least one nuclear power plant: Bulgaria, the Czech Republic, Hungary, Lithuania, Romania, Slovakia and Slovenia. The report is structured as follows: A foreword including background information, structure of the report and the methodology used, General conclusions of WENRA members reflecting their collective opinion, For each candidate country, an executive summary, a chapter on the status of the regulatory regime and regulatory body, and a chapter on the nuclear power plant safety status. Two annexes are added to address the generic safety characteristics and safety issues for RBMK and VVER plants. The report does not cover radiation protection and decommissioning issues, while safety aspects of spent fuel and radioactive waste management are only covered as regards on-site provisions. In order to produce this report, WENRA used different means: For the chapters on the regulatory regimes and regulatory bodies, experts from WENRA did the work. For the chapters on nuclear power plant safety status, experts from WENRA and from French and German technical support organisations did the work. Taking into account the contents of these chapters, WENRA has formulated its general conclusions in this report

  14. Electrostatic interaction between Interball-2 and the ambient plasma. 1. Determination of the spacecraft potential from current calculations

    Directory of Open Access Journals (Sweden)

    M. Bouhram

    2002-03-01

    Full Text Available The Interball-2 spacecraft travels at altitudes extending up to 20 000 km, and becomes positively charged due to the low-plasma densities encountered and the photoemission on its sunlit surface. Therefore, a knowledge of the spacecraft potential Fs is required for correcting accurately thermal ion measurements on Interball-2. The determination of Fs  is based on the balance of currents between escaping photoelectrons and incoming plasma electrons. A three-dimensional model of the potential structure surrounding Interball-2, including a realistic geometry and neglecting the space-charge densities, is used to find, through particle simulations, current-voltage relations of impacting plasma electrons Ie (Fs and escaping photoelectrons Iph (Fs . The inferred relations are compared to analytic relationships in order to quantify the effects of the spacecraft geometry, the ambient magnetic field B0 and the electron temperature Te . We found that the complex geometry has a weak effect on the inferred currents, while the presence of B0 tends to decrease their values. Providing that the photoemission saturation current density Jph0 is known, a relation between Fs and the plasma density Ne can be derived by using the current balance. Since Jph0 is critical to this process, simultaneous measurements of Ne from Z-mode observations in the plasmapause, and data on the potential difference Fs  - Fp  between the spacecraft and an electric probe (p are used in order to reverse the process. A value Jph0 ~ = 32 µAm-2 is estimated, close to laboratory tests, but less than typical measurements in space. Using this value, Ne and Fs  can be derived systematically from electric field measurements without any additional calculation. These values are needed for correcting the distributions of low-energy ions measured by the Hyperboloid experiment on Interball-2. The effects of the potential structure on ion trajectories reaching Hyperboloid are discussed

  15. Accelerator-Based PIXE and STIM Analysis of Candidate Solar Sail Materials

    International Nuclear Information System (INIS)

    Hollerman, W.A.; Stanaland, T.L.; Boudreaux, P.; Elberson, L.; Fontenot, J.; Gates, E.; Greco, R.; McBride, M.; Woodward, A.; Edwards, D.

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. A totally reflective sail experiences a pressure of 9.1 μPa at a distance of 1 AU from the Sun. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. One of the current challenges is to develop strong, lightweight, and radiation resistant sail materials. This paper will discuss initial results from a Particle Induced X-Ray Emission (PIXE) and Scanning Transmission Ion Microscopy (STIM) analysis of candidate solar sail materials

  16. Modeling and Simulation of Satellite Subsystems for End-to-End Spacecraft Modeling

    National Research Council Canada - National Science Library

    Schum, William K; Doolittle, Christina M; Boyarko, George A

    2006-01-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems...

  17. Apollo Spacecraft 012 Command/Service Module being moved to Operations bldg

    Science.gov (United States)

    1967-01-01

    Transfer of Apollo Spacecraft 012 Command/Service Module for mating to the Saturn Lunar Module Adapter No. 05 in the Manned Spacecraft Operations bldg. S/C 012 will be flown on the Apollo/Saturn 204 mission.

  18. Astronaut L. Gordon Cooper is assisted into his spacecraft for tests

    Science.gov (United States)

    1963-01-01

    NASA and McDonnell Aircraft Corp. spacecraft technicians assist Astronaut L. Gordon Cooper into his spacecraft prior to undergoing tests in the altitude chamber. These tests are used to determine the operating characteristcs of the overall environmental control system.

  19. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  20. Development of a Hardware-In-Loop (HIL Simulator for Spacecraft Attitude Control Using Momentum Wheels

    Directory of Open Access Journals (Sweden)

    Dohee Kim

    2008-12-01

    Full Text Available In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of spacecraft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System. The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.