WorldWideScience

Sample records for candidate mosaic proteins

  1. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    than is possible with a wild-type protein, (2) reducing the number of low-prevalence k-mers minimizes the likelihood of undesirable immunodominance, and (3) excluding exogenous k-mers will result in mosaic proteins whose processing for presentation is close to what occurs with wild-type proteins. The first and second applications of the mosaic method were to HIV and Hepatitis C Virus (HCV). HIV is the virus with the largest number of known sequences, and consequently a plethora of information for the CTL vaccine designer to incorporate into their mosaics. Experience with HIV and HCV mosaics supports the validity of the three conjectures above. The available FILV sequences are probably closer to the minimum amount of information needed to make a meaningful mosaic vaccine candidate. There were 532 protein sequences in the National Institutes of Health GenPept database in November 2007 when our reference set was downloaded. These sequences come from both Ebola and Marburg viruses (EBOV and MARV), representing transcripts of all 7 genes. The coverage of viral diversity by the 7 genes is variable, with genes 1 (nucleoprotein, NP), 4 (glycoprotein, GP; soluble glycoprotein, sGP) and 7 (polymerase, L) giving the best coverage. Broadly-protective vaccine candidates for diverse viruses, such as HIV or Hepatitis C virus (HCV) have required pools of antigens. FILV is similar in this regard. While we have designed CTL mosaic proteins using all 7 types of filoviral proteins, only NP, GP and L proteins are reported here. If it were important to include other proteins in a mosaic CTL vaccine, additional sequences would be required to cover the space of known viral diversity.

  2. Subassembly aggregates of papaya mosaic virus protein.

    Science.gov (United States)

    Erickson, J W; Hallett, F R; Bancroft, J B

    1983-08-01

    An examination of the number of subunits in small aggregates of papaya mosaic virus (PMV) coat protein is presented based on a model system which gives results consistent with the experimental observation that the 14 S subassembly species is a double disc, composed of two rows of nine subunits each. The estimated hydration of the disc, about 0.85 g 1H20/9 protein, is unusually large and indicates a cavitated structure for the disc. Comparison with other rod-shaped viruses suggests that the flexuous nature of PMV is a consequence of sparse axial inter-subunit contacts at high radius.

  3. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    Science.gov (United States)

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  4. Mosaic zebrafish transgenesis for functional genomic analysis of candidate cooperative genes in tumor pathogenesis.

    Science.gov (United States)

    Ung, Choong Yong; Guo, Feng; Zhang, Xiaoling; Zhu, Zhihui; Zhu, Shizhen

    2015-01-01

    Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic "drivers" among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has

  5. Promoters, Transcripts, and Regulatory Proteins of Mungbean Yellow Mosaic Geminivirus†

    OpenAIRE

    Shivaprasad, P. V.; Akbergenov, Rashid; Trinks, Daniela; R Rajeswaran; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and ...

  6. The assembly of papaya mosaic virus coat protein with DNA.

    Science.gov (United States)

    Erickson, J W; Bancroft, J B

    1980-01-01

    Products of specific (pH 8.0-8.5) and nonspecific (pH 6.0) assembly reactions of papaya mosaic virus (PMV) coat protein with DNA are described. The strandedness, topology, and sugar moiety of the nucleic acid are important parameters for assembly in nonspecific conditions. The linear, single-stranded form of lambda DNA, but not the double-stranded form, reacted with PMV protein to form multiply initiated particles whose helical segments apparently annealed to produce continuous tubular particles. With the circular, single-stranded DNA of phi X174, partially tubular, partially extended particles were made. Poly(dA), unlike poly(A) [Erickson JW, AbouHaidar M, Bancroft JB: Virology 90:60, 1978], was not encapsidated by PMV protein under specific assembly conditions. With all DNAs tested, extended particles were the only products formed in specific conditions at pH 8.5.

  7. Intracellular distribution of cowpea mosaic virus movement protein as visualised by green fluorescent protein fusions

    NARCIS (Netherlands)

    Gopinath, K.; Bertens, P.; Pouwels, J.; Marks, H.; Lent, van J.W.M.; Wellink, J.E.; Kammen, van A.

    2003-01-01

    Cowpea mosaic virus (CPMV) derivatives expressing movement protein (MP) green fluorescent protein (GFP) fusions (MP:GFP) were used to study the intracellular targeting and localization of the MP in cowpea protoplasts and plants. In protoplasts, a virus coding for a wild type MP:GFP (MPfGFP) induced

  8. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  9. Promoters, Transcripts, and Regulatory Proteins of Mungbean Yellow Mosaic Geminivirus†

    Science.gov (United States)

    Shivaprasad, P. V.; Akbergenov, Rashid; Trinks, Daniela; Rajeswaran, R.; Veluthambi, K.; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and rightward promoters on DNA-B share the transcription activator AC2-responsive region, which does not overlap the common region that is nearly identical in the two DNA components. The transcription unit for BC1 (movement protein) includes a conserved, leader-based intron. Besides negative-feedback regulation of its own leftward promoter on DNA-A, the replication protein AC1, in cooperation with AC2, synergistically transactivates the rightward promoter, which drives a dicistronic transcription unit for the coat protein AV1. AC2 and the replication enhancer AC3 are expressed from one dicistronic transcript driven by a strong promoter mapped within the upstream AC1 gene. Early and constitutive expression of AC2 is consistent with its essential dual function as an activator of viral transcription and a suppressor of silencing. PMID:15956560

  10. Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic geminivirus.

    Science.gov (United States)

    Shivaprasad, P V; Akbergenov, Rashid; Trinks, Daniela; Rajeswaran, R; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M

    2005-07-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and rightward promoters on DNA-B share the transcription activator AC2-responsive region, which does not overlap the common region that is nearly identical in the two DNA components. The transcription unit for BC1 (movement protein) includes a conserved, leader-based intron. Besides negative-feedback regulation of its own leftward promoter on DNA-A, the replication protein AC1, in cooperation with AC2, synergistically transactivates the rightward promoter, which drives a dicistronic transcription unit for the coat protein AV1. AC2 and the replication enhancer AC3 are expressed from one dicistronic transcript driven by a strong promoter mapped within the upstream AC1 gene. Early and constitutive expression of AC2 is consistent with its essential dual function as an activator of viral transcription and a suppressor of silencing.

  11. On the involvement of host proteins in Cowpea mosaic virus intercellular spread

    NARCIS (Netherlands)

    Hollander, den P.W.

    2014-01-01

    Abstract of thesis Paulus den Hollander entitled “On the involvement of host proteins in Cowpea mosaic virus intercellular spread”. Defence: 18th of November 13.30 h Abstract Intercellular spread of Cowpea mosaic virus (CPMV) occurs via movement tubules inserted into the

  12. Engineering Cowpea Mosaic Virus RNA-2 into a vector to express heterologous proteins in plants

    NARCIS (Netherlands)

    Kodetham Gopinath,; Wellink, J.; Porta, C.; Taylor, K.M.; Lomonossoff, G.P.; Kammen, van A.

    2000-01-01

    series of new cowpea mosaic virus (CPMV) RNA-2-based expression vectors were designed. The jellyfish green fluorescent protein (GFP) was introduced between the movement protein (MP) and the large (L) coat protein or downstream of the small (S) coat protein. Release of the GFP inserted between the MP

  13. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  14. Crystallization and preliminary X-ray analysis of papaya mosaic virus coat protein.

    Science.gov (United States)

    Zhang, H; Todderud, E; Stubbs, G

    1993-12-05

    Papaya mosaic virus coat protein has been treated with trypsin and a large fragment of the intact protein has been crystallized in space group P3(1)21 or P3(2)21 (unit cell dimensions: a = b = 110 A, c = 237 A). The crystals diffract to 3.5 A resolution. Crystals of the untreated protein have also been grown. The untreated protein crystals diffract to 4 A resolution, but have a large mosaic spread. They have the same space group as the trypsin-treated protein crystals, but a much smaller unit cell (a = b = 72 A, c = 240 A).

  15. Fine Mapping and Candidate Gene Analysis of Resistance Gene RSC3Q to Soybean mosaic virus in Qihuang 1

    Institute of Scientific and Technical Information of China (English)

    Zheng gui-jie; Yang Yong-qing; Ma Ying; Yang Xiao-feng; Chen Shan-yu; Ren Rui; Wang Da-gang; Yang Zhong-lu; ZhI hai-jian

    2014-01-01

    Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The soybean cultivar Qihuang 1 is of a rich resistance spectrum and has a wide range of application in breeding programs in China. In this study, F1, F2 and F2:3 from Qihuang 1×nannong 1138-2 were used to study inheritance and linkage mapping of the SC3 resistance gene in Qihuang 1. The secondary F2 population and near isogenic lines (nILs) derived from residual heterozygous lines (RhLs) of Qihuang 1×nannong 1138-2 were separatively used in the ifne mapping and candidate gene analysis of the resistance gene. Results indicated that a single dominant gene (designated RSC3Q) controls resistance, which was located on chromosome 13. Two genomic-simple sequence repeat (SSR) markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136 were found lfanking the two sides of the RSC3Q. The interval between the two markers was 651 kb. Quantitative real-time PCR analysis of the candidate genes showed that ifve genes (Glyma13g25730, 25750, 25950, 25970 and 26000) were likely involved in soybean SMV resistance. These results would have utility in cloning of RSC3Q resistance candidate gene and marker-assisted selection (MaS) in resistance breeding to SMV.

  16. The polarity of assembly of papaya mosaic virus and tobacco mosaic virus RNAs with PMV-protein under conditions of nonspecificity.

    Science.gov (United States)

    Abouhaidar, M G; Bancroft, J B

    1980-11-01

    The problem of the rapid multiinitiation of papaya mosaic virus or tobacco mosaic virus RNA by PMV-protein near pH 7.0 at low ionic strength has been overcome. If NaCl is added to 0.1 M, both RNAs are first encapsidated at their respective 5' ends. This shows that the initial site of helix formation depends on the protein rather than the RNA.

  17. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance

    Institute of Scientific and Technical Information of China (English)

    Jie-hong ZHAO; Ji-shun ZHANG; Yi WANG; Ren-gang WANG; Chun WU; Long-jiang FAN; Xue-liang REN

    2011-01-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth,development,and polyploidization.However,there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics.We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco,Nicotiana tabacum,using a methylation-sensitive amplified polymorphism (MSAP) technique.The results showed that methylation existed at a high level among tobacco accessions,among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic.A cluster analysis revealed distinct patterns of geography-specific groups.In addition,three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored.This suggests that tobacco breeders should pay more attention to epigenetic traits.

  18. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase of coat protein subgroup II gene from Cucumber mosaic virus

    Science.gov (United States)

    Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These...

  19. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    Science.gov (United States)

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  20. Effects of mutated replicase and movement protein genes on attenuation of tobacco mosaic virus

    Institute of Scientific and Technical Information of China (English)

    YANG; Gong; (

    2001-01-01

    [1]Banerjee, N., Wang, J. Y., Zaitlin, M., A single nucleotide change in the coat protein gene of tobacco mosaic virus is involved in the induction of severe chlorosis, Virology, 1995, 207: 234-239.[2]Dawson, W. O., Bubrick, P., Grantham, G. L., Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology, Mol. Plant Pathol., 1988, 78: 783-789.[3]Lu, B., Stubbs, G., Culver, J. N., Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection, Virology, 1998, 248: 188-198.[4]Bao, Y. M., Carter, S. A., Nelson,R. S., The 126- and 183-kilodalton proteins of tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco, J. Virol., 1996, 70: 6378-6383.[5]Holt, C. A., Hodgson, A. J., Coker, F. A. et al., Characterization of the masked strain of tobacco mosaic virus: identification of the region responsible for symptom attenuation by analysis of an infectious cDNA clone, Mol. Plant-Microbe Interact., 1990, 3: 417-423.[6]Nishiguchi, M., Kikuchi, S., Kiho, Y. et al., Molecular basis of plant viral virulence, the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus, Nucleic Acids Res., 1985, 13: 5585-5590.[7]Watanabe, Y., Morita, N., Nishiguchi, M.et al., Attenuated strains of tobacco mosaic virus reduced synthesis of a viral protein with a cell to cell movement function, J. Mol. Biol., 1987, 194: 699-704.[8]Lewandowski, D. J., Dawson, W. O., A single amino acid change in tobacco mosaic virus replicase prevents symptom production, Mol. Plant-Microbe Interact., 1993, 6: 157-160.[9]Yang, G., Qiu, B. S., Cloning and infectivity analysis of the cDNAs of tobacco mosaic virus (tomato strain) and its attenuated virus (N14) genomes, Chinese Journal of Biotechnology (in Chinese), 2000, 16: 207-210.[10]Yang, G., Liu, X. G., Qiu, B. S., Complete nucleotid sequences and genome structures of two Chinese tobacco

  1. Multiple functions of the 32K and 60K proteins in cowpea mosaic virus RNA replication.

    NARCIS (Netherlands)

    Peters, S.A.

    1994-01-01

    Cowpea mosaic virus (CPMV) is the type member of the comoviridae , a group of 14 different plant viruses that have a divided genome consisting of two plus-strand RNAs. These RNAs, designated B-RNA and M-RNA, have a small protein, VPg, attached to the 5'-end and a poly(A) tail at the 3'-end and are s

  2. Coat protein gene and 3′ non-coding region of tobacco mosaic virus and tomato mosaic virus are associated with viral pathogenesis in Nicotiana tabacum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The camellia isolate of tomato mosaic virus (ToMV-TL) can induce local necrotic lesions on the inoculated leaves in Nicotiana tabacum, whereas the broad bean isolate of tobacco mosaic virus (TMV-B) produces the mosaic symptom on systemic leaves. To examine viral determinant for differential infection phenotype in N. tabacum, the coat protein gene and the 3′ non-coding region of TMV was replaced with that of ToMV, the chimeric virus induced similar local necrotic lesions to that induced by ToMV. The results indicate that the coat protein gene and the 3′ non-coding region of TMV and ToMV influence the virus-induced pathogenesis in N. tabacum.

  3. The primary structure of papaya mosaic virus coat protein: a revision.

    Science.gov (United States)

    Verde, C; Malorni, A; Parente, A

    1989-12-01

    The presence of an acetyl blocking group at the N-terminus of the coat protein of papaya mosaic virus has been identified by FAB mass spectrometry. Furthermore, we have found that the N-terminal sequence of the protein is four amino-acid residues (AC-Ser-Lys-Ser-Ser-) longer than that previously reported, while Glu instead of Gln is the C-terminal residue. The present paper shows that PMV-protein is made up of 215 amino acid residues, with a molecular mass of 22,960 Da.

  4. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    Directory of Open Access Journals (Sweden)

    Juliette Doumayrou

    2016-11-01

    Full Text Available Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  5. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus.

    Science.gov (United States)

    Yang, Shaoqing; Wang, Tao; Bohon, Jen; Gagné, Marie-Ève Laliberté; Bolduc, Marilène; Leclerc, Denis; Li, Huilin

    2012-09-14

    Papaya mosaic virus (PapMV) is a filamentous plant virus that belongs to the Alphaflexiviridae family. Flexible filamentous viruses have defied more than two decades of effort in fiber diffraction, and no high-resolution structure is available for any member of the Alphaflexiviridae family. Here, we report our structural characterization of PapMV by X-ray crystallography and cryo-electron microscopy three-dimensional reconstruction. We found that PapMV is 135Å in diameter with a helical symmetry of ~10 subunits per turn. Crystal structure of the C-terminal truncated PapMV coat protein (CP) reveals a novel all-helix fold with seven α-helices. Thus, the PapMVCP structure is different from the four-helix-bundle fold of tobacco mosaic virus in which helix bundling dominates the subunit interface in tobacco mosaic virus and conveys rigidity to the rod virus. PapMV CP was crystallized as an asymmetrical dimer in which one protein lassoes the other by the N-terminal peptide. Mutation of residues critical to the inter-subunit lasso interaction abolishes CP polymerization. The crystal structure suggests that PapMV may polymerize via the consecutive N-terminal loop lassoing mechanism. The structure of PapMV will be useful for rational design and engineering of the PapMV nanoparticles into innovative vaccines.

  6. Enhanced nicking activity of Rep in presence of pre-coat protein of Mungbean yellow mosaic India virus.

    Science.gov (United States)

    Rouhibakhsh, A; Choudhury, N R; Mukherjee, S K; Malathi, V G

    2012-04-01

    Yellow mosaic disease causes severe yield loss in grain legumes in Indian subcontinent and south east Asia. The disease is caused by two virus species, Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV). They have genome organization typical of Old World begomoviruses, the unique feature being the presence of an open reading frame (ORF) AV2 upstream of coat protein gene. In order to elucidate its function, ORF AV2 of blackgram isolate, Mungbean yellow mosaic India virus-[India:New Delhi:Blackgram 3:1991] MYMIV-[IN:ND:Bg3:91] and cowpea isolate, Mungbean yellow mosaic India virus-[India:New Delhi:Cowpea7:1998] MYMIV-[IN:ND:Cp7:98], respectively, were over expressed in Escherichia coli in fusion with maltose binding protein (MBP). The recombinant protein did not show efficient binding to DNA. However, both MBP-BgAV2 and MBP-CpAV2 proteins modulated nicking and ATPase activity of replication initiation protein (Rep). Even low concentration, 20 ng of MBP-BgAV2 and MBP-CpAV2 could bring 20 folds increase in nicking activity of Rep. Similarly in the presence of AV2 protein, two to three fold increase in ATPase activity was observed. It is hypothesized that AV2 protein may play a role of accessory protein modulating Rep activities.

  7. Proteins of Bartonella bacilliformis: Candidates for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Cesar Henriquez-Camacho

    2015-01-01

    Full Text Available Bartonella bacilliformis is the etiologic agent of Carrión’s disease or Oroya fever. B. bacilliformis infection represents an interesting model of human host specificity. The notable differences in clinical presentations of Carrión’s disease suggest complex adaptations by the bacterium to the human host, with the overall objectives of persistence, maintenance of a reservoir state for vectorial transmission, and immune evasion. These events include a multitude of biochemical and genetic mechanisms involving both bacterial and host proteins. This review focuses on proteins involved in interactions between B. bacilliformis and the human host. Some of them (e.g., flagellin, Brps, IalB, FtsZ, Hbp/Pap31, and other outer membrane proteins are potential protein antigen candidates for a synthetic vaccine.

  8. In Silico screening for functional candidates amongst hypothetical proteins

    Directory of Open Access Journals (Sweden)

    Sanderhoff May

    2009-09-01

    Full Text Available Abstract Background The definition of a hypothetical protein is a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. Hypothetical proteins constitute a substantial fraction of proteomes of human as well as of other eukaryotes. With the general belief that the majority of hypothetical proteins are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of hypothetical proteins with a high probability of being expressed. Results Here, we present an in silico selection strategy where eukaryotic hypothetical proteins are sorted according to two criteria that can be reliably identified in silico: the presence of subcellular targeting signals and presence of characterized protein domains. To validate the selection strategy we applied it on a database of human hypothetical proteins dating to 2006 and compared the proteins predicted to be expressed by our selecting strategy, with their status in 2008. For the comparison we focused on mitochondrial proteins, since considerable amounts of research have focused on this field in between 2006 and 2008. Therefore, many proteins, defined as hypothetical in 2006, have later been characterized as mitochondrial. Conclusion Among the total amount of human proteins hypothetical in 2006, 21% have later been experimentally characterized and 6% of those have been shown to have a role in a mitochondrial context. In contrast, among the selected hypothetical proteins from the 2006 dataset, predicted by our strategy to have a mitochondrial role, 53-62% have later been experimentally characterized, and 85% of these have actually been assigned a role in mitochondria by 2008. Therefore our in silico selection strategy can be used to select the most promising candidates for subsequent in vitro and in vivo analyses.

  9. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase.

    Science.gov (United States)

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT downward arrow AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring > or =6 nt space for its efficient activity, translocates in the 3'-->5' direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation ( approximately 24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV).

  10. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  11. Nucleotide sequence of the coat protein genes of alstroemeria mosaic virus and amazon lily mosaic virus, a tentative species of genus potyvirus.

    Science.gov (United States)

    Fuji, S; Terami, F; Furuya, H; Naito, H; Fukumoto, F

    2004-09-01

    The nucleotide sequences of the 3' terminal region of the genomes of Alstroemeria mosaic virus (AlsMV) and the Amazon lily mosaic virus (ALiMV) have been determined. These sequences contain the complete coding region of the viral coat protein (CP) gene followed by a 3'-untranslated region (3'-UTR). AlsMV and ALiMV share 74.9% identity in the amino acid sequence of the CP, and 55.6% identity in the nucleotide sequence of the 3'-UTR. Phylogenetic analysis of these CP genes and 3'-UTRs in relation to those of 79 potyvirus species revealed that AlsMV and ALiMV should be assigned to the Potato virus Y (PVY) subgroup. AlsMV and ALiMV were concluded to have arisen independently within the PVY subgroup.

  12. Effect of tobacco mosaic virus infection on host and virus-specific protein synthesis in protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, A.; Hari, V.; Kolacz, K.

    1978-04-01

    The nature and rate of virus-specific protein synthesis were determined in tobacco mosaic virus-infected protoplasts as a function of time after inoculation. Samples of infected and mock-infected protoplasts were exposed to radioactive amino acid for relatively short sequential time periods and the consequent labeled proteins were assessed following SDS-polyacrylamide gel electrophoresis and fluorography. The synthesis of three virus-specific proteins of molecular weights 160,000, 135,000, and 17,500 was confirmed. Synthesis of all three proteins was first detected during the 5- to 7-hr postinoculation period at which time the synthetic rate of the 135,000-dalton protein was greatest.This was soon overtaken by the 17,500-dalton capsid protein, the synthetic rate of which kept increasing until it accounted for a major portion of total protoplast protein synthesis. At 1 day postinoculation, it accounted for 50% and, at not quite 2 days, 70% of the total protein synthesis. Evidence is presented to suggest that virus-specific protein synthesis occurs in addition to, rather than at the expense of, normal cellular protein synthesis.

  13. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement.

    Science.gov (United States)

    Bhat, Sumana; Folimonova, Svetlana Y; Cole, Anthony B; Ballard, Kimberly D; Lei, Zhentian; Watson, Bonnie S; Sumner, Lloyd W; Nelson, Richard S

    2013-01-01

    Tobacco mosaic virus (TMV) forms dense cytoplasmic bodies containing replication-associated proteins (virus replication complexes [VRCs]) upon infection. To identify host proteins that interact with individual viral components of VRCs or VRCs in toto, we isolated viral replicase- and VRC-enriched fractions from TMV-infected Nicotiana tabacum plants. Two host proteins in enriched fractions, ATP-synthase γ-subunit (AtpC) and Rubisco activase (RCA) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry or liquid chromatography-tandem mass spectrometry. Through pull-down analysis, RCA bound predominantly to the region between the methyltransferase and helicase domains of the TMV replicase. Tobamovirus, but not Cucumber mosaic virus or Potato virus X, infection of N. tabacum plants resulted in 50% reductions in Rca and AtpC messenger RNA levels. To investigate the role of these host proteins in TMV accumulation and plant defense, we used a Tobacco rattle virus vector to silence these genes in Nicotiana benthamiana plants prior to challenge with TMV expressing green fluorescent protein. TMV-induced fluorescent lesions on Rca- or AtpC-silenced leaves were, respectively, similar or twice the size of those on leaves expressing these genes. Silencing Rca and AtpC did not influence the spread of Tomato bushy stunt virus and Potato virus X. In AtpC- and Rca-silenced leaves TMV accumulation and pathogenicity were greatly enhanced, suggesting a role of both host-encoded proteins in a defense response against TMV. In addition, silencing these host genes altered the phenotype of the TMV infection foci and VRCs, yielding foci with concentric fluorescent rings and dramatically more but smaller VRCs. The concentric rings occurred through renewed virus accumulation internal to the infection front.

  14. Evolutionary relationship of alfalfa mosaic virus with cucumber mosaic virus and brome mosaic virus

    OpenAIRE

    Savithri, HS; Murthy, MRN

    1983-01-01

    The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses - cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2...

  15. Effects of mutated replicase and movement protein genes on attenuation of tobacco mosaic virus

    Institute of Scientific and Technical Information of China (English)

    杨恭; 邱并生; 魏军亚; 刘广超

    2001-01-01

    Our previous reports showed that one opal mutation (UGA) and one ochre mutation (UAA) respectively located in the replicase and movement protein (MP) genes of the attenuated tomato mosaic virus K(ToMV-K) contribute to the viral attenuation. To explore a wider application of this attenuation pattern to other plant viruses, we have constructed three mutants which respectively contain one opal mutation of the replicase gene and/or one ochre mutation of the MP using PCR-mediated site-directed mutagenesis from a virulent tobacco mosaic virus isolated from China (TMV-Cv). Plant infection performed by in vitro transcripts revealed that the MP truncated mutant TMV-Cvmp and the replicase-MP truncated mutant TMV-Cvrase-mp were infectious on both local lesion (Nicotiana tabacum cv. Xanthi NC) and systemic (N. tabacum cv. K326) host plants, while the replicase truncated mutant TMV-Cvrase was non-infectious. The K326 plant infected by TMV- Cvrease-mp displayed only a little mild mosaic. By electronic microscopy (EM), plant re-inoculation, RNA Dot-blot, RT-PCR and sequencing we demonstrated that the progeny viruses of TMV-Cvmp and TMV-Cvrease-mp shared similar morphological character with TMV-Cv, owned the abilities to infect, replicate and propagate in the assayed plants, and maintained the mutated sites during infection. These data showed that both the opal and the ochre mutations are able to cooperatively induce the attenuated phenotypes of TMV-Cvrase-mp on plants, indicating that the mutation pattern of ToMV-K could be used to attenuate other virulent plant viruses.

  16. Nucleotide sequence of maize dwarf mosaic virus capsid protein gene and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    赛吉庆; 康良仪; 黄忠; 史春霖; 田波; 谢友菊

    1995-01-01

    The 3’-terminal 1 279 nucleotide sequence of maize dwarf mosaic virus (MDMV) genome has been determined. This sequence contains an open reading frame of 1023 nudeotides and a 3’ -non-coding region of 256 nucleotides. The open reading frame includes all of the coding regions for the viral capsid protein (CP) and part of the viral nuclear inclusion protein (Nib). The predicted viral CP consists of 313 amino acid residues with a calculated molecular weight of 35400. The amino acid sequence of the viral CP derived from MDMV cDNA shows about 47%-54% homology to that of 4 other potyviruses. The viral CP gene was constructed in frame with the lacZ gene in pUC19 plasmid and expressed in E. coli cells. The fusion polypeptide positively reacted in Western blot with an antiserum prepared against the native viral CP.

  17. Soilborne wheat mosaic virus (SBWMV 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing

    Directory of Open Access Journals (Sweden)

    Howard Amanda

    2005-03-01

    Full Text Available Abstract Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV 19K protein is a cysteine-rich protein (CRP and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.

  18. The study of amorphous aggregation of tobacco mosaic virus coat protein by dynamic light scattering.

    Science.gov (United States)

    Panyukov, Yuliy; Yudin, Igor; Drachev, Vladimir; Dobrov, Evgeny; Kurganov, Boris

    2007-04-01

    The kinetics of heat-induced and cetyltrimethylammonium bromide induced amorphous aggregation of tobacco mosaic virus coat protein in Na(+)/Na(+) phosphate buffer, pH 8.0, have been studied using dynamic light scattering. In the case of thermal aggregation (52 degrees C) the character of the dependence of the hydrodynamic radius (R(h)) on time indicates that at certain instant the population of aggregates is split into two components. The size of the aggregates of one kind remains practically constant in time, whereas the size of aggregates of other kind increases monotonously in time reaching the values characteristic of aggregates prone to precipitation (R(h)=900-1500 nm). The construction of the light scattering intensity versus R(h) plots shows that the large aggregates (the start aggregates) exist in the system at the instant the initial increase in the light scattering intensity is observed. For thermal aggregation the R(h) value for the start aggregates is independent of the protein concentration and equal to 21.6 nm. In the case of the surfactant-induced aggregation (at 25 degrees C) no splitting of the aggregates into two components is observed and the size of the start aggregates turns out to be much larger (107 nm) than on the thermal aggregation. The dependence of R(h) on time for both heat-induced aggregation and surfactant-induced aggregation after a lapse of time follows the power law indicating that the aggregation process proceeds in the kinetic regime of diffusion-limited cluster-cluster aggregation. Fractal dimension is close to 1.8. The molecular chaperone alpha-crystallin does not affect the kinetics of tobacco mosaic virus coat protein thermal aggregation.

  19. Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane

    NARCIS (Netherlands)

    Heijden, van der M.W.; Carette, J.E.; Reinhoud, P.J.; Haegi, A.; Bol, J.F.

    2001-01-01

    Replication of Alfalfa mosaic virus (AMV) RNAs depends on the virus-encoded proteins P1 and P2. P1 contains methyltransferase- and helicase-like domains, and P2 contains a polymerase-like domain. Coimmunoprecipitation experiments revealed an interaction between in vitro translated-P1 and P2 and show

  20. The symptom difference induced by Tobacco mosaic virus and Tomato mosaic virus in tobacco plants containing the N gene is determined by movement protein gene

    Institute of Scientific and Technical Information of China (English)

    YU; Cui; HU; Dongwei; DONG; Jiahong; CUI; Xiaofeng; WU; Jun

    2004-01-01

    Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are two closely related viruses in the genus Tobamovirus, but they induce obviously different sizes of necrotic lesions in tobacco plants containing the N gene. Comparison of the symptoms produced by TMV, ToMV and a chimaeric virus (T/OMP), in which the TMV movement protein (MP) gene was replaced by the ToMV MP gene, showed T/OMP caused necrotic lesions that were similar in size to those of ToMV in tobacco plants containing the N gene. The coat protein and MP of the three viruses accumulated in planta with similar levels, and the replication level of TMV and T/OMP in protoplasts also had no difference. Comparison of the activities of defense-related enzymes (PAL, POD and PPO) induced by the three viruses also showed that the variability of enzyme activity induced by T/OMP was similar to that induced by TMV, but different from that induced by ToMV. The results indicate that the size difference of necrotic lesions induced by TMV and ToMV in tobacco plants containing the N gene results from the functional difference of their MP genes.

  1. [Specifics of the coat protein gene in Russian strains of the cucumber green mottle mosaic virus].

    Science.gov (United States)

    Slavokhotova, A A; Andreeva, E N; Shiian, A N; Odintsova, T I; Pukhal'skiĭ, V A

    2007-11-01

    The primary structure of the coat protein (CP) gene was examined for pathogenic strain MS-1 and vaccine strain VIROG-43M of the cucumber green mottle mosaic virus (CGMMV). In CP amino acid composition, strains MS-1 and VIROG-43M are typical representatives of CGMMV: their CPs have 98-100% homology to CPs of other tobamoviruses of the group. The CP gene has the same nucleotide composition in pathogenic MS-1 and vaccine VIROG-43M, indicating that strain attenuation is not determined by this gene. The CP amino acid sequences of the two Russian strains are fully identical to the CP sequences of two Greek strains, GR-3 and GR-5. However, the nucleotide sequences of their genes differ in 13 bp, testifying to the difference between the Russian and Greek strains.

  2. Cloning and expression of the Chinese wheat mosaic virus RNA2 coat protein read- through and 19 ku cysteine- rich domains and localization of these proteins

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 5′-terminal (RTn) and 3′-terminal (RTc) halves of the coat protein readthrough domain and the 19 ku cysteine-rich protein of Chinese wheat mosaic virus (CWMV) were amplified by RT-PCR, cloned and expressed in E. coli. Antisera and monoclonal antibodies against these proteins were prepared by immunising these purified proteins to mice. Detection of RTn, RTc and 19 ku proteins in CWMV infected wheat sap and leaf tissue indicated that the RTn and RTc proteins were distributed on the surface of virus particles whereas the 19 ku protein was in the cytoplasm of the infected wheat cells.

  3. Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein.

    Science.gov (United States)

    Bamunusinghe, Devinka; Seo, Jang-Kyun; Rao, A L N

    2011-03-01

    Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.

  4. Cymbidium mosaic virus coat protein gene in antisense confers resistance to transgenic Nicotiana occidentalis.

    Science.gov (United States)

    Lim, S H; Ko, M K; Lee, S J; La, Y J; Kim, B D

    1999-12-31

    The nucleotide sequence of the 3'-terminal region of the Korean isolate of cymbidium mosaic virus (CyMV-Ca) from a naturally infected cattleya was determined. The sequence contains an open reading frame (ORF) coding for the viral coat protein (CP) at the 3'-end and three other ORFs (triple gene block or movement protein) of CyMV. The CP gene encodes a polypeptide chain of 220 amino acids with a molecular mass of 23,760 Da. The deduced CP sequence showed a strong homology with those of two CyMVs reported. A construct of the CyMV-Ca CP gene in the antisense orientation in the plant expression vector pMBP1 was transferred via Agrobacterium tumefaciens-mediated transformation into Nicotiana occidentalis which is a propagation host of CyMV. The T1 progeny of the transgenic plants were inoculated with CyMV and found to be highly resistant to CyMV infection.

  5. Function and Structural Organization of the Replication Protein of Bamboo mosaic virus

    Science.gov (United States)

    Meng, Menghsiao; Lee, Cheng-Cheng

    2017-01-01

    The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470–580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5′ end and a poly(A) tail at the 3′ end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described.

  6. Purification and biochemical characterization of a monomeric form of papaya mosaic potexvirus coat protein.

    Science.gov (United States)

    Lecours, Katia; Tremblay, Marie-Hélène; Gagné, Marie-Eve Laliberté; Gagné, Stéphane M; Leclerc, Denis

    2006-05-01

    Papaya mosaic virus (PapMV) is a flexuous rod shape virus made of 1400 subunits that assemble around a plus sense genomic RNA. The structure determination of PapMV and of flexuous viruses in general is a major challenge for both NMR and X-ray crystallography. In this report, we present the characterization of a truncated version of the PapMV coat protein (CP) that is suitable for NMR study. The deletion of the N-terminal 26 amino acids of the PapMV CP (CP27-215) generates a monomer that can be expressed to high level and easily purified for production of an adequate NMR sample. The RNA gel shift assay showed that CP27-215 lost its ability to bind RNA in vitro, suggesting that the multimerization of the subunit is important for this function. The fusion of a 6x His tag at the C-terminus improved the solubility of the monomer and allowed its concentration to 0.2 mM. The CD spectra of the truncated and the wild-type proteins were similar, suggesting that both proteins are well ordered and have a similar secondary structure. CP27-215 was 15N labeled for NMR studies and a 2D 1H-15N-HSQC spectrum confirmed the presence of a well-ordered structure and the monomeric form of the protein. These results show that CP27-215 is amenable to a complete and exhaustive NMR study that should lead to the first three-dimensional structure determination of a flexuous rod shape virus.

  7. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  8. The amino acid sequences of eleven tryptic peptides of papaya mosaic virus protein by electron ionization mass spectrometry.

    Science.gov (United States)

    Parente, A; Short, M N; Self, R; Parsley, K R

    1982-04-01

    Eleven of the fourteen tryptic peptides of papaya mosaic virus protein have been sequenced by electron ionization mass spectrometry using chemical and enzymic hydrolyses and mixture analysis as required. Mid-chain cleavages of N-C bonds produced secondary ion series which allowed up to 16 residues to be sequenced without further hydrolysis. Mixture analysis on hydrolysis products enabled a 24 residue tryptic peptide to be sequenced from the data recorded in a single mass spectrum.

  9. Movement Protein of Cucumber Mosaic Virus Associates with Apoplastic Ascorbate Oxidase.

    Science.gov (United States)

    Kumari, Reenu; Kumar, Surender; Singh, Lakhmir; Hallan, Vipin

    Plant viral movement proteins facilitate virion movement mainly through interaction with a number of factors from the host. We report the association of a cell wall localized ascorbate oxidase (CsAO4) from Cucumis sativus with the movement protein (MP) of Cucumber mosaic virus (CMV). This was identified first in a yeast two-hybrid screen and validated by in vivo pull down and bimolecular fluorescence complementation (BiFC) assays. The BiFC assay showed localization of the bimolecular complexes of these proteins around the cell wall periphery as punctate spots. The expression of CsAO4 was induced during the initial infection period (up to 72 h) in CMV infected Nicotiana benthamiana plants. To functionally validate its role in viral spread, we analyzed the virus accumulation in CsAO4 overexpressing Arabidopsis thaliana and transiently silenced N. benthamiana plants (through a Tobacco rattle virus vector). Overexpression had no evident effect on virus accumulation in upper non-inoculated leaves of transgenic lines in comparison to WT plants at 7 days post inoculation (dpi). However, knockdown resulted in reduced CMV accumulation in systemic (non-inoculated) leaves of NbΔAO-pTRV2 silenced plants as compared to TRV inoculated control plants at 5 dpi (up to 1.3 fold difference). In addition, functional validation supported the importance of AO in plant development. These findings suggest that AO and viral MP interaction helps in early viral movement; however, it had no major effect on viral accumulation after 7 dpi. This study suggests that initial induction of expression of AO on virus infection and its association with viral MP helps both towards targeting of the MP to the apoplast and disrupting formation of functional AO dimers for spread of virus to nearby cells, reducing the redox defense of the plant during initial stages of infection.

  10. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene.

    Science.gov (United States)

    Alishiri, Athar; Rakhshandehroo, Farshad; Zamanizadeh, Hamid-Reza; Palukaitis, Peter

    2013-09-01

    The incidence and distribution of Tobacco mosaic virus (TMV) and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP) gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100%) among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

  11. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

    Directory of Open Access Journals (Sweden)

    Athar Alishiri

    2013-09-01

    Full Text Available The incidence and distribution of Tobacco mosaic virus (TMV and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100% among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

  12. Molecular Characterization of Soybean Mosaic Virus NIa Protein and its Processing Event in Bacterial Expression

    Directory of Open Access Journals (Sweden)

    Bong K. Choi

    2006-01-01

    Full Text Available Soybean mosaic virus (SMV-CN18 is an Rsv resistance-breaking (RB isolate to overcome soybean resistance genes Rsv1, Rsv3 and Rsv4. The aim of this study was to characterize nuclear inclusion protein a (NIa protein of RB isolate at the molecular level and demonstrate its processing into genome-linked protein (VPg and NIa-Pro domains in Esherichia coli containing a bacterial expression pET vector inserted with NIa gene. The full-length of NIa gene was synthesized by reverse transcription-polymerase chain reaction (RT-PCR and its 1298 nucleotides (nt and 432 amino acids (aa were deduced. The nt and aa sequences of NIa gene of SMV-CN18 shared high identities with the corresponding sequences of the NIa gene of the known SMV isolates, suggesting that the NIa is a highly conserved protein. The NIa-Pro domain contains a highly conserved structural motif for proteolysis, while the VPg domain contains a nuclear localization signal (NLS, a putative NTP-binding site and cellular factor-binding sites. The phylogenetic tree revealed that less divergence of NIa protein exists among twelve SMV isolates, which can be supported by a low bootstrap value between clades. In addition, the full-length of NIa gene, amplified by RT-PCR, was ligated into pET-28b E. coli expression vector with an N-terminal His6-tag. Optimal conditions for expression were at 1mM treatment of IPTG at 25°C for 5 hr. The released protein from bacterial lysates remained soluble and proved the processing form of the NIa polyprotein. E. coli expression system shows the processed product of 29 kDa VPg in SDS-PAGE confirmed by western blot analysis in both crude extracts and purified elution products, using Ni2+-NTA resin. The present study indicates that the N-terminal region of NIa which is processed and expressed in bacteria.

  13. Recombination with coat protein transgene in a complemen-tation system based on Cucumber mosaic virus (CMV)

    Institute of Scientific and Technical Information of China (English)

    LEI; Wanli

    2001-01-01

    [1]Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. et al., Cucumber mosaic virus, Adv. Virus Res., 1992, 41: 281-348.[2]Hayes, R. J., Buck, K. W., Complete replication of an eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase, Cell, 1990, 63: 363-369.[3]Nitta, N., Takanami, Y., Kuwata, S. et al., Inoculation with RNAs 1 and 2 of cucumber mosaic virus induces viral RNA replicase activity in tobacco mesophyll protoplasts, J. Gen. Virol., 1988, 69: 2695-2700.[4]Suzuki, M., Kuwata, S., Kataoda, J. et al., Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system, Virology, 1991, 183: 106-113.[5]Canto, T., Prior, D. A. M., Hellwald, K. H. et al., Characterization of cucumber mosaic virus (IV)--Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus, Virology, 1997, 237:237-248.[6]Takanami, Y., A striking change in symptoms on cucumber mosaic virus-infected tobacco plants induced by a satellite RNA, Virology, 1981, 109: 120-126.[7]DeBorde, D. C., Naeve, C. W., Herlocher, M. L. et al., Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase, Anal. Biochem., 1986, 157: 275-282.[8]Haseloff, J., Siemering, K. R., Prasher, D. C. et al., Removal of a cryptic intron and subcellular localization of green fluo-rescent protein are required to mark transgenic Arabidopsis plants brightly, Proc. Natl. Acad. Sci. USA, 1997, 94: 2122-2127.[9]Shi, B. J., Ding, S. W., Symons, R. H., Plasmid vector for cloning infectious cDNAs from plant RNA viruses: high infec-tivity of cDNA clones of tomato aspermy cucumovirus, J. Gen. Virol., 1997, 78: 1181-1185.[10]Rizzo, T. M., Palukaitis, P., Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: Genera-tion of infectious RNA transcripts, Mol. Gen. Genet., 1990, 222: 249-256.[11]Hall, R. D., The initiation and maintenance of

  14. Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection.

    Science.gov (United States)

    Garcia-Ruiz, Hernan; Carbonell, Alberto; Hoyer, J Steen; Fahlgren, Noah; Gilbert, Kerrigan B; Takeda, Atsushi; Giampetruzzi, Annalisa; Garcia Ruiz, Mayra T; McGinn, Michaela G; Lowery, Nicholas; Martinez Baladejo, Maria T; Carrington, James C

    2015-03-01

    In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.

  15. Imunogenicidade de proteínas do capsídeo do Cowpea severe mosaic virus (CPSMV Capsid protein immunogenicity of Cowpea severe mosaic virus (CPSMV

    Directory of Open Access Journals (Sweden)

    José Evando Aguiar Beserra Júnior

    2009-02-01

    Full Text Available A análise SDS-PAGE do Cowpea severe mosaic virus (CPSMV purificado revelou a migração de três frações protéicas estimadas em 43, 23 e 21 kDa, correspondentes às proteínas do capsídeo: denominadas proteína maior (43 kDa e menor (23 kDa; intacta e 21 kDa; clivada. As proteínas do capsídeo, na sua forma nativa, foram utilizadas na imunização de camundongos pelas vias oral e nasal, durante 10 dias consecutivos. As frações protéicas de 43 e 23 kDa, em sua forma desnaturada, foram utilizadas para imunização subcutânea. A resposta imunológica da mucosa foi avaliada pela proliferação celular das placas de Peyer de camundongos imunizados pela via oral com o CPSMV purificado. Ficou demonstrado que o CPSMV induz resposta imunológica, evidenciada pela síntese de anticorpos séricos, quando administrado na sua forma nativa pelas vias oral e nasal ou através de suas proteínas do capsídeo desnaturadas, pela via subcutânea. Não foi necessário o uso de adjuvantes, quer por via oral quer por via nasal. As frações protéicas de 43 e 23 kDa mostraram-se responsáveis pela imunogenicidade do vírus, como foi evidenciado pela síntese de anticorpos específicos detectados por ELISA. A análise da proliferação celular da placas de Peyer revelou um aumento (r=0,88 do número de leucócitos ao longo de 42 dias após a imunização. Esses resultados reforçam a possibilidade do uso do CPSMV como vetor seguro de antígenos de doenças humanas/animais pouco imunogênicos para produção de vacinas.SDS-PAGE analysis of purified Cowpea severe mosaic virus (CPSMV revealed the migration of three protein fractions of 43, 23 and 21 kDa, corresponding to the capsid protein called large protein (43 kDa and small protein (23 kDa; intact and 21 kDa; cleaved. The capsid proteins, in their native form, were used to immunize mice through oral and nasal routes for ten consecutive days. The denatured form of the 43 and 23 kDa protein fractions were

  16. Yellow mosaic symptom caused by the nuclear shuttle protein gene of mungbean yellow mosaic virus is associated with single-stranded DNA accumulation and mesophyll spread of the virus.

    Science.gov (United States)

    Kuruba, B L; Buvani, A P; Veluthambi, K

    Mungbean yellow mosaic virus-[India:Vigna] (MYMV-[IN:Vig]), a blackgram isolate of MYMV, causes yellow mosaic disease in blackgram and mungbean. Two variable DNA-B components, KA22 and KA27, cause distinct symptoms in blackgram [V. mungo (L.) Hepper] with the same DNA-A component. KA22 + DNA-A-agroinoculated blackgram plants displayed yellow mosaic symptom and accumulated high levels of viral single-stranded (ss) DNA. KA27 + DNA-A-agroinoculated blackgram plants displayed severe stunting symptom and accumulated very low levels of viral ssDNA. However, in mungbean [V. radiata (L.) Wilczek], KA27 + DNA-A caused yellow mosaic symptom and a high level of viral ssDNA accumulated. Swapping of KA27 DNA-B with the nuclear shuttle protein gene (NSP) of KA22 DNA-B (KA27xKA22 NSP) caused yellow mosaic symptom in blackgram, suggesting that KA22 NSP is the determinant of yellow mosaic symptom. Interestingly, KA27xKA22 NSP-infected blackgram plants accumulated high levels of viral ssDNA, comparable to that of KA22 DNA-B infection, suggesting that the KA22 NSP is responsible for accumulation of high levels of viral ssDNA. MYMV distribution was studied in blackgram and mungbean plants by leaf tissue hybridization, which showed mesophyll spread of the virus in KA22-infected blackgram leaflets and in KA27-infected mungbean leaflets, both of which displayed yellow mosaic symptom. However, the virus did not accumulate in the mesophyll in the case of KA27-infected blackgram leaflets. Interestingly, the swapped KA27xKA22 NSP-infected blackgram leaflets showed mesophyll accumulation of the virus, suggesting that KA22 NSP determines its mesophyll spread.

  17. Effect of dipolar ions on the entropy-driven polymerization of tobacco mosaic virus protein.

    Science.gov (United States)

    Lauffer, M A; Shalaby, R A

    1985-11-01

    The effect of the dipolar ions, glycine, glycylglycine, and glycylglycylglycine on the polymerization of tobacco mosaic virus (TMV) protein has been studied by the methods of light scattering and ultracentrifugation. All three dipolar ions promote polymerization. The major reaction in the early stage is transition from the 4 S to the 20 S state. As in the absence of dipolar ions, the polymerization is enhanced by an increase in temperature; it is endothermic and therefore entropy-driven. The effect of the dipolar ions can be understood in terms of their action as salting-out agents; they increase the activity coefficient of TMV A protein, the 4 S material, and thus shift the equilibrium toward the 20 S state. The salting-out constants, K, for the reaction in 0.10 ionic strength phosphate buffer at pH 6.7 was found by the light scattering method to be 1.6 for glycine, 2.5 for glycylglycine, and 2.5 for glycylglycylglycine. A value of 2.7 was obtained by the ultracentrifugation method for glycylglycine in phosphate buffer at 0.1 ionic strength and pH 6.8 at 10 degrees C. For both glycine and glycylglycine, K increases when the ionic strength of the phosphate buffer is decreased. This result suggests that electrolytes decrease the activity coefficient of the dipolar ions, a salting-in phenomenon. However, the salting-in constants evaluated from these results are substantially higher than those previously determined by solubility measurements. The effect of glycine and glycylglycine on polymerization was studied at pH values between 6.2 and 6.8. The effectiveness of both dipolar ions is approximately 50% greater at pH 6.8 than at pH 6.2. The variation of the extent of polymerization with pH in the presence of the dipolar ions is consistent with the interpretation that approximately one hydrogen ion is bound for half of the polypeptide units in the polymerized A protein.

  18. The coat protein leads the way: an update on basic and applied studies with the Brome mosaic virus coat protein.

    Science.gov (United States)

    Kao, C Cheng; Ni, Peng; Hema, Masarapu; Huang, Xinlei; Dragnea, Bogdan

    2011-05-01

    The Brome mosaic virus (BMV) coat protein (CP) accompanies the three BMV genomic RNAs and the subgenomic RNA into and out of cells in an infection cycle. In addition to serving as a protective shell for all of the BMV RNAs, CP plays regulatory roles during the infection process that are mediated through specific binding of RNA elements in the BMV genome. One regulatory RNA element is the B box present in the 5' untranslated region (UTR) of BMV RNA1 and RNA2 that play important roles in the formation of the BMV replication factory, as well as the regulation of translation. A second element is within the tRNA-like 3' UTR of all BMV RNAs that is required for efficient RNA replication. The BMV CP can also encapsidate ligand-coated metal nanoparticles to form virus-like particles (VLPs). This update summarizes the interaction between the BMV CP and RNAs that can regulate RNA synthesis, translation and RNA encapsidation, as well as the formation of VLPs.

  19. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains.

    Science.gov (United States)

    Bushman, Diane M; Kaeser, Gwendolyn E; Siddoway, Benjamin; Westra, Jurgen W; Rivera, Richard R; Rehen, Stevens K; Yung, Yun C; Chun, Jerold

    2015-02-04

    Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ~8% over non-diseased controls that were unrelated to trisomy 21. Two independent single-cell copy number analyses identified amplifications at the APP locus. The use of single-cell qPCR identified up to 12 copies of APP in sampled neurons. Peptide nucleic acid (PNA) probes targeting APP, combined with super-resolution microscopy detected primarily single fluorescent signals of variable intensity that paralleled single-cell qPCR analyses. These data identify somatic genomic changes in single neurons, affecting known and unknown loci, which are increased in sporadic AD, and further indicate functionality for genomic mosaicism in the CNS.

  20. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Directory of Open Access Journals (Sweden)

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  1. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions.

    Directory of Open Access Journals (Sweden)

    Jessica B Hostetler

    2015-12-01

    Full Text Available A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC, and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion.We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins

  2. In situ localization and tissue distribution of the replication-associated proteins of Cucumber mosaic virus in tobacco and cucumber.

    Science.gov (United States)

    Cillo, Fabrizio; Roberts, Ian M; Palukaitis, Peter

    2002-11-01

    The replication-associated proteins encoded by Cucumber mosaic virus (CMV), the 1a and 2a proteins, were detected by immunogold labeling in two host species of this virus, tobacco (Nicotiana tabacum) and cucumber (Cucumis sativus). In both hosts, the 1a and 2a proteins colocalized predominantly to the vacuolar membranes, the tonoplast. While plus-strand CMV RNAs were found distributed throughout the cytoplasm by in situ hybridization, minus-strand CMV RNAs were barely detectable but were found associated with the tonoplast. In both cucumber and tobacco, 2a protein was detected at higher densities than 1a protein. The 1a and 2a proteins also showed quantitative differences with regard to tissue distributions in tobacco and cucumber. About three times as much 2a protein was detected in CMV-infected cucumber tissues as in CMV-infected tobacco tissues. In tobacco, high densities of these proteins were observed only in vascular bundle cells of minor veins. In contrast, in cucumber, high densities of 1a and 2a proteins were observed in mesophyll cells, followed by epidermis cells, with only low levels being observed in vascular bundle cells. Differences were also observed in the distributions of 2a protein and capsid protein in vascular bundle cells of the two host species. These observations may represent differences in the relative rates of tissue infection in different hosts or differences in the extent of virus replication in vascular tissues of different hosts.

  3. Coat protein-mediated resistance against an Indian isolate of the Cucumber mosaic virus subgroup IB in Nicotiana benthamiana

    Indian Academy of Sciences (India)

    A Srivastava; S K Raj

    2008-06-01

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were tested for resistance against CMV by challenge inoculations. The transgenic lines exhibiting complete resistance remained symptomless throughout life and showed reduced or no virus accumulation in their systemic leaves after virus challenge. These lines also showed virus resistance against two closely related strains of CMV. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IB member isolated from India.

  4. Mosaic Horses

    Science.gov (United States)

    Rudecki, Maryanna

    2009-01-01

    This article describes a lesson inspired by Sicilian mosaics. The author first presented a PowerPoint presentation of mosaics from the Villa Romana del Casale and reviewed complementary and analogous colors. Students then created mosaics using a variety of art materials. They presented their work to their peers and discussed the thought and…

  5. The development and application of new crystallization method for tobacco mosaic virus coat protein

    Directory of Open Access Journals (Sweden)

    Li Xiangyang

    2012-11-01

    Full Text Available Abstract Background Although tobacco mosaic virus (TMV coat protein (CP has been isolated from virus particles and its crystals have grown in ammonium sulfate buffers for many years, to date, no one has reported on the crystallization of recombinant TMV-CP connecting peptides expressed in E. coli. Methods In the present papers genetically engineered TMV-CP was expressed, into which hexahistidine (His tags or glutathione-S-transferase (GST tags were incorporated. Considering that GST-tags are long peptides and His-tags are short peptides, an attempt was made to grow crystals of TMV-CP cleaved GST-tags (WT-TMV-CP32 and TMV-CP incorporated His-tags (WT-His-TMV-CP12 simultaneously in ammonium sulfate buffers and commercial crystallization reagents. It was found that the 20S disk form of WT-TMV-CP32 and WT-His-TMV-CP12 did not form high resolution crystals by using various crystallization buffers and commercial crystallization reagents. Subsequently, a new experimental method was adopted in which a range of truncated TMV-CP was constructed by removing several amino acids from the N- or the C-terminal, and high resolution crystals were grown in ammonium sulfate buffers and commercial crystallization reagents. Results The new crystallization method was developed and 3.0 Å resolution macromolecular crystal was thereby obtained by removing four amino acids at the C-terminal of His-TMV-CP and connecting six His-tags at the N-terminal of His-TMV-CP (TR-His-TMV-CP19. The Four-layer aggregate disk structure of TR-His-TMV-CP19 was solved. This phenomenon showed that peptides at the C-terminus hindered the growth of high resolution crystals and the peptides interactions at the N-terminus were attributed to the quality of TMV-CP crystals. Conclusion A 3.0 Å resolution macromolecular crystal of TR-His-TMV-CP19 was obtained and the corresponding structure was solved by removing four amino acids at the C-terminus of TMV-CP and connecting His-tags at the N

  6. Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat protein gene sequences.

    Science.gov (United States)

    Coutts, B A; Kehoe, M A; Webster, C G; Wylie, S J; Jones, R A C

    2011-12-01

    Between 2006 and 2010, 5324 samples from at least 34 weed, two cultivated legume and 11 native species were collected from three cucurbit-growing areas in tropical or subtropical Western Australia. Two new alternative hosts of zucchini yellow mosaic virus (ZYMV) were identified, the Australian native cucurbit Cucumis maderaspatanus, and the naturalised legume species Rhyncosia minima. Low-level (0.7%) seed transmission of ZYMV was found in seedlings grown from seed collected from zucchini (Cucurbita pepo) fruit infected with isolate Cvn-1. Seed transmission was absent in >9500 pumpkin (C. maxima and C. moschata) seedlings from fruit infected with isolate Knx-1. Leaf samples from symptomatic cucurbit plants collected from fields in five cucurbit-growing areas in four Australian states were tested for the presence of ZYMV. When 42 complete coat protein (CP) nucleotide (nt) sequences from the new ZYMV isolates obtained were compared to those of 101 complete CP nt sequences from five other continents, phylogenetic analysis of the 143 ZYMV sequences revealed three distinct groups (A, B and C), with four subgroups in A (I-IV) and two in B (I-II). The new Australian sequences grouped according to collection location, fitting within A-I, A-II and B-II. The 16 new sequences from one isolated location in tropical northern Western Australia all grouped into subgroup B-II, which contained no other isolates. In contrast, the three sequences from the Northern Territory fitted into A-II with 94.6-99.0% nt identities with isolates from the United States, Iran, China and Japan. The 23 new sequences from the central west coast and two east coast locations all fitted into A-I, with 95.9-98.9% nt identities to sequences from Europe and Japan. These findings suggest that (i) there have been at least three separate ZYMV introductions into Australia and (ii) there are few changes to local isolate CP sequences following their establishment in remote growing areas. Isolates from A-I and B

  7. Nucleotide sequence of the capsid protein gene and 3' non-coding region of papaya mosaic virus RNA.

    Science.gov (United States)

    Abouhaidar, M G

    1988-01-01

    The nucleotide sequences of cDNA clones corresponding to the 3' OH end of papaya mosaic virus RNA have been determined. The 3'-terminal sequence obtained was 900 nucleotides in length, excluding the poly(A) tail, and contained an open reading frame capable of giving rise to a protein of 214 amino acid residues with an Mr of 22930. This protein was identified as the viral capsid protein. The 3' non-coding region of PMV genome RNA was about 121 nucleotides long [excluding the poly(A) tail] and homologous to the complementary sequence of the non-coding region at the 5' end of PMV RNA. A long open reading frame was also found in the predicted 5' end region of the negative strand.

  8. Functional analysis of candidate ABC transporter proteins for sitosterol transport

    DEFF Research Database (Denmark)

    Albrecht, C; Elliott, J I; Sardini, A;

    2002-01-01

    implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance...... the absorption of sitosterol and related molecules in the intestine by pumping them back into the lumen. Although mutations altering ABCG5 and ABCG8 are found in affected patients, no functional demonstration of sitosterol transport has been achieved. In this study, we investigated whether other ABC transporters...

  9. Transiently Expressed Short Hairpin RNA Targeting 126 kDa Protein of Tobacco Mosaic Virus Interferes with Virus Infection

    Institute of Scientific and Technical Information of China (English)

    Ming-Min ZHAO; De-Rong AN; Jian ZHAO; Guang-Hua HUANG; Zu-Hua HE; Jiang-Ye CHEN

    2006-01-01

    RNA interference (RNAi) silences gene expression by guiding mRNA degradation in asequence-specific fashion. Small interfering RNA (siRNA), an intermediate of the RNAi pathway, has been shown to be very effective in inhibiting virus infection in mammalian cells and cultured plant cells. Here, we report that Agrobacterium tumefaciens-mediated transient expression of short hairpin RNA (shRNA) could inhibit tobacco mosaic virus (TMV) RNA accumulation by targeting the gene encoding the replication-associated 126 kDa protein in intact plant tissue. Our results indicate that transiently expressed shRNA efficiently interfered with TMV infection. The interference observed is sequence-specific, and time- and site-dependent.Transiently expressed shRNA corresponding to the TMV 126 kDa protein gene did not inhibit cucumber mosaic virus (CMV), an unrelated tobamovirus. In order to interfere with TMV accumulation in tobacco leaves, it is essential for the shRNA constructs to be infiltrated into the same leaves as TMV inoculation. Our results support the view that RNAi opens the door for novel therapeutic procedures against virus diseases.We propose that a combination of the RNAi technique and Agrobacterium-mediated transient expression could be employed as a potent antiviral treatment in plants.

  10. Behavior of RNAi suppressor protein 2b of Cucumber mosaic virus in planta in presence and absence of virus.

    Science.gov (United States)

    Praveen, Shelly; Mangrauthia, Satendra K; Singh, Priyanka; Mishra, Anil K

    2008-08-01

    The 2b protein encoded by Cucumber mosaic virus (CMV) has been shown as a virus counter defense factor that interferes with the RNAi pathway. The 2b gene from CMV-banana, New Delhi isolate (CMV-NDLS) was amplified from CMV infected cucumber plants to generate the sense and antisense binary vector constructs for 2b expression and repression in planta. Constitutive expression of 2b gene in healthy Nicotiana tabacum caused phenotypic aberrations during somatic embryogenesis, which were not observed when expressed in CMV infected N. tabacum. Further, the established virus population in CMV infected N. tabacum was not affected by constitutive expression and repression of 2b gene. Thus, indicating its role in initiation of gene silencing, at the early stage of viral infection. This is the first demonstration of differential behavior of 2b suppressor protein in host development in the absence and presence of virus.

  11. Expression, purification, and functional characterization of an N-terminal fragment of the tomato mosaic virus resistance protein Tm-1.

    Science.gov (United States)

    Kato, Masahiko; Ishibashi, Kazuhiro; Kobayashi, Chihoko; Ishikawa, Masayuki; Katoh, Etsuko

    2013-05-01

    Tm-1, the protein product of Tm-1, a semidominant resistance gene of tomato, inhibits tomato mosaic virus (ToMV) replication by binding to ToMV replication proteins. Previous studies suggested the importance of the Tm-1 N-terminal region for its inhibitory activity; however, it has not been determined if the N-terminal region is sufficient for inhibition. Furthermore, the three-dimensional structure of Tm-1 has not been determined. In this study, an N-terminal fragment of Tm-1 (residues 1-431) as a fusion protein containing an upstream maltose-binding protein was expressed in E. coli Rosetta (DE3) cells at 30°C and then purified. The solubility of the fusion protein was greater when the cells were cultured at 30°C than when cultured at lower or higher temperatures. The purified N-terminal Tm-1 fragment from which the maltose-binding protein tag had been removed has inhibitory activity against ToMV RNA replication.

  12. The c-terminus of wheat streak mosaic virus coat protein is involved in differential infection of wheat and maize through host-specific long-distance transport

    Science.gov (United States)

    Multifunctional viral coat proteins (CPs) play important roles in the virus life-cycle. The CP determinants and mechanisms involved in extension of host range of monocot-infecting viruses are poorly understood. The role of the C-terminal region of Wheat streak mosaic virus (WSMV) CP in virus transpo...

  13. Coat protein sequence shows that Cucumber mosaic virus isolate from geraniums (Pelargonium spp.) belongs to subgroup II

    Indian Academy of Sciences (India)

    Neeraj Verma; B K Mahinghara; Raja Ram; A A Zaidi

    2006-03-01

    A viral disease was identified on geraniums (Pelargonium spp.) grown in a greenhouse at the Institute of Himalayan Bioresource Technology (IHBT), Palampur, exhibiting mild mottling and stunting. The causal virus (Cucumber mosaic virus, CMV) was identified and characterized on the basis of host range, aphid transmission, enzyme linked immunosorbent assay (ELISA), DNA-RNA hybridization and reverse transcription polymerase chain reaction (RTPCR). A complete coat protein (CP) gene was amplified using degenerate primers and sequenced. The CP gene showed nucleotide and amino acid homology up to 97%–98% and 96%–99%, respectively with the sequences of CMV subgroup II. The CP gene also showed homologies of 75%–97% in nucleotide and 77%–96% in amino acid with the CMV Indian isolates infecting various crops. On the basis of sequence homology, it was concluded that CMV-infecting geraniums in India belong to subgroup II.

  14. Role of salivary and candidal proteins in denture stomatitis: an exploratory proteomic analysis.

    Science.gov (United States)

    Byrd, Warren C; Schwartz-Baxter, Sarah; Carlson, Jim; Barros, Silvana; Offenbacher, Steven; Bencharit, Sompop

    2014-07-29

    Denture stomatitis, inflammation and redness beneath a denture, affects nearly half of all denture wearers. Candidal organisms, the presence of a denture, saliva, and host immunity are the key etiological factors for the condition. The role of salivary proteins in denture stomatitis is not clear. In this study 30 edentulous subjects wearing a maxillary complete denture were recruited. Unstimulated whole saliva from each subject was collected and pooled into two groups (n = 15 each), healthy and stomatitis (Newton classification II and III). Label-free multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics on two mass spectrometry platforms were used to determine peptide mass differences between control and stomatitis groups. Cluster analysis and principal component analysis were used to determine the differential expression among the groups. The two proteomic platforms identified 97 and 176 proteins (ANOVA; p stomatitis groups. Three proteins including carbonic anhydrase 6, cystatin C, and cystatin SN were found to be the same as previous study. Salivary proteomic profiles of patients with denture stomatitis were found to be uniquely different from controls. Analysis of protein components suggests that certain salivary proteins may predispose some patients to denture stomatitis while others are believed to be involved in the reaction to fungal infection. Analysis of candidal proteins suggests that multiple species of candidal organisms play a role in denture stomatitis.

  15. The F13 residue is critical for interaction among the coat protein subunits of papaya mosaic virus.

    Science.gov (United States)

    Laliberté Gagné, M E; Lecours, K; Gagné, S; Leclerc, D

    2008-04-01

    Papaya mosaic virus (PapMV) coat protein (CP) in Escherichia coli was previously showed to self-assemble in nucleocapsid-like particles (NLPs) that were similar in shape and appearance to the native virus. We have also shown that a truncated CP missing the N-terminal 26 amino acids is monomeric and loses its ability to bind RNA. It is likely that the N-terminus of the CP is important for the interaction between the subunits in self-assembly into NLPs. In this work, through deletion and mutation analysis, we have shown that the deletion of 13 amino acids is sufficient to generate the monomeric form of the CP. Furthermore, we have shown that residue F13 is critical for self-assembly of the CP subunits into NLPs. The replacement of F13 with hydrophobic residues (L or Y) generated mutated forms of the CP that were able to self-assemble into NLPs. However, the replacement of F13 by A, G, R, E or S was detrimental to the self-assembly of the protein into NLPs. We concluded that a hydrophobic interaction at the N-terminus is important to ensure self-assembly of the protein into NLPs. We also discuss the importance of F13 for assembly of other members of the potexvirus family.

  16. Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins.

    Science.gov (United States)

    Minicka, Julia; Otulak, Katarzyna; Garbaczewska, Grażyna; Pospieszny, Henryk; Hasiów-Jaroszewska, Beata

    2015-12-01

    This paper presents studies on an ultrastructural analysis of plant tissue infected with different pathotypes of Pepino mosaic virus (PepMV) and the immunolocalization of viral coat proteins. Because the PepMV virus replicates with a high mutation rate and exhibits significant genetic diversity, therefore, isolates of PepMV display a wide range of symptoms on infected plants. In this work, tomato plants of the Beta Lux cultivar were inoculated mechanically with three pathotypes representing the Chilean 2 (CH2) genotype: mild (PepMV-P22), necrotic (PepMV-P19) and yellowing (PepMV-P5-IY). The presence of viral particles in all infected plants in the different compartments of various cell types (i.e. spongy and palisade mesophyll, sieve elements and xylem vessels) was revealed via ultrastructural analyses. For the first time, it was possible to demonstrate the presence of crystalline inclusions, composed of virus-like particles. In the later stage of PepMV infection (14 dpi) various pathotype-dependent changes in the structure of the individual organelles (i.e. mitochondria, chloroplasts) were found. The strongest immunogold labeling of the viral coat proteins was also observed in plants infected by necrotic isolates. A large number of viral coat proteins were marked in the plant conductive elements, both xylem and phloem.

  17. Coat protein mutations in an attenuated Cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants.

    Science.gov (United States)

    Mochizuki, Tomofumi; Yamazaki, Ryota; Wada, Tomoya; Ohki, Satoshi T

    2014-05-01

    In tobacco plants, the Cucumber mosaic virus (CMV) pepo strain induces mosaic symptoms, including pale green chlorosis and malformed tissues. Here, we characterized the involvement of 2b protein and coat protein (CP) in the development of mosaic symptoms. A 2b mutant (R46C) that lacks viral suppressor of RNA silencing (VSR) activity showed an asymptomatic phenotype with low levels of virus accumulation. Tomato spotted wilt virus NSs protein did not complement the virulence of the R46C, although it did restore high-level virus accumulation. However, R46C mutants expressing mutated CP in which the amino acid P129 was mutated to A, E, C, Q, or S induced chlorosis that was associated with reduced expression of chloroplast and photosynthesis related genes (CPRGs) and abnormal chloroplasts with fewer thylakoid membranes. These results suggest that the CP of the CMV pepo strain acquires virulence by amino acid mutations, which causes CPRG repression and chloroplast abnormalities.

  18. A Viral Protein Suppresses siRNA-directed Interference in Tobacco Mosaic Virus Infection

    Institute of Scientific and Technical Information of China (English)

    Ming-Min ZHAO; De-Rong AN; Guang-Hua HUANG; Zu-Hua HE; Jiang-Ye CHEN

    2005-01-01

    Plant viruses encode suppressors of post-transcriptional gene silencing (PTGS), an adaptive defense response that limits virus replication and its spread in plants. The helper component proteinase (HCPro) of the potato virus A (PVA, genus Potyvirus) suppresses PTGS of silenced transgenes. Here, the effect of HC-Pro on siRNA-directed interference in the tobacco mosaic virus (TMV) was examined by using a transient Agrobacterium tumefaciens-based delivery system in intact tissues. It was shown that the interference effect was completely blocked by co-infiltration with HC-Pro plus siRNA constructs in both systemic and hypersensitive hosts. In the system host, all plants agro-infiltrated with HC-Pro plus siRNA constructs displayed the same symptoms as the negative control. Meanwhile, TMV RNA accumulation was found to be abundant in the upper leaves using reverse transcriptase-PCR (RT-PCR) and Northern blot assays. On the contrary, plants agro-infiltrated with the siRNA construct alone were free of symptoms. Therefore, our study suggests that the transient expression of HC-Pro inhibited the siRNA-directed host defenses against TMV infection.

  19. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619 (Egypt); Hutchens, Heather M. [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Howard Berg, R. [Integrated Microscopy Facility, Donald Danforth Plant Science Center, Saint Louis, MO 63132 (United States); Sue Loesch-Fries, L., E-mail: loeschfr@purdue.edu [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States)

    2012-11-25

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  20. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta.

    Science.gov (United States)

    Cheng, Yu-Qin; Liu, Zhong-Mei; Xu, Jian; Zhou, Tao; Wang, Meng; Chen, Yu-Ting; Li, Huai-Fang; Fan, Zai-Feng

    2008-08-01

    Symptom development of a plant viral disease is a result of molecular interactions between the virus and its host plant; thus, the elucidation of specific interactions is a prerequisite to reveal the mechanism of viral pathogenesis. Here, we show that the chloroplast precursor of ferredoxin-5 (Fd V) from maize (Zea mays) interacts with the multifunctional HC-Pro protein of sugar cane mosaic virus (SCMV) in yeast, Nicotiana benthamiana cells and maize protoplasts. Our results demonstrate that the transit peptide rather than the mature protein of Fd V precursor could interact with both N-terminal (residues 1-100) and C-terminal (residues 301-460) fragments, but not the middle part (residues 101-300), of HC-Pro. In addition, SCMV HC-Pro interacted only with Fd V, and not with the other two photosynthetic ferredoxin isoproteins (Fd I and Fd II) from maize plants. SCMV infection significantly downregulated the level of Fd V mRNA in maize plants; however, no obvious changes were observed in levels of Fd I and Fd II mRNA. These results suggest that SCMV HC-Pro interacts specifically with maize Fd V and that this interaction may disturb the post-translational import of Fd V into maize bundle-sheath cell chloroplasts, which could lead to the perturbation of chloroplast structure and function.

  1. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  2. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Directory of Open Access Journals (Sweden)

    Diane G O Saunders

    Full Text Available Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i contain a secretion signal, (ii are encoded by in planta induced genes, (iii have similarity to haustorial proteins, (iv are small and cysteine rich, (v contain a known effector motif or a nuclear localization signal, (vi are encoded by genes with long intergenic regions, (vii contain internal repeats, and (viii do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  3. Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi

    Science.gov (United States)

    Saunders, Diane G. O.; Win, Joe; Cano, Liliana M.; Szabo, Les J.; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components. PMID:22238666

  4. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.

    Science.gov (United States)

    Luo, Jiawei; Liang, Shiyu

    2015-02-01

    Identifying candidate disease genes is important to improve medical care. However, this task is challenging in the post-genomic era. Several computational approaches have been proposed to prioritize potential candidate genes relying on protein-protein interaction (PPI) networks. However, the experimental PPI network is usually liable to contain a number of spurious interactions. In this paper, we construct a reliable heterogeneous network by fusing multiple networks, a PPI network reconstructed by topological similarity, a phenotype similarity network and known associations between diseases and genes. We then devise a random walk-based algorithm on the reliable heterogeneous network called RWRHN to prioritize potential candidate genes for inherited diseases. The results of leave-one-out cross-validation experiments show that the RWRHN algorithm has better performance than the RWRH and CIPHER methods in inferring disease genes. Furthermore, RWRHN is used to predict novel causal genes for 16 diseases, including breast cancer, diabetes mellitus type 2, and prostate cancer, as well as to detect disease-related protein complexes. The top predictions are supported by literature evidence.

  5. Transgenic tobacco plants expressing siRNA targeted against the Mungbean yellow mosaic virus transcriptional activator protein gene efficiently block the viral DNA accumulation

    OpenAIRE

    Shanmugapriya, Gnanasekaran; Das, Sudhanshu Sekhar; Veluthambi, Karuppannan

    2015-01-01

    Mungbean yellow mosaic virus (MYMV) is a bipartite begomovirus that infects many pulse crops such as blackgram, mungbean, mothbean, Frenchbean, and soybean. We tested the efficacy of the transgenically expressed intron-spliced hairpin RNA gene of the transcriptional activator protein (hpTrAP) in reducing MYMV DNA accumulation. Tobacco plants transformed with the MYMV hpTrAP gene accumulated 21–22 nt siRNA. Leaf discs of the transgenic plants, agroinoculated with the partial dimers of MYMV, di...

  6. The stable association of virion with the triple-gene-block protein 3-based complex of Bamboo mosaic virus.

    Directory of Open Access Journals (Sweden)

    Yuan-Lin Chou

    Full Text Available The triple-gene-block protein 3 (TGBp3 of Bamboo mosaic virus (BaMV is an integral endoplasmic reticulum (ER membrane protein which is assumed to form a membrane complex to deliver the virus intracellularly. However, the virus entity that is delivered to plasmodesmata (PD and its association with TGBp3-based complexes are not known. Results from chemical extraction and partial proteolysis of TGBp3 in membrane vesicles revealed that TGBp3 has a right-side-out membrane topology; i.e., TGBp3 has its C-terminal tail exposed to the outer surface of ER. Analyses of the TGBp3-specific immunoprecipitate of Sarkosyl-extracted TGBp3-based complex revealed that TGBp1, TGBp2, TGBp3, capsid protein (CP, replicase and viral RNA are potential constituents of virus movement complex. Substantial co-fractionation of TGBp2, TGBp3 and CP, but not TGBp1, in the early eluted gel filtration fractions in which virions were detected after TGBp3-specific immunoprecipitation suggested that the TGBp2- and TGBp3-based complex is able to stably associate with the virion. This notion was confirmed by immunogold-labeling transmission electron microscopy (TEM of the purified virions. In addition, mutational and confocal microscopy analyses revealed that TGBp3 plays a key role in virus cell-to-cell movement by enhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. Taken together, our results suggested that the cell-to-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-based membrane complex and recruitment of TGBp1 to the PD by this complex.

  7. The P6 protein of Cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments.

    Science.gov (United States)

    Angel, Carlos A; Lutz, Lindy; Yang, Xiaohua; Rodriguez, Andres; Adair, Adam; Zhang, Yu; Leisner, Scott M; Nelson, Richard S; Schoelz, James E

    2013-09-01

    The gene VI product, protein 6 (P6), of Cauliflower mosaic virus (CaMV) assembles into large, amorphous inclusion bodies (IBs) that are considered sites for viral protein synthesis and viral genome replication and encapsidation. P6 IBs align with microfilaments and require them for intracellular trafficking, a result implying that P6 IBs function to move virus complexes or virions within the cell to support virus physiology. Through a yeast two-hybrid screen we determined that CHUP1, a plant protein allowing chloroplast transport through an interaction with chloroplast and microfilament, interacts with P6. The interaction between CHUP1 and P6 was confirmed through colocalization in vivo and co-immunoprecipitation assays. A truncated CHUP1 fused with enhanced cyan fluorescent protein, unable to transport chloroplasts, inhibited intracellular movement of P6-Venus inclusions. Silencing of CHUP1 in N. edwardsonii impaired the ability of CaMV to infect plants. The findings suggest that CHUP1 supports CaMV infection through an interaction with P6.

  8. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana.

    Science.gov (United States)

    Kaido, Masanori; Inoue, Yosuke; Takeda, Yoshika; Sugiyama, Kazuhiko; Takeda, Atsushi; Mori, Masashi; Tamai, Atsushi; Meshi, Tetsuo; Okuno, Tetsuro; Mise, Kazuyuki

    2007-06-01

    The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the alpha chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.

  9. Ratio of mutated versus wild-type coat protein sequences in Pepino mosaic virus determines the nature and severity of yellowing symptoms on tomato plants.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Paeleman, Anneleen; Ortega-Parra, Nelia; Borodynko, Natasza; Minicka, Julia; Czerwoniec, Anna; Thomma, Bart P H J; Hanssen, Inge M

    2013-12-01

    Recently, Pepino mosaic virus (PepMV) infections causing severe yellowing symptoms in tomato plants have been reported in glasshouse tomato crops. When studying this phenomenon in commercial glasshouses, two different types of yellowing symptoms, occurring in adjacent plants, were distinguished: interveinal leaf yellowing and yellow mosaics. After several weeks, the interveinal leaf yellowing symptoms gradually disappeared and the plant heads became green again, with yellow mosaic patterns on the leaves as an intermediate stage. The sequencing of multiple isolates causing interveinal leaf yellowing identified two point mutations, occurring in positions 155 and 166 of the coat protein (CP), as unique to the yellowing pathotype. Site-directed mutagenesis of infectious clones confirmed that both CP mutations are determinants of the interveinal leaf yellowing symptoms. Sequencing of CP clones from plants or plant parts with the yellow mosaic symptoms resulted in a mixture of wild-type and mutated sequences, whereas sequencing of CP clones from the green heads of recovered plants resulted in only wild-type sequences. Yellow mosaic symptoms could be reproduced by inoculation of an artificial 1:1 mixture of RNA transcripts from the wild-type and mutated infectious clones. These results show that the ratio of mutated versus wild-type sequences can determine the nature and severity of symptom development. The gradual recovery of the plants, which coincides with the disappearance of the yellowing mutations, suggests that selection pressure acts to the advantage of the wild-type virus. Experiments with wild-type and mutated infectious clones showed that reverse mutation events from mutant to wild-type occur and that the wild-type virus does not have a replicative advantage over the mutant. These results suggest that reverse mutation events occur, with subsequent selection pressure acting in favour of the wild-type virus in the growing plant parts, possibly related to a lower

  10. Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    2009-07-01

    Full Text Available Identifying genetic factors responsible for serious adverse drug reaction (SADR is of critical importance to personalized medicine. However, genome-wide association studies are hampered due to the lack of case-control samples, and the selection of candidate genes is limited by the lack of understanding of the underlying mechanisms of SADRs. We hypothesize that drugs causing the same type of SADR might share a common mechanism by targeting unexpectedly the same SADR-mediating protein. Hence we propose an approach of identifying the common SADR-targets through constructing and mining an in silico chemical-protein interactome (CPI, a matrix of binding strengths among 162 drug molecules known to cause at least one type of SADR and 845 proteins. Drugs sharing the same SADR outcome were also found to possess similarities in their CPI profiles towards this 845 protein set. This methodology identified the candidate gene of sulfonamide-induced toxic epidermal necrolysis (TEN: all nine sulfonamides that cause TEN were found to bind strongly to MHC I (Cw*4, whereas none of the 17 control drugs that do not cause TEN were found to bind to it. Through an insight into the CPI, we found the Y116S substitution of MHC I (B*5703 enhances the unexpected binding of abacavir to its antigen presentation groove, which explains why B*5701, not B*5703, is the risk allele of abacavir-induced hypersensitivity. In conclusion, SADR targets and the patient-specific off-targets could be identified through a systematic investigation of the CPI, generating important hypotheses for prospective experimental validation of the candidate genes.

  11. Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance

    Science.gov (United States)

    González-Torralva, Fidel; Brown, Adrian P.; Chivasa, Stephen

    2017-01-01

    Emergence of glyphosate-resistant horseweed (Conyza canadensis) biotypes is an example of how unrelenting use of a single mode of action herbicide in agricultural weed control drives genetic adaptation in targeted species. While in other weeds glyphosate resistance arose from target site mutation or target gene amplification, the resistance mechanism in horseweed uses neither of these, being instead linked to reduced herbicide uptake and/or translocation. The molecular components underpinning horseweed glyphosate-resistance remain unknown. Here, we used an in vitro leaf disc system for comparative analysis of proteins extracted from control and glyphosate-treated tissues of glyphosate-resistant and glyphosate-susceptible biotypes. Analysis of shikimic acid accumulation, ABC-transporter gene expression, and cell death were used to select a suitable glyphosate concentration and sampling time for enriching proteins pivotal to glyphosate resistance. Protein gel analysis and mass spectrometry identified mainly chloroplast proteins differentially expressed between the biotypes before and after glyphosate treatment. Chloroplasts are the organelles in which the shikimate pathway, which is targeted by glyphosate, is located. Calvin cycle enzymes and proteins of unknown function were among the proteins identified. Our study provides candidate proteins that could be pivotal in engendering resistance and implicates chloroplasts as the primary sites driving glyphosate-resistance in horseweed. PMID:28198407

  12. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.

    Science.gov (United States)

    Wu, Chih-Ching; Hsu, Chia-Wei; Chen, Chi-De; Yu, Chia-Jung; Chang, Kai-Ping; Tai, Dar-In; Liu, Hao-Ping; Su, Wen-Hui; Chang, Yu-Sun; Yu, Jau-Song

    2010-06-01

    Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.

  13. Time-resolved solution X-ray scattering of tobacco mosaic virus coat protein: kinetics and structure of intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Potschka, M.; Kock, M.H.J.; Adams, M.L.; Schuster, T.M.

    1988-11-01

    The kinetics of assembly and disassembly of tobacco mosaic virus coat protein (TMVP) following temperature jumps have been studied by small-angle X-ray scattering and turbidimetry. The structures of the principal aggregates of TMVP oligomers (A protein), intermediate size (helix I) and large size helical rods (helix II), have been characterized by their average radii of gyration of thickness, cross section, and shape obtained from the corresponding regimes of the small-angle scattering pattern. This structural information was obtained within seconds after the temperature-induced initiation of either polymerization or depolymerization and allowed the authors to detect transient intermediates. This methodology made it possible to observe and characterize the structure of a principal intermediate. Taken together with other kinetic information, these data suggest that polymerization of TMVP under virus self-assembly conditions may proceed via a single-layered helical nucleus that contains about 20 subunits. Previous studies have shown that overshoot polymerization of TMVP can occur and result in metastable long helical viruslike rods which subsequently depolymerize and then form short helical rods, depending on the conditions of the final equilibrium state. The longer rods (helix II) are overshoot polymers which form within seconds and contain 17 1/3 subunits per turn (helix IIB), in contrast to the subunit packing arrangement of 16 1/3 subunits per turn found in the shorter helical rods (helix IA). The latter packing arrangement is the one found in TMV. An overall polymerization scheme is proposed for the formation of these two helical forms of TMVP.

  14. Recombination with coat protein transgene in a complemen-tation system based on Cucumber mosaic virus (CMV)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to study the feasibility of Cucumber mosaic virus (CMV) as an expression vector, the full-length cDNA of RNA 3 from strain SD was cloned and the sequence around the start codon of the coat protein (CP) gene was modified to create an NsiⅠ site for insertion of foreign genes. The CP gene was replaced by the green fluorescent protein (GFP) gene. The cDNAs of Fny RNAs 1 and 2 and the chimeric SD RNA 3 were cloned between the modified 35S promoter and terminator. Tobacco protoplasts were transfected with a mixture of the viral cDNAs containing 35S promoter and terminator as a replacement vector and expressed GFP. A complementation system was established when the replacement vector was inoculated onto the transgenic tobacco plants ex-pressing SD-CMV CP. GFP was detected in the inoculated leaves in 5 of 18 tested plants and in the first upper systemic leaf of one of the 5 plants ten days after inoculation. However, no GFP could be detected in all the plants one month after inoculation. Recombination between the CMV vector and the CP transgene was proved by retro-transcriptional polymerase chain reaction (RT-PCR) and verified by DNA sequencing. Our results argue against the feasibility of the CMV-based replace-ment vector trans-complemented by the CP transgene, and at the same time, enlighten ways to improve the CMV-based expression vector and the biosafety of CMV CP-mediated virus resistant transgenic plants.

  15. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Pedersen, Carsten; Kwaaitaal, Mark Adrianus Cornelis J;

    2012-01-01

    A large number of effector candidates have been identified recently in powdery mildew fungi. However, their roles and how they perform their functions remain unresolved. In this study, we made use of host-induced gene silencing and confirmed that the secreted barley powdery mildew effector...... with PR17c was confirmed by bimolecular fluorescence complementation analyses. Down-regulation and over-expression of PR17c in epidermal cells of barley confirmed that this protein is important for penetration resistance against the powdery mildew fungus. In line with this, PR17c was found...

  16. Development of QCM Biosensor with Specific Cow Milk Protein Antibody for Candidate Milk Adulteration Detection

    Directory of Open Access Journals (Sweden)

    Setyawan P. Sakti

    2016-01-01

    Full Text Available Adulteration of goat milk is usually done using cow’s milk product. Cow milk is used as it is widely available and its price is cheaper compared to goat milk. This paper shows a development of candidate tools for milk adulteration using cow milk. A quartz crystal microbalance immunosensor was developed using commercial crystal resonator and polyclonal antibody specific to cow milk protein. A specific protein at 208 KDa is found only in cow milk and does not exist in goat milk. The existence of this protein can be used as an indicator of cow milk content in a target solution. To detect the PSS 208 kDa protein, antibody specific to the PSS 208 was developed. The purified antibody was immobilized on top of the sensor surface on a polystyrene layer. The fraction of the immobilized antibody on the sensor was found at 1.5% of the given antibody. Using a static reaction cell, the developed immunosensor could detect the specific cow milk protein in buffer solution. The detection limit is 1 ppm. A linear relationship between frequency change and specific protein of cow milk concentration is found from a concentration of 1 ppm to 120 ppm.

  17. Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon

    Directory of Open Access Journals (Sweden)

    Schmidt Silvia

    2010-05-01

    Full Text Available Abstract Background Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three Pachycladon species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species. Results Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase, the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases, water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis. Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not. Conclusions We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three Pachycladon species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study

  18. Mosaic Messages

    Science.gov (United States)

    Baldauf, Annemarie

    2012-01-01

    Through the generosity of a Lowes Toolbox for Education Grant and a grant from the Bill Graham Foundation, an interdisciplinary mosaic mural was created and installed at Riverview Middle School in Bay Point, California. The actual mural, which featured a theme of nurturing students through music, art, sports, science, and math, took about three…

  19. Evaluation of Mdh1 protein as an antigenic candidate for a vaccine against candidiasis.

    Science.gov (United States)

    Shibasaki, Seiji; Aoki, Wataru; Nomura, Takashi; Karasaki, Miki; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Candida albicans malate dehydrogenase (Mdh1p) has been screened by previous proteome studies as a candidate for a vaccine against candidiasis. In this study, recombinant Mdh1 protein with a His-tag was produced in Escherichia coli and evaluated as an immunogenic protein against candidiasis. Mdh1p was administrated to mice by two methods subcutaneous injection and intranasal administration before challenging them with a lethal dose of C. albicans. After vaccination of Mdh1p, antibody responses were observed. To evaluate the vaccination effect of Mdh1p, survival tests were performed after 35 d. Although all control mice died within 24 d or 25 d, 100% and 80% of mice survived with subcutaneous and intranasal administration, respectively. Therefore, our results indicate that, among C. albicans antigens examined thus far, Mdh1p is currently the most effective antigen for use as a vaccine for C. albicans.

  20. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation

    Science.gov (United States)

    Hurst, Jane L.; Beynon, Robert J.; Armstrong, Stuart D.; Davidson, Amanda J.; Roberts, Sarah A.; Gómez-Baena, Guadalupe; Smadja, Carole M.; Ganem, Guila

    2017-01-01

    When hybridisation carries a cost, natural selection is predicted to favour evolution of traits that allow assortative mating (reinforcement). Incipient speciation between the two European house mouse subspecies, Mus musculus domesticus and M.m.musculus, sharing a hybrid zone, provides an opportunity to understand evolution of assortative mating at a molecular level. Mouse urine odours allow subspecific mate discrimination, with assortative preferences evident in the hybrid zone but not in allopatry. Here we assess the potential of MUPs (major urinary proteins) as candidates for signal divergence by comparing MUP expression in urine samples from the Danish hybrid zone border (contact) and from allopatric populations. Mass spectrometric characterisation identified novel MUPs in both subspecies involving mostly new combinations of amino acid changes previously observed in M.m.domesticus. The subspecies expressed distinct MUP signatures, with most MUPs expressed by only one subspecies. Expression of at least eight MUPs showed significant subspecies divergence both in allopatry and contact zone. Another seven MUPs showed divergence in expression between the subspecies only in the contact zone, consistent with divergence by reinforcement. These proteins are candidates for the semiochemical barrier to hybridisation, providing an opportunity to characterise the nature and evolution of a putative species recognition signal. PMID:28337988

  1. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  2. The capsid protein p38 of turnip crinkle virus is associated with the suppression of cucumber mosaic virus in Arabidopsis thaliana co-infected with cucumber mosaic virus and turnip crinkle virus.

    Science.gov (United States)

    Chen, Ying-Juan; Zhang, Jing; Liu, Jian; Deng, Xing-Guang; Zhang, Ping; Zhu, Tong; Chen, Li-Juan; Bao, Wei-Kai; Xi, De-Hui; Lin, Hong-Hui

    2014-08-01

    Infection of plants by multiple viruses is common in nature. Cucumber mosaic virus (CMV) and Turnip crinkle virus (TCV) belong to different families, but Arabidopsis thaliana and Nicotiana benthamiana are commonly shared hosts for both viruses. In this study, we found that TCV provides effective resistance to infection by CMV in Arabidopsis plants co-infected by both viruses, and this antagonistic effect is much weaker when the two viruses are inoculated into different leaves of the same plant. However, similar antagonism is not observed in N. benthamiana plants. We further demonstrate that disrupting the RNA silencing-mediated defense of the Arabidopsis host does not affect this antagonism, but capsid protein (CP or p38)-defective mutant TCV loses the ability to repress CMV, suggesting that TCV CP plays an important role in the antagonistic effect of TCV toward CMV in Arabidopsis plants co-infected with both viruses.

  3. Development of Scaffolds for Light Harvesting and Photocatalysis from the Coat Protein of Tobacco Mosaic Virus

    Science.gov (United States)

    Dedeo, Michel Toussaint

    The utility of a previously developed TMV-based light harvesting system has been dramatically expanded through the introduction of reactive handles for the site-specific modification of the interior and exterior surfaces. Further experiments to reengineer the coat protein have produced structures with unique, unexpected, and useful assembly properties that complement the newly available surface modifications. Energy transfer from chromophores in the RNA channel of self-assembled TMV structures to the exterior was made possible by conjugation of acceptor dyes and porphyrins to the N-terminus. By repositioning the N-terminus to the pore through circular permutation, this process was repeated to create structures that mimic the light harvesting 1 complex of photosynthetic bacteria. To study and improve upon natural photosynthesis, closely packed chromophore arrays and gold nanoparticles were tethered to the pore of stabilized TMV disks through introduction of a uniquely reactive lysine. Finally, a dimeric TMV coat protein was produced to control the distribution and arrangement of synthetic groups with synergistic activity.

  4. Tobacco mosaic virus movement protein enhances the spread of RNA silencing.

    Directory of Open Access Journals (Sweden)

    Hannes Vogler

    2008-04-01

    Full Text Available Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.

  5. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis.

    Science.gov (United States)

    Berchtold, Lukas Adrian; Størling, Zenia Marian; Ortis, Fernanda; Lage, Kasper; Bang-Berthelsen, Claus; Bergholdt, Regine; Hald, Jacob; Brorsson, Caroline Anna; Eizirik, Decio Laks; Pociot, Flemming; Brunak, Søren; Størling, Joachim

    2011-09-13

    Type 1 diabetes (T1D) is a complex disease characterized by the loss of insulin-secreting β-cells. Although the disease has a strong genetic component, and several loci are known to increase T1D susceptibility risk, only few causal genes have currently been identified. To identify disease-causing genes in T1D, we performed an in silico "phenome-interactome analysis" on a genome-wide linkage scan dataset. This method prioritizes candidates according to their physical interactions at the protein level with other proteins involved in diabetes. A total of 11 genes were predicted to be likely disease genes in T1D, including the INS gene. An unexpected top-scoring candidate gene was huntingtin-interacting protein (HIP)-14/ZDHHC17. Immunohistochemical analysis of pancreatic sections demonstrated that HIP14 is almost exclusively expressed in insulin-positive cells in islets of Langerhans. RNAi knockdown experiments established that HIP14 is an antiapoptotic protein required for β-cell survival and glucose-stimulated insulin secretion. Proinflammatory cytokines (IL-1β and IFN-γ) that mediate β-cell dysfunction in T1D down-regulated HIP14 expression in insulin-secreting INS-1 cells and in isolated rat and human islets. Overexpression of HIP14 was associated with a decrease in IL-1β-induced NF-κB activity and protection against IL-1β-mediated apoptosis. Our study demonstrates that the current network biology approach is a valid method to identify genes of importance for T1D and may therefore embody the basis for more rational and targeted therapeutic approaches.

  6. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    Science.gov (United States)

    Alkhalili, Rawana N.; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase. PMID:27548162

  7. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Rawana N. Alkhalili

    2016-08-01

    Full Text Available A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase.

  8. Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Yumei Du

    Full Text Available Tm-2² is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV and Tobacco mosaic virus (TMV by recognizing the viral movement protein (MP. Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s associate with tobamovirus MP, Tm-2² and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-2²-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-2². Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst DC3000. In addition, we found that SGT1 associates with Tm-2² and is required for Tm-2²-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.

  9. Over-expression of 72 ku protein of wheat yellow mosaic virus in E.coli and preparation of its antiserum

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By reverse transcription-polymerase chain reaction (RT-PCR),cDNA fragment of wheat yellow mosaic virus (WYMV) RNA2 encoding 72 ku protein has been synthesized and cloned into plasmid pET30a(+) for overexpression in prokaryotic cells.BL21(DE3) pLys S of E.coli transformed with the recombinant plasmid pETP72 containing the fragment has been induced to express the 72 ku protein on high level.The produced protein has been purified from sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) for its antiserum preparation.In Western-blotting analysis,the antibodies reacted with the 72 ku protein expressed in E.coli.

  10. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A S; Tonietti, P O; Taniwaki, S A; Asano, K M; Maiorka, P; Richtzenhain, L J; Brandão, P E

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a-c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  11. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Directory of Open Access Journals (Sweden)

    A. S. Hora

    2016-01-01

    Full Text Available Feline infectious peritonitis virus (FIPV is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP, whereas feline enteric coronavirus (FECV is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  12. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A. S.; Tonietti, P. O.; Taniwaki, S. A.; Asano, K. M.; Maiorka, P.; Richtzenhain, L. J.; Brandão, P. E.

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  13. Effect of dicer-like proteins2 and 4 and RNA-dependent RNA polymerase1 as RNA silencing components on cyclic mosaic symptom development in tobacco infected with the Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Anurag Sunpapao

    2013-12-01

    Full Text Available The Nicotiana tabacum genome contains four Dicer-like proteins (DCLs and six RNA-dependent RNA polymerase (RDR homologues involved in the RNA silencing mechanism employed against viral infection. DCL1 synthesizes 18-21 nt-long microRNA, whereas DCL2, DCL3 and DCL4 produce 22 nt, 24 nt and 21 nt-long siRNA, respectively, in the RNA silencing process. This study aimed to clarify which components among these are involved in changes in the amount of virus and the development of symptoms in Cucumber mosaic virus (CMV-infected tobacco. Infected transgenic tobacco lines with a single down-regulation of DCL2, DCL4, RDR1 or a double down-regulation of both DCL2 and 4 were analyzed. The amounts of viral RNA in young developing leaves in transgenic tobacco lines were examined by Northern blot analysis. Most transgenic plants inoculated with CMV Pepo, a virulent strain, exhibited cyclic mosaic symptoms. The amount of viral RNA in single down-regulated lines varied based on leaf position in a similar manner to that noted in non-transgenic tobacco, while that of the double down-regulated line did not. Furthermore, the expression of RNA-silencing-related genes during high and low CMV infection did not differ among the transgenic plants. These results suggested that (i changes in the amounts of the virus in the developing leaves of all the single down-regulated lines were associated with cyclic symptom expression in fully expanded leaves, and (ii the lower expression of DCL2, DCL4 and RDR1 may be sufficient to establish cyclic symptom development.

  14. Comparative spatial spread overtime of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) in fields of transgenic squash expressing the coat protein genes of ZYMV and WMV, and in fields of nontransgenic squash.

    Science.gov (United States)

    Klas, Ferdinand E; Fuchs, Marc; Gonsalves, Dennis

    2006-10-01

    The spatial and temporal patterns of aphid-vectored spread of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) were monitored over two consecutive years in plantings of nontransgenic and transgenic squash ZW-20H (commercial cv. Freedom II) and ZW-20B, both expressing the coat protein genes of ZYMV and WMV. All test plants were surrounded by nontransgenic plants that were mechanically inoculated with ZYMV or WMV, and served as primary virus source. Across all trials, none of the transgenic plants exhibited systemic symptoms upon infection by ZYMV and WMV but a few of them developed localized chlorotic dots and/or blotches, and had low mixed infection rates [4% (6 of 139) of ZW-20H and 9% (13 of 139) of ZW-20B], as shown by ELISA. Geostatistical analysis of ELISA positive transgenic plants indicated, (i) a lack of spatial relationship on spread of ZYMV and WMV for ZW-20H with flat omnidirectional experimental semivariograms that fitted poorly theoretical models, and (ii) some extent of spatial dependence on ZYMV spread for ZW-20B with a well structured experimental semivariogram that fitted poorly theoretical models during the first but not the second growing season. In contrast, a strong spatial dependence on spread of ZYMV and WMV was found for nontransgenic plants, which developed severe systemic symptoms, had prevalent mixed infection rates (62%, 86 of 139), and well-defined omnidirectional experimental semivariograms that fitted a spherical model. Geostatistical data were sustained by virus transmission experiments with Myzus persicae in screenhouses, showing that commercial transgenic squash ZW-20H alter the dynamics of ZYMV and WMV epidemics by preventing secondary plant-to-plant spread.

  15. A Question of Mosaics.

    Science.gov (United States)

    Arrasjid, Dorine

    1983-01-01

    At the Grand Royal Palace Compound in Bangkok, mosaics speak to art teachers in new forms. Thai culture can be linked to the study of mosaics, inspire subject matter, and lead to new approaches in mosaic work. (AM)

  16. Wheat streak mosaic virus-encoded NIa-Pro and coat protein are involved in virus superinfection exclusion

    Science.gov (United States)

    Cross protection or superinfection exclusion (SE) is defined as the phenomenon whereby initial infection by one virus prevents subsequent infection by closely related viruses. The mechanisms of SE are just beginning to be understood. Wheat streak mosaic virus (WSMV; genus: Tritimovirus; family: Poty...

  17. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  18. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing.

  19. Transgenic tobacco plants expressing siRNA targeted against the Mungbean yellow mosaic virus transcriptional activator protein gene efficiently block the viral DNA accumulation.

    Science.gov (United States)

    Shanmugapriya, Gnanasekaran; Das, Sudhanshu Sekhar; Veluthambi, Karuppannan

    2015-06-01

    Mungbean yellow mosaic virus (MYMV) is a bipartite begomovirus that infects many pulse crops such as blackgram, mungbean, mothbean, Frenchbean, and soybean. We tested the efficacy of the transgenically expressed intron-spliced hairpin RNA gene of the transcriptional activator protein (hpTrAP) in reducing MYMV DNA accumulation. Tobacco plants transformed with the MYMV hpTrAP gene accumulated 21-22 nt siRNA. Leaf discs of the transgenic plants, agroinoculated with the partial dimers of MYMV, displayed pronounced reduction in MYMV DNA accumulation. Thus, silencing of the TrAP gene, a suppressor of gene silencing, emerged as an effective strategy to control MYMV.

  20. RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase in human cells reveals requirements for de novo initiation and protein-protein interaction.

    Science.gov (United States)

    Subba-Reddy, Chennareddy V; Tragesser, Brady; Xu, Zhili; Stein, Barry; Ranjith-Kumar, C T; Kao, C Cheng

    2012-04-01

    Brome mosaic virus (BMV) is a model positive-strand RNA virus whose replication has been studied in a number of surrogate hosts. In transiently transfected human cells, the BMV polymerase 2a activated signaling by the innate immune receptor RIG-I, which recognizes de novo-initiated non-self-RNAs. Active-site mutations in 2a abolished RIG-I activation, and coexpression of the BMV 1a protein stimulated 2a activity. Mutations previously shown to abolish 1a and 2a interaction prevented the 1a-dependent enhancement of 2a activity. New insights into 1a-2a interaction include the findings that helicase active site of 1a is required to enhance 2a polymerase activity and that negatively charged amino acid residues between positions 110 and 120 of 2a contribute to interaction with the 1a helicase-like domain but not to the intrinsic polymerase activity. Confocal fluorescence microscopy revealed that the BMV 1a and 2a colocalized to perinuclear region in human cells. However, no perinuclear spherule-like structures were detected in human cells by immunoelectron microscopy. Sequencing of the RNAs coimmunoprecipitated with RIG-I revealed that the 2a-synthesized short RNAs are derived from the message used to translate 2a. That is, 2a exhibits a strong cis preference for BMV RNA2. Strikingly, the 2a RNA products had initiation sequences (5'-GUAAA-3') identical to those from the 5' sequence of the BMV genomic RNA2 and RNA3. These results show that the BMV 2a polymerase does not require other BMV proteins to initiate RNA synthesis but that the 1a helicase domain, and likely helicase activity, can affect RNA synthesis by 2a.

  1. Natural minus-strand RNAs of alfalfa mosaic virus as in vitro templates for viral RNA polymerase. 3'-Terminal non-coded guanosine and coat protein are insufficient factors for full-size plus-strand synthesis

    NARCIS (Netherlands)

    Houwing, C.J.; Huis in 't Veld, M.; Zuidema, D.; Graaff, de M.; Jaspars, E.M.J.

    2001-01-01

    Replication complexes of alfalfa mosaic virus produce in vivo large quantities of plus-strand RNAs, but this production is fully dependent on the presence of coat protein. In order to study this process of RNA-dependent and coat protein-regulated RNA synthesis we have isolated the three natural minu

  2. Natural insertions within the N-terminal region of the coat protein of Maize dwarf mosaic potyvirus (MDMV) have an effect on the RNA stability.

    Science.gov (United States)

    Petrik, Kathrin; Sebestyén, Endre; Gell, Gyöngyvér; Balázs, Ervin

    2010-02-01

    A 13 amino acid residue insertion was found in the N-terminal region of the coat protein of several Maize dwarf mosaic virus isolates (MDMV). These insertions seem to be the result of a direct duplication event, but differ in some positions. In order to evaluate the influence of the insertion on the RNA secondary structure and stability, the RNA secondary structures and minimum free energies (MFE) of all existing MDMV coat protein sequences were estimated using three different softwares, the Vienna RNA Package, NUPACK, and UNAFold, and compared to the secondary structure and MFE of various random sequence collections preserving the nucleotide distribution of MDMV. The bioinformatic analysis showed that the insertion stabilizes the RNA structure of the coat protein gene.

  3. Surfactant protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage

    DEFF Research Database (Denmark)

    Johansson, Sofie L.; Tan, Qihua; Holst, René;

    2014-01-01

    Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The associat......Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage...... or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 second and forced vital capacity in the presence of current tobacco smoking but not in non...... with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive...

  4. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  5. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.).

    Science.gov (United States)

    Paiva, Ana L S; Oliveira, Jose T A; de Souza, Gustavo A; Vasconcelos, Ilka M

    2016-12-02

    Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.

  6. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein.

    Science.gov (United States)

    Chen, Edwin; Salinas, Nichole D; Huang, Yining; Ntumngia, Francis; Plasencia, Manolo D; Gross, Michael L; Adams, John H; Tolia, Niraj Harish

    2016-05-31

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifs in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. The identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.

  7. Molecular characterization of distinct YMV (Yellow mosaic virus) isolates affecting pulses in India with the aid of coat protein gene as a marker for identification.

    Science.gov (United States)

    Maheshwari, Richa; Panigrahi, Gatikrushna; Angappan, K

    2014-01-01

    The present study was carried out to find out the variations present in different isolates of yellow mosaic virus (YMV) causing yellow mosaic disease of pulses in southern parts of India. The coat protein gene of YMV was amplified using gene specific and deng universal primers with DNA isolated from YMV infected samples. Further, cloning and DNA sequencing of CP gene was carried out. CP gene decrypt sequences revealed that YMV infected samples of Black gram, Cowpea and Green gram were similar to the MYMV-Tamil Nadu isolates. Whereas the YMV infected sample of Horse gram was found to be similar with HYMV. Hence, in the present study, two distinct YMV infecting pulses in Tamil Nadu (MYMV and HYMV species) were identified and it was observed that there exists considerable genetic variation among these species. In addition, Cowpea crop which was earlier supposed not to be susceptible for YMV infection also showed the presence of this virus similar to the MYMV. Overall, the findings of the present study indicate that the CP region is efficient enough to provide a simple, rapid, and reliable method for early detection of YMV infections in pulses, which would help to develop proper management strategies to control these viruses.

  8. Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of Bamboo mosaic virus.

    Directory of Open Access Journals (Sweden)

    Shun-Fang Cheng

    Full Text Available To investigate the plant genes affected by Bamboo mosaic virus (BaMV infection, we applied a cDNA-amplified fragment length polymorphism technique to screen genes with differential expression. A serine/threonine kinase-like (NbSTKL gene of Nicotiana benthamiana is upregulated after BaMV infection. NbSTKL contains the homologous domain of Ser/Thr kinase. Knocking down the expression of NbSTKL by virus-induced gene silencing reduced the accumulation of BaMV in the inoculated leaves but not in the protoplasts. The spread of GFP-expressing BaMV in the inoculated leaves is also impeded by a reduced expression of NbSTKL. These data imply that NbSTKL facilitates the cell-to-cell movement of BaMV. The subcellular localization of NbSTKL is mainly on the cell membrane, which has been confirmed by mutagenesis and fractionation experiments. Combined with the results showing that active site mutation of NbSTKL does not change its subcellular localization but significantly affects BaMV accumulation, we conclude that NbSTKL may regulate BaMV movement on the cell membrane by its kinase-like activity. Moreover, the transient expression of NbSTKL does not significantly affect the accumulation of Cucumber mosaic virus (CMV and Potato virus X (PVX; thus, NbSTKL might be a specific protein facilitating BaMV movement.

  9. Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine.

    Science.gov (United States)

    Yang, Yanling; Wang, Lin; Yin, Jigang; Wang, Xinglong; Cheng, Shipeng; Lang, Xulong; Wang, Xiuran; Qu, Hailong; Sun, Chunhui; Wang, Jinglong; Zhang, Rui

    2011-10-01

    In order to screen immunogenic candidate antigens for the development of a brucellosis subunit vaccine, an immunoproteomic assay was used to identify immunogenic proteins from Brucella melitensis 16 M soluble proteins. In this study, a total of 56 immunodominant proteins were identified from the two-dimensional electrophoresis immunoblot profiles by liquid chromatography tandem mass spectrometry (LC-MS/MS). Two proteins of interest, riboflavin synthase alpha chain (RS-α) and Loraine synthase (LS-2), which are both involved in riboflavin synthesis, were detected by two-dimensional immunoblots using antisera obtained from Brucella-infected human and goats. LS-2, however, is an already well-known vaccine candidate. Therefore, we focussed our studies on the novel vaccine candidate RS-α. B. melitensis RS-α and LS-2 were then expressed in Escherichia coli as fusion proteins with His tag. The humoral and cellular immune responses to the recombinant (r)RS-α was characterized. In response to in vitro stimulation by rRS-α, splenocytes from mice vaccinated with rRS-α were able to produce γ-interferon (IFN-γ) and interleukin (IL)-2 but not interleukin (IL)-4 and interleukin (IL)-10. Furthermore, rRS-α or rLS-2-vaccinated mice were partially protected against B. melitensis infection. Our results suggested that we have developed a high-throughout, accurate, rapid and highly efficient method for the identification of candidate antigens by a combination of immunoproteomics with immunisation and bacterial challenge and rRs-α could be a useful candidate for the development of subunit vaccines against B. melitensis.

  10. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin [Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Gronenborn, Bruno [Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette (France); Jeske, Holger, E-mail: holger.jeske@bio.uni-stuttgart.de [Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)

    2014-08-15

    Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis.

  11. Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate

    Science.gov (United States)

    Morita, Masayuki; Takashima, Eizo; Ito, Daisuke; Miura, Kazutoyo; Thongkukiatkul, Amporn; Diouf, Ababacar; Fairhurst, Rick M.; Diakite, Mahamadou; Long, Carole A.; Torii, Motomi; Tsuboi, Takafumi

    2017-01-01

    The number of malaria vaccine candidates in preclinical and clinical development is limited. To identify novel blood-stage malaria vaccine candidates, we constructed a library of 1,827P. falciparum proteins prepared using the wheat germ cell-free system (WGCFS). Also, a high-throughput AlphaScreen procedure was developed to measure antibody reactivity to the recombinant products. Purified IgGs from residents in malaria endemic areas have shown functional activity against blood-stage parasites as judged by an in vitro parasite Growth Inhibition Assay (GIA). Therefore, we evaluated the GIA activity of 51 plasma samples prepared from Malian adults living in a malaria endemic area against the WGCFS library. Using the AlphaScreen-based immunoreactivity measurements, antibody reactivity against 3 proteins was positively associated with GIA activity. Since anti-LSA3-C responses showed the strongest correlation with GIA activity, this protein was investigated further. Anti-LSA3-C-specific antibody purified from Malian adult plasmas showed GIA activity, and expression of LSA3 in blood-stage parasites was confirmed by western blotting. Taken together, we identified LSA3 as a novel blood-stage vaccine candidate, and we propose that this system will be useful for future vaccine candidate discovery. PMID:28378857

  12. Proteins of human urine. II. Identification by two-dimensional electrophoresis of a new candidate marker for prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.J. (Argonne National Lab., IL); Anderson, N.G.; Tollaksen, S.L.; von Eschenbach, A.C.; Guevara, J. Jr.

    1982-01-01

    A protein series common to the urine and prostatic tissue of 16 of 17 patients with prostatic adenocarcinoma has been identified by high-resolution two-dimensional gel electrophoresis. These proteins, designated PCA-1, have a relative molecular mass in sodium dodecyl sulfate of about 40,000. Analyses of urines from eight age-matched controls, seven patients with other types of urogenital malignancies, two patients with benign prostatic hyperplasia, and five patients with malignancies not associated with the urogenital system failed to show PCA-1 in the patterns. These preliminary findings suggest that this protein should be systematically investigated as a candidate marker for prostatic adenocarcinoma in man.

  13. High genetic diversity in the coat protein and 3' untranslated regions among geographical isolates of Cardamom mosaic virus from south India

    Indian Academy of Sciences (India)

    T Jacob; T Jebasingh; M N Venugopal; R Usha

    2003-09-01

    A survey was conducted to study the biological and genetic diversity of Cardamom mosaic virus (CdMV) that causes the most widespread disease in the cardamom growing area in the Western Ghats of south India. Six distinct subgroups were derived based on their symptomatology and host range from the sixty isolates collected. The serological variability between the virus isolates was analysed by ELISA and Western blotting. The 3′ terminal region consisting of the coat protein (CP) coding sequence and 3′ untranslated region (3′UTR) was cloned and sequenced from seven isolates. Sequence comparisons revealed considerable genetic diversity among the isolates in their CP and 3′UTR, making CdMV one of the highly variable members of Potyviridae. The possible occurrence of recombination between the isolates and the movement of the virus in the cardamom tract of south India are discussed.

  14. Network-based data integration for selecting candidate virulence associated proteins in the cereal infecting fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Artem Lysenko

    Full Text Available The identification of virulence genes in plant pathogenic fungi is important for understanding the infection process, host range and for developing control strategies. The analysis of already verified virulence genes in phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental investigation, using a 'guilt by association' approach. Here we study 133 genes in the globally important Ascomycete fungus Fusarium graminearum that have been experimentally tested for their involvement in virulence. An integrated network that combines information from gene co-expression, predicted protein-protein interactions and sequence similarity was employed and, using 100 genes known to be required for virulence, we found a total of 215 new proteins potentially associated with virulence of which 29 are annotated as hypothetical proteins. The majority of these potential virulence genes are located in chromosomal regions known to have a low recombination frequency. We have also explored the taxonomic diversity of these candidates and found 25 sequences, which are likely to be fungal specific. We discuss the biological relevance of a few of the potentially novel virulence associated genes in detail. The analysis of already verified virulence genes in phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental investigation, using a 'guilt by association' approach.

  15. Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset.

    Science.gov (United States)

    Metz, Thomas O; Qian, Wei-Jun; Jacobs, Jon M; Gritsenko, Marina A; Moore, Ronald J; Polpitiya, Ashoka D; Monroe, Matthew E; Camp, David G; Mueller, Patricia W; Smith, Richard D

    2008-02-01

    Novel biomarkers of type 1 diabetes must be identified and validated in initial, exploratory studies before they can be assessed in proficiency evaluations. Currently, untargeted "-omics" approaches are underutilized in profiling studies of clinical samples. This report describes the evaluation of capillary liquid chromatography (LC) coupled with mass spectrometry (MS) in a pilot proteomic analysis of human plasma and serum from a subset of control and type 1 diabetic individuals enrolled in the Diabetes Autoantibody Standardization Program, with the goal of identifying candidate biomarkers of type 1 diabetes. Initial high-resolution capillary LC-MS/MS experiments were performed to augment an existing plasma peptide database, while subsequent LC-FTICR studies identified quantitative differences in the abundance of plasma proteins. Analysis of LC-FTICR proteomic data identified five candidate protein biomarkers of type 1 diabetes. alpha-2-Glycoprotein 1 (zinc), corticosteroid-binding globulin, and lumican were 2-fold up-regulated in type 1 diabetic samples relative to control samples, whereas clusterin and serotransferrin were 2-fold up-regulated in control samples relative to type 1 diabetic samples. Observed perturbations in the levels of all five proteins are consistent with the metabolic aberrations found in type 1 diabetes. While the discovery of these candidate protein biomarkers of type 1 diabetes is encouraging, follow up studies are required for validation in a larger population of individuals and for determination of laboratory-defined sensitivity and specificity values using blinded samples.

  16. The P2 of Wheat yellow mosaic virus rearranges the endoplasmic reticulum and recruits other viral proteins into replication-associated inclusion bodies.

    Science.gov (United States)

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Chen, Jianping

    2014-06-01

    Viruses commonly modify host endomembranes to facilitate biological processes in the viral life cycle. Infection by viruses belonging to the genus Bymovirus (family Potyviridae) has long been known to induce the formation of large membranous inclusion bodies in host cells, but their assembly and biological roles are still unclear. Immunoelectron microscopy of cells infected with the bymovirus Wheat yellow mosaic virus (WYMV) showed that P1, P2 and P3 are the major viral protein constituents of the membranous inclusions, whereas NIa-Pro (nuclear inclusion-a protease) and VPg (viral protein genome-linked) are probable minor components. P1, P2 and P3 associated with the endoplasmic reticulum (ER), but only P2 was able to rearrange ER and form large aggregate structures. Bioinformatic analyses and chemical experiments showed that P2 is an integral membrane protein and depends on the active secretory pathway to form aggregates of ER membranes. In planta and in vitro assays demonstrated that P2 interacts with P1, P3, NIa-Pro or VPg and recruits these proteins into the aggregates. In vivo RNA labelling using WYMV-infected wheat protoplasts showed that the synthesis of viral RNAs occurs in the P2-associated inclusions. Our results suggest that P2 plays a major role in the formation of membranous compartments that house the genomic replication of WYMV.

  17. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons

    Directory of Open Access Journals (Sweden)

    Branch OraLee H

    2010-05-01

    Full Text Available Abstract Background Plasmodium falciparum Merozoite Surface Protein-6 (PfMSP6 is a component of the complex proteinacious coat that surrounds P. falciparum merozoites. This location, and the presence of anti-PfMSP6 antibodies in P. falciparum-exposed individuals, makes PfMSP6 a potential blood stage vaccine target. However, genetic diversity has proven to be a major hurdle for vaccines targeting other blood stage P. falciparum antigens, and few endemic field studies assessing PfMSP6 gene diversity have been conducted. This study follows PfMSP6 diversity in the Peruvian Amazon from 2003 to 2006 and is the first longitudinal assessment of PfMSP6 sequence dynamics. Methods Parasite DNA was extracted from 506 distinct P. falciparum infections spanning the transmission seasons from 2003 to 2006 as part of the Malaria Immunology and Genetics in the Amazon (MIGIA cohort study near Iquitos, Peru. PfMSP6 was amplified from each sample using a nested PCR protocol, genotyped for allele class by agarose gel electrophoresis, and sequenced to detect diversity. Allele frequencies were analysed using JMP v.8.0.1.0 and correlated with clinical and epidemiological data collected as part of the MIGIA project. Results Both PfMSP6 allele classes, K1-like and 3D7-like, were detected at the study site, confirming that both are globally distributed. Allele frequencies varied significantly between transmission seasons, with 3D7-class alleles dominating and K1-class alleles nearly disappearing in 2005 and 2006. There was a significant association between allele class and village location (p-value = 0.0008, but no statistically significant association between allele class and age, sex, or symptom status. No intra-allele class sequence diversity was detected. Conclusions Both PfMSP6 allele classes are globally distributed, and this study shows that allele frequencies can fluctuate significantly between communities separated by only a few kilometres, and over time in the

  18. Candidate proteins, metabolites and transcripts in the Biomarkers for Spinal Muscular Atrophy (BforSMA clinical study.

    Directory of Open Access Journals (Sweden)

    Richard S Finkel

    Full Text Available BACKGROUND: Spinal Muscular Atrophy (SMA is a neurodegenerative motor neuron disorder resulting from a homozygous mutation of the survival of motor neuron 1 (SMN1 gene. The gene product, SMN protein, functions in RNA biosynthesis in all tissues. In humans, a nearly identical gene, SMN2, rescues an otherwise lethal phenotype by producing a small amount of full-length SMN protein. SMN2 copy number inversely correlates with disease severity. Identifying other novel biomarkers could inform clinical trial design and identify novel therapeutic targets. OBJECTIVE: To identify novel candidate biomarkers associated with disease severity in SMA using unbiased proteomic, metabolomic and transcriptomic approaches. MATERIALS AND METHODS: A cross-sectional single evaluation was performed in 108 children with genetically confirmed SMA, aged 2-12 years, manifesting a broad range of disease severity and selected to distinguish factors associated with SMA type and present functional ability independent of age. Blood and urine specimens from these and 22 age-matched healthy controls were interrogated using proteomic, metabolomic and transcriptomic discovery platforms. Analyte associations were evaluated against a primary measure of disease severity, the Modified Hammersmith Functional Motor Scale (MHFMS and to a number of secondary clinical measures. RESULTS: A total of 200 candidate biomarkers correlate with MHFMS scores: 97 plasma proteins, 59 plasma metabolites (9 amino acids, 10 free fatty acids, 12 lipids and 28 GC/MS metabolites and 44 urine metabolites. No transcripts correlated with MHFMS. DISCUSSION: In this cross-sectional study, "BforSMA" (Biomarkers for SMA, candidate protein and metabolite markers were identified. No transcript biomarker candidates were identified. Additional mining of this rich dataset may yield important insights into relevant SMA-related pathophysiology and biological network associations. Additional prospective studies are needed

  19. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  20. Identification of the subgenomic promoter of the coat protein gene of cucumber fruit mottle mosaic virus and development of a heterologous expression vector.

    Science.gov (United States)

    Rhee, Sun-Ju; Jang, Yoon Jeong; Lee, Gung Pyo

    2016-06-01

    Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.

  1. Potential involvement of a cucumber homolog of phloem protein 1 in the long-distance movement of Cucumber mosaic virus particles.

    Science.gov (United States)

    Requena, A; Simón-Buela, L; Salcedo, G; García-Arenal, F

    2006-07-01

    The systemic movement of Cucumber mosaic virus (CMV) in cucumber plants was analyzed. The structure that is translocated and its putative interactions with phloem components were analyzed in phloem exudate (PE) samples, which reflect sieve tubes stream composition. Rate zonal centrifugation and electron-microscopy analyses of PE from CMV-infected plants showed that CMV moves through sieve tubes as virus particles. Gel overlay assays revealed that CMV particles interact with a PE protein, p48. The amino-acid sequence of several tryptic peptides of p48 was determined. Partial amino-acid sequence of p48 showed it was a cucumber homolog of phloem protein 1 (PP1) from pumpkin, with which p48 also shares several chemical properties. PP1 from pumpkin has plasmodesmata-gating ability and translocates in sieve tubes. Encapsidated CMV RNA in PE samples from infected plants was less accessible to digestion by RNase A than RNA in purified CMV particles, a property that was reconstituted by the in vitro interaction of purified CMV particles and protein p48. These results indicate that the interaction with p48 modifies CMV particle structure and suggest that CMV particles interact with the cucumber homolog of PP1 during translocation in the sieve tubes.

  2. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population.

    Science.gov (United States)

    Li, Cong; Cai, Wentao; Zhou, Chenghao; Yin, Hongwei; Zhang, Ziqi; Loor, Juan J; Sun, Dongxiao; Zhang, Qin; Liu, Jianfeng; Zhang, Shengli

    2016-06-02

    Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis.

  3. Development of a new vector using Soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans.

    Science.gov (United States)

    Lim, Seungmo; Nam, Moon; Kim, Kil Hyun; Lee, Su-Heon; Moon, Jung-Kyung; Lim, Hyoun-Sub; Choung, Myoung-Gun; Kim, Sang-Mok; Moon, Jae Sun

    2016-02-01

    A new vector using Soybean yellow common mosaic virus (SYCMV) was constructed for gene function study or heterologous protein expression in soybeans. The in vitro transcript with a 5' cap analog m7GpppG from an SYCMV full-length infectious vector driven by a T7 promoter infected soybeans (pSYCMVT7-full). The symptoms observed in the soybeans infected with either the sap from SYCMV-infected leaves or pSYCMVT7-full were indistinguishable, suggesting that the vector exhibits equivalent biological activity as the virus itself. To utilize the vector further, a DNA-based vector driven by the Cauliflower mosaic virus (CaMV) 35S promoter was constructed. The complete sequence of the SYCMV genome was inserted into a binary vector flanked by a CaMV 35S promoter at the 5' terminus of the SYCMV genome and a cis-cleaving ribozyme sequence followed by a nopaline synthase terminator at the 3' terminus of the SYCMV genome (pSYCMV-full). The SYCMV-derived vector was tested for use as a virus-induced gene silencing (VIGS) vector for the functional analysis of soybean genes. VIGS constructs containing either a fragment of the Phytoene desaturase (PDS) gene (pSYCMV-PDS1) or a fragment of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) gene (pSYCMV-RbcS2) were constructed. Plants infiltrated with each vector using the Agrobacterium-mediated inoculation method exhibited distinct symptoms, such as photo-bleaching in plants infiltrated with pSYCMV-PDS1 and yellow or pale green coloring in plants infiltrated with pSYCMV-RbcS2. In addition, down-regulation of the transcripts of the two target genes was confirmed via northern blot analysis. Particle bombardment and direct plasmid DNA rubbing were also confirmed as alternative inoculation methods. To determine if the SYCMV vector can be used for the expression of heterologous proteins in soybean plants, the vector encoding amino acids 135-160 of VP1 of Foot-and-mouth disease virus (FMDV) serotype O1 Campos (O1C

  4. Mosaicism and clinical genetics.

    Science.gov (United States)

    Spinner, Nancy B; Conlin, Laura K

    2014-12-01

    With the introduction of increasingly sensitive technologies for mutation detection such as chromosomal microarrays and next-generation sequencing, the importance of mosaicism for human disease is being more fully appreciated. Mosaicism can occur for any type of mutation, either at the chromosomal or DNA sequence level, and while in many cases mosaicism can modify the clinical effects of a syndrome, there are many alterations that can only occur in mosaic form as the mutation is lethal when present in every cell. Mosaicism can have a wide range of effects, from early pregnancy loss, to organ specific pathology, to modification of clinical syndromes. Recent evidence reveals that generation of mosaic alterations is associated with aging, and our ability to detect mosaic alterations sheds light on normal and pathologic changes across the lifespan.

  5. Barley Yellow Mosaic Virus VPg Is the Determinant Protein for Breaking eIF4E-Mediated Recessive Resistance in Barley Plants

    Science.gov (United States)

    Li, Huangai; Kondo, Hideki; Kühne, Thomas; Shirako, Yukio

    2016-01-01

    In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus) factor(s) responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6) in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10) and rym5-non-breaking (JK05) isolates indicated that genome-linked viral protein (VPg) is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120, and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants. PMID:27746794

  6. Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha.

    Science.gov (United States)

    Guerra-Peraza, O; Kirk, D; Seltzer, V; Veluthambi, K; Schmit, A C; Hohn, T; Herzog, E

    2005-06-01

    Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of plant pararetro- and geminiviruses. In both these virus types, the multifunctional coat protein (CP) is thought to be involved in this process. Here, a green fluorescent protein tagging approach was used to demonstrate nuclear import of the CPs of Rice tungro bacilliform virus (RTBV) and Mungbean yellow mosaic virus--Vigna (MYMV) in Nicotiana plumbaginifolia protoplasts. In both cases, at least two nuclear localization signals (NLSs) were identified and characterized. The NLSs of RTBV CP are located within both N- and C-terminal regions (residues 479KRPK/497KRK and 744KRK/758RRK), and those of MYMV CP within the N-terminal part (residues 3KR and 41KRRR). The MYMV and RTBV CP NLSs resemble classic mono- and bipartite NLSs, respectively. However, the N-terminal MYMV CP NLS and both RTBV CP NLSs show peculiarities in the number and position of basic residues. In vitro pull-down assays revealed interaction of RTBV and MYMV CPs with the nuclear import factor importin alpha, suggesting that both CPs are imported into the nucleus via an importin alpha-dependent pathway. The possibility that this pathway could serve for docking of virions to the nucleus is discussed.

  7. The mungbean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco plants.

    Science.gov (United States)

    Rajeswaran, Rajendran; Sunitha, Sukumaran; Shivaprasad, Padubidri V; Pooggin, Mikhail M; Hohn, Thomas; Veluthambi, Karuppannan

    2007-12-01

    The Begomovirus transcriptional activator protein (TrAP/AC2/C2) is a multifunctional protein which activates the viral late gene promoters, suppresses gene silencing, and determines pathogenicity. To study TrAP-mediated transactivation of a stably integrated gene, we generated transgenic tobacco plants with a Mungbean yellow mosaic virus (MYMV) AV1 late gene promoter-driven reporter gene and supertransformed them with the MYMV TrAP gene driven by a strong 35S promoter. We obtained a single supertransformed plant with an intact 35S-TrAP gene that activated the reporter gene 2.5-fold. However, 10 of the 11 supertransformed plants did not have the TrAP region of the T-DNA, suggesting the likely toxicity of TrAP in plants. Upon transformation of wild-type tobacco plants with the TrAP gene, six of the seven transgenic plants obtained had truncated T-DNAs which lacked TrAP. One plant, which had the intact TrAP gene, did not express TrAP. The apparent toxic effect of the TrAP transgene was abolished by mutations in its nuclear-localization signal or zinc-finger domain and by deletion of its activation domain. Therefore, all three domains of TrAP, which are required for transactivation and suppression of gene silencing, also are needed for its toxic effect.

  8. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid).

    Science.gov (United States)

    Casteel, Clare L; Yang, Chunling; Nanduri, Ananya C; De Jong, Hannah N; Whitham, Steven A; Jander, Georg

    2014-02-01

    Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission.

  9. Comparison of the complete sequences of three different isolates of Pepino mosaic virus: size variability of the TGBp3 protein between tomato and L. peruvianum isolates.

    Science.gov (United States)

    López, C; Soler, S; Nuez, F

    2005-03-01

    The complete nucleotide sequence of the genomes of two Spanish isolates (LE-2000 and LE-2002) from tomato and one Peruvian isolate (LP-2001) from Lycopersicon peruvianum of the Pepino mosaic virus (PepMV) were determined. The tomato isolates share identities higher than 99%, while the genome of LP-2001 had mean nucleotide identities of 95.6% to 96.0% with tomato isolates. The predicted amino acid sequences showed similarities ranging between 95.2% and 100% with TGBp3 and TGBp2 and CP proteins, respectively. In LP-2001 two main differences were found with respect to the tomato isolates; (i) the 5' untranslated region (UTR) was 2 nt shorter by deletion at position 12-13 and it had some polymorphims at the putative promoter sequence reported for PepMV tomato isolates and other potexviruses, which could be functionally significant for RNA replication, and (ii) the TGBp3 protein had two extra amino acids in the C-terminal region.

  10. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate

    DEFF Research Database (Denmark)

    Esen, Meral; Kremsner, Peter G; Schleucher, Regina;

    2009-01-01

    Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easi...... is a safe and immunogenic malaria vaccine candidate suitable for further clinical development.......Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily....... Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi...

  11. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins.

    Science.gov (United States)

    Chao, Qing; Gao, Zhi-Fang; Wang, Yue-Feng; Li, Zhe; Huang, Xia-He; Wang, Ying-Chun; Mei, Ying-Chang; Zhao, Biligen-Gaowa; Li, Liang; Jiang, Yu-Bo; Wang, Bai-Chen

    2016-06-01

    Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.

  12. Evaluation of Salmonella enterica serovar Enteritidis pathogenicity island-1 proteins as vaccine candidates against S. Enteritidis challenge in chickens.

    Science.gov (United States)

    Desin, Taseen S; Wisner, Amanda L S; Lam, Po-King S; Berberov, Emil; Mickael, Claudia S; Potter, Andrew A; Köster, Wolfgang

    2011-03-24

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of gastrointestinal disease in humans worldwide, which mainly results from the consumption of contaminated poultry meat and eggs. Vaccination of chickens is an important strategy to lower the prevalence of Salmonella in poultry flocks. The S. Enteritidis type 3 secretion system (T3SS) encoded on Salmonella pathogenicity island-1 (SPI-1) is an important virulence factor that plays a role in invasion and systemic spread in chickens. In this manuscript, we evaluated the efficacy of SPI-1 proteins as vaccine candidates for protection against S. Enteritidis oral challenge. Our results demonstrate for the first time that SPI-1 T3SS proteins elicit antigen specific IgG antibody responses in chickens. In one study we show that vaccination with the aforementioned proteins reduces the levels of S. Enteritidis in the liver, but not in the spleen and cecal contents of chickens. However, a second study shows that vaccination of hens with SPI-1 proteins using a seeder model of infection does not affect the levels of S. Enteritidis in the cecal contents or internal organs of progeny obtained from these hens. Hence, the SPI-1 proteins, in conjunction with other proteins, may form important components of subunit vaccines used for protection against colonization by S. Enteritidis in poultry.

  13. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates.

    Science.gov (United States)

    Hawley, Robert G; Chen, Yuzhong; Riz, Irene; Zeng, Chen

    2012-05-04

    In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.

  14. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  15. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, C.; Xue, B.; Yepes, M.; Fuchs, M.; Ling, K.; Namba, S. (Cornell Univ., Geneva, NY (United States). Dept. of Plant Pathology)

    1994-03-01

    A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500 mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.

  16. Immunodetection of Triticum mosaic virus by DAS- and DAC-ELISA using antibodies produced against coat protein expressed in Escherichia coli: potential for high-throughput diagnostic methods.

    Science.gov (United States)

    Tatineni, Satyanarayana; Sarath, Gautam; Seifers, Dallas; French, Roy

    2013-04-01

    Triticum mosaic virus (TriMV), an economically important virus infecting wheat in the Great Plains region of the USA, is the type species of the Poacevirus genus in the family Potyviridae. Sensitive and high-throughput serology-based detection methods are crucial for the management of TriMV and germplasm screening in wheat breeding programs. In this study, TriMV coat protein (CP) was expressed in Escherichia coli, and polyclonal antibodies were generated against purified soluble native form recombinant CP (rCP) in rabbits. Specificity and sensitivity of resulting antibodies were tested in Western immuno-blot and enzyme-linked immunosorbent assays (ELISA). In direct antigen coating (DAC)-ELISA, antibodies reacted specifically, beyond 1:20,000 dilution with TriMV in crude sap, but not with healthy extracts, and antiserum at a 1:10,000 dilution detected TriMV in crude sap up to 1:4860 dilution. Notably, rabbit anti-TriMV IgG and anti-TriMV IgG-alkaline phosphatase conjugate reacted positively with native virions in crude sap in a double antibody sandwich-ELISA, suggesting that these antibodies can be used as coating antibodies which is crucial for any 'sandwich' type of assays. Finally, the recombinant antibodies reacted positively in ELISA with representative TriMV isolates collected from fields, suggesting that antibodies generated against rCP can be used for sensitive, large-scale, and broad-spectrum detection of TriMV.

  17. Mosaic-like structure of penicillin-binding protein 2 Gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime.

    Science.gov (United States)

    Ameyama, Satoshi; Onodera, Shoichi; Takahata, Masahiro; Minami, Shinzaburo; Maki, Nobuko; Endo, Katsuhisa; Goto, Hirokazu; Suzuki, Hiroo; Oishi, Yukihiko

    2002-12-01

    Neisseria gonorrhoeae strains with reduced susceptibility to cefixime (MICs, 0.25 to 0.5 micro g/ml) were isolated from male urethritis patients in Tokyo, Japan, in 2000 and 2001. The resistance to cephems including cefixime and penicillin was transferred to a susceptible recipient, N. gonorrhoeae ATCC 19424, by transformation of the penicillin-binding protein 2 gene (penA) that had been amplified by PCR from a strain with reduced susceptibility to cefixime (MIC, 0.5 micro g/ml). The sequences of penA in the strains with reduced susceptibilities to cefixime were different from those of other susceptible isolates and did not correspond to the reported N. gonorrhoeae penA gene sequences. Some regions in the transpeptidase-encoding domain in this penA gene were similar to those in the penA genes of Neisseria perflava (N. sicca), Neisseria cinerea, Neisseria flavescens, and Neisseria meningitidis. These results showed that a mosaic-like structure in the penA gene conferred reductions in the levels of susceptibility of N. gonorrhoeae to cephems and penicillin in a manner similar to that found for N. meningitidis and Streptococcus pneumoniae.

  18. Infectious RNA transcripts derived from cloned cDNA of papaya mosaic virus: effect of mutations to the capsid and polymerase proteins.

    Science.gov (United States)

    Sit, T L; AbouHaidar, M G

    1993-06-01

    Genomic length cDNAs of papaya mosaic virus (PMV) RNA were generated utilizing reverse transcriptase (RNase H-) for first strand synthesis, Sequenase for second strand synthesis and primers specific for the 5' and 3' termini of the viral genome. These cDNAs were cloned into plasmid pUC18 and infectious RNA transcripts were synthesized in vitro from a bacteriophage T7 RNA polymerase promoter incorporated into the 5' specific primer. The infectivity of transcripts was 16% that of native PMV RNA. Increasing the poly(A) tail length from A24 to A71 produced a 43% increase in infectivity. Transcripts synthesized with or without an m7GpppG cap structure were biologically active although uncapped transcripts were much less infectious. The addition of up to 2434 non-viral nucleotides at the 3' end of transcripts decreased but did not abolish infectivity. Insertions of two amino acid residues within the polymerase coding region inactivated viral transcripts. A single amino acid deletion within the capsid protein (CP) produced local lesions of a reduced size as compared to native PMV RNA. Viral particles could not be observed in crude extracts from lesions produced by this deletion mutant suggesting that it exists as a naked RNA species within the host. Mutations to the CP suggest that it is required not only for viral assembly but also for some other unidentified function(s) during the replication cycle.

  19. [Sequence analysis of the coat protein gene of Chinese soybean mosaic virus strain SC7 and comparison with those of SMV strains from the USA].

    Science.gov (United States)

    Cai, Chun-Mei; Jiang, Xiao; Zhao, Chun-Mei; Ma, Jian-Xin

    2014-09-01

    To unveil genetic variations between the predominant soybean mosaic virus (SMV) strains in China and in the USA, as well as to reveal the potential relevance between the similarity of gene sequences and the virulence of the viruses, we isolated and sequenced the coat protein (CP) gene of Chinese SMV strain SC7 by RT-PCR and compared the SC7 sequence with those of SMV strains from the USA. Analysis is showed that the CP gene of SC7 was 795 nucleotides in length and encoded 265 in amino acids'. The CP gene of SC7 and those of the strains from the USA exhibited 4%-5% nucleotide diversity and 1%-2% diversity amino acids. The conserved amino-acid sequence associated with aphid spread in the USA strains was DAG, and corresponded to DAD in SC7. The virulence of SC7 was greater than that of the SMV strains from the USA. Nevertheless, no clear relationships between sequence similarity of the CP genes from different strains and their virulence on differential hosts were found.

  20. A single amino acid at N-terminal region of the 2b protein of cucumber mosaic virus strain m1 has a pivotal role in virus attenuation.

    Science.gov (United States)

    Maneechoat, Phoowanarth; Takeshita, Minoru; Uenoyama, Misa; Nakatsukasa, Maki; Kuroda, Atsuko; Furuya, Naruto; Tsuchiya, Kenichi

    2015-02-02

    Host responses to infection by a mild strain of cucumber mosaic virus, termed CMV-m1, were re-examined in several plant species in comparison with those by a severe strain CMV-Y. Mild systemic symptoms were developed on the six plant species inoculated with CMV-m1. Virus titer in the Nicotiana benthamiana plants infected with CMV-m1 was significantly lower than those infected with CMV-Y, although infection by CMV-m1 interfered with further infection by CMV-Y in the plants. Subsequently, the attenuated virulence of CMV-m1 was analyzed by reassortment and recombination analyses between CMV-m1 and CMV-Y RNAs. The results suggested that the 2b protein of CMV-m1 (m1-2b) is involved in the formation of mild symptoms in N. benthamiana. Furthermore, site-directed mutagenesis demonstrated that Thr18 of m1-2b is responsible for formation of mild symptoms. Local RNA silencing suppressor activity of m1-2b was a little lower than that of severe strain CMV-Y. We discuss the relationship between attenuation of CMV-m1 and the features of m1-2b.

  1. Serological and molecular detection of an isolate of Cucumber Mosaic Virus (CMV infecting cucumber (Cucumis sativus and cloning of its coat protein gene

    Directory of Open Access Journals (Sweden)

    Prashant Shetti

    2012-08-01

    Full Text Available Cucumber mosaic virus (CMV is a widely prevalent plant virus infecting important vegetable, plantation and flower crops. Methods for early detection of viruses in plants and vectors transmitting them play a critical role in plant virus disease management. Direct plate and Dot- Enzyme Linked Immunosorbent Assay (ELISA was standardized for detection of CMV. Optimum OD of 1.249 (1.9 ng/μl and 1.242 (1.52 ng/μl was observed in 1:20 and 1:50 dilution of crude and ultrapurified antigen respectively, at a dilution of 1:1000 of both primary and secondary antibody. Polymerase Chain Reaction (PCR using CMV coat protein (CMV CP gene specific primers amplified a 657 base pair (bp fragment, which was then  cloned in pTZ57R/T cloning vector and positive clones were identified by band shift assay and colony PCR. This will aid in developing field diagnostic kits for detection of CMV in different crops and also in developing transgenics with the CP gene. 

  2. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells.

    Science.gov (United States)

    Knipper, M; Zimmermann, U; Köpschall, I; Rohbock, K; Jüngling, S; Zenner, H P

    1995-06-01

    By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.

  3. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum.

    Science.gov (United States)

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions.

  4. Prioritization of candidate genes for cattle reproductive traits, based on protein-protein interactions, gene expression, and text-mining

    DEFF Research Database (Denmark)

    Hulsegge, Ina; Woelders, Henri; Smits, Mari;

    2013-01-01

    and processes in brain areas and pituitary involved in reproductive traits in cattle using information derived from three different data sources: gene expression, protein-protein interactions, and literature. We identified 59, 89, 53, 23, and 71 genes in bovine amygdala, dorsal hypothalamus, hippocampus...

  5. A New Approach for Designing a Potentially Vaccine Candidate against Urinary Tract Infection by Using Protein Display on Lactobacillus

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2015-10-01

    Full Text Available Background: The prevalence of Urinary Tract Infection (UTI is really high in the world. Escherichia coli is a major agent of UTI. One of the strategies for decreasing UTI infections is vaccine development. As the attachment is a really important stage in colonization and infection, at- tachment inhibition has an applied strategy.  FimH protein is a major factor during bacterial colonization in urinary tract and could be used as a vaccine. Thus, it was considered in this research as a candidate anti- gen.Methods: The sequences of fimH and acmA genes were used for de- signing a synthetic gene. It was cloned to pET23a expression vector and transformed  to E. coli (DE3 Origami.  To confirm the expression  of recombinant  protein,  SDS-PAGE  and western  blotting  methods  were used.  Subsequently,  recombinant  protein  was  purified.  On  the  other hand, Lactobacillus reuteri was cultured and mixed with FimH / AcmA recombinant  protein. The rate of protein localization  on lactobacillus surface was assessed using ELISA method.Results: It was showed that the recombinant protein was expressed inE. coli (DE3 Origami and purified by affinity chromatography. More- over, this protein could be localized on lactobacillus surface by 5 days. Conclusion:  In current study,  a fusion recombinant  protein was pre- pared and displayed on L. reuteri surface. This strain could be used for animal  experiment  as  a  competitor  against  Uropathogenic   E.  coli (UPEC. Using manipulated probiotics strains instead of antibiotic ther- apy could decrease the antibiotic consumption  and reduce multi-drug resistant strains.

  6. Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen.

    Science.gov (United States)

    Arumugam, Thangavelu U; Takeo, Satoru; Yamasaki, Tsutomu; Thonkukiatkul, Amporn; Miura, Kazutoyo; Otsuki, Hitoshi; Zhou, Hong; Long, Carole A; Sattabongkot, Jetsumon; Thompson, Jennifer; Wilson, Danny W; Beeson, James G; Healer, Julie; Crabb, Brendan S; Cowman, Alan F; Torii, Motomi; Tsuboi, Takafumi

    2011-11-01

    One of the solutions for reducing the global mortality and morbidity due to malaria is multivalent vaccines comprising antigens of several life cycle stages of the malarial parasite. Hence, there is a need for supplementing the current set of malaria vaccine candidate antigens. Here, we aimed to characterize glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (GAMA) encoded by the PF08_0008 gene in Plasmodium falciparum. Antibodies were raised against recombinant GAMA synthesized by using a wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that GAMA is a microneme protein of the merozoite. Erythrocyte binding assays revealed that GAMA possesses an erythrocyte binding epitope in the C-terminal region and it binds a nonsialylated protein receptor on human erythrocytes. Growth inhibition assays revealed that anti-GAMA antibodies can inhibit P. falciparum invasion in a dose-dependent manner and GAMA plays a role in the sialic acid (SA)-independent invasion pathway. Anti-GAMA antibodies in combination with anti-erythrocyte binding antigen 175 exhibited a significantly higher level of invasion inhibition, supporting the rationale that targeting of both SA-dependent and SA-independent ligands/pathways is better than targeting either of them alone. Human sera collected from areas of malaria endemicity in Mali and Thailand recognized GAMA. Since GAMA in P. falciparum is refractory to gene knockout attempts, it is essential to parasite invasion. Overall, our study indicates that GAMA is a novel blood-stage vaccine candidate antigen.

  7. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing.

    Science.gov (United States)

    Kola, Vijaya Sudhakara Rao; Renuka, P; Madhav, Maganti Sheshu; Mangrauthia, Satendra K

    2015-01-01

    RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21-24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.

  8. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2009-03-01

    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  9. Role of intron-mediated enhancement on accumulation of an Arabidopsis NB-LRR class R-protein that confers resistance to Cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Yukiyo Sato

    Full Text Available The accumulation of RCY1 protein, which is encoded by RESISTANCE TO CMV(Y (RCY1, a CC-NB-LRR class R-gene, is tightly correlated with the strength of the resistance to a yellow strain of Cucumber mosaic virus [CMV(Y] in Arabidopsis thaliana. In order to enhance resistance to CMV by overexpression of RCY1, A. thaliana was transformed with intron-less RCY1 cDNA construct under the control of strong CaMV35S promoter. Remarkably, a relative amount of RCY1 protein accumulation in the transformants was much lower than that in plants expressing genomic RCY1 under the control of its native promoter. To identify a regulatory element of RCY1 that could cause such differential levels of RCY1 accumulation, a series of RCY1 cDNA and genomic RCY1 constructs were transiently expressed in Nicotiana benthamiana leaves by the Agrobacterium-mediated infiltration method. Comparative analysis of the level of RCY1 accumulation in the leaf tissues transiently expressing each construct indicated that the intron located in the RCY1-coding region of genomic RCY1, but not the native RCY1 genomic promoter or the 5'-and 3'-untranslated regions of RCY1, was indispensable for high level RCY1 accumulation. The increased levels of RCY1 accelerated plant disease defense reactions. Interestingly, such intron-mediated enhancement of RCY1 accumulation depended neither on the abundance of the RCY1 transcript nor on the RCY1 specific-intron sequence. Taken together, intron-mediated RCY1 expression seems to play a key role in the expression of complete resistance to CMV(Y by maintaining RCY1 accumulation at high levels.

  10. Pairwise protein expression classifier for candidate biomarker discovery for early detection of human disease prognosis

    Directory of Open Access Journals (Sweden)

    Kaur Parminder

    2012-08-01

    Full Text Available Abstract Background An approach to molecular classification based on the comparative expression of protein pairs is presented. The method overcomes some of the present limitations in using peptide intensity data for class prediction for problems such as the detection of a disease, disease prognosis, or for predicting treatment response. Data analysis is particularly challenging in these situations due to sample size (typically tens being much smaller than the large number of peptides (typically thousands. Methods based upon high dimensional statistical models, machine learning or other complex classifiers generate decisions which may be very accurate but can be complex and difficult to interpret in simple or biologically meaningful terms. A classification scheme, called ProtPair, is presented that generates simple decision rules leading to accurate classification which is based on measurement of very few proteins and requires only relative expression values, providing specific targeted hypotheses suitable for straightforward validation. Results ProtPair has been tested against clinical data from 21 patients following a bone marrow transplant, 13 of which progress to idiopathic pneumonia syndrome (IPS. The approach combines multiple peptide pairs originating from the same set of proteins, with each unique peptide pair providing an independent measure of discriminatory power. The prediction rate of the ProtPair for IPS study as measured by leave-one-out CV is 69.1%, which can be very beneficial for clinical diagnosis as it may flag patients in need of closer monitoring. The “top ranked” proteins provided by ProtPair are known to be associated with the biological processes and pathways intimately associated with known IPS biology based on mouse models. Conclusions An approach to biomarker discovery, called ProtPair, is presented. ProtPair is based on the differential expression of pairs of peptides and the associated proteins. Using mass

  11. EspA-Intimin chimeric protein, a candidate vaccine against Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Hamid Sedighian Rad

    2013-09-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 is an important enteric pathogen in human causing bloody or nonbloody diarrhea, which may be complicated by hemolytic uremic syndrome (HUS. Cattle are an important reservoir of EHEC. This research aims at vaccination with a divalent chimer protein composed of EspA120 and Intimin 282 and its preventive effect of EHEC O157 colonization in mice rectal epithelium.A divalent recombinant EspA-Intimin (EI protein containing EspA120 and Intimin280 attached with a linker was amplified from a trivalent construct and cloned in pET-28a (+ vector. The immunization was conducted in mice after expression and purification of the recombinant EI (rEI.Mice subcutaneously immunized with rEI, elicited significant rEI specific serum IgG antibodies and showed significantly decreased E.coli O157:H7 shedding compared to the control group.The chimeric recombinant protein induced strong humoral response as well as protection against oral challenges with live E.coli O157:H7.

  12. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  13. [Influence of bean yellow mosaic virus on metabolism of photosynthetic pigments, proteins and carbohydrates in Glycine soja L].

    Science.gov (United States)

    Kyrychenko, A M

    2014-01-01

    This paper presents data on BYMV effects on some physiological processes of Glycine soja L. cultivated in the right-bank forest-steppe regions. Pigment content (chlorophyll a, b and carotenoids), soluble proteins and water soluble carbohydrates were estimated and, as has been shown, are subjected to significant changes as compared with control plants, namely: a decrease in the content of chlorophyll a, b and carotenoids was 64%, 53% and 36% compared with the control plants. The significant increase in carbohydrates (56% compared to the control) was observed at the end of the test period.

  14. Improving low-level plasma protein mass spectrometry-based detection for candidate biomarker discovery and validation

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.; Kelly, Ryan T.; Camp, David G.; Smith, Richard D.

    2008-09-01

    Methods. To improve the detection of low abundance protein candidate biomarker discovery and validation, particularly in complex biological fluids such as blood plasma, increased sensitivity is desired using mass spectrometry (MS)-based instrumentation. A key current limitation on the sensitivity of electrospray ionization (ESI) MS is due to the fact that many sample molecules in solution are never ionized, and the vast majority of the ions that are created are lost during transmission from atmospheric pressure to the low pressure region of the mass analyzer. Two key technologies, multi-nanoelectrospray emitters and the electrodynamic ion funnel have recently been developed and refined at Pacific Northwest National Laboratory (PNNL) to greatly improve the ionization and transmission efficiency of ESI MS based analyses. Multi-emitter based ESI enables the flow from a single source (typically a liquid chromatography [LC] column) to be divided among an array of emitters (Figure 1). The flow rate delivered to each emitter is thus reduced, allowing the well-documented benefits of nanoelectrospray 1 for both sensitivity and quantitation to be realized for higher flow rate separations. To complement the increased ionization efficiency afforded by multi-ESI, tandem electrodynamic ion funnels have also been developed at PNNL, and shown to greatly improve ion transmission efficiency in the ion source interface.2, 3 These technologies have been integrated into a triple quadrupole mass spectrometer for multiple reaction monitoring (MRM) of probable biomarker candidates in blood plasma and show promise for the identification of new species even at low level concentrations.

  15. Polyclonal antibody against the DPV UL46M protein can be a diagnostic candidate

    Directory of Open Access Journals (Sweden)

    Jia Renyong

    2010-04-01

    Full Text Available Abstract Background The duck plague virus (DPV UL46 protein (VP11/12 is a 739-amino acid tegument protein encoded by the UL46 gene. We analyzed the amino acid sequence of UL46 using bioinformatics tools and defined the main antigenic domains to be between nucleotides 700-2,220 in the UL46 sequence. This region was designated UL46M. The DPV UL46 and UL46M genes were both expressed in Escherichia coli Rosetta (DE3 induced by isopropy1-β-D-thiogalactopyranoside (IPTG following polymerase chain reaction (PCR amplification and subcloning into the prokaryotic expression vector pET32a(+. The recombinant proteins were purified using a Ni-NTA spin column and used to generate the polyclonal antibody against UL46 and UL46M in New Zealand white rabbits. The titer was then tested using enzyme-linked immunosorbent assay (ELISA and agar diffusion reaction, and the specificity was tested by western blot analysis. Subsequently, we established Dot-ELISA using the polyclonal antibody and applied it to DPV detection. Results In our study, the DPV UL46M fusion protein, with a relative molecular mass of 79 kDa, was expressed in E. coli Rosetta (DE3. Expression of the full UL46 gene failed, which was consistent with the results from the bioinformatic analysis. The expressed product was directly purified using Ni-NTA spin column to prepare the polyclonal antibody against UL46M. The titer of the anti-UL46M antisera was over 1:819,200 as determined by ELISA and 1:8 by agar diffusion reaction. Dot-ELISA was used to detect DPV using a 1:60 dilution of anti-UL46M IgG and a 1:5,000 dilution of horseradish peroxidase (HRP-labeled goat anti-rabbit IgG. Conclusions The anti-UL46M polyclonal antibody reported here specifically identifies DPV, and therefore, it is a promising diagnostic tool for DPV detection in animals. UL46M and the anti-UL46M antibody can be used for further clinical examination and research of DPV.

  16. Four sequence positions of the movement protein of Cucumber mosaic virus determine the virulence against cmv1-mediated resistance in melon.

    Science.gov (United States)

    Guiu-Aragonés, Cèlia; Díaz-Pendón, Juan Antonio; Martín-Hernández, Ana Montserrat

    2015-09-01

    The resistance to a set of strains of Cucumber mosaic virus (CMV) in the melon accession PI 161375, cultivar 'Songwhan Charmi', is dependent on one recessive gene, cmv1, which confers total resistance, whereas a second set of strains is able to overcome it. We tested 11 strains of CMV subgroups I and II in the melon line SC12-1-99, which carries the gene cmv1, and showed that this gene confers resistance to strains of subgroup II only and that restriction is not related to either viral replication or cell-to-cell movement. This is the first time that a resistant trait has been correlated with CMV subgroups. Using infectious clones of the CMV strains LS (subgroup II) and FNY (subgroup I), we generated rearrangements and viral chimaeras between both strains and established that the determinant of virulence against the gene cmv1 resides in the first 209 amino acids of the movement protein, as this region from FNY is sufficient to confer virulence to the LS clone in the line SC12-1-99. A comparison of the sequences of the strains of both subgroups in this region shows that there are five main positions shared by all strains of subgroup II, which are different from those of subgroup I. Site-directed mutagenesis of the CMV-LS clone to substitute these residues for those of CMV-FNY revealed that a combination of four of these changes [the group 64-68 (SNNLL to HGRIA), and the point mutations R81C, G171T and A195I] was required for a complete gain of function of the LS MP in the resistant melon plant.

  17. Recombinant 35-kDa inclusion membrane protein IncA as a candidate antigen for serodiagnosis of Chlamydophila pecorum.

    Science.gov (United States)

    Mohamad, Khalil Yousef; Rekiki, Abdessalem; Berri, Mustapha; Rodolakis, Annie

    2010-07-14

    Chlamydophila pecorum strains are commonly found in the intestine and vaginal mucus of asymptomatic ruminants and may therefore induce a positive serological response when the animals are tested for C. abortus. They have also been associated with different pathological diseases in ruminants, swine and koala. The aim of this study was to identify specific C. pecorum immunodominant antigens which could be used in ELISA tests allowing to distinguish between animals infected with C. pecorum and those infected with other chlamydial species. A gene encoding 35-kDa inclusion membrane protein incA of C. pecorum was isolated by immunoscreening of the C. pecorum DNA library using ovine anti-C. pecorum antibodies. The recombinant IncA protein did not react with a murine serum directed against C. abortus but did react with a specific monoclonal antibody of C. pecorum and toward several ovine serum samples obtained after experimental infection with different C. pecorum strains. This protein could be a good candidate for specific diagnosis of C. pecorum infection.

  18. Plant-based production of recombinant Plasmodium surface protein pf38 and evaluation of its potential as a vaccine candidate.

    Science.gov (United States)

    Feller, Tatjana; Thom, Pascal; Koch, Natalie; Spiegel, Holger; Addai-Mensah, Otchere; Fischer, Rainer; Reimann, Andreas; Pradel, Gabriele; Fendel, Rolf; Schillberg, Stefan; Scheuermayer, Matthias; Schinkel, Helga

    2013-01-01

    Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and MSP119. Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1∶11.000 and 1∶39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using αPf38 antibodies demonstrated strong inhibition (≥60%) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by αPf38 antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine.

  19. Plant-based production of recombinant Plasmodium surface protein pf38 and evaluation of its potential as a vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Tatjana Feller

    Full Text Available Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38 using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and MSP119. Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1∶11.000 and 1∶39.000, respectively. In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using αPf38 antibodies demonstrated strong inhibition (≥60% of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by αPf38 antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine.

  20. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder;

    2010-01-01

    will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...... their Ph-chromosome status. Interestingly, we found that the CML CD34(+)CD38(-)IL1RAP(+) cells were Ph(+), whereas CML CD34(+)CD38(-)IL1RAP(-) cells were almost exclusively Ph(-). By performing long-term culture-initiating cell assays on the two cell populations, we found that Ph(+) and Ph(-) candidate CML...

  1. A curated census of autophagy-modulating proteins and small molecules: candidate targets for cancer therapy.

    Science.gov (United States)

    Lorenzi, Philip L; Claerhout, Sofie; Mills, Gordon B; Weinstein, John N

    2014-07-01

    Autophagy, a programmed process in which cell contents are delivered to lysosomes for degradation, appears to have both tumor-suppressive and tumor-promoting functions; both stimulation and inhibition of autophagy have been reported to induce cancer cell death, and particular genes and proteins have been associated both positively and negatively with autophagy. To provide a basis for incisive analysis of those complexities and ambiguities and to guide development of new autophagy-targeted treatments for cancer, we have compiled a comprehensive, curated inventory of autophagy modulators by integrating information from published siRNA screens, multiple pathway analysis algorithms, and extensive, manually curated text-mining of the literature. The resulting inventory includes 739 proteins and 385 chemicals (including drugs, small molecules, and metabolites). Because autophagy is still at an early stage of investigation, we provide extensive analysis of our sources of information and their complex relationships with each other. We conclude with a discussion of novel strategies that could potentially be used to target autophagy for cancer therapy.

  2. Simultaneous mutations in multi-viral proteins are required for soybean mosaic virus to gain virulence on soybean genotypes carrying different R genes.

    Directory of Open Access Journals (Sweden)

    R V Chowda-Reddy

    Full Text Available BACKGROUND: Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. METHODOLOGY/PRINCIPAL FINDINGS: To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1, L-29 (Rsv3, V94-5152 (Rsv4 and Williams 82 (rsv. It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. CONCLUSIONS/SIGNIFICANCE: Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV.

  3. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach.

    Directory of Open Access Journals (Sweden)

    Gabriel Gomez

    Full Text Available Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.

  4. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach.

    Science.gov (United States)

    Gomez, Gabriel; Pei, Jianwu; Mwangi, Waithaka; Adams, L Garry; Rice-Ficht, Allison; Ficht, Thomas A

    2013-01-01

    Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.

  5. Immunogenicity of a polyvalent HIV-1 candidate vaccine based on fourteen wild type gp120 proteins in golden hamsters

    Directory of Open Access Journals (Sweden)

    Ghorbani Masoud

    2006-10-01

    Full Text Available Abstract Background One of the major obstacles in the design of an effective vaccine against HIV-1 is the hypervariability of the HIV-1 envelope glycoprotein. Most HIV-1 vaccine candidates have utilized envelope glycoprotein from a single virus isolate, but to date, none of them elicited broadly reactive humoral immunity. Herein, we hypothesised that a cocktail of HIV-1 gp120 proteins containing multiple epitopes may increase the breadth of immune responses against HIV-1. We compared and evaluated the immunogenicity of HIV-1 vaccines containing either gp120 protein alone or in combinations of four or fourteen gp120s from different primary HIV-1 isolates in immunized hamsters. Results We amplified and characterized 14 different gp120s from primary subtype B isolates with both syncytium and non-syncytium inducing properties, and expressed the proteins in Chinese Hamster Ovary (CHO cell lines. Purified proteins were used either alone or in combinations of four or fourteen different gp120s to vaccinate golden hamsters. The polyvalent vaccine showed higher antibody titers to HIV-1 subtype B isolates MN and SF162 compared to the groups that received one or four gp120 proteins. However, the polyvalent vaccine was not able to show higher neutralizing antibody responses against HIV-1 primary isolates. Interestingly, the polyvalent vaccine group had the highest proliferative immune responses and showed a substantial proportion of cross-subtype CD4 reactivity to HIV-1 subtypes B, C, and A/E Conclusion Although the polyvalent approach achieved only a modest increase in the breadth of humoral and cellular immunity, the qualitative change in the vaccine (14 vs. 1 gp120 resulted in a quantitative improvement in vaccine-induced immunity.

  6. Identification a coat protein region of cucumber mosaic virus (CMV) essential for long-distance movement in cucumber.

    Science.gov (United States)

    Salánki, Katalin; Kiss, László; Gellért, Akos; Balázs, Ervin

    2011-12-01

    To characterise the long-distance movement determinant of cucumoviral coat proteins (CPs), five mutants were engineered into the CMV CP bearing the corresponding tomato aspermy virus (TAV) loops exposed on the surface of the virion. Both viruses can move long-distance in Nicotiana clevelandii, but only CMV can move long-distance in cucumber. Investigation of the CMV chimeras identified three amino acids of the βB-βC loop that were essential for the CMV long-distance movement in cucumber. Introducing these mutations into the TAV CP was not sufficient for long-distance movement, indicating that this is not the sole region causing long-distance movement deficiency.

  7. Chromosomal mosaicism goes global

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2008-11-01

    Full Text Available Intercellular differences of chromosomal content in the same individual are defined as chromosomal mosaicism (alias intercellular or somatic genomic variations or, in a number of publications, mosaic aneuploidy. It has long been suggested that this phenomenon poorly contributes both to intercellular (interindividual diversity and to human disease. However, our views have recently become to change due to a series of communications demonstrated a higher incidence of chromosomal mosaicism in diseased individuals (major psychiatric disorders and autoimmune diseases as well as depicted chromosomal mosaicism contribution to genetic diversity, the central nervous system development, and aging. The later has been produced by significant achievements in the field of molecular cytogenetics. Recently, Molecular Cytogenetics has published an article by Maj Hulten and colleagues that has provided evidences for chromosomal mosaicism to underlie formation of germline aneuploidy in human female gametes using trisomy 21 (Down syndrome as a model. Since meiotic aneuploidy is suggested to be the leading genetic cause of human prenatal mortality and postnatal morbidity, these data together with previous findings define chromosomal mosaicism not as a casual finding during cytogenetic analyses but as a more significant biological phenomenon than previously recognized. Finally, the significance of chromosomal mosaicism can be drawn from the fact, that this phenomenon is involved in genetic diversity, normal and abnormal prenatal development, human diseases, aging, and meiotic aneuploidy, the intrinsic cause of which remains, as yet, unknown.

  8. Ribosomal protein S27-like in colorectal cancer: a candidate for predicting prognoses.

    Directory of Open Access Journals (Sweden)

    Chi-Jung Huang

    Full Text Available BACKGROUND: The development and progression of colorectal cancer (CRC involve a complex process of multiple genetic changes. Tumor suppressor p53 is capable of determining the fate of CRC cells. However, the role of a p53-inducible modulator, ribosomal protein S27-like (RPS27L, in CRC is unknown. METHODS: Here, the differential expression of RPS27L was examined in the feces and colonic tissues of CRC patients, to explore its possible correlation with patient survival and to investigate the cellular mechanisms underlying their clinical outcomes. Eighty intermediate-stage CRC patients (42 at stage II and 38 at stage III were divided into two groups according to their fecal RPS27L mRNA levels. The survival probabilities of the groups were estimated using the Kaplan-Meier method. The RPS27L protein in the colonic tissues of stage III patients with different prognoses was further examined immunohistochemically. RPS27L expression in LoVo cells was manipulated to examine the possible cellular responses in vitro. RESULTS: Elevated RPS27L expression, in either feces or tissues, was related to a better prognosis. In vitro, RPS27L-expressing LoVo cells ceased DNA synthesis and apoptotic activity while the expression of their DNA repair molecules was upregulated. CONCLUSIONS: Elevated RPS27L may improve the prognoses of certain CRC patients by enhancing the DNA repair capacity of their colonic cells, and can be determined in feces. By integrating clinical, molecular, and cellular data, our study demonstrates that fecal RPS27L may be a useful index for predicting prognoses and guiding personalized therapeutic strategies, especially in patients with intermediate-stage CRC.

  9. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  10. The fragile X phenotype in a mosaic male with a deletion showing expression of the FMR1 protein in 28% of the cells

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, E. de; Vries, B.B.A. de; Willemsen, R. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1996-08-09

    The instability of the CGG repeat region of FMR1 is not restricted to the CGG repeat but expands to flanking sequences as well. A mosaic fragile X male is reported with a deletion of part of the CGG repeat and 30 bp immediately 3{prime} of the repeat, thus confirming the presence of a hotspot for deletions in the CGG region of FMR1. The deletion, detected in 28% of his lymphocytes, did not impair the transcription and translation of FMR1, suggesting that regulatory elements are not present in the deleted region. The patient has the characteristic fragile X phenotype and assuming that the mosaic pattern detected in the lymphocytes reflects the mosaic pattern in brain, 28% expression of FMRP may not be sufficient for normal cognitive functioning. 43 refs., 3 figs.

  11. [Transgenic tobacco plants with ribosome inactivating protein gene cassin from Cassia occidentalis and their resistance to tobacco mosaic virus].

    Science.gov (United States)

    Ruan, Xiao-Lei; Liu, Li-Fang; Li, Hua-Ping

    2007-12-01

    Cassin, the new gene of ribosome-inactivating protein (RIP) isolated from Cassia occidentalis, was inserted into expression vector pBI121 to produce plant expression vector pBI121-cassin (Figs.1, 2). pBI121-cassin was introduced into tobacco cultivar 'K326' by the Agrobacteriurm tumefaciens transformation method and more than 100 independent transformants were obtained. Southern blot hybridization analysis showed that a single gene locus was inserted into the chromosome of the transgenic tobacco lines (Fig.5) and PCR analysis of segregation population of progeny indicated that the inheritance of transgene was dominant in transgenic lines (Fig.4, Table 1). Results of RT-PCR and Northern blot hybridization analysis showed that transgene could be transcribed correctly (Figs.5, 6) . Three self-pollination lines of transgenic T(1) and T(2) were challenged with TMV at different concentration titers by mechanical inoculation. The transgenic lines exhibited different levels of resistance to TMV with the nontransgenic plants. After both titers of TMV concentration were inoculated, transgenic lines were considered as the highly resistant type with a delay of 4-13 d in development of symptoms and 10%-25% of test plants were infected, while nontransgenic control plants were susceptible typical symptoms on the newly emerged leaves (Table 2). One T(2) line, T(2)-8-2-1, was regarded as an immune type because it did not show any symptoms during 70 d and all plants were shown to be virus free by ELISA tests.

  12. Linkage between stature and a region on chromosome 20 and analysis of a candidate gene, bone morphogenetic protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.B.; Ossowski, V.; Janssen, R.C.; Knowler, W.C.; Bogardus, C. [National Inst. of Health, Phoenix, AZ (United States)

    1995-12-04

    Sib-pair linkage analysis of the quantitative trait, stature, in over 500 Pima Indians indicates that a genetic determinant of governing stature is located on chromosome 20. Analysis of 10 short tandem repeat polymorphisms localized this linkage to a 3. cM region that includes D20S98 and D20S66. Using all possible sib-pair combinations, linkage was detected to both stature (P = 0.0001) and to leg length (P = 0.001), but not to sitting height. Single-strand conformational polymorphism analysis of exon 3 of the bone morphogenetic protein 2 (BMP2) gene, a candidate gene in this region, in genomic DNA of 20 of the tallest and 20 of the shortest individuals did not show any consistent differences associated with leg length or height. Sequence analysis of the region encoding the mature protein revealed a single nucleotide substitution, a T to G transversion, not detected by single-strand conformational polymorphism (SSCP) analysis. This transversion results in a conservative amino acid substitution of glycine for valine at codon 80 of BMP2. The frequency of this allele was 0.23 in the sample. No significant differences in height were noted in persons carrying either allele. This indicates that this structural alteration in the mature BMP2 protein does not contribute to the differences in stature observed in the Pima Indians, nor is this structural change in the mature protein likely to be responsible for the linkage observed with stature on chromosome 20. 33 refs., 2 figs., 2 tabs.

  13. Diffraction studies of papaya mosaic virus.

    Science.gov (United States)

    Tollin, P; Bancroft, J B; Richardson, J F; Payne, N C; Beveridge, T J

    1979-10-15

    X-ray and optical diffraction studies of the flexuous papaya mosaic virus are described. The virus is constructed so that there are 35 coat protein subunits in 4 turns of the helix. The virus contains about 1410 protein subunits and 6800 nucleotides and has a molecular weight of about 33 x 10(6). The structure of tubes assembled in vitro from coat protein both in the presence and absence of nucleic acid resembles that of the native virus.

  14. Disulfide isomerase-like protein AtPDIL1–2 is a good candidate for trichlorophenol phytodetoxification

    Science.gov (United States)

    Peng, Ri-He; Qiu, Jin; Tian, Yong-Sheng; Gao, Jian-jie; Han, Hong-juan; Fu, Xiao-Yan; Zhu, Bo; Xu, Jing; Wang, Bo; Li, Zhen-jun; Wang, Li-juan; Yao, Quan-Hong

    2017-01-01

    Trichlorophenol (TCP) is a widely used and persistent environmentally toxic compound that poses a carcinogenic risk to humans. Phytoremediation is a proficient cleanup technology for organic pollutants. In this study, we found that the disulfide isomerase-like protein AtPDIL1–2 in plants is a good candidate for enhancing 2,4,6-TCP phytoremediation. The expression of AtPDIL1-2 in Arabidopsis was induced by 2,4,6-TCP. The heterologously expressed AtPDIL1-2 in Escherichia coli exhibited both oxidase and isomerase activities as protein disulfide isomerase and improved bacteria tolerance to 2,4,6-TCP. Further research revealed that transgenic tobacco overexpressing AtPDIL1-2 was more tolerant to high concentrations of 2,4,6-TCP and removed the toxic compound at far greater rates than the control plants. To elucidate the mechanism of action of AtPDIL1-2, we investigated the chemical interaction of AtPDIL1-2 with 2,4,6-TCP for the first time. HPLC analysis implied that AtPDIL1-2 exerts a TCP-binding activity. A suitable configuration of AtPDIL1-2-TCP binding was obtained by molecular docking studies using the AutoDock program. It predicted that the TCP binding site is located in the b-b′ domain of AtPDIL1-2 and that His254 of the protein is critical for the binding interaction. These findings imply that AtPDIL1-2 can be used for TCP detoxification by the way of overexpression in plants. PMID:28059139

  15. Purification, properties, and diagnosis of banana bract mosaic potyvirus and its distinction from abaca mosaic potyvirus.

    Science.gov (United States)

    Thomas, J E; Geering, A D; Gambley, C F; Kessling, A F; White, M

    1997-07-01

    ABSTRACT Using biochemical, serological, and cytopathological evidence, we have confirmed that banana bract mosaic virus (BBrMV) is a distinct member of the family Potyviridae. Virions of a Philippine isolate of BBrMV were purified from field-infected banana cv. Cardaba. Particles were approximately 725-nm long, banded at a density equivalent to 1.29 to 1.31 g/ml in cesium chloride equilibrium gradients, and had an A(260/280) of 1.17. Yields of about 4 mg/kg were obtained from fresh or frozen leaf midrib or lamina tissue. Three major protein species with sizes of 31, 37, and 39 kDa were resolved from dissociated virions, and all reacted specifically with polyclonal antibodies to BBrMV. Infected leaf cells contained typical pinwheel inclusions. Virus-specific cDNA was amplified from field samples by reverse transcription-polymerase chain reaction (RT-PCR) assay using potyvirus degenerate primers. In plate-trapped antigen-enzyme-linked immunosorbent assay (ELISA), weak serological relationships were demonstrated between BBrMV and other members of the family Potyviridae, including abaca mosaic (AbaMV), dasheen mosaic, maize dwarf mosaic, sorghum mosaic, sugarcane mosaic, and wheat streak mosaic viruses. Despite similarities in the symptoms caused by the two viruses, AbaMV was serologically distinct from BBrMV and reacted only weakly, or not at all, with BBrMV antibodies in double-antibody sandwich (DAS)-ELISA. No cross reactions were observed when RT-PCR products from the two viruses were examined by Southern blot hybridization using BBrMV- and AbaMV-specific digoxigenin-labeled DNA probes. BBrMV was consistently associated with banana bract mosaic disease, as assessed by DAS-ELISA and Southern blot hybridization using DNA probes. The known geographical distribution of BBrMV was extended to include India (Kokkan disease) and Sri Lanka.

  16. A HECT ubiquitin-protein ligase as a novel candidate gene for altered quinine and quinidine responses in Plasmodium falciparum.

    Science.gov (United States)

    Sanchez, Cecilia P; Liu, Chia-Hao; Mayer, Sybille; Nurhasanah, Astutiati; Cyrklaff, Marek; Mu, Jianbing; Ferdig, Michael T; Stein, Wilfred D; Lanzer, Michael

    2014-05-01

    The emerging resistance to quinine jeopardizes the efficacy of a drug that has been used in the treatment of malaria for several centuries. To identify factors contributing to differential quinine responses in the human malaria parasite Plasmodium falciparum, we have conducted comparative quantitative trait locus analyses on the susceptibility to quinine and also its stereoisomer quinidine, and on the initial and steady-state intracellular drug accumulation levels in the F1 progeny of a genetic cross. These data, together with genetic screens of field isolates and laboratory strains associated differential quinine and quinidine responses with mutated pfcrt, a segment on chromosome 13, and a novel candidate gene, termed MAL7P1.19 (encoding a HECT ubiquitin ligase). Despite a strong likelihood of association, episomal transfections demonstrated a role for the HECT ubiquitin-protein ligase in quinine and quinidine sensitivity in only a subset of genetic backgrounds, and here the changes in IC50 values were moderate (approximately 2-fold). These data show that quinine responsiveness is a complex genetic trait with multiple alleles playing a role and that more experiments are needed to unravel the role of the contributing factors.

  17. Could the gene coding for human uteroglobin (clara cell 10 kDa protein) be a candidate gene for atopy?

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.B.; Peri, A.; Miele, L. [SDG, Bethesda, MD (United States)] [and others

    1994-09-01

    It has been proposed that human immune response to allergens is genetically determined. Most of these allergic responses are directed to environmental proteins and are mediated by immunoglobulin E (IgE). These allergic disorders (eg. allergic asthma) are commonly known as atopy. IgE activates phospholipase A{sub 2} (PLA{sub 2}) which hydrolyzes cell membrane phospholipids generating free fatty acids, such as arachidonic acid (AA). AA is utilized as the substrate for the generation of pro-inflammatory eicosanoids and platelet activating factor (PAF). These agents can cause inflammation as well as bronchoconstriction, hallmarks of asthma. IgE-induced mast cell degranulation and accumulation of basophils and eosinophils in the lung are also characteristic immunological processes commonly found in atopic asthma. Recent investigations suggest that a group I PLA{sub 2} may be associated with the secretory granules of these cells. An inverse relationship between the levels of eicosanoids and hUG has been found in the nasopharyngeal lavage fluid of children with viral infections of the upper respiratory tract, often a precipitating factor in asthma. Results of genetic linkage studies mapped a putative atopy gene in human chromosome 11q{sup 13}, the same region in which we localized the hUG gene. Moreover, a genetic linkage between atopic IgE responses and chromosome 11q{sup 13} has been reported. In addition, hUG is: (i) a potent inhibitor of PLA{sub 2} activity, (ii) a potent antiinflammatory/immunomodulatory and antichemotactic protein and has a hitherto undetermined receptor-mediated activity. Taken together, these findings suggest that a mutation either in the hUG or its receptor genes may manifest symptoms characteristic of atopy. Hence, we raise the question whether hUG is a candidate gene for this disease.

  18. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole;

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  19. Rare, Low-Frequency, and Common Variants in the Protein-Coding Sequence of Biological Candidate Genes from GWASs Contribute to Risk of Rheumatoid Arthritis

    NARCIS (Netherlands)

    Diogo, Dorothee; Kurreeman, Fina; Stahl, Eli A.; Liao, Katherine P.; Gupta, Namrata; Greenberg, Jeffrey D.; Rivas, Manuel A.; Hickey, Brendan; Flannick, Jason; Thomson, Brian; Guiducci, Candace; Ripke, Stephan; Adzhubey, Ivan; Barton, Anne; Kremer, Joel M.; Alfredsson, Lars; Sunyaev, Shamil; Martin, Javier; Zhernakova, Alexandra; Bowes, John; Eyre, Steve; Siminovitch, Katherine A.; Gregersen, Peter K.; Worthington, Jane; Klareskog, Lars; Padyukov, Leonid; Raychaudhuri, Soumya; Plenge, Robert M.

    2013-01-01

    The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown. In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located within RA risk loci discovered by genome

  20. Production of H5N1 influenza virus matrix protein 2 ectodomain protein bodies in tobacco plants and in insect cells as a candidate universal influenza vaccine

    Directory of Open Access Journals (Sweden)

    Sandiswa Mbewana

    2015-12-01

    Full Text Available The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of a M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human and plant codon optimised and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera® of the γ-zein protein of maize. Zera®M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus / insect cell expression systems, and Zera®M2e protein bodies (PBs were successfully produced in both expression systems. The plant-produced Zera®M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera®M2e PBs and multiple tandem M2e sequences (5xM2e fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA confirmed the presence of M2e-specific antibodies in immunised mice sera. The immunogenicity of the Zera®M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine.

  1. Infantile spasms and pigmentary mosaicism

    DEFF Research Database (Denmark)

    Hansen, Lars K; Bygum, Anette; Krogh, Lotte N

    2010-01-01

    Summary We present a 3-year-old boy with pigmentary mosaicism and persistent intractable infantile spasms due to mosaicism of chromosome 7. Getting the diagnosis of pigmentary mosaicism in a child with infantile spasms may not be easy, as most diagnostic work-up is done in infancy, at a time when...

  2. A non-allergenic Ole e 1-like protein from birch pollen as a tool to design hypoallergenic vaccine candidates.

    Science.gov (United States)

    Marazuela, Eva G; Hajek, Roswitha; Villalba, Mayte; Barber, Domingo; Breiteneder, Heimo; Rodríguez, Rosalía; Batanero, Eva

    2012-02-01

    Recombinant DNA technology offers several approaches to convert allergens into hypoallergenic derivatives that can represent the basis of novel, safer and more effective forms of allergy vaccines. In this context, we used a new strategy for the design of a hypoallergenic derivative of Ole e 1, the main allergen of olive pollen. By screening a cDNA library from birch pollen, the clone BB18, encoding the birch counterpart of Ole e 1, was identified. In this study, BB18 has been produce in Pichia pastoris as a recombinant protein and immunologically characterized. The well-established non-allergenic properties of BB18 were used to generate a genetic variant of Ole e 1, named OB(55-58), by site-direct mutagenesis of four residues (E(55)V(56)G(57)Y(58)) in an IgE/IgG epitope of Ole e 1 by the corresponding ones in BB18 (SDSE). OB(55-58) was expressed in P. pastoris, purified to homogeneity and analyzed for IgE-reactivity by means of ELISA using sera from olive pollen allergic patients and rat basophil activation assay. T cell reactivity was assayed in a mouse model of Ole e 1 sensitization. The mutant OB(55-58) exhibited an impaired IgE reactivity, but not affected T cell reactivity, compared to wild type rOle e 1. This study emphasizes the usefulness of BB18 as a tool for epitope mapping and for engineering hypoallergenic derivatives of Ole e 1 as vaccine candidates for allergy prevention and treatment.

  3. Revertant mosaicism in the skin.

    Science.gov (United States)

    Lai-Cheong, J E; McGrath, J A

    2013-02-01

    Revertant mosaicism is a naturally occurring phenomenon involving the spontaneous correction of a pathogenic mutation in a somatic cell. Revertant mosaicism is not a rare event and has been described in several inherited skin conditions, including various subtypes of epidermolysis bullosa. The recognition of revertant mosaicism paves the way for revertant therapy which represents a potentially exciting "natural gene therapy" option for genetic disorders. The skin provides a useful model for studying revertant mosaicism because it is readily accessible and easy to examine. In this paper, we provide an overview of revertant mosaicism and its relevance in genetic skin disorders.

  4. Apple mosaic virus

    Science.gov (United States)

    Apple mosaic virus (ApMV), a member of the ilarvirus group, naturally infects Betula, Aesculus, Humulus, and several crop genera in the family Rosaceae (Malus, Prunus, Rosa and Rubus). ApMV was first reported in Rubus in several blackberry and raspberry cultivars in the United States and subsequentl...

  5. Improving the production of transgenic fish germlines: in vivo evaluation of mosaicism in zebrafish (Danio rerio using a green fluorescent protein (GFP and growth hormone cDNA transgene co-injection strategy

    Directory of Open Access Journals (Sweden)

    Márcio de Azevedo Figueiredo

    2007-01-01

    Full Text Available In fish, microinjection is the method most frequently used for gene transfer. However, due to delayed transgene integration this technique almost invariably produces mosaic individuals and if the gene is not integrated into germ cells its transmission to descendants is difficult or impossible. We evaluated the degree of in vivo mosaicism using a strategy where a reporter transgene is co-injected with a transgene of interest so that potential germline founders can be easily identified. Transgenic zebrafish (Danio rerio were produced using two transgenes, both comprised of the carp beta-actin promoter driving the expression of either the green fluorescent protein (GFP reporter gene or the growth hormone cDNA from the marine silverside fish Odonthestes argentinensis. The methodology applied allowed a rapid identification of G0 transgenic fish and also detected which fish were transmitting transgenes to the next generation. This strategy also allowed inferences to be made about genomic transgene integration events in the six lineages produced and allowed the identification of one lineage transmitting both transgenes linked on the same chromosome. These results represent a significant advance in the reduction of the effort invested in producing a stable genetically modified fish lineage.

  6. Application of proteomics in the discovery of candidate protein biomarkers in a Diabetes Autoantibody Standardization Program sample subset

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Qian, Weijun; Jacobs, Jon M.; Gritsenko, Marina A.; Moore, Ronald J.; Polpitiya, Ashoka D.; Monroe, Matthew E.; Camp, David G.; mueller, Patricia W.; Smith, Richard D.

    2008-02-01

    Objective. Before biomarkers predictive of type 1 diabetes can be evaluated in proficiency evaluations, they must be identified and validated in initial, exploratory studies. Hypothesis-driven comparative studies may be performed to identify candidate biomarkers but are limited to the current knowledge of metabolic, signaling, and inflammatory pathways in the context of type 1 diabetes. Alternatively, untargeted “-omics” approaches may be employed in profiling studies to identify candidate biomarkers of type 1 diabetes.

  7. Interactions between p27 and p88 replicase proteins of Red clover necrotic mosaic virus play an essential role in viral RNA replication and suppression of RNA silencing via the 480-kDa viral replicase complex assembly.

    Science.gov (United States)

    Mine, Akira; Hyodo, Kiwamu; Takeda, Atsushi; Kaido, Masanori; Mise, Kazuyuki; Okuno, Tetsuro

    2010-11-25

    Red clover necrotic mosaic virus (RCNMV), a positive-sense RNA virus with a bipartite genome, encodes p27 and p88 replicase proteins that are required for viral RNA replication and suppression of RNA silencing. In this study, we identified domains in p27 and p88 responsible for their protein-protein interactions using in vitro pull-down assays with the purified recombinant proteins. Coimmunoprecipitation analysis in combination with blue-native polyacrylamide gel electrophoresis using mutated p27 proteins showed that both p27-p27 and p27-p88 interactions are essential for the formation of the 480-kDa complex, which has RCNMV-specific RNA-dependent RNA polymerase activity. Furthermore, we found a good correlation between the accumulated levels of the 480-kDa complex and replication levels and the suppression of RNA silencing activity. Our results indicate that interactions between RCNMV replicase proteins play an essential role in viral RNA replication and in suppressing RNA silencing via the 480-kDa replicase complex assembly.

  8. The complete sequence of a sugarcane mosaic virus isolate causing maize dwarf mosaic disease in China

    Institute of Scientific and Technical Information of China (English)

    程晔; 陈炯; 陈剑平

    2002-01-01

    The complete sequence of a potyvirus from maize in Zhejiang Province was determined. The RNA was 9596 nucleotides long, excluding the 3′-poly (A) tail, and there was a single long open reading frame (ORF) of 9192 nts encoding a 346.1 ku polyprotein. The polyprotein had substantial amino acid sequence homology with those encoded by the RNAs of a Chinese isolate of sorghum mosaic virus (SrMV-C) and a Bulgarian isolate of maize dwarf mosaic virus, but it was most closely related to sugarcane mosaic virus (SCMV) isolates, for which only partial sequences have been published. According to the published criteria for distinguishing potyviruses, the sequence reported here is clearly a strain of SCMV, but it also showed a surprisingly high amino acid homology with SrMV-C in the HC-Pro, P3 and CI proteins.

  9. Optimized Blanching Reduces the Host Cell Protein Content and Substantially Enhances the Recovery and Stability of Two Plant-Derived Malaria Vaccine Candidates.

    Science.gov (United States)

    Menzel, Stephan; Holland, Tanja; Boes, Alexander; Spiegel, Holger; Bolzenius, Johanna; Fischer, Rainer; Buyel, Johannes F

    2016-01-01

    Plants provide an advantageous expression platform for biopharmaceutical proteins because of their low pathogen burden and potential for inexpensive, large-scale production. However, the purification of target proteins can be challenging due to issues with extraction, the removal of host cell proteins (HCPs), and low expression levels. The heat treatment of crude extracts can reduce the quantity of HCPs by precipitation thus increasing the purity of the target protein and streamlining downstream purification. In the overall context of downstream process (DSP) development for plant-derived malaria vaccine candidates, we applied a design-of-experiments approach to enhance HCP precipitation from Nicotiana benthamiana extracts generated after transient expression, using temperatures in the 20-80°C range, pH values of 3.0-8.0 and incubation times of 0-60 min. We also investigated the recovery of two protein-based malaria vaccine candidates under these conditions and determined their stability in the heat-treated extract while it was maintained at room temperature for 24 h. The heat precipitation of HCPs was also carried out by blanching intact plants in water or buffer prior to extraction in a blender. Our data show that all the heat precipitation methods reduced the amount of HCP in the crude plant extracts by more than 80%, simplifying the subsequent DSP steps. Furthermore, when the heat treatment was performed at 80°C rather than 65°C, both malaria vaccine candidates were more stable after extraction and the recovery of both proteins increased by more than 30%.

  10. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  11. Cloning of Coat Protein Gene of Maize Dwarf Mosaic Virus%玉米矮花叶病毒外壳蛋白基因的克隆研究

    Institute of Scientific and Technical Information of China (English)

    刘小红; 张红伟; 李晚忱; 谭振波; 荣廷昭

    2007-01-01

    玉米(Zea mays L.)矮花叶病在国内外广泛发生,且在玉米生产中造成了重大损失.通过RT-PCR法从具有典型的玉米矮花叶病症状的玉米叶片中克隆了外壳蛋白(Coat protein,CP)基因,测序和同源性比较表明所克隆的CP基因来自玉米矮花叶病毒(Maize dwarf mosaic virus,MDMV)B株系,全长920个碱基对,开放阅读框编码219个氨基酸,该基因可进一步用于玉米抗矮花叶病的转基因研究,以获得生产应用的抗病材料.

  12. Generation of a safe Salmonella Gallinarum vaccine candidate that secretes an adjuvant protein with immunogenicity and protective efficacy against fowl typhoid.

    Science.gov (United States)

    Nandre, R M; Lee, J H

    2014-01-01

    We constructed a live, attenuated Salmonella Gallinarum (SG) that secretes heat-labile enterotoxin B subunit protein (LTB), and evaluated this strain as a new vaccine candidate by assessing its safety, immunogenicity and protective efficacy against fowl typhoid. An asd(+) p15A ori low-copy plasmid containing eltB encoding LTB was transformed into a ΔlonΔcpxRΔasd SG (JOL967) to construct the candidate, JOL1355. In Experiments 1 and 2, birds were orally immunized with JOL1355 at 4 weeks of age, while control birds were inoculated with sterile phosphate-buffered saline. In Experiment 2, the birds of both groups were orally challenged with a virulent SG at 8 weeks of age. In Experiment 1, examination for safety revealed that the immunized group did not show any bacterial counts of the vaccine candidate in the liver and spleen. Birds immunized with the vaccine candidate showed a significant increase in systemic IgG and mucosal secretory IgA levels in Experiment 2. In addition, the lymphocyte proliferation response and the numbers of CD3(+)CD4(+) and CD3(+)CD8(+) T cells were also significantly elevated in the immunized group, which indicated that the candidate also induced cellular immune responses. In the protection assay, efficient protection with only 16% mortality in the immunized group was observed against challenge compared with 76% mortality in the control group. These results indicate that the live, attenuated SG secreting LTB can be a safe vaccine candidate. In addition, it can induce humoral and cellular immune responses and can efficiently reduce mortality of birds exposed to fowl typhoid.

  13. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane

    Science.gov (United States)

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...

  14. j_ima_mosaic

    DEFF Research Database (Denmark)

    2010-01-01

    Mosaicking software for JEM-X images included in the INTEGRAL Offline Science Analysis (OSA) software maintained by ISDC, University of Geneva, Switzerland. It is a C-program running under UNIX and Linux to merge images obtained by the JEM-X telescope and weighted by their relative exposure time........ The obtained mosaic image makes it possible to broaden the observed sky area as well as to reach deeper sensitivity at given sky positions....

  15. Prokaryotic Expression and Antiserum Preparation of the Coat Protein of Cymbidium Mosaic Virus%建兰花叶病毒CP基因的原核表达及抗血清制备

    Institute of Scientific and Technical Information of China (English)

    罗金水

    2009-01-01

    通过间接酶联免疫检测和电镜观察对从福建省漳州市采集的卡特兰病样进行检测,证明样品感染了建兰花叶病毒.设计一对特异性引物,扩增并克隆病毒分离物的外壳蛋白基因,随后将目的基因插入pET-29a(+)中构建相应的原核表达载体.目的蛋白经诱导表达及纯化后免疫家兔并获得了特异性抗血清.Westem blot检测结果表明.抗血清与诱导表达的CyMV外壳蛋白发生特异性反应.间接酶联免疫法检测结果表明,抗血清可检测病汁液的最低稀释度达1:51 200,最佳工作浓度为1:1000,病汁液灵敏度为0.39 mg/mL,而与TMV等11种同源或异源病毒均无明显的血清学交叉反应.%Cymbidium mosaic virus (CyMV) is one of the most important and worldwide viruses attacking orchids. This virus causes the symptoms of mosaic,chlorosis,necrosis and malformation in the orchids,and has a high economic impact to the orchid industry. Cattleya plants contracted with a disease were collected as samples from Zhangzhou,Fujian,and were identified to be infected with Cymbidium mosaic virus by using ID -ELISA and electronic microscopy assay. One pair of specific primers was designed for amplification of the coat protein(CP) gene from the samples infected with CyMV. The open reading frame encoding CP of CyMV isolate obtained from Zhangzhou,Fujian is 672 bp,encoding a 23.6 ku protein with 223 aa. The expected CP gene was then inserted into the pET-29a(+)vector for prokaryotic expression. And the aimed protein was purified and used to immune the rabbit for antiserum preparation. According the result of ID-ELISA analysis,specific rabbit anti-CyMV serum was prepared with a high titre of 1:51 200,a working concentration of 1:1 000 and sap sensitivity of 0.39 mg/mL. Western blot analysis confirmed that the antiserum reacted strongly and specifically to the CP of CyMV. There were no cross reactions between the antiserums and 11 species of homologous or heterologous

  16. Engineering Resistance Against Mungbean yellow mosaic India virus Using Antisense RNA

    OpenAIRE

    Haq, Q. M. I.; Ali, Arif; Malathi, V.G.

    2010-01-01

    Yellow mosaic disease of cultivated legumes in South-East Asia, is caused by Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) belonging to the genus Begomovirus of the family Geminiviridae. Efforts to engineer resistance against the genus Begomovirus are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a complementary-sense gene (ACI) encoding Replication initiation Protein (Rep) to develop re...

  17. A BRIEF REVIEW ON "MOLECULAR DETECTION AND CHARACTERIZATION OF YELLOW MOSAIC VIRUS (YMV) INFECTING BLACKGRAM"

    OpenAIRE

    S.Obaiah; B.V. Bhaskara Reddy; N P Eswara Reddy; K. Vijay Krishna Kumar

    2013-01-01

    Blackgram (Vigna mungo (L.) Hepper) is one of the major pulse crops of the tropics and sub tropics. It is the third major pulse crop cultivated in the Indian subcontinent. Pulses and grain legumes are major sources of dietary protein. These crops are subjected to yellow mosaic and golden mosaic diseases caused by white fly transmitted geminiviruses (WTG’s or begomovirus). Of these viruses, mungbean yellow mosaic virus (MYMV) is an important one, and it infects five major leguminous species...

  18. Paspalum striate mosaic virus: an Australian mastrevirus from Paspalum dilatatum.

    Science.gov (United States)

    Geering, Andrew D W; Thomas, John E; Holton, Timothy; Hadfield, James; Varsani, Arvind

    2012-01-01

    Three monocot-infecting mastreviruses from Australia, all found primarily in pasture and naturalised grasses, have been characterised at the molecular level. Here, we present the full genome sequence of a fourth, Paspalum striate mosaic virus (PSMV), isolated from Paspalum dilatatum from south-east Queensland. The genome was 2816 nt long and had an organisation typical of other monocot-infecting mastreviruses. Its nearest relative is Bromus cartharticus striate mosaic virus (BCSMV), with which it shares an overall genome identity of 75%. Phylogenetic analysis of the complete genome and each of the putative viral proteins places PSMV in a group with the other three Australian striate mosaic viruses. PSMV, BCSMV and Digitaria didactyla striate mosaic virus all contain a similar, small recombinant sequence in the small intergenic region.

  19. Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    Directory of Open Access Journals (Sweden)

    Petr Ponomarenko

    2016-01-01

    Full Text Available Variations in human genome (e.g., single nucleotide polymorphisms, SNPs may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night, and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning. By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients, rs192518038 (higher risk of a heart attack in patients with diabetes, and rs374778785 (emphysema and lung cancer in smokers. If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient and for the general population (to choose a lifestyle preventing possible circadian complications of diseases.

  20. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  1. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Science.gov (United States)

    Kamke, Janine; Rinke, Christian; Schwientek, Patrick; Mavromatis, Kostas; Ivanova, Natalia; Sczyrba, Alexander; Woyke, Tanja; Hentschel, Ute

    2014-01-01

    The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  2. The Candidate Phylum Poribacteria by Single-Cell Genomics: New Insights into Phylogeny, Cell-Compartmentation, Eukaryote-Like Repeat Proteins, and Other Genomic Features

    Science.gov (United States)

    Kamke, Janine; Rinke, Christian; Schwientek, Patrick; Mavromatis, Kostas; Ivanova, Natalia; Sczyrba, Alexander; Woyke, Tanja; Hentschel, Ute

    2014-01-01

    The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake. PMID:24498082

  3. Identification of Leishmania infantum chagasi proteins in urine of patients with visceral leishmaniasis: a promising antigen discovery approach of vaccine candidates.

    Science.gov (United States)

    Kashino, S S; Abeijon, C; Qin, L; Kanunfre, K A; Kubrusly, F S; Silva, F O; Costa, D L; Campos, D; Costa, C H N; Raw, I; Campos-Neto, A

    2012-07-01

    Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients' urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.

  4. 两种麦类土传花叶病毒外壳蛋白叶绿体离体跨膜运输%Analysis on the Import of Coat Proteins of Chinese Wheat Mosaic Virus and Barley Yellow Mosaic Virus into Intact Chloroplasts in Vitro

    Institute of Scientific and Technical Information of China (English)

    任春梅; 程兆榜; 魏利辉; 范永坚; 周益军

    2012-01-01

    根据Banerjees等(1992)的方法,建立了中国小麦花叶病毒(CWMV)和大麦黄花叶病毒(BaYMV)外壳蛋白(CP)叶绿体离体跨膜运输体系,研究了孵育时间、CP浓度对跨膜运输效率的影响。结果表明,CWMV-CP和BaYMV-CP可分别快速进入离体的小麦与大麦叶绿体中,其跨膜运输所需的孵育时间均最低为5min,孵育时间超过15min后进入叶绿体中CP的量不受影响;加入跨膜体系中CP的浓度与跨膜后进入叶绿体的CP浓度呈正相关,能够实现跨膜的最低CWMV-CP和BaYMV-CP浓度分别为4.2和37.8μg.mL^-1。%Referred to Banerjee's method, the systems of importing the coat proteins of Chinese wheat mosaic virus and Barley yellow mosaic virus (CWMV CP and BaYMV-CP) into intact chloroplasts in vitro were established, the effects of incubation duration, the concentration of CWMV-CP and BaYMV-CP on import efficiency were studied. The results showed that both CWMV-CP and BaYMV- CP was able to rapidly import into isolated chloroplasts of wheat and barley. In the test, the lowest incubation duration of CWMV-CP and BaYMV-CP importing into the chloroplasts were both 5 min, the amounts of CWMV-CP and BaYMV-CP imported into the chloroplasts were not increased with the extension of incubation time after 15 min. Besides, the relation between the amounts of CWMV-CP and BaYMV-CP imported into the chloroplasts and the amounts of CWMV-CP and BaYMV-CP added in the import system was significantly positive, the lowest concentrations of CWMV CP and BaYMV- CP in the import system was 4.2 and 37.8 μg. mL^-1 , respectively. The establishment of CWMV-CP and BaYMV-CP importing into intact chloroplasts in vitro could supply foundation for studying the pathogenesis of CWMV and BaYMV.

  5. 45,X/46,XY mosaicism

    DEFF Research Database (Denmark)

    Lindhardt Johansen, Marie; Hagen, Casper P; Rajpert-De Meyts, Ewa;

    2012-01-01

    Most previous studies of 45,X/46,XY mosaicism are case reports or have described single aspects of the disease.......Most previous studies of 45,X/46,XY mosaicism are case reports or have described single aspects of the disease....

  6. Landsat Image Mosaic of Antarctica

    Science.gov (United States)

    ,

    2007-01-01

    Description Fact sheet introduces the Landsat Image Mosaic of Antarctica (LIMA) with images from a section of the mosaic over McMurdo Station, descriptions of the four versions of LIMA, where to access and download LIMA, and a brief explanation of the Antarctic Web portal.

  7. Isolation, characterization, and structure analysis of a non-TIR-NBS-LRR encoding candidate gene from MYMIV-resistant Vigna mungo.

    Science.gov (United States)

    Maiti, Soumitra; Paul, Sujay; Pal, Amita

    2012-11-01

    Yellow mosaic disease of Vigna mungo caused by Mungbean yellow mosaic India virus (MYMIV) is still a major threat in the crop production. A candidate disease resistance (R) gene, CYR1 that co-segregates with MYMIV-resistant populations of V. mungo has been isolated. CYR1 coded in silico translated protein sequence comprised of 1,176 amino acids with coiled coil structure at the N-terminus, central nucleotide binding site (NBS) and C-terminal leucine-rich repeats (LRR) that belongs to non-TIR-NBS-LRR subfamily of plant R genes. CYR1 transcript was unambiguously expressed during incompatible plant virus interactions. A putative promoter-like sequence present upstream of this candidate gene perhaps regulates its expression. Enhanced transcript level upon MYMIV infection suggests involvement of this candidate gene in conferring resistance against the virus. In silico constructed 3D models of NBS and LRR regions of this candidate protein and MYMIV-coat protein (CP) revealed that CYR1-LRR forms an active pocket and successively interacts with MYMIV-CP during docking, like that of receptor-ligand interaction; indicating a critical role of CYR1 as signalling molecule to protect V. mungo plants from MYMIV. This suggests involvement of CYR1 in recognizing MYMIV-effector molecule thus contributing to incompatible interaction. This study is the first stride to understand molecular mechanism of MYMIV resistance.

  8. UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate.

    Science.gov (United States)

    Foucault, Marine; Mayol, Katia; Receveur-Bréchot, Véronique; Bussat, Marie-Claire; Klinguer-Hamour, Christine; Verrier, Bernard; Beck, Alain; Haser, Richard; Gouet, Patrice; Guillon, Christophe

    2010-05-01

    The 101-residue long Tat protein of primary isolate 133 of the human immunodeficiency virus type 1 (HIV-1), wt-Tat(133) displays a high transactivation activity in vitro, whereas the mutant thereof, STLA-Tat(133), a vaccine candidate for HIV-1, has none. These two proteins were chemically synthesized and their biological activity was validated. Their structural properties were characterized using circular dichroism (CD), fluorescence emission, gel filtration, dynamic light scattering, and small angle X-ray scattering (SAXS) techniques. SAXS studies revealed that both proteins were extended and belong to the family of intrinsically unstructured proteins. CD measurements showed that wt-Tat(133) or STLA-Tat(133) underwent limited structural rearrangements when complexed with specific fragments of antibodies. Crystallization trials have been performed on the two forms, assuming that the Tat(133) proteins might have a better propensity to fold in supersaturated conditions, and small crystals have been obtained. These results suggest that biologically active Tat protein is natively unfolded and requires only a limited gain of structure for its function.

  9. Two cases of androgen insensitivity due to somatic mosaicism

    Directory of Open Access Journals (Sweden)

    Natalie J. Nokoff

    2015-03-01

    Full Text Available Androgen insensitivity syndrome (AIS is caused by mutations in the gene encoding the androgen receptor (AR. The incidence of AIS is estimated to be 1 in 99,000. Complete androgen insensitivity syndrome (CAIS is characterized by a 46,XY karyotype with external genitalia that appear typically female and results from mutations that render the androgen receptor non-functional. Partial androgen insensitivity syndrome (PAIS results from partial loss of function mutations in AR. Rarely, PAIS results from somatic mosaicism for an AR mutation and not from a hypomorphic variant. We present two cases of PAIS due to somatic mosaicism, one caused by a novel nonsense mutation and one caused by a missense mutation previously reported in CAIS. Two patients with atypical genitalia presented to our multidisciplinary clinic for disorders of sex development and sequencing of AR was performed as part of the diagnostic evaluation. In case one, AR sequencing revealed mosaicism for a nonsense mutation, c.1331T > A; p.Leu444Ter. This mutation has not previously been reported, but is presumed to be pathogenic. In case two, AR sequencing revealed a mosaic missense mutation, c.2279 C > A; p.Ser760Tyr, which has previously been reported in CAIS but not in PAIS. Similar phenotypes may result from AR mutations that are present in a mosaic state with full loss of function or hypomorphic mutations that partially impair the function of the protein in either all tissues or in a mosaic state.

  10. Recombinant outer membrane protein A (OmpA) of Edwardsiella tarda, a potential vaccine candidate for fish, common carp.

    Science.gov (United States)

    Maiti, Biswajit; Shetty, Mahesh; Shekar, Malathi; Karunasagar, Iddya; Karunasagar, Indrani

    2011-12-20

    Outer membrane protein A (OmpA) is a component of the outer membrane of Edwardsiella tarda and is wildly distributed in Enterobacteriaceae family. The gene encoding the OmpA protein was cloned from E. tarda and expressed in Escherichia coli M15 cells. The recombinant OmpA protein containing His(6) residues was estimated to have a molecular weight of ~38kDa. In Western blot the native protein showed expression at ~36kDa molecular weight which was within the range of major outer membrane proteins (36-44kDa) observed in this study. All E. tarda isolates tested harbored the ompA gene and the antibody raised to this protein was seen to cross react with other Gram negative bacteria. The OmpA protein characterized in this study was observed to be highly immunogenic in both rabbit and fish. In Enzyme linked immunosorbent assay, rabbit antisera showed an antibody titer of 1: 128,000. Common carp vaccinated with recombinant OmpA protein elicited high antibody production and immunized fish showed a relative percentage survival of 54.3 on challenge.

  11. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.

    Science.gov (United States)

    Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong

    2016-01-01

    Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.

  12. Persistent Organic Pollutants Induced Protein Expression and Immunocrossreactivity by Stenotrophomonas maltophilia PM102: A Prospective Bioremediating Candidate

    Directory of Open Access Journals (Sweden)

    Piyali Mukherjee

    2013-01-01

    Full Text Available A novel bacterium capable of growth on trichloroethylene as the sole carbon source was identified as Stenotrophomonas maltophilia PM102 by 16S rDNA sequencing (accession number of NCBI GenBank: JQ797560. In this paper, we report the growth pattern, TCE degradation, and total proteome of this bacterium in presence of various other carbon sources: toluene, phenol, glucose, chloroform, and benzene. TCE degradation was comparatively enhanced in presence of benzene. Densitometric analysis of the intracellular protein profile revealed four proteins of 78.6, 35.14, 26.2, and 20.47 kDa while the extracellular protein profile revealed two distinct bands at 14 kDa and 11 kDa that were induced by TCE, benzene, toluene, and chloroform but absent in the glucose lane. A rabbit was immunised with the total protein extracted from the bacteria grown in 0.2% TCE + 0.2% peptone. Antibody preadsorbed on proteins from peptone grown PM102 cells reacted with a single protein of 35.14 kDa (analysed by MALDI-TOF-mass-spectrometry from TCE, benzene, toluene, or chloroform grown cells. No reaction was seen for proteins of PM102 grown with glucose. The PM102 strain was immobilised in calcium alginate beads, and TCE degradation by immobilised cells was almost double of that by free cells. The beads could be reused 8 times.

  13. Association between the degree of mosaicism and the severity of syndrome in Turner mosaics and Klinefelter mosaics.

    Science.gov (United States)

    Sarkar, R; Marimuthu, K M

    1983-12-01

    This study, based on the investigations carried on 82 cases of Turners of which 50 of them were mosaics and 85 cases of Klinefelters of which 70 of them were mosaics, is an attempt to explain the vast range of clinical variations observed in cytogenetically established Turner mosaics (45,X/46,XX) and Klinefelter mosaics (47,XXY/46,XY) in the light of the degree of mosaicism present in them. It was observed that the severity of the syndrome in Turner mosaics and Klinefelter mosaics increased with the relative increase in the abnormal cell line population.

  14. Nucleotide sequence of papaya mosaic virus RNA.

    Science.gov (United States)

    Sit, T L; Abouhaidar, M G; Holy, S

    1989-09-01

    The RNA genome of papaya mosaic virus is 6656 nucleotides long [excluding the poly(A) tail] with six open reading frames (ORFs) more than 200 nucleotides long. The four nearest the 5' end each overlap with adjacent ORFs and could code for proteins with Mr 176307, 26248, 11949 and 7224 (ORFs 1 to 4). The fifth ORF produces the capsid protein of Mr 23043 and the sixth ORF, located completely within ORF1, could code for a protein with Mr 14113. The translation products of ORFs 1 to 3 show strong similarity with those of other potexviruses but the ORF 4 protein has only limited similarity with the other potexvirus ORF 4 proteins of 7K to 11K.

  15. Plasmodium falciparum CS protein - prime malaria vaccine candidate: definition of the human CTL domain and analysis of its variation

    Directory of Open Access Journals (Sweden)

    Denise L. Doolan

    1992-01-01

    Full Text Available Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL specific for epitopes within the circumsporozoite (CS protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.

  16. Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion.

    Directory of Open Access Journals (Sweden)

    Zhen Gong

    Full Text Available The membrane proximal region (MPR, residues 649-683 and transmembrane domain (TMD, residues 684-705 of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683 of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705, in Escherichia coli as a fusion protein with maltose binding protein (MBP. MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM. Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

  17. A New Approach for Designing A Potentially Vaccine Candidate against Urinary Tract Infection by Using Protein Display on Lacto-bacillus Surface

    Directory of Open Access Journals (Sweden)

    Jalil Fallah Mehrabadi

    2013-07-01

    Full Text Available Background: The prevalence of Urinary Tract Infection (UTI is really high in the world. Escherichia coli is a major agent of UTI. One of the strategies for decreasing UTI infections is vaccine development. As the attachment is a really important stage in colonization and infection, at­tachment inhibition has an applied strategy. FimH protein is a major factor during bacterial colonization in urinary tract and could be used as a vaccine. Thus, it was considered in this research as a candidate antigen. Methods: The sequences of fimH and acmA genes were used for designing a synthetic gene. It was cloned to pET23a expression vector and transformed to E. coli (DE3 Origami. To confirm the expression of recombinant protein, SDS-PAGE and western blotting methods were used. Subsequently, recombinant protein was purified. On the other hand, Lactobacillus reuteri was cultured and mixed with FimH / AcmA recombinant protein. The rate of protein localization on lactobacillus surface was assessed using ELISA method. Results: It was showed that the recombinant protein was expressed in E. coli (DE3 Origami and purified by affinity chromatography. Moreover, this protein could be localized on lactobacillus surface by 5 days. Conclusion: In current study, a fusion recombinant protein was pre­pared and displayed on L. reuteri surface. This strain could be used for animal experiment as a competitor against Uropathogenic E. coli (UPEC. Using manipulated probiotics strains instead of antibiotic ther­apy could decrease the antibiotic consumption and reduce multi-drug resistant strains.

  18. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts.

    Science.gov (United States)

    Albarracín, Romina M; Becher, Melina Laguía; Farran, Inmaculada; Sander, Valeria A; Corigliano, Mariana G; Yácono, María L; Pariani, Sebastián; López, Edwin Sánchez; Veramendi, Jon; Clemente, Marina

    2015-05-01

    Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production.

  19. Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate.

    Science.gov (United States)

    Delfani, Somayeh; Mohabati Mobarez, Ashraf; Imani Fooladi, Abbas Ali; Amani, Jafar; Emaneini, Mohammad

    2016-02-01

    Staphylococcus aureus is one of the most important causes of nosocomial infections. An effective vaccine to prevent S. aureus infections is urgently required due to the dramatic increase in the number of antibiotic-resistant strains. In this report, we evaluated a newly recombinant protein composed of selected antigenic regions of clumping factor A (ClfA), iron surface determinant B (IsdB) and gamma hemolysin B (HlgB) of S. aureus and sequence coding for hydrophobic linkers between three domains. The recombinant gene was constructed in pET-28a (+) and expressed in Escherichia coli BL21. In addition, sequence coding for a His(6)-tag was added followed by a hybrid procedure of nickel chelate protein purification. Immunization of BALB/c mice with the recombinant protein ClfA-IsdB-Hlg evoked antigen-specific antibodies that could opsonize S. aureus cells, enhancing in vitro phagocytosis by macrophages. Vaccination with the recombinant protein also reduced the bacterial load recovered from mice spleen samples and increased survival following the intraperitoneal challenge with pathogenic S. aureus compared to the control mice. Our results showed that the recombinant protein ClfA-IsdB-Hlg is a promising vaccine candidate for the prevention of S. aureus bacteremia infections.

  20. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein.

    Science.gov (United States)

    Beiss, Veronique; Spiegel, Holger; Boes, Alexander; Kapelski, Stephanie; Scheuermayer, Matthias; Edgue, Gueven; Sack, Markus; Fendel, Rolf; Reimann, Andreas; Schillberg, Stefan; Pradel, Gabriele; Fischer, Rainer

    2015-07-01

    Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 μg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.

  1. Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids

    Directory of Open Access Journals (Sweden)

    Sperry Ann O

    2008-01-01

    Full Text Available Abstract Background Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library. Results Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1. Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids. Conclusion We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor

  2. A 78 kDa host cell invasion protein of Neospora caninum as a potential vaccine candidate.

    Science.gov (United States)

    Lv, Qiang; Xing, Shenyang; Gong, Pengtao; Chang, Le; Bian, Zhengzheng; Wang, Lidong; Zhang, Xichen; Li, Jianhua

    2015-01-01

    Neosporosis is an intracellular protozoan disease caused by Neospora caninum. Until now, there is no effective vaccine to prevent neosporosis. The host cell binding protein has the potential as neosporosis vaccine. In the present study, a T7 phage display library was constructed and screened using Vero cells to obtain host cell binding protein of N. caninum. Two host cell binding proteins, a hypothetical protein of 78 kDa (named as NcP78) homologous to the acylglycerol lipase of Toxoplasma gondii ME49 (XP_002370319.1) and NcGRA7 (known as a dense granules protein that is involved in the invasion of N. caninum to the host cells), were identified. Immune responses induced by recombinant NcP78 and NcGRA7 proteins and their protective efficacies against homologous challenge in BALB/c mice were evaluated respectively. Results showed that recombinant NcP78 and NcGRA7 could elicit both Th1 and Th2 immune responses (with the elevated levels of IgG1 and IgG2a antibody), but predominately a Th2 immune response with a high level of IgG1. The ani-NcP78 and anti-NcGRA7 serum also had inhibitory effects on N. caninum invasion to Vero cells in vitro, which indicated that both NcP78 and NcGRA7 proteins were involved in host cell invasion. Recombinant NcP78 and NcGRA7 could not prolong the survival times and improve the survival rates of dams, but could prolong the survival times and improve the survival rates of offspring significantly. Moreover, the recombinant NcP78 and NcGRA7 could reduce the brain parasite load of dams and offspring. Though these protein vaccines could not effectively alleviate the symptom of abortion, they could increase the number of born offspring significantly, indicating that Nc78 and NcGRA7 recombinant proteins could provide a partial protection against N. caninum infection in mice.

  3. Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-β-glucanase and other proteins in non-transgenic plants

    Directory of Open Access Journals (Sweden)

    Hwang Min

    2012-09-01

    Full Text Available Abstract Background Using plant viruses to produce desirable proteins in plants allows for using non-transgenic plant hosts and if necessary, the ability to make rapid changes in the virus construct for increased or modified protein product yields. The objective of this work was the development of advanced CMV-based protein production systems to produce Acidothermus cellulolyticus endo-1, 4-β-glucanase (E1 in non-transgenic plants. Results We used two new Cucumber mosaic virus (CMV-based vector systems for producing the green fluorescent protein (GFP and more importantly, the Acidothermus cellulolyticus endo-1, 4-β-glucanase (E1 in non-transgenic Nicotiana benthamiana plants. These are the inducible CMVin (CMV-based inducible and the autonomously replicating CMVar (CMV-based advanced replicating systems. We modified a binary plasmid containing the complete CMV RNA 3 cDNA to facilitate insertion of desired sequences, and to give modifications of the subgenomic mRNA 4 leader sequence yielding several variants. Quantitative RT-PCR and immunoblot analysis showed good levels of CMV RNA and coat protein accumulation for some variants of both CMVin and CMVar. When genes for E1 or GFP were inserted in place of the CMV coat protein, both were produced in plants as shown by fluorescence (GFP and immunoblot analysis. Enzymatic activity assays showed that active E1 was produced in plants with yields up to ~ 11 μg/g fresh weight (FW for specific variant constructs. We also compared in vitro CMV genomic RNA reassortants, and CMV RNA 3 mutants which lacked the C’ terminal 33 amino acids of the 3A movement protein in attempts to further increase E1 yield. Taken together specific variant constructs yielded up to ~21 μg/g FW of E1 in non-transgenic plants. Conclusions Intact, active E1 was rapidly produced in non-transgenic plants by using agroinfiltration with the CMV-based systems. This reduces the time and cost compared to that required to

  4. Enrichment of Functional Redox Reactive Proteins and Identification by Mass Spectrometry Results in Several Terminal Fe(III)-reducing Candidate Proteins in Shewanella oneidensis MR-1.

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Yang, Feng; Mottaz, Heather M.; Beliaev, Alex S.; Lipton, Mary S.

    2007-02-01

    Identification of the proteins directly involved in microbial metal-reduction is important to understanding the biochemistry involved in heavy metal reduction/immobilization and the ultimate cleanup of DOE contaminated sites. Although previous strategies for the identification of these proteins have traditionally required laborious protein purification/characterization of metal-reducing capability, activity is often lost before the final purification step, thus creating a significant knowledge gap. In the current study, subcellular fractions of S. oneidensis MR-1 were enriched for Fe(III)-NTA reducing proteins in a single step using several orthogonal column matrices. The protein content of eluted fractions that demonstrated activity were determined by ultra high pressure liquid chromatography coupled with tandem mass spectrometry (LCMS/ MS). A comparison of the proteins identified from active fractions in all separations produced 30 proteins that may act as the terminal electron-accepting protein for Fe(III)-reduction. These include MtrA, MtrB, MtrC and OmcA as well as a number of other proteins not previously associated with Fe(III)-reduction. This is the first report of such an approach where the laborious procedures for protein purification are not required for identification of metal-reducing proteins. Such work provides the basis for a similar approach with other cultured organisms as well as analysis of sediment and groundwater samples from biostimulation efforts at contaminated sites.

  5. Heterogeneity in the A33 Protein Impacts the Cross-Protective Efficacy of a Candidate Smallpox DNA Vaccine

    Science.gov (United States)

    2008-01-01

    1997). By 24-h post-transfection, COS cells were labeled with 35S-methionine/ cystine for 4 h and lysed using 4% zwit- tergent buffer (4% zwittergent...3753–3762. Roper, R.L., Wolffe, E.J., Weisberg, A., Moss, B., 1998. The envelope protein encoded by the A33R gene is required for formation of actin...Smith, G.L., Way, M., 1999. Interactions be- tween vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation . J

  6. A Review of Image Mosaicing Techniques

    OpenAIRE

    Vaghela, Dushyant; Naina, Prof. Kapildev

    2014-01-01

    Image Mosaicing is a method of constructing multiple images of the same scene into a larger image. The output of the image mosaic will be the union of two input images. Image-mosaicing algorithms are used to get mosaiced image. Image Mosaicing processed is basically divided in to 5 phases. Which includes; Feature point extraction, Image registration, Homography computation, Warping and Blending if Image. Various corner detection algorithm is being used for Feature extraction. This corner prod...

  7. Genome-wide analysis and functional characterization of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Science.gov (United States)

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium graminearum a...

  8. Independent Candidate Serum Protein Biomarkers of Response to Adalimumab and to Infliximab in Rheumatoid Arthritis: An Exploratory Study.

    Directory of Open Access Journals (Sweden)

    Ignacio Ortea

    Full Text Available Response to treatment of rheumatoid arthritis shows large inter-individual variability. This heterogeneity is observed with all the anti-rheumatic drugs, including the commonly used TNF inhibitors. It seems that drug-specific and target-specific factors lead individual patients to respond or not to a given drug, although this point has been challenged. The search of biomarkers distinguishing responders from non-responders has included shotgun proteomics of serum, as a previous study of response to infliximab, an anti-TNF antibody. Here, we have used the same study design and technology to search biomarkers of response to a different anti-TNF antibody, adalimumab, and we have compared the results obtained for the two anti-TNF drugs. Search of biomarkers of response to adalimumab included depletion of the most abundant serum proteins, 8-plex isobaric tag for relative and absolute quantitation (iTRAQ labeling, two-dimensional liquid chromatography fractionation and relative quantification with a hybrid Orbitrap mass spectrometer. With this approach, 264 proteins were identified in all the samples with at least 2 peptides and 95% confidence. Nine proteins showed differences between non-responders and responders (P < 0.05, representing putative biomarkers of response to adalimumab. These results were compared with the previous study of infliximab. Surprisingly, the non-responder/responder differences in the two studies were not correlated (rs = 0.07; P = 0.40. This overall independence with all the proteins showed two identifiable components. On one side, the putative biomarkers of response to either adalimumab or infliximab, which were not shared and showed an inverse correlation (rs = -0.69; P = 0.0023. On the other, eight proteins showing significant non-responder/responder differences in the analysis combining data of response to the two drugs. These results identify new putative biomarkers of response to treatment of rheumatoid arthritis and

  9. Mosaic Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_MOSAIC33)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The COA_Mosaic33 layer designates areas with potential for forest/grassland mosaic conservation. These are areas of natural or semi-natural forest/grassland mosaic...

  10. 香蕉苞片花叶病毒CP基因的原核表达及抗血清制备%Prokaryotic expression and antiserum preparation of Banana bract mosaic virus coat protein gene.

    Institute of Scientific and Technical Information of China (English)

    刘福秀; 陈秀; 韩玉春; 李伟东; 徐卫; 蔡波; 林明光

    2012-01-01

    Banana bract mosaic virus (BBrMV) coat protein (CP) gene was cloned, and prokaryotic expression recombinant plasmid pET- CP was constructed by inserting the cloned gene into pET -28b ( + ). Induced by IPTG,E. coli BL21 (DE3) containing pET- CP produced fusion proteins about 34 kDa in size. Soluble analysis of the fusion protein indicated that it was in the inclusion body. The highly purified interest protein was obtained by using the histidine labeling of N - terminus of the protein. The special antibody was generated to the protein through the purified protein immunizing healthy rabbit. Indirect enzyme immunoassay suggested antibody titre was higher than 1:51 200. The available antibody concentration for virus detection from plant material was 1:800 - 1 : 3 200.%本试验成功构建了香蕉苞片花叶病毒(Banana bract mosaicvirus,BBrMV)外壳蛋白(coat protein,CP)基因的原核表达载体,并诱导表达了34kDa的融合蛋白His.CP。对该原核表达蛋白的可溶性分析表明,该融合蛋白以包涵体形式存在。利用组氨酸标签纯化试剂盒对目的蛋白进行了纯化,获得了高纯度的融合蛋白。以纯化的蛋白为抗原免疫健康家兔,成功制备了抗BBrMV CP基因编码蛋白的兔抗血清。Western—blotting结果表明这种抗血清有很强的特异性。血清效价测定的效价在51200倍以上,对植物材料的合适检测浓度为1:800—1:3200。

  11. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly.

    Directory of Open Access Journals (Sweden)

    Ana Eulalio

    Full Text Available P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.

  12. Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Yasuyuki [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan); Kuroda, Masayuki, E-mail: kurodam@faculty.chiba-u.jp [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan); Asada, Sakiyo [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan); Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki [CellGenTech, Inc., Chiba (Japan); Okamoto, Yoshitaka [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Nakayama, Toshinori [Department of Immunology, Graduate School of Medicine, Chiba University, Chiba (Japan); Saito, Yasushi [Chiba University, Chiba (Japan); Bujo, Hideaki [Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan)

    2012-01-01

    Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional protein translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.

  13. Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate.

    Directory of Open Access Journals (Sweden)

    Wipawadee Sianglum

    Full Text Available The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC values ranged from 31.25-62.5 µg/ml, and the minimal bactericidal concentration (MBC was 250 µg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5-125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 µg/ml and 2 µg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 µg/ml affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections.

  14. Independent Candidate Serum Protein Biomarkers of Response to Adalimumab and to Infliximab in Rheumatoid Arthritis: An Exploratory Study.

    Science.gov (United States)

    Ortea, Ignacio; Roschitzki, Bernd; López-Rodríguez, Rosario; Tomero, Eva G; Ovalles, Juan G; López-Longo, Javier; de la Torre, Inmaculada; González-Alvaro, Isidoro; Gómez-Reino, Juan J; González, Antonio

    2016-01-01

    Response to treatment of rheumatoid arthritis shows large inter-individual variability. This heterogeneity is observed with all the anti-rheumatic drugs, including the commonly used TNF inhibitors. It seems that drug-specific and target-specific factors lead individual patients to respond or not to a given drug, although this point has been challenged. The search of biomarkers distinguishing responders from non-responders has included shotgun proteomics of serum, as a previous study of response to infliximab, an anti-TNF antibody. Here, we have used the same study design and technology to search biomarkers of response to a different anti-TNF antibody, adalimumab, and we have compared the results obtained for the two anti-TNF drugs. Search of biomarkers of response to adalimumab included depletion of the most abundant serum proteins, 8-plex isobaric tag for relative and absolute quantitation (iTRAQ) labeling, two-dimensional liquid chromatography fractionation and relative quantification with a hybrid Orbitrap mass spectrometer. With this approach, 264 proteins were identified in all the samples with at least 2 peptides and 95% confidence. Nine proteins showed differences between non-responders and responders (P treatment of rheumatoid arthritis and indicate that they are notably drug-specific.

  15. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators

    Science.gov (United States)

    Mathias, Rommel A.; Greco, Todd M.; Cristea, Ileana M.

    2016-01-01

    Recent studies have highlighted the three mitochondrial human sirtuins (SIRT3, SIRT4, and SIRT5) as critical regulators of a wide range of cellular metabolic pathways. A key factor to understanding their impact on metabolism has been the discovery that, in addition to their ability to deacetylate substrates, mitochondrial sirtuins can have other prominent enzymatic activities. SIRT4, one of the least characterized mitochondrial sirtuins, was shown to be the first known cellular lipoamidase, removing lipoyl modifications from lysine residues of substrates. Specifically, SIRT4 was found to delipoylate and modulate the activity of the pyruvate dehydrogenase complex (PDH), a protein complex critical for the production of acetyl-CoA. Furthermore, SIRT4 is well known to have ADP-ribosyltransferase activity and to regulate the activity of the glutamate dehydrogenase complex (GDH). Adding to its impressive range of enzymatic activities are its ability to deacetylate malonyl-CoA decarboxylase (MCD) to regulate lipid catabolism, and its newly recognized ability to remove biotinyl groups from substrates that remain to be defined. Given the wide range of enzymatic activities and the still limited knowledge of its substrates, further studies are needed to characterize its protein interactions and its impact on metabolic pathways. Here, we present several proven protocols for identifying SIRT4 protein interaction networks within the mitochondria. Specifically, we describe methods for generating human cell lines expressing SIRT4, purifying mitochondria from crude organelles, and effectively capturing SIRT4 with its interactions and substrates. PMID:27246218

  16. Alanine scanning of cucumber mosaic virus (CMV 2b protein identifies different positions for cell-to-cell movement and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Katalin Nemes

    Full Text Available The multifunctional 2b protein of CMV has a role in the long distance and local movement of the virus, in symptom formation, in evasion of defense mediated by salicylic acid as well as in suppression of RNA silencing. The role of conserved amino acid sequence domains were analyzed previously in the protein function, but comprehensive analysis of this protein was not carried out until recently. We have analyzed all over the 2b protein by alanine scanning mutagenesis changing three consecutive amino acids (aa to alanine. We have identified eight aa triplets as key determinants of the 2b protein function in virus infection. Four of them (KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, SPS/40-42/AAA overlap with previously determined regions indispensable in gene silencing suppressor function. We have identified two additional triplets necessary for the suppressor function of the 2b protein (LPF/55-57/AAA, NVE/10-12/AAA, and two other positions were required for cell-to-cell movement of the virus (MEL/1-3/AAA, RHV/70-72/AAA, which are not essential for suppressor activity.

  17. Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Science.gov (United States)

    Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight ...

  18. High sequence conservation among cucumber mosaic virus isolates from Lily

    NARCIS (Netherlands)

    Chen, Y.K.; Derks, A.F.L.M.; Langeveld, S.; Goldbach, R.; Prins, M.

    2001-01-01

    For classification of Cucumber mosaic virus (CMV) isolates from ornamental crops of different geographical areas, these were characterized by comparing the nucleotide sequences of RNAs 4 and the encoded coat proteins. Within the ornamental-infecting CMV viruses both subgroups were represented. CMV i

  19. NMR of TMV. Nuclear magnetic resonance of tobacco mosaic virus

    NARCIS (Netherlands)

    Wit, de J.L.

    1978-01-01

    This Thesis describes the application of conventional 13 C and 1 H high resolution Fourier Transform Nuclear Magnetic resonance (HR FT NMR) to Tobacco Mosaic Virus (TMV) and its protein oligo- and polymers and some other largebiological systems. The rod-like (TMV) consists of 2

  20. Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate

    Science.gov (United States)

    Radtke, Andrea J.; Anderson, Charles F.; Riteau, Nicolas; Rausch, Kelly; Scaria, Puthupparampil; Kelnhofer, Emily R.; Howard, Randall F.; Sher, Alan; Germain, Ronald N.; Duffy, Patrick

    2017-01-01

    Humoral immune responses have the potential to maintain protective antibody levels for years due to the immunoglobulin-secreting activity of long-lived plasma cells (LLPCs). However, many subunit vaccines under development fail to generate robust LLPC responses, and therefore a variety of strategies are being employed to overcome this limitation, including conjugation to carrier proteins and/or formulation with potent adjuvants. Pfs25, an antigen expressed on malaria zygotes and ookinetes, is a leading transmission blocking vaccine (TBV) candidate for Plasmodium falciparum. Currently, the conjugate vaccine Pfs25-EPA/Alhydrogel is in Phase 1 clinical trials in the USA and Africa. Thus far, it has proven to be safe and immunogenic, but it is expected that a more potent formulation will be required to establish antibody titers that persist for several malaria transmission seasons. We sought to determine the contribution of carrier determinants and adjuvants in promoting high-titer, long-lived antibody responses against Pfs25. We found that both adjuvants and carrier proteins influence the magnitude and capacity of Pfs25-specific humoral responses to remain above a protective level. Furthermore, a liposomal adjuvant with QS21 and a TLR4 agonist (GLA-LSQ) was especially effective at inducing T follicular helper (Tfh) and LLPC responses to Pfs25 when coupled to immunogenic carrier proteins. PMID:28091576

  1. Biophysical and formulation studies of the Schistosoma mansoni TSP-2 extracellular domain recombinant protein, a lead vaccine candidate antigen for intestinal schistosomiasis.

    Science.gov (United States)

    Cheng, Weiqiang; Curti, Elena; Rezende, Wanderson C; Kwityn, Clifford; Zhan, Bin; Gillespie, Portia; Plieskatt, Jordan; Joshi, Sangeeta B; Volkin, David B; Hotez, Peter J; Middaugh, C Russell; Bottazzi, Maria Elena

    2013-11-01

    A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is comprised of a recombinant 9 kDa antigen protein corresponding to the large extracellular domain of a tetraspanin surface antigen protein of Schistosoma mansoni, Sm-TSP-2. Here, we describe the biophysical profile of the purified, recombinant Sm-TSP-2 produced in the yeast PichiaPink, which in preclinical studies in mice was shown to be an effective vaccine against intestinal schistosomiasis. Biophysical techniques including circular dichroism, intrinsic and extrinsic fluorescence and light scattering were employed to generate an empirical phase diagram, a color based map of the physical stability of the vaccine antigen over a wide range of temperatures and pH. From these studies a pH range of 6.0-8.0 was determined to be optimal for maintaining the stability and conformation of the protein at temperatures up to 25 °C. Sorbitol, sucrose and trehalose were selected as excipients that prevented physical degradation during storage. The studies described here provide guidance for maximizing the stability of soluble recombinant Sm-TSP-2 in preparation of its further development as a vaccine.

  2. Screening of candidate genes encoding proteins expressed in pectoral fins of fugu Takifugu rubripes, in relation to habitat site of parasitic copepod Caligus fugu, using suppression subtractive hybridization.

    Science.gov (United States)

    Tasumi, Satoshi; Norshida, Ismail; Boxshall, Geoffrey A; Kikuchi, Kiyoshi; Suzuki, Yuzuru; Ohtsuka, Susumu

    2015-05-01

    Caligus fugu is a parasitic copepod specific to the tetraodontid genus Takifugu including the commercially important Takifugu rubripes. Despite the rapid accumulation of knowledge on other aspects of its biology, the host and settlement-site recognition mechanisms of this parasite are not yet well understood. Since the infective copepodid stage shows preferential site selection in attaching to the fins, we considered it likely that the copepodid recognizes chemical cues released or leaking from the fins, and/or transmembrane protein present on the fins. To isolate molecules potentially related to attachment site specificity, we applied suppression subtractive hybridization (SSH) PCR by identifying genes expressed more highly in pectoral fins of T. rubripes than in the body surface skin. We sequenced plasmid DNA from 392 clones in a SSH library. The number of non-redundant sequences was 276, which included 135 sequences located on 117 annotated genes and 141 located in positions where no genes had been annotated. We characterized those annotated genes on the basis of gene ontology terms, and found that 46 of the identified genes encode secreted proteins, enzymes or membrane proteins. Among them nine showed higher expression in the pectoral fins than in the skin. These could be candidate genes for involvement in behavioral mechanisms related to the site specificity shown by the infective copepodids of C. fugu.

  3. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  4. Virtual Screening and Molecular Docking Study of Bloom’s Syndrome Protein (BLM for Finding Potential Lead Drug Candidate

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Verma

    2014-06-01

    Full Text Available Increased levels of locus-specific mutations within the BLM result in development of Bloom Syndrome and patients are found to be immune deficient. HRDC domain amino acid Lys1270 is presumably to play role in mediating interactions with DNA. Single point mutation of Lys1270 (K1270V reduces the potency of Double Holliday junction (DHJ DNA unwinding so BLM lead to its functional loss. Quadruplex formation have role in immunoglobulin heavy chain switching and inhibiting RecQ helicases activity in-vitro in BLM. Variety of G-Quadruplex ligands are employed by molecular docking for arriving at lead compound identification. The scoring function of docking results describes protein-ligand interaction and it conjointly instructed that docking of ligand at mutational binding site shows some repressing function to make potential lead drug molecule. So as to know the elaborated purposeful functional mechanism of protein and to relate impact of mutation with function and activity; dock screening, hit identification and lead optimization facilitate in design of lead drug compound.

  5. Hepatitis C Virus Subtype 3a Envelope Protein 1 Binding with Human Leukocyte Antigen Class I Types of Pakistani Population: Candidate Epitopes for Synthetic Peptide Vaccine

    Directory of Open Access Journals (Sweden)

    Hamid Nawaz-Tipu

    2015-10-01

    Full Text Available The object of this cross sectional study was to determine the HCV subtype 3a envelope protein binding affinity with Human Leukocyte Antigen. Envelope 1 (E1 protein is one of the structural proteins responsible for entering the cells through the receptors. The binding affinity of E1 protein epitopes to the selected Human Leukocyte Antigen (HLA class I alleles was investigated using the computer-based tools. These prediction tools were also used to design the synthetic vaccine’s candidate epitopes and to identify the individuals/populations who are likely to be responder to those vaccines.The mean frequency of HLA I antigens in Pakistani population was calculated. Threealleles each from HLA A and B were selected. E1 protein sequence extracted from HCV 3a isolates was retrieved and twenty-four sequences of it were selected. NetMHCcons 1.0 server was used to determine the binding affinities of HLA alleles to the epitope sequences of 10 amino acids in length.A02, A03, A11, A24, A33, B08, B13, B15, B35 and B40 were the first five antigens moreprevalent in Pakistan each from HLA A and HLA B.. We did not find any binding affinity between HLA A*201, B*1501 and B*4001 and epitopes from E1 sequences in a threshold of50 nM. Totally five various epitopes derived from different isolates were characterized.The prediction of HLA-E1 epitope specific bindings and the forthcoming response can be a useful bioinformatics tool to uncover the right synthetic peptides for vaccine design purposes.

  6. Hepatitis C Virus Subtype 3a Envelope Protein 1 Binding with Human Leukocyte Antigen Class I Types of Pakistani Population: Candidate Epitopes for Synthetic Peptide Vaccine.

    Science.gov (United States)

    Nawaz-Tipu, Hamid

    2015-10-01

    The object of this cross sectional study was to determine the HCV subtype 3a envelope protein binding affinity with Human Leukocyte Antigen. Envelope 1 (E1) protein is one of the structural proteins responsible for entering the cells through the receptors. The binding affinity of E1 protein epitopes to the selected Human Leukocyte Antigen (HLA) class I alleles was investigated using the computer-based tools. These prediction tools were also used to design the synthetic vaccine's candidate epitopes and to identify the individuals/populations who are likely to be responder to those vaccines.The mean frequency of HLA I antigens in Pakistani population was calculated. Three alleles each from HLA A and B were selected. E1 protein sequence extracted from HCV 3a isolates was retrieved and twenty-four sequences of it were selected. NetMHCcons 1.0 server was used to determine the binding affinities of HLA alleles to the epitope sequences of 10 amino acids in length.A02, A03, A11, A24, A33, B08, B13, B15, B35 and B40 were the first five antigens more prevalent in Pakistan each from HLA A and HLA B.. We did not find any binding affinity between HLA A*201, B*1501 and B*4001 and epitopes from E1 sequences in a threshold of 50 nM. Totally five various epitopes derived from different isolates were characterized.The prediction of HLA-E1 epitope specific bindings and the forthcoming response can be a useful bioinformatics tool to uncover the right synthetic peptides for vaccine design purposes.

  7. Image automatic mosaics based on contour phase correlation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; HU Zhiping; LIU Zhitai; OU Zongying

    2007-01-01

    The image planar mosaics is studied,and an image automatic mosaics algorithm on the basis of contour phase correlation is proposed in this paper.To begin with,by taking into account mere translations and rotations between images,a contour phase correlation algorithm is used to realize the preliminary alignments of images,and the initial projective transformation matrices are obtained.Then,an optimization algorithm is used to optimize the initial projective transformation matrices,and complete the precise image mosaics.The contour phase correlation is an improvement on the conventional phase correlation in two aspects:First,the contours of images are extracted,and the phase correlation is applied to the contours of images instead of the whole original images;Second,when there are multiple peak values approximate to the maximum peak value in the δ function array,their corresponding translations can be regarded as candidate translations and calculated separately,and the best translation can be determined by the optimization of conformability of two images in the overlapping area.The running results show that the proposed algorithm can consistently yield high-quality mosaics,even in the cases of poor or differential lighting conditions,existences of minor rotations,and other complicated displacements between images.

  8. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    Science.gov (United States)

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  9. Rare, Low-Frequency, and Common Variants in the Protein-Coding Sequence of Biological Candidate Genes from GWASs Contribute to Risk of Rheumatoid Arthritis

    Science.gov (United States)

    Diogo, Dorothée; Kurreeman, Fina; Stahl, Eli A.; Liao, Katherine P.; Gupta, Namrata; Greenberg, Jeffrey D.; Rivas, Manuel A.; Hickey, Brendan; Flannick, Jason; Thomson, Brian; Guiducci, Candace; Ripke, Stephan; Adzhubey, Ivan; Barton, Anne; Kremer, Joel M.; Alfredsson, Lars; Sunyaev, Shamil; Martin, Javier; Zhernakova, Alexandra; Bowes, John; Eyre, Steve; Siminovitch, Katherine A.; Gregersen, Peter K.; Worthington, Jane; Klareskog, Lars; Padyukov, Leonid; Raychaudhuri, Soumya; Plenge, Robert M.

    2013-01-01

    The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown. In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located within RA risk loci discovered by genome-wide association studies (GWASs). First, we assessed the contribution of rare coding variants in the 25 genes to the risk of RA in a pooled sequencing study of 500 RA cases and 650 controls of European ancestry. We observed an accumulation of rare nonsynonymous variants exclusive to RA cases in IL2RA and IL2RB (burden test: p = 0.007 and p = 0.018, respectively). Next, we assessed the aggregate contribution of low-frequency and common coding variants to the risk of RA by dense genotyping of the 25 gene loci in 10,609 RA cases and 35,605 controls. We observed a strong enrichment of coding variants with a nominal signal of association with RA (p A [p.His266Gln]), and a noncoding variant, rs624988, reside on distinct haplotypes and independently contribute to the risk of RA (p = 4.6 × 10−6). Overall, our results indicate that variants (distributed across the allele-frequency spectrum) within the protein-coding portion of a subset of biological candidate genes identified by GWASs contribute to the risk of RA. Further, we have demonstrated that very large sample sizes will be required for comprehensively identifying the independent alleles contributing to the missing heritability of RA. PMID:23261300

  10. Engineering Resistance Against Mungbean yellow mosaic India virus Using Antisense RNA.

    Science.gov (United States)

    Haq, Q M I; Ali, Arif; Malathi, V G

    2010-06-01

    Yellow mosaic disease of cultivated legumes in South-East Asia, is caused by Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) belonging to the genus Begomovirus of the family Geminiviridae. Efforts to engineer resistance against the genus Begomovirus are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a complementary-sense gene (ACI) encoding Replication initiation Protein (Rep) to develop resistance against soybean isolate of Mungbean yellow mosaic India virus-[India:New Delhi:Soybean 2:1999], a bipartite begomovirus prevalent throughout the Indian subcontinent. We show that the legume host plants co-agroinoculated with infectious constructs of soybean isolate of Mungbean yellow mosaic India virus [India:New Delhi:Soybean 2:1999] along with this antisense Rep gene construct show resistance to the virus.

  11. Strain-transcending immune response generated by chimeras of the malaria vaccine candidate merozoite surface protein 2

    Science.gov (United States)

    Krishnarjuna, Bankala; Andrew, Dean; MacRaild, Christopher A.; Morales, Rodrigo A. V.; Beeson, James G.; Anders, Robin F.; Richards, Jack S.; Norton, Raymond S.

    2016-01-01

    MSP2 is an intrinsically disordered protein that is abundant on the merozoite surface and essential to the parasite Plasmodium falciparum. Naturally-acquired antibody responses to MSP2 are biased towards dimorphic sequences within the central variable region of MSP2 and have been linked to naturally-acquired protection from malaria. In a phase IIb study, an MSP2-containing vaccine induced an immune response that reduced parasitemias in a strain-specific manner. A subsequent phase I study of a vaccine that contained both dimorphic forms of MSP2 induced antibodies that exhibited functional activity in vitro. We have assessed the contribution of the conserved and variable regions of MSP2 to the generation of a strain-transcending antibody response by generating MSP2 chimeras that included conserved and variable regions of the 3D7 and FC27 alleles. Robust anti-MSP2 antibody responses targeting both conserved and variable regions were generated in mice, although the fine specificity and the balance of responses to these regions differed amongst the constructs tested. We observed significant differences in antibody subclass distribution in the responses to these chimeras. Our results suggest that chimeric MSP2 antigens can elicit a broad immune response suitable for protection against different strains of P. falciparum. PMID:26865062

  12. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

    Directory of Open Access Journals (Sweden)

    John S K Kauwe

    2014-10-01

    Full Text Available Cerebrospinal fluid (CSF 42 amino acid species of amyloid beta (Aβ42 and tau levels are strongly correlated with the presence of Alzheimer's disease (AD neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC and Alzheimer's Disease Neuroimaging Initiative (ADNI, were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE, Chemokine (C-C motif ligand 2 (CCL2, Chemokine (C-C motif ligand 4 (CCL4, Interleukin 6 receptor (IL6R and Matrix metalloproteinase-3 (MMP3 with study-wide significant p-values (p<1.46×10-10 and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal

  13. In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9

    Science.gov (United States)

    Rodrigues-da-Silva, Rodrigo Nunes; Martins da Silva, João Hermínio; Singh, Balwan; Jiang, Jianlin; Meyer, Esmeralda V. S.; Santos, Fátima; Banic, Dalma Maria; Moreno, Alberto; Galinski, Mary R.; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa

    2016-01-01

    Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and

  14. The meningococcal vaccine candidate neisserial surface protein A (NspA binds to factor H and enhances meningococcal resistance to complement.

    Directory of Open Access Journals (Sweden)

    Lisa A Lewis

    Full Text Available Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH to fH-binding protein (fHbp is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a approximately 17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA, a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep I chain of lipooligosaccharide (LOS, or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6-7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.

  15. Mosaicism for trisomy 21: a review.

    Science.gov (United States)

    Papavassiliou, Paulie; Charalsawadi, Chariyawan; Rafferty, Kelly; Jackson-Cook, Colleen

    2015-01-01

    The clinical and cytogenetic findings associated with mosaicism for trisomy 21/Down syndrome are the focus of this review. The primary topics discussed in this overview of the extant literature include the history of this condition and its diagnosis, the incidence of mosaicism, the meiotic and/or mitotic chromosomal malsegregation events resulting in mosaicism, the observation of mosaicism in the parents of children with the non-mosaic form of Down syndrome, and the variation in phenotypic outcome for both constitutional and acquired traits present in people with mosaicism for trisomy 21/Down syndrome, including cognition, fertility, and overall phenotypic findings. Additional topics reviewed include the social conditions of people with mosaicism, as well as age-related and epigenetic alterations observed in people with mosaicism for trisomy 21/Down syndrome. .

  16. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression

    DEFF Research Database (Denmark)

    Bergholdt, Regine; Brorsson, Caroline; Palleja, Albert;

    2012-01-01

    Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated...... with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize...... and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated...

  17. Single- and double-stranded viral RNAs in plants infected with the potexviruses papaya mosaic virus and foxtail mosaic virus.

    Science.gov (United States)

    Mackie, G A; Johnston, R; Bancroft, J B

    1988-01-01

    Three classes of viral RNA were recovered from polyribosomes purified from papaya leaves infected with papaya mosaic virus (PapMV) and from barley leaves infected with foxtail mosaic virus (FoMV): full-length viral RNAs [6.8 and 6.2 kilobases (kb), respectively]; less abundant intermediate subgenomic RNAs (2.2 and 1.9 kb), and abundant, small subgenomic RNAs (1 and 0.9 kb). Small amounts of the PapMV-specified 1.0-kb subgenomic RNA were encapsidated, whereas no encapsidated subgenomic RNAs could be found in preparations of FoMV. Immunoprecipitation of the products of in vitro translation of the small subgenomic RNA of both viruses showed that it codes for the corresponding viral coat protein. FoMV genomic RNA isolated from polyribosomes also directed the efficient synthesis of a 37- to 38-kilodalton protein which was immunoprecipitated by an antiserum raised against the coat protein. We presume this product to be a readthrough protein initiated to the 5' side of and in the same reading frame as the coat protein-coding sequences in FoMV RNA. The predominant double-stranded viral-specified RNAs in tissues infected with PapMV, FoMV, and clover yellow mosaic virus were genome sized (6.8, 6.2, and 7.0 kb pairs, respectively). If double-stranded RNAs corresponding to coat protein subgenomic RNAs exist, they must be present in much lower relative abundances.

  18. Confined placental mosaicism in short term culture

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2016-01-01

    Full Text Available Finding of fetal chromosomal mosaicism complicates genetic counseling, as well as pregnancy management. The aim of this study was to determine the risk of confined placental mosaicism in short term culture of chorionic villous samples. We conducted a retrospective review of karyotype analysis results obtained after chorionic villous sampling (CVS in two years period. A 420 samples of chorionic villi were taken transabdominally and obtained by a semidirect method (overnight incubating culture. All fetuses with CVS mosaicism were under the intensive perinatal care. In all cases of chromosome mosaicism the additional karyotyping was performed from fetal blood samples after 22nd gestational week in order to exclude true fetal mosaicism. After delivery newborns were examined by experienced pediatrician. From 420 analyzed samples in 11 (2,6% cases we found placental mosaicism. No anomalies were seen in genetic sonogram of this fetuses and mosaicism was confirmed only in one case. Confined placental mosaicism (CPM was found in 2,1% (9/420 of all analyzed cases, and it made 90% of all placental mosaicism. In 60% (6/10 of placental mosaicism cases we found mosaicism with single aberrant cell. Trisomy 21 mosaicism was the most frequent aberration found in 30% of cases. Finding of mosaicism in chorionic villi sample is at special importance for genetic counseling, because every case has to be reveled individually regarding the type and level of mosaicism. Anyway, in every case of placental mosaicism intensive antenatal monitoring is necessary, with additional chromosome analysis from different tissue in consideration of previous findings.

  19. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L. by expression profiling

    Directory of Open Access Journals (Sweden)

    Wenzel Gerhard

    2009-02-01

    Full Text Available Abstract Background The potyviruses sugarcane mosaic virus (SCMV and maize dwarf mosaic virus (MDMV are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions. Results By employing time course microarray experiments we identified 68 significantly differentially expressed sequences within the different time points. The majority of differentially expressed genes differed between the near-isogenic line carrying Scmv1 resistance locus at chromosome 6 and the other isogenic lines. Most differentially expressed genes in the SCMV experiment (75% were identified one hour after virus inoculation, and about one quarter at multiple time points. Furthermore, most of the identified mapped genes were localised outside the Scmv QTL regions. Annotation revealed differential expression of promising pathogenesis-related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. Conclusion Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize.

  20. Cucumber mosaic virus in Rubus

    Science.gov (United States)

    Cucumber mosaic virus (CMV) has been reported on red raspberry in Chile, Scotland and the Soviet Union and in Chile on blackberry. Its occurrence in Rubus is rare and seems to cause little damage. Except for one early, unconfirmed report, CMV has not been reported on Rubus in North America. This vir...

  1. Identification and analysis of candidate fungal tRNA 3'-end processing endonucleases tRNase Zs, homologs of the putative prostate cancer susceptibility protein ELAC2

    Directory of Open Access Journals (Sweden)

    Zhao Wei

    2010-09-01

    Full Text Available Abstract Background tRNase Z is the endonuclease that is responsible for the 3'-end processing of tRNA precursors, a process essential for tRNA 3'-CCA addition and subsequent tRNA aminoacylation. Based on their sizes, tRNase Zs can be divided into the long (tRNase ZL and short (tRNase ZS forms. tRNase ZL is thought to have arisen from a tandem gene duplication of tRNase ZS with further sequence divergence. The species distribution of tRNase Z is complex. Fungi represent an evolutionarily diverse group of eukaryotes. The recent proliferation of fungal genome sequences provides an opportunity to explore the structural and functional diversity of eukaryotic tRNase Zs. Results We report a survey and analysis of candidate tRNase Zs in 84 completed fungal genomes, spanning a broad diversity of fungi. We find that tRNase ZL is present in all fungi we have examined, whereas tRNase ZS exists only in the fungal phyla Basidiomycota, Chytridiomycota and Zygomycota. Furthermore, we find that unlike the Pezizomycotina and Saccharomycotina, which contain a single tRNase ZL, Schizosaccharomyces fission yeasts (Taphrinomycotina contain two tRNase ZLs encoded by two different tRNase ZL genes. These two tRNase ZLs are most likely localized to the nucleus and mitochondria, respectively, suggesting partitioning of tRNase Z function between two different tRNase ZLs in fission yeasts. The fungal tRNase Z phylogeny suggests that tRNase ZSs are ancestral to tRNase ZLs. Additionally, the evolutionary relationship of fungal tRNase ZLs is generally consistent with known phylogenetic relationships among the fungal species and supports tRNase ZL gene duplication in certain fungal taxa, including Schizosaccharomyces fission yeasts. Analysis of tRNase Z protein sequences reveals putative atypical substrate binding domains in most fungal tRNase ZSs and in a subset of fungal tRNase ZLs. Finally, we demonstrate the presence of pseudo-substrate recognition and catalytic motifs at

  2. Optimization and revision of the production process of the Necator americanus glutathione S-transferase 1 (Na-GST-1), the lead hookworm vaccine recombinant protein candidate.

    Science.gov (United States)

    Curti, Elena; Seid, Christopher A; Hudspeth, Elissa; Center, Lori; Rezende, Wanderson; Pollet, Jeroen; Kwityn, Cliff; Hammond, Molly; Matsunami, Rise K; Engler, David A; Hotez, Peter J; Elena Bottazzi, Maria

    2014-01-01

    Infection by the human hookworm Necator americanus is a leading cause of anemia and disability in the developing countries of Africa, Asia, and the Americas. In order to prevent childhood hookworm disease in resource poor settings, a recombinant vaccine is under development by the Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, a Product Development Partnership (PDP). Previously, we reported on the expression and purification of a highly promising hookworm vaccine candidate, Na-GST-1, an N. americanus glutathione s-transferase expressed in Pichia pastoris (yeast), which led to production of 1.5 g of 95% pure recombinant protein at a 20L scale. (1) (,) (2) (,) (3) This yield and purity of Na-GST-1 was sufficient for early pilot manufacturing and initial phase 1 clinical testing. However, based on the number of doses which would be required to allow mass vaccination and a potential goal to deliver a vaccine as inexpensively as possible, a higher yield of expression of the recombinant antigen at the lowest possible cost is highly desirable. Here we report on modifications to the fermentation (upstream process) of the antigen expressed in P. pastoris, and to the purification (downstream process) of the recombinant protein that allowed for a 2-3-fold improvement in the final yield of Na-GST-1 purified protein. The major improvements included upstream process changes such as the addition of a sorbitol pulse and co-feed during methanol induction as well as an extension of the induction stage to approximately 96 hours; downstream process changes included modifying the UFDF to flat sheet with a 10 kDa Molecular Weight cut-off (MWCO), adjusting the capacity of an ion-exchange chromatography step utilizing a gradient elution as opposed to the original step elution, and altering the hydrophobic interaction chromatography conditions. The full process, as well as the purity and stability profiles of the target Na-GST-1, and its formulation

  3. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    Science.gov (United States)

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  4. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nozomi Satoh

    2014-11-01

    Full Text Available We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV harboring a segment of the Bean yellow mosaic virus (BYMV genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  5. Apple latent spherical virus vector as vaccine for the prevention and treatment of mosaic diseases in pea, broad bean, and eustoma plants by bean yellow mosaic virus.

    Science.gov (United States)

    Satoh, Nozomi; Kon, Tatsuya; Yamagishi, Noriko; Takahashi, Tsubasa; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2014-11-07

    We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV) harboring a segment of the Bean yellow mosaic virus (BYMV) genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  6. Mosaic Conservation Opportunity Areas - Conservativel Model (ECO_RES.COA_MOSAIC66)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The COA_Mosaic66 layer designates areas with potential for forest/grassland mosaic conservation. These are areas of natural or semi-natural forest/grassland land...

  7. Trisomy 4 mosaicism: Delineation of the phenotype.

    Science.gov (United States)

    Bouman, Arjan; van der Kevie-Kersemaekers, Anne-Marie; Huijsdens-van Amsterdam, Karin; Dahhan, Nordin; Knegt, Lia; Vansenne, Fleur; Cobben, Jan Maarten

    2016-04-01

    Trisomy 4 mosaicism in liveborns is very rare. We describe a 17-month-old girl with trisomy 4 mosaicism. Clinical findings in this patient are compared to previously reported patients. Based on the few descriptions available in the literature the common phenotype of trisomy 4 mosaicism seems to consist of IUGR, low birth weight/length/OFC, congenital heart defects, characteristic thumb anomalies (aplasia/hypoplasia), skin abnormalities (hypo-/hyperpigmentation), several dysmorphic features, and likely some degree of intellectual disability. When trisomy 4 mosaicism is suspected clinicians should be aware that a normal karyotype in lymphocytes does not exclude mosaicism for trisomy 4. This report contributes to a further delineation of the phenotype associated with trisomy 4 mosaicism.

  8. Mosaic trisomy 13 and a sacral appendage.

    Science.gov (United States)

    Pachajoa, Harry; Meza Escobar, Luis Enrique

    2013-07-31

    Mosaic trisomy 13 occurs when there is a percentage of trisomic cells for an entire chromosome 13, while the remaining percentage of cells is euploid. The prevalence of this syndrome ranges from 1 in 10 000 to 1 in 20 000 births. Complete, partial or mosaic forms of this disorder can occur. The phenotype of mosaic trisomy 13 patients varies widely. Patients with mosaic trisomy 13 usually have a longer survival and a less severe phenotype compared to patients with complete trisomy 13. Genetic counselling is difficult due to the wide variation among the clinical manifestations of these patients. There have been 49 cases of mosaic trisomy 13 reported in the literature. We report the case of a patient with mosaic trisomy 13, a sacral appendage and a cleft lip and palate.

  9. Genetics Home Reference: Pallister-Killian mosaic syndrome

    Science.gov (United States)

    ... Genetics Home Health Conditions Pallister-Killian mosaic syndrome Pallister-Killian mosaic syndrome Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Pallister-Killian mosaic syndrome is a developmental disorder that affects ...

  10. Mosaicism and uniparental disomy in prenatal diagnosis.

    Science.gov (United States)

    Eggermann, Thomas; Soellner, Lukas; Buiting, Karin; Kotzot, Dieter

    2015-02-01

    Chromosomal mosaicism is the presence of numerous cell lines with different chromosomal complements in the same individual. Uniparental disomy (UPD) is the inheritance of two homologous chromosomes from the same parent. These genetic anomalies arise from errors in meiosis and/or mitosis and can occur independently or in combination. Due to the formation mechanisms of UPD, low-level or undetected mosaicisms are assumed for a significant number of UPD cases. The pre- and postnatal clinical consequences of mosaicism for chromosomal aberrations and/or UPD depend on the gene content of the involved chromosome. In prenatal evaluation of chromosomal mosaicism and UPD, genetic counseling should be offered before any laboratory testing.

  11. Peach latent mosaic viroid: not so latent.

    Science.gov (United States)

    Flores, Ricardo; Delgado, Sonia; Rodio, María-Elena; Ambrós, Silvia; Hernández, Carmen; Serio, Francesco D I

    2006-07-01

    SUMMARY Taxonomy: Peach latent mosaic viroid (PLMVd) is the type species of the genus Pelamoviroid within the family Avsunviroidae of chloroplastic viroids with hammerhead ribozymes. Physical properties: A small circular RNA of 336-351 nt (differences in size result from the absence or presence of certain insertions) adopting a branched conformation stabilized by a pseudoknot between two kissing loops. This particular conformation is most likely responsible for the insolubility of PLMVd in highly saline conditions (in which other viroids adopting a rod-like conformation are soluble). Both polarity strands are able to form hammerhead structures and to self-cleave during replication as predicted by these ribozymes. Biological properties: Although most infections occur without conspicuous symptoms, certain PLMVd isolates induce leaf mosaics, blotches and in the most extreme cases albinism (peach calico, PC), flower streaking, delays in foliation, flowering and ripening, deformations and decolorations of fruits, which usually present cracked sutures and enlarged roundish stones, bud necrosis, stem pitting and premature ageing of the trees, which also adopt a characteristic growing pattern (open habit). The molecular determinant for PC has been mapped at a 12-14-nt insertion that folds into a hairpin capped by a U-rich loop present only in certain variants. PLMVd is horizontally transmitted by the propagation of infected buds and to a lesser extent by pruning tools and aphids, but not by pollen; the viroid is not vertically transmitted through seed. Interesting features: This provides a suitable system for studying how a minimal non-protein-coding catalytic RNA replicates (subverting a DNA-dependent RNA polymerase to transcribe an RNA template), moves, interferes with the metabolism of its host (inciting specific symptoms and a defensive RNA silencing response) and evolves following a quasi-species model characterized by a complex spectrum of variants.

  12. Alpha-fetoprotein-L3 and Golgi protein 73 may serve as candidate biomarkers for diagnosing alpha-fetoprotein-negative hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZG

    2015-12-01

    Full Text Available Zhiguo Zhang,1 Yanying Zhang,2 Yeying Wang,1 Lingling Xu,3 Wanju Xu3 1Department of Clinical Laboratory, Zhangqiu Maternity and Child Care Hospital, Zhangqiu, 2Department of Clinical Laboratory, Zaozhuang City Wangkai Infection Hospital, Zaozhuang, 3Department of Clinical Laboratory, Qianfoshan Hospital, Jinan, People’s Republic of China Abstract: Currently, there is no reliable biomarker for use in diagnosing alpha-fetoprotein (AFP-negative hepatocellular carcinoma (HCC. Such a biomarker would aid in making an early diagnosis of AFP-negative HCC, ensuring the timely initiation of treatment. This study examined AFP-L3 and Golgi protein 73 (GP73 as candidate biomarkers for AFP-negative HCC. The affinity adsorption method and enzyme-linked immunoassays were separately used to determine serum levels of AFP-L3 and GP73 in 50 patients with AFP-negative HCC, 30 non-HCC patients, and 50 healthy subjects. Fifty percent of patients with AFP-negative HCC tested positive for AFP-L3, while 3.33% of non-HCC patients and 2.00% of healthy subjects were AFP-L3 positive. Patients with AFP-negative HCC had significantly higher serum levels of AFP-L3 compared to non-HCC patients and healthy individuals; however, there was no significant difference in the AFP-L3 levels of non-HCC patients and healthy subjects. Sixty-six percent of patients with AFP-negative HCC tested positive for GP73, while 10% of non-HCC patients and 0% of healthy subjects were GP73-positive. Patients with AFP-negative HCC had significantly higher serum levels of GP73 compared to non-HCC patients and healthy subjects, but there was no significant difference between the GP73 levels of non-HCC patients and healthy individuals. Moreover, 20 patients with AFP-negative HCC were both AFP-L3- and GP73-positive, while no non-HCC patients or healthy subjects tested positive for both markers. Either AFP-L3 or GP73 may be used as a biomarker for diagnosing AFP-negative HCC, while their combined use

  13. Alstroemeria-infecting cucumber mosaic virus isolates contain additional sequences in the RNA 3 segment.

    NARCIS (Netherlands)

    Chen, Y.K.; Prins, M.W.; Derks, A.F.L.M.; Langeveld, S.A.; Goldbach, R.W.

    2002-01-01

    The coat protein (CP) genes and flanking regions of three alstroemeria-infecting cucumber mosaic virus isolates (CMV-ALS), denoted ALS-LBO, ALS-IPO, and ALS-NAK, were cloned and their nucleotide sequence determined and compared at both nucleic acid and deduced protein level with the published sequen

  14. 芋花叶病毒的RT-PCR检测及外壳蛋白基因序列分析%The Detection of Dasheen mosaic virus by RT-PCR and Sequence Analysis of Its Coat Protein Gene

    Institute of Scientific and Technical Information of China (English)

    施世明; 王国平; 徐文兴; 王利平; 洪霓

    2012-01-01

    Reverse transcription PCR(RT-PCR)was used for the detection of Dasheen mosaic virus (DsMV)in taro[Colocasia esculenta(L.)Schott] from Hubei,Zhejiang and Shandong Provinces. Results revealed that the average viral infection frequency in 91 collected taro samples was 26.4%. RT-PCR products of 317 bp(covering partial coat protein gene)from 14 isolates were sequenced. Results showed that the obtained sequences had high intra-isolate nucleotide similarities,but inter-isolate nucleotide similarities were varied from 68.3% to 97.8%. The cp genes of two DsMV isolates named DsMV-SCS and DsMV-JH were sequenced,and their sizes were 951 bp and 987 bp,respectively. Their cp genes shared similarities of 79.0% at nucleotide(nt)level and 82.3% at amino acid(aa)level to each other and similarities of 73.0%–92.1% at nt level and 74.8%–98.2% at aa level to reported cp sequences of DsMV,respectively. The phylogenetic trees constructed based on nucleotide and deduced amino acid sequences of the cp of DsMV showed that isolates DsMV-SCS and DsMV-JH clustered into two different groups. There was no obvious correlation between phylogenetic positions and host or geographical origins of different DsMV isolates.%采用RT-PCR技术对采自中国湖北、浙江和山东的91份芋[Colocasia esculenta(L.)Schott]样品的芋花叶病毒(Dasheen mosaicvirus,DsMV)进行了检测,检出率为26.4%。对其中14个DsMV分离物的317bp扩增产物(为外壳蛋白基因的一部分)序列分析的结果显示,各分离物内的核苷酸变异相对较低,而分离物间存在较大的分子变异,相似性为68.3%~97.8%。对来自湖北和浙江的2个DsMV分离物DsMV-SCS和DsMV-JH的外壳蛋白基因(coatproteingene,cp)进行了测序,全长分别为951bp和987bp,二者cp核苷酸和氨基酸序列相似性分别为79.0%和82.3%,与已报道DsMV的cp核苷酸和氨基酸序列相似性分别为73.0%~92.1%和74.8%~98.2%,在构建的系统发育树上聚

  15. 侵染南瓜的西瓜花叶病毒和黄瓜花叶病毒CP基因的克隆和序列分析%Cloning and Sequence Analyses of the Coat Protein Genes of Watermelon mosaic virus and Cucumber mosaic virus from one Mix-infected Squash Plant

    Institute of Scientific and Technical Information of China (English)

    刘金亮; 王凤婷; 魏毅; 张世宏; 潘洪玉

    2010-01-01

    为从分子水平鉴定山东聊城的一表现明显花叶、黄化、蕨叶及果实畸形的南瓜病毒病的病原,采用RT-PCR的方法,用马铃薯Y病毒属病毒3'-末端序列的简并引物和黄瓜花叶病毒(Cucumber mosaic virus,CMV)外壳蛋白(CP)基因的特异引物,对该样品进行了检测,并对克隆到的基因序列进行分析.结果表明,该样品受西瓜花叶病毒(Watermelon mosaic virus,WMV)和CMV 2种病毒的复合侵染,分别命名为WMV-liaocheng和CMV-liaocheng,与其他相应病毒分离物CP基因核苷酸序列的同源性分别为91.2%~98.0%和77.0%~97.9%,推导的氨基酸序列同源性分别为96.4%~98.5%和81.2%~99.1%.根据完整CP基因核苷酸序列构建的系统进化树显示:18个WMV分离物可分为3组,其中WMV-liaocheng与HLJ、CHN及Habenaria等分离物表现出较近的亲缘关系,形成Ⅲ组;30个CMV分为2个亚组,其中CMV-liaocheng属于亚组Ⅰ,CMV-liaocheng可能发生过重组.

  16. Proteomic and phytohormone analysis of the response of maize (Zea mays L. seedlings to sugarcane mosaic virus.

    Directory of Open Access Journals (Sweden)

    Liuji Wu

    Full Text Available BACKGROUND: Sugarcane mosaic virus (SCMV is an important virus pathogen in crop production, causing serious losses in grain and forage yields in susceptible cultivars. Control strategies have been developed, but only marginal successes have been achieved. For the efficient control of this virus, a better understanding of its interactions and associated resistance mechanisms at the molecular level is required. METHODOLOGY/PRINCIPAL FINDINGS: The responses of resistant and susceptible genotypes of maize to SCMV and the molecular basis of the resistance were studied using a proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS analysis. Ninety-six protein spots showed statistically significant differences in intensity after SCMV inoculation. The classification of differentially expressed proteins showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, and photosynthesis. Most of the proteins identified were located in chloroplasts, chloroplast membranes, and the cytoplasm. Analysis of changes in phytohormone levels after virus inoculation suggested that salicylic acid, abscisic acid, jasmonic acid, and azelaic acid may played important roles in the maize response to SCMV infection. CONCLUSIONS/SIGNIFICANCE: Among these identified proteins, 19 have not been identified previously as virus-responsive proteins, and seven were new and did not have assigned functions. These proteins may be candidate proteins for future investigation, and they may present new biological functions and play important roles in plant-virus interactions. The behavioural patterns of the identified proteins suggest the existence of defense mechanisms operating during the early stages of infection that differed in two genotypes. In addition, there are overlapping and specific phytohormone

  17. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    Science.gov (United States)

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus.

  18. Mental Development in Down Syndrome Mosaicism.

    Science.gov (United States)

    Fishler, Karol; Koch, Richard

    1991-01-01

    Comparison of the mental status of 30 subjects with Down's Syndrome mosaicism and 30 matched subjects with trisomy 21 Down's Syndrome found that the mean intelligent quotient of the mosaic Down's Syndrome group was significantly higher and that this group showed better verbal abilities and more normal visual-perceptual skills. (Author/DB)

  19. Severe stunting in blackgram caused by the Mungbean yellow mosaic virus (MYMV) KA27 DNA B component is ameliorated by co-infection or post-infection with the KA22 DNA B: MYMV nuclear shuttle protein is the symptom determinant.

    Science.gov (United States)

    Mahajan, Nagrani; Parameswari, Chidambaram; Veluthambi, Karuppannan

    2011-04-01

    Mungbean yellow mosaic virus-[India:Vigna] (MYMV-[IN:Vig]), a blackgram isolate of MYMV, has five variable and infective DNA B components of which KA22 and KA27 DNA Bs share only 72% nucleotide sequence identity between them. Agroinoculation of blackgram with partial dimers of DNA A and KA27 DNA B caused severe stunting and an inordinate delay in flowering. Interestingly, co-agroinoculation of KA27+KA22 DNA B components along with DNA A ameliorated severe stunting, rescued from the delay in flowering and caused the appearance of yellow mosaic symptom characteristic of KA22 DNA B. Post-agroinoculation of KA27 DNA B-infected blackgram plants with KA22 DNA B also resulted in the amelioration from severe stunting and in the alleviation from the delay in flowering. Alleviation from KA27 DNA B-type of symptom by co-infection or post-infection with KA22 DNA B did not result in a corresponding reduction in KA27 DNA B levels. Swapping of KA27 DNA B with the nuclear shuttle protein gene (NSP) of KA22 DNA B abolished severe stunting and caused the appearance of mild yellow symptom, suggesting that the NSP is the major symptom determinant in MYMV DNA B.

  20. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model.

    Science.gov (United States)

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-05-30

    Streptococcus pneumoniae infections continue to cause significant worldwide morbidity and mortality despite the availability of efficacious serotype-dependent vaccines. The need to incorporate emergent strains expressing additional serotypes into pneumococcal polysaccharide conjugate vaccines has led to an identified need for a pneumococcal protein-based vaccine effective against a broad scope of serotypes. A vaccine consisting of several conserved proteins with different functions during pathogenesis would be preferred. Here, we investigated the efficacy of a trivalent recombinant protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad D (PhtD), and genetically detoxified pneumolysin (PlyD1) in an infant mouse model. We found the trivalent vaccine conferred protection from lethal pneumonia challenges using serotypes 6A and 3. The observed protection with trivalent PcpA, PhtD, and PlyD1 vaccine in infant mice supports the ongoing study of this candidate vaccine in human infant clinical trials.

  1. [Revertant somatic mosaicism in primary immunodeficiency diseases].

    Science.gov (United States)

    Wada, Taizo

    2014-01-01

    Revertant somatic mosaicism has been described in an increasing number of genetic disorders including primary immunodeficiency diseases. Both back mutations leading to restoration of wild-type sequences and second-site mutations resulting in compensatory changes have been demonstrated in mosaic individuals. Recent studies identifying revertant somatic mosaicism caused by multiple independent genetic changes further support its frequent occurrence in primary immunodeficiency diseases. Revertant mosaicism acquires a particular clinical relevance because it may lead to selective growth advantage of the corrected cells, resulting in improvement of disease symptoms or atypical clinical presentations. This phenomenon also provides us unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. Here we review the recent findings of revertant somatic mosaicism in primary immunodeficiency diseases and discuss its clinical implications.

  2. Web Map Services (WMS) Global Mosaic

    Science.gov (United States)

    Percivall, George; Plesea, Lucian

    2003-01-01

    The WMS Global Mosaic provides access to imagery of the global landmass using an open standard for web mapping. The seamless image is a mosaic of Landsat 7 scenes; geographically-accurate with 30 and 15 meter resolutions. By using the OpenGIS Web Map Service (WMS) interface, any organization can use the global mosaic as a layer in their geospatial applications. Based on a trade study, an implementation approach was chosen that extends a previously developed WMS hosting a Landsat 5 CONUS mosaic developed by JPL. The WMS Global Mosaic supports the NASA Geospatial Interoperability Office goal of providing an integrated digital representation of the Earth, widely accessible for humanity's critical decisions.

  3. Phylogenomic Analysis Reveals Extensive Phylogenetic Mosaicism in the Human GPCR Superfamily

    Directory of Open Access Journals (Sweden)

    Mathew Woodwark

    2007-01-01

    Full Text Available A novel high throughput phylogenomic analysis (HTP was applied to the rhodopsin G-protein coupled receptor (GPCR family. Instances of phylogenetic mosaicism between receptors were found to be frequent, often as instances of correlated mosaicism and repeated mosaicism. A null data set was constructed with the same phylogenetic topology as the rhodopsin GPCRs. Comparison of the two data sets revealed that mosaicism was found in GPCRs in a higher frequency than would be expected by homoplasy or the effects of topology alone. Various evolutionary models of differential conservation, recombination and homoplasy are explored which could result in the patterns observed in this analysis. We find that the results are most consistent with frequent recombination events. A complex evolutionary history is illustrated in which it is likely frequent recombination has endowed GPCRs with new functions. The pattern of mosaicism is shown to be informative for functional prediction for orphan receptors. HTP analysis is complementary to conventional phylogenomic analyses revealing mosaicism that would not otherwise have been detectable through conventional phylogenetics.

  4. Genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) RNA replicase requires a sequence that is complementary to the binding site of the BMV helicase-like protein.

    Science.gov (United States)

    Sivakumaran, K; Kao, C C

    2000-11-01

    Summary Initiation of genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) replicase in vitro requires a 26-nucleotide (nt) RNA sequence at the 3' end of the minus-strand RNA and a nontemplated nucleotide 3' of the initiation cytidylate [Sivakumaran, K. and Kao, C.C. (1999)J. Virol.64, 6415-6423]. At the 5' end of this RNA is a 9-nt sequence called the cB box, the complement of the previously defined B box. The cB box can not be functionally replaced by the B box and has specific positional and sequence requirements. The portion of the cB box that is required for RNA synthesis in vitro is well-conserved in species in the Bromoviridae family. An equivalent RNA from Cucumber mosaic virus was unable to direct efficient RNA synthesis by the BMV replicase until the cB box was positioned at the same site relative to the BMV RNA and guanylates were present at positions +6 and +7 from the initiation cytidylate. These results further define the elements required for the recognition and initiation of viral genomic plus-strand RNA synthesis and suggest that a sequence important for minus-strand RNA synthesis is also required for plus-strand RNA synthesis.

  5. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling

    DEFF Research Database (Denmark)

    Uzarowska, Anna; Dionisio, Giuseppe; Sarholz, Barbara

    2009-01-01

    Background The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance...... the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize....

  6. Trisomy 21 mosaicism and maternal age.

    Science.gov (United States)

    Morris, Joan K

    2012-10-01

    The aim of this study was to quantify the maternal age-specific risk for trisomy 21 mosaicism. Data were obtained on 322 trisomy 21 diagnoses with mosaicism and 27,943 simple trisomy 21 diagnoses recorded in the National Down Syndrome Cytogenetic Register from 1989 to 2009 in England and Wales. Trisomy 21 cases with mosaicism have a mean maternal age of 33.1 years compared to 35.0 years for free trisomy 21 cases. Sixty-seven percent of trisomy 21 diagnoses with mosaicism are maternal age dependent, with a risk 0.8% that of the corresponding maternal age specific risk for simple trisomy 21. However 33% (0.8 per 100,000 births) are not maternal age dependent, indicating that maternal age is not the only risk factor for mosaicism. Trisomy 21 diagnoses with mosaicism are more likely to be female than free trisomy 21 diagnoses, however there was no association of fetal sex with maternal age which indicates that there is another factor involved in the presence of mosaicism not associated with maternal age, but associated with fetal sex.

  7. A MOSAIC for the Science Classroom

    Science.gov (United States)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Costa, D.; Cadigan, J.; Clements, C.; May, S. K.

    2011-01-01

    MOSAIC (Mesospheric Ozone System for Atmospheric Investigations in the Classroom) is a project to engage secondary and undergraduate students in authentic inquiry-based science learning using a network of inexpensive spectrometers monitoring the mesospheric ozone concentration. The MOSAIC system observes the 11 GHz emission line of ozone using electronics built around satellite television equipment. The possibilities for student investigation are broad and scientifically significant. MOSAIC observations have confirmed diurnal variations in mesospheric ozone concentration and detected semiannual variations that may be due to inter-hemispheric meridional circulation of water vapor. Possible future projects include monitoring the temperature of the mesosphere and correlations with the solar cycle. Students are also encouraged to design their own investigations with MOSAIC data. Early results have been reported in a major scientific journal, and further scientific progress is likely as future MOSAIC systems are deployed -- increasing the sensitivity and geographic coverage of the network. Complete teaching units, including slides, laboratory activities, background information, student worksheets, and conformance with national and Massachusetts educational standards, have been developed to integrate MOSAIC into a classroom environment. One unit introduces the layers of the atmosphere, Earth's energy balance, the greenhouse effect, processes of ozone creation and destruction, noctilucent clouds, heat transfer, the laws of thermodynamics, radio waves (including radio astronomy), and fluid behavior. A second unit, currently being tested in classrooms, uses the MOSAIC system to motivate and deepen understanding of a large portion of electromagnetism in a conceptual physics class. MOSAIC has also been used in a local high school chemistry class. MOSAIC is still in development and is funded by the National Science Foundation.

  8. Unrevealed mosaicism in the next-generation sequencing era.

    Science.gov (United States)

    Gajecka, Marzena

    2016-04-01

    Mosaicism refers to the presence in an individual of normal and abnormal cells that are genotypically distinct and are derived from a single zygote. The incidence of mosaicism events in the human body is underestimated as the genotypes in the mosaic ratio, especially in the low-grade mosaicism, stay unrevealed. This review summarizes various research outcomes and diagnostic questions in relation to different types of mosaicism. The impact of both tested biological material and applied method on the mosaicism detection rate is especially highlighted. As next-generation sequencing technologies constitute a promising methodological solution in mosaicism detection in the coming years, revisions in current diagnostic protocols are necessary to increase the detection rate of the unrevealed mosaicism events. Since mosaicism identification is a complex process, numerous examples of multistep mosaicism investigations are presented and discussed.

  9. Cattle Candidate Genes for Milk Production Traits

    OpenAIRE

    Kadlec, Tomáš

    2012-01-01

    The aim of this thesis is to make an overview of important candidate genes affecting milk yield and milk quality parameters, with an emphasis on genes associated with the quantity and quality of milk proteins and milk fat.

  10. Trisomy 9 Mosaicism Diagnosed In Utero

    Directory of Open Access Journals (Sweden)

    Hironori Takahashi

    2010-01-01

    Full Text Available We present three cases of trisomy 9 mosaicism diagnosed by amniocentesis with ongoing pregnancies after referral to our center due to fetal abnormalities. Two cases were associated with severe fetal growth restriction (FGR, each of which resulted in an intrauterine fetal demise (IUFD in the third trimester. The other case involved mild FGR with a congenital diaphragmatic hernia and resulted in a live birth with severe development delay. A major prenatal finding of trisomy 9 mosaicism is FGR. Fetuses with trisomy 9 mosaicism can rarely survive in the case of severe FGR.

  11. Unrevealed mosaicism in the next-generation sequencing era

    OpenAIRE

    2015-01-01

    Mosaicism refers to the presence in an individual of normal and abnormal cells that are genotypically distinct and are derived from a single zygote. The incidence of mosaicism events in the human body is underestimated as the genotypes in the mosaic ratio, especially in the low-grade mosaicism, stay unrevealed. This review summarizes various research outcomes and diagnostic questions in relation to different types of mosaicism. The impact of both tested biological material and applied method ...

  12. Mosaic of Commemorative Microscope Substrate

    Science.gov (United States)

    2008-01-01

    Written by electron beam lithography in the Microdevices Laboratory of NASA's Jet Propulsion Laboratory, this Optical Microscope substrate helps the Phoenix Mars Mission science team learn how to assemble individual microscope images into a mosaic by aligning rows of text. Each line is about 0.1 millimeter tall, the average thickness of a human hair. Except for the Mogensen twins, the names are of babies born and team members lost during the original development of MECA (the Microscopy, Electrochemistry and Conductivity Analyzer) for the canceled 2001 Mars lander mission. The plaque also acknowledges the MECA 2001 principal investigator, now retired. This image was taken by the MECA Optical Microscope on Sol 111, or the 111th day of the Phoenix mission (Sept. 16, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  13. An exploratory method for screening candidate target proteins of insoluble drugs%非水溶性药物潜在靶蛋白筛选方法探索

    Institute of Scientific and Technical Information of China (English)

    陶定银; 夏思敏; 刘晋湘; 张丽华; 梁振; 张玉奎

    2011-01-01

    针对化学蛋白质组学在筛选非水溶性药物的靶蛋白中存在的问题,建立了以非水溶性药物颗粒为载体的靶蛋白筛选方法.通过避免药物固定化,不仅可以保留全部的药物官能团,而且减少了蛋白质在固载基质上的非特异性吸附,可提高获得数据的可信度.将非溶性药物地塞米松颗粒直接与人小细胞肺癌H446细胞提取蛋白质通过间歇性振荡孵育24 h,然后采用缓冲液清洗药物颗粒,最后对药物颗粒特异性结合的蛋白质进行酶解和分离鉴定.结果表明,筛选出41个潜在的药物靶蛋白,参与了与DEX药物作用机理相关的多种蛋白质代谢通路和糖代谢通路,同时还发现部分蛋白质参与了帕金森症疾病过程.%To solve the problem in screening the candidate target proteins of poor solubility drugs with limited immobilization function groups by traditional chemical proteomics method, a chemical proteomics method for screening candidate proteins targets, with insoluble drugs particles directly as matrix, was explored. Compared with the traditional methods, the support free protocol could not only avoid the problems caused by matrices and linkers, but also maintain all active sites of drugs without immobilization. The protein extracted from human small cell lung cancer (SCLC) NCI-H446 cells was incubated with dexamethasone (DEX) particles directly for 24 h with shaking in intervals. After incubation, the pellets of DEX were washed with PBS buffer and NaCl to remove other proteins non-specifically adsorbed to particles. Then the proteins adsorbed on DEX particles were processed by thermal denaturation, reduction, alkylation and digestion, followed by μRPLC-ESI MS/MS analysis, 41 candidate target proteins were screened which interaction to each other, and several proteins were involved in pathways which related with DEX mechanism, including the one related to Parkinson's disease.

  14. Expression at a 20L scale and purification of the extracellular domain of the Schistosoma mansoni TSP-2 recombinant protein: a vaccine candidate for human intestinal schistosomiasis.

    Science.gov (United States)

    Curti, Elena; Kwityn, Clifford; Zhan, Bin; Gillespie, Portia; Brelsford, Jill; Deumic, Vehid; Plieskatt, Jordan; Rezende, Wanderson C; Tsao, Eric; Kalampanayil, Bose; Hotez, Peter J; Bottazzi, Maria Elena

    2013-11-01

    A novel recombinant protein vaccine for human schistosomiasis caused by Schistosoma mansoni is under development. The Sm-TSP-2 schistosomiasis vaccine is comprised of a 9 kDa recombinant protein corresponding to the extracellular domain of a unique S. mansoni tetraspanin. Here, we describe the cloning and the expression of the external loop of Sm-TSP-2 recombinant protein secreted by Pichia Pink the process development at 20L scale fermentation, and the two-steps purification, which resulted in a protein recovery yield of 31% and a protein purity of 97%. The developed processes are suitable for the production of purified protein for subsequent formulation and Phase 1 clinical studies.

  15. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice.

    Directory of Open Access Journals (Sweden)

    R Mark Jones

    Full Text Available Malaria transmission blocking vaccines (TBVs are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs. We engineered VLPs (Pfs25-CP VLP comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based 'launch' vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter with an estimated 20-30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the 'launch' vector technology for the production of VLP-based recombinant vaccines against infectious diseases.

  16. The Neisseria meningitidis Macrophage Infectivity Potentiator Protein Induces Cross-Strain Serum Bactericidal Activity and Is a Potential Serogroup B Vaccine Candidate

    OpenAIRE

    Hung, Miao-Chiu; Salim, Omar; Williams, Jeannette N.; Heckels, John E.; Christodoulides, Myron

    2011-01-01

    A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and su...

  17. The cell biology of Tobacco mosaic virus replication and movement.

    Science.gov (United States)

    Liu, Chengke; Nelson, Richard S

    2013-01-01

    Successful systemic infection of a plant by Tobacco mosaic virus (TMV) requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement, and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton, and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  18. Optimization of Ammonium Sulfate Concentration for Purification of Colorectal Cancer Vaccine Candidate Recombinant Protein GA733-FcK Isolated from Plants.

    Science.gov (United States)

    Park, Se-Ra; Lim, Chae-Yeon; Kim, Deuk-Su; Ko, Kisung

    2015-01-01

    A protein purification procedure is required to obtain high-value recombinant injectable vaccine proteins produced in plants as a bioreactor. However, existing purification procedures for plant-derived recombinant proteins are often not optimized and are inefficient, with low recovery rates. In our previous study, we used 25-30% ammonium sulfate to precipitate total soluble proteins (TSPs) in purification process for recombinant proteins from plant leaf biomass which has not been optimized. Thus, the objective in this study is to optimize the conditions for plant-derived protein purification procedures. Various ammonium sulfate concentrations (15-80%) were compared to determine their effects on TSPs yield. With 50% ammonium sulfate, the yield of precipitated TSP was the highest, and that of the plant-derived colorectal cancer-specific surface glycoprotein GA733 fused to the Fc fragment of human IgG tagged with endoplasmic reticulum retention signal KDEL (GA733(P)-FcK) protein significantly increased 1.8-fold. SDS-PAGE analysis showed that the purity of GA733(P)-FcK protein band appeared to be similar to that of an equal dose of mammalian-derived GA733-Fc (GA733(M)-Fc). The binding activity of purified GA733(P)-FcK to anti-GA733 mAb was as efficient as the native GA733(M)-Fc. Thus, the purification process was effectively optimized for obtaining a high yield of plant-derived antigenic protein with good quality. In conclusion, the purification recovery rate of large quantities of recombinant protein from plant expression systems can be enhanced via optimization of ammonium sulfate concentration during downstream processes, thereby offering a promising solution for production of recombinant GA733-Fc protein in plants.

  19. Deep sequencing detects very-low-grade somatic mosaicism in the unaffected mother of siblings with nemaline myopathy.

    Science.gov (United States)

    Miyatake, Satoko; Koshimizu, Eriko; Hayashi, Yukiko K; Miya, Kazushi; Shiina, Masaaki; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Ogata, Kazuhiro; Nishino, Ichizo; Matsumoto, Naomichi

    2014-07-01

    When an expected mutation in a particular disease-causing gene is not identified in a suspected carrier, it is usually assumed to be due to germline mosaicism. We report here very-low-grade somatic mosaicism in ACTA1 in an unaffected mother of two siblings affected with a neonatal form of nemaline myopathy. The mosaicism was detected by deep resequencing using a next-generation sequencer. We identified a novel heterozygous mutation in ACTA1, c.448A>G (p.Thr150Ala), in the affected siblings. Three-dimensional structural modeling suggested that this mutation may affect polymerization and/or actin's interactions with other proteins. In this family, we expected autosomal dominant inheritance with either parent demonstrating germline or somatic mosaicism. Sanger sequencing identified no mutation. However, further deep resequencing of this mutation on a next-generation sequencer identified very-low-grade somatic mosaicism in the mother: 0.4%, 1.1%, and 8.3% in the saliva, blood leukocytes, and nails, respectively. Our study demonstrates the possibility of very-low-grade somatic mosaicism in suspected carriers, rather than germline mosaicism.

  20. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records

    DEFF Research Database (Denmark)

    Jiang, Li; Edwards, Stefan M.; Thomsen, Bo

    2014-01-01

    from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text...

  1. Recurrence risk for germinal mosaics revisited

    NARCIS (Netherlands)

    van der Meulen, M A; te Meerman, G J

    1995-01-01

    A formula to calculate recurrence risk for germline mosaicism published by Hartl in 1971 has been updated to include marker information. For practical genetic counselling new, more elaborate tables are given.

  2. Revertant mosaicism in human genetic disorders

    NARCIS (Netherlands)

    Jonkman, MF

    1999-01-01

    Somatic reversion of inherited mutations is known for many years in plant breeding, however it was recognized only recently in humans. The concept of revertant mosaicism is important in medical genetics. (C) 1999 Wiley-Liss, Inc.

  3. High sequence conservation among cucumber mosaic virus isolates from lily.

    Science.gov (United States)

    Chen, Y K; Derks, A F; Langeveld, S; Goldbach, R; Prins, M

    2001-08-01

    For classification of Cucumber mosaic virus (CMV) isolates from ornamental crops of different geographical areas, these were characterized by comparing the nucleotide sequences of RNAs 4 and the encoded coat proteins. Within the ornamental-infecting CMV viruses both subgroups were represented. CMV isolates of Alstroemeria and crocus were classified as subgroup II isolates, whereas 8 other isolates, from lily, gladiolus, amaranthus, larkspur, and lisianthus, were identified as subgroup I members. In general, nucleotide sequence comparisons correlated well with geographic distribution, with one notable exception: the analyzed nucleotide sequences of 5 lily isolates showed remarkably high homology despite different origins.

  4. Engineering of Brome mosaic virus for biomedical applications

    Science.gov (United States)

    Yildiz, Ibrahim; Tsvetkova, Irina; Wen, Amy M.; Shukla, Sourabh; Masarapu, M. Hema; Dragnea, Bogdan; Steinmetz, Nicole F.

    2016-01-01

    Viral nanoparticles (VNPs) are becoming versatile tools in platform technology development. Their well-defined structures as well as their programmability through chemical and genetic modification allow VNPs to be engineered for potential imaging and therapeutic applications. In this article, we report the application of a variety of bioconjugation chemistries to the plant VNP Brome mosaic virus (BMV). Functional BMV nanoparticles displaying multiple copies of fluorescent dyes, PEG molecules, chemotherapeutic drug moieties, targeting proteins and cell penetrating peptides were formulated. This opens the door for the application of BMV in nanomedicine. PMID:28018580

  5. Structural lability of Barley stripe mosaic virus virions.

    Directory of Open Access Journals (Sweden)

    Valentin V Makarov

    Full Text Available Virions of Barley stripe mosaic virus (BSMV were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV, a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed.

  6. In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites.

    Science.gov (United States)

    Champagne, Antoine; Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja; Boutry, Marc

    2012-12-01

    Madagascar periwinkle (Catharanthus roseus) is the major source of terpenoid indole alkaloids, such as vinblastine or vincristine, used as natural drugs against various cancers. In this study, we have extensively analyzed the proteome of cultured C. roseus cells. Comparison of the proteomes of two independent cell lines with different terpenoid indole alkaloid metabolism by 2D-DIGE revealed 358 proteins that differed quantitatively by at least a twofold average ratio. Of these, 172 were identified by MS; most corresponded to housekeeping proteins. Less abundant proteins were identified by LC separation of tryptic peptides of proteins from one of the lines. We identified 1663 proteins, most of which are housekeeping proteins or involved in primary metabolism. However, 63 enzymes potentially involved in secondary metabolism were also identified, of which 22 are involved in terpenoid indole alkaloid biosynthesis and 16 are predicted transporters putatively involved in secondary metabolite transport. About 30% of the proteins identified have an unclear or unknown function, indicating important gaps in knowledge of plant metabolism. This study is an important step toward elucidating the proteome of C. roseus, which is critical for a better understanding of how this plant synthesizes terpenoid indole alkaloids.

  7. Detecting somatic mosaicism: considerations and clinical implications.

    Science.gov (United States)

    Cohen, A S A; Wilson, S L; Trinh, J; Ye, X C

    2015-06-01

    Human disease is rarely a matter of all or nothing; variable expressivity is generally observed. Part of this variability is explained by somatic mosaicism, which can arise by a myriad of genetic alterations. These can take place at any stage of development, possibly leading to unusual features visible at birth, but can also occur later in life, conceivably leading to cancer. Previously, detection of somatic mosaicism was extremely challenging, as many gold standard tests lacked the necessary resolution. However, with the advances in high-throughput sequencing, mosaicism is being detected more frequently and at lower levels. This raises the issue of normal variation within each individual vs mosaicism leading to disease, and how to distinguish between the two. In this article, we will define somatic mosaicism with a brief overview of its main mechanisms in concrete clinical examples, discuss the impact of next-generation sequencing technologies in its detection, and expand on the clinical implications associated with a discovery of somatic mosaicism in the clinic.

  8. Pepper yellow mosaic virus, a new potyvirus in sweet-pepper. Archives of Virology

    NARCIS (Netherlands)

    Inoue-Nagata, A.K.; Fonseca, M.E.N.; Resende, de R.O.; Boiteux, L.S.; Monte, D.C.; Dusi, A.N.; Ávila, de A.C.; Vlugt, van der R.A.A.

    2002-01-01

    A potyvirus was found causing yellow mosaic and veinal banding in sweetpepper in Central and Southeast Brazil. The sequence analysis of the 3' terminal region of the viral RNA revealed a coat protein of 278 amino acids, followed by 275 nucleotides in the 3'-untranslated region preceding a polyadenyl

  9. Analysis of Polymorphic Membrane Protein Expression in Cultured Cells Identifies PmpA and PmpH of Chlamydia psittaci as Candidate Factors in Pathogenesis and Immunity to Infection

    Science.gov (United States)

    Van Lent, Sarah; De Vos, Winnok H.; Huot Creasy, Heather; Marques, Patricia X.; Ravel, Jacques; Vanrompay, Daisy; Bavoil, Patrik; Hsia, Ru-ching

    2016-01-01

    The polymorphic membrane protein (Pmp) paralogous families of Chlamydia trachomatis, Chlamydia pneumoniae and Chlamydia abortus are putative targets for Chlamydia vaccine development. To determine whether this is also the case for Pmp family members of C. psittaci, we analyzed transcription levels, protein production and localization of several Pmps of C. psittaci. Pmp expression profiles were characterized using quantitative real-time PCR (RT-qPCR), immunofluorescence (IF) and immuno-electron microscopy (IEM) under normal and stress conditions. We found that PmpA was highly produced in all inclusions as early as 12 hpi in all biological replicates. In addition, PmpA and PmpH appeared to be unusually accessible to antibody as determined by both immunofluorescence and immuno-electron microscopy. Our results suggest an important role for these Pmps in the pathogenesis of C. psittaci, and make them promising candidates in vaccine development. PMID:27631978

  10. Higher levels of mucosal antibody to pneumococcal vaccine candidate proteins are associated with reduced acute otitis media caused by Streptococcus pneumoniae in young children.

    Science.gov (United States)

    Xu, Q; Casey, J R; Pichichero, M E

    2015-09-01

    Mucosal immunity has a crucial role in controlling human respiratory tract infections. This study characterizes the naturally acquired mucosal antibody levels to three Streptococcus pneumoniae (Spn) protein antigens, pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and pneumolysin (Ply), and assesses the association of the mucosal antibody levels with occurrence of acute otitis media (AOM) caused by Spn. Both nasopharyngeal (NP) immunoglobulin G (IgG) and IgA levels to all three proteins slightly decreased in children from 6 to 9 months of age and then gradually increased through 24 months of age. Spn NP colonization was associated with higher mucosal antibody levels to all three proteins. However, children with Spn AOM had 5-8-fold lower IgG and 3-6-fold lower IgA levels to the three proteins than children without AOM but asymptomatically colonized with Spn. Antigen-specific antibody levels in the middle ear fluid (MEF) were correlated with antibody levels in the NP. Children with AOM caused by Spn had lower antibody levels in both the MEF and NP than children with AOM caused by other pathogens. These results indicate that higher naturally acquired mucosal antibody levels to PhtD, PcpA and Ply are associated with reduced AOM caused by Spn.

  11. The Neisseria meningitidis Macrophage Infectivity Potentiator Protein Induces Cross-Strain Serum Bactericidal Activity and Is a Potential Serogroup B Vaccine Candidate

    Science.gov (United States)

    Hung, Miao-Chiu; Salim, Omar; Williams, Jeannette N.; Heckels, John E.; Christodoulides, Myron

    2011-01-01

    A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and subtype, showed that the protein was highly conserved (98 to 100%), with only three distinct sequence types (designated I, II, and III) found. Western blotting showed that the MIP protein was expressed at similar levels by all of these strains. Immunization of mice with type I MC58 rMIP in detergent micelles and liposomes containing monophosphoryl lipid A (MPLA) induced high levels of surface-reactive antibodies with serum bactericidal activity (SBA) titers of 1/1,024 against the homologous strain. Bactericidal antibodies were also induced with the protein in saline alone and liposomes alone (titers, 1/128) but not following adsorption to Al(OH)3. Significantly, antisera raised against type I rMIP administered in saline or liposomes killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/256). Taken together, these findings suggest that rMIP can provide cross-strain protection against meningococci and should be considered a potential antigen for inclusion in new vaccines against meningococcal infection. PMID:21708989

  12. The Neisseria meningitidis macrophage infectivity potentiator protein induces cross-strain serum bactericidal activity and is a potential serogroup B vaccine candidate.

    Science.gov (United States)

    Hung, Miao-Chiu; Salim, Omar; Williams, Jeannette N; Heckels, John E; Christodoulides, Myron

    2011-09-01

    A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and subtype, showed that the protein was highly conserved (98 to 100%), with only three distinct sequence types (designated I, II, and III) found. Western blotting showed that the MIP protein was expressed at similar levels by all of these strains. Immunization of mice with type I MC58 rMIP in detergent micelles and liposomes containing monophosphoryl lipid A (MPLA) induced high levels of surface-reactive antibodies with serum bactericidal activity (SBA) titers of 1/1,024 against the homologous strain. Bactericidal antibodies were also induced with the protein in saline alone and liposomes alone (titers, 1/128) but not following adsorption to Al(OH)(3). Significantly, antisera raised against type I rMIP administered in saline or liposomes killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/256). Taken together, these findings suggest that rMIP can provide cross-strain protection against meningococci and should be considered a potential antigen for inclusion in new vaccines against meningococcal infection.

  13. Independent candidates in Mexico

    OpenAIRE

    Campos, Gonzalo Santiago

    2014-01-01

    In this paper we discuss the issue of independent candidates in Mexico, because through the so-called political reform of 2012 was incorporated in the Political Constitution of the Mexican United States the right of citizens to be registered as independent candidates. Also, in September 2013 was carried out a reform of Article 116 of the Political Constitution of the Mexican United States in order to allow independent candidates in each state of the Republic. However, prior to the constitutio...

  14. Ploidy mosaicism and allele-specific gene expression differences in the allopolyploid Squalius alburnoides

    Directory of Open Access Journals (Sweden)

    Matos Isa

    2011-12-01

    Full Text Available Abstract Background Squalius alburnoides is an Iberian cyprinid fish resulting from an interspecific hybridisation between Squalius pyrenaicus females (P genome and males of an unknown Anaecypris hispanica-like species (A genome. S. alburnoides is an allopolyploid hybridogenetic complex, which makes it a likely candidate for ploidy mosaicism occurrence, and is also an interesting model to address questions about gene expression regulation and genomic interactions. Indeed, it was previously suggested that in S. alburnoides triploids (PAA composition silencing of one of the three alleles (mainly of the P allele occurs. However, not a whole haplome is inactivated but a more or less random inactivation of alleles varying between individuals and even between organs of the same fish was seen. In this work we intended to correlate expression differences between individuals and/or between organs to the occurrence of mosaicism, evaluating if mosaics could explain previous observations and its impact on the assessment of gene expression patterns. Results To achieve our goal, we developed flow cytometry and cell sorting protocols for this system generating more homogenous cellular and transcriptional samples. With this set-up we detected 10% ploidy mosaicism within the S. alburnoides complex, and determined the allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh and β-actin in cells from liver and kidney of mosaic and non-mosaic individuals coming from different rivers over a wide geographic range. Conclusions Ploidy mosaicism occurs sporadically within the S. alburnoides complex, but in a frequency significantly higher than reported for other organisms. Moreover, we could exclude the influence of this phenomenon on the detection of variable allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh and β-actin in cells from liver and kidney of triploid individuals. Finally, we determined that the expression patterns

  15. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  16. Daphne mosaic virus (DapMV), a new potyvirus from Daphne mezereum in the Czech Republic.

    Science.gov (United States)

    Fránová, J; Petrzik, K; Lesemann, D-E; Navrátil, M

    2006-04-01

    Daphne shrubs with light green rings and mosaic on leaves contained flexuous filamentous virions (696 x 13 nm) and cylindrical inclusions typical of the subdivision III of Edwardson's classification for inclusions induced by members of the family Potyviridae. Decoration tests using antisera to 67 potyviruses revealed distant serological relations among chilli veinal mottle virus, Colombian datura virus, papaya ringspot virus, tobacco vein mottling virus and yam mosaic virus. The 3' terminal region of the virus genome was amplified by RT-PCR using primers specific for cloned and sequenced members of the family Potyviridae. The most similar sequences in the GenBank were those of isolates of wild potato mosaic virus (WPMV) and yam mild mosaic virus (YMMV), originating from Peru and Guadeloupe, respectively. The new sequence had 63.2% and 61.9% nucleotide identity to WPMV and YMMV in the coat protein gene. The results suggest that the Czech isolate from daphne should be regarded as a new member of the genus Potyvirus. The name daphne mosaic virus (DapMV) is suggested for this virus.

  17. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guangwen; Qin, Mei [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Liu, Xianyong [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Suo, Jingxia; Tang, Xinming; Tao, Geru [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Han, Qian [Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 (United States); Suo, Xun [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Wu, Wenxue, E-mail: labboard@126.com [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China)

    2013-10-25

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.

  18. Solanum americanum: reservoir for Potato virus Y and Cucumber mosaic virus in sweet pepper crops

    Directory of Open Access Journals (Sweden)

    Monika Fecury Moura

    2014-03-01

    Full Text Available Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV and Potato virus Y (PVY and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara, sweet pepper (Capsicum annuum cv. Magda, Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.

  19. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Zulezwan A. Malik

    2013-12-01

    Full Text Available Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC coupled to mass spectrometry (MS affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group bred as either high- or low-capacity runners (HCR and LCR, respectively that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001 in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897 and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5. Sixteen proteins were significantly (p < 0.05 more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH was 1

  20. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis

    Science.gov (United States)

    Wei, Yan; Zeng, Beibei; Zhang, Hua; Chen, Cheng; Wu, Yanli; Wang, Nanlan; Wu, Yanqiu; Shen, Liming

    2016-01-01

    Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF) by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ). We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF). By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA). The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis. PMID:27690006

  1. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2016-09-01

    Full Text Available Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ. We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF. By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA. The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis.

  2. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity.

    Science.gov (United States)

    Malik, Zulezwan Ab; Cobley, James N; Morton, James P; Close, Graeme L; Edwards, Ben J; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2013-12-01

    Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p ion (551.21 m/z) of the doubly-charged peptide SLGVGFATR (454.19 m/z) of residues 23-31 of FABPH. SRM was conducted on technical replicates of each biological sample and exhibited a coefficient of variation of 20%. The abundance of FABPH measured by SRM was 2.84-fold greater (p = 0.0095) in HCR muscle. In addition, SRM of FABPH was performed in vastus lateralis samples of young and elderly humans with different habitual activity levels (collected during a previous study) finding FABPH abundance was 2.23-fold greater (p = 0.0396) in endurance-trained individuals regardless of differences in age. In summary, our findings in HCR/LCR rats provide protein-level confirmation for earlier

  3. Chayote mosaic virus, a New Tymovirus Infecting Cucurbitaceae.

    Science.gov (United States)

    Bernal, J J; Jiménez, I; Moreno, M; Hord, M; Rivera, C; Koenig, R; Rodríguez-Cerezo, E

    2000-10-01

    ABSTRACT Chayote mosaic virus (ChMV) is a putative tymovirus isolated from chayote crops in Costa Rica. ChMV was characterized at the host range, serological, and molecular levels. ChMV was transmitted mechanically and induced disease symptoms mainly in Cucurbitaceae hosts. Asymptomatic infections were detected in other host families. Serologically, ChMV is related to the Andean potato latent virus (APLV) and the Eggplant mosaic virus (EMV), both members of the genus Tymovirus infecting solanaceous hosts in the Caribbean Basin and South America. The sequence of the genomic RNA of ChMV was determined and its genetic organization was typical of tymoviruses. Comparisons with other tymoviral sequences showed that ChMV was a new member of the genus Tymovirus. The phylogenetic analyses of the coat protein gene were consistent with serological comparisons and positioned ChMV within a cluster of tymoviruses infecting mainly cucurbit or solanaceous hosts, including APLV and EMV. Phylogenetic analyses of the replicase protein gene confirmed the close relationship of ChMV and EMV. Our results suggest that ChMV is related to two tymoviruses (APLV and EMV) of proximal geographical provenance but with different natural host ranges. ChMV is the first cucurbit-infecting tymovirus to be fully characterized at the genomic level.

  4. The categories of cutaneous mosaicism: A proposed classification.

    Science.gov (United States)

    Happle, Rudolf

    2016-02-01

    Mosaic disorders can most easily be studied in the skin. This article presents a comprehensive overview of the different forms of cutaneous mosaicism. Major categories are genomic versus epigenetic mosaicism and nonsegmental versus segmental mosaicism. The class of nonsegmental mosaics includes single point mosaicism as exemplified by solitary benign or malignant skin tumors; disseminated mosaicism as noted in autosomal dominant tumor syndromes such as neurofibromatosis 1; and patchy mosaicism without midline separation as found in giant melanocytic nevus. The class of segmental mosaics includes segmental manifestation of lethal genes surviving by mosaicism as noted in Proteus syndrome; type 1 segmental mosaicism of autosomal dominant skin disorders reflecting heterozygosity for a postzygotic new mutation; type 2 segmental mosaicism of autosomal dominant skin disorders reflecting loss of heterozygosity that occurred at an early developmental stage in a heterozygous embryo; and isolated or superimposed segmental mosaicism of common polygenic skin disorders such as psoriasis or atopic dermatitis. A particular form of genomic mosaicism is didymosis (twin spotting). Revertant mosaicism is recognizable as one or more areas of healthy skin in patients with epidermolysis bullosa or other serious genodermatoses. The category of epigenetic mosaicism includes several X-linked, male lethal disorders such as incontinentia pigmenti, and the patterns of lyonization as noted in X-linked non-lethal disorders such as hypohidrotic ectodermal dysplasia of the Christ-Siemens-Touraine type. An interesting field of future research will be the concept of epigenetic autosomal mosaicism that may explain some unusual cases of autosomal transmission of linear hypo- or hypermelanosis.

  5. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA as a Candidate Subunit Cholera Vaccine

    Directory of Open Access Journals (Sweden)

    Neda Molaee

    2017-01-01

    Full Text Available Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response.

  6. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA) as a Candidate Subunit Cholera Vaccine.

    Science.gov (United States)

    Molaee, Neda; Mosayebi, Ghasem; Amozande-Nobaveh, Alireza; Soleyman, Mohammad Reza; Abtahi, Hamid

    2017-01-01

    Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response.

  7. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA) as a Candidate Subunit Cholera Vaccine

    Science.gov (United States)

    Molaee, Neda; Amozande-Nobaveh, Alireza; Soleyman, Mohammad Reza

    2017-01-01

    Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response. PMID:28191473

  8. Solution structure of a Plasmodium falciparum AMA-1/MSP 1 chimeric protein vaccine candidate (PfCP-2.9 for malaria

    Directory of Open Access Journals (Sweden)

    Jin Changwen

    2010-03-01

    Full Text Available Abstract Background The Plasmodium falciparum chimeric protein PfCP-2.9 is a promising asexual-stage malaria vaccine evaluated in clinical trials. This chimeric protein consists of two cysteine-rich domains: domain III of the apical membrane antigen 1 (AMA-1 [III] and the C-terminal region of the merozoite surface protein 1 (MSP1-19. It has been reported that the fusion of these two antigens enhanced their immunogenicity and antibody-mediated inhibition of parasite growth in vitro. Methods The 15N-labeled and 13C/15N-labeled PfCP-2.9 was produced in Pichia pastoris for nuclear magnetic resonance (NMR structure analysis. The chemical shift assignments of PfCP-2.9 were compared with those previously reported for the individual domains (i.e., PfAMA-1(III or PfMSP 1-19. The two-dimensional spectra and transverse relaxation rates (R2 of the PfMSP1-19 alone were compared with that of the PfCP-2.9. Results Confident backbone assignments were obtained for 122 out of 241 residues of PfCP-2.9. The assigned residues in PfCP-2.9 were very similar to those previously reported for the individual domains. The conformation of the PfMSP1-19 in different constructs is essentially the same. Comparison of transverse relaxation rates (R2 strongly suggests no weak interaction between the domains. Conclusions These data indicate that the fusion of AMA-1(III and MSP1-19 as chimeric protein did not change their structures, supporting the use of the chimeric protein as a potential malaria vaccine.

  9. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2014-08-01

    Full Text Available Follicle-stimulating hormone receptor (FSHR, which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star TM (DE3 and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels.

  10. [Bioinformatics-based Design of Peptide Vaccine Candidates Targeting Spike Protein of MERS-CoV and Immunity analysis in Mice].

    Science.gov (United States)

    Lan, Jiaming; Lu, Shuai; Deng, Yao; Wen, Bo; Chen, Hong; Wang, Wen; Tan, Wenjie

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as a novel human coronavirus and posed great threat to public health world wide,which calls for the development of effective and safe vaccine urgently. In the study, peptide epitopes tagrgeting spike antigen were predicted based on bioinformatics methods. Nine polypeptides with high scores were synthesized and linked to keyhole limpet hemocyanin (KLH). Female BALB/C mice were immunized with individual polypeptide-KLH, and the total IgG was detected by ELISA as well as the cellular mediated immunity (CMI) was analyzed using ELIs-pot assay. The results showed that an individual peptide of YVDVGPDSVKSACIEVDIQQTFFDKTWPRPIDVSKADGI could induce the highest level of total IgG as well as CMI (high frequency of IFN-γ secretion) against MERS-CoV antigen in mice. Our study identified a promising peptide vaccine candidate against MERS-CoV and provided an experimental support for bioinformatics-based design of peptide vaccine.

  11. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    Science.gov (United States)

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR.

  12. Efficacy of soluble recombinant FliC protein from Salmonella enterica serovar enteritidis as a potential vaccine candidate against homologous challenge in chickens.

    Science.gov (United States)

    Okamura, Masashi; Matsumoto, Wakako; Seike, Fumio; Tanaka, Yuuya; Teratani, Chie; Tozuka, Maki; Kashimoto, Takashige; Takehara, Kazuaki; Nakamura, Masayuki; Yoshikawa, Yasuhiro

    2012-06-01

    FliC, the flagellin antigen of Salmonella Enteritidis, was tested as a vaccine candidate for protective effect against a homologous challenge in chickens. After immunization with recombinant FliC (rFliC) or administration of phosphate-buffered saline (PBS) at 56 days old, the chickens were challenged with 10(9) colony-forming units of Salmonella Enteritidis at 76 days old. The vaccinated birds showed significantly decreased bacterial counts in the liver and cecal contents compared to those administered PBS at 7 days postchallenge, but the protection was partial. The replication experiment also showed a similar result. In both experiments, vaccination induced an increased level of serum anti-rFliC IgG, which was also reactive to the native flagella. The intestinal IgA level was slightly higher in the vaccinated birds than in the control. However, neither the proliferative response nor interferon-gamma secretion of splenic cells upon stimulation with rFliC was induced. Therefore, the effect of rFliC as a vaccine is limited, and further improvement is needed.

  13. Genetic Mosaics and the Germ Line Lineage

    Directory of Open Access Journals (Sweden)

    Mark E. Samuels

    2015-04-01

    Full Text Available Genetic mosaics provide information about cellular lineages that is otherwise difficult to obtain, especially in humans. De novo mutations act as cell markers, allowing the tracing of developmental trajectories of all descendants of the cell in which the new mutation arises. De novo mutations may arise at any time during development but are relatively rare. They have usually been observed through medical ascertainment, when the mutation causes unusual clinical signs or symptoms. Mutational events can include aneuploidies, large chromosomal rearrangements, copy number variants, or point mutations. In this review we focus primarily on the analysis of point mutations and their utility in addressing questions of germ line versus somatic lineages. Genetic mosaics demonstrate that the germ line and soma diverge early in development, since there are many examples of combined somatic and germ line mosaicism for de novo mutations. The occurrence of simultaneous mosaicism in both the germ line and soma also shows that the germ line is not strictly clonal but arises from at least two, and possibly multiple, cells in the embryo with different ancestries. Whole genome or exome DNA sequencing technologies promise to expand the range of studies of genetic mosaics, as de novo mutations can now be identified through sequencing alone in the absence of a medical ascertainment. These technologies have been used to study mutation patterns in nuclear families and in monozygotic twins, and in animal model developmental studies, but not yet for extensive cell lineage studies in humans.

  14. Vanilla mosaic virus isolates from French Polynesia and the Cook Islands are Dasheen mosaic virus strains that exclusively infect vanilla.

    Science.gov (United States)

    Farreyrol, K; Pearson, M N; Grisoni, M; Cohen, D; Beck, D

    2006-05-01

    Sequence was determined for the coat protein (CP) gene and 3' non-translated region (3'NTR) of two vanilla mosaic virus (VanMV) isolates from Vanilla tahitensis, respectively from the Cook Islands (VanMV-CI) and French Polynesia (VanMV-FP). Both viruses displayed distinctive features in the N-terminal region of their CPs; for VanMV-CI, a 16-amino-acid deletion including the aphid transmission-related DAG motif, and for VanMV-FP, a stretch of GTN repeats that putatively belongs to the class of natively unfolded proteins. VanMV-FP CP also has a novel DVG motif in place of the DAG motif, and an uncommon Q//V protease cleavage site. The sequences were compared to a range of Dasheen mosaic virus (DsMV) strains and to potyviruses infecting orchids. Identity was low to DsMV strains across the entire CP coding region and across the 3'NTR, but high across the CP core and the CI-6K2-NIa region. In accordance with current ICTV criteria for species demarcation within the family Potyviridae, VanMV-CI and VanMV-FP are strains of DsMV that exclusively infect vanilla.

  15. Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2011-01-01

    Full Text Available Abstract Background An effective method for obtaining resistant transgenic plants is to induce RNA silencing by expressing virus-derived dsRNA in plants and this method has been successfully implemented for the generation of different plant lines resistant to many plant viruses. Results Inverted repeats of the partial Tobacco mosaic virus (TMV movement protein (MP gene and the partial Cucumber mosaic virus (CMV replication protein (Rep gene were introduced into the plant expression vector and the recombinant plasmids were transformed into Agrobacterium tumefaciens. Agrobacterium-mediated transformation was carried out and three transgenic tobacco lines (MP16-17-3, MP16-17-29 and MP16-17-58 immune to TMV infection and three transgenic tobacco lines (Rep15-1-1, Rep15-1-7 and Rep15-1-32 immune to CMV infection were obtained. Virus inoculation assays showed that the resistance of these transgenic plants could inherit and keep stable in T4 progeny. The low temperature (15℃ did not influence the resistance of transgenic plants. There was no significant correlation between the resistance and the copy number of the transgene. CMV infection could not break the resistance to TMV in the transgenic tobacco plants expressing TMV hairpin MP RNA. Conclusions We have demonstrated that transgenic tobacco plants expressed partial TMV movement gene and partial CMV replicase gene in the form of an intermolecular intron-hairpin RNA exhibited complete resistance to TMV or CMV infection.

  16. Global Color Mosaic of Triton

    Science.gov (United States)

    1980-01-01

    Global color mosaic of Triton, taken in 1989 by Voyager 2 during its flyby of the Neptune system. Color was synthesized by combining high- resolution images taken through orange, violet, and ultraviolet filters; these images were displayed as red, green, and blue images and combined to create this color version. With a radius of 1,350 (839 mi), about 22% smaller than Earth's moon, Triton is by far the largest satellite of Neptune. It is one of only three objects in the Solar System known to have a nitrogen-dominated atmosphere (the others are Earth and Saturn's giant moon, Titan). Triton has the coldest surface known anywhere in the Solar System (38 K, about -391 degrees Farenheit); it is so cold that most of Triton's nitrogen is condensed as frost, making it the only satellite in the Solar System known to have a surface made mainly of nitrogen ice. The pinkish deposits constitute a vast south polar cap believed to contain methane ice, which would have reacted under sunlight to form pink or red compounds. The dark streaks overlying these pink ices are believed to be an icy and perhaps carbonaceous dust deposited from huge geyser-like plumes, some of which were found to be active during the Voyager 2 flyby. The bluish-green band visible in this image extends all the way around Triton near the equator; it may consist of relatively fresh nitrogen frost deposits. The greenish areas include what is called the cataloupe terrain, whose origin is unknown, and a set of 'cryovolcanic' landscapes apparently produced by icy-cold liquids (now frozen) erupted from Triton's interior.

  17. Mosaic Convergence of Rodent Dentitions

    Science.gov (United States)

    Lazzari, Vincent; Charles, Cyril; Tafforeau, Paul; Vianey-Liaud, Monique; Aguilar, Jean-Pierre; Jaeger, Jean-Jacques; Michaux, Jacques; Viriot, Laurent

    2008-01-01

    Background Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. Methodology/Principal Findings Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. Conclusion/Significance The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent

  18. Mosaic convergence of rodent dentitions.

    Directory of Open Access Journals (Sweden)

    Vincent Lazzari

    Full Text Available BACKGROUND: Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. CONCLUSION/SIGNIFICANCE: The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible

  19. Growth response and expression of muscle growth-related candidate genes in adult zebrafish fed plant and fishmeal protein-based diets.

    Science.gov (United States)

    Ulloa, Pilar E; Peña, Andrea A; Lizama, Carla D; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2013-03-01

    The main objective of this study was to examine the effects of a plant protein- vs. fishmeal-based diet on growth response in a population of 24 families, as well as expression of growth-related genes in the muscle of adult zebrafish (Danio rerio). Each family was split to create two fish populations with similar genetic backgrounds, and the fish were fed either fishmeal (FM diet) or plant protein (PP diet) as the unique protein source in their diets from 35 to 98 days postfertilization (dpf). To understand the effect of the PP diet on gene expression, individuals from three families, representative of the mean weight in both populations, were selected. To understand the effect of familiar variation on gene expression, the same families were evaluated separately. At 98 dpf, growth-related genes Igf1a, Igf2a, mTOR, Pld1a, Mrf4, Myod, Myogenin, and Myostatin1b were evaluated. In males, Myogenin, Mrf4, and Igf2a showed changes attributable to the PP diet. In females, the effect of the PP diet did not modulate the expression in any of the eight genes studied. The effect of familiar variation on gene expression was observed among families. This study shows that PP diet and family variation have effects on gene expression in fish muscle.

  20. Magnetic properties of mosaic nanocomposites composed of nickel and cobalt nanowires

    Science.gov (United States)

    Castillo-Sepúlveda, S.; Corona, R. M.; Altbir, D.; Escrig, J.

    2016-10-01

    Mosaic nanocomposites composed of nickel and cobalt nanowires arranged in different configurations were investigated using Monte Carlo simulations and a simple model that considers single-domain structures including length corrections due to the shape anisotropy. Our results showed that for an ordered array both the coercivity and the remanence decrease linearly as a function of the concentration of nickel nanowires. Besides, we obtained that the magnetic properties of an array of a certain hard magnetic material (cobalt) will not change, unless we have more than 50% of nanowires of other soft magnetic material (nickel) in the array. In principle the second material could be other soft magnetic material, but could also be a nonmagnetic material or could even be a situation in which some of the pore arrays were not filled by electrodeposition. Therefore, our results allow us to predict the behavior of magnetic mosaic nanocomposites that are promising candidates for functional electrodes, sensors, and model catalysts.

  1. Document image mosaicing: A novel approach

    Indian Academy of Sciences (India)

    G Hemantha Kumar; P Shivakumara; D S Guru; P Nagabhushan

    2004-06-01

    There are situations where it is not possible to capture large documents with the given imaging media such as scanners or copying machines in a single stretch because of their inherent limitations. This results in capture of a large document in terms of split components of a document image. Hence, the need is to mosaic the split components into the original and put together the document image. In this paper, we present a novel and simple approach to mosaic two split images of a large document based on pixel value matching. The method compares the values of pixels in the columns of split images to identify the common or overlapping region (OR) in them, which helps in mosaicing of split images of a large document.

  2. Mosaic Turner syndrome and hyperinsulinaemic hypoglycaemia

    DEFF Research Database (Denmark)

    Alkhayyat, H.; Christesen, Henrik Thybo; Steer, J.;

    2006-01-01

    BACKGROUND: A common and well recognised feature of Turner's syndrome (partial or total monosomy X) is impaired glucose tolerance or type 2 diabetes mellitus. A small percentage of patients with Turner's syndrome have a complex mosaic karyotype with atypical clinical features and mental retardation....... METHODS/PATIENT: We report the first case of a child with a complex mosaic Turner genotype and hyperinsulinaemic hypoglycaemia responsive to diazoxide therapy. RESULTS: Cytogenetic analysis showed four cell lines: one with 45,X; the others with an additional small ring chromosome, a small marker......'s syndrome is important as persistent hypoglycaemia may lead to brain damage in addition to the risk of mental retardation. Further studies are required to understand whether the mosaic over--or underexpression of unidentified X chromosome gene(s) in the pancreatic beta-cells leads to hyperinsulinaemic...

  3. Outcome of prenatally diagnosed trisomy 6 mosaicism.

    Science.gov (United States)

    Wallerstein, Robert; Oh, Tracey; Durcan, Judy; Abdelhak, Yaakov; Clachko, Mark; Aviv, Hana

    2002-08-01

    We report the prenatal diagnosis of trisomy 6 mosaicism via amniocentesis, in which trisomy 6 cells were identified in three of five culture vessels with 33% (5/15) of colonies showing trisomic cells. The pregnancy was electively terminated and examination revealed minor abnormalities (shortening of the femurs, micrognathia, posterior malrotation of the ears, and bilateral camptomelia of the second digit of the hands and fifth digits of the feet). Cytogenetic analysis of the placenta showed trisomy 6 in 100% of 20 cells studied. Karyotype was 46,XX in 100 cells examined from fetal skin. There are relatively few prenatally diagnosed cases of mosaic trisomy 6 at amniocentesis. Confined placental mosaicism (CPM) has been postulated in other cases where follow-up cytogenetic studies were not available. The present case differs from those previously reported, as it appears to represent CPM of chromosome 6 with phenotypic effects to the fetus.

  4. Infrared image mosaic using point feature operators

    Science.gov (United States)

    Huang, Zhen; Sun, Shaoyuan; Shen, Zhenyi; Hou, Junjie; Zhao, Haitao

    2016-10-01

    In this paper, we study infrared image mosaic around a single point of rotation, aiming at expanding the narrow view range of infrared images. We propose an infrared image mosaic method using point feature operators including image registration and image synthesis. Traditional mosaic algorithms usually use global image registration methods to extract the feature points in the global image, which cost too much time as well as considerable matching errors. To address this issue, we first roughly calculate the image shift amount using phase correlation and determine the overlap region between images, and then extract image features in overlap region, which shortens the registration time and increases the quality of feature points. We improve the traditional algorithm through increasing constraints of point matching based on prior knowledge of image shift amount based on which the weighted map is computed using fade in-out method. The experimental results verify that the proposed method has better real time performance and robustness.

  5. A bench-scale, cost effective and simple method to elicit Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus attack using ozone-mediated inactivated Cucumber mosaic virus inoculum.

    Science.gov (United States)

    Sudhakar, N; Nagendra-Prasad, D; Mohan, N; Murugesan, K

    2007-12-01

    Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.

  6. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain.

    Science.gov (United States)

    Nguyen, AnhThu; Rauch, Tibor A; Pfeifer, Gerd P; Hu, Valerie W

    2010-08-01

    Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.

  7. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants

    Science.gov (United States)

    Kamel, Laurent; Tang, Nianwu; Malbreil, Mathilde; San Clemente, Hélène; Le Marquer, Morgane; Roux, Christophe; Frei dit Frey, Nicolas

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants—a monocot, a dicot and a liverwort—in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts.

  8. MONOCLONAL ANTIBODIES TO IDENTIFY TOMATO MOSAIC TOBAMOVIRUS (TOMV

    Directory of Open Access Journals (Sweden)

    Duarte Keila M.R.

    2001-01-01

    Full Text Available Monoclonal antibodies were obtained against Tomato mosaic tobamovirus (ToMV isolated in Brazil. One antibody (8G7G2 isotyped as IgG2b (kappa light chain showed strong specificity and very low cross reaction with the Tobacco mosaic virus (TMV. It can be used in identification of tomato mosaic virus (ToMV.

  9. Somatic Mosaicism in Cases with Small Supernumerary Marker Chromosomes

    Science.gov (United States)

    Liehr, Thomas; Karamysheva, Tatyana; Merkas, Martina; Brecevic, Lukrecija; Hamid, Ahmed B.; Ewers, Elisabeth; Mrasek, Kristin; Kosyakova, Nadezda; Weise, Anja

    2010-01-01

    Somatic mosaicism is something that is observed in everyday lives of cytogeneticists. Chromosome instability is one of the leading causes of large-scale genome variation analyzable since the correct human chromosome number was established in 1956. Somatic mosaicism is also a well-known fact to be present in cases with small supernumerary marker chromosomes (sSMC), i.e. karyotypes of 47,+mar/46. In this study, the data available in the literature were collected concerning the frequency mosaicism in different subgroups of patients with sSMC. Of 3124 cases with sSMC 1626 (52%) present with somatic mosaicism. Some groups like patients with Emanuel-, cat-eye- or i(18p)- syndrome only tend rarely to develop mosaicism, while in Pallister-Killian syndrome every patient is mosaic. In general, acrocentric and non-acrocentric derived sSMCs are differently susceptible to mosaicism; non-acrocentric derived ones are hereby the less stable ones. Even though, in the overwhelming majority of the cases, somatic mosaicism does not have any detectable clinical effects, there are rare cases with altered clinical outcomes due to mosaicism. This is extremely important for prenatal genetic counseling. Overall, as mosaicism is something to be considered in at least every second sSMC case, array-CGH studies cannot be offered as a screening test to reliably detect this kind of chromosomal aberration, as low level mosaic cases and cryptic mosaics are missed by that. PMID:21358988

  10. First report of somatic mosaicism for mutations in STK11 in four patients with Peutz-Jeghers syndrome.

    Science.gov (United States)

    McKay, Victoria; Cairns, Diane; Gokhale, David; Mountford, Roger; Greenhalgh, Lynn

    2016-01-01

    Peutz-Jeghers syndrome (PJS) is an autosomal dominant cancer predisposition syndrome characterised by gastrointestinal polyposis and mucocutaneous pigmentation. Mutations in STK11, a serine-threonine protein kinase, have been associated with PJS in up to 100 % of published series. The hypothesis that a further genetic locus for PJS exists is controversial. No mutations in any other genes have been described in association with PJS. To date, no instances of somatic mosaicism for STK11 have been described. DNA extracted from peripheral lymphocytes and buccal cells was screened by sequence analysis for mutations in STK11. Dosage analysis was undertaken by multiplex ligation-dependent probe amplification (MLPA). Four patients have been shown to have mosaicism in STK11: two had mosaic deletions of specific exons (2-3 and 3-10) of the STK11 gene; one had a mosaic nonsense mutation in exon 5; and one had a mosaic frameshift mutation in exon 8. This report details the first four reported cases of somatic mosaicism for STK11 associated with PJS. This shows that techniques in addition to direct sequencing such as MLPA must be used to assess for large scale genomic deletions in patients meeting clinical diagnostic criteria for PJS. This also adds further weight to the hypothesis of a single genetic locus for PJS.

  11. The nucleotide sequence and genome structure of mung bean yellow mosaic geminivirus.

    Science.gov (United States)

    Morinaga, T; Ikegami, M; Miura, K

    1993-01-01

    Complete nucleotide sequences of the infectious cloned DNA components (DNA 1 and DNA 2) of mung bean yellow mosaic virus (MYMV) were determined. MYMV DNA 1 and DNA 2 consists of 2,723 and 2,675 nucleotides respectively. DNA 1 and DNA 2 have little sequence similarity except for a region of approximately 200 bases which is almost identical in the two molecules. Analysis of open reading frames revealed nine potential coding regions for proteins of mol. wt. > 10,000, six in DNA 1 and three in DNA 2. The nucleotide sequence of MYMV DNA was compared with that of bean golden mosaic virus (BGMV), tomato golden mosaic virus (TGMV) and African cassava mosaic virus (ACMV). The 200-base region common to the two DNAs of each virus had little sequence similarity, except for a highly conserved 33-36 base sequence potentially capable of forming a stable hairpin structure. The potential coding regions in the MYMV DNAs had counterparts in the BGMV, TGMV and ACMV, suggesting an overall similarity in genome organization, except for absence of 1L3 in MYMV DNA 1. The most highly conserved ORFs, MYMV 1R1, BGMV 1R1, TGMV 1R1 and ACMV 1R1, are the putative genes for the coat proteins of MYMV, BGMV, TGMV and ACMV, respectively. MYMV 1L1 has also a high degree of sequence similarity with BGMV 1L1, TGMV 1L1 and ACMV 1L1.

  12. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice.

    Science.gov (United States)

    Elhaik Goldman, Shirin; Dotan, Shahar; Talias, Amir; Lilo, Amit; Azriel, Shalhevet; Malka, Itay; Portnoi, Maxim; Ohayon, Ariel; Kafka, Daniel; Ellis, Ronald; Elkabets, Moshe; Porgador, Angel; Levin, Ditza; Azhari, Rosa; Swiatlo, Edwin; Ling, Eduard; Feldman, Galia; Tal, Michael; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2016-04-01

    involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.

  13. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct.

    Science.gov (United States)

    Lin, Ching-Yi; Ku, Hsin-Mei; Chiang, Yi-Hua; Ho, Hsiu-Yin; Yu, Tsong-Ann; Jan, Fuh-Jyh

    2012-10-01

    Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.

  14. The Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoites as a Candidate for Preerythrocytic and Transmission-Blocking Vaccines

    Science.gov (United States)

    Espinosa, Diego A.; Vega-Rodriguez, Joel; Flores-Garcia, Yevel; Noe, Amy R.; Muñoz, Christian; Coleman, Russell; Bruck, Torben; Haney, Keith; Stevens, Alex; Retallack, Diane; Allen, Jeff; Vedvick, Thomas S.; Fox, Christopher B.; Reed, Steven G.; Howard, Randall F.; Salman, Ahmed M.; Janse, Chris J.; Khan, Shahid M.

    2016-01-01

    ABSTRACT Recent studies have shown that immune responses against the cell-traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) can inhibit parasite infection. While these studies provide important evidence toward the development of vaccines targeting this protein, it remains unknown whether these responses could engage the Plasmodium falciparum CelTOS in vivo. Using a newly developed rodent malaria chimeric parasite expressing the P. falciparum CelTOS (PfCelTOS), we evaluated the protective effect of in vivo immune responses elicited by vaccination and assessed the neutralizing capacity of monoclonal antibodies specific against PfCelTOS. Mice immunized with recombinant P. falciparum CelTOS in combination with the glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) or glucopyranosyl lipid adjuvant-liposome-QS21 (GLA-LSQ) adjuvant system significantly inhibited sporozoite hepatocyte infection. Notably, monoclonal antibodies against PfCelTOS strongly inhibited oocyst development of P. falciparum and Plasmodium berghei expressing PfCelTOS in Anopheles gambiae mosquitoes. Taken together, our results demonstrate that anti-CelTOS responses elicited by vaccination or passive immunization can inhibit sporozoite and ookinete infection and impair vector transmission. PMID:27895131

  15. Analysis of nucleotide sequence of wheat yellow mosaic virus genomic RNAs

    Institute of Scientific and Technical Information of China (English)

    于嘉林; 晏立英; 苏宁; 侯占军; 李大伟; 韩成贵; 杨莉莉; 蔡祝南; 刘仪

    1999-01-01

    Wheat yellow mosaic virus (WYMV) isolate HC was used for viral cDNA synthesis and sequencing. The results show that the viral RNA1 is 7629 nueleotides encoding a polyprotein with 2407 amino acids, from which seven putative proteins may be produced by an autolytie cleavage processing besides the viral coat protein. The RNA2 is 3639 nueleotides and codes for a polypretein of 903 amino acids, which may contain two putative non-structural proteins. Although WYMV shares a similarity in genetic organization to wheat spindle streak mosaic virus (WSSMV), the identities in their nucleotide sequences or deduced amino acid sequences are as low as 70% and 75 % respectively. Based on this result, it is confirmed that WYMV and WSSMV are different species within Bymovirus.

  16. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein.

    Science.gov (United States)

    Shih, J-W; Tsai, T-Y; Chao, C-H; Wu Lee, Y-H

    2008-01-24

    DDX3 is a human RNA helicase with plethoric functions. Our previous studies have indicated that DDX3 is a transcriptional regulator and functions as a tumor suppressor. In this study, we use a bicistronic reporter to demonstrate that DDX3 specifically represses cap-dependent translation but enhances hepatitis C virus internal ribosome entry site-mediated translation in vivo in a helicase activity-independent manner. To elucidate how DDX3 modulates translation, we identified translation initiation factor eukaryotic initiation factor 4E (eIF4E) as a DDX3-binding partner. Interestingly, DDX3 utilizes a consensus eIF4E-binding sequence YIPPHLR to interact with the functionally important dorsal surface of eIF4E in a similar manner to other eIF4E-binding proteins. Furthermore, cap affinity chromatography analysis suggests that DDX3 traps eIF4E in a translationally inactive complex by blocking interaction with eIF4G. Point mutations within the consensus eIF4E-binding motif in DDX3 impair its ability to bind eIF4E and result in a loss of DDX3's regulatory effects on translation. All these features together indicate that DDX3 is a new member of the eIF4E inhibitory proteins involved in translation initiation regulation. Most importantly, this DDX3-mediated translation regulation also confers the tumor suppressor function on DDX3. Altogether, this study demonstrates regulatory roles and action mechanisms for DDX3 in translation, cell growth and likely viral replication.

  17. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred

    KAUST Repository

    Holding, David R.

    2010-11-13

    Quality protein maize (QPM) is a high lysine-containing corn that is based on genetic modification of the opaque2 (o2) mutant. In QPM, modifier genes convert the starchy endosperm of o2 to the vitreous phenotype of wild type maize. There are multiple, unlinked o2 modifier loci (Opm) in QPM and their nature and mode of action are unknown. We previously identified seven Opm QTLs and characterized 16 genes that are differentially up-regulated at a significant level in K0326Y QPM, compared to the starchy endosperm mutant W64Ao2. In order to further characterize these Opm QTLs and the genes up-regulated in K0326Y QPM, we created a population of 314 recombinant inbred lines (RILs) from a cross between K0326Y QPM and W64Ao2. The RILs were characterized for three traits associated with endosperm texture: vitreousness, density and hardness. Genetic linkage analysis of the RIL population confirmed three of the previously identified QTLs associated with o2 endosperm modification in K0326Y QPM. Many of the genes up-regulated in K0326Y QPM showed substantially higher levels of expression in vitreous compared with opaque RILs. These included genes associated with the upstream regulation of the ethylene response pathway, and a gene encoding a regulatory subunit of pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase, an adaptive enzyme of the glycolytic pathway. © 2010 Springer-Verlag.

  18. Infection of Plants by Tobacco Mosaic Virus.

    Science.gov (United States)

    McDaniel, Larry; Maratos, Marina; Farabaugh, Joan

    1998-01-01

    Provides three exercises that introduce high school and college students to a common strain of the tobacco mosaic virus and the study of some basic biological processes. Activities involve inoculation of plants and observing and recording symptom development in infected plants. (DDR)

  19. Diploid/triploid mosaicism in dysmorphic patients

    NARCIS (Netherlands)

    van de Laar, [No Value; Rabelink, G; Hochstenbach, R; Tuerlings, J; Giltay, J

    2002-01-01

    Diploid/triploid mosaicism is a dysmorphology syndrome consisting of mental retardation, truncal obesity, body and/or facial asymmetry, growth retardation, hypotonia, a small phallus, malformed low-set ears and micrognathia. In 75% of the cases, the blood karyotype is normal and the diagnosis can on

  20. PTEN mosaicism with features of Cowden syndrome.

    Science.gov (United States)

    Gammon, A; Jasperson, K; Pilarski, R; Prior, Tw; Kuwada, S

    2013-12-01

    We present the first known case of somatic PTEN mosaicism causing features of Cowden syndrome (CS) and inheritance in the subsequent generation. A 20-year-old woman presented for genetics evaluation with multiple ganglioneuromas of the colon. On examination, she was found to have a thyroid goiter, macrocephaly, and tongue papules, all suggestive of CS. However, her reported family history was not suspicious for CS. A deleterious PTEN mutation was identified in blood lymphocytes, 966A>G, 967delA. Genetic testing was recommended for her parents. Her 48-year-old father was referred for evaluation and was found to have macrocephaly and a history of Hashimoto's thyroiditis, but no other features of CS. Site-specific genetic testing carried out on blood lymphocytes showed mosaicism for the same PTEN mutation identified in his daughter. Identifying PTEN mosaicism in the proband's father had significant implications for the risk assessment/genetic testing plan for the rest of his family. His result also provides impetus for somatic mosaicism in a parent to be considered when a de novo PTEN mutation is suspected.

  1. Increased chromosome 21 mosaicism in older Down syndrome individuals

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, E.C.; Schupf, N.; Harris, M. [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)] [and others

    1994-09-01

    Loss of one chromosome 21 in older Down syndrome individuals has been reported recently. During a study of the familial aggregation of Down syndrome and Alzheimer disease, our preliminary observations indicated increased mosaicism for the loss of a chromosome 21 in whole blood cultures from Down syndrome individuals who were age 50 or over from a cohort of 22 individuals. We retrospectively reviewed our experience in 189 cases of Down syndrome ranging in age from 1 day to 71 years. In a combined total of 212 individuals, 39 were age 50 or more of whom 7 or 18% were mosaic, while 169 were under age 50 of whom 4 or 2% were mosaic. Therefore the occurrence of mosaicism was strikingly increased in the group of individuals who were age 50 or over ({chi}{sup 2}=12.8, p<.001). Our observations confirm the above reports of increased mosaicism for chromosome 21 loss in lymphocyte cultures from older Down syndrome individuals. Since the older individuals were not karyotyped at birth, it is not possible to determine whether the age-related increase in mosaicism is due to increased survival of mosaic individuals or acquired mosaicism. Assuming 1% mosaicism at birth for Down syndrome and assuming the general population`s death rates for these mosaic individuals, life table methods showed that the expected proportion of these individuals at age 70 was 5%. This was less than 1/3 of our observations suggesting that acquired mosaicism was the predominant mechanism for our findings.

  2. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum.

    Science.gov (United States)

    Rietz, Steffen; Bernsdorff, Friederike E M; Cai, Daguang

    2012-09-01

    Germin-like proteins (GLPs) are defined by their sequence homology to germins from barley and are present ubiquitously in plants. Analyses of corresponding genes have revealed diverse functions of GLPs in plant development and biotic and abiotic stresses. This study describes the identification of a family of 14 germin-like genes from Brassica napus (BnGLP) designated BnGLP1-BnGLP14 and investigated potential functions of BnGLPs in plant defense against the necrotrophic fungus Sclerotinia sclerotiorum. Sequence alignment and phylogenetic analyses classify the 14 BnGLPs into four groups, which were clearly distinguished from known germin oxalic acid oxidases. Transcriptional responses of the BnGLP genes to S. sclerotiorum infection was determined by comparing cultivars of susceptible B. napus 'Falcon' and partially resistant B. napus 'Zhongshuang 9'. Of the 14 BnGLP genes tested, BnGLP3 was transcriptionally upregulated in both B. napus cultivars at 6h after S. sclerotiorum infection, while upregulation of BnGLP12 was restricted to resistant B. napus 'Zhongshuang 9'. Biochemical analysis of five representative BnGLP members identified a H(2)O(2)-generating superoxide dismutase activity only for higher molecular weight complexes of BnGLP3 and BnGLP12. By analogy, H(2)O(2) formation at infected leaf sites increased after 6h, with even higher H(2)O(2) production in B. napus 'Zhongshuang 9' compared with B. napus 'Falcon'. Conversely, exogenous application of H(2)O(2) significantly reduced the susceptibility of B. napus 'Falcon'. These data suggest that early induction of BnGLP3 and BnGLP12 participates in an oxidative burst that may play a pivotal role in defence of B. napus against S. sclerotiorum.

  3. Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Komatsu

    Full Text Available Many drugs of abuse and most neuropharmacological agents regulate G protein-coupled receptors (GPCRs in the central nervous system (CNS_ENREF_1. The striatum, in which dopamine D1 and D2 receptors are enriched, is strongly innervated by the ventral tegmental area (VTA, which is the origin of dopaminergic cell bodies of the mesocorticolimbic dopamine system_ENREF_3 and plays a central role in the development of psychiatric disorders_ENREF_4. Here we report the comprehensive and anatomical transcript profiling of 322 non-odorant GPCRs in mouse tissue by quantitative real-time PCR (qPCR, leading to the identification of neurotherapeutic receptors exclusively expressed in the CNS, especially in the striatum. Among them, GPR6, GPR52, and GPR88, known as orphan GPCRs, were shown to co-localize either with a D2 receptor alone or with both D1 and D2 receptors in neurons of the basal ganglia. Intriguingly, we found that GPR52 was well conserved among vertebrates, is Gs-coupled and responsive to the antipsychotic drug, reserpine. We used three types of transgenic (Tg mice employing a Cre-lox system under the control of the GPR52 promoter, namely, GPR52-LacZ Tg, human GPR52 (hGPR52 Tg, and hGPR52-GFP Tg mice. Detailed histological investigation suggests that GPR52 may modulate dopaminergic and glutamatergic transmission in neuronal circuits responsible for cognitive function and emotion. In support of our prediction, GPR52 knockout and transgenic mice exhibited psychosis-related and antipsychotic-like behaviors, respectively. Therefore, we propose that GPR52 has the potential of being a therapeutic psychiatric receptor. This approach may help identify potential therapeutic targets for CNS diseases.

  4. Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, I.L.; Sudhalter, V.; Nolin, S.L. [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)

    1996-08-09

    Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional development of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome. 21 refs., 3 figs.

  5. Identification and full sequence of an isolate of Alternanthera mosaic potexvirus infecting Phlox stolonifera.

    Science.gov (United States)

    Hammond, J; Reinsel, M D; Maroon-Lango, C J

    2006-03-01

    A potexvirus was isolated from creeping phlox (Phlox stolonifera) plants from a commercial nursery in Pennsylvania. The virus was serologically related to clover yellow mosaic virus, plantain virus X, potato virus X, and potato aucuba mosaic virus, and was most closely related to papaya mosaic virus (PapMV). The sequence of a PCR fragment obtained with potexvirus group-specific primers was distinct from that of PapMV; the coat protein (CP) gene and 3' untranslated region (UTR) were closely related to Alternanthera mosaic virus (AltMV), previously reported only from Australia. The host range was similar to that of the Australian isolate (AltMV-Au), and the phlox isolate reacted strongly with antiserum to AltMV-Au. The full sequence of the phlox isolate was more closely related to PapMV throughout the genome than to any potexvirus other than AltMV-Au, for which only the CP and 3'UTR sequences are available. The phlox isolate was therefore named AltMV-PA (for Pennsylvania), and the full 6607 nt sequence is presented(1). Additional AltMV isolates from creeping phlox (AltMV-BR and AltMV-SP) and trailing portulaca (Portulaca grandiflora; AltMV-Po) were also isolated, suggesting that AltMV may be widespread, and may have been mis-diagnosed in the past as PapMV. AltMV has the potential to spread to other ornamental crops.

  6. A BRIEF REVIEW ON "MOLECULAR DETECTION AND CHARACTERIZATION OF YELLOW MOSAIC VIRUS (YMV INFECTING BLACKGRAM"

    Directory of Open Access Journals (Sweden)

    S.Obaiah

    2013-12-01

    Full Text Available Blackgram (Vigna mungo (L. Hepper is one of the major pulse crops of the tropics and sub tropics. It is the third major pulse crop cultivated in the Indian subcontinent. Pulses and grain legumes are major sources of dietary protein. These crops are subjected to yellow mosaic and golden mosaic diseases caused by white fly transmitted geminiviruses (WTG’s or begomovirus. Of these viruses, mungbean yellow mosaic virus (MYMV is an important one, and it infects five major leguminous species, such as blackgram, greengram, Frenchbean, pigeonpea and soybean causing an annual yield loss of about US $ 300 million (Varma et al., 1992. The MYMV causes 85-100 per cent yield loss in the plants that are infected at the seedling stage (Nene, 1973.MYMV was first observed in Delhi in the late fifties (Nariani, 1960. Virus particles were first observed by Thongmeearkom et al. (1981 and purified by Honda et al. (1983. Hence the characterisation of Yellow Mosaic Virus is essential to study the variability and to identify any new strains/ variants of YMV prevalent in India and Abroad at molecular level for developing the new resistant genotypes.

  7. Genetic diversity of Hungarian Maize dwarf mosaic virus isolates.

    Science.gov (United States)

    Gell, Gyöngyvér; Balázs, Ervin; Petrik, Kathrin

    2010-04-01

    The genetic diversity of the coat-protein (CP) region and the untranslated C-terminal region (3'UTR) of Maize dwarf mosaic virus (MDMV) was analyzed to evaluate the variability between isolates (inter-isolate sequence diversity). The results of inter-isolate sequence diversity analysis showed that the diversity of the MDMV CP gene is fairly high (p-distance: up to 0.136). During sequence analysis, a 13 amino-acid residue insertion and an 8 amino-acid residue deletion were found within the N-terminal region of the CP gene. The phylogenetic analysis showed that-unlike other potyvirus species in this subgroup-the MDMV isolates could not be distinguished on the basis of their host plants or geographic origins.

  8. Heterogeneity in pepper isolates of cucumber mosaic virus

    Science.gov (United States)

    Rodriguez-Alvarado, G.; Kurath, G.; Dodds, J.A.

    1995-01-01

    Twenty-four cucumber mosaic cucumovirus (CMV) field isolates from pepper crops in Cali-fornia were characterized and compared by nucleic acid hybridization subgrouping, virion electrophoresis, and biological effects in several hosts. Isolates, belonging to subgroup I or subgroup II, were found that induced severe symptoms in mechanically inoculated bell pep-pers. Only two isolates, both from subgroup II, were mild. A group of 19 isolates collected from a single field were all in subgroup II and appeared identical by virion electrophoresis, but they exhibited varying degrees of symptom severity in peppers. As a more detailed indicator of heterogeneity, these 19 isolates were examined by RNase protection assays to delect sequence variation in the coat protein gene region of their genomes. The patterns of bands observed were complex and a high degree of genomic heterogeneity was detected between isolates, with no apparent correlation to symptomatology in bell pepper.

  9. Frequency and Molecular Characterization of Watermelon Mosaic Virus from Serbia

    Directory of Open Access Journals (Sweden)

    Ana Vučurović

    2010-01-01

    Full Text Available Watermelon mosaic virus (WMV is widespread in cucurbit crops, most commonly occuring in temperate and Mediterranean regions. In Serbia WMV has been detected in single and mixed infections with Zucchini yellow mosaic virus and Cucumber mosaic virus in field-grown pumpkin and squash crops. Among pumpkin-affecting viruses WMV is the most frequent one, both by the number of localities and its incidence at each location. During the growing season of 2009, samples from 583 plants of Cucurbita pepo cvs. Olinka, Belgrade zucchini and Tosca (Zucchini group, as well as from C. maxima and C. moschata showing symptoms of virus infection were collected from 12 commercial fields at eight localities and analyzed by DAS-ELISA using polyclonal antisera specific to six most important cucurbit viruses. Interestingly, WMV was detected at fewer sites and had lower ncidence rate than in two previous years. In single infections, WMV was found in 11% of tested plants in three fields; in mixed infections with ZYMV, it was recorded in 9.9% of plants in five fields and with CMV in only 0.2% in one field. The partial coat protein gene and 3’ non-translated region from two representativeisolates of WMV originating from different localities and host plant species were amplified by RT-PCR, sequenced, and compared with the sequences available in GenBank database. The PCR-amplified fragment of predicted size of approximately 1017 bp was obtained. The sequences of isolates 137-08 (Acc. No. GQ259958 and 159-08 (GU144020 proved to be 94-99% identical at the nucleotide level with those from other parts of the world. The sequences of these two isolates differed from each other only at two nucleotide positions, without any amino acid substitution. Phylogenetic analysis of 57 isolates based on 750 bp sequences of the coat protein gene showed no correlation between isolates and their geographic origin, and italso indicated that these isolates fell into three molecular groups of

  10. Primary and Presidential Candidates

    DEFF Research Database (Denmark)

    Goddard, Joseph

    2012-01-01

    This article looks at primary and presidential candidates in 2008 and 2012. Evidence suggests that voters are less influenced by candidates’ color, gender, or religious observation than previously. Conversely, markers of difference remain salient in the imaginations of pollsters and journalists...

  11. Mungbean yellow mosaic virus (MYMV) AC4 suppresses post-transcriptional gene silencing and an AC4 hairpin RNA gene reduces MYMV DNA accumulation in transgenic tobacco.

    Science.gov (United States)

    Sunitha, Sukumaran; Shanmugapriya, Gnanasekaran; Balamani, Veluthambi; Veluthambi, Karuppannan

    2013-06-01

    Mungbean yellow mosaic virus (MYMV) is a legume-infecting geminivirus that causes yellow mosaic disease in blackgram, mungbean, soybean, Frenchbean and mothbean. AC4/C4, which is nested completely within the Rep gene, is less conserved among geminiviruses. Much less is known about its role in viral pathogenesis other than its known role in the suppression of host-mediated gene silencing. Transient expression of MYMV AC4 by agroinfiltration suppressed post-transcriptional gene silencing in Nicotiana benthamiana 16c expressing green fluorescence protein, at a level comparable to MYMV TrAP expression. AC4 full-length gene and an inverted repeat of AC4 (comprising the full-length AC4 sequence in sense and antisense orientations with an intervening intron) which makes a hairpin RNA (hpRNA) upon transcription were introduced into tobacco by Agrobacterium-mediated leaf disc transformation. Leaf discs of the transgenic plants were agroinoculated with partial dimers of MYMV and used to study the effect of the AC4-sense and AC4 hpRNA genes on MYMV DNA accumulation. Leaf discs of two transgenic plants that express the AC4-sense gene displayed an increase in MYMV DNA accumulation. Leaf discs of six transgenic plants containing the AC4 hpRNA gene accumulated small-interfering RNAs (siRNAs) specific to AC4, and upon agroinoculation with MYMV they exhibited a severe reduction in the accumulation of MYMV DNA. Thus, the MYMV AC4 hpRNA gene has emerged as a good candidate to engineer resistance against MYMV in susceptible plants.

  12. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  13. Mosaic double aneuploidy: Down syndrome and XYY

    Directory of Open Access Journals (Sweden)

    Mayur Parihar

    2013-01-01

    Full Text Available Chromosomal abnormalities are seen in nearly 1% of live born infants. We report a 5-year-old boy with the clinical features of Down syndrome, which is the most common human aneuploidy. Cytogenetic analysis showed a mosaicism for a double aneuploidy, Down syndrome and XYY. The karyotype was 47, XY,+21[19]/48, XYY,+21[6]. ish XYY (DXZ1 × 1, DYZ1 × 2. Mosaic double aneuploidies are very rare and features of only one of the aneuploidies may predominate in childhood. Cytogenetic analysis is recommended even if the typical features of a recognized aneuploidy are present so that any associated abnormality may be detected. This will enable early intervention to provide the adequate supportive care and management.

  14. Mosaic Turner syndrome associated with schizophrenia.

    Science.gov (United States)

    Jung, Sook Young; Park, Joo Won; Kim, Dong Hyun; Jun, Yong Hoon; Lee, Jeong Seop; Lee, Ji Eun

    2014-03-01

    Turner syndrome is a sex-chromosome disorder; occurring in 1 in 2,500 female births. There are sporadic few case reports of concomitant Turner syndrome with schizophrenia worldwide. Most Turner females had a 45,X monosomy, whereas the majority of comorbidity between Turner syndrome and schizophrenia had a mosaic karyotype (45,X/46,XX). We present a case of a 21-year-old woman with Turner syndrome, mosaic karyotype (45,X/46,XX), showing mental retardation, hypothyroidism, and schizophrenia. HOPA gene within Xq13 is related to mental retardation, hypothyroidism, and schizophrenia. Our case may be a potential clue which supports the hypothesis for involvement of genes on X chromosome in development of schizophrenia. Further studies including comorbid cases reports are need in order to discern the cause of schizophrenia in patients having Turner syndrome.

  15. Mosaic Turner syndrome associated with schizophrenia

    Science.gov (United States)

    Jung, Sook Young; Park, Joo Won; Kim, Dong Hyun; Jun, Yong Hoon; Lee, Jeong Seop

    2014-01-01

    Turner syndrome is a sex-chromosome disorder; occurring in 1 in 2,500 female births. There are sporadic few case reports of concomitant Turner syndrome with schizophrenia worldwide. Most Turner females had a 45,X monosomy, whereas the majority of comorbidity between Turner syndrome and schizophrenia had a mosaic karyotype (45,X/46,XX). We present a case of a 21-year-old woman with Turner syndrome, mosaic karyotype (45,X/46,XX), showing mental retardation, hypothyroidism, and schizophrenia. HOPA gene within Xq13 is related to mental retardation, hypothyroidism, and schizophrenia. Our case may be a potential clue which supports the hypothesis for involvement of genes on X chromosome in development of schizophrenia. Further studies including comorbid cases reports are need in order to discern the cause of schizophrenia in patients having Turner syndrome. PMID:24926463

  16. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform.

    Science.gov (United States)

    Denis, Jérôme; Acosta-Ramirez, Elizabeth; Zhao, Yinghi; Hamelin, Marie-Eve; Koukavica, Irena; Baz, Mariana; Abed, Yacine; Savard, Christian; Pare, Christine; Lopez Macias, Constantino; Boivin, Guy; Leclerc, Denis

    2008-06-25

    With the emergence of highly virulent influenza viruses and the consequent risk of pandemics, new approaches to designing universal influenza vaccines are urgently needed. In this report, we demonstrate the potential of using a papaya mosaic virus (PapMV) platform carrying the universal M2e influenza epitope (PapMV-CP-M2e) as a candidate flu vaccine. We show that PapMV-CP-M2e virus-like particles (VLPs) can induce production in mice of anti-M2e antibodies that can recognize influenza-infected cells. PapMV-CP-M2e discs made of 20 coat protein (CP) subunits were shown to be poorly immunogenic compared to PapMV-CP-M2e VLPs composed of several hundred CP subunits. We also show that addition of either alum or PapMV-CP VLPs as adjuvant dramatically increased the immunogenicity of PapMV-CP-M2e-containing vaccine, and led to 100% protection against a challenge of 4LD(50) with the WSN/33 strain. These results show, for the first time, the potential of a recombinant plant virus protein to serve as both peptide delivery system and adjuvant in the crucial field of influenza vaccine development.

  17. Recombinant constructions and infectivity analysis of tobacco mosaic virus and attenuated tomato mosaic virus N14 genomes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The recombinant clones of pTN and pNT have been constructed by exchanging the coding regions of the movement proteins (MP), coat proteins (CP) and 3′noncoding regions between the cDNAs of the tobacco mosaic virus (Chinese Isolate, TMV-Cv) and the attenuated tomato mosaic virus N14 genomes, and used as templates for in vitro runoff transcription. Their transcripts have been used for tobacco infection assays. The infection results show that the transcripts of pTN and pNT are infectious. Local lesions were observed in the leaves of Nicotiana tabacum cv. Samsun NN inoculated with pTN transcript, but were fewer than those in the same kind of plant induced by pTMV-Cv transcript. Systemic symptoms were also observed in N. tabacum cv. Huangmiaoyu induced by pTN transcript, but were slighter than those on the same kind of tobacco induced by pTMV-Cv transcript. Local lesions were shown in N. tabacum cv. Samsun NN inoculated with pNT transcript, but were more than those in the same kind of plant induced by pN14 transcript while no systemic symptom was displayed in N. tabacum cv. Huangmiaoyu. These results suggest that the recombinant viruses of TN and NT are able to propagate in the assayed tobaccos, and they keep the most same phenotypic character with pTMV-Cv and pN14 transcripts, and TMV-Cv and N14 as well. The conjunctions between the replicase and the MP, CP and 3′noncoding regions are not stringent. Apparently there is a compatible function complementation between the homologous subgenomes of TMV-Cv and N14. From those above it could be probably presumed that the mutagenized replicase gene of N14 plays a major role in contributing to the virus attenuation while its mutagenized MP gene could avianize the symptoms of the infected tobaccos.

  18. Digital Elevation Model Mosaic of Mercury

    Science.gov (United States)

    Cook, A. C.; Watters, T. R.; Robinson, M. S.

    2001-01-01

    At CEPS (Center for Earth and Planetary Studies) work has been underway since 2000 to semi-automatically stereo match all Mariner 10 stereo pairs. The resulting matched image coordinates are converted into longitude, latitude, and height points and then combined to form a map projected Digital Elevation Model (DEM) mosaic of the planet's surface. Stereo images from Mariner 10 cover one quarter of the planet's surface, mostly in the southern hemisphere. Additional information is contained in the original extended abstract.

  19. Germline mosaicism at the fragile X locus.

    Science.gov (United States)

    Prior, T W; Papp, A C; Snyder, P J; Sedra, M S; Guida, M; Enrile, B G

    1995-01-30

    We have identified a fragile X syndrome pedigree where the disorder is associated with a molecular deletion. The deletion was present in the DNA of 2 sons but was absent in the mother's somatic cell (lymphocyte) DNA. The results are consistent with the deletion arising as a postzygotic event in the mother, who therefore is germinally mosaic. This finding has important implications for counseling fragile X families with deletion mutations.

  20. Genetic diversity, distant phylogenetic relationships and the occurrence of recombination events among cucumber mosaic virus isolates from zucchini in Poland.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Chrzanowski, Mateusz; Budzyńska, Daria; Rymelska, Natalia; Borodynko-Filas, Natasza

    2017-02-25

    In recent years, the occurrence of cucumber mosaic virus (CMV) has been noted in zucchini crops in Poland. Beside characteristic isolates, which displayed mosaics and chlorosis on infected plants, new necrotic isolates have also been identified. Here, we analysed the molecular variability of 27 isolates of CMV collected from zucchini in various regions of the country. Sequence and phylogenetic analysis based on the genes encoding the coat (CP) and movement (MP) proteins revealed that the Polish isolates belong to two subgroups: IA and II, with the prevalence of subgroup II. New recombinant variants with an IA-MP/II-CP pattern for RNA3 were also detected.

  1. New Ceftriaxone- and Multidrug-Resistant Neisseria gonorrhoeae Strain with a Novel Mosaic penA Gene Isolated in Japan.

    Science.gov (United States)

    Nakayama, Shu-Ichi; Shimuta, Ken; Furubayashi, Kei-Ichi; Kawahata, Takuya; Unemo, Magnus; Ohnishi, Makoto

    2016-07-01

    We have characterized in detail a new ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain (FC428) isolated in Japan in 2015. FC428 differed from previous ceftriaxone-resistant strains and contained a novel mosaic penA allele encoding a new mosaic penicillin-binding protein 2 (PBP 2). However, the resistance-determining 3'-terminal region of penA was almost identical to the regions of two previously reported ceftriaxone-resistant strains from Australia and Japan, indicating that both ceftriaxone-resistant strains and conserved ceftriaxone resistance-determining PBP 2 regions might spread.

  2. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  3. Rapid detection of the mosaic structure of the Neisseria gonorrhoeae penA Gene, which is associated with decreased susceptibilities to oral cephalosporins.

    Science.gov (United States)

    Ochiai, Susumu; Ishiko, Hiroaki; Yasuda, Mitsuru; Deguchi, Takashi

    2008-05-01

    In Neisseria gonorrhoeae, the mosaic structure of the penA gene (encoding penicillin-binding protein 2 [PBP 2]), which is composed of fragments of the penA genes from Neisseria cinerea and Neisseria perflava, has been significantly associated with decreased susceptibility to cephalosporins, particularly oral cephalosporins. The aim of this study was to develop a rapid assay for the detection of mosaic PBP 2 of N. gonorrhoeae by real-time PCR. This assay successfully detected the mosaic penA gene of N. gonorrhoeae, and its sensitivity was >or=10(1) copies/reaction. Six hundred twenty-one clinical strains were examined by this assay for the presence of mosaic PBP 2, which was detected in 85 (39.4%) of 216 strains from 2002, 69 (40.6%) of 170 strains from 2003, 71 (44.4%) of 160 strains from 2004, and 31 (41.3%) of 75 strains from 2005. The MICs of cephalosporins for strains with the mosaic PBP 2 detected by the assay were statistically higher than those for strains without the mosaic PBP 2. One hundred sixty-six (64.8%) of 256 strains with the mosaic PBP 2 exhibited cefixime MICs of >or=0.5 microg/ml. The emergence and spread of strains with mosaic PBP 2 could be a threat to the cefixime treatment of gonorrhea. This real-time PCR assay for the detection of mosaic PBP 2 of N. gonorrhoeae is thus useful in the prediction of decreased susceptibilities to oral cephalosporins.

  4. Rapid Detection of the Mosaic Structure of the Neisseria gonorrhoeae penA Gene, Which Is Associated with Decreased Susceptibilities to Oral Cephalosporins▿

    Science.gov (United States)

    Ochiai, Susumu; Ishiko, Hiroaki; Yasuda, Mitsuru; Deguchi, Takashi

    2008-01-01

    In Neisseria gonorrhoeae, the mosaic structure of the penA gene (encoding penicillin-binding protein 2 [PBP 2]), which is composed of fragments of the penA genes from Neisseria cinerea and Neisseria perflava, has been significantly associated with decreased susceptibility to cephalosporins, particularly oral cephalosporins. The aim of this study was to develop a rapid assay for the detection of mosaic PBP 2 of N. gonorrhoeae by real-time PCR. This assay successfully detected the mosaic penA gene of N. gonorrhoeae, and its sensitivity was ≥101 copies/reaction. Six hundred twenty-one clinical strains were examined by this assay for the presence of mosaic PBP 2, which was detected in 85 (39.4%) of 216 strains from 2002, 69 (40.6%) of 170 strains from 2003, 71 (44.4%) of 160 strains from 2004, and 31 (41.3%) of 75 strains from 2005. The MICs of cephalosporins for strains with the mosaic PBP 2 detected by the assay were statistically higher than those for strains without the mosaic PBP 2. One hundred sixty-six (64.8%) of 256 strains with the mosaic PBP 2 exhibited cefixime MICs of ≥0.5 μg/ml. The emergence and spread of strains with mosaic PBP 2 could be a threat to the cefixime treatment of gonorrhea. This real-time PCR assay for the detection of mosaic PBP 2 of N. gonorrhoeae is thus useful in the prediction of decreased susceptibilities to oral cephalosporins. PMID:18367575

  5. Genetic mosaicism of a frameshift mutation in the RET gene in a family with Hirschsprung disease.

    Science.gov (United States)

    Müller, Charlotte M; Haase, Michael G; Kemnitz, Ivonne; Fitze, Guido

    2014-05-10

    Mutations and polymorphisms in the RET gene are a major cause of Hirschsprung disease (HSCR). Theoretically, all true heterozygous patients with a new manifestation of a genetically determined disease must have parents with a genetic mosaicism of some extent. However, no genetic mosaicism has been described for the RET gene in HSCR yet. Therefore, we analyzed families with mutations in the RET gene for genetic mosaicism in the parents of the patients. Blood samples were taken from patients with HSCR and their families/parents to sequence the RET coding region. Among 125 families with HSCR, 33 families with RET mutations were analyzed. In one family, we detected a frameshift mutation due to a loss of one in a row of four cytosines in codon 117/118 of the RET gene (c.352delC) leading to a frameshift mutation in the protein (p.Leu118Cysfs*105) that affected two siblings. In the blood sample of the asymptomatic father we found a genetic mosaicism of this mutation which was confirmed in two independent samples of saliva and hair roots. Quantification of peak-heights and comparison with different mixtures of normal and mutated plasmid DNA suggested that the mutation occurred in the early morula stadium of the founder, between the 4- and 8-cell stages. We conclude that the presence of a RET mutation leading to loss of one functional allele in 20 to 25% of the cells is not sufficient to cause HSCR. The possibility of a mosaicism has to be kept in mind during genetic counseling for inherited diseases.

  6. The Landsat Image Mosaic of Antarctica

    Science.gov (United States)

    Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, B.; Gorodetzky, D.

    2008-01-01

    The Landsat Image Mosaic of Antarctica (LIMA) is the first true-color, high-spatial-resolution image of the seventh continent. It is constructed from nearly 1100 individually selected Landsat-7 ETM+ scenes. Each image was orthorectified and adjusted for geometric, sensor and illumination variations to a standardized, almost seamless surface reflectance product. Mosaicing to avoid clouds produced a high quality, nearly cloud-free benchmark data set of Antarctica for the International Polar Year from images collected primarily during 1999-2003. Multiple color composites and enhancements were generated to illustrate additional characteristics of the multispectral data including: the true appearance of the surface; discrimination between snow and bare ice; reflectance variations within bright snow; recovered reflectance values in regions of sensor saturation; and subtle topographic variations associated with ice flow. LIMA is viewable and individual scenes or user defined portions of the mosaic are downloadable at http://lima.usgs.gov. Educational materials associated with LIMA are available at http://lima.nasa.gov.

  7. Reassessing Jacob Strauss and the Mosaic Code

    Directory of Open Access Journals (Sweden)

    Joel McDurmon

    2012-11-01

    Full Text Available This article reviewed claims made by modern scholars Ford Lewis Battles, G.H. Williams, and Theodore Tappert concerning the views of Jacob Strauss (1480–1530, court preacher at Eisenach, particularly in regard to the imposition of Mosaic Law upon the civil realm. Most pointedly, Battles claims Strauss proposed to replace European civil law completely with the ‘entire Mosaic code’. This study examined Strauss’s relevant writings to determine his position on Mosaic Law and civil law and demonstrated that the claims of Battles, Williams, and Tappert were not supported by the primary source evidence. Selections from Strauss’ 51 theses on usury are translated into English for the first time. To a much lesser degree, this study addressed the issue in regard to the Weimar court preacher Wolfgang Stein, against whom the same claims were made. A paucity of evidence rendered those claims dubious in his case. In the end we were left only with unsubstantiated second-hand claims against these men.

  8. Confined placental mosaicisms and uniparental disomy

    Energy Technology Data Exchange (ETDEWEB)

    Kalousek, D.K.; Langlois, S.; Harrison, K.J. [Univ. of British Columbia, Vancouver (Canada)] [and others

    1994-09-01

    Approximately 2% of pregnancies studied with chorionic villous sampling (CVS) show confined placental mosaicism (CPM) which persists to term in 50-70% of cases. An increased frequency of complications, such as intrauterine fetal growth restriction or intrauterine death, is observed in these pregnancies. As trisomic zygote rescue is a common mechanism responsible for CPM, fetal uniparental disomy (UPD), resulting from the loss of the extra trisomic chromosome in the embryonic stem cells, would be expected to occur in a proportion of pregnancies with CPM. We have studied 27 pregnancies with CPM involving trisomies for chromosomes 2, 7, 9, 10, 12, and 16 for involvement of specific cell lineage(s) and levels of mosaicism in term placentas. Also, DNA from the parents and infant was analyzed for UPD or biparental disomy (BPD). Five infants with UPD for chromosome 16 and one infant with UPD for chromosome 7 were detected. All other infants showed BPD for the chromosome involved in CPM. For trisomy 16 mosaic gestations, a close correlation between high levels of trisomic cells in placenta and intrauterine fetal growth restriction has been found irrespective of the type of disomy present in the infant. The effect of other trisomies (2, 7, 9, 10, 12) on placental function appears to be similar, but the low numbers of pregnancies studied and lack of detection of UPD for chromosomes 2, 9, 10 and 12 does not allow a definitive conclusion.

  9. The newly applied mortars in mosaic restoration

    Directory of Open Access Journals (Sweden)

    Fabiana Moro

    2010-11-01

    Full Text Available L’intervention de restauration sur la mosaïque de Dionysos à Cologne a permis, dans le cadre du travail de fin d’étude, une recherche sur les problématiques liées au choix du lit de pose des mosaïques detachées et replacées sur de nouveaux supports. Elle a contribué à l’étude des facteurs qui influencent la conservation des mosaïques qui ont précédemment fait l’objet d’interventions de détachement du site originel.The restoration of the Dionysos mosaic in Cologne gave us the opportunity for analysing the process involved in the choice of interstitial mortars in mosaics that were detached from their original site and re-layed on new supports, thus losing their original setting bed. This intervention lead us to investigate the relationships between restoration and a philological perspective and the damages following the stripping of mosaics.

  10. Current status in research of dengue vaccine candidates based on domain Ⅲof E protein%登革病毒E蛋白结构域Ⅲ疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    孟胜利; 孙燕

    2011-01-01

    The ideal dengue vaccines should be low reactogenic, induce life-long protection against infection with any of the four serotypes of dengue viruses, and be affordable. The envelope protein domain Ⅲ of dengue virus has been implicated in receptor binding, and it is also the target of specific neutralizing antibodies.In this article, the current state of knowledge on vaccine candidates based on domain Ⅲ is reviewed.%理想的登革热疫苗应该是副作用小,可以诱导持久的抵抗4个血清型登革病毒感染的保护作用,并且价格合适.登革病毒E蛋白结构域Ⅲ介导受体连接作用并可诱导特异性中和抗体.此文主要介绍利用E蛋白结构域Ⅲ来开发登革热疫苗的研究进展.

  11. Pilot Candidate Selection

    Science.gov (United States)

    1989-05-01

    pilot selection system and to best support up-front track selection for SUPT? Assumptions The USAF Trainer Masterplan does not include a plan to...replace the T-41 with a new flight screening aircraft. In addition, the Masterplan states that candidates will be track selected prior to entry into primary...training. (3:10) While the Masterplan is not a static document and aircraft procurement plans and/or the timing of track selection are subject to

  12. Prenatal diagnosis of a trisomy 7/trisomy 13 mosaicism

    OpenAIRE

    Huijsdens-van Amsterdam Karin; Barge-Schaapveld Daniela QCM; Mathijssen Inge B; Alders Mariëlle; Pajkrt Eva; Knegt Alida C

    2012-01-01

    Abstract Double aneuploidy mosaicism of two different aneuploidy cell lines is rare. We describe for the first time a double trisomy mosaicism, involving chromosomes 7 and 13 in a fetus presenting with multiple congenital anomalies. No evidence for chimerism was found by DNA genotyping. The origin of both trisomies are consistent with isodisomy of maternal origin. Therefore, it is most likely that the double trisomy mosaicism arose from two independent events very early in embryonic developme...

  13. Sequencing and computational analysis of complete genome sequences of Citrus yellow mosaic badna virus from acid lime and pummelo.

    Science.gov (United States)

    Borah, Basanta K; Johnson, A M Anthony; Sai Gopal, D V R; Dasgupta, Indranil

    2009-08-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus, is the causative agent of Citrus mosaic disease in India. Although the virus has been detected in several citrus species, only two full-length genomes, one each from Sweet orange and Rangpur lime, are available in publicly accessible databases. In order to obtain a better understanding of the genetic variability of the virus in other citrus mosaic-affected citrus species, we performed the cloning and sequence analysis of complete genomes of CMBV from two additional citrus species, Acid lime and Pummelo. We show that CMBV genomes from the two hosts share high homology with previously reported CMBV sequences and hence conclude that the new isolates represent variants of the virus present in these species. Based on in silico sequence analysis, we predict the possible function of the protein encoded by one of the five ORFs.

  14. Molecular characterization of Cucumber mosaic virus infecting Gladiolus, revealing its phylogeny distinct from the Indian isolate and alike the Fny strain of CMV.

    Science.gov (United States)

    Dubey, Vimal Kumar; Aminuddin; Singh, Vijai Pal

    2010-08-01

    The majority of Gladiolus plants growing in the botanical garden at NBRI, Lucknow, India and adjoining areas exhibited symptoms of mosaic, color breaking, stunting of spikes and reduction in flower size. The occurrence of Cucumber mosaic virus (CMV) was suspected in symptomatic Gladiolus plants. Cucumber mosaic virus, the type species of the genus Cucumovirus of the family Bromoviridae, is an important plant virus worldwide, which infects many plants and causes quantity and quality losses. For virus characterization, total RNA was isolated from leaves of infected plants and used in reverse transcriptase polymerase chain reaction with a primer set designed in the Cucumber mosaic virus coat protein region. Viral amplicons of the expected 657 bp size were obtained from infected plants. No viral amplicon was obtained from healthy control plants. Viral amplicons were cloned and sequenced (DQ295914). Molecular characterization was performed and phylogenetic relationship determined by the comparison of coat protein gene nucleotide and amino acid sequences with other Cucumber mosaic virus isolates reported from India and worldwide. The nucleotide and amino acid percentage comparison and phylogenetic tree results revealed that Cucumber mosaic virus infecting Gladiolus show resemblance with the Fny strain, which is not common in the Asian continent.

  15. Image blending techniques and their application in underwater mosaicing

    CERN Document Server

    Prados, Ricard; Neumann, László

    2014-01-01

    This work proposes strategies and solutions to tackle the problem of building photo-mosaics of very large underwater optical surveys, presenting contributions to the image preprocessing, enhancing and blending steps, and resulting in an improved visual quality of the final photo-mosaic. The text opens with a comprehensive review of mosaicing and blending techniques, before proposing an approach for large scale underwater image mosaicing and blending. In the image preprocessing step, a depth dependent illumination compensation function is used to solve the non-uniform illumination appearance du

  16. Effects of sulphur dioxide on southern bean mosaic and maize dwarf mosaic

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, J.A.; Aluisio, A.L.; Weinstein, L.H.; McCune, D.C.

    1981-01-01

    Sub-acute doses of sulphur dioxide (SO/sub 2/) (either 262 or 524 ..mu..g m/sup -3/) for 5-10 days caused small but consistent increases in the titre of southern bean mosaic virus (SBMV) in Bountiful bean and maize dwarf mosaic virus (MDMV) in maize. Exposure to SO/sub 2/ also increased infection and intensified symptoms caused by MDMV. Sulphur uptake by the host plant was not affected by either virus; however, pre- and post-inoculation exposures of bean plants to SO/sub 2/ resulted in greater than additive effects on sulphur uptake.

  17. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Esther R Berko

    Full Text Available DNA mutational events are increasingly being identified in autism spectrum disorder (ASD, but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement

  18. Endothelial targeting of cowpea mosaic virus (CPMV via surface vimentin.

    Directory of Open Access Journals (Sweden)

    Kristopher J Koudelka

    2009-05-01

    Full Text Available Cowpea mosaic virus (CPMV is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.

  19. Identification of a novel biomarker candidate, a 4.8-kDa peptide fragment from a neurosecretory protein VGF precursor, by proteomic analysis of cerebrospinal fluid from children with acute encephalopathy using SELDI-TOF-MS

    Directory of Open Access Journals (Sweden)

    Fujino Osamu

    2011-08-01

    Full Text Available Abstract Background Acute encephalopathy includes rapid deterioration and has a poor prognosis. Early intervention is essential to prevent progression of the disease and subsequent neurologic complications. However, in the acute period, true encephalopathy cannot easily be differentiated from febrile seizures, especially febrile seizures of the complex type. Thus, an early diagnostic marker has been sought in order to enable early intervention. The purpose of this study was to identify a novel marker candidate protein differentially expressed in the cerebrospinal fluid (CSF of children with encephalopathy using proteomic analysis. Methods For detection of biomarkers, CSF samples were obtained from 13 children with acute encephalopathy and 42 children with febrile seizure. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS technology, which is currently applied in many fields of biological and medical sciences. Diagnosis was made by at least two pediatric neurologists based on the clinical findings and routine examinations. All specimens were collected for diagnostic tests and the remaining portion of the specimens were used for the SELDI-TOF MS investigations. Results In experiment 1, CSF from patients with febrile seizures (n = 28, patients with encephalopathy (n = 8 (including influenza encephalopathy (n = 3, encephalopathy due to rotavirus (n = 1, human herpes virus 6 (n = 1 were used for the SELDI analysis. In experiment 2, SELDI analysis was performed on CSF from a second set of febrile seizure patients (n = 14 and encephalopathy patients (n = 5. We found that the peak with an m/z of 4810 contributed the most to the separation of the two groups. After purification and identification of the 4.8-kDa protein, a 4.8-kDa proteolytic peptide fragment from the neurosecretory protein VGF precursor (VGF4.8 was identified as a novel biomarker for encephalopathy. Conclusions

  20. Severe Outbreak of a Yellow Mosaic Disease on the Yard Long Bean in Bogor, West Java

    Directory of Open Access Journals (Sweden)

    TRI ASMIRA DAMAYANTI

    2009-06-01

    Full Text Available During 2008 crop season, an outbreak of severe yellow mosaic disease on yard long bean (Vigna unguiculata subsp. Sesquipedalis occurred in several farmers’ fields in West Java. Yard long bean var. Parade inoculated manually with extracts from symptomatic leaves showed the symptoms indicating the presence of virus. Symptomatic leaf samples tested positive in enzyme linked immunosorbent assay (ELISA with antibodies to group specific Potyvirus and Cucumber mosaic virus (CMV. Total RNA derived from symptomatic leaves was subjected to reverse transcription-polymerase chain reaction (RT-PCR using primers specific to the cylindrical inclusion (CI protein of potyviruses and CMV coat protein (CP specific primers. Pair wise comparison of sequences obtained from cloned RT-PCR products with corresponding nucleotide sequences in the GenBank confirmed the presence of Bean common mosaic virus strain Blackeye (BCMV-BlC and CMV in the symptomatic beans. Sequences of BCMV and CMV isolates from the beans showed maximum nucleotide sequence identities (92-97% and (90%, respectively with BCMV-BIC and CMV isolates from Taiwan. Each virus isolate also clustered closely with corresponding isolates from Taiwan in a phylogenetic analyses. These results provide first evidence of the occurrence of multiple infection of BCMV-BIC and CMV in the yard long been from Bogor, West Java.

  1. Germline mosaicism at the fragile X locus

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A.C.; Snyder, P.J.; Sedra, M.S. [Ohio State Univ., Columbus, OH (United States)] [and others

    1994-09-01

    The fragile X full mutation, which is associated with the phenotypic expression of the disorder, is characterized by an expansion of CGG repeat and hypermethylation of the CpG island adjacent to the FMR1 gene. New mutations leading to amplification of the CGG repeat have not been reported. We have identified a fragile X syndrome pedigree where the disorder is associated with a molecular deletion. The deletion was present in the DNA of two affected sons but was absent in the mother`s somatic cell (lymphocyte) DNA. This was confirmed by dosage analysis of the Southern blot using StB12-3 and an additional probe against the dystrophin gene and by PCR analysis of DXS548 alleles. The results are consistent with the deletion arising as a postzygotic event in the mother, who therefore is germinally mosaic. The case reported here clearly demonstrates that FMR1 deletions, unlike the expansions, are not always inherited and the finding of heterozygosity or normal dosage from lymphocyte DNA in the mother of a deletion case does not necessarily rule out the possibility of having a second affected child. The deletion of FMR1 gene may be responsible for a small but significant number of fragile X cases. Therefore, it is imperative that those involved in genetic counseling recognize this diagnostic pitfall. Since it depends upon the size of the mutant clone in the mosaic mother, the exact recurrence risk in germline carriers is unknown. However, prenatal and carrier testing should be performed independently of the outcome of the mother. Furthermore, it is possible that the deletion may not be restricted to the germline, and therefore the mother may actually be a somatic mosaic.

  2. Essential features of the assembly origin of tobacco mosaic virus RNA as studied by directed mutagenesis.

    OpenAIRE

    D. R. Turner; Butler, P J

    1986-01-01

    The assembly origin of tobacco mosaic virus RNA contains three stable hairpin loops. Coat protein disks bind first to loop 1 (the 3' most) during virus assembly, but the whole region is coated in a concerted fashion even in conditions of limiting protein. It is shown by in vitro packaging assays using mutant assembly origin transcripts that rapid and specific assembly initiation occurs in the absence of loops 2 and 3, but is abolished on removal of loop 1. Deletion or alteration of the unpair...

  3. Image Mosaicing Algorithm for Rolled Fingerprint Construction

    Institute of Scientific and Technical Information of China (English)

    贺迪; 荣钢; 周杰

    2002-01-01

    Fingerprint identification is one of the most important biometric authentication methods. However, current devices for recording digital fingerprints can only capture plain-touch fingerprints. Rolled fingerprints have much more information for recognition, so a method is needed to construct a rolled fingerprint from a series of plain-touch fingerprints. This paper presents a novel algorithm for image mosaicing for real time rolled fingerprint construction in which the images are assembled with corrections to create a smooth, non-fragmented rolled fingerprint in real time. Experimental results demonstrate its effectiveness by comparing it with other conventional algorithms.

  4. Mosaic crystal algorithm for Monte Carlo simulations

    CERN Document Server

    Seeger, P A

    2002-01-01

    An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)

  5. Statistical Mechanics Characterization of Neuronal Mosaics

    CERN Document Server

    Costa, Luciano da Fontoura; de Lima, Silene Maria Araujo

    2005-01-01

    The spatial distribution of neuronal cells is an important requirement for achieving proper neuronal function in several parts of the nervous system of most animals. For instance, specific distribution of photoreceptors and related neuronal cells, particularly the ganglion cells, in mammal's retina is required in order to properly sample the projected scene. This work presents how two concepts from the areas of statistical mechanics and complex systems, namely the \\emph{lacunarity} and the \\emph{multiscale entropy} (i.e. the entropy calculated over progressively diffused representations of the cell mosaic), have allowed effective characterization of the spatial distribution of retinal cells.

  6. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is d

  7. High rate of mosaicism in tuberous sclerosis complex

    NARCIS (Netherlands)

    Verhoef, S; Bakker, L; Tempelaars, AMP; Hesseling-Janssen, ALW; Mazurczak, T; Jozwiak, S; Fois, A; Bartalini, G; Zonnenberg, BA; van Essen, AJ; Lindhout, D; Halley, DJJ; van den Ouweland, AMW

    1999-01-01

    Six families with mosaicism are identified in a series of 62 unrelated families with a mutation in one of the two tuberous sclerosis complex (TSC) genes, TSC1 or TSC2. In five families, somatic mosaicism was present in a mildly affected parent of an index patient. In one family with clinically unaff

  8. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is d

  9. Ectopia cordis in a fetus with mosaic trisomy 16.

    Science.gov (United States)

    Arnaoutoglou, Christos; Meditskou, Soultana; Keivanidou, Anastasia; Manthou, Marilena; Anesidis, Nikolaos; Assimakopoulos, Efstratios; Athanasiadis, Apostolos; Kumar, Sailesh

    2010-09-01

    Ectopia cordis and mosaic trisomy 16 are two rare fetal anomalies, which have not been reported in association. We report a case of an isolated ectopia cordis at 11(+3) weeks. Subsequent embryological examination confirmed thoracic ectopia cordis with normal heart structure and array comparative genomic hybridization of fetal tissue detected trisomy 16 mosaicism.

  10. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142 administered intramuscularly with adjuvant system AS01

    Directory of Open Access Journals (Sweden)

    Otsyula Nekoye

    2013-01-01

    Full Text Available Abstract Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1 antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele previously tested at both study sites. Conclusions Given that the primary

  11. Hepatoblastoma in a mosaic trisomy 18 child with hemihypertrophy.

    Science.gov (United States)

    Ahmad, Naveed; Wheeler, Kate; Stewart, Helen; Campbell, Carolyn

    2016-01-21

    To date, there are 12 reported cases of hepatoblastoma in trisomy 18 patients, three of whom had a mosaic chromosome pattern. We report on an 18-month-old child who had hemihypertrophy and developmental delay, was found to have hepatoblastoma on surveillance ultrasound scan, and was subsequently diagnosed with mosaic trisomy 18 on array comparative genomic hybridisation from a peripheral blood sample and molecular cytogenetic analysis of the tumour specimen. Although hemihypertrophy has been associated with mosaic trisomies, there are only a couple of published case reports of hemihypertrophy or asymmetry in mosaic trisomy 18 patients and none in the reported cases of hepatoblastoma in a mosaic trisomy 18 setting. We have reviewed the published case reports of hepatoblastoma in trisomy 18 patients and found that they seem to tolerate the intensive treatment very well if there are no significant comorbidities.

  12. Dawn FC2 Derived Ceres Mosaics V1.0

    Science.gov (United States)

    Roatsch, T.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Elgner, S.; Schroeder, S. E.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-10-01

    This accumulating data set includes Ceres global mosaics and quadrangles derived from images acquired by the Framing Camera 2 (FC2) on the NASA Dawn spacecraft. Global mosaics are provided in cylindrical and polar stereographic projections. The quadrangle mosaics use Mercator (equatorial), Lambert conformal (mid-latitude) and stereographic projections. Global color filter mosaics are provided for data acquired during the high altitude mapping orbit (HAMO) on volume DWNCHFFC2_2. Global mapping in all filters at low altitude was not possible due to time and downlink limitations. Attempts were made to acquire color imaging of selected Ceres targets but with only limited success because of issues related to ephemeris predictability. Clear filter global mosaics and quadrangle maps are provided for both HAMO (DWNCHCFC2_2) and the low altitude mapping orbit (LAMO, DWNCLCFC2_2) science phases.

  13. Confirmation of prenatal diagnosis of sex chromosome mosaicism.

    Science.gov (United States)

    McFadden, D E; Kalousek, D K

    1989-04-01

    Prenatal diagnosis of mosaicism causes problems in interpretation and in genetic counselling. Part of the difficulty with any prenatal diagnosis of mosaicism is interpretation of results without knowing the exact origin, embryonic or extraembryonic, of the abnormal cell line. To confuse the issue in cases of prenatal diagnosis of 45,X/46,XY mosaicism is the recent demonstration that a diagnosis of 45,X/46,XY made prenatally is not necessarily associated with the same phenotype as when diagnosed postnatally. We present two cases of prenatal diagnosis of sex chromosome mosaicism (45,X/46,XY and 45,X/47,XYY). Posttermination examination of the phenotypically normal male fetuses and their placentas established that the placenta was the most likely source of the 45,X cell line. An approach to confirming the prenatal diagnosis of sex chromosome mosaicism and establishing its origin utilizing detailed cytogenetic examination of both fetus and placenta is suggested.

  14. Complete nucleotide sequence analysis of Cymbidium mosaic virus Indian isolate: further evidence for natural recombination among potexviruses

    Indian Academy of Sciences (India)

    Ang Rinzing Sherpa; Vipin Hallan; Promila Pathak; Aijaz Asghar Zaidi

    2007-06-01

    The complete nucleotide sequence of an Indian strain of Cymbidium mosaic virus (CymMV) was determined and compared with other potexviruses. Phylogenetic analyses on the basis of RNA-dependent RNA polymerase (RdRp), triple gene block protein and coat protein (CP) amino acid sequences revealed that CymMV is closely related to the Narcissus mosaic virus (NMV), Scallion virus X (SVX), Pepino mosaic virus (PepMV) and Potato aucuba mosaic virus (PAMV). Different sets of primers were used for the amplification of different regions of the genome through RT-PCR and the amplified genes were cloned in a suitable vector. The full genome of the Indian isolate of CymMV from Phaius tankervilliae shares 96–97% similarity with isolates reported from other countries. It was found that the CP gene of CymMV shares a high similarity with each other and other potexviruses. One of the Indian isolates seems to be a recombinant formed by the intermolecular recombination of two other CymMV isolates. The phylogenetic analyses, Recombination Detection Program (RDP2) analyses and sequence alignment survey provided evidence for the occurrence of a recombination between an Indian isolate (AM055720) as the major parent, and a Korean type-2 isolate (AF016914) as the minor parent. Recombination was also observed between a Singapore isolate (U62963) as the major parent, and a Taiwan CymMV (AY571289) as the minor parent.

  15. Molecular analysis of Korean isolate of barley yellow mosaic virus.

    Science.gov (United States)

    Lee, Kui Jae; Choi, Min Kyung; Lee, Wang Hyu; Rajkumar, Mani

    2006-04-01

    The complete sequences of both RNAs of an isolate of barley yellow mosaic virus (BaYMV) from Haenam, Korea, were determined. RNA1 is 7639 nucleotides long [excluding the 3'-poly(A)], and codes for a 270 kDa polyprotein of 2411 amino acids which contains the capsid protein (CP) at the C terminus and seven putative non-structural proteins. RNA2 is 3582 nucleotides long and codes for a polyprotein of 890 amino acids, which contains a 28 kDa putative proteinase (P1) and a 73 kDa polypeptide (P2). The whole sequences of Korean isolate (BaYMV-K) closely resembled those of an isolate from Japan (BaYMV-J) (99.6 identical nucleotides for RNA1; 99.4 for RNA2) and china (BaYMV-C) (96.7 and 96.2%, respectively) than from Germany (BaYMV-G) (93.6 and 90.4%, respectively). The greatest differences between the BaYMV-K and BaYMV-J isolates were in the 3'-NCRs of RNA1 and 5' NCRs of RNA2 and there were also some other regions of difference in Nib Pro (RNA1) and P1 (RNA2). Further, the phylogenetic analysis of CP region showed that Asian and European isolates formed distinct clusters. However, molecular variations between isolates could not be linked to earlier results showing differences in cultivar response.

  16. Breakage of resistance to Cucumber mosaic virus by co-infection with Zucchini yellow mosaic virus: enhancement of CMV accumulation independent of symptom expression.

    Science.gov (United States)

    Wang, Y; Lee, K C; Gaba, V; Wong, S M; Palukaitis, P; Gal-On, A

    2004-02-01

    Resistance to the cucumovirus Cucumber mosaic virus (CMV) in cucumber cv. Delila was manifested as a very low level of accumulation of viral RNA and capsid protein, and an absence of CMV-induced symptoms. In addition, resistance was observed at the single cell level, with a reduction in accumulation of CMV RNAs, compared to accumulation in cells of the susceptible cucumber cv. Bet Alpha. Resistance to CMV in cv. Delila was broken by co-infection with the potyvirus Zucchini yellow mosaic virus (ZYMV). Resistance breakage in cv. Delila plants was manifested by an increase in the accumulation of (+) and (-) CMV RNA as well as CMV capsid protein, with no increase in the level of accumulation of ZYMV. Resistance breakage in the resistant cultivar by ZYMV also occurred at the single cell level. Thus, synergistic interactions known to occur between a potyvirus and a cucumovirus led to resistance breakage during a double infection. However, resistance breakage was not accompanied by an increase in disease symptoms beyond those induced by ZYMV itself. On co-inoculation with an asymptomatic variant of ZYMV-AG an enhancement of CMV infection occurred without disease manifestation. Consequently, intensification of viral RNA and capsid protein accumulation can occur without a corresponding increase in disease development, suggesting that different host genes regulate viral accumulation and disease development in the CMV-resistant cucumber plants.

  17. Identification of a strain of maize dwarf mosaic virus, related to sugarcane mosaic virus isolated from maize in Burundi

    Directory of Open Access Journals (Sweden)

    Verhoyen, M.

    1983-01-01

    Full Text Available A strain of maize dwarf mosaic virus related to sugarcane mosaic virus has been isolated from maize in Burundi. The properties (including electron microscopy and serology of the virus are described, and elements for a control strategy are reviewed.

  18. Microarray analysis of tomato plants exposed to the nonviruliferous or viruliferous whitefly vector harboring Pepper golden mosaic virus.

    Science.gov (United States)

    Musser, Richard O; Hum-Musser, Sue M; Gallucci, Matthew; DesRochers, Brittany; Brown, Judith K

    2014-01-01

    Plants are routinely exposed to biotic and abiotic stresses to which they have evolved by synthesizing constitutive and induced defense compounds. Induced defense compounds are usually made, initially, at low levels; however, following further stimulation by specific kinds of biotic and abiotic stresses, they can be synthesized in relatively large amounts to abate the particular stress. cDNA microarray hybridization was used to identify an array of genes that were differentially expressed in tomato plants 15 d after they were exposed to feeding by nonviruliferous whiteflies or by viruliferous whiteflies carrying Pepper golden mosaic virus (PepGMV) (Begomovirus, Geminiviridae). Tomato plants inoculated by viruliferous whiteflies developed symptoms characteristic of PepGMV, whereas plants exposed to nonviruliferous whitefly feeding or nonwounded (negative) control plants exhibited no disease symptoms. The microarray analysis yielded over 290 spotted probes, with significantly altered expression of 161 putative annotated gene targets, and 129 spotted probes of unknown identities. The majority of the differentially regulated "known" genes were associated with the plants exposed to viruliferous compared with nonviruliferous whitefly feeding. Overall, significant differences in gene expression were represented by major physiological functions including defense-, pathogen-, photosynthesis-, and signaling-related responses and were similar to genes identified for other insect-plant systems. Viruliferous whitefly-stimulated gene expression was validated by real-time quantitative polymerase chain reaction of selected, representative candidate genes (messenger RNA): arginase, dehydrin, pathogenesis-related proteins 1 and -4, polyphenol oxidase, and several protease inhibitors. This is the first comparative profiling of the expression of tomato plants portraying different responses to biotic stress induced by viruliferous whitefly feeding (with resultant virus infection

  19. Biological and Molecular Variability of Alfalfa mosaic virus Affecting Alfalfa Crop in Riyadh Region

    Directory of Open Access Journals (Sweden)

    Mohammed A. AL-Saleh

    2013-12-01

    Full Text Available In 2011–2012, sixty nine samples were collected from alfalfa plants showing viral infection symptoms in Riyadh region. Mechanical inoculation with sap prepared from two collected samples out of twenty five possitive for Alfalfa mosaic virus (AMV by ELISA were produced systemic mosaic on Vigna unguiculata and Nicotiana tabacum, local lesion on Chenopodium amaranticolor and C. quinoa. Vicia faba indicator plants that induce mosaic and mottle with AMV-Sagir isolate and no infection with AMV-Wadi aldawasser isolate. Approximately 700-bp was formed by RT-PCR using AMV coat protein specific primer. Samples from infected alfalfa gave positive results, while healthy plant gave negative result using dot blot hybridization assay. The nucleotide sequences of the Saudi isolates were compared with corresponding viral nucleotide sequences reported in GenBank. The obtained results showed that the AMV from Australia, Brazil, Puglia and China had the highest similarity with AMV-Sajer isolate. While, the AMV from Spain and New Zealaland had the lowest similarity with AMV-Sajer and Wadi aldawasser isolates. The data obtained in this study has been deposited in the GenBank under the accession numbers KC434083 and KC434084 for AMV-Sajer and AMV- Wadialdawasser respectively. This is the first report regarding the gnetic make up of AMV in Saudi Arabia.

  20. A novel TAZ gene mutation and mosaicism in a Polish family with Barth syndrome.

    Science.gov (United States)

    Zapała, Barbara; Płatek, Teresa; Wybrańska, Iwona

    2015-05-01

    Barth syndrome (BTHS) is an X-linked recessive disease primarily affecting males. Clinically, the disease is characterized by hypertrophic or dilated cardiomyopathy, skeletal myopathy, chronic/cyclic neutropenia, 3-methylglutaconic aciduria, growth retardation and respiratory chain dysfunction. It is caused by mutations in the TAZ gene coding for the tafazzin protein which is responsible for cardiolipin remodeling. In this work, we present a novel pathogenic TAZ mutation c.83T>A, p.Val28Glu, found in mosaic form in almost all female members of a Polish family. Sanger sequencing of DNA from peripheral blood and from epithelial cells showed female mosaicism in three generations. This appears to be a new mechanism of inheritance and further research is required in order to understand the mechanism of this mosaicism. We conclude that BTHS genetic testing should include two or more tissues for women that appear to be noncarriers when blood DNA is initially tested. The results of our study should not only be applicable to BTHS families, but also to families with other X-linked diseases.

  1. Nucleotide sequence and phylogenetic analysis of a new potexvirus: Malva mosaic virus.

    Science.gov (United States)

    Côté, Fabien; Paré, Christine; Majeau, Nathalie; Bolduc, Marilène; Leblanc, Eric; Bergeron, Michel G; Bernardy, Michael G; Leclerc, Denis

    2008-01-01

    A filamentous virus isolated from Malva neglecta Wallr. (common mallow) and propagated in Chenopodium quinoa was grown, cloned and the complete nucleotide sequence was determined (GenBank accession # DQ660333). The genomic RNA is 6858 nt in length and contains five major open reading frames (ORFs). The genomic organization is similar to members and the viral encoded proteins shared homology with the group of the Potexvirus genus in the Flexiviridae family. Phylogenetic analysis revealed a close relationship with narcissus mosaic virus (NMV), scallion virus X (ScaVX) and, to a lesser extent, to Alstroemeria virus X (AlsVX) and pepino mosaic virus (PepMV). A novel putative pseudoknot structure is predicted in the 3'-UTR of a subgroup of potexviruses, including this newly described virus. The consensus GAAAA sequence is detected at the 5'-end of the genomic RNA and experimental data strongly suggest that this motif could be a distinctive hallmark of this genus. The name Malva mosaic virus is proposed.

  2. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China.

    Science.gov (United States)

    Xu, D-L; Park, J-W; Mirkov, T E; Zhou, G-H

    2008-01-01

    A survey of cultivated hybrid sugarcane (Saccharum inter-specific hybrid) and noble sugarcane (Saccharum officinarum) in southern China for the presence of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV) and Sugarcane streak mosaic virus (SCSMV) was conducted by RT-PCR from the years 2003 to 2006. SCMV and SrMV, but not SCSMV, were found. A high incidence of SCMV and SrMV coinfection was revealed in both hybrid and noble sugarcanes. All coinfected plants showed mosaic symptom, whereas plants infected with a single virus were symptomatic or asymptomatic. It appears that virus mixtures are more virulent than single infections. The nucleotide sequences of the coat protein (CP) gene of 33 SCMV and 10 SrMV isolates from this study were compared to those of CP genes of SCMV and SrMV reported in GenBank. One hundred and seventy-three SCMV isolates, with the exception of MDB and Abaca strains, can be grouped into five groups, which include three previously known groups, the sugarcane (SCE), maize (MZ), and Thailand groups, and two newly identified groups, the noble sugarcane (NSCE) and Brazil groups. Twenty-two SrMV isolates were divided into two groups, HS (hybrid sugarcane) and NS (noble sugarcane) groups. Five out of eight SrMV hybrid isolates belonged to the HS group, and two SrMV noble isolates and three hybrid isolates were within the NS group. Interestingly, the three hybrid isolates within the NS group were isolated from hybrid sugarcane co-infected with SCMV. This indicates that SCMV helps the NS group SrMV to infect hybrid sugarcane.

  3. The Complete Nucleotide Sequence and Biotype Variability of Papaya leaf distortion mosaic virus.

    Science.gov (United States)

    Maoka, Tetsuo; Hataya, Tatsuji

    2005-02-01

    ABSTRACT The complete nucleotide sequence of the genome of Papaya leaf distortion mosaic virus (PLDMV) was determined. The viral RNA genome of strain LDM (leaf distortion mosaic) comprised 10,153 nucleotides, excluding the poly(A) tail, and contained one long open reading frame encoding a polyprotein of 3,269 amino acids (molecular weight 373,347). The polyprotein contained nine putative proteolytic cleavage sites and some motifs conserved in other potyviral polyproteins with 44 to 50% identities, indicating that PLDMV is a distinct species in the genus Potyvirus. Like the W biotype of Papaya ringspot virus (PRSV), the non-papaya-infecting biotype of PLDMV (PLDMV-C) was found in plants of the family Cucurbitaceae. The coat protein (CP) sequence of PLDMV-C in naturally infected-Trichosanthes bracteata was compared with those of three strains of the P biotype (PLDMV-P), LDM and two additional strains M (mosaic) and YM (yellow mosaic), which are biologically different from each other. The CP sequences of three strains of PLDMV-P share high identities of 95 to 97%, while they share lower identities of 88 to 89% with that of PLDMV-C. Significant changes in hydrophobicity and a deletion of two amino acids at the N-terminal region of the CP of PLDMV-C were observed. The finding of two biotypes of PLDMV implies the possibility that the papaya-infecting biotype evolved from the cucurbitaceae-infecting potyvirus, as has been previously suggested for PRSV. In addition, a similar evolutionary event acquiring infectivity to papaya may arise frequently in viruses in the family Cucurbitaceae.

  4. Extensive Hidden Genomic Mosaicism Revealed in Normal Tissue.

    Science.gov (United States)

    Vattathil, Selina; Scheet, Paul

    2016-03-03

    Genomic mosaicism arising from post-zygotic mutation has recently been demonstrated to occur in normal tissue of individuals ascertained with varied phenotypes, indicating that detectable mosaicism may be less an exception than a rule in the general population. A challenge to comprehensive cataloging of mosaic mutations and their consequences is the presence of heterogeneous mixtures of cells, rendering low-frequency clones difficult to discern. Here we applied a computational method using estimated haplotypes to characterize mosaic megabase-scale structural mutations in 31,100 GWA study subjects. We provide in silico validation of 293 previously identified somatic mutations and identify an additional 794 novel mutations, most of which exist at lower aberrant cell fractions than have been demonstrated in previous surveys. These mutations occurred across the genome but in a nonrandom manner, and several chromosomes and loci showed unusual levels of mutation. Our analysis supports recent findings about the relationship between clonal mosaicism and old age. Finally, our results, in which we demonstrate a nearly 3-fold higher rate of clonal mosaicism, suggest that SNP-based population surveys of mosaic structural mutations should be conducted with haplotypes for optimal discovery.

  5. The eMOSAIC model for humanoid robot control.

    Science.gov (United States)

    Sugimoto, Norikazu; Morimoto, Jun; Hyon, Sang-Ho; Kawato, Mitsuo

    2012-05-01

    In this study, we propose an extension of the MOSAIC architecture to control real humanoid robots. MOSAIC was originally proposed by neuroscientists to understand the human ability of adaptive control. The modular architecture of the MOSAIC model can be useful for solving nonlinear and non-stationary control problems. Both humans and humanoid robots have nonlinear body dynamics and many degrees of freedom. Since they can interact with environments (e.g., carrying objects), control strategies need to deal with non-stationary dynamics. Therefore, MOSAIC has strong potential as a human motor-control model and a control framework for humanoid robots. Yet application of the MOSAIC model has been limited to simple simulated dynamics since it is susceptive to observation noise and also cannot be applied to partially observable systems. Our approach introduces state estimators into MOSAIC architecture to cope with real environments. By using an extended MOSAIC model, we are able to successfully generate squatting and object-carrying behaviors on a real humanoid robot.

  6. Parallel-Processing Software for Creating Mosaic Images

    Science.gov (United States)

    Klimeck, Gerhard; Deen, Robert; McCauley, Michael; DeJong, Eric

    2008-01-01

    A computer program implements parallel processing for nearly real-time creation of panoramic mosaics of images of terrain acquired by video cameras on an exploratory robotic vehicle (e.g., a Mars rover). Because the original images are typically acquired at various camera positions and orientations, it is necessary to warp the images into the reference frame of the mosaic before stitching them together to create the mosaic. [Also see "Parallel-Processing Software for Correlating Stereo Images," Software Supplement to NASA Tech Briefs, Vol. 31, No. 9 (September 2007) page 26.] The warping algorithm in this computer program reflects the considerations that (1) for every pixel in the desired final mosaic, a good corresponding point must be found in one or more of the original images and (2) for this purpose, one needs a good mathematical model of the cameras and a good correlation of individual pixels with respect to their positions in three dimensions. The desired mosaic is divided into slices, each of which is assigned to one of a number of central processing units (CPUs) operating simultaneously. The results from the CPUs are gathered and placed into the final mosaic. The time taken to create the mosaic depends upon the number of CPUs, the speed of each CPU, and whether a local or a remote data-staging mechanism is used.

  7. Extensive Hidden Genomic Mosaicism Revealed in Normal Tissue

    Science.gov (United States)

    Vattathil, Selina; Scheet, Paul

    2016-01-01

    Genomic mosaicism arising from post-zygotic mutation has recently been demonstrated to occur in normal tissue of individuals ascertained with varied phenotypes, indicating that detectable mosaicism may be less an exception than a rule in the general population. A challenge to comprehensive cataloging of mosaic mutations and their consequences is the presence of heterogeneous mixtures of cells, rendering low-frequency clones difficult to discern. Here we applied a computational method using estimated haplotypes to characterize mosaic megabase-scale structural mutations in 31,100 GWA study subjects. We provide in silico validation of 293 previously identified somatic mutations and identify an additional 794 novel mutations, most of which exist at lower aberrant cell fractions than have been demonstrated in previous surveys. These mutations occurred across the genome but in a nonrandom manner, and several chromosomes and loci showed unusual levels of mutation. Our analysis supports recent findings about the relationship between clonal mosaicism and old age. Finally, our results, in which we demonstrate a nearly 3-fold higher rate of clonal mosaicism, suggest that SNP-based population surveys of mosaic structural mutations should be conducted with haplotypes for optimal discovery. PMID:26942289

  8. An Intelligent mutli-object retrieval system for historical mosaics

    Directory of Open Access Journals (Sweden)

    Wafa Maghrebi

    2013-05-01

    Full Text Available In this work we present a Mosaics Intelligent Retrieval System (MIRS for digital museums. The objective of this work is to attain a semantic interpretation of images of historical mosaics. We use the fuzzy logic techniques and semantic similarity measure to extract knowledge from the images for multi-object indexing. The extracted knowledge provides the users (experts and laypersons with an intuitive way to describe and to query the images in the database. Our contribution in this paper is firstly, to define semantic fuzzy linguistic terms to encode the object position and the inter-objects spatial relationships in the mosaic image. Secondly, to present a fuzzy color quantization approach using the human perceptual HSV color space and finally, to classify semantically the mosaics images using a semantic similarity measure. The automatically extracted knowledge are collected and traduced into XML language to create mosaics metadata. This system uses a simple Graphic User Interface (GUI in natural language and applies the classification approach both on the mosaics images database and on user queries, to limit images classes in the retrieval process. MIRS is tested on images from the exceptional Tunisian collection of complex mosaics. Experimental results are based on queries of various complexities which yielded a system’s recall and precision rates of 86.6% and 87.1%, respectively, while the classification approach gives an average success rate evaluated to 76%.

  9. Discovery of optical candidate supernova remnants in Sagittarius

    Science.gov (United States)

    Alikakos, J.; Boumis, P.; Christopoulou, P. E.; Goudis, C. D.

    2012-08-01

    During an [O III] survey of planetary nebulae, we identified a region in Sagittarius containing several candidate supernova remants (SNRs) and obtained deep optical narrow-band images and spectra to explore their nature. We obtained images of the area of interest by acquiring observations in the emission lines of Hα + [N II], [S II] and [O III]. The resulting mosaic covers an area of 1.4° × 1.0°, where both filamentary and diffuse emission was discovered, suggesting that there is more than one SNR in the area. Deep long-slit spectra were also taken of eight different regions. Both the flux-calibrated images and the spectra show that the emission from the filamentary structures originates from shock-heated gas, while the photo-ionization mechanism is responsible for the diffuse emission. Part of the optical emission is found to be correlated with the radio at 4850 MHz suggesting that they are related, while the infrared emission found in the area at 12 μm and 22 μm marginally correlates with the optical. The presence of the [O III] emission line in one of the candidate SNRs implies that the shock velocities in the interstellar "clouds" are between 120 km s-1 and 200 km s-1, while its absence in the other candidate SNRs indicates that the shock velocities there are slower. For all candidate remnants, the [S II] λλ 6716/6731 ratio indicates that the electron densities are below 240 cm-3, while the Hα emission is measured to be between 0.6 and 41 × 10-17 erg s-1 cm-2 arcsec-2. The existence of eight pulsars within 1.5° of the center of the candidate SNRs also implies that there are many SNRs in the area as well as that the detected optical emission could be part of a number of supernovae explosions.

  10. Ozone response of tomato plants infected with cucumber mosaic virus and/or tobacco mosaic virus

    Energy Technology Data Exchange (ETDEWEB)

    Ormrod, D.P.; Kemp, W.G.

    1979-10-01

    The sensitivity of three tomato cultivars to several concentrations of ozone was evaluated after prior sequential inoculations with tobacco mosaic virus (TMV) and/or cucumber mosaic virus (CMV). Ozone injury in inoculated and uninoculated tomatoes varied from slight to severe depending on the virus, cultivar, ozone concentration and virus incubation period. The frequency of increased ozone injury was about twice as great as that of suppressed injury on infected plants. Ozone injury occurred more frequently in TMV-inoculated plants than in those inoculated with CMV. There were more increases than decreases in ozone injury after 7 or 14 days of virus infection, but mainly decreases in injury after 21 days infection. Growth was significantly reduced in plants exposed to ozone after a 21-day virus incubation period, particularly when they were inoculated with both viruses.

  11. Nucleic acids encoding mosaic HIV-1 gag proteins

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette T.; Perkins, Simon; Bhattacharya, Tanmoy; Fischer, William M.; Theiler, James; Letvin, Norman; Haynes, Barton F.; Hahn, Beatrice H.; Yusim, Karina; Kuiken, Carla

    2016-11-15

    The disclosure generally relates to an immunogenic composition (e.g., a vaccine) and, in particular, to a polyvalent immunogenic composition, such as a polyvalent HIV vaccine, and to methods of using same.

  12. Interaction between the Alfalfa mosaic virus movement protein and plasmodesmata

    NARCIS (Netherlands)

    Wel, van der N.N.

    2000-01-01

    For a full infection of a host, plant viruses should be able to multiply in the initially infected cell and to spread to neighbouring cells as to eventually invade the entire plant. The viral transport pathway can in principle be divided into two steps, i.e. cell-to-cell movement within tissues, and

  13. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Marathe, Rajendra; Dinesh-Kumar, S P

    2002-05-01

    The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.

  14. Solar Mosaic Inc. Mosaic Home Solar Loan SunShot 9 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Colin James [Solar Mosaic Inc., Oakland, CA (United States)

    2017-02-09

    The 6686 Mosaic SunShot award has helped Solar Mosaic Inc to progress from an early stage startup focused on commercial crowdfunding to a leading multi-state residential solar lender. The software platform is now used by the majority of the nation's top solar installers and offers a variety of simple home solar loans. Mosaic is has originated approximately $1Bil in solar loans to date to put solar on over 35k rooftops. The company now lends to homeowners with a wide range of credit scores across multiple states and mitigates boundaries preventing them from profiting from ownership of a home solar system. The project included milestones in 5 main categories: 1. Lending to homeowners outside of CA 2. Lending to homeowners with FICO scores under 700 3. Packaging O&M with the home solar loan 4. Allowing residential installers to process home solar loans via API 5. Lowering customer acquisition costs below $1500 This report includes a detailed review of the final results achieved and key findings.

  15. Biological and Molecular Characterization of Cucumber mosaic virus Subgroup II Isolate Causing Severe Mosaic in Cucumber.

    Science.gov (United States)

    Kumari, Reenu; Bhardwaj, Pooja; Singh, Lakhmir; Zaidi, Aijaz A; Hallan, Vipin

    2013-06-01

    Cucumber mosaic virus (CMV) has a wide host range causing severe damage in many important agricultural and ornamental crops. Earlier reports showed the prevalence of CMV subgroup I isolates in India. However, some recent reports point towards increasing incidence of subgroup II isolates in the country. The complete genome of a CMV isolate causing severe mosaic in cucumber was characterized and its phylogenetic analysis with other 21 CMV isolates reported worldwide clustered it with subgroup II strains. The genome comprised of RNA 1 (3,379 nucleotides), RNA 2 (3,038 nucleotides) and RNA 3 (2,206 nucleotides). The isolate showed highest homology with subgroup II isolates: 95.1-98.7, 87.7-98.0, and 85.4-97.1 % within RNA1, RNA2, and RNA3, respectively. RNA1 and RNA2 were closely related to the Japanese isolate while RNA3 clustered with an American isolate. Host range studies revealed that isolate showed severe mosaic symptoms on Nicotiana spp. and Cucumis spp. The isolate induced leaf deformation and mild filiform type symptoms in tomato. To best of our knowledge this is the first report of complete genome of CMV subgroup II isolate from India.

  16. Tissue differences in fragile X mosaics: Mosaicism in blood cells may differ greatly from skin

    Energy Technology Data Exchange (ETDEWEB)

    Dobkin, C.S.; Nolin, S.L.; Cohen, I. [NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)] [and others

    1996-08-09

    The fragile X mutation is diagnosed from the structure of the FMR1 gene in blood cell DNA. An estimated 12 to 41% of affected males are mosaics who carry both a {open_quotes}full mutation{close_quotes} allele from which there is no gene expression and a {open_quotes}premutation{close_quotes} allele which has normal gene expression. We compared the DNA in blood cells and skin fibroblasts from four mosaic fragile X males to see if there was a difference in the relative amounts of premutation and full mutation alleles within the tissues of these individuals. Two of these males showed striking differences in the ratio of premutation to full mutation in different tissues while the other two showed only slight differences. These observations conform with the widely accepted hypothesis that the fragile X CGG repeat is unstable in somatic tissue during early embryogenesis. Accordingly, the mosaicism in brain and skin, which are both ectodermal in origin, may be similar to each other but different from blood which is not ectodermal in origin. Thus, the ratio of full mutation to premutation allele in skin fibroblasts might be a better indicator of psychological impairment than the ratio in blood cells. 24 refs., 4 figs., 1 tab.

  17. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz;

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar...... that the coat protein subunit folds of PVX and NMV may be very similar to each other and similar to that of TMV. These results suggest that PVX and NMV may have coat protein subunit structures based on folds similar to the TMV helix bundle and hence that the helical architecture of the PVX and NMV particles may...... be similar to that of TMV but with different structural parameters....

  18. Image mosaic method based on SIFT features of line segment.

    Science.gov (United States)

    Zhu, Jun; Ren, Mingwu

    2014-01-01

    This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform) feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.

  19. MOSAICISM CONFINED TO PLACENTA IN PREGNANCIES WITH ADVERSE OUTCOME

    Institute of Scientific and Technical Information of China (English)

    向阳; KarinSundberg; BjarneBeck; 孙念怙

    1995-01-01

    Chorionic villi and feral tissues from 50 pathological human conceptions ar gesrarional weeks 9-40 were cultured and cytogenetically analyzed to explore the existence of chromosomal mosaicism confined to the extraembryonic tissues and to clarify the relationship between confined placental mosaicism and adverse outcome of pregnancy. Chorionic villi and fetal rlssues from 12 second trimester gesrations terminated for social reasons served as a control group. In two pathological gestations, true mosaicism was found exclusively in chorionic cells and could not be confirmed in cells derived from the fetal tissues, One of these was severely growth retarded, Concordant results were obtained in all other cases,

  20. The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection.

    Science.gov (United States)

    Spolarics, Zoltán

    2007-06-01

    Females as compared with males display better general health status, longevity, and improved clinical course after injury and infection. It is generally believed that the female advantage is associated with the effects of sex hormones. This review argues that the sex benefit of females during the host response is associated with polymorphism of X-linked genes and cellular mosaicism for X-linked parental alleles. Cells from females carry both parental X chromosomes (maternal, Xm; or paternal, Xp), whereas males carry only one (Xm). Because of dosage compensation and random X inactivation, half of the cells from females express either Xm or Xp. Therefore, females are cellular mosaics for their X-linked polymorphic genes. This cellular mosaicism in females represents a more adaptive and balanced cellular machinery that is advantageous during the innate immune response. Several genes encoding key metabolic and regulatory proteins reside on the X chromosome, including members of the apoptotic cascade, hormone homeostasis, glucose metabolic enzymes, superoxide-producing machinery, and the toll-like receptor/nuclear factor kappaB/c-Jun N-terminal kinase signaling pathway. Polymorphic forms of these X-linked proteins are likely to manifest in phenotypic differences in the mosaic cell populations in females and may contribute to sex-related differences in the host response to injury and infection. The unique inheritance pattern of X-linked polymorphisms and their potential confounding effects in clinical trials are also discussed; furthermore, we present potential biomarkers for studying mosaic cell populations of innate immunity.

  1. Methods of Spectral Analysis in C++ (MOSAIC)

    Science.gov (United States)

    Engesser, Michael

    2016-06-01

    Stellar spectroscopic classification is most often still done by hand. MOSAIC is a project focused on the collection and classification of astronomical spectra using a computerized algorithm. The code itself attempts to accurately classify stellar spectra according to the broad spectral classes within the Morgan-Keenan system of spectral classification, based on estimated temperature and the relative abundances of certain notable elements (Hydrogen, Helium, etc.) in the stellar atmosphere. The methodology includes calibrating the wavelength for pixels across the image by using the wavelength dispersion of pixels inherent with the spectrograph used. It then calculates the location of the peak in the star's Planck spectrum in order to roughly classify the star. Fitting the graph to a blackbody curve is the final step for a correct classification. Future work will involve taking a closer look at emission lines and luminosity classes.

  2. A Mosaic of Creativity in Occupational Therapy

    Directory of Open Access Journals (Sweden)

    Molly Bathje MS, OTR/L

    2014-07-01

    Full Text Available Martha Branson-Banks, OT, provided the cover art for the summer 2014 issue of the Open Journal of Occupational Therapy. The piece is titled “Garden with thanks to Klimt” and is one of several mosaic art pieces in her collection of works. She created the piece with art glass and resin on an abandoned door. Her use of a repurposed door represents her belief in the capacity for transformation and beauty within each individual she has treated and taught throughout her career. Martha’s work as an occupational therapist, educator, and artist reminds us of the foundational beliefs of the occupational therapy profession, including the benefits of engagement in meaningful and creative activities.

  3. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    Science.gov (United States)

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  4. Permanent neonatal diabetes in siblings with novel C109Y INS mutation transmitted by an unaffected parent with somatic mosaicism.

    Science.gov (United States)

    Bee, Yong Mong; Zhao, Yi; Ellard, Sian; Hattersley, Andrew T; Yap, Fabian

    2014-06-01

    Mutations involving the insulin (INS) gene are a common cause of permanent neonatal diabetes (PND). Although INS mutations typically occur de novo and germline INS mutations transmitted to offspring by unaffected parents has been described, somatic mosaicism in a parent with an INS mutation has not been previously reported. We describe two siblings (one brother and one sister) with PND (26- and 19-yr old diagnosed at 3 and 7 months old, respectively), whose parents were unaffected. We performed genetic analysis of leukocyte DNA for this family. Both patients were found to carry the novel heterozygous c.326G>A substitution in exon 3 of INS, resulting in a p.C109Y change of the insulin protein. Analyses of leukocyte DNA from the parents revealed low level mutation in the sequencing trace of the father, raising the possibility of somatic mosaicism. Real-time polymerase chain reaction (PCR) analysis showed he had approximately 73% of the mutant allele relative to his affected son. This first report of somatic mosaicism in an unaffected parent with an INS mutation suggests that parental mosaicism may be responsible for the transmission of PND in patients with de novo INS mutations. As such, appropriate counseling for recurrent risks should be considered and we recommend that molecular genetic testing for future siblings at birth should be offered to the parents of children with INS mutation.

  5. Discovery and small RNA profile of Pecan mosaic-associated virus, a novel potyvirus of pecan trees.

    Science.gov (United States)

    Su, Xiu; Fu, Shuai; Qian, Yajuan; Zhang, Liqin; Xu, Yi; Zhou, Xueping

    2016-05-26

    A novel potyvirus was discovered in pecan (Carya illinoensis) showing leaf mosaic symptom through the use of deep sequencing of small RNAs. The complete genome of this virus was determined to comprise of 9,310 nucleotides (nt), and shared 24.0% to 58.9% nucleotide similarities with that of other Potyviridae viruses. The genome was deduced to encode a single open reading frame (polyprotein) on the plus strand. Phylogenetic analysis based on the whole genome sequence and coat protein amino acid sequence showed that this virus is most closely related to Lettuce mosaic virus. Using electron microscopy, the typical Potyvirus filamentous particles were identified in infected pecan leaves with mosaic symptoms. Our results clearly show that this virus is a new member of the genus Potyvirus in the family Potyviridae. The virus is tentatively named Pecan mosaic-associated virus (PMaV). Additionally, profiling of the PMaV-derived small RNA (PMaV-sRNA) showed that the most abundant PMaV-sRNAs were 21-nt in length. There are several hotspots for small RNA production along the PMaV genome; two 21-nt PMaV-sRNAs starting at 811 nt and 610 nt of the minus-strand genome were highly repeated.

  6. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Bruce A.; Tanifuji, Goro; Burki, Fabien; Gruber, Ansgar; Irimia, Manuuel; Maruyama, Shinichiro; Arias, Maria C.; Ball, Steven G.; Gile, Gillian H.; Hirakawa, Yoshihisa; Hopkins, Julia F.; Kuo, Alan; Rensing, Stefan A.; Schmutz, Jeremy; Symeonidi, Aikaterini; Elias, Marek; Eveleigh, Robert J. M.; Herman, Emily K.; Klute, Mary J.; Nakayama, Takuro; Obornik, Miroslav; Reyes-Prieto, Adrian; Armbrust, E. Virginia; Aves, Stephen J.; Beiko, Robert G.; Coutinho, Pedro; Dacks, Joel B.; Durnford, Dion G.; Fast, Naomi M.; Green, Beverley R.; Grisdale, Cameron J.; Hempel, Franziska; Henrissat, Bernard; Hoppner, Marc P.; Ishida, Ken-Ichiro; Kim, Eunsoo; Koreny, Ludek; Kroth, Peter G.; Liu, Yuan; Malik, Shehre-Banoo; Maier, Uwe G.; McRose, Darcy; Mock, Thomas; Neilson, Jonathan A. D.; Onodera, Naoko T.; Poole, Anthony M.; Pritham, Ellen J.; Richards, Thomas A.; Rocap, Gabrielle; Roy, Scott W.; Sarai, Chihiro; Schaack, Sarah; Shirato, Shu; Slamovits, Claudio H.; Spencer, Davie F.; Suzuki, Shigekatsu; Worden, Alexandra Z.; Zauner, Stefan; Barry, Kerrie; Bell, Callum; Bharti, Arvind K.; Crow, John A.; Grimwood, Jane; Kramer, Robin; Lindquist, Erika; Lucas, Susan; Salamov, Asaf; McFadden, Geoffrey I.; Lane, Christopher E.; Keeling, Patrick J.; Gray, Michael W.; Grigoriev, Igor V.; Archibald, John M.

    2012-08-10

    Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have 21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.

  7. Genetic mapping of turnip mosaic virus resistance in Lactuca sativa.

    Science.gov (United States)

    Robbins, M A; Witsenboer, H; Michelmore, R W; Laliberte, J F; Fortin, M G

    1994-11-01

    Presence of the dominant Tu gene in Lactuca sativa is sufficient to confer resistance to infection by turnip mosaic virus (TuMV). In order to obtain an immunological assay for the presence of TuMV in inoculated plants, the TuMV coat protein (CP) gene was cloned by amplification of a cDNA corresponding to the viral genome using degenerate primers designed from conserved potyvirus CP sequences. The TuMV CP was overexpressed in Escherichia coli, and polyclonal antibodies were produced. To locate Tu on the L. sativa genetic map, F3 families from a cross between cvs "Cobbham Green" (resistant to TuMV) and "Calmar" (susceptible) were genotyped for Tu. Families known to be recombinant in the region containing Tu were infected with TuMV and tested by the indirect enzyme-linked immunosorbent assay (ELISA) using the anti-CP serum. This assay placed Tu between two random amplified polymorphic DNA (RAPD) markers and 3.2 cM from Dm5/8 (which confers resistance to Bremia lactucae). Also, bulked segregant analysis was used to screen for additional RAPD markers tightly linked to the Tu locus. Five new markers linked to Tu were identified in this region, and their location on the genetic map was determined using informative recombinants in the region. Six markers were identified as being linked within 2.5 cM of Tu.

  8. Tobacco mosaic virus as an AFM tip calibrator.

    Science.gov (United States)

    Trinh, Minh-Hieu; Odorico, Michael; Bellanger, Laurent; Jacquemond, Mireille; Parot, Pierre; Pellequer, Jean-Luc

    2011-01-01

    The study of high-resolution topographic surfaces of isolated single molecules is one of the applications of atomic force microscopy (AFM). Since tip-induced distortions are significant in topographic images the exact AFM tip shape must be known in order to correct dilated AFM height images using mathematical morphology operators. In this work, we present a protocol to estimate the AFM tip apex radius using tobacco mosaic virus (TMV) particles. Among the many advantages of TMV, are its non-abrasivity, thermal stability, bio-compatibility with other isolated single molecules and stability when deposited on divalent ion pretreated mica. Compared to previous calibration systems, the advantage of using TMV resides in our detailed knowledge of the atomic structure of the entire rod-shaped particle. This property makes it possible to interpret AFM height images in term of the three-dimensional structure of TMV. Results obtained in this study show that when a low imaging force is used, the tip is sensing viral protein loops whereas at higher imaging force the tip is sensing the TMV particle core. The known size of the TMV particle allowed us to develop a tip-size estimation protocol which permits the successful erosion of tip-convoluted AFM height images. Our data shows that the TMV particle is a well-adapted calibrator for AFM tips for imaging single isolated biomolecules. The procedure developed in this study is easily applicable to any other spherical viral particles.

  9. Cell membrane fluid-mosaic structure and cancer metastasis.

    Science.gov (United States)

    Nicolson, Garth L

    2015-04-01

    Cancer cells are surrounded by a fluid-mosaic membrane that provides a highly dynamic structural barrier with the microenvironment, communication filter and transport, receptor and enzyme platform. This structure forms because of the physical properties of its constituents, which can move laterally and selectively within the membrane plane and associate with similar or different constituents, forming specific, functional domains. Over the years, data have accumulated on the amounts, structures, and mobilities of membrane constituents after transformation and during progression and metastasis. More recent information has shown the importance of specialized membrane domains, such as lipid rafts, protein-lipid complexes, receptor complexes, invadopodia, and other cellular structures in the malignant process. In describing the macrostructure and dynamics of plasma membranes, membrane-associated cytoskeletal structures and extracellular matrix are also important, constraining the motion of membrane components and acting as traction points for cell motility. These associations may be altered in malignant cells, and probably also in surrounding normal cells, promoting invasion and metastatic colonization. In addition, components can be released from cells as secretory molecules, enzymes, receptors, large macromolecular complexes, membrane vesicles, and exosomes that can modify the microenvironment, provide specific cross-talk, and facilitate invasion, survival, and growth of malignant cells.

  10. 1935 15' Quad #315 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  11. 1935 15' Quad #290 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  12. 1935 15' Quad #248 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  13. 1935 15' Quad #223 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #035 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1935 15' Quad #059 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  16. 1935 15' Quad #129 Aerial Photo Mosaic Index - NM

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #177 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #411 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. 1935 15' Quad #367 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  20. 1935 15' Quad #099 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  1. 2011 NOAA Ortho-rectified Mosaic of Casco Bay, Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 1935 15' Quad #410 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  3. 2011 NOAA Ortho-rectified Mosaic of Yabucoa, Puerto Rico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2011 NOAA Ortho-rectified Mosaic of Searsport Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2009 NOAA Ortho-rectified Mosaic of Brunswick Georgia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2011 NOAA Ortho-rectified Mosaic of Galveston, Texas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2011 NOAA Ortho-rectified Mosaic of Baltimore, Maryland

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 1935 15' Quad #265 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  9. 1935 15' Quad #250 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  10. 1935 15' Quad #028 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  11. 1935 15' Quad #078 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  12. 1935 15' Quad #031 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  13. 1935 15' Quad #081 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #012 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1935 15' Quad #203 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  16. 1935 15' Quad #238 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #224 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #201 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. Rib gap anomaly in partial or mosaic trisomy 8

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.; Collis, J.; Suter, M.; Sillence, D.

    1988-06-01

    Gaps in the first ribs were observed in two children, one with partial and the other with mosaic trisomy for chromosome 8. The sign may be considered in conjunction with other features as a relative indication for chromosomal studies.

  20. 1935 15' Quad #275 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...