WorldWideScience

Sample records for candidate gene expression

  1. Expression studies of the obesity candidate gene FTO in pig

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Birck, Malene Muusfeldt; Fredholm, Merete

    2010-01-01

    Obesity is an increasing problem worldwide and research on candidate genes in good animal models is highly needed. The pig is an excellent model as its metabolism, organ size, and eating habits resemble that of humans. The present study is focused on the characterization of the fat mass and obesity...... associated gene (FTO) in pig. This gene has recently been associated with increased body mass index in several human populations. To establish information on the expression profile of FTO in the pig we performed quantitative PCR in a panel of adult pig tissues and in tissues sampled at different...... and cerebellum). Additionally, in order to see the involvement of the FTO gene in obesity, the changes in expression level were investigated in a nutritional study in brain of Gottingen minipigs under a high cholesterol diet. Significantly higher (P

  2. Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions--that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders.

  3. [Identification of candidate genes and expression profiles, as doping biomarkers].

    Science.gov (United States)

    Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V

    2007-01-01

    Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.

  4. Finding gene regulatory network candidates using the gene expression knowledge base.

    Science.gov (United States)

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  5. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  6. Identification of Candidate B-Lymphoma Genes by Cross-Species Gene Expression Profiling

    Science.gov (United States)

    Tompkins, Van S.; Han, Seong-Su; Olivier, Alicia; Syrbu, Sergei; Bair, Thomas; Button, Anna; Jacobus, Laura; Wang, Zebin; Lifton, Samuel; Raychaudhuri, Pradip; Morse, Herbert C.; Weiner, George; Link, Brian; Smith, Brian J.; Janz, Siegfried

    2013-01-01

    Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the “mouse filter” for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists. PMID:24130802

  7. Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Hugo Bruno Correa Molinari

    2013-03-01

    Full Text Available The cell walls of grasses such as wheat, maize, rice and sugar cane, contain large amounts of ferulate that is ester-linked to the cell wall polysaccharide glucuronoarabinoxylan (GAX. This ferulate is considered to limit the digestibility of polysaccharide in grass biomass as it forms covalent linkages between polysaccharide and lignin components. Candidate genes within a grass-specific clade of the BAHD acyl-coA transferase superfamily have been identified as being responsible for the ester linkage of ferulate to GAX. Manipulation of these BAHD genes may therefore be a biotechnological target for increasing efficiency of conversion of grass biomass into biofuel. Here, we describe the expression of these candidate genes and amounts of bound ferulate from various tissues and developmental stages of the model grass Brachypodium distachyon. BAHD candidate transcripts and significant amounts of bound ferulate were present in every tissue and developmental stage. We hypothesise that BAHD candidate genes similar to the recently described rice OsPMT gene (PMT sub-clade are principally responsible for the bound coumaric acid (pCA, and that other BAHD candidates (non-PMT sub-clade are responsible for bound ferulic acid (FA. There were some similarities with between the ratio of expression non-PMT / PMT genes and the ratio of bound FA / pCA between tissue types, compatible with this hypothesis. However, much further work to modify BAHD genes in grasses and to characterise the heterologously expressed proteins is required to demonstrate their function.

  8. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation.

    Science.gov (United States)

    Halimaa, Pauliina; Lin, Ya-Fen; Ahonen, Viivi H; Blande, Daniel; Clemens, Stephan; Gyenesei, Attila; Häikiö, Elina; Kärenlampi, Sirpa O; Laiho, Asta; Aarts, Mark G M; Pursiheimo, Juha-Pekka; Schat, Henk; Schmidt, Holger; Tuomainen, Marjo H; Tervahauta, Arja I

    2014-03-18

    Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.

  9. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes

    DEFF Research Database (Denmark)

    Storling, Joachim; Brorsson, Caroline Anna

    2013-01-01

    In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease......, but more than 40 additional loci are known to significantly affect T1D risk. Since most of the currently known genetic candidates have annotated immune cell functions, it is generally considered that most of the genetic susceptibility in T1D is caused by variation in genes affecting immune cell function....... Recent studies, however, indicate that most T1D candidate genes are expressed in human islets suggesting that the functions of the genes are not restricted to immune cells, but also play roles in the islets and possibly the β cells. Several candidates change expression levels within the islets following...

  10. Gene expression profiling reveals candidate genes related to residual feed intake in duodenum of laying ducks.

    Science.gov (United States)

    Zeng, T; Huang, L; Ren, J; Chen, L; Tian, Y; Huang, Y; Zhang, H; Du, J; Lu, L

    2017-12-01

    Feed represents two-thirds of the total costs of poultry production, especially in developing countries. Improvement in feed efficiency would reduce the amount of feed required for production (growth or laying), the production cost, and the amount of nitrogenous waste. The most commonly used measures for feed efficiency are feed conversion ratio (FCR) and residual feed intake (RFI). As a more suitable indicator assessing feed efficiency, RFI is defined as the difference between observed and expected feed intake based on maintenance and growth or laying. However, the genetic and biological mechanisms regulating RFI are largely unknown. Identifying molecular mechanisms explaining divergence in RFI in laying ducks would lead to the development of early detection methods for the selection of more efficient breeding poultry. The objective of this study was to identify duodenum genes and pathways through transcriptional profiling in 2 extreme RFI phenotypes (HRFI and LRFI) of the duck population. Phenotypic aspects of feed efficiency showed that RFI was strongly positive with FCR and feed intake (FI). Transcriptomic analysis identified 35 differentially expressed genes between LRFI and HRFI ducks. These genes play an important role in metabolism, digestibility, secretion, and innate immunity including (), (), (), β (), and (). These results improve our knowledge of the biological basis underlying RFI, which would be useful for further investigations of key candidate genes for RFI and for the development of biomarkers.

  11. Candidate innate immune system gene expression in the ecological model Daphnia.

    Science.gov (United States)

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J

    2011-10-01

    The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive

  12. Gene Expression Analysis in Tubule Interstitial Compartments Reveals Candidate Agents for IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2014-09-01

    Full Text Available Background/Aims: Our aim was to explore the molecular mechanism underlying development of IgA nephropathy and discover candidate agents for IgA nephropathy. Methods: The differentially expressed genes (DEGs between patients with IgA nephropathy and normal controls were identified by the data of GSE35488 downloaded from GEO (Gene Expression Omnibus database. The co-expressed gene pairs among DEGs were screened to construct the gene-gene interaction network. Gene Ontology (GO enrichment analysis was performed to analyze the functions of DEGs. The biologically active small molecules capable of targeting IgA nephropathy were identified using the Connectivity Map (cMap database. Results: A total of 55 genes involved in response to organic substance, transcription factor activity and response to steroid hormone stimulus were identified to be differentially expressed in IgA nephropathy patients compared to healthy individuals. A network with 45 co-expressed gene pairs was constructed. DEGs in the network were significantly enriched in response to organic substance. Additionally, a group of small molecules were identified, such as doxorubicin and thapsigargin. Conclusion: Our work provided a systematic insight in understanding the mechanism of IgA nephropathy. Small molecules such as thapsigargin might be potential candidate agents for the treatment of IgA nephropathy.

  13. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    Science.gov (United States)

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-09-02

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    Directory of Open Access Journals (Sweden)

    Clark Taane G

    2010-04-01

    Full Text Available Abstract Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%. Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes

  15. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, L.S.; Bennett, P.R.; Moore, G.E. [Queen Charlotte`s and Chelsea Hospital, London (United Kingdom)

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  16. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  17. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  18. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  19. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets

    Directory of Open Access Journals (Sweden)

    Karacali Bilge

    2007-10-01

    Full Text Available Abstract Background Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a all genes on the microarray platform and b a list of known disease-related genes (a priori selection. We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms. Results Highly discriminative expression profiles were produced on both simulated gene expression data and expression data from breast cancer and lymphoma datasets on the basis of ER and BCL-6 expression, respectively. Use of relapse-free status to identify profiles for prognosis prediction resulted in poorly discriminative decision rules. Supervised feature selection resulted in more accurate classifications than random or a priori selection, however, the difference in prediction error decreased as the number of features increased. These results held when decision rules were applied across-datasets to samples profiled on the same microarray platform. Conclusion Our results show that many gene sets predict molecular phenotypes accurately. Given this, expression profiles identified using different training datasets should be expected to show little agreement. In addition, we demonstrate the difficulty in predicting relapse directly from microarray data using supervised machine

  20. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  1. Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses

    Directory of Open Access Journals (Sweden)

    Lionikas Arimantas

    2012-11-01

    Full Text Available Abstract Background We have recently identified a number of Quantitative Trait Loci (QTL contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA muscle of each strain by RNA-Seq. Results 13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN. The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10 residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p Conclusion Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.

  2. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  3. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  4. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    OpenAIRE

    Arun, Alok; Bauml?, V?ronique; Amelot, Ga?l; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at ident...

  5. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep.

    Science.gov (United States)

    Peñagaricano, Francisco; Zorrilla, Pilar; Naya, Hugo; Robello, Carlos; Urioste, Jorge I

    2012-02-01

    The white coat colour of sheep is an important economic trait. For unknown reasons, some animals are born with, and others develop with time, black skin spots that can also produce pigmented fibres. The presence of pigmented fibres in the white wool significantly decreases the fibre quality. The aim of this work was to study gene expression in black spots (with and without pigmented fibres) and white skin by microarray techniques, in order to identify the possible genes involved in the development of this trait. Five unrelated Corriedale sheep were used and, for each animal, the three possible comparisons (three different hybridisations) between the three samples of interest were performed. Differential gene expression patterns were analysed using different t-test approaches. Most of the major genes with well-known roles in skin pigmentation, e.g. ASIP, MC1R and C-KIT, showed no significant difference in the gene expression between white skin and black spots. On the other hand, many of the differentially expressed genes (raw P-value spots. The gene expression of C-FOS and KLF4, transcription factors involved in the cellular response to external factors such as ultraviolet light, was validated by quantitative polymerase chain reaction (PCR). This exploratory study provides a list of candidate genes that could be associated with the development of black skin spots that should be studied in more detail. Characterisation of these genes will enable us to discern the molecular mechanisms involved in the development of this feature and, hence, increase our understanding of melanocyte biology and skin pigmentation. In sheep, understanding this phenomenon is a first step towards developing molecular tools to assist in the selection against the presence of pigmented fibres in white wool.

  6. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  7. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.

    Science.gov (United States)

    Moon, Myungjin; Nakai, Kenta

    2018-04-01

    Currently, cancer biomarker discovery is one of the important research topics worldwide. In particular, detecting significant genes related to cancer is an important task for early diagnosis and treatment of cancer. Conventional studies mostly focus on genes that are differentially expressed in different states of cancer; however, noise in gene expression datasets and insufficient information in limited datasets impede precise analysis of novel candidate biomarkers. In this study, we propose an integrative analysis of gene expression and DNA methylation using normalization and unsupervised feature extractions to identify candidate biomarkers of cancer using renal cell carcinoma RNA-seq datasets. Gene expression and DNA methylation datasets are normalized by Box-Cox transformation and integrated into a one-dimensional dataset that retains the major characteristics of the original datasets by unsupervised feature extraction methods, and differentially expressed genes are selected from the integrated dataset. Use of the integrated dataset demonstrated improved performance as compared with conventional approaches that utilize gene expression or DNA methylation datasets alone. Validation based on the literature showed that a considerable number of top-ranked genes from the integrated dataset have known relationships with cancer, implying that novel candidate biomarkers can also be acquired from the proposed analysis method. Furthermore, we expect that the proposed method can be expanded for applications involving various types of multi-omics datasets.

  8. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis.

    Science.gov (United States)

    Jorgensen, Stacy A; Preston, Jill C

    2014-04-01

    Evolutionary transitions in growth habit and flowering time responses to variable environmental signals have occurred multiple times independently across angiosperms and have major impacts on plant fitness. Proteins in the SPL family of transcription factors collectively regulate flowering time genes that have been implicated in interspecific shifts in annuality/perenniality. However, their potential importance in the evolution of angiosperm growth habit has not been extensively investigated. Here we identify orthologs representative of the major SPL gene clades in annual Arabidopsis thaliana and Mimulus guttatus IM767, and perennial A. lyrata and M. guttatus PR, and characterize their expression. Spatio-temporal expression patterns are complex across both diverse tissues of the same taxa and comparable tissues of different taxa, consistent with genic sub- or neo-functionalization. However, our data are consistent with a general role for several SPL genes in the promotion of juvenile to adult phase change and/or flowering time in Mimulus and Arabidopsis. Furthermore, several candidate genes were identified for future study whose differential expression correlates with growth habit and architectural variation in annual versus perennial taxa. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Identification of Candidate Genes Responsible for Stem Pith Production Using Expression Analysis in Solid-Stemmed Wheat.

    Science.gov (United States)

    Oiestad, A J; Martin, J M; Cook, J; Varella, A C; Giroux, M J

    2017-07-01

    The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SNP) makers derived from expressed sequence tags (ESTs) linked to contained within a 5.13 cM region. Allele specific expression of EST markers was examined in stem tissue for solid and hollow-stemmed pairs of two spring wheat near isogenic lines (NILs) differing for the QTL. Of the 28 ESTs, 13 were located within annotated genes and 10 had detectable stem expression. Annotated genes corresponding to four of the ESTs were differentially expressed between solid and hollow-stemmed NILs and represent possible stem solidness gene candidates. Further examination of the 5.13 cM region containing the 28 EST markers identified 260 annotated genes. Twenty of the 260 linked genes were up-regulated in hollow NIL stems, while only seven genes were up-regulated in solid NIL stems. An -methyltransferase within the region of interest was identified as a candidate based on differential expression between solid and hollow-stemmed NILs and putative function. Further study of these candidate genes may lead to the identification of the gene(s) controlling stem solidness and an increased ability to select for wheat stem solidness and manage WSS. Copyright © 2017 Crop Science Society of America.

  10. Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis.

    Science.gov (United States)

    Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid

    2017-02-02

    Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.

  11. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling

    DEFF Research Database (Denmark)

    Uzarowska, Anna; Dionisio, Giuseppe; Sarholz, Barbara

    2009-01-01

    Background The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance...... the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize....

  12. Gene expression profiles in prostate cancer: identification of candidate non-invasive diagnostic markers.

    Science.gov (United States)

    Mengual, L; Ars, E; Lozano, J J; Burset, M; Izquierdo, L; Ingelmo-Torres, M; Gaya, J M; Algaba, F; Villavicencio, H; Ribal, M J; Alcaraz, A

    2014-04-01

    To analyze gene expression profiles of prostate cancer (PCa) with the aim of determining the relevant differentially expressed genes and subsequently ascertain whether this differential expression is maintained in post-prostatic massage (PPM) urine samples. Forty-six tissue specimens (36 from PCa patients and 10 controls) and 158 urine PPM-urines (113 from PCa patients and 45 controls) were collected between December 2003 and May 2007. DNA microarrays were used to identify genes differentially expressed between tumour and control samples. Ten genes were technically validated in the same tissue samples by quantitative RT-PCR (RT-qPCR). Forty two selected differentially expressed genes were validated in an independent set of PPM-urines by qRT-PCR. Multidimensional scaling plot according to the expression of all the microarray genes showed a clear distinction between control and tumour samples. A total of 1047 differentially expressed genes (FDR≤.1) were indentified between both groups of samples. We found a high correlation in the comparison of microarray and RT-qPCR gene expression levels (r=.928, P<.001). Thirteen genes maintained the same fold change direction when analyzed in PPM-urine samples and in four of them (HOXC6, PCA3, PDK4 and TMPRSS2-ERG), these differences were statistically significant (P<.05). The analysis of PCa by DNA microarrays provides new putative mRNA markers for PCa diagnosis that, with caution, can be extrapolated to PPM-urines. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  13. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  14. Expression Stabilities of Ten Candidate Reference Genes for RT-qPCR in Zanthoxylum bungeanum Maxim.

    Science.gov (United States)

    Fei, Xitong; Shi, Qianqian; Yang, Tuxi; Fei, Zhaoxue; Wei, Anzhi

    2018-03-30

    Real-time reverse transcription quantitative PCR has become a common method for studying gene expression, however, the optimal selection of stable reference genes is a prerequisite for obtaining accurate quantification of transcript abundance. Suitable reference genes for RT-qPCR have not yet been identified for Chinese prickly ash ( Zanthoxylum bungeanum Maxim.). Chinese prickly ash is the source of an important food seasoning in China. In recent years, Chinese prickly ash has also been developed as a medicinal plant. The expression stabilities of ten genes ( 18S , 28S , EF , UBA , UBQ , TIF , NTB , TUA , RPS , and TIF5A ) were evaluated in roots, stems, leaves, flowers and fruits at five developmental stages and also under stress from cold, drought, and salt. To do this we used three different statistical algorithms: geNorm, NormFinder and BestKeeper. Among the genes investigated, UBA and UBQ were found to be most stable for the different cultivars and different tissues examined, UBQ and TIF for fruit developmental stage. Meanwhile, EF and TUA were most stable under cold treatment, EF and UBQ under drought treatment and NTB and RPS under salt treatment. UBA and UBQ for all samples evaluated were most stably expressed, but 18S , TUA and RPS were found to be generally unreliable as reference genes. Our results provide a basis for the future selection of reference genes for biological research with Chinese prickly ash, under a variety of conditions.

  15. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L.; Vega-Sánchez, Miguel E.; Williams, Brian; Chiniquy, Dawn M.; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G.; Willats, William G. T.; Scheller, Henrik V.; Ronald, Pamela C.; Bartley, Laura E.

    2016-08-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  16. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean.

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    Full Text Available Due to its accuracy, sensitivity and high throughput, real time quantitative PCR (RT-qPCR has been widely used in analysing gene expression. The quality of data from such analyses is affected by the quality of reference genes used. Expression stabilities for nine candidate reference genes widely used in soybean were evaluated under different stresses in this study. Our results showed that EF1A and ACT11 were the best under salinity stress, TUB4, TUA5 and EF1A were the best under drought stress, ACT11 and UKN2 were the best under dark treatment, and EF1B and UKN2 were the best under virus infection. EF1B and UKN2 were the top two genes which can be reliably used in all of the stress conditions assessed.

  17. Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphidiidae) using RT-qPCR.

    Science.gov (United States)

    Gao, Xue-Ke; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lü, Li-Min; Zhang, Li-Juan; Zhu, Xiang-Zhen; Wang, Li; Lu, Hui; Cui, Jin-Jie

    2017-12-30

    Lysiphlebia japonica (Ashmead) is a predominant parasitoid of cotton-melon aphids in the fields of northern China with a proven ability to effectively control cotton aphid populations in early summer. For accurate normalization of gene expression in L. japonica using quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), reference genes with stable gene expression patterns are essential. However, no appropriate reference genes is L. japonica have been investigated to date. In the present study, 12 selected housekeeping genes from L. japonica were cloned. We evaluated the stability of these genes under various experimental treatments by RT-qPCR using four independent (geNorm, NormFinder, BestKeeper and Delta Ct) and one comparative (RefFinder) algorithm. We identified genes showing the most stable levels of expression: DIMT, 18S rRNA, and RPL13 during different stages; AK, RPL13, and TBP among sexes; EF1A, PPI, and RPL27 in different tissues, and EF1A, RPL13, and PPI in adults fed on different diets. Moreover, the expression profile of a target gene (odorant receptor 1, OR1) studied during the developmental stages confirms the reliability of the chosen selected reference genes. This study provides for the first time a comprehensive list of suitable reference genes for gene expression studies in L. japonica and will benefit subsequent genomics and functional genomics research on this natural enemy. Copyright © 2017. Published by Elsevier B.V.

  18. Expression of candidate genes associated with obesity in peripheral white blood cells of Mexican children

    Science.gov (United States)

    Ulloa-Martínez, Marcela; Burguete-García, Ana I.; Murugesan, Selvasankar; Hoyo-Vadillo, Carlos; Cruz-Lopez, Miguel

    2016-01-01

    Introduction Obesity is a chronic, complex, and multifactorial disease, characterized by excess body fat. Diverse studies of the human genome have led to the identification of susceptibility genes that contribute to obesity. However, relatively few studies have addressed specifically the association between the level of expression of these genes and obesity. Material and methods We studied 160 healthy and obese unrelated Mexican children aged 6 to 14 years. We measured the transcriptional expression of 20 genes associated with obesity, in addition to the biochemical parameters, in peripheral white blood cells. The detection of mRNA levels was performed using the OpenArray Real-Time PCR System (Applied Biosystems). Results Obese children exhibited higher values of fasting glucose (p = 0.034), fasting insulin (p = 0.004), low-density lipoprotein (p = 0.006), triglycerides (p GHRL (p = 0.0060) and FTO (p = 0.0348) genes. Conclusions Our results suggest that changes in the expression level of the studied genes are involved in biological processes implicated in the development of childhood obesity. Our study contributes new perspectives for a better understanding of biological processes involved in obesity. The protocol was approved by the National Committee and Ethical Committee Board from the Mexican Social Security Institute (IMSS) (IMSS FIS/IMSS/PRIO/10/011). PMID:27695486

  19. High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; Bassard, Jean-Étienne André; Andersen-Ranberg, Johan

    2014-01-01

    To respond to the rapidly growing number of genes putatively involved in terpenoid metabolism, a robust high-throughput platform for functional testing is needed. An in planta expression system offers several advantages such as the capacity to produce correctly folded and active enzymes localized...

  20. Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis

    Science.gov (United States)

    Emmanuel, Catherine; Gava, Natalie; Kennedy, Catherine; Balleine, Rosemary L.; Sharma, Raghwa; Wain, Gerard; Brand, Alison; Hogg, Russell; Etemadmoghadam, Dariush; George, Joshy; Birrer, Michael J.; Clarke, Christine L.; Chenevix-Trench, Georgia; Bowtell, David D. L.; Harnett, Paul R.; deFazio, Anna

    2011-01-01

    Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute

  1. Application of disease-associated differentially expressed genes – Mining for functional candidate genes for mastitis resistance in cattle

    Directory of Open Access Journals (Sweden)

    Schwerin Manfred

    2003-06-01

    Full Text Available Abstract In this study the mRNA differential display method was applied to identify mastitis-associated expressed DNA sequences based on different expression patterns in mammary gland samples of non-infected and infected udder quarters of a cow. In total, 704 different cDNA bands were displayed in both udder samples. Five hundred-and-thirty two bands, (75.6% were differentially displayed. Ninety prominent cDNA bands were isolated, re-amplified, cloned and sequenced resulting in 87 different sequences. Amongst the 19 expressed sequence tags showing a similarity with previously described genes, the majority of these sequences exhibited homology to protein kinase encoding genes (26.3%, to genes involved in the regulation of gene expression (26.3%, to growth and differentiation factor encoding genes (21.0% and to immune response or inflammation marker encoding genes (21.0%. These sequences were shown to have mastitis-associated expression in the udder samples of animals with and without clinical mastitis by quantitative RT-PCR. They were mapped physically using a bovine-hamster somatic cell hybrid panel and a 5000 rad bovine whole genome radiation hybrid panel. According to their localization in QTL regions based on an established integrated marker/gene-map and their disease-associated expression, four genes (AHCY, PRKDC, HNRPU, OSTF1 were suggested as potentially involved in mastitis defense.

  2. Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling

    Directory of Open Access Journals (Sweden)

    Hernández-Moneo Jose-Luis

    2006-09-01

    Full Text Available Abstract Background Conventional cytogenetic and comparative genomic hybridization (CGH studies in brain malignancies have shown that glioblastoma multiforme (GBM is characterized by complex structural and numerical alterations. However, the limited resolution of these techniques has precluded the precise identification of detailed specific gene copy number alterations. Results We performed a genome-wide survey of gene copy number changes in 20 primary GBMs by CGH on cDNA microarrays. A novel amplicon at 4p15, and previously uncharacterized amplicons at 13q32-34 and 1q32 were detected and are analyzed here. These amplicons contained amplified genes not previously reported. Other amplified regions containg well-known oncogenes in GBMs were also detected at 7p12 (EGFR, 7q21 (CDK6, 4q12 (PDGFRA, and 12q13-15 (MDM2 and CDK4. In order to identify the putative target genes of the amplifications, and to determine the changes in gene expression levels associated with copy number change events, we carried out parallel gene expression profiling analyses using the same cDNA microarrays. We detected overexpression of the novel amplified genes SLA/LP and STIM2 (4p15, and TNFSF13B and COL4A2 (13q32-34. Some of the candidate target genes of amplification (EGFR, CDK6, MDM2, CDK4, and TNFSF13B were tested in an independent set of 111 primary GBMs by using FISH and immunohistological assays. The novel candidate 13q-amplification target TNFSF13B was amplified in 8% of the tumors, and showed protein expression in 20% of the GBMs. Conclusion This high-resolution analysis allowed us to propose novel candidate target genes such as STIM2 at 4p15, and TNFSF13B or COL4A2 at 13q32-34 that could potentially contribute to the pathogenesis of these tumors and which would require futher investigations. We showed that overexpression of the amplified genes could be attributable to gene dosage and speculate that deregulation of those genes could be important in the development

  3. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Directory of Open Access Journals (Sweden)

    Alok Arun

    Full Text Available Real-time quantitative reverse transcription PCR (qRT-PCR is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae, two developmental stages (pupal and adult and two sexes (male and female, all of which were subjected to two food treatments (food stress and control feeding ad libitum. The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the

  4. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Science.gov (United States)

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  5. Cell wall composition and candidate biosynthesis gene expression during rice development

    DEFF Research Database (Denmark)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra

    2016-01-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall...... components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples......, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had...

  6. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy.

    Science.gov (United States)

    Faramarzi, Sepideh; Ghafouri-Fard, Soudeh

    2017-09-01

    Prostate cancer is a prevalent disorder among men with a heterogeneous etiological background. Several molecular events and signaling perturbations have been found in this disorder. Among genes whose expressions have been altered during the prostate cancer development are cancer-testis antigens (CTAs). This group of antigens has limited expression in the normal adult tissues but aberrant expression in cancers. This property provides them the possibility to be used as cancer biomarkers and immunotherapeutic targets. Several CTAs have been shown to be immunogenic in prostate cancer patients and some of the have entered clinical trials. Based on the preliminary data obtained from these trials, it is expected that CTA-based therapeutic options are beneficial for at least a subset of prostate cancer patients.

  7. Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice

    Directory of Open Access Journals (Sweden)

    Ran Huimin

    2008-08-01

    Full Text Available Abstract Background Prosaposin encodes, in tandem, four small acidic activator proteins (saposins with specificities for glycosphingolipid (GSL hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. Results Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/- and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA. Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. Conclusion These results show that: 1 Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2 Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3 CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.

  8. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species.

    Directory of Open Access Journals (Sweden)

    Sarpras M

    Full Text Available Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions, C. frutescens (17 accessions and C. annuum (56 accessions. The pungency level, measured in Scoville Heat Unit (SHU and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher

  9. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species.

    Science.gov (United States)

    M, Sarpras; Gaur, Rashmi; Sharma, Vineet; Chhapekar, Sushil Satish; Das, Jharna; Kumar, Ajay; Yadava, Satish Kumar; Nitin, Mukesh; Brahma, Vijaya; Abraham, Suresh K; Ramchiary, Nirala

    2016-01-01

    Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of

  10. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    OpenAIRE

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2008-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and...

  11. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  12. Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.

    Directory of Open Access Journals (Sweden)

    Richard I Bailey

    2011-02-01

    Full Text Available The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown.We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean versus less (Cosmopolitan strain preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations.Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.

  13. Expressed sequence enrichment for candidate gene analysis of citrus tristeza virus resistance.

    Science.gov (United States)

    Bernet, G P; Bretó, M P; Asins, M J

    2004-02-01

    Several studies have reported markers linked to a putative resistance gene from Poncirus trifoliata ( Ctv-R) located at linkage group 4 that confers resistance against one of the most important citrus pathogens, citrus tristeza virus (CTV). To be successful in both marker-assisted selection and transformation experiments, its accurate mapping is needed. Several factors may affect its localization, among them two are considered here: the definition of resistance and the genetic background of progeny. Two progenies derived from P. trifoliata, by self-pollination and by crossing with sour orange ( Citrus aurantium), a citrus rootstock well-adapted to arid and semi-arid areas, were used for linkage group-4 marker enrichment. Two new methodologies were used to enrich this region with expressed sequences. The enrichment of group 4 resulted in the fusion of several C. aurantium linkage groups. The new one A(7+3+4) is now saturated with 48 markers including expressed sequences. Surprisingly, sour orange was as resistant to the CTV isolate tested as was P. trifoliata, and three hybrids that carry Ctv-R, as deduced from its flanking markers, are susceptible to CTV. The new linkage maps were used to map Ctv-R under the hypothesis of monogenic inheritance. Its position on linkage group 4 of P. trifoliata differs from the location previously reported in other progenies. The genetic analysis of virus-plant interaction in the family derived from C. aurantium after a CTV chronic infection showed the segregation of five types of interaction, which is not compatible with the hypothesis of a single gene controlling resistance. Two major issues are discussed: another type of genetic analysis of CTV resistance is needed to avoid the assumption of monogenic inheritance, and transferring Ctv-R from P. trifoliata to sour orange might not avoid the CTV decline of sweet orange trees.

  14. Cumulative Impact of Polychlorinated Biphenyl and Large Chromosomal Duplications on DNA Methylation, Chromatin, and Expression of Autism Candidate Genes.

    Science.gov (United States)

    Dunaway, Keith W; Islam, M Saharul; Coulson, Rochelle L; Lopez, S Jesse; Vogel Ciernia, Annie; Chu, Roy G; Yasui, Dag H; Pessah, Isaac N; Lott, Paul; Mordaunt, Charles; Meguro-Horike, Makiko; Horike, Shin-Ichi; Korf, Ian; LaSalle, Janine M

    2016-12-13

    Rare variants enriched for functions in chromatin regulation and neuronal synapses have been linked to autism. How chromatin and DNA methylation interact with environmental exposures at synaptic genes in autism etiologies is currently unclear. Using whole-genome bisulfite sequencing in brain tissue and a neuronal cell culture model carrying a 15q11.2-q13.3 maternal duplication, we find that significant global DNA hypomethylation is enriched over autism candidate genes and affects gene expression. The cumulative effect of multiple chromosomal duplications and exposure to the pervasive persistent organic pollutant PCB 95 altered methylation of more than 1,000 genes. Hypomethylated genes were enriched for H2A.Z, increased maternal UBE3A in Dup15q corresponded to reduced levels of RING1B, and bivalently modified H2A.Z was altered by PCB 95 and duplication. These results demonstrate the compounding effects of genetic and environmental insults on the neuronal methylome that converge upon dysregulation of chromatin and synaptic genes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Candidate genes and pathogenesis investigation for sepsis-related acute respiratory distress syndrome based on gene expression profile.

    Science.gov (United States)

    Wang, Min; Yan, Jingjun; He, Xingxing; Zhong, Qiang; Zhan, Chengye; Li, Shusheng

    2016-04-18

    Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury as well as a major cause of acute respiratory failure. Although researchers have made significant progresses in elucidating the pathophysiology of this complex syndrome over the years, the absence of a universal detail disease mechanism up until now has led to a series of practical problems for a definitive treatment. This study aimed to predict some genes or pathways associated with sepsis-related ARDS based on a public microarray dataset and to further explore the molecular mechanism of ARDS. A total of 122 up-regulated DEGs and 91 down-regulated differentially expressed genes (DEGs) were obtained. The up- and down-regulated DEGs were mainly involved in functions like mitotic cell cycle and pathway like cell cycle. Protein-protein interaction network of ARDS analysis revealed 20 hub genes including cyclin B1 (CCNB1), cyclin B2 (CCNB2) and topoisomerase II alpha (TOP2A). A total of seven transcription factors including forkhead box protein M1 (FOXM1) and 30 target genes were revealed in the transcription factor-target gene regulation network. Furthermore, co-cited genes including CCNB2-CCNB1 were revealed in literature mining for the relations ARDS related genes. Pathways like mitotic cell cycle were closed related with the development of ARDS. Genes including CCNB1, CCNB2 and TOP2A, as well as transcription factors like FOXM1 might be used as the novel gene therapy targets for sepsis related ARDS.

  16. BEEF CATTLE MUSCULARITY CANDIDATE GENES

    Directory of Open Access Journals (Sweden)

    Irida Novianti

    2010-04-01

    Full Text Available Muscularity is a potential indicator for the selection of more productive cattle. Mapping quantitative trait loci (QTL for traits related to muscularity is useful to identify the genomic regions where the genes affecting muscularity reside. QTL analysis from a Limousin-Jersey double backcross herd was conducted using QTL Express software with cohort and breed as the fixed effects. Nine QTL suggested to have an association with muscularity were identified on cattle chromosomes BTA 1, 2, 3, 4, 5, 8, 12, 14 and 17. The myostatin gene is located at the centromeric end of chromosome 2 and not surprisingly, the Limousin myostatin F94L variant accounted for the QTL on BTA2. However, when the myostatin F94L genotype was included as an additional fixed effect, the QTL on BTA17 was also no longer significant. This result suggests that there may be gene(s that have epistatic effects with myostatin located on cattle chromosome 17. Based on the position of the QTL in base pairs, all the genes that reside in the region were determined using the Ensembl data base (www.ensembl.org. There were two potential candidate genes residing within these QTL regions were selected. They were Smad nuclear interacting protein 1 (SNIP1 and similar to follistatin-like 5 (FSTL5. (JIIPB 2010 Vol 20 No 1: 1-10

  17. Candidate gene expression in Bos indicus ovarian tissues: pre-pubertal and post-pubertal heifers in diestrus

    Directory of Open Access Journals (Sweden)

    Mayara Morena Del Cambre Amaral Weller

    2016-10-01

    Full Text Available Growth factors such as bone morphogenetic proteins 6, 7, 15 and two isoforms of transforming growth factor-beta (BMP6, BMP7, BMP15, TGFB1 and TGFB2 and insulin-like growth factor system act as local regulators of ovarian follicular development. To elucidate if these factors as well as others candidate genes such as estrogen receptor 1 (ESR1, growth differentiation factor 9 (GDF9, follicle stimulating hormone receptor (FSHR, luteinizing hormone receptor (LHR, bone morphogenetic protein receptor, type 2 (BMPR2, type 1 insulin-like growth factor receptor (IGFR1, and key steroidogenic enzymes cytochrome P450 aromatase and 3-β-hydroxysteroid dehydrogenase (CYP19A1 and HSD3B1 could modulate or influence diestrus on the onset of puberty in Brahman heifers, their ovarian mRNA expression was measured before and after puberty (luteal phase. Six post-pubertal (POST heifers were euthanized on the luteal phase of their second cycle, confirmed by corpus luteum observation, and six pre-pubertal (PRE heifers were euthanized in the same day. Quantitative real-time PCR analysis showed that the expression of FSHR, BMP7, CYP19A1, IGF1 and IGFR1 mRNA was greater in PRE heifers, when contrasted to POST heifers. The expression of LHR and HSD3B1 was lower in PRE heifers. Differential expression of ovarian genes could be associated with changes in follicular dynamics and different cell populations that have emerged as consequence of puberty and the luteal phase. The emerging hypothesis is that BMP7 and IGF1 are co-expressed and may modulate the expression of FSHR, LHR and IGFR1 and CYP19A1. BMP7 could influence the down-regulation of LHR and up-regulation of FSHR and CYP19A1, which mediates the follicular dynamics in heifer ovaries. Up-regulation of IGF1 expression pre-puberty, compared to post-puberty diestrus, correlates with increased levels FSHR and CYP19A1. Thus, BMP7 and IGF1 may play synergic roles and were predicted to interact, from the expression data (P = 0

  18. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development.

    Science.gov (United States)

    Schmouth, Jean-François; Arenillas, David; Corso-Díaz, Ximena; Xie, Yuan-Yun; Bohacec, Slavita; Banks, Kathleen G; Bonaguro, Russell J; Wong, Siaw H; Jones, Steven J M; Marra, Marco A; Simpson, Elizabeth M; Wasserman, Wyeth W

    2015-07-24

    Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development.

  19. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes

    DEFF Research Database (Denmark)

    de Jong, Simone; van Eijk, Kristel R; Zeegers, Dave W L H

    2012-01-01

    of the Psychiatric GWAS consortium (PGC) yielded five novel loci for schizophrenia. In this study, we aim to highlight additional schizophrenia susceptibility loci from the PGC study by combining the top association findings from the discovery stage (9394 schizophrenia cases and 12 462 controls) with expression QTLs...

  20. Identification of candidate biomarkers of the exposure to PCBs in contaminated cattle: A gene expression- and proteomic-based approach.

    Science.gov (United States)

    Girolami, F; Badino, P; Spalenza, V; Manzini, L; Renzone, G; Salzano, A M; Dal Piaz, F; Scaloni, A; Rychen, G; Nebbia, C

    2018-05-28

    Dioxins and polychlorinated biphenyls (PCBs) are widespread and persistent contaminants. Through a combined gene expression/proteomic-based approach, candidate biomarkers of the exposure to such environmental pollutants in cattle subjected to a real eco-contamination event were identified. Animals were removed from the polluted area and fed a standard ration for 6 months. The decontamination was monitored by evaluating dioxin and PCB levels in pericaudal fat two weeks after the removal from the contaminated area (day 0) and then bimonthly for six months (days 59, 125 and 188). Gene expression measurements demonstrated that CYP1B1 expression was significantly higher in blood lymphocytes collected in contaminated animals (day 0), and decreased over time during decontamination. mRNA levels of interleukin 2 showed an opposite quantitative trend. MALDI-TOF-MS polypeptide profiling of serum samples ascertained a progressive decrease (from day 0 to 188) of serum levels of fibrinogen β-chain and serpin A3-7-like fragments, apolipoprotein (APO) C-II and serum amyloid A-4 protein, along with an augmented representation of transthyretin isoforms, as well as APOC-III and APOA-II proteins during decontamination. When differentially represented species were combined with serum antioxidant, acute phase and proinflammatory protein levels already ascertained in the same animals (Cigliano et al., 2016), bioinformatics unveiled an interaction network linking together almost all components. This suggests the occurrence of a complex PCB-responsive mechanism associated with animal contamination/decontamination, including a cohort of protein/polypeptide species involved in blood redox homeostasis, inflammation and lipid transport. All together, these results suggest the use in combination of such biomarkers for identifying PCB-contaminated animals, and for monitoring the restoring of their healthy condition following a decontamination process. Copyright © 2018 Elsevier B.V. All

  1. Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs.

    Science.gov (United States)

    Ballester, Maria; Ramayo-Caldas, Yuliaxis; Revilla, Manuel; Corominas, Jordi; Castelló, Anna; Estellé, Jordi; Fernández, Ana I; Folch, Josep M

    2017-04-19

    In the present study, liver co-expression networks and expression Genome Wide Association Study (eGWAS) were performed to identify DNA variants and molecular pathways implicated in the functional regulatory mechanisms of meat quality traits in pigs. With this purpose, the liver mRNA expression of 44 candidates genes related with lipid metabolism was analysed in 111 Iberian x Landrace backcross animals. The eGWAS identified 92 eSNPs located in seven chromosomal regions and associated with eight genes: CROT, CYP2U1, DGAT1, EGF, FABP1, FABP5, PLA2G12A, and PPARA. Remarkably, cis-eSNPs associated with FABP1 gene expression which may be determining the C18:2(n-6)/C18:3(n-3) ratio in backfat through the multiple interaction of DNA variants and genes were identified. Furthermore, a hotspot on SSC8 associated with the gene expression of eight genes was identified and the TBCK gene was pointed out as candidate gene regulating it. Our results also suggested that the PI3K-Akt-mTOR pathway plays an important role in the control of the analysed genes highlighting nuclear receptors as the NR3C1 or PPARA. Finally, sex-dimorphism associated with hepatic lipid metabolism was identified with over-representation of female-biased genes. These results increase our knowledge of the genetic architecture underlying fat composition traits.

  2. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    Science.gov (United States)

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  3. Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences

    Science.gov (United States)

    Butsch Kovacic, Melinda; Biagini Myers, Jocelyn M.; Wang, Ning; Martin, Lisa J.; Lindsey, Mark; Ericksen, Mark B.; He, Hua; Patterson, Tia L.; Baye, Tesfaye M.; Torgerson, Dara; Roth, Lindsey A.; Gupta, Jayanta; Sivaprasad, Umasundari; Gibson, Aaron M.; Tsoras, Anna M.; Hu, Donglei; Eng, Celeste; Chapela, Rocío; Rodríguez-Santana, José R.; Rodríguez-Cintrón, William; Avila, Pedro C.; Beckman, Kenneth; Seibold, Max A.; Gignoux, Chris; Musaad, Salma M.; Chen, Weiguo; Burchard, Esteban González; Khurana Hershey, Gurjit K.

    2011-01-01

    Background Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes. Methodology/Principal Findings Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (pasthma (OR = 2.3, pasthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach. Conclusions/Significance Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes. PMID:21912604

  4. Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis: Exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance

    Directory of Open Access Journals (Sweden)

    Crespo Andre LB

    2009-06-01

    Full Text Available Abstract Background Lepidoptera represents more than 160,000 insect species which include some of the most devastating pests of crops, forests, and stored products. However, the genomic information on lepidopteran insects is very limited. Only a few studies have focused on developing expressed sequence tag (EST libraries from the guts of lepidopteran larvae. Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt toxins, and for discovering new targets for novel toxins for use in pest management. This study analyzed the ESTs generated from the larval gut of the European corn borer (ECB, Ostrinia nubilalis, one of the most destructive pests of corn in North America and the western world. Our goals were to establish an ECB larval gut-specific EST database as a genomic resource for future research and to explore candidate genes potentially involved in insect-Bt interactions and Bt resistance in ECB. Results We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4% appeared to be high quality with an average length of 656 bp. These ESTs represented 2,895 unique sequences, including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% encoded putative proteins that shared significant sequence similarities (E-value ≤ 10-3with the sequences available in GenBank. Our EST analysis revealed 52 candidate genes that potentially have roles in Bt toxicity and resistance. These genes encode 18 trypsin-like proteases, 18 chymotrypsin-like proteases, 13 aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like protein. Comparisons of expression profiles of 41 selected candidate genes between Cry1Ab-susceptible and resistant strains of ECB by RT-PCR showed apparently decreased expressions in 2 trypsin-like and 2

  5. Prioritization of candidate genes for cattle reproductive traits, based on protein-protein interactions, gene expression, and text-mining

    DEFF Research Database (Denmark)

    Hulsegge, Ina; Woelders, Henri; Smits, Mari

    2013-01-01

    Reproduction is of significant economic importance in dairy cattle. Improved understanding of mechanisms that control estrous behavior and other reproduction traits could help in developing strategies to improve and/or monitor these traits. The objective of this study was to predict and rank gene...

  6. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data.

    Directory of Open Access Journals (Sweden)

    Enrico Glaab

    Full Text Available Microarray data analysis has been shown to provide an effective tool for studying cancer and genetic diseases. Although classical machine learning techniques have successfully been applied to find informative genes and to predict class labels for new samples, common restrictions of microarray analysis such as small sample sizes, a large attribute space and high noise levels still limit its scientific and clinical applications. Increasing the interpretability of prediction models while retaining a high accuracy would help to exploit the information content in microarray data more effectively. For this purpose, we evaluate our rule-based evolutionary machine learning systems, BioHEL and GAssist, on three public microarray cancer datasets, obtaining simple rule-based models for sample classification. A comparison with other benchmark microarray sample classifiers based on three diverse feature selection algorithms suggests that these evolutionary learning techniques can compete with state-of-the-art methods like support vector machines. The obtained models reach accuracies above 90% in two-level external cross-validation, with the added value of facilitating interpretation by using only combinations of simple if-then-else rules. As a further benefit, a literature mining analysis reveals that prioritizations of informative genes extracted from BioHEL's classification rule sets can outperform gene rankings obtained from a conventional ensemble feature selection in terms of the pointwise mutual information between relevant disease terms and the standardized names of top-ranked genes.

  7. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data.

    Science.gov (United States)

    Glaab, Enrico; Bacardit, Jaume; Garibaldi, Jonathan M; Krasnogor, Natalio

    2012-01-01

    Microarray data analysis has been shown to provide an effective tool for studying cancer and genetic diseases. Although classical machine learning techniques have successfully been applied to find informative genes and to predict class labels for new samples, common restrictions of microarray analysis such as small sample sizes, a large attribute space and high noise levels still limit its scientific and clinical applications. Increasing the interpretability of prediction models while retaining a high accuracy would help to exploit the information content in microarray data more effectively. For this purpose, we evaluate our rule-based evolutionary machine learning systems, BioHEL and GAssist, on three public microarray cancer datasets, obtaining simple rule-based models for sample classification. A comparison with other benchmark microarray sample classifiers based on three diverse feature selection algorithms suggests that these evolutionary learning techniques can compete with state-of-the-art methods like support vector machines. The obtained models reach accuracies above 90% in two-level external cross-validation, with the added value of facilitating interpretation by using only combinations of simple if-then-else rules. As a further benefit, a literature mining analysis reveals that prioritizations of informative genes extracted from BioHEL's classification rule sets can outperform gene rankings obtained from a conventional ensemble feature selection in terms of the pointwise mutual information between relevant disease terms and the standardized names of top-ranked genes.

  8. Gene expression analysis of 4 biomarker candidates in Eisenia fetida exposed to an environmental metallic trace elements gradient: A microcosm study

    Energy Technology Data Exchange (ETDEWEB)

    Brulle, Franck; Lemiere, Sebastien [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France); Waterlot, Christophe; Douay, Francis [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Sols et Environnement, Groupe ISA, 48 boulevard Vauban, F-59046 Lille Cedex (France); Vandenbulcke, Franck, E-mail: franck.vandenbulcke@univ-lille1.fr [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France)

    2011-11-15

    Past activities of 2 smelters (Metaleurop Nord and Nyrstar) led to the accumulation of high amounts of Metal Trace Elements (TEs) in top soils of the Noyelles-Godault/Auby area, Northern France. Earthworms were exposed to polluted soils collected in this area to study and better understand the physiological changes, the mechanisms of acclimation, and detoxification resulting from TE exposure. Previously we have cloned and transcriptionally characterized potential biomarkers from immune cells of the ecotoxicologically important earthworm species Eisenia fetida exposed in vivo to TE-spiked standard soils. In the present study, analysis of expression kinetics of four candidate indicator genes (Cadmium-metallothionein, coactosin like protein, phytochelatin synthase and lysenin) was performed in E. fetida after microcosm exposures to natural soils exhibiting an environmental cadmium (Cd) gradient in a kinetic manner. TE body burdens were also measured. This microcosm study provided insights into: (1) the ability of the 4 tested genes to serve as expression biomarkers, (2) detoxification processes through the expression analysis of selected genes, and (3) influence of land uses on the response of potential biomarkers (gene expression or TE uptake). - Highlights: {yields} Expression biomarkers in animals exposed to Cadmium-contaminated field soils. {yields} Expression kinetics to test the ability of genes to serve as expression biomarkers. {yields} Study of detoxification processes through the expression analysis of selected genes.

  9. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  10. Candidate genes in panic disorder

    DEFF Research Database (Denmark)

    Howe, A. S.; Buttenschön, Henriette N; Bani-Fatemi, A.

    2016-01-01

    The utilization of molecular genetics approaches in examination of panic disorder (PD) has implicated several variants as potential susceptibility factors for panicogenesis. However, the identification of robust PD susceptibility genes has been complicated by phenotypic diversity, underpowered...... association studies and ancestry-specific effects. In the present study, we performed a succinct review of case-control association studies published prior to April 2015. Meta-analyses were performed for candidate gene variants examined in at least three studies using the Cochrane Mantel-Haenszel fixed......-effect model. Secondary analyses were also performed to assess the influences of sex, agoraphobia co-morbidity and ancestry-specific effects on panicogenesis. Meta-analyses were performed on 23 variants in 20 PD candidate genes. Significant associations after correction for multiple testing were observed...

  11. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Science.gov (United States)

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  12. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants.

    Science.gov (United States)

    Rodovalho, Cynara M; Ferro, Milene; Fonseca, Fernando Pp; Antonio, Erik A; Guilherme, Ivan R; Henrique-Silva, Flávio; Bacci, Maurício

    2011-06-17

    Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.

  13. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping

    Directory of Open Access Journals (Sweden)

    Meki Shehabu Muktar

    2015-09-01

    Full Text Available Late blight of potato (Solanum tuberosum L. caused by the oomycete Phytophthora infestans (Mont. de Bary, is one of the most important bottlenecks of potato production worldwide. Cultivars with high levels of durable, race unspecific, quantitative resistance are part of a solution to this problem. However, breeding for quantitative resistance is hampered by the correlation between resistance and late plant maturity, which is an undesirable agricultural attribute. The objectives of our research are (i the identification of genes that condition quantitative resistance to P. infestans not compromised by late plant maturity and (ii the discovery of diagnostic single nucleotide polymorphism (SNP markers to be used as molecular tools to increase efficiency and precision of resistance breeding. Twenty two novel candidate genes were selected based on comparative transcript profiling by SuperSAGE (serial analysis of gene expression in groups of plants with contrasting levels of maturity corrected resistance (MCR. Reproducibility of differential expression was tested by quantitative real time PCR and allele specific pyrosequencing in four new sets of genotype pools with contrasting late blight resistance levels, at three infection time points and in three independent infection experiments. Reproducibility of expression patterns ranged from 28% to 97%. Association mapping in a panel of 184 tetraploid cultivars identified SNPs in five candidate genes that were associated with MCR. These SNPs can be used in marker-assisted resistance breeding. Linkage mapping in two half-sib families (n = 111 identified SNPs in three candidate genes that were linked with MCR. The differentially expressed genes that showed association and/or linkage with MCR putatively function in phytosterol synthesis, fatty acid synthesis, asparagine synthesis, chlorophyll synthesis, cell wall modification and in the response to pathogen elicitors.

  14. [Obesity studies in candidate genes].

    Science.gov (United States)

    Ochoa, María del Carmen; Martí, Amelia; Martínez, J Alfredo

    2004-04-17

    There are more than 430 chromosomic regions with gene variants involved in body weight regulation and obesity development. Polymorphisms in genes related to energy expenditure--uncoupling proteins (UCPs), related to adipogenesis and insulin resistance--hormone-sensitive lipase (HLS), peroxisome proliferator-activated receptor gamma (PPAR gamma), beta adrenergic receptors (ADRB2,3), and alfa tumor necrosis factor (TNF-alpha), and related to food intake--ghrelin (GHRL)--appear to be associated with obesity phenotypes. Obesity risk depends on two factors: a) genetic variants in candidate genes, and b) biographical exposure to environmental risk factors. It is necessary to perform new studies, with appropriate control groups and designs, in order to reach relevant conclusions with regard to gene/environmental (diet, lifestyle) interactions.

  15. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors

    International Nuclear Information System (INIS)

    Savola, Suvi; Knuutila, Sakari; Klami, Arto; Tripathi, Abhishek; Niini, Tarja; Serra, Massimo; Picci, Piero; Kaski, Samuel; Zambelli, Diana; Scotlandi, Katia

    2009-01-01

    Ewing sarcoma family of tumors (ESFT), characterized by t(11;22)(q24;q12), is one of the most common tumors of bone in children and young adults. In addition to EWS/FLI1 gene fusion, copy number changes are known to be significant for the underlying neoplastic development of ESFT and for patient outcome. Our genome-wide high-resolution analysis aspired to pinpoint genomic regions of highest interest and possible target genes in these areas. Array comparative genomic hybridization (CGH) and expression arrays were used to screen for copy number alterations and expression changes in ESFT patient samples. A total of 31 ESFT samples were analyzed by aCGH and in 16 patients DNA and RNA level data, created by expression arrays, was integrated. Time of the follow-up of these patients was 5–192 months. Clinical outcome was statistically evaluated by Kaplan-Meier/Logrank methods and RT-PCR was applied on 42 patient samples to study the gene of the highest interest. Copy number changes were detected in 87% of the cases. The most recurrent copy number changes were gains at 1q, 2, 8, and 12, and losses at 9p and 16q. Cumulative event free survival (ESFT) and overall survival (OS) were significantly better (P < 0.05) for primary tumors with three or less copy number changes than for tumors with higher number of copy number aberrations. In three samples copy number imbalances were detected in chromosomes 11 and 22 affecting the FLI1 and EWSR1 loci, suggesting that an unbalanced t(11;22) and subsequent duplication of the derivative chromosome harboring fusion gene is a common event in ESFT. Further, amplifications on chromosomes 20 and 22 seen in one patient sample suggest a novel translocation type between EWSR1 and an unidentified fusion partner at 20q. In total 20 novel ESFT associated putative oncogenes and tumor suppressor genes were found in the integration analysis of array CGH and expression data. Quantitative RT-PCR to study the expression levels of the most interesting

  16. Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species (M. koombooloomba).

    Science.gov (United States)

    Rahi, Md Lifat; Amin, Shorash; Mather, Peter B; Hurwood, David A

    2017-01-01

    The endemic Australian freshwater prawn, Macrobrachium koombooloomba , provides a model for exploring genes involved with freshwater adaptation because it is one of the relatively few Macrobrachium species that can complete its entire life cycle in freshwater. The present study was conducted to identify potential candidate genes that are likely to contribute to effective freshwater adaptation by M. koombooloomba using a transcriptomics approach. De novo assembly of 75 bp paired end 227,564,643 high quality Illumina raw reads from 6 different cDNA libraries revealed 125,917 contigs of variable lengths (200-18,050 bp) with an N50 value of 1597. In total, 31,272 (24.83%) of the assembled contigs received significant blast hits, of which 27,686 and 22,560 contigs were mapped and functionally annotated, respectively. CEGMA (Core Eukaryotic Genes Mapping Approach) based transcriptome quality assessment revealed 96.37% completeness. We identified 43 different potential genes that are likely to be involved with freshwater adaptation in M. koombooloomba . Identified candidate genes included: 25 genes for osmoregulation, five for cell volume regulation, seven for stress tolerance, three for body fluid (haemolymph) maintenance, eight for epithelial permeability and water channel regulation, nine for egg size control and three for larval development. RSEM (RNA-Seq Expectation Maximization) based abundance estimation revealed that 6,253, 5,753 and 3,795 transcripts were expressed (at TPM value ≥10) in post larvae, juveniles and adults, respectively. Differential gene expression (DGE) analysis showed that 15 genes were expressed differentially in different individuals but these genes apparently were not involved with freshwater adaptation but rather were involved in growth, development and reproductive maturation. The genomic resources developed here will be useful for better understanding the molecular basis of freshwater adaptation in Macrobrachium prawns and other

  17. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Henrique-Silva Flávio

    2011-06-01

    Full Text Available Abstract Background Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. Conclusion The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.

  18. Selection and Verification of Candidate Reference Genes for Mature MicroRNA Expression by Quantitative RT-PCR in the Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Hui Song

    2016-05-01

    Full Text Available Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is a rapid and sensitive method for analyzing microRNA (miRNA expression. However, accurate qRT-PCR results depend on the selection of reliable reference genes as internal positive controls. To date, few studies have identified reliable reference genes for differential expression analysis of miRNAs among tissues, and among experimental conditions in plants. In this study, three miRNAs and four non-coding small RNAs (ncRNA were selected as reference candidates, and the stability of their expression was evaluated among different tissues and under different experimental conditions in the tea plant (Camellia sinensis using the geNorm and NormFinder programs. It was shown that miR159a was the best single reference gene in the bud to the fifth leaf, 5S rRNA was the most suitable gene in different organs, miR6149 was the most stable gene when the leaves were attacked by Ectropis oblique and U4, miR5368n and miR159a were the best genes when the leaves were treated by methyl jasmonate (MeJA, salicylic acid (SA and abscisic acid (ABA, respectively. Our results provide suitable reference genes for future investigations on miRNA functions in tea plants.

  19. Evaluation of Candidate Reference Genes for Quantitative Gene Expression Analysis in Spodoptera exigu a after Long-time Exposure to Cadmium

    OpenAIRE

    P?achetka-Bo?ek, Anna; Augustyniak, Maria

    2017-01-01

    Studies on the transcriptional control of gene expression play an important role in many areas of biology. Reference genes, which are often referred to as housekeeping genes, such as GAPDH, G3PDH, EF2, RpL7A, RpL10, TUB? and Actin, have traditionally been assumed to be stably expressed in all conditions, and they are frequently used to normalize mRNA levels between different samples in qPCR analysis. However, it is known that the expression of these genes is influenced by numerous factors, su...

  20. A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes

    Directory of Open Access Journals (Sweden)

    Markus M. Rinschen

    2018-05-01

    Full Text Available Summary: Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knockdown experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease. : The podocyte forms the most outer and essential part of the renal filter and restricts the passage of proteins from blood to urine. Rinschen et al. combine deep proteomic and transcriptomic data with protein dynamics from native mouse podocytes to reveal insights into podocyte biology and to identify candidate disease genes. Keywords: end-stage renal disease, systems biology, proteinuria, focal segmental glomerulosclerosis, pulse SILAC, metabolism, slit diaphragm, hereditary nephrotic syndrome, kinase, proteostasis

  1. Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.

    Directory of Open Access Journals (Sweden)

    Thomsen Dennis S

    2008-01-01

    Full Text Available Abstract Background Winter migration of immature brown trout (Salmo trutta into freshwater rivers has been hypothesized to result from physiologically stressful combinations of high salinity and low temperature in the sea. Results We sampled brown trout from two Danish populations entering different saline conditions and quantified expression of the hsp70 and Na/K-ATPases α 1b genes following acclimation to freshwater and full-strength seawater at 2°C and 10°C. An interaction effect of low temperature and high salinity on expression of both hsp70 and Na/K-ATPase α 1b was found in trout from the river entering high saline conditions, while a temperature independent up-regulation of both genes in full-strength seawater was found for trout entering marine conditions with lower salinities. Conclusion Overall our results support the hypothesis that physiologically stressful conditions in the sea drive sea-run brown trout into freshwater rivers in winter. However, our results also demonstrate intra-specific differences in expression of important stress and osmoregulative genes most likely reflecting adaptive differences between trout populations on a regional scale, thus strongly suggesting local adaptations driven by the local marine environment.

  2. Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout ( Salmo trutta L.)

    DEFF Research Database (Denmark)

    Larsen, Peter Foged; Eg Nielsen, Einar; Koed, Anders

    2008-01-01

    Background: Winter migration of immature brown trout (Salmo trutta) into freshwater rivers has been hypothesized to result from physiologically stressful combinations of high salinity and low temperature in the sea. Results: We sampled brown trout from two Danish populations entering different...... conditions in the sea drive sea-run brown trout into freshwater rivers in winter. However, our results also demonstrate intra-specific differences in expression of important stress and osmoregulative genes most likely reflecting adaptive differences between trout populations on a regional scale, thus...... was found in trout from the river entering high saline conditions, while a temperature independent up-regulation of both genes in full-strength seawater was found for trout entering marine conditions with lower salinities. Conclusion: Overall our results support the hypothesis that physiologically stressful...

  3. Evaluation of Candidate Reference Genes for Quantitative Gene Expression Analysis in Spodoptera exigu a after Long-time Exposure to Cadmium.

    Science.gov (United States)

    Płachetka-Bożek, Anna; Augustyniak, Maria

    2017-08-21

    Studies on the transcriptional control of gene expression play an important role in many areas of biology. Reference genes, which are often referred to as housekeeping genes, such as GAPDH, G3PDH, EF2, RpL7A, RpL10, TUBα and Actin, have traditionally been assumed to be stably expressed in all conditions, and they are frequently used to normalize mRNA levels between different samples in qPCR analysis. However, it is known that the expression of these genes is influenced by numerous factors, such as experimental conditions. The difference in gene expression underlies a range of biological processes, including development, reproduction and behavior. The aim of this study was to show the problems associated with using reference genes in the qPCR technique, in a study on inbred strains of Spodoptera exigua selected toward cadmium resistance. We present and discuss our results and observations, and give some recommendations concerning the use and limitations of housekeeping genes as internal standards, especially in research on insects. Our results suggest that holometabolism and poikilothermia, as well as time since metamorphosis and the level of exposure to the selective factor (cadmium in this case), have a significant effect on the expression of reference genes.

  4. Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon.

    Directory of Open Access Journals (Sweden)

    Mingyan Lin

    Full Text Available Schizophrenia (SZ and autism spectrum disorders (ASD are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA, play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05, including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs, although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.

  5. Transcriptome Characterization of the Chinese Fir (Cunninghamia lanceolata (Lamb. Hook. and Expression Analysis of Candidate Phosphate Transporter Genes

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-11-01

    Full Text Available Chinese fir (Cunninghamia lanceolata (Lamb. Hook. is the most important afforestation tree species in China because of its excellent timber quality and high yield. However, the limited availability of phosphorus in forest soils is widespread and has become an important factor in the declining productivity of Chinese fir plantations. Here we used the Illumina HiSeq™ 2000 DNA sequencing platform to sequence root, stem, and leaf transcriptomes of one-year old Chinese fir clones with phosphorus treatment. Approximately 236,529,278 clean reads were obtained and generated 35.47 G of sequencing data. These reads were assembled into 413,806 unigenes with a mean length of 520 bp. In total, 109,596 unigenes were annotated in the NR (NCBI non-redundant database, 727,287 genes were assigned for GO (Gene Ontology terms, information for 92,001 classified unigenes was assigned to 26 KOG (Karyotic Orthologous Groups categories, and 57,042 unigenes were significantly matched with 132 KEGG (Kyoto Encyclopedia of Genes and Genomes predicted pathways. In total, 49 unigenes were identified as exhibiting inorganic phosphate transporter activity, and 14 positive genes’ expression patterns in different phosphorus deficiency treatments were analyzed by qRT-PCR to explore their putative functions. This study provides a basic foundation for functional genomic studies of the phosphate transporter in Chinese fir, and also presents an extensive annotated sequence resource for molecular research.

  6. Mining biological databases for candidate disease genes

    Science.gov (United States)

    Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.

    2001-07-01

    The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).

  7. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    Science.gov (United States)

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  9. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated...

  10. Evaluating historical candidate genes for schizophrenia

    DEFF Research Database (Denmark)

    Farrell, M S; Werge, T; Sklar, P

    2015-01-01

    Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of thes...

  11. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci analysis in a Flint × Flint maize recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Wenzel Gerhard

    2007-01-01

    Full Text Available Abstract Background Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. Results 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1 three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3, 5361 (5361 and 5361 bm3, and F2 (F2, F2 bm1, F2 bm2, and F2 bm3, 2 the contrasting extreme lines of FD (Flint × Dent, AS08 × AS 06, DD1 (Dent × Dent, AS11 × AS09, and DD2 (Dent × Dent, AS29 × AS30 mapping populations, and 3 two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint × Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p Conclusion 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members, trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell-wall digestibility, since no in silico mapped ESTs were in the same location as their own eQTL. Transcriptional variation was generally found to be oligogenic rather than monogenic inherited due to only 26% ESTs detected a single eQTL in the present study. One eQTL hotspot was co-localized with cell wall digestibility related QTL cluster on bins 3.05, implying that in this case the gene(s underlying QTL and eQTL are identical. As the field of genetical genomics develops, it is expected to significantly improve our knowledge about complex traits, such as cell

  12. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  13. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  14. A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes.

    Science.gov (United States)

    Rinschen, Markus M; Gödel, Markus; Grahammer, Florian; Zschiedrich, Stefan; Helmstädter, Martin; Kretz, Oliver; Zarei, Mostafa; Braun, Daniela A; Dittrich, Sebastian; Pahmeyer, Caroline; Schroder, Patricia; Teetzen, Carolin; Gee, HeonYung; Daouk, Ghaleb; Pohl, Martin; Kuhn, Elisa; Schermer, Bernhard; Küttner, Victoria; Boerries, Melanie; Busch, Hauke; Schiffer, Mario; Bergmann, Carsten; Krüger, Marcus; Hildebrandt, Friedhelm; Dengjel, Joern; Benzing, Thomas; Huber, Tobias B

    2018-05-22

    Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knockdown experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  16. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  17. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    to investigate locomotor activity, and applied genomic feature prediction models to identify gene ontology (GO) cate- gories predictive of this phenotype. Next, we applied the covariance association test to partition the genomic variance of the predictive GO terms to the genes within these terms. We...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated......Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...

  18. Candidate Gene Identification of Flowering Time Genes in Cotton

    Directory of Open Access Journals (Sweden)

    Corrinne E. Grover

    2015-07-01

    Full Text Available Flowering time control is critically important to all sexually reproducing angiosperms in both natural ecological and agronomic settings. Accordingly, there is much interest in defining the genes involved in the complex flowering-time network and how these respond to natural and artificial selection, the latter often entailing transitions in day-length responses. Here we describe a candidate gene analysis in the cotton genus , which uses homologs from the well-described flowering network to bioinformatically and phylogenetically identify orthologs in the published genome sequence from Ulbr., one of the two model diploid progenitors of the commercially important allopolyploid cottons, L. and L. Presence and patterns of expression were evaluated from 13 aboveground tissues related to flowering for each of the candidate genes using allopolyploid as a model. Furthermore, we use a comparative context to determine copy number variability of each key gene family across 10 published angiosperm genomes. Data suggest a pattern of repeated loss of duplicates following ancient whole-genome doubling events in diverse lineages. The data presented here provide a foundation for understanding both the parallel evolution of day-length neutrality in domesticated cottons and the flowering-time network, in general, in this important crop plant.

  19. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    Rietman, M.L.; Sommeijer, J.-P.; Levelt, C.N.; Heimel, J.A.; Brussaard, A.B.; Borst, J.G.G.; Elgersma, Y.; Galjart, N.; van der Horst, G.T.; Pennartz, C.M.; Smit, A.B.; Spruijt, B.M.; Verhage, M.; de Zeeuw, C.I.

    2012-01-01

    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  20. Candidate gene studies and the quest for the entrepreneurial gene

    NARCIS (Netherlands)

    M.J.H.M. van der Loos (Matthijs); Ph.D. Koellinger (Philipp); P.J.F. Groenen (Patrick); C.A. Rietveld (Niels); F. Rivadeneira Ramirez (Fernando); F.J.A. van Rooij (Frank); A.G. Uitterlinden (André); A. Hofman (Albert); A.R. Thurik (Roy)

    2011-01-01

    textabstractCandidate gene studies of human behavior are gaining interest in economics and entrepreneurship research. Performing and interpreting these studies is not straightforward because the selection of candidates influences the interpretation of the results. As an example, Nicolaou et al.

  1. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression

    DEFF Research Database (Denmark)

    Bergholdt, Regine; Brorsson, Caroline; Palleja, Albert

    2012-01-01

    Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated with dis......-cells. Our results provide novel insight to the mechanisms behind type 1 diabetes pathogenesis and, thus, may provide the basis for the design of novel treatment strategies.......Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated...... with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize...

  2. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes.

    Science.gov (United States)

    Ingham, Victoria A; Jones, Christopher M; Pignatelli, Patricia; Balabanidou, Vasileia; Vontas, John; Wagstaff, Simon C; Moore, Jonathan D; Ranson, Hilary

    2014-11-25

    The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot

  3. Genomic Imbalances in Rhabdomyosarcoma Cell Lines Affect Expression of Genes Frequently Altered in Primary Tumors: An Approach to Identify Candidate Genes Involved in Tumor Development

    NARCIS (Netherlands)

    Missiaglia, Edoardo; Selfe, Joanna; Hamdi, Mohamed; Williamson, Daniel; Schaaf, Gerben; Fang, Cheng; Koster, Jan; Summersgill, Brenda; Messahel, Boo; Versteeg, Rogier; Pritchard-Jones, Kathy; Kool, Marcel; Shipley, Janet

    2009-01-01

    Rhabdomyosarcomas (RMS) are the most common pediatric soft tissue sarcomas. They resemble developing skeletal muscle and are histologically divided into two main subtypes; alveolar and embryonal RMS. Characteristic genomic aberrations, including the PAX3- and PAX7-FOXO1 fusion genes in alveolar

  4. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  5. NMD and microRNA expression profiling of the HPCX1 locus reveal MAGEC1 as a candidate prostate cancer predisposition gene

    International Nuclear Information System (INIS)

    Mattila, Henna; Schindler, Martin; Isotalo, Jarkko; Ikonen, Tarja; Vihinen, Mauno; Oja, Hannu; Tammela, Teuvo LJ; Wahlfors, Tiina; Schleutker, Johanna

    2011-01-01

    Several predisposition loci for hereditary prostate cancer (HPC) have been suggested, including HPCX1 at Xq27-q28, but due to the complex structure of the region, the susceptibility gene has not yet been identified. In this study, nonsense-mediated mRNA decay (NMD) inhibition was used for the discovery of truncating mutations. Six prostate cancer (PC) patients and their healthy brothers were selected from a group of HPCX1-linked families. Expression analyses were done using Agilent 44 K oligoarrays, and selected genes were screened for mutations by direct sequencing. In addition, microRNA expression levels in the lymphoblastic cells were analyzed to trace variants that might alter miRNA expression and explain partly an inherited genetic predisposion to PC. Seventeen genes were selected for resequencing based on the NMD array, but no truncating mutations were found. The most interesting variant was MAGEC1 p.Met1?. An association was seen between the variant and unselected PC (OR = 2.35, 95% CI = 1.10-5.02) and HPC (OR = 3.38, 95% CI = 1.10-10.40). miRNA analysis revealed altogether 29 miRNAs with altered expression between the PC cases and controls. miRNA target analysis revealed that 12 of them also had possible target sites in the MAGEC1 gene. These miRNAs were selected for validation process including four miRNAs located in the X chromosome. The expressions of 14 miRNAs were validated in families that contributed to the significant signal differences in Agilent arrays. Further functional studies are needed to fully understand the possible contribution of these miRNAs and MAGEC1 start codon variant to PC

  6. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  7. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates.

    Directory of Open Access Journals (Sweden)

    Irina A Zalenskaya

    Full Text Available Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy.To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7 treated with well-characterized pro-inflammatory (PIC and non-inflammatory (NIC compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA.Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes.In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial screening of candidates prior

  8. A Candidate Trans-acting Modulator of Fetal Hemoglobin Gene Expression in the Arab-Indian Haplotype of Sickle Cell Anemia

    Science.gov (United States)

    Vathipadiekal, Vinod; Farrell, John J.; Wang, Shuai; Edward, Heather L.; Shappell, Heather; Al-Rubaish, A.M.; Al-Muhanna, Fahad; Naserullah, Z.; Alsuliman, A.; Qutub, Hatem Othman; Simkin, Irene; Farrer, Lindsay A.; Jiang, Zhihua; Luo, Hong-Yuan; Huang, Shengwen; Mostoslavsky, Gustavo; Murphy, George J.; Patra, Pradeep.K.; Chui, David H.K.; Alsultan, Abdulrahman; Al-Ali, Amein K.; Sebastiani, Paola.; Steinberg, Martin. H.

    2016-01-01

    Fetal hemoglobin (HbF) levels are higher in the Arab-Indian (AI) β-globin gene haplotype of sickle cell anemia compared with African-origin haplotypes. To study genetic elements that effect HbF expression in the AI haplotype we completed whole genome sequencing in 14 Saudi AI haplotype sickle hemoglobin homozygotes—seven selected for low HbF (8.2±1.3%) and seven selected for high HbF (23.5±.2.6%). An intronic single nucleotide polymorphism (SNP) in ANTXR1, an anthrax toxin receptor (chromosome 2p13), was associated with HbF. These results were replicated in two independent Saudi AI haplotype cohorts of 120 and 139 patients, but not in 76 Saudi Benin haplotype, 894 African origin haplotype and 44 Arab Indian haplotype patients of Indian descent, suggesting that this association is effective only in the Saudi AI haplotype background. ANTXR1 variants explained 10% of the HbF variability compared with 8% for BCL11A. These two genes had independent, additive effects on HbF and together explained about 15% of HbF variability in Saudi AI sickle cell anemia patients. ANTXR1 was expressed at mRNA and protein levels in erythroid progenitors derived from induced pluripotent stem cells (iPSCs) and CD34+ cells. As CD34+ cells matured and their HbF decreased ANTXR1 expression increased; as iPSCs differentiated and their HbF increased, ANTXR1 expression decreased. Along with elements in cis to the HbF genes, ANTXR1 contributes to the variation in HbF in Saudi AI haplotype sickle cell anemia and is the first gene in trans to HBB that is associated with HbF only in carriers of the Saudi AI haplotype. PMID:27501013

  9. High Gestational Folic Acid Supplementation Alters Expression of Imprinted and Candidate Autism Susceptibility Genes in a sex-Specific Manner in Mouse Offspring.

    Science.gov (United States)

    Barua, Subit; Kuizon, Salomon; Brown, W Ted; Junaid, Mohammed A

    2016-02-01

    Maternal nutrients play critical roles in modulating epigenetic events and exert long-term influences on the progeny's health. Folic acid (FA) supplementation during pregnancy has decreased the incidence of neural tube defects in newborns, but the influence of high doses of maternal FA supplementation on infants' brain development is unclear. The present study was aimed at investigating the effects of a high dose of gestational FA on the expression of genes in the cerebral hemispheres (CHs) of 1-day-old pups. One week prior to mating and throughout the entire period of gestation, female C57BL/6J mice were fed a diet, containing FA at either 2 mg/kg (control diet (CD)) or 20 mg/kg (high maternal folic acid (HMFA)). At postnatal day 1, pups from different dams were sacrificed and CH tissues were collected. Quantitative RT-PCR and Western blot analysis confirmed sex-specific alterations in the expression of several genes that modulate various cellular functions (P < 0.05) in pups from the HMFA group. Genomic DNA methylation analysis showed no difference in the level of overall methylation in pups from the HMFA group. These findings demonstrate that HMFA supplementation alters offsprings' CH gene expression in a sex-specific manner. These changes may influence infants' brain development.

  10. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Directory of Open Access Journals (Sweden)

    Thomas S Scerri

    2010-10-01

    Full Text Available Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s conferring susceptibility by a two stage strategy of linkage and association analysis.Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R, dymeclin (DYM and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L.Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  11. Characterisation of five candidate genes within the ETEC F4ab/ac candidate region in pigs

    DEFF Research Database (Denmark)

    Jacobsen, Mette Juul; Cirera Salicio, Susanna; Joller, David

    2011-01-01

    by haplotype sharing to a 2.5 Mb region on pig chromosome 13, a region containing 18 annotated genes. FINDINGS: The coding regions of five candidate genes for susceptibility to ETEC F4ab/ac infection (TFRC, ACK1, MUC20, MUC4 and KIAA0226), all located in the 2.5 Mb region, were investigated for the presence...... polymorphism in exon 22 of KIAA0226. Transcriptional profiles of the five genes were investigated in a porcine tissue panel including various intestinal tissues. All five genes were expressed in intestinal tissues at different levels but none of the genes were found differentially expressed between ETEC F4ab/ac...... of the amino acids composition. However, we cannot exclude that the five tested genes are bona fide candidate genes for susceptibility to ETEC F4ab/ac infection since the identified polymorphism might affect the translational apparatus, alternative splice forms may exist and post translational mechanisms might...

  12. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  13. Candidate genes detected in transcriptome studies are strongly dependent on genetic background.

    Directory of Open Access Journals (Sweden)

    Pernille Sarup

    2011-01-01

    Full Text Available Whole genome transcriptomic studies can point to potential candidate genes for organismal traits. However, the importance of potential candidates is rarely followed up through functional studies and/or by comparing results across independent studies. We have analysed the overlap of candidate genes identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same genetic backgrounds. Putative candidates found using transcriptomics therefore appear very sensitive to genetic background and this can mask or override effects of treatments. The functional importance of putative candidate genes emerging from transcriptome studies needs to be validated through additional experiments and in future studies we suggest a focus on the genes, networks and pathways affecting traits in a consistent manner across backgrounds.

  14. Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder ( Platichthys flesus )

    DEFF Research Database (Denmark)

    Larsen, Peter Foged; Eg Nielsen, Einar; Williams, T.D.

    2008-01-01

    Despite the recent discovery of significant genetic structuring in a large number of marine organisms, the evolutionary significance of these often minute genetic differences are still poorly understood. To elucidate the adaptive relevance of low genetic differentiation among marine fish...... in osmoregulative processes (Na/K-ATPases-alpha and angiotensinogen) showed highly plastic but similar expression in the two populations dependent on environmental salinity. However, we observed a unique sixfold up-regulation of hsp70 in kidney tissue of flounder from the North Sea following long-term acclimation...... conditions. This identification of adaptive differences in high gene flow marine organisms adds a new dimension to our current understanding of evolutionary processes in the sea and is of paramount importance for identification, protection and sustainable management of marine biodiversity....

  15. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Science.gov (United States)

    Jespersen, David; Belanger, Faith C; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  16. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Directory of Open Access Journals (Sweden)

    David Jespersen

    Full Text Available Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L. x creeping bentgrass (Agrostis stolonifera L. hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease, antioxidant defense (catalase and glutathione-S-transferase, energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, cell expansion (expansin, and stress protection (heat shock proteins HSP26, HSP70, and HSP101. Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  17. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  18. Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors

    International Nuclear Information System (INIS)

    Chosdol, Kunzang; Misra, Anjan; Puri, Sachin; Srivastava, Tapasya; Chattopadhyay, Parthaprasad; Sarkar, Chitra; Mahapatra, Ashok K; Sinha, Subrata

    2009-01-01

    We had earlier used the comparison of RAPD (Random Amplification of Polymorphic DNA) DNA fingerprinting profiles of tumor and corresponding normal DNA to identify genetic alterations in primary human glial tumors. This has the advantage that DNA fingerprinting identifies the genetic alterations in a manner not biased for locus. In this study we used RAPD-PCR to identify novel genomic alterations in the astrocytic tumors of WHO grade II (Low Grade Diffuse Astrocytoma) and WHO Grade IV (Glioblastoma Multiforme). Loss of heterozygosity (LOH) of the altered region was studied by microsatellite and Single Nucleotide Polymorphism (SNP) markers. Expression study of the gene identified at the altered locus was done by semi-quantitative reverse-transcriptase-PCR (RT-PCR). Bands consistently altered in the RAPD profile of tumor DNA in a significant proportion of tumors were identified. One such 500 bp band, that was absent in the RAPD profile of 33% (4/12) of the grade II astrocytic tumors, was selected for further study. Its sequence corresponded with a region of FAT, a putative tumor suppressor gene initially identified in Drosophila. Fifty percent of a set of 40 tumors, both grade II and IV, were shown to have Loss of Heterozygosity (LOH) at this locus by microsatellite (intragenic) and by SNP markers. Semi-quantitative RT-PCR showed low FAT mRNA levels in a major subset of tumors. These results point to a role of the FAT in astrocytic tumorigenesis and demonstrate the use of RAPD analysis in identifying specific alterations in astrocytic tumors

  19. Disease candidate gene identification and prioritization using protein interaction networks

    Directory of Open Access Journals (Sweden)

    Aronow Bruce J

    2009-02-01

    Full Text Available Abstract Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene prioritization method that is entirely based on protein-protein interaction network (PPIN analyses. Results For the first time, extended versions of the PageRank and HITS algorithms, and the K-Step Markov method are applied to prioritize disease candidate genes in a training-test schema. Using a list of known disease-related genes from our earlier study as a training set ("seeds", and the rest of the known genes as a test list, we perform large-scale cross validation to rank the candidate genes and also evaluate and compare the performance of our approach. Under appropriate settings – for example, a back probability of 0.3 for PageRank with Priors and HITS with Priors, and step size 6 for K-Step Markov method – the three methods achieved a comparable AUC value, suggesting a similar performance. Conclusion Even though network-based methods are generally not as effective as integrated functional annotation-based methods for disease candidate gene prioritization, in a one-to-one comparison, PPIN-based candidate gene prioritization performs better than all other gene features or annotations. Additionally, we demonstrate that methods used for studying both social and Web networks can be successfully used for disease candidate gene prioritization.

  20. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    Science.gov (United States)

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  1. Pathways of Lipid Metabolism in Marine Algae, Co-Expression Network, Bottlenecks and Candidate Genes for Enhanced Production of EPA and DHA in Species of Chromista

    Directory of Open Access Journals (Sweden)

    Alice Mühlroth

    2013-11-01

    Full Text Available The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3. Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.

  2. Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development

    Directory of Open Access Journals (Sweden)

    Leah Y. Liu

    2013-09-01

    Genome-wide association studies (GWAS have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10 decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50 decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to GWAS for additional disease-associated phenotypes.

  3. Candidate genes for performance in horses, including monocarboxylate transporters

    Directory of Open Access Journals (Sweden)

    Inaê Cristina Regatieri

    Full Text Available ABSTRACT: Some horse breeds are highly selected for athletic activities. The athletic potential of each animal can be measured by its performance in sports. High athletic performance depends on the animal capacity to produce energy through aerobic and anaerobic metabolic pathways, among other factors. Transmembrane proteins called monocarboxylate transporters, mainly the isoform 1 (MCT1 and its ancillary protein CD147, can help the organism to adapt to physiological stress caused by physical exercise, transporting lactate and H+ ions. Horse breeds are selected for different purposes so we might expect differences in the amount of those proteins and in the genotypic frequencies for genes that play a significant role in the performance of the animals. The study of MCT1 and CD147 gene polymorphisms, which can affect the formation of the proteins and transport of lactate and H+, can provide enough information to be used for selection of athletic horses increasingly resistant to intense exercise. Two other candidate genes, the PDK4 and DMRT3, have been associated with athletic potential and indicated as possible markers for performance in horses. The oxidation of fatty acids is highly effective in generating ATP and is controlled by the expression of PDK4 (pyruvate dehydrogenase kinase, isozyme 4 in skeletal muscle during and after exercise. The doublesex and mab-3 related transcription factor 3 (DMRT3 gene encodes an important transcription factor in the setting of spinal cord circuits controlling movement in vertebrates and may be associated with gait performance in horses. This review describes how the monocarboxylate transporters work during physical exercise in athletic horses and the influence of polymorphisms in candidate genes for athletic performance in horses.

  4. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wanlada Klangnurak

    Full Text Available We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm, were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.

  5. New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma.

    Science.gov (United States)

    Zhenzhen, Zhou; De'an, Tian; Limin, Xia; Wei, Yan; Min, Luo

    2012-01-01

    This study aimed to detect the expression of newly discovered zinc finger transcriptional factor KLF6 and its splice variant KLF6 SV2 in primary hepatocarcinoma (PHC) tissues and hepatoma cell strains, and to evaluate their clinicopathologic relationship with PHC. Wild-type KLF6 and KLF6 SV2 mRNA expression was determined by RTPCR in 27 cases of PHC tissues and cell strains of HepG2, SMMC7721 and LO2. Western blotting and immunohistochemical staining were adopted to detect KLF6 protein expression. Positive area ratio of wild-type KLF6 protein expression and its relationship with clinicopathological parameters of PHC was analyzed. Wild-type KLF6 expression in PHC tissues was lower than that in paracancerous tissues. In contrast, KLF6 SV2 mRNA expression was higher in PHC tissues and hepatoma cell strains (p<0.05). Positive area ratio of wild-type KLF6 protein expression was positively correlated with cellular differentiation degree of PHC (p<0.01), but negatively correlated not only with liver cirrhosis, tumor size and extrahepatic metastases (p<0.01), but also with portal vein thrombus and the number of lymph nodes with metastasis (p<0.05). Wild-type KLF6 deletion and inactivation was involved in the growth, cell differentiation and other physiological processes of PHC. The upregulation of KLF6 splice variant might counterbalance the wildtype KLF6 and contribute to the occurrence and development of PHC.

  6. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    Full Text Available Combining path consistency (PC algorithms with conditional mutual information (CMI are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference, to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.

  7. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  8. Transiently expressed pattern during myogenesis and candidate ...

    Indian Academy of Sciences (India)

    KE HE

    (BM and LM) during the embryonic period and neonatal stages, and identified miRNAs that might affect the targeted gene. The results revealed a high homology between Tmem8C in goose and other animals (indicated by sequence comparisons and phylogenetic trees), some conservative characteristics (e.g., ...

  9. Transiently expressed pattern during myogenesis and candidate ...

    Indian Academy of Sciences (India)

    The results revealed a high homology between Tmem8C in goose and other animals (indicated by sequence ..... an indicator of selective pressure acting on a protein-coding gene. ... boxes were also found in positions 83–88 and 144–149 in our .... The luciferase activity responses for siRNA .... Blood 115, 1416–1424.

  10. Candidate Genes Detected in Transcriptome Studies are Strongly Dependent on Genetic Background

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Jesper Givskov; Kristensen, Torsten Nygård

    2011-01-01

    identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same...

  11. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  12. Web tools for the prioritization of candidate disease genes.

    NARCIS (Netherlands)

    Oti, M.O.; Ballouz, S.; Wouters, M.A.

    2011-01-01

    Despite increasing sequencing capacity, genetic disease investigation still frequently results in the identification of loci containing multiple candidate disease genes that need to be tested for involvement in the disease. This process can be expedited by prioritizing the candidates prior to

  13. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Josephine Erhiakporeh

    2016-07-06

    Jul 6, 2016 ... candidate genes for drought tolerance in sesame. (Sesamum ... Our results provided genomic resources for further functional analysis and genetic engineering .... reverse transcribed using the Reverse Transcription System.

  14. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    Improving drought tolerance and productivity is one of the most difficult tasks for ... Keywords. Candidate gene; mapping population; polymerase chain reaction; single marker analysis. .... ple and the mean value computed. 2.4 Isolation of DNA.

  15. from microarrays and quantitative trait loci to candidate genes

    Indian Academy of Sciences (India)

    Unknown

    2004-10-15

    Oct 15, 2004 ... to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic ... Recent developments in molecular genetics ..... scientists in agriculture, medicine and psychology for test-.

  16. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach.

    Science.gov (United States)

    Silva, C; Garcia-Mas, J; Sánchez, A M; Arús, P; Oliveira, M M

    2005-03-01

    Blooming time is one of the most important agronomic traits in almond. Biochemical and molecular events underlying flowering regulation must be understood before methods to stimulate late flowering can be developed. Attempts to elucidate the genetic control of this process have led to the identification of a major gene (Lb) and quantitative trait loci (QTLs) linked to observed phenotypic differences, but although this gene and these QTLs have been placed on the Prunus reference genetic map, their sequences and specific functions remain unknown. The aim of our investigation was to associate these loci with known genes using a candidate gene approach. Two almond cDNAs and eight Prunus expressed sequence tags were selected as candidate genes (CGs) since their sequences were highly identical to those of flowering regulatory genes characterized in other species. The CGs were amplified from both parental lines of the mapping population using specific primers. Sequence comparison revealed DNA polymorphisms between the parental lines, mainly of the single nucleotide type. Polymorphisms were used to develop co-dominant cleaved amplified polymorphic sequence markers or length polymorphisms based on insertion/deletion events for mapping the candidate genes on the Prunus reference map. Ten candidate genes were assigned to six linkage groups in the Prunus genome. The positions of two of these were compatible with the regions where two QTLs for blooming time were detected. One additional candidate was localized close to the position of the Evergrowing gene, which determines a non-deciduous behaviour in peach.

  17. Understanding gene expression in coronary artery disease through ...

    Indian Academy of Sciences (India)

    Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes. Prathima ... Table 2. Differentially expressed genes in CAD compared to age and gender matched controls. .... Regulation of nuclear pre-mRNA domain containing 1A.

  18. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    Science.gov (United States)

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  19. Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

    DEFF Research Database (Denmark)

    Hansen, Niclas Tue; Brunak, Søren; Altman, R. B.

    2009-01-01

    A critical task in pharmacogenomics is identifying genes that may be important modulators of drug response. High-throughput experimental methods are often plagued by false positives and do not take advantage of existing knowledge. Candidate gene lists can usefully summarize existing knowledge...

  20. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D...... susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes...

  1. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  2. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  3. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    Science.gov (United States)

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  4. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-05-01

    Soil salinity is a major abiotic stress for land plants, and multiple mechanisms of salt tolerance have evolved. Tissue tolerance is one of these mechanisms, which involves the sequestration of sodium into the vacuole to retain low cytosolic sodium concentrations. This enables the plant to maintain cellular functions, and ultimately maintain growth and yield. However, the molecular components involved in tissue tolerance remain elusive. Several candidate genes for vacuolar sodium sequestration have recently been identified by proteome analysis of vacuolar membranes purified from the salt-tolerant cereal Hordeum vulgare (barley). In this study, I aimed to characterize these candidates in more detail. I successfully cloned coding sequences for the majority of candidate genes with primers designed based on the barley reference genome sequence. During the course of this study a newer genome sequence with improved annotations was published, to which I also compared my observations. To study the candidate genes, I used the heterologous expression system Saccharomyces cerevisiae (yeast). I used several salt sensitive yeast strains (deficient in intrinsic sodium transporters) to test whether the candidate genes would affect their salt tolerance by mediating the sequestration of sodium into the yeast vacuole. I observed a reduction in growth upon expression for several of the gene candidate under salt-stress conditions. However, confocal microscopy suggests that most gene products are subject to degradation, and did not localize to the vacuolar membrane (tonoplast). Therefore, growth effects cannot be linked to protein function without further evidence. Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  5. Cloning and expression of a b(0,+)-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria.

    Science.gov (United States)

    Rajan, D P; Kekuda, R; Huang, W; Wang, H; Devoe, L D; Leibach, F H; Prasad, P D; Ganapathy, V

    1999-10-08

    We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.

  6. The cld mutation: narrowing the critical chromosomal region and selecting candidate genes.

    Science.gov (United States)

    Péterfy, Miklós; Mao, Hui Z; Doolittle, Mark H

    2006-10-01

    Combined lipase deficiency (cld) is a recessive, lethal mutation specific to the tw73 haplotype on mouse Chromosome 17. While the cld mutation results in lipase proteins that are inactive, aggregated, and retained in the endoplasmic reticulum (ER), it maps separately from the lipase structural genes. We have narrowed the gene critical region by about 50% using the tw18 haplotype for deletion mapping and a recombinant chromosome used originally to map cld with respect to the phenotypic marker tf. The region now extends from 22 to 25.6 Mbp on the wild-type chromosome, currently containing 149 genes and 50 expressed sequence tags (ESTs). To identify the affected gene, we have selected candidates based on their known role in associated biological processes, cellular components, and molecular functions that best fit with the predicted function of the cld gene. A secondary approach was based on differences in mRNA levels between mutant (cld/cld) and unaffected (+/cld) cells. Using both approaches, we have identified seven functional candidates with an ER localization and/or an involvement in protein maturation and folding that could explain the lipase deficiency, and six expression candidates that exhibit large differences in mRNA levels between mutant and unaffected cells. Significantly, two genes were found to be candidates with regard to both function and expression, thus emerging as the strongest candidates for cld. We discuss the implications of our mapping results and our selection of candidates with respect to other genes, deletions, and mutations occurring in the cld critical region.

  7. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  8. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  9. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  10. Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in beta-Catenin-Active Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Genome-scale expression studies and comprehensive loss-of-function genetic screens have focused almost exclusively on the highest confidence candidate genes. Here, we describe a strategy for characterizing the lower confidence candidates identified by such approaches.

  11. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  12. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    tropics. Improving drought tolerance and productivity is one of the most difficult tasks for cereal breeders. The diffi- culty arises from the diverse strategies adopted by plants themselves to combat drought stress depending on the timing,. Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.).

  13. Polymorphisms of candidate genes associated with meat quality and ...

    African Journals Online (AJOL)

    Hung Nguyen

    Abstract. The objectives of this study were to analyse genotype distribution and sequence variations of candidate genes putatively associated with meat quality and disease resistance in exotic and indigenous. Vietnamese pig breeds. For this purpose, 340 pigs from four indigenous and two exotic breeds were included.

  14. Polymorphisms of candidate genes associated with meat quality and ...

    African Journals Online (AJOL)

    The objectives of this study were to analyse genotype distribution and sequence variations of candidate genes putatively associated with meat quality and disease resistance in exotic and indigenous Vietnamese pig breeds. For this purpose, 340 pigs from four indigenous and two exotic breeds were included in the analysis ...

  15. Genomic dissection and prioritizing of candidate genes of QTL for ...

    Indian Academy of Sciences (India)

    Genomic dissection and prioritizing of candidate genes of QTL for regulating spontaneous arthritis on chromosome 1 in mice deficient for interleukin-1 receptor antagonist. Yanhong Cao, Jifei Zhang, Yan Jiao, Jian Yan, Feng Jiao, XiaoYun Liu, Robert W. Williams, Karen A. Hasty,. John M. Stuart and Weikuan Gu. J. Genet.

  16. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... approaches could be combined in order to identify candidate genes for the genetic control of ascorbic ..... applied to other traits under the complex control of many ... Engineering increased vitamin C levels in ... Chem. Biol. 13:532–538. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002). A.

  17. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  18. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  19. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  20. Isolation and characterization of the human CDX1 gene: A candidate gene for diastrophic dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, C.; Loftus, S.; Wasmuth, J.J. [Univ. of California, Irvine, CA (United States)

    1994-09-01

    Diastrophic dysplasia is an autosomal recessive disorder characterized by short stature, dislocation of the joints, spinal deformities and malformation of the hands and feet. Multipoint linkage analysis places the diastrophic dysplasia (DTD) locus in 5q31-5q34. Linkage disequilibrium mapping places the DTD locus near CSFIR in the direction of PDGFRB (which is tandem to CSFIR). This same study tentatively placed PDGFRB and DTD proximal to CSFIR. Our results, as well as recently reported work from other laboratories, suggest that PDGFRB (and possibly DTD) is distal rather than proximal to CSFIR. We have constructed a cosmid contig covering approximately 200 kb of the region containing CSFIR. Several exons have been {open_quotes}trapped{close_quotes} from these cosmids using exon amplification. One of these exons was trapped from a cosmid isolated from a walk from PDGFRB, approximately 80 kb from CSFIR. This exon was sequenced and was determined to be 89% identical to the nucleotide sequence of exon two of the murine CDX1 gene (100% amino acid identity). The exon was used to isolate the human CDX gene. Sequence analysis of the human CDX1 gene indicates a very high degree of homology to the murine gene. CDX1 is a caudal type homeobox gene expressed during gastrulation. In the mouse, expression during gastrulation begins in the primitive streak and subsequently localizes to the ectodermal and mesodermal cells of the primitive streak, neural tube, somites, and limb buds. Later in gastrulation, CDX1 expression becomes most prominent in the mesoderm of the forelimbs, and, to a lesser extent, the hindlimbs. CDX1 is an intriguing candidate gene for diastrophic dysplasia. We are currently screening DNA from affected individuals and hope to shortly determine whether CDX1 is involved in this disorder.

  1. Mining gene expression data of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Pi Guo

    Full Text Available Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example.Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models' performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined.An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score.The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases.

  2. Are TMEM genes potential candidate genes for panic disorder?

    DEFF Research Database (Denmark)

    NO, Gregersen; Buttenschøn, Henriette Nørmølle; Hedemand, Anne

    2014-01-01

    We analysed single nucleotide polymorphisms in two transmembrane genes (TMEM98 and TMEM132E) in panic disorder (PD) patients and control individuals from the Faroe Islands, Denmark and Germany. The genes encode single-pass membrane proteins and are located within chromosome 17q11.2-q12...

  3. Candidate genes for COPD: current evidence and research

    Directory of Open Access Journals (Sweden)

    Kim WJ

    2015-10-01

    Full Text Available Woo Jin Kim,1 Sang Do Lee2 1Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, 2Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: COPD is a common complex disease characterized by progressive airflow limitation. Several genome-wide association studies (GWASs have discovered genes that are associated with COPD. Recently, candidate genes for COPD identified by GWASs include CHRNA3/5 (cholinergic nicotine receptor alpha 3/5, IREB2 (iron regulatory binding protein 2, HHIP (hedgehog-interacting protein, FAM13A (family with sequence similarity 13, member A, and AGER (advanced glycosylation end product–specific receptor. Their association with COPD susceptibility has been replicated in multiple populations. Since these candidate genes have not been considered in COPD, their pathological roles are still largely unknown. Herein, we review some evidences that they can be effective drug targets or serve as biomarkers for diagnosis or subtyping. However, more study is required to understand the functional roles of these candidate genes. Future research is needed to characterize the effect of genetic variants, validate gene function in humans and model systems, and elucidate the genes’ transcriptional and posttranscriptional regulatory mechanisms. Keywords: chronic obstructive pulmonary disease, genetics, genome-wide association study

  4. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  5. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN

    2008-10-01

    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  6. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  7. Speeding disease gene discovery by sequence based candidate prioritization

    Directory of Open Access Journals (Sweden)

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  8. CANDIDATE GENE ANALYSIS IN ISRAELI SOLDIERS WITH STRESS FRACTURES

    Directory of Open Access Journals (Sweden)

    Ran Yanovich

    2012-03-01

    Full Text Available To investigate the association of polymorphisms within candidate genes which we hypothesized may contribute to stress fracture predisposition, a case-control, cross- sectional study design was employed. Genotyping 268 Single Nucleotide Polymorphisms- SNPs within 17 genes in 385 Israeli young male and female recruits (182 with and 203 without stress fractures. Twenty-five polymorphisms within 9 genes (NR3C1, ANKH, VDR, ROR2, CALCR, IL6, COL1A2, CBG, and LRP4 showed statistically significant differences (p < 0.05 in the distribution between stress fracture cases and non stress fracture controls. Seventeen genetic variants were associated with an increased stress fracture risk, and eight variants with a decreased stress fracture risk. None of the SNP associations remained significant after correcting for multiple comparisons (false discovery rate- FDR. Our findings suggest that genes may be involved in stress fracture pathogenesis. Specifically, the CALCR and the VDR genes are intriguing candidates. The putative involvement of these genes in stress fracture predisposition requires analysis of more cases and controls and sequencing the relevant genomic regions, in order to define the specific gene mutations

  9. No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes.

    Science.gov (United States)

    Johnson, Emma C; Border, Richard; Melroy-Greif, Whitney E; de Leeuw, Christiaan A; Ehringer, Marissa A; Keller, Matthew C

    2017-11-15

    A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same study identified other variants within those candidate genes that demonstrated genome-wide significant associations with schizophrenia. As such, it is possible that variants within historic schizophrenia candidate genes are associated with schizophrenia at levels above those expected by chance, even if the most-studied specific polymorphisms are not. The present study used association statistics from the largest schizophrenia genome-wide association study conducted to date as input to a gene set analysis to investigate whether variants within schizophrenia candidate genes are enriched for association with schizophrenia. As a group, variants in the most-studied candidate genes were no more associated with schizophrenia than were variants in control sets of noncandidate genes. While a small subset of candidate genes did appear to be significantly associated with schizophrenia, these genes were not particularly noteworthy given the large number of more strongly associated noncandidate genes. The history of schizophrenia research should serve as a cautionary tale to candidate gene investigators examining other phenotypes: our findings indicate that the most investigated candidate gene hypotheses of schizophrenia are not well supported by genome-wide association studies, and it is likely that this will be the case for other complex traits as well. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    xudelin

    2012-05-17

    May 17, 2012 ... Real-time polymerase chain reaction (PCR) showed that. CreV8 was expressed .... Two housekeeping genes (GAPDH and actin) were used as interior references for accuracy ..... Future world supply and demand. Loivoisier ...

  11. The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    DEFF Research Database (Denmark)

    Hedley, Paula L; Haundrup, Ole; Andersen, Paal S

    2011-01-01

    The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere...... as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic...

  12. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... importance for human health and nutrition. This species has ... function to genes, proteins and metabolites is still a daunting task. Major challenges ... relation of the expression pattern of genes with the accu- mulation pattern of ..... M, Gordon JS, Rose, JKC, Martin G, Tanksley SD, Bouzayen M,. Jahn MM ...

  13. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    International Nuclear Information System (INIS)

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-01

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  14. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  15. Defining the Sequence Elements and Candidate Genes for the Coloboma Mutation.

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Robb

    Full Text Available The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter, CENPH (a centromere protein, and CDK7 (a cyclin-dependent kinase, are differentially expressed (compared to normal embryos at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH are considered high-priority candidate based upon studies in other vertebrate model systems.

  16. Photoreceptor dysplasia (pd) in miniature schnauzer dogs: evaluation of candidate genes by molecular genetic analysis.

    Science.gov (United States)

    Zhang, Q; Baldwin, V J; Acland, G M; Parshall, C J; Haskel, J; Aguirre, G D; Ray, K

    1999-01-01

    Photoreceptor dysplasia (pd) is one of a group of at least six distinct autosomal and one X-linked retinal disorders identified in dogs which are collectively known as progressive retinal atrophy (PRA). It is an early onset retinal disease identified in miniature schnauzer dogs, and pedigree analysis and breeding studies have established autosomal recessive inheritance of the disease. Using a gene-based approach, a number of retina-expressed genes, including some members of the phototransduction pathway, have been causally implicated in retinal diseases of humans and other animals. Here we examined seven such potential candidate genes (opsin, RDS/peripherin, ROM1, rod cGMP-gated cation channel alpha-subunit, and three subunits of transducin) for their causal association with the pd locus by testing segregation of intragenic markers with the disease locus, or, in the absence of informative polymorphisms, sequencing of the coding regions of the genes. Based on these results, we have conclusively excluded four photoreceptor-specific genes as candidates for pd by linkage analysis. For three other photoreceptor-specific genes, we did not find any mutation in the coding sequences of the genes and have excluded them provisionally. Formal exclusion would require investigation of the levels of expression of the candidate genes in pd-affected dogs relative to age-matched controls. At present we are building suitable informative pedigrees for the disease locus with a sufficient number of meiosis to be useful for genomewide screening. This should identify markers linked to the disease locus and eventually permit progress toward the identification of the photoreceptor dysplasia gene and the disease-causing mutation.

  17. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  18. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  19. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  20. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  1. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  2. A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy

    DEFF Research Database (Denmark)

    Bruhn, Sören; Fang, Yu; Barrenäs, Fredrik

    2014-01-01

    The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identi...

  3. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  4. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  5. RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem.

    Directory of Open Access Journals (Sweden)

    Michele Gusberti

    Full Text Available Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible and old (ontogenic resistant leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3 were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result

  6. Association of Candidate Genes With Submergence Response in Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Xicheng Wang

    2017-05-01

    Full Text Available Perennial ryegrass is a popular cool-season grass species due to its high quality for forage and turf. The objective of this study was to identify associations of candidate genes with growth and physiological traits to submergence stress and recovery after de-submergence in a global collection of 94 perennial ryegrass accessions. Accessions varied largely in leaf color, plant height (HT, leaf fresh weight (LFW, leaf dry weight (LDW, and chlorophyll fluorescence (Fv/Fm at 7 days of submergence and in HT, LFW and LDW at 7 days of recovery in two experiments. Among 26 candidate genes tested by various models, single nucleotide polymorphisms (SNPs in 10 genes showed significant associations with traits including 16 associations for control, 10 for submergence, and 8 for recovery. Under submergence, Lp1-SST encoding sucrose:sucrose 1-fructosyltransferase and LpGA20ox encoding gibberellin 20-oxidase were associated with LFW and LDW, and LpACO1 encoding 1-aminocyclopropane-1-carboxylic acid oxidase was associated with LFW. Associations between Lp1-SST and HT, Lp6G-FFT encoding fructan:fructan 6G-fructosyltransferase and Fv/Fm, LpCAT encoding catalase and HT were also detected under submergence stress. Upon de-submergence, Lp1-SST, Lp6G-FFT, and LpPIP1 encoding plasma membrane intrinsic protein type 1 were associated with LFW or LDW, while LpCBF1b encoding C-repeat binding factor were associated with HT. Nine significant SNPs in Lp1-SST, Lp6G-FFT, LpCAT, and LpACO1 resulted in amino acid changes with five substitutions found in Lp1-SST under submergence or recovery. The results indicated that allelic diversity in genes involved in carbohydrate and antioxidant metabolism, ethylene and gibberellin biosynthesis, and transcript factor could contribute to growth variations in perennial ryegrass under submergence stress and recovery after de-submergence.

  7. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  8. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    Science.gov (United States)

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  9. Bioinformatics-driven identification and examination of candidate genes for non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Karina Banasik

    2011-01-01

    Full Text Available Candidate genes for non-alcoholic fatty liver disease (NAFLD identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.By integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D, central obesity, and WHO-defined metabolic syndrome (MetS.273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05 to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

  10. Candidate gene association analyses for ketosis resistance in Holsteins.

    Science.gov (United States)

    Kroezen, V; Schenkel, F S; Miglior, F; Baes, C F; Squires, E J

    2018-06-01

    High-yielding dairy cattle are susceptible to ketosis, a metabolic disease that negatively affects the health, fertility, and milk production of the cow. Interest in breeding for more robust dairy cattle with improved resistance to disease is global; however, genetic evaluations for ketosis would benefit from the additional information provided by genetic markers. Candidate genes that are proposed to have a biological role in the pathogenesis of ketosis were investigated in silico and a custom panel of 998 putative single nucleotide polymorphism (SNP) markers was developed. The objective of this study was to test the associations of these new markers with deregressed estimated breeding values (EBV) for ketosis. A sample of 653 Canadian Holstein cows that had been previously genotyped with a medium-density SNP chip were regenotyped with the custom panel. The EBV for ketosis in first and later lactations were obtained for each animal and deregressed for use as pseudo-phenotypes for association analyses. Results of the mixed inheritance model for single SNP association analyses suggested 15 markers in 6 unique candidate genes were associated with the studied trait. Genes encoding proteins involved in metabolic processes, including the synthesis and degradation of fatty acids and ketone bodies, gluconeogenesis, lipid mobilization, and the citric acid cycle, were identified to contain SNP associated with ketosis resistance. This work confirmed the presence of previously described quantitative trait loci for dairy cattle, suggested novel markers for ketosis-resistance, and provided insight into the underlying biology of this disease. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  12. Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-08-30

    Mycosphaerella fijiensis, causative agent of the black Sigatoka disease of banana, is considered the most economically damaging banana disease. Despite its importance, the genetics of pathogenicity are poorly understood. Previous studies have characterized polyketide pathways with possible roles in pathogenicity. To identify additional candidate pathogenicity genes, we compared the transcriptome of this fungus during the necrotrophic phase of infection with that during saprophytic growth in medium. Transcriptome analysis was conducted, and the functions of differentially expressed genes were predicted by identifying conserved domains, Gene Ontology (GO) annotation and GO enrichment analysis, Carbohydrate-Active EnZymes (CAZy) annotation, and identification of genes encoding effector-like proteins. The analysis showed that genes commonly involved in secondary metabolism have higher expression in infected leaf tissue, including genes encoding cytochrome P450s, short-chain dehydrogenases, and oxidoreductases in the 2-oxoglutarate and Fe(II)-dependent oxygenase superfamily. Other pathogenicity-related genes with higher expression in infected leaf tissue include genes encoding salicylate hydroxylase-like proteins, hydrophobic surface binding proteins, CFEM domain-containing proteins, and genes encoding secreted cysteine-rich proteins characteristic of effectors. More genes encoding amino acid transporters, oligopeptide transporters, peptidases, proteases, proteinases, sugar transporters, and proteins containing Domain of Unknown Function (DUF) 3328 had higher expression in infected leaf tissue, while more genes encoding inhibitors of peptidases and proteinases had higher expression in medium. Sixteen gene clusters with higher expression in leaf tissue were identified including clusters for the synthesis of a non-ribosomal peptide. A cluster encoding a novel fusicoccane was also identified. Two putative dispensable scaffolds were identified with a large proportion of

  13. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    Chow, L.T.; Hirochika, H.; Nasseri, M.; Stoler, M.H.; Wolinsky, S.M.; Chin, M.T.; Hirochika, R.; Arvan, D.S.; Broker, T.R.

    1987-01-01

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  14. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage.

    Directory of Open Access Journals (Sweden)

    Khalid A Osman

    Full Text Available Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL, QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging, 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1 were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.

  15. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    NARCIS (Netherlands)

    Waaijenborg, S.; Zwinderman, A.H.

    2009-01-01

    ABSTRACT: BACKGROUND: We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the

  16. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    Science.gov (United States)

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  17. Characterization, expression profiles, intercellular distribution and association analysis of porcine PNAS-4 gene with production traits

    NARCIS (Netherlands)

    Mo, D.L.; Zhu, Z.M.; Pas, te M.F.W.; Li, X.Y.; Yang, S.L.; Wang, H.; Wang, H.L.; Li, K.

    2008-01-01

    Background - In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and

  18. Confirming candidate genes for longevity in Drosophila melanogaster using two different genetic backgrounds and selection methods

    DEFF Research Database (Denmark)

    Wit, Janneke; Frydenberg, Jane; Sarup, Pernille Merete

    2013-01-01

    usually focussed on one sex and on flies originating from one genetic background, and results from different studies often do not overlap. Using D. melanogaster selected for increased longevity we aimed to find robust longevity related genes by examining gene expression in both sexes of flies originating......Elucidating genes that affect life span or that can be used as biomarkers for ageing has received attention in diverse studies in recent years. Using model organisms and various approaches several genes have been linked to the longevity phenotype. For Drosophila melanogaster those studies have...... from different genetic backgrounds. Further, we compared expression changes across three ages, when flies were young, middle aged or old, to examine how candidate gene expression changes with the onset of ageing. We selected 10 genes based on their expression differences in prior microarray studies...

  19. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    (ectoderm) specification with co-opted functions in notochord formation in chordates and left/right determination in ambulacrarians and vertebrates. The caudal ortholog, TtrCdx, is first expressed in the ectoderm of the gastrulating embryo in the posterior region of the blastopore. Its expression stays......The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa...... completion of larval development, which is marked by a three-lobed body with larval setae. Expression starts at gastrulation in two areas lateral to the blastopore and subsequently extends over the animal pole of the gastrula. With elongation of the gastrula, expression at the animal pole narrows to a small...

  20. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  1. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    Science.gov (United States)

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  2. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400 kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958 × ICC 17160)- and intra (ICC 12299 × ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea. Copyright © 2016 Elsevier

  3. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Directory of Open Access Journals (Sweden)

    Øvstebø Reidun

    2010-05-01

    Full Text Available Abstract Background Gene expression in lipopolysaccharide (LPS-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR using GAPDH (glyceraldehyde 3-phosphate dehydrogenase or ACTB (beta-actin as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system. Results Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B, B2M (beta-2-microglobulin and PPIA (cyclophilin A as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha and IL10 (interleukin 10 expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH. Conclusions Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.

  4. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  5. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance

    International Nuclear Information System (INIS)

    Ding, Kai; Wang, Xiao-ming; Fu, Rong; Ruan, Er-bao; Liu, Hui; Shao, Zong-hong

    2012-01-01

    To investigate the expression of the preferentially expressed antigen of melanoma (PRAME) gene in acute leukemia and its clinical significance. The level of expressed PRAME mRNA in bone marrow mononuclear cells from 34 patients with acute leukemia (AL) and in 12 bone marrow samples from healthy volunteers was measured via RT-PCR. Correlation analyses between PRAME gene expression and the clinical characteristics (gender, age, white blood count, immunophenotype of leukemia, percentage of blast cells, and karyotype) of the patients were performed. The PRAME gene was expressed in 38.2% of all 34 patients, in 40.7% of the patients with acute myelogenous leukemia (AML, n=27), and in 28.6% of the patients with acute lymphoblastic leukemia (ALL, n=7), but was not expressed in the healthy volunteers. The difference in the expression levels between AML and ALL patients was statistically significant. The rate of gene expression was 80% in M 3 , 33.3% in M 2 , and 28.6% in M 5 . Gene expression was also found to be correlated with CD15 and CD33 expression and abnormal karyotype, but not with age, gender, white blood count or percentage of blast cells. The PRAME gene is highly expressed in acute leukemia and could be a useful marker to monitor minimal residual disease. This gene is also a candidate target for the immunotherapy of acute leukemia

  6. PSPHL as a candidate gene influencing racial disparities in endometrial cancer incidence and survival

    Directory of Open Access Journals (Sweden)

    Jay eAllard

    2012-07-01

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States and is characterized by a well recognized racial disparity in both incidence and survival. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African Americans. However, African American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African Americans suggesting. We performed a gene expression microarray study in an effort to further examine differences between African American and Caucasian women’s endometrial cancers. This expression screen identified a list of potential biomarkers differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phospatase (PSPH and designated phospho serine phospatase like (PSPHL as the most differentially over-expressed gene in cancers from African Americans. We clarified the nature of expressed transcripts. Northern blot analysis confirmed PSPHL messages under 1 KB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript several tissue types. PSPHL represents a candidate gene that might influence the observed racial disparity in endometrial and other cancers.

  7. Assessment of PALB2 as a candidate melanoma susceptibility gene.

    Directory of Open Access Journals (Sweden)

    Lauren G Aoude

    Full Text Available Partner and localizer of BRCA2 (PALB2 interacts with BRCA2 to enable double strand break repair through homologous recombination. Similar to BRCA2, germline mutations in PALB2 have been shown to predispose to Fanconi anaemia as well as pancreatic and breast cancer. The PALB2/BRCA2 protein interaction, as well as the increased melanoma risk observed in families harbouring BRCA2 mutations, makes PALB2 a candidate for melanoma susceptibility. In order to assess PALB2 as a melanoma predisposition gene, we sequenced the entire protein-coding sequence of PALB2 in probands from 182 melanoma families lacking pathogenic mutations in known high penetrance melanoma susceptibility genes: CDKN2A, CDK4, and BAP1. In addition, we interrogated whole-genome and exome data from another 19 kindreds with a strong family history of melanoma for deleterious mutations in PALB2. Here we report a rare known deleterious PALB2 mutation (rs118203998 causing a premature truncation of the protein (p.Y1183X in an individual who had developed four different cancer types, including melanoma. Three other family members affected with melanoma did not carry the variant. Overall our data do not support a case for PALB2 being associated with melanoma predisposition.

  8. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  9. No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes

    NARCIS (Netherlands)

    Johnson, Emma C; Border, Richard; Melroy-Greif, Whitney E; de Leeuw, Christiaan A; Ehringer, Marissa A; Keller, Matthew C

    2017-01-01

    BACKGROUND: A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same

  10. Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.

    Science.gov (United States)

    Wang, Yuzhi; Zhang, Yi; Huang, Qian; Li, Chengwen

    2018-04-19

    Breast cancer (BC) is the leading malignancy in women worldwide, yet relatively little is known about the genes and signaling pathways involved in BC tumorigenesis and progression. The present study aimed to elucidate potential key candidate genes and pathways in BC. Five gene expression profile data sets (GSE22035, GSE3744, GSE5764, GSE21422 and GSE26910) were downloaded from the Gene Expression Omnibus (GEO) database, which included data from 113 tumorous and 38 adjacent non‑tumorous tissue samples. Differentially expressed genes (DEGs) were identified using t‑tests in the limma R package. These DEGs were subsequently investigated by pathway enrichment analysis and a protein‑protein interaction (PPI) network was constructed. The most significant module from the PPI network was selected for pathway enrichment analysis. In total, 227 DEGs were identified, of which 82 were upregulated and 145 were downregulated. Pathway enrichment analysis results revealed that the upregulated DEGs were mainly enriched in 'cell division', the 'proteinaceous extracellular matrix (ECM)', 'ECM structural constituents' and 'ECM‑receptor interaction', whereas downregulated genes were mainly enriched in 'response to drugs', 'extracellular space', 'transcriptional activator activity' and the 'peroxisome proliferator‑activated receptor signaling pathway'. The PPI network contained 174 nodes and 1,257 edges. DNA topoisomerase 2‑a, baculoviral inhibitor of apoptosis repeat‑containing protein 5, cyclin‑dependent kinase 1, G2/mitotic‑specific cyclin‑B1 and kinetochore protein NDC80 homolog were identified as the top 5 hub genes. Furthermore, the genes in the most significant module were predominantly involved in 'mitotic nuclear division', 'mid‑body', 'protein binding' and 'cell cycle'. In conclusion, the DEGs, relative pathways and hub genes identified in the present study may aid in understanding of the molecular mechanisms underlying BC progression and provide

  11. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    Science.gov (United States)

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in

  12. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    Directory of Open Access Journals (Sweden)

    Nicholas M Morton

    Full Text Available Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L strain.To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney was performed. Known obesity quantitative trait loci (QTL information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity.A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  13. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions

    Science.gov (United States)

    Xiaoqing Yu; Guihua Bai; Shuwei Liu; Na Luo; Ying Wang; Douglas S. Richmond; Paula M. Pijut; Scott A. Jackson; Jianming Yu; Yiwei. Jiang

    2013-01-01

    Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse...

  14. Using RNA-Seq Data to Evaluate Reference Genes Suitable for Gene Expression Studies in Soybean.

    Directory of Open Access Journals (Sweden)

    Aldrin Kay-Yuen Yim

    Full Text Available Differential gene expression profiles often provide important clues for gene functions. While reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is an important tool, the validity of the results depends heavily on the choice of proper reference genes. In this study, we employed new and published RNA-sequencing (RNA-Seq datasets (26 sequencing libraries in total to evaluate reference genes reported in previous soybean studies. In silico PCR showed that 13 out of 37 previously reported primer sets have multiple targets, and 4 of them have amplicons with different sizes. Using a probabilistic approach, we identified new and improved candidate reference genes. We further performed 2 validation tests (with 26 RNA samples on 8 commonly used reference genes and 7 newly identified candidates, using RT-qPCR. In general, the new candidate reference genes exhibited more stable expression levels under the tested experimental conditions. The three newly identified candidate reference genes Bic-C2, F-box protein2, and VPS-like gave the best overall performance, together with the commonly used ELF1b. It is expected that the proposed probabilistic model could serve as an important tool to identify stable reference genes when more soybean RNA-Seq data from different growth stages and treatments are used.

  15. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    Science.gov (United States)

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  16. Epidermal growth factor gene is a newly identified candidate gene for gout

    OpenAIRE

    Lin Han; Chunwei Cao; Zhaotong Jia; Shiguo Liu; Zhen Liu; Ruosai Xin; Can Wang; Xinde Li; Wei Ren; Xuefeng Wang; Changgui Li

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 re...

  17. Organization and annotation of the Xcat critical region: elimination of seven positional candidate genes.

    Science.gov (United States)

    Huang, Kristen M; Geunes-Boyer, Scarlett; Wu, Sufen; Dutra, Amalia; Favor, Jack; Stambolian, Dwight

    2004-05-01

    Xcat mice display X-linked congenital cataracts and are a mouse model for the human X-linked cataract disease Nance Horan syndrome (NHS). The genetic defect in Xcat mice and NHS patients is not known. We isolated and sequenced a BAC contig representing a portion of the Xcat critical region. We combined our sequencing data with the most recent mouse sequence assemblies from both Celera and public databases. The sequence of the 2.2-Mb Xcat critical region was then analyzed for potential Xcat candidate genes. The coding regions of the seven known genes within this area (Rai2, Rbbp7, Ctps2, Calb3, Grpr, Reps2, and Syap1) were sequenced in Xcat mice and no mutations were detected. The expression of Rai2 was quantitatively identical in wild-type and Xcat mutant eyes. These results indicate that the Xcat mutation is within a novel, undiscovered gene.

  18. Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Andersen, Jeppe Reitan; Dionisio, Giuseppe

    2011-01-01

    Poa pratensis, a type species for the grass family (Poaceae), is an important cool season grass that accumulates fructans as a polysaccharide reserve. We studied fructan contents and expression of candidate fructan metabolism genes during cold acclimation in three varieties of P. pratensis adapted...... to different environments: Northern Norway, Denmark, and the Netherlands. Fructan content increased significantly during cold acclimation and varieties showed significant differences in the level of fructan accumulation. cDNA sequences of putative fructosyltransferase (FT), fructan exohydrolase (FEH), and cold...... acclimation protein (CAP) genes were identified and cloned. In agreement with a function in fructan biosynthesis, transcription of a putative sucrose:fructan 6-fructosyltransferase (Pp6-SFT) gene was induced during cold acclimation and fructan accumulation in all three P. pratensis varieties. Transcription...

  19. Selection of reference genes for gene expression studies in heart failure for left and right ventricles.

    Science.gov (United States)

    Li, Mengmeng; Rao, Man; Chen, Kai; Zhou, Jianye; Song, Jiangping

    2017-07-15

    Real-time quantitative reverse transcriptase-PCR (qRT-PCR) is a feasible tool for determining gene expression profiles, but the accuracy and reliability of the results depends on the stable expression of selected housekeeping genes in different samples. By far, researches on stable housekeeping genes in human heart failure samples are rare. Moreover the effect of heart failure on the expression of housekeeping genes in right and left ventricles is yet to be studied. Therefore we aim to provide stable housekeeping genes for both ventricles in heart failure and normal heart samples. In this study, we selected seven commonly used housekeeping genes as candidates. By using the qRT-PCR, the expression levels of ACTB, RAB7A, GAPDH, REEP5, RPL5, PSMB4 and VCP in eight heart failure and four normal heart samples were assessed. The stability of candidate housekeeping genes was evaluated by geNorm and Normfinder softwares. GAPDH showed the least variation in all heart samples. Results also indicated the difference of gene expression existed in heart failure left and right ventricles. GAPDH had the highest expression stability in both heart failure and normal heart samples. We also propose using different sets of housekeeping genes for left and right ventricles respectively. The combination of RPL5, GAPDH and PSMB4 is suitable for the right ventricle and the combination of GAPDH, REEP5 and RAB7A is suitable for the left ventricle. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Transcriptomic Analysis Reveals Candidate Genes for Female Sterility in Pomegranate Flowers

    Directory of Open Access Journals (Sweden)

    Lina Chen

    2017-08-01

    Full Text Available Pomegranate has two types of flowers on the same plant: functional male flowers (FMF and bisexual flowers (BF. BF are female-fertile flowers that can set fruits. FMF are female-sterile flowers that fail to set fruit and that eventually drop. The putative cause of pomegranate FMF female sterility is abnormal ovule development. However, the key stage at which the FMF pomegranate ovules become abnormal and the mechanism of regulation of pomegranate female sterility remain unknown. Here, we studied ovule development in FMF and BF, using scanning electron microscopy to explore the key stage at which ovule development was terminated and then analyzed genes differentially expressed (differentially expressed genes – DEGs between FMF and BF to investigate the mechanism responsible for pomegranate female sterility. Ovule development in FMF ceased following the formation of the inner integument primordium. The key stage for the termination of FMF ovule development was when the bud vertical diameter was 5.0–13.0 mm. Candidate genes influencing ovule development may be crucial factors in pomegranate female sterility. INNER OUTER (INO/YABBY4 (Gglean016270 and AINTEGUMENTA (ANT homolog genes (Gglean003340 and Gglean011480, which regulate the development of the integument, showed down-regulation in FMF at the key stage of ovule development cessation (ATNSII. Their upstream regulator genes, such as AGAMOUS-like (AG-like (Gglean028014, Gglean026618, and Gglean028632 and SPOROCYTELESS (SPL homolog genes (Gglean005812, also showed differential expression pattern between BF and FMF at this key stage. The differential expression of the ethylene response signal genes, ETR (ethylene-resistant (Gglean022853 and ERF1/2 (ethylene-responsive factor (Gglean022880, between FMF and BF indicated that ethylene signaling may also be an important factor in the development of pomegranate female sterility. The increase in BF observed after spraying with ethephon supported this

  1. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    Science.gov (United States)

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  2. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  3. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich

    2015-07-01

    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  4. Using gene expression noise to understand gene regulation

    NARCIS (Netherlands)

    Munsky, B.; Neuert, G.; van Oudenaarden, A.

    2012-01-01

    Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a

  5. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue

    Directory of Open Access Journals (Sweden)

    Dunner Susana

    2008-09-01

    Full Text Available Abstract Background Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR is a technique used to measure mRNA species copy number as a way to determine key genes involved in different biological processes. However, the expression level of these key genes may vary among tissues or cells not only as a consequence of differential expression but also due to different factors, including choice of reference genes to normalize the expression levels of the target genes; thus the selection of reference genes is critical for expression studies. For this purpose, ten candidate reference genes were investigated in bovine muscular tissue. Results The value of stability of ten candidate reference genes included in three groups was estimated: the so called 'classical housekeeping' genes (18S, GAPDH and ACTB, a second set of genes used in expression studies conducted on other tissues (B2M, RPII, UBC and HMBS and a third set of novel genes (SF3A1, EEF1A2 and CASC3. Three different statistical algorithms were used to rank the genes by their stability measures as produced by geNorm, NormFinder and Bestkeeper. The three methods tend to agree on the most stably expressed genes and the least in muscular tissue. EEF1A2 and HMBS followed by SF3A1, ACTB, and CASC3 can be considered as stable reference genes, and B2M, RPII, UBC and GAPDH would not be appropriate. Although the rRNA-18S stability measure seems to be within the range of acceptance, its use is not recommended because its synthesis regulation is not representative of mRNA levels. Conclusion Based on geNorm algorithm, we propose the use of three genes SF3A1, EEF1A2 and HMBS as references for normalization of real-time RTqPCR in muscle expression studies.

  6. Candidate gene investigation of spinal degenerative osteoarthritis in Greek population.

    Science.gov (United States)

    Liva, Eleni; Panagiotou, Irene; Palikyras, Spyros; Parpa, Efi; Tsilika, Eleni; Paschou, Peristera; Mystakidou, Kyriaki

    2017-12-01

    Few data exist concerning the natural history of degenerative osteoarthritis (OA) of the spine and its associated gene investigation. Degenerative spinal OA demonstrates an international prevalence of 15% in the general population. The aim of this Greek case-control study is to examine gene polymorphisms that have been previously shown or hypothesized to be correlated to degenerative OA. Gene polymorphisms, especially for OA, have never been previously studied in the Greek population. The study was conducted from May 2009 to December 2012. Eligible subjects who agreed to take part in the study were Greek adults from all of Greece, referred for consultation to the Palliative Care and Pain Relief Unit of Aretaieion University Hospital, in Athens, Greece. A total of 601 matched pairs (cases and controls) participated in the study, 258 patients (188 women and 70 men) with clinically and radiologically confirmed degenerative OA and 243 control subjects (138 women and 105 men). All patients presented with chronic pain at the spine (cervical, thoracic or lumbar) caused by sympomatic osteophytes or disc narrowing, whereas clinical diagnosis of OA was based on the presence of both joint symptoms and evidence of structural changes seen on plain conventional X-rays. We investigated genetic variation across candidate OA gene GDF5, CDMP1, CDMP2, Asporin, SMAD3, and chromosomal region 7q22, in a sample of 258 patients with clinically and radiologically confirmed degenerative OA, and 243 control subjects from the Greek population. All subjects (patients and controls) were subsequently matched for the epidemiologic, demographic, and clinical risk factors, to prevent selection biases. A tagging single nucleotide polymorphism (SNP) approach was pursued to cover variation across all targeted loci. Single marker tests as well as haplotypic tests of association were performed. There is no conflict of interest, and also, there are no study funding sources. We found significant

  7. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    International Nuclear Information System (INIS)

    Michels, Evi; Speleman, Frank; Hoebeeck, Jasmien; De Preter, Katleen; Schramm, Alexander; Brichard, Bénédicte; De Paepe, Anne; Eggert, Angelika; Laureys, Geneviève; Vandesompele, Jo

    2008-01-01

    Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes. To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing. Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed CADM1 as a compelling candidate gene. Meta-analysis indicated that CADM1 expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines. Our study puts CADM1 forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of CADM1 in neuroblastoma development and to investigate the possibility of CADM1 haploinsufficiency in neuroblastoma

  8. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  9. Analysis of PSPHL as a Candidate Gene Influencing the Racial Disparity in Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Jay E. [Walter Reed Army Medical Center, Washington, DC (United States); Chandramouli, Gadisetti V. R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Stagliano, Katherine [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Hood, Brian L. [Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Litzi, Tracy [Walter Reed Army Medical Center, Washington, DC (United States); Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Shoji, Yutaka [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Boyd, Jeff [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Fox Chase Cancer Center, Philadelphia, PA (United States); Berchuck, Andrew [Division of Gynecologic Oncology, Duke University, Durham, NC (United States); Conrads, Thomas P. [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Maxwell, G. Larry [Walter Reed Army Medical Center, Washington, DC (United States); Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Risinger, John I., E-mail: john.risinger@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States)

    2012-07-04

    endometrial cancer and also identify its expression in other tissues from African-Americans including ovary and ovarian cancer. PSPHL represents a candidate gene that might influence the observed racial disparity in endometrial and other cancers.

  10. Analysis of PSPHL as a Candidate Gene Influencing the Racial Disparity in Endometrial Cancer

    International Nuclear Information System (INIS)

    Allard, Jay E.; Chandramouli, Gadisetti V. R.; Stagliano, Katherine; Hood, Brian L.; Litzi, Tracy; Shoji, Yutaka; Boyd, Jeff; Berchuck, Andrew; Conrads, Thomas P.; Maxwell, G. Larry; Risinger, John I.

    2012-01-01

    endometrial cancer and also identify its expression in other tissues from African-Americans including ovary and ovarian cancer. PSPHL represents a candidate gene that might influence the observed racial disparity in endometrial and other cancers.

  11. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L..

    Directory of Open Access Journals (Sweden)

    Sebastian Moschen

    Full Text Available Cultivated sunflower (Helianthus annuus L., an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2 previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1 and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could

  12. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Moschen, Sebastian; Bengoa Luoni, Sofia; Paniego, Norma B; Hopp, H Esteban; Dosio, Guillermo A A; Fernandez, Paula; Heinz, Ruth A

    2014-01-01

    Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important

  13. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    Full Text Available Abstract Background Real-time quantitative PCR (RQ-PCR forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1 was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4 was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the

  14. Genome-Wide Association Study with Sequence Variants Identifies Candidate Genes for Mastitis Resistance in Dairy Cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Bendixen, Christian

    Six genomic regions affecting clinical mastitis were identified through a GWAS study with imputed BovineHD chip genotype data in the Nordic Holstein cattle population. The association analyses were carried out using a SNP-by-SNP analysis by fitting the regression of allele dosage and a polygenic...... Effect Predictor (VEP) vers. 2.6 using ENSEMBL vers. 67 databases. Candidate polymorphisms affecting clinical mastitis were selected based on their association with the traits and functional annotations. A strong positional candidate gene for mastitis resistance on chromosome-6 is the NPFFR2 which...... Factor Receptor Alpha (LIFR) emerged as a strong candidate gene for mastitis resistance. The LIFR gene is involved in acute phase response and is expressed in saliva and mammary gland....

  15. A constructive approach to gene expression dynamics

    International Nuclear Information System (INIS)

    Ochiai, T.; Nacher, J.C.; Akutsu, T.

    2004-01-01

    Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property

  16. The identification of functional motifs in temporal gene expression analysis

    Directory of Open Access Journals (Sweden)

    Michael G. Surette

    2005-01-01

    Full Text Available The identification of transcription factor binding sites is essential to the understanding of the regulation of gene expression and the reconstruction of genetic regulatory networks. The in silico identification of cis-regulatory motifs is challenging due to sequence variability and lack of sufficient data to generate consensus motifs that are of quantitative or even qualitative predictive value. To determine functional motifs in gene expression, we propose a strategy to adopt false discovery rate (FDR and estimate motif effects to evaluate combinatorial analysis of motif candidates and temporal gene expression data. The method decreases the number of predicted motifs, which can then be confirmed by genetic analysis. To assess the method we used simulated motif/expression data to evaluate parameters. We applied this approach to experimental data for a group of iron responsive genes in Salmonella typhimurium 14028S. The method identified known and potentially new ferric-uptake regulator (Fur binding sites. In addition, we identified uncharacterized functional motif candidates that correlated with specific patterns of expression. A SAS code for the simulation and analysis gene expression data is available from the first author upon request.

  17. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder

    Directory of Open Access Journals (Sweden)

    Ubadah Sabbagh

    2016-01-01

    Full Text Available The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES. A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  18. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  19. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder.

    Science.gov (United States)

    Sabbagh, Ubadah; Mullegama, Saman; Wyckoff, Gerald J

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  20. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.

    Science.gov (United States)

    Wissler, Lothar; Codoñer, Francisco M; Gu, Jenny; Reusch, Thorsten B H; Olsen, Jeanine L; Procaccini, Gabriele; Bornberg-Bauer, Erich

    2011-01-12

    Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  1. Network analysis of differential expression for the identification of disease-causing genes.

    Directory of Open Access Journals (Sweden)

    Daniela Nitsch

    Full Text Available Genetic studies (in particular linkage and association studies identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved. We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes.

  2. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  3. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can......The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...

  4. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  5. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)

    Science.gov (United States)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-07-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.

  6. Anterior-posterior regionalized gene expression in the Ciona notochord.

    Science.gov (United States)

    Reeves, Wendy; Thayer, Rachel; Veeman, Michael

    2014-04-01

    In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. Copyright © 2013 Wiley Periodicals, Inc.

  7. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  8. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.

  9. Fine mapping and candidate gene analysis of the virescent gene v 1 in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Mao, Guangzhi; Ma, Qiang; Wei, Hengling; Su, Junji; Wang, Hantao; Ma, Qifeng; Fan, Shuli; Song, Meizhen; Zhang, Xianlong; Yu, Shuxun

    2018-02-01

    The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1 ) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v 1 mutant. The GhChlI mutation not only provides a tool for understanding the

  10. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  11. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  12. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

    Science.gov (United States)

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J

    2009-07-16

    Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.

  13. The evolution of gene expression in primates

    OpenAIRE

    Tashakkori Ghanbarian, Avazeh

    2015-01-01

    The evolution of a gene’s expression profile is commonly assumed to be independent of its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between expression of neighboring genes in extant taxa. Indeed, in all eukaryotic genomes, genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their e...

  14. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  15. Expression profiles of variation integration genes in bladder urothelial carcinoma.

    Science.gov (United States)

    Wang, J M; Wang, Y Q; Gao, Z L; Wu, J T; Shi, B K; Yu, C C

    2014-04-30

    Bladder cancer is a common cancer worldwide and its incidence continues to increase. There are approximately 261,000 cases of bladder cancer resulting in 115,000 deaths annually. This study aimed to integrate bladder cancer genome copy number variation information and bladder cancer gene transcription level expression data to construct a causal-target module network of the range of bladder cancer-related genomes. Here, we explored the control mechanism underlying bladder cancer phenotype expression regulation by the major bladder cancer genes. We selected 22 modules as the initial module network to expand the search to screen more networks. After bootstrapping 100 times, we obtained 16 key regulators. These 16 key candidate regulatory genes were further expanded to identify the expression changes of 11,676 genes in 275 modules, which may all have the same regulation. In conclusion, a series of modules associated with the terms 'cancer' or 'bladder' were considered to constitute a potential network.

  16. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    Science.gov (United States)

    Kaur, Simranjeet; Pociot, Flemming

    2015-07-13

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.

  17. Gene expression patterns in pancreatic tumors, cells and tissues.

    Directory of Open Access Journals (Sweden)

    Anson W Lowe

    2007-03-01

    Full Text Available Cancers of the pancreas originate from both the endocrine and exocrine elements of the organ, and represent a major cause of cancer-related death. This study provides a comprehensive assessment of gene expression for pancreatic tumors, the normal pancreas, and nonneoplastic pancreatic disease.DNA microarrays were used to assess the gene expression for surgically derived pancreatic adenocarcinomas, islet cell tumors, and mesenchymal tumors. The addition of normal pancreata, isolated islets, isolated pancreatic ducts, and pancreatic adenocarcinoma cell lines enhanced subsequent analysis by increasing the diversity in gene expression profiles obtained. Exocrine, endocrine, and mesenchymal tumors displayed unique gene expression profiles. Similarities in gene expression support the pancreatic duct as the origin of adenocarcinomas. In addition, genes highly expressed in other cancers and associated with specific signal transduction pathways were also found in pancreatic tumors.The scope of the present work was enhanced by the inclusion of publicly available datasets that encompass a wide spectrum of human tissues and enabled the identification of candidate genes that may serve diagnostic and therapeutic goals.

  18. Population and sex differences in Drosophila melanogaster brain gene expression

    Directory of Open Access Journals (Sweden)

    Catalán Ana

    2012-11-01

    Full Text Available Abstract Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (Cyp6g1 and CHKov1. Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues.

  19. Evaluation of Reference Genes to Analyze Gene Expression in Silverside Odontesthes humensis Under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Tony L. R. Silveira

    2018-03-01

    Full Text Available Some mammalian reference genes, which are widely used to normalize the qRT-PCR, could not be used for this purpose due to its high expression variation. The normalization with false reference genes leads to misinterpretation of results. The silversides (Odontesthes spp. has been used as models for evolutionary, osmoregulatory and environmental pollution studies but, up to now, there are no studies about reference genes in any Odontesthes species. Furthermore, many studies on silversides have used reference genes without previous validations. Thus, present study aimed to was to clone and sequence potential reference genes, thereby identifying the best ones in Odontesthes humensis considering different tissues, ages and conditions. For this purpose, animals belonging to three ages (adults, juveniles, and immature were exposed to control, Roundup®, and seawater treatments for 24 h. Blood samples were subjected to flow-cytometry and other collected tissues to RNA extraction; cDNA synthesis; molecular cloning; DNA sequencing; and qRT-PCR. The candidate genes tested included 18s, actb, ef1a, eif3g, gapdh, h3a, atp1a, and tuba. Gene expression results were analyzed using five algorithms that ranked the candidate genes. The flow-cytometry data showed that the environmental challenges could trigger a systemic response in the treated fish. Even during this systemic physiological disorder, the consensus analysis of gene expression revealed h3a to be the most stable gene expression when only the treatments were considered. On the other hand, tuba was the least stable gene in the control and gapdh was the least stable in both Roundup® and seawater groups. In conclusion, the consensus analyses of different tissues, ages, and treatments groups revealed that h3a is the most stable gene whereas gapdh and tuba are the least stable genes, even being considered two constitutive genes.

  20. Assays for noninvasive imaging of reporter gene expression

    International Nuclear Information System (INIS)

    Gambhir, S.S.; Barrio, J.R.; Herschman, H.R.; Phelps, M.E.

    1999-01-01

    Repeated, noninvasive imaging of reporter gene expression is emerging as a valuable tool for monitoring the expression of genes in animals and humans. Monitoring of organ/cell transplantation in living animals and humans, and the assessment of environmental, behavioral, and pharmacologic modulation of gene expression in transgenic animals should soon be possible. The earliest clinical application is likely to be monitoring human gene therapy in tumors transduced with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) suicide gene. Several candidate assays for imaging reporter gene expression have been studied, utilizing cytosine deaminase (CD), HSV1-tk, and dopamine 2 receptor (D2R) as reporter genes. For the HSV1-tk reporter gene, both uracil nucleoside derivatives (e.g., 5-iodo-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil [FIAU] labeled with 124 I, 131 I ) and acycloguanosine derivatives {e.g., 8-[ 18 F]fluoro-9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (8-[ 18 F]-fluoroganciclovir) ([ 18 F]FGCV), 9-[(3-[ 18 F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([ 18 F]FHPG)} have been investigated as reporter probes. For the D2R reporter gene, a derivative of spiperone {3-(2'-[ 18 F]-Fluoroethyl)spiperone ([ 18 F]FESP)} has been used with positron emission tomography (PET) imaging. In this review, the principles and specific assays for imaging reporter gene expression are presented and discussed. Specific examples utilizing adenoviral-mediated delivery of a reporter gene as well as tumors expressing reporter genes are discussed

  1. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae

    Directory of Open Access Journals (Sweden)

    Wanwipa Vongsangnak

    2016-10-01

    Full Text Available Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR. This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system.

  2. Cytolysin a expressing E. coli a promising candidate for imageable therapeutic probe

    International Nuclear Information System (INIS)

    Nguyen, Vu Hong; Phan, Thuy Xuan; Hong, Yeoung Jin; Min, Jung Joon

    2007-01-01

    Using bacteria for cancer treatment has a long history. Discovery of optical reporter genes consisting of fluorescent and luminescent protein facilitates the monitor of bacteria in vivo, non-invasively and repeatedly. E. coli, the natural enteric bacteria possessing capacity of tumor-targeting ability, seems to be suitable candidate for cancer treatment. In this study, we established the strain light-emitting E. coli for diagnostic purpose and Cytolysin A (Cly A) expressing E. coli for therapeutic purpose. E. coli (MG1655, wild type strain) was transformed plasmid pUC19 carrying lux gene to create the light expressing bacteria and test the tumor targeting-capacity by injecting the bacteria into CT26-tumor bearing mice via tail vein. On the other hand, for therapeutic purpose, plasmid containing Cly A gene, which is encoded for a pore-forming protein toxin, was introduced into E. coli. The toxicity of Cly A was evaluated in vitro by inoculating the bacteria with various cultured cancer cell lines. On the other hand, to test the therapeutic effect, the bacteria were injected intratumorally and intravenously into s.c.CT26-bearing as well as CT26-lung metastasized Balb/c mice. In vivo imaging data showed that the E. coli strains selectively located in the tumor. The in vitro result showed that the number of death cells were significantly higher in the samples containing E. coli expressing Cly A (E. coli Cly A) compared with the samples containing wild type strain. The growth of tumors was repressed in mice injected with either E. coli Cly A (significantly) or wild type E. coli (mildly), while tumors in no treatment group still grew fast. Furthermore, the tumors inoculated with E. coli cly A were necrotized but not with wild type E. coli. In the CT26-lung metastasized mouse model, the life span of mice was elongated when inject E. coli and longer in the group injected with E. coli cly A. Cly A expressing E. coli can become an effective candidate for imageable

  3. Degrees of separation as a statistical tool for evaluating candidate genes.

    Science.gov (United States)

    Nelson, Ronald M; Pettersson, Mats E

    2014-12-01

    Selection of candidate genes is an important step in the exploration of complex genetic architecture. The number of gene networks available is increasing and these can provide information to help with candidate gene selection. It is currently common to use the degree of connectedness in gene networks as validation in Genome Wide Association (GWA) and Quantitative Trait Locus (QTL) mapping studies. However, it can cause misleading results if not validated properly. Here we present a method and tool for validating the gene pairs from GWA studies given the context of the network they co-occur in. It ensures that proposed interactions and gene associations are not statistical artefacts inherent to the specific gene network architecture. The CandidateBacon package provides an easy and efficient method to calculate the average degree of separation (DoS) between pairs of genes to currently available gene networks. We show how these empirical estimates of average connectedness are used to validate candidate gene pairs. Validation of interacting genes by comparing their connectedness with the average connectedness in the gene network will provide support for said interactions by utilising the growing amount of gene network information available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica.

    Science.gov (United States)

    Pessina, Stefano; Pavan, Stefano; Catalano, Domenico; Gallotta, Alessandra; Visser, Richard G F; Bai, Yuling; Malnoy, Mickael; Schouten, Henk J

    2014-07-22

    Powdery mildew (PM) is a major fungal disease of thousands of plant species, including many cultivated Rosaceae. PM pathogenesis is associated with up-regulation of MLO genes during early stages of infection, causing down-regulation of plant defense pathways. Specific members of the MLO gene family act as PM-susceptibility genes, as their loss-of-function mutations grant durable and broad-spectrum resistance. We carried out a genome-wide characterization of the MLO gene family in apple, peach and strawberry, and we isolated apricot MLO homologs through a PCR-approach. Evolutionary relationships between MLO homologs were studied and syntenic blocks constructed. Homologs that are candidates for being PM susceptibility genes were inferred by phylogenetic relationships with functionally characterized MLO genes and, in apple, by monitoring their expression following inoculation with the PM causal pathogen Podosphaera leucotricha. Genomic tools available for Rosaceae were exploited in order to characterize the MLO gene family. Candidate MLO susceptibility genes were identified. In follow-up studies it can be investigated whether silencing or a loss-of-function mutations in one or more of these candidate genes leads to PM resistance.

  5. Epidermal growth factor gene is a newly identified candidate gene for gout

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  6. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  7. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  8. Isolation of Resistance Gene Candidates (RGCs) and characterization of an RGC cluster in cassava.

    Science.gov (United States)

    López, C E; Zuluaga, A P; Cooke, R; Delseny, M; Tohme, J; Verdier, V

    2003-08-01

    Plant disease resistance genes (R genes) show significant similarity amongst themselves in terms of both their DNA sequences and structural motifs present in their protein products. Oligonucleotide primers designed from NBS (Nucleotide Binding Site) domains encoded by several R-genes have been used to amplify NBS sequences from the genomic DNA of various plant species, which have been called Resistance Gene Analogues (RGAs) or Resistance Gene Candidates (RGCs). Using specific primers from the NBS and TIR (Toll/Interleukin-1 Receptor) regions, we identified twelve classes of RGCs in cassava (Manihot esculenta Crantz). Two classes were obtained from the PCR-amplification of the TIR domain. The other 10 classes correspond to the NBS sequences and were grouped into two subfamilies. Classes RCa1 to RCa5 are part of the first subfamily and were linked to a TIR domain in the N terminus. Classes RCa6 to RCa10 corresponded to non-TIR NBS-LRR encoding sequences. BAC library screening with the 12 RGC classes as probes allowed the identification of 42 BAC clones that were assembled into 10 contigs and 19 singletons. Members of the two TIR and non-TIR NBS-LRR subfamilies occurred together within individual BAC clones. The BAC screening and Southern hybridization analyses showed that all RGCs were single copy sequences except RCa6 that represented a large and diverse gene family. One BAC contained five NBS sequences and sequence analysis allowed the identification of two complete RGCs encoding two highly similar proteins. This BAC was located on linkage group J with three other RGC-containing BACs. At least one of these genes, RGC2, is expressed constitutively in cassava tissues.

  9. High-density polymorphisms analysis of 23 candidate genes for association with bone mineral density.

    Science.gov (United States)

    Giroux, Sylvie; Elfassihi, Latifa; Clément, Valérie; Bussières, Johanne; Bureau, Alexandre; Cole, David E C; Rousseau, François

    2010-11-01

    Osteoporosis is a bone disease characterized by low bone mineral density (BMD), a highly heritable and polygenic trait. Women are more prone than men to develop osteoporosis due to a lower peak bone mass and accelerated bone loss at menopause. Peak bone mass has been convincingly shown to be due to genetic factors with heritability up to 80%. Menopausal bone loss has been shown to have around 38% to 49% heritability depending on the site studied. To have more statistical power to detect small genetic effects we focused on premenopausal women. We studied 23 candidate genes, some involved in calcium and vitamin-D regulation and others because estrogens strongly induced their gene expression in mice where it was correlated with humerus trabecular bone density. High-density polymorphisms were selected to cover the entire gene variability and 231 polymorphisms were genotyped in a first sample of 709 premenopausal women. Positive associations were retested in a second, independent, sample of 673 premenopausal women. Ten polymorphisms remained associated with BMD in the combined samples and one was further associated in a large sample of postmenopausal women (1401 women). This associated polymorphism was located in the gene CSF3R (granulocyte colony stimulating factor receptor) that had never been associated with BMD before. The results reported in this study suggest a role for CSF3R in the determination of bone density in women. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  11. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  13. In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR

    Directory of Open Access Journals (Sweden)

    Kristiansen Glen

    2007-06-01

    Full Text Available Abstract Background Housekeeping genes are commonly used as endogenous reference genes for the relative quantification of target genes in gene expression studies. No conclusive systematic study comparing the suitability of different candidate reference genes in clear cell renal cell carcinoma has been published to date. To remedy this situation, 10 housekeeping genes for normalizing purposes of RT-PCR measurements already recommended in various studies were examined with regard to their usefulness as reference genes. Results The expression of the potential reference genes was examined in matched malignant and non-malignant tissue specimens from 25 patients with clear cell renal cell carcinoma. Quality assessment of isolated RNA performed with a 2100 Agilent Bioanalyzer showed a mean RNA integrity number of 8.7 for all samples. The between-run variations related to the crossing points of PCR reactions of a control material ranged from 0.17% to 0.38%. The expression of all genes did not depend on age, sex, and tumour stage. Except the genes TATA box binding protein (TBP and peptidylprolyl isomerase A (PPIA, all genes showed significant differences in expression between malignant and non-malignant pairs. The expression stability of the candidate reference genes was additionally controlled using the software programs geNorm and NormFinder. TBP and PPIA were validated as suitable reference genes by normalizing the target gene ADAM9 using these two most stably expressed genes in comparison with up- and down-regulated housekeeping genes of the panel. Conclusion Our study demonstrated the suitability of the two housekeeping genes PPIA and TBP as endogenous reference genes when comparing malignant tissue samples with adjacent normal tissue samples from clear cell renal cell carcinoma. Both genes are recommended as reference genes for relative gene quantification in gene profiling studies either as single gene or preferably in combination.

  14. Identification of candidate new cancer susceptibility genes using yeast genomics

    International Nuclear Information System (INIS)

    Brown, M.; Brown, J.A.; Game, J.C.

    2003-01-01

    A large proportion of cancer susceptibility syndromes are the result of mutations in genes in DNA repair or in cell-cycle checkpoints in response to DNA damage, such as ataxia telangiectasia (AT), Fanconi's anemia (FA), Bloom's syndrome (BS), Nijmegen breakage syndrome (NBS), and xeroderma pigmentosum (XP). Mutations in these genes often cause gross chromosomal instability leading to an increased mutation rate of all genes including those directly responsible for cancer. We have proposed that because the orthologs of these genes in budding yeast, S. cerevisiae, confer protection against killing by DNA damaging agents it should be possible to identify new cancer susceptibility genes by identifying yeast genes whose deletion causes sensitivity to DNA damage. We therefore screened the recently completed collection of individual gene deletion mutants to identify genes that affect sensitivity to DNA-damaging agents. Screening for sensitivity in this obtained up to now with the F98 glioma model othe fact that each deleted gene is replaced by a cassette containing two molecular 'barcodes', or 20-mers, that uniquely identify the strain when DNA from a pool of strains is hybridized to an oligonucleotide array containing the complementary sequences of the barcodes. We performed the screen with UV, IR, H 2 0 2 and other DNA damaging agents. In addition to identifying genes already known to confer resistance to DNA damaging agents we have identified, and individually confirmed, several genes not previously associated with resistance. Several of these are of unknown function. We have also examined the chromosomal stability of selected strains and found that IR sensitive strains often but not always exhibit genomic instability. We are presently constructing a yeast artificial chromosome to globally interrogate all the genes in the deletion pool for their involvement in genomic stability. This work shows that budding yeast is a valuable eukaryotic model organism to identify

  15. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis

    DEFF Research Database (Denmark)

    Grauers, Anna; Wang, Jingwen; Einarsdottir, Elisabet

    2015-01-01

    samples from 100 surgically treated idiopathic scoliosis patients. Novel or rare missense, nonsense, or splice site variants were selected for individual genotyping in the 1,739 cases and 1,812 controls. In addition, the 5'UTR, noncoding exon and promoter regions of LBX1, not covered by exome sequencing...... by exome sequencing after filtration and an initial genotyping validation. However, we could not verify any association to idiopathic scoliosis in the large cohort of 1,739 cases and 1,812 controls. We did not find any variants in the 5'UTR, noncoding exon and promoter regions of LBX1. CONCLUSIONS: Here...... that are significantly associated with idiopathic scoliosis in Asian and Caucasian populations, rs11190870 close to the LBX1 gene being the most replicated finding. PURPOSE: The aim of the present study was to investigate the genetics of idiopathic scoliosis in a Scandinavian cohort by performing a candidate gene study...

  16. Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19

    Directory of Open Access Journals (Sweden)

    Ferrell Robert E

    2011-01-01

    Full Text Available Abstract Background Abdominal aortic aneurysm (AAA is a complex disorder with multiple genetic risk factors. Using affected relative pair linkage analysis, we previously identified an AAA susceptibility locus on chromosome 19q13. This locus has been designated as the AAA1 susceptibility locus in the Online Mendelian Inheritance in Man (OMIM database. Methods Nine candidate genes were selected from the AAA1 locus based on their function, as well as mRNA expression levels in the aorta. A sample of 394 cases and 419 controls was genotyped for 41 SNPs located in or around the selected nine candidate genes using the Illumina GoldenGate platform. Single marker and haplotype analyses were performed. Three genes (CEBPG, PEPD and CD22 were selected for DNA sequencing based on the association study results, and exonic regions were analyzed. Immunohistochemical staining of aortic tissue sections from AAA and control individuals was carried out for the CD22 and PEPD proteins with specific antibodies. Results Several SNPs were nominally associated with AAA (p CEBPG, peptidase D (PEPD, and CD22. Haplotype analysis found a nominally associated 5-SNP haplotype in the CEBPG/PEPD locus, as well as a nominally associated 2-SNP haplotype in the CD22 locus. DNA sequencing of the coding regions revealed no variation in CEBPG. Seven sequence variants were identified in PEPD, including three not present in the NCBI SNP (dbSNP database. Sequencing of all 14 exons of CD22 identified 20 sequence variants, five of which were in the coding region and six were in the 3'-untranslated region. Five variants were not present in dbSNP. Immunohistochemical staining for CD22 revealed protein expression in lymphocytes present in the aneurysmal aortic wall only and no detectable expression in control aorta. PEPD protein was expressed in fibroblasts and myofibroblasts in the media-adventitia border in both aneurysmal and non-aneurysmal tissue samples. Conclusions Association testing

  17. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  18. Gene expression inference with deep learning.

    Science.gov (United States)

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J.D.; Nelson, L.D.; Conner, B.J. [Univ. of Texas, Houston (United States)] [and others

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B, twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.

  20. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry.

    Science.gov (United States)

    Urzúa, Blanca; Ortega-Pinto, Ana; Morales-Bozo, Irene; Rojas-Alcayaga, Gonzalo; Cifuentes, Víctor

    2011-02-01

    Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.

  1. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  2. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  3. Prioritization of epilepsy associated candidate genes by convergent analysis.

    Science.gov (United States)

    Jia, Peilin; Ewers, Jeffrey M; Zhao, Zhongming

    2011-02-24

    Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research. In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways. The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The strategy can be

  4. Prioritization of epilepsy associated candidate genes by convergent analysis.

    Directory of Open Access Journals (Sweden)

    Peilin Jia

    2011-02-01

    Full Text Available Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs that are more likely to be associated with epilepsy. The responsible gene(s within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research.In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways.The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The

  5. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  6. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  7. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  8. Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize.

    Science.gov (United States)

    Kelley, Rowena Y; Gresham, Cathy; Harper, Jonathan; Bridges, Susan M; Warburton, Marilyn L; Hawkins, Leigh K; Pechanova, Olga; Peethambaran, Bela; Pechan, Tibor; Luthe, Dawn S; Mylroie, J E; Ankala, Arunkanth; Ozkan, Seval; Henry, W B; Williams, W P

    2010-10-07

    Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent aflatoxin accumulation is generally considered an efficient means of reducing grain losses to aflatoxin. Different proteomic, genomic and genetic studies of maize (Zea mays L.) have generated large data sets with the goal of identifying genes responsible for conferring resistance to A. flavus, or aflatoxin. In order to maximize the usage of different data sets in new studies, including association mapping, we have constructed a relational database with web interface integrating the results of gene expression, proteomic (both gel-based and shotgun), Quantitative Trait Loci (QTL) genetic mapping studies, and sequence data from the literature to facilitate selection of candidate genes for continued investigation. The Corn Fungal Resistance Associated Sequences Database (CFRAS-DB) (http://agbase.msstate.edu/) was created with the main goal of identifying genes important to aflatoxin resistance. CFRAS-DB is implemented using MySQL as the relational database management system running on a Linux server, using an Apache web server, and Perl CGI scripts as the web interface. The database and the associated web-based interface allow researchers to examine many lines of evidence (e.g. microarray, proteomics, QTL studies, SNP data) to assess the potential role of a gene or group of genes in the response of different maize lines to A. flavus infection and subsequent production of aflatoxin by the fungus. CFRAS-DB provides the first opportunity to integrate data pertaining to the problem of A. flavus and aflatoxin resistance in maize in one resource and to support queries across different datasets. The web-based interface gives researchers different query options for mining the database

  9. RNA deep sequencing reveals novel candidate genes and polymorphisms in boar testis and liver tissues with divergent androstenone levels.

    Directory of Open Access Journals (Sweden)

    Asep Gunawan

    Full Text Available Boar taint is an unpleasant smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone (5α-androst-16-en-3-one and skatole (3-methylindole. It is crucial to understand the genetic mechanism of boar taint to select pigs for lower androstenone levels and thus reduce boar taint. The aim of the present study was to investigate transcriptome differences in boar testis and liver tissues with divergent androstenone levels using RNA deep sequencing (RNA-Seq. The total number of reads produced for each testis and liver sample ranged from 13,221,550 to 33,206,723 and 12,755,487 to 46,050,468, respectively. In testis samples 46 genes were differentially regulated whereas 25 genes showed differential expression in the liver. The fold change values ranged from -4.68 to 2.90 in testis samples and -2.86 to 3.89 in liver samples. Differentially regulated genes in high androstenone testis and liver samples were enriched in metabolic processes such as lipid metabolism, small molecule biochemistry and molecular transport. This study provides evidence for transcriptome profile and gene polymorphisms of boars with divergent androstenone level using RNA-Seq technology. Digital gene expression analysis identified candidate genes in flavin monooxygenease family, cytochrome P450 family and hydroxysteroid dehydrogenase family. Moreover, polymorphism and association analysis revealed mutation in IRG6, MX1, IFIT2, CYP7A1, FMO5 and KRT18 genes could be potential candidate markers for androstenone levels in boars. Further studies are required for proving the role of candidate genes to be used in genomic selection against boar taint in pig breeding programs.

  10. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    Science.gov (United States)

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  11. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  12. Analysis of breast cancer metastasis candidate genes from next generation-sequencing via systematic functional genomics

    DEFF Research Database (Denmark)

    Blomstrøm, Monica Marie

    2016-01-01

    several growth modulators and invasion modulators were identified and independently validated. These candidates revealed a group of genes with metastasis-related functions in vitro that are involved in RNA-related processes, such as RNA-processing. Moreover, a general feature was that proliferation......) and non-CSCs. The main goal of this project was to functionally characterize a set of candidate genes recovered from next-generation sequencing analysis for their role in breast cancer metastasis formation. The starting gene set comprised 104 gene variants; i.e. 57 wildtype and 47 mutated variants. During...

  13. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  14. Chromatin loops, gene positioning, and gene expression

    NARCIS (Netherlands)

    Holwerda, S.; de Laat, W.

    2012-01-01

    Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the alpha- and beta-globin

  15. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.

    Science.gov (United States)

    Zhu, Jie; Qin, Yufang; Liu, Taigang; Wang, Jun; Zheng, Xiaoqi

    2013-01-01

    Identification of gene-phenotype relationships is a fundamental challenge in human health clinic. Based on the observation that genes causing the same or similar phenotypes tend to correlate with each other in the protein-protein interaction network, a lot of network-based approaches were proposed based on different underlying models. A recent comparative study showed that diffusion-based methods achieve the state-of-the-art predictive performance. In this paper, a new diffusion-based method was proposed to prioritize candidate disease genes. Diffusion profile of a disease was defined as the stationary distribution of candidate genes given a random walk with restart where similarities between phenotypes are incorporated. Then, candidate disease genes are prioritized by comparing their diffusion profiles with that of the disease. Finally, the effectiveness of our method was demonstrated through the leave-one-out cross-validation against control genes from artificial linkage intervals and randomly chosen genes. Comparative study showed that our method achieves improved performance compared to some classical diffusion-based methods. To further illustrate our method, we used our algorithm to predict new causing genes of 16 multifactorial diseases including Prostate cancer and Alzheimer's disease, and the top predictions were in good consistent with literature reports. Our study indicates that integration of multiple information sources, especially the phenotype similarity profile data, and introduction of global similarity measure between disease and gene diffusion profiles are helpful for prioritizing candidate disease genes. Programs and data are available upon request.

  16. SORBS1 gene, a new candidate for diabetic nephropathy

    DEFF Research Database (Denmark)

    Germain, Marine; Pezzolesi, Marcus G; Sandholm, Niina

    2015-01-01

    -wide statistical significance. The 46 top hits (p independent population of 820 cases and 885 controls. Two SNPs in strong linkage disequilibrium with each other and located in the SORBS1 gene were...

  17. Cloning and Expression of Leptospira LipL32 Antigen as a Candidate for Rapid Diagnosis

    Directory of Open Access Journals (Sweden)

    Nooshin Sohrabi

    2013-09-01

    Full Text Available Background and Objective: Leptospirosis as an important emerging infectious zoonotic disease caused by spirochetes of the genus Leptospira. Given the low sensitivity and long duration of its culture, the diagnosis of leptospirosis is mainly based on serological methods. The microscopic agglutination test (MAT is considered as the reference method. Because of the complexity of the MAT, there is an urgent need for the development of new reliable and rapid screening tests for leptospirosis. Major leptospiral outer membrane proteins (OMPs, present only in pathologic strains, could be regarded as a good candidate for diagnostic studies. Here we report the cloning and expression of LipL32, as a prominent immunogenic protein, in a prokaryotic system. Materials and Methods: After the amplification of LipL32 gene, it was cloned into the pQE30 vector. The insertion of LipL32 gene into the vector was screened and confirmed with restriction analysis and sequencing. The recombinant plasmid was transformed into E. coli M15 strain, and the expressed protein was identified by SDS-PAGE and western blotting. This recombinant protein with 6× His-tagged sequence was purified using Ni-NTA affinity column chromatography. Results: The results revealed that the selected gene was successfully cloned in pQE30 vector and recombinant protein (rLipL32 of approximately ~32 kDa was produced, purified and confirmed by western blotting. Conclusion: This recombinant protein could be potentially used for the development of serodiagnosis tests for the diagnosis of leptospirosis in humans and animals.

  18. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  19. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis.

    Science.gov (United States)

    Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin

    2016-10-17

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.

  20. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion

    Science.gov (United States)

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.

    2017-01-01

    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Methods Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P malocclusions were identified. PMID:28257739

  1. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion.

    Science.gov (United States)

    Weaver, Cole A; Miller, Steven F; da Fontoura, Clarissa S G; Wehby, George L; Amendt, Brad A; Holton, Nathan E; Allareddy, Veeratrishul; Southard, Thomas E; Moreno Uribe, Lina M

    2017-03-01

    Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  2. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  3. Vaginal Gene Expression During Treatment With Aromatase Inhibitors.

    Science.gov (United States)

    Kallak, Theodora Kunovac; Baumgart, Juliane; Nilsson, Kerstin; Åkerud, Helena; Poromaa, Inger Sundström; Stavreus-Evers, Anneli

    2015-12-01

    Aromatase inhibitor (AI) treatment suppresses estrogen biosynthesis and causes genitourinary symptoms of menopause such as vaginal symptoms, ultimately affecting the quality of life for many postmenopausal women with breast cancer. Thus, the aim of this study was to examine vaginal gene expression in women during treatment with AIs compared with estrogen-treated women. The secondary aim was to study the presence and localization of vaginal aromatase. Vaginal biopsies were collected from postmenopausal women treated with AIs and from age-matched control women treated with vaginal estrogen therapy. Differential gene expression was studied with the Affymetrix Gene Chip Gene 1.0 ST Array (Affymetrix Inc, Santa Clara, CA) system, Ingenuity pathway analysis, quantitative real-time polymerase chain reaction, and immunohistochemistry. The expression of 279 genes differed between the 2 groups; AI-treated women had low expression of genes involved in cell differentiation, proliferation, and cell adhesion. Some differentially expressed genes were found to interact indirectly with the estrogen receptor alpha. In addition, aromatase protein staining was evident in the basal and the intermediate vaginal epithelium layers, and also in stromal cells with a slightly stronger staining intensity found in AI-treated women. In this study, we demonstrated that genes involved in cell differentiation, proliferation, and cell adhesion are differentially expressed in AI-treated women. The expression of vaginal aromatase suggests that this could be the result of local and systemic inhibition of aromatase. Our results emphasize the role of estrogen for vaginal cell differentiation and proliferation and future drug candidates should be aimed at improving cell differentiation and proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Patterns of population differentiation of candidate genes for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Ding Keyue

    2007-07-01

    Full Text Available Abstract Background The basis for ethnic differences in cardiovascular disease (CVD susceptibility is not fully understood. We investigated patterns of population differentiation (FST of a set of genes in etiologic pathways of CVD among 3 ethnic groups: Yoruba in Nigeria (YRI, Utah residents with European ancestry (CEU, and Han Chinese (CHB + Japanese (JPT. We identified 37 pathways implicated in CVD based on the PANTHER classification and 416 genes in these pathways were further studied; these genes belonged to 6 biological processes (apoptosis, blood circulation and gas exchange, blood clotting, homeostasis, immune response, and lipoprotein metabolism. Genotype data were obtained from the HapMap database. Results We calculated FST for 15,559 common SNPs (minor allele frequency ≥ 0.10 in at least one population in genes that co-segregated among the populations, as well as an average-weighted FST for each gene. SNPs were classified as putatively functional (non-synonymous and untranslated regions or non-functional (intronic and synonymous sites. Mean FST values for common putatively functional variants were significantly higher than FST values for nonfunctional variants. A significant variation in FST was also seen based on biological processes; the processes of 'apoptosis' and 'lipoprotein metabolism' showed an excess of genes with high FST. Thus, putative functional SNPs in genes in etiologic pathways for CVD show greater population differentiation than non-functional SNPs and a significant variance of FST values was noted among pairwise population comparisons for different biological processes. Conclusion These results suggest a possible basis for varying susceptibility to CVD among ethnic groups.

  5. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  6. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    Science.gov (United States)

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.

  7. Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2.

    Science.gov (United States)

    Tee, Meng Kian; Speek, Mart; Legeza, Balázs; Modi, Bhavi; Teves, Maria Eugenia; McAllister, Janette M; Strauss, Jerome F; Miller, Walter L

    2016-10-15

    Polycystic ovary syndrome (PCOS) is a common endocrinopathy characterized by hyperandrogenism and metabolic disorders. The excess androgens may be of both ovarian and adrenal origin. PCOS has a strong genetic component, and genome-wide association studies have identified several candidate genes, notably DENND1A, which encodes connecdenn 1, involved in trafficking of endosomes. DENND1A encodes two principal variants, V1 (1009 amino acids) and V2 (559 amino acids). The androgen-producing ovarian theca cells of PCOS women over-express V2. Knockdown of V2 in these cells reduces androgen production, and overexpression of V2 in normal theca cells confers upon them a PCOS phenotype of increased androgen synthesis. We report that human adrenal NCI-H295A cells express V1 and V2 mRNA and that the V2 isoform is produced by exonization of sequences in intron 20, which generates a unique exon 20A, encoding the C-terminus of V2. As in human theca cells from normal women, forced expression of V2 in NCI-H295A cells resulted in increased abundance of CYP17A1 and CYP11A1 mRNAs. We also found genetic variation in the intronic region 330 bp upstream from exon 20A, which could have the potential to drive the selective expression of V2. There was no clear association with these variants with PCOS when we analyzed genomc DNA from normal women and women with PCOS. Using minigene expression vectors in NCI-H295A cells, this variable region did not consistently favor splicing of the V2 transcript. These findings suggest increased V2 expression in PCOS theca cells is not the result of genomic sequence variation in intron 20. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  9. Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng

    Directory of Open Access Journals (Sweden)

    Meizhen eWang

    2016-01-01

    Full Text Available Reverse transcription-qPCR (RT-qPCR has become a popular method for gene expression studies. Its results require data normalization by housekeeping genes. No single gene is proved to be stably expressed under all experimental conditions. Therefore, systematic evaluation of reference genes is necessary. With the aim to identify optimum reference genes for RT-qPCR analysis of gene expression in different tissues of Panax ginseng and the seedlings grown under heat stress, we investigated the expression stability of eight candidate reference genes, including elongation factor 1-beta (EF1-β, elongation factor 1-gamma (EF1-γ, eukaryotic translation initiation factor 3G (IF3G, eukaryotic translation initiation factor 3B (IF3B, actin (ACT, actin11 (ACT11, glyceraldehyde-3-phosphate dehydrogenase (GAPDH and cyclophilin ABH-like protein (CYC, using four widely used computational programs: geNorm, Normfinder, BestKeeper, and the comparative ΔCt method. The results were then integrated using the web-based tool RefFinder. As a result, EF1-γ, IF3G and EF1-β were the three most stable genes in different tissues of P. ginseng, while IF3G, ACT11 and GAPDH were the top three-ranked genes in seedlings treated with heat. Using three better reference genes alone or in combination as internal control, we examined the expression profiles of MAR, a multiple function-associated mRNA-like non-coding RNA (mlncRNA in P. ginseng. Taken together, we recommended EF1-γ/IF3G and IF3G/ACT11 as the suitable pair of reference genes for RT-qPCR analysis of gene expression in different tissues of P. ginseng and the seedlings grown under heat stress, respectively. The results serve as a foundation for future studies on P. ginseng functional genomics.

  10. Elevated risks for amyotrophic lateral sclerosis and blood disorders in Ashkenazi schizophrenic pedigrees suggest new candidate genes in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A.B. [Columbia Univ. School of Public Health, New York, NY (United States)

    1994-09-15

    Among relatives of Ashkenazi schizophrenic probands the rate of amyotrophic lateral sclerosis was 3/1,000, compared to expected population rates of approximately 2/100,000. Relative risk of bleeding disorders, including hematologic cancers, was increased more than three-fold compared to controls. Co-occurrence of motor neuron disease and blood dyscrasias, accompanied by psychosis, has long been recognized. A virally-mediated autoimmune pathogenesis has been proposed. However, the familial co-occurrence of these three disease entities raises the possibility that the disease constellation be considered as a manifestation of a common underlying genetic defect. Such expansion of the spectrum of affectation might enhance the power of both candidate gene and linkage studies. Based on these findings, the loci suggested as candidate regions in schizophrenia include a potential hot spot on chromosome 21q21-q22, involving the superoxide dismutase and amyloid precursor protein genes. Alternatively, genes on other chromosomes involved in the expression, transcription, or regulation of these genes, or associated with the illnesses of high frequency in these pedigrees are suggested. Candidates include the choroid plexus transport protein, transthyretin at 18q11.2-q12.1; the t(14;18)(q22;21) characterizing B-cell lymphoma-2, the most common form of hematologic cancer; and the 14q24 locus of early onset Alzheimer`s disease, c-Fos, transforming growth factor beta 3, and heat shock protein A2. Expression of hematologic cancers and the suggested candidate genes are known to involve retinoid pathways, and retinoid disregulation has been proposed as a cause of schizophrenia. 67 refs., 2 figs., 1 tab.

  11. Developing integrated crop knowledge networks to advance candidate gene discovery.

    Science.gov (United States)

    Hassani-Pak, Keywan; Castellote, Martin; Esch, Maria; Hindle, Matthew; Lysenko, Artem; Taubert, Jan; Rawlings, Christopher

    2016-12-01

    The chances of raising crop productivity to enhance global food security would be greatly improved if we had a complete understanding of all the biological mechanisms that underpinned traits such as crop yield, disease resistance or nutrient and water use efficiency. With more crop genomes emerging all the time, we are nearer having the basic information, at the gene-level, to begin assembling crop gene catalogues and using data from other plant species to understand how the genes function and how their interactions govern crop development and physiology. Unfortunately, the task of creating such a complete knowledge base of gene functions, interaction networks and trait biology is technically challenging because the relevant data are dispersed in myriad databases in a variety of data formats with variable quality and coverage. In this paper we present a general approach for building genome-scale knowledge networks that provide a unified representation of heterogeneous but interconnected datasets to enable effective knowledge mining and gene discovery. We describe the datasets and outline the methods, workflows and tools that we have developed for creating and visualising these networks for the major crop species, wheat and barley. We present the global characteristics of such knowledge networks and with an example linking a seed size phenotype to a barley WRKY transcription factor orthologous to TTG2 from Arabidopsis, we illustrate the value of integrated data in biological knowledge discovery. The software we have developed (www.ondex.org) and the knowledge resources (http://knetminer.rothamsted.ac.uk) we have created are all open-source and provide a first step towards systematic and evidence-based gene discovery in order to facilitate crop improvement.

  12. Resequencing three candidate genes discovers seven potentially deleterious variants susceptibility to major depressive disorder and suicide attempts in Chinese.

    Science.gov (United States)

    Rao, Shitao; Leung, Cherry She Ting; Lam, Macro Hb; Wing, Yun Kwok; Waye, Mary Miu Yee; Tsui, Stephen Kwok Wing

    2017-03-01

    To date almost 200 genes were found to be associated with major depressive disorder (MDD) or suicide attempts (SA), but very few genes were reported for their molecular mechanisms. This study aimed to find out whether there were common or rare variants in three candidate genes altering the risk for MDD and SA in Chinese. Three candidate genes (HOMER1, SLC6A4 and TEF) were chosen for resequencing analysis and association studies as they were reported to be involved in the etiology of MDD and SA. Following that, bioinformatics analyses were applied on those variants of interest. After resequencing analysis and alignment for the amplicons, a total of 34 common or rare variants were found in the randomly selected 36 Hong Kong Chinese patients with both MDD and SA. Among those, seven variants show potentially deleterious features. Rs60029191 and a rare variant located in regulatory region of the HOMER1 gene may affect the promoter activities through interacting with predicted transcription factors. Two missense mutations existed in the SLC6A4 coding regions were firstly reported in Hong Kong Chinese MDD and SA patients, and both of them could affect the transport efficiency of SLC6A4 to serotonin. Moreover, a common variant rs6354 located in the untranslated region of this gene may affect the expression level or exonic splicing of serotonin transporter. In addition, both of a most studied polymorphism rs738499 and a low-frequency variant in the promoter region of the TEF gene were found to be located in potential transcription factor binding sites, which may let the two variants be able to influence the promoter activities of the gene. This study elucidated the potentially molecular mechanisms of the three candidate genes altering the risk for MDD and SA. These findings implied that not only common variants but rare variants could make contributions to the genetic susceptibility to MDD and SA in Chinese. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  14. Candidate genes for COPD in two large data sets.

    Science.gov (United States)

    Bakke, P S; Zhu, G; Gulsvik, A; Kong, X; Agusti, A G N; Calverley, P M A; Donner, C F; Levy, R D; Make, B J; Paré, P D; Rennard, S I; Vestbo, J; Wouters, E F M; Anderson, W; Lomas, D A; Silverman, E K; Pillai, S G

    2011-02-01

    Lack of reproducibility of findings has been a criticism of genetic association studies on complex diseases, such as chronic obstructive pulmonary disease (COPD). We selected 257 polymorphisms of 16 genes with reported or potential relationships to COPD and genotyped these variants in a case-control study that included 953 COPD cases and 956 control subjects. We explored the association of these polymorphisms to three COPD phenotypes: a COPD binary phenotype and two quantitative traits (post-bronchodilator forced expiratory volume in 1 s (FEV₁) % predicted and FEV₁/forced vital capacity (FVC)). The polymorphisms significantly associated to these phenotypes in this first study were tested in a second, family-based study that included 635 pedigrees with 1,910 individuals. Significant associations to the binary COPD phenotype in both populations were seen for STAT1 (rs13010343) and NFKBIB/SIRT2 (rs2241704) (p<0.05). Single-nucleotide polymorphisms rs17467825 and rs1155563 of the GC gene were significantly associated with FEV₁ % predicted and FEV₁/FVC, respectively, in both populations (p<0.05). This study has replicated associations to COPD phenotypes in the STAT1, NFKBIB/SIRT2 and GC genes in two independent populations, the associations of the former two genes representing novel findings.

  15. Genomic dissection and prioritizing of candidate genes of QTL for ...

    Indian Academy of Sciences (India)

    of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA. 5Mudanjiang ..... Fragile X mental retardation gene 1,. −2.1 ... stimulus/stress and signalling associated with acute-phase response were .... This work was supported by the Center of Genomics and Bioinfor- matics and ...

  16. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Sesame (Sesamum indicum L.) is one of the most important oilseed crops. It is mainly grown in arid and semi-arid regions with occurrence of unpredictable drought which is one of the major constraints of its production. However, the lack of gene resources associated with drought tolerance hinders sesame genetic ...

  17. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes

    DEFF Research Database (Denmark)

    Russell, Meaghan K; Longoni, Mauro; Wells, Julie

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is a common (1 in 3,000 live births) major congenital malformation that results in significant morbidity and mortality. The discovery of CDH loci using standard genetic approaches has been hindered by its genetic heterogeneity. We hypothesized that gene...

  18. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    ARC) domain, and a leucine-rich repeat (LRR) domain, all of which are typical characteristics of resistance genes. We proposed the resistance mechanism of CreV8 based on functional analysis and predictions from its conserved domains and ...

  19. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  20. The claudin gene family: expression in normal and neoplastic tissues

    International Nuclear Information System (INIS)

    Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J

    2006-01-01

    The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

  1. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    Science.gov (United States)

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  2. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  3. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  4. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    Science.gov (United States)

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  5. Host genetic variation influences gene expression response to rhinovirus infection.

    Directory of Open Access Journals (Sweden)

    Minal Çalışkan

    2015-04-01

    Full Text Available Rhinovirus (RV is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs, namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5 and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3. The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  6. Host genetic variation influences gene expression response to rhinovirus infection.

    Science.gov (United States)

    Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole

    2015-04-01

    Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  7. Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

    Directory of Open Access Journals (Sweden)

    Montserrat García-Closas

    2007-02-01

    Full Text Available Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5' UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 x 10(-5. To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5' UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651 were associated with increased risk for bladder cancer: odds ratio (95% confidence interval: 2.52 (1.06-5.97, 2.74 (1.26-5.98, and 3.02 (1.36-6.63, respectively; and a polymorphism in intron 2 (rs3024994 was associated with reduced risk: 0.65 (0.46-0.91. Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5' UTR (global p = 0.02 and 0.009, respectively. These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5' UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.

  8. Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits

    NARCIS (Netherlands)

    Arbore, Roberto; Sekii, Kiyono; Beisel, Christian; Ladurner, Peter; Berezikov, Eugene; Schaerer, Lukas

    2015-01-01

    Introduction: RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits ("phenotypic engineering") and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on

  9. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Science.gov (United States)

    Gretchen H. Roffler; Stephen J. Amish; Seth Smith; Ted Cosart; Marty Kardos; Michael K. Schwartz; Gordon Luikart

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding...

  10. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... through the infant and/or the mother in the etiology of PTB....

  11. Test for positional candidate genes for body composition on pig chromosome 6

    Directory of Open Access Journals (Sweden)

    Pérez-Enciso Miguel

    2002-07-01

    Full Text Available Abstract One QTL affecting backfat thickness (BF, intramuscular fat content (IMF and eye muscle area (MA was previously localized on porcine chromosome 6 in an F2 cross between Iberian and Landrace pigs. This work was done to study the effect of two positional candidate genes on these traits: H-FABP and LEPR genes. The QTL mapping analysis was repeated with a regression method using genotypes for seven microsatellites and two PCR-RFLPs in the H-FABP and LEPR genes. H-FABP and LEPR genes were located at 85.4 and 107 cM respectively, by linkage analysis. The effects of the candidate gene polymorphisms were analyzed in two ways. When an animal model was fitted, both genes showed significant effects on fatness traits, the H-FABP polymorphism showed significant effects on IMF and MA, and the LEPR polymorphism on BF and IMF. But when the candidate gene effect was included in a QTL regression analysis these associations were not observed, suggesting that they must not be the causal mutations responsible for the effects found. Differences in the results of both analyses showed the inadequacy of the animal model approach for the evaluation of positional candidate genes in populations with linkage disequilibrium, when the probabilities of the parental origin of the QTL alleles are not included in the model.

  12. Analysis of a positional candidate gene for inflammatory bowel disease: NRAMP2

    NARCIS (Netherlands)

    Stokkers, P. C.; Huibregtse, K.; Leegwater, A. C.; Reitsma, P. H.; Tytgat, G. N.; van Deventer, S. J.

    2000-01-01

    Genome scans have identified a region spanning 40 cM on the long arm of chromosome 12 as a susceptibility locus for inflammatory bowel disease (IBD). This locus contains several candidate genes for IBD, one of which is the gene for the natural resistance associated macrophage protein 2 (NRAMP2).

  13. A comparative gene expression database for invertebrates

    Directory of Open Access Journals (Sweden)

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  14. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  16. Sex steroid-related candidate genes in psychiatric disorders.

    Science.gov (United States)

    Westberg, Lars; Eriksson, Elias

    2008-07-01

    Sex steroids readily pass the blood-brain barrier, and receptors for them are abundant in brain areas important for the regulation of emotions, cognition and behaviour. Animal experiments have revealed both important early effects of these hormones on brain development and their ongoing influence on brain morphology and neurotransmission in the adult organism. The important effects of sex steroids on human behaviour are illustrated by, for example, the effect of reduced levels of these hormones on sexual drive and conditions such as premenstrual dysphoric disorder, perimenopausal dysphoria, postpartum depression, postpartum psychosis, dysphoria induced by oral contraceptives or hormonal replacement therapy and anabolic steroid-induced aggression. The fact that men and women (as groups) differ with respect to the prevalence of several psychiatric disorders, certain aspects of cognitive function and certain personality traits may possibly also reflect an influence of sex steroids on human behaviour. The heritability of most behavioural traits, including personality, cognitive abilities and susceptibility to psychiatric illness, is considerable, but as yet, only few genes of definite importance in this context have been identified. Given the important role of sex steroids for brain function, it is unfortunate that relatively few studies so far have addressed the possible influence of sex steroid-related genes on interindividual differences with respect to personality, cognition and susceptibility to psychiatric disorders. To facilitate further research in this area, this review provides information on several such genes and summarizes what is currently known with respect to their possible influence on brain function.

  17. Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility.

    Science.gov (United States)

    An, X-K; Fang, J; Yu, Z-Z; Lin, Q; Lu, C-X; Qu, H-L; Ma, Q-L

    2017-08-01

    Several genome-wide association studies (GWASs) in Caucasian populations have identified 12 loci that are significantly associated with migraine. More evidence suggests that serotonin receptors are also involved in migraine pathophysiology. In the present study, a case-control study was conducted in a cohort of 581 migraine cases and 533 ethnically matched controls among a Chinese population. Eighteen polymorphisms from serotonin receptors and GWASs were selected, and genotyping was performed using a Sequenom MALDI-TOF mass spectrometry iPLEX platform. The genotypic and allelic distributions of MEF2D rs2274316 and ASTN2 rs6478241 were significantly different between migraine patients and controls. Univariate and multivariate analysis revealed significant associations of polymorphisms in the MEF2D and ASTN2 genes with migraine susceptibility. MEF2D, PRDM16 and ASTN2 were also found to be associated with migraine without aura (MO) and migraine with family history. And, MEF2D and ASTN2 also served as genetic risk factors for the migraine without family history. The generalized multifactor dimensionality reduction analysis identified that MEF2D and HTR2E constituted the two-factor interaction model. Our study suggests that the MEF2D, PRDM16 and ASTN2 genes from GWAS are associated with migraine susceptibility, especially MO, among Chinese patients. It appears that there is no association with serotonin receptor related genes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    Science.gov (United States)

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  19. Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea

    Directory of Open Access Journals (Sweden)

    Hari Deo eUpadhyaya

    2016-03-01

    Full Text Available Identification of potential genes/alleles governing complex seed-protein content (SPC trait is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study, high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium decay] was utilized. This led to identification of seven most effective genomic loci (genes associated [10 to 20% with 41% combined PVE (phenotypic variation explained] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line mapping population (ICC 12299 x ICC 4958 by selective genotyping. The seed-specific expression, including differential up-regulation (> 4-fold of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with high level of contrasting seed-protein content (21-22% was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait

  20. Diversifying Selection in the Wheat Stem Rust Fungus Acts Predominantly on Pathogen-Associated Gene Families and Reveals Candidate Effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2014-09-01

    Full Text Available Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defence proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialised gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.

  1. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis

    Directory of Open Access Journals (Sweden)

    Akira Ishikawa

    2017-11-01

    Full Text Available Large numbers of quantitative trait loci (QTL affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  2. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    Science.gov (United States)

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  3. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Science.gov (United States)

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvrå, Steen; Rattan, Suresh I S

    2007-01-01

    Human longevity is determined to a certain extent by genetic factors. Several candidate genes have been studied for their association with human longevity, but the data collected so far are inconclusive. One of the reasons is the choice of the candidate genes in addition to the choice...... of an appropriate study design and methodology. Since aging is characterized by a progressive accumulation of molecular damage and an attenuation of the cellular defense mechanisms, the focus of studies on human longevity association with genes has now shifted to the pathways of cellular maintenance and repair...... mechanisms. One such pathway includes the battery of stress response genes, especially the heat shock protein HSP70 genes. Three such genes, HSPA1A, HSPA1B and HSPA1L, are present within the MHC-III region on the short arm of chromosome 6. We and others have found alleles, genotypes and haplotypes which have...

  5. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  6. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.

    Directory of Open Access Journals (Sweden)

    Carole Bougault

    Full Text Available Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK pathways and Smad2/3 (members of the canonical transforming growth factor (TGF-β pathways. A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how

  7. Stochastic gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  8. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  9. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  10. Functional Insight From Fruit Flies on Human ADHD Candidate Genes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Arvidson, Sandra Marie Neumann

    2015-01-01

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder emerging in early childhood with an average prevalence rate of 5% in children and 3.7% in adults. ADHD is characterized by inattention, impulsivity and hyperactivity. This, combined with educational and social dysfunctions...... of developing ADHD. We use Minos mutants, where target genes have been disrupted by the Minos transposable element, to test the effect on locomotor activity. By measuring the distance traveled, we find disparity in locomotor activity between control and Minos mutants. Impaired dopamine system underlies...

  11. Identification of an expressed gene in Dipylidium caninum.

    Science.gov (United States)

    Miranda, Rodrigo R C; Costa-Júnior, Livio M; Campos, Artur K; Santos, Hudson A; Rabelo, Elida M L

    2004-10-01

    Recombinant DNA studies have been focused on developing vaccines to different cestodes. But few studies involving Dipylidium caninum molecular biology and genes have been done. Only partial sequences of mitochondrial DNA and ribosomal RNA gene are available in databases. Any molecular work with this parasite, including epidemiology, study of drug-resistant strains, and vaccine development, is hampered by the lack of knowledge of its genome. Thus, the knowledge of specific genes of different developmental stages of D. caninum is crucial to locate potential targets to be used as candidates to develop a vaccine and/or new drugs against this parasite. Here we report, for the first time, the sequencing of a fragment of a D. caninum expressed gene.

  12. Identification of Candidate Genes and Physiological Pathways Involved in Gonad Deformation in Whitefish (Coregonus spp. from Lake Thun, Switzerland

    Directory of Open Access Journals (Sweden)

    David Bittner

    2011-06-01

    Full Text Available In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp. from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii proteolysis in the liver and (iii GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.

  13. Cholesterol tethered bioresponsive polycation as a candidate for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Ying [Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou 310009 (China); Wang Youxiang, E-mail: yx_wang@zju.edu.cn [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China); Hu Qiaoling; Shen Jiacong [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China)

    2009-04-30

    The efficient unpacking of viral protein shell gave the inspiration for the synthesized vectors. In this research, novel cholesterol tethered bioresponsive polyethylenimine (PEI) was specially designed via disulfide-containing cross-linker. The cholesterol lipid had proved to increase the permeability of gene vector through cell membrane. The acid-base titration indicated that the synthesized polycation possessed efficient proton sponge effect, which was suggested to increase endosomal release of pDNA complexes into the cytoplasm. The cholesterol tethered polycation could effectively induce DNA condensation and form spherical particles with diameter about 200 nm at N/P ratio of 10. At glutathione concentration of 3 mM, the polyplexes were unpacked due to the bioresponsive cleavage of the disulfide bonds. The in-vitro experiment indicated that the polyplexes showed efficient transfection efficiency to HEK293T cells. All the results indicated that the bioresponsive polycation could be served as an effective trigger to control the release of DNA at the intracellular environment. The novel bioresponsive polycation might have great potential in non-viral gene delivery research and application.

  14. Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms.

    Science.gov (United States)

    Sun, Luchao; Rai, Amit; Rai, Megha; Nakamura, Michimi; Kawano, Noriaki; Yoshimatsu, Kayo; Suzuki, Hideyuki; Kawahara, Nobuo; Saito, Kazuki; Yamazaki, Mami

    2018-05-07

    The three Forsythia species, F. suspensa, F. viridissima and F. koreana, have been used as herbal medicines in China, Japan and Korea for centuries and they are known to be rich sources of numerous pharmaceutical metabolites, forsythin, forsythoside A, arctigenin, rutin and other phenolic compounds. In this study, de novo transcriptome sequencing and assembly was performed on these species. Using leaf and flower tissues of F. suspensa, F. viridissima and F. koreana, 1.28-2.45-Gbp sequences of Illumina based pair-end reads were obtained and assembled into 81,913, 88,491 and 69,458 unigenes, respectively. Classification of the annotated unigenes in gene ontology terms and KEGG pathways was used to compare the transcriptome of three Forsythia species. The expression analysis of orthologous genes across all three species showed the expression in leaf tissues being highly correlated. The candidate genes presumably involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were screened as co-expressed genes. They express highly in the leaves of F. viridissima and F. koreana. Furthermore, the three unigenes annotated as acyltransferase were predicted to be associated with the biosynthesis of acteoside and forsythoside A from the expression pattern and phylogenetic analysis. This study is the first report on comparative transcriptome analyses of medicinally important Forsythia genus and will serve as an important resource to facilitate further studies on biosynthesis and regulation of therapeutic compounds in Forsythia species.

  15. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Science.gov (United States)

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Singh, Yoginder Pal; Kaul, Nabodita; Behura, Anita; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K; Chainy, Gagan B N; Bhanwer, Amarjit S; Sharma, Swarkar; Bamezai, Rameshwar N K

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, ppopulation. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  16. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Directory of Open Access Journals (Sweden)

    Shafat Ali

    Full Text Available Type 2 diabetes (T2D is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E-04 with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08 in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59 when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  17. Contig Maps and Genomic Sequencing Identify Candidate Genes in the Usher 1C Locus

    Science.gov (United States)

    Higgins, Michael J.; Day, Colleen D.; Smilinich, Nancy J.; Ni, L.; Cooper, Paul R.; Nowak, Norma J.; Davies, Chris; de Jong, Pieter J.; Hejtmancik, Fielding; Evans, Glen A.; Smith, Richard J.H.; Shows, Thomas B.

    1998-01-01

    Usher syndrome 1C (USH1C) is a congenital condition manifesting profound hearing loss, the absence of vestibular function, and eventual retinal degeneration. The USH1C locus has been mapped genetically to a 2- to 3-cM interval in 11p14–15.1 between D11S899 and D11S861. In an effort to identify the USH1C disease gene we have isolated the region between these markers in yeast artificial chromosomes (YACs) using a combination of STS content mapping and Alu–PCR hybridization. The YAC contig is ∼3.5 Mb and has located several other loci within this interval, resulting in the order CEN-LDHA-SAA1-TPH-D11S1310-(D11S1888/KCNC1)-MYOD1-D11S902D11S921-D11S1890-TEL. Subsequent haplotyping and homozygosity analysis refined the location of the disease gene to a 400-kb interval between D11S902 and D11S1890 with all affected individuals being homozygous for the internal marker D11S921. To facilitate gene identification, the critical region has been converted into P1 artificial chromosome (PAC) clones using sequence-tagged sites (STSs) mapped to the YAC contig, Alu–PCR products generated from the YACs, and PAC end probes. A contig of >50 PAC clones has been assembled between D11S1310 and D11S1890, confirming the order of markers used in haplotyping. Three PAC clones representing nearly two-thirds of the USH1C critical region have been sequenced. PowerBLAST analysis identified six clusters of expressed sequence tags (ESTs), two known genes (BIR,SUR1) mapped previously to this region, and a previously characterized but unmapped gene NEFA (DNA binding/EF hand/acidic amino-acid-rich). GRAIL analysis identified 11 CpG islands and 73 exons of excellent quality. These data allowed the construction of a transcription map for the USH1C critical region, consisting of three known genes and six or more novel transcripts. Based on their map location, these loci represent candidate disease loci for USH1C. The NEFA gene was assessed as the USH1C locus by the sequencing of an amplified NEFA

  18. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  19. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize.

    Directory of Open Access Journals (Sweden)

    Haiying Guan

    Full Text Available A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1 was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.

  20. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  1. Regulation of gene expression in protozoa parasites.

    Science.gov (United States)

    Gomez, Consuelo; Esther Ramirez, M; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  2. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.; Mallick, B. K.

    2013-01-01

    graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which

  3. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    blood glucose > 16.7 mmol/L were used as the model group and treated with Dendrobium mixture. (DEN ... Keywords: Diabetes, Gene expression, Dendrobium mixture, Microarray testing ..... homeostasis in airway smooth muscle. Am J.

  4. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    3Department of Natural Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan ... the changes of expression predicted from gene function suggested association ... ate School of Science and Technology, Niigata University.

  5. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  6. Exertional Heat Illness and Human Gene Expression

    National Research Council Canada - National Science Library

    Sonna, L.A; Sawka, M. N; Lilly, C. M

    2007-01-01

    Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness...

  7. Expression Profiling of Tyrosine Kinase Genes

    National Research Council Canada - National Science Library

    Weier, Heinz

    2000-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  8. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  9. Identification of genes preferentially expressed during

    African Journals Online (AJOL)

    雨林木风

    2012-08-16

    Aug 16, 2012 ... The suppression subtractive hybridization (SSH) method conducted to generate ... which showed the lack of genomic information currently available for lily. ..... characterization of genes expressed during somatic embryo.

  10. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Dou, Junling; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhang, Lei; Ali, Aslam; Kuang, Hanhui; Liu, Wenge

    2018-04-01

    A 159 bp deletion in ClFS1 gene encoding IQD protein is responsible for fruit shape in watermelon. Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is known for its rich diversity in fruit size and shape. Fruit shape has been one of the major objectives of watermelon breeding. However, the candidate genes and the underlying genetic mechanism for such an important trait in watermelon are unknown. In this study, we identified a locus on chromosome 3 of watermelon genome controlling fruit shape. Segregation analysis in F 2 and BC 1 populations derived from a cross between two inbred lines "Duan125" (elongate fruit) and "Zhengzhouzigua" (spherical fruit) suggests that fruit shape of watermelon is controlled by a single locus and elongate fruit (OO) is incompletely dominant to spherical fruit (oo) with the heterozygote (Oo) being oval fruit. GWAS profiles among 315 accessions identified a major locus designated on watermelon chromosome 3, which was confirmed by BSA-seq mapping in the F 2 population. The candidate gene was mapped to a region 46 kb on chromosome 3. There were only four genes present in the corresponding region in the reference genome. Four candidate genes were sequenced in this region, revealing that the CDS of Cla011257 had a 159 bp deletion which resulted in the omission of 53 amino acids in elongate watermelon. An indel marker was derived from the 159 bp deletion to test the F 2 population and 105 watermelon accessions. The results showed that Cla011257 cosegregated with watermelon fruit shape. In addition, the Cla011257 expression was the highest at ovary formation stage. The predicted protein of the Cla011257 gene fitted in IQD protein family which was reported to have association with cell arrays and Ca 2+ -CaM signaling modules. Clear understanding of the genes facilitating the fruit shape along with marker association selection will be an effective way to develop new cultivars.

  11. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer.

    Science.gov (United States)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha; Seo, Ji-Heui; Tyrer, Jonathan; Spindler, Tassja J; Lee, Janet; Chen, Yibu; Karst, Alison; Drapkin, Ronny; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V; Bean, Yukie; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Anne; Chen, Zhihua; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T; Edwards, Robert P; Eilber, Ursula; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; James, Paul; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kruger Kjaer, Susanne; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Nevanlinna, Heli; McNeish, Ian; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Sellers, Thomas A; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston, Lara; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Monteiro, Alvaro; Pharoah, Paul D; Gayther, Simon A; Freedman, Matthew L

    2015-09-22

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.

  12. LOD score exclusion analyses for candidate genes using random population samples.

    Science.gov (United States)

    Deng, H W; Li, J; Recker, R R

    2001-05-01

    While extensive analyses have been conducted to test for, no formal analyses have been conducted to test against, the importance of candidate genes with random population samples. We develop a LOD score approach for exclusion analyses of candidate genes with random population samples. Under this approach, specific genetic effects and inheritance models at candidate genes can be analysed and if a LOD score is < or = - 2.0, the locus can be excluded from having an effect larger than that specified. Computer simulations show that, with sample sizes often employed in association studies, this approach has high power to exclude a gene from having moderate genetic effects. In contrast to regular association analyses, population admixture will not affect the robustness of our analyses; in fact, it renders our analyses more conservative and thus any significant exclusion result is robust. Our exclusion analysis complements association analysis for candidate genes in random population samples and is parallel to the exclusion mapping analyses that may be conducted in linkage analyses with pedigrees or relative pairs. The usefulness of the approach is demonstrated by an application to test the importance of vitamin D receptor and estrogen receptor genes underlying the differential risk to osteoporotic fractures.

  13. Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) by digital transcript abundance measurements.

    Science.gov (United States)

    Qi, Xiaoxiao; Wu, Jun; Wang, Lifen; Li, Leiting; Cao, Yufen; Tian, Luming; Dong, Xingguang; Zhang, Shaoling

    2013-10-23

    'Kuerlexiangli' (Pyrus sinkiangensis Yu), a native pear of Xinjiang, China, is an important agricultural fruit and primary export to the international market. However, fruit with persistent calyxes affect fruit shape and quality. Although several studies have looked into the physiological aspects of the calyx abscission process, the underlying molecular mechanisms remain unknown. In order to better understand the molecular basis of the process of calyx abscission, materials at three critical stages of regulation, with 6000 × Flusilazole plus 300 × PBO treatment (calyx abscising treatment) and 50 mg.L-1GA3 treatment (calyx persisting treatment), were collected and cDNA fragments were sequenced using digital transcript abundance measurements to identify candidate genes. Digital transcript abundance measurements was performed using high-throughput Illumina GAII sequencing on seven samples that were collected at three important stages of the calyx abscission process with chemical agent treatments promoting calyx abscission and persistence. Altogether more than 251,123,845 high quality reads were obtained with approximately 8.0 M raw data for each library. The values of 69.85%-71.90% of clean data in the digital transcript abundance measurements could be mapped to the pear genome database. There were 12,054 differentially expressed genes having Gene Ontology (GO) terms and associating with 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. The differentially expressed genes correlated with calyx abscission were mainly involved in photosynthesis, plant hormone signal transduction, cell wall modification, transcriptional regulation, and carbohydrate metabolism. Furthermore, candidate calyx abscission-specific genes, e.g. Inflorescence deficient in abscission gene, were identified. Quantitative real-time PCR was used to confirm the digital transcript abundance measurements results. We identified candidate genes that showed highly dynamic changes in

  14. Evaluation of suitable reference genes for gene expression studies ...

    Indian Academy of Sciences (India)

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  15. Comparative gene expression between two yeast species

    Directory of Open Access Journals (Sweden)

    Guan Yuanfang

    2013-01-01

    Full Text Available Abstract Background Comparative genomics brings insight into sequence evolution, but even more may be learned by coupling sequence analyses with experimental tests of gene function and regulation. However, the reliability of such comparisons is often limited by biased sampling of expression conditions and incomplete knowledge of gene functions across species. To address these challenges, we previously systematically generated expression profiles in Saccharomyces bayanus to maximize functional coverage as compared to an existing Saccharomyces cerevisiae data repository. Results In this paper, we take advantage of these two data repositories to compare patterns of ortholog expression in a wide variety of conditions. First, we developed a scalable metric for expression divergence that enabled us to detect a significant correlation between sequence and expression conservation on the global level, which previous smaller-scale expression studies failed to detect. Despite this global conservation trend, between-species gene expression neighborhoods were less well-conserved than within-species comparisons across different environmental perturbations, and approximately 4% of orthologs exhibited a significant change in co-expression partners. Furthermore, our analysis of matched perturbations collected in both species (such as diauxic shift and cell cycle synchrony demonstrated that approximately a quarter of orthologs exhibit condition-specific expression pattern differences. Conclusions Taken together, these analyses provide a global view of gene expression patterns between two species, both in terms of the conditions and timing of a gene's expression as well as co-expression partners. Our results provide testable hypotheses that will direct future experiments to determine how these changes may be specified in the genome.

  16. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  17. Mapping a candidate gene (MdMYB10 for red flesh and foliage colour in apple

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2007-07-01

    Full Text Available Abstract Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs and Single Nucleotide Polymorphisms (SNPs in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.

  18. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  19. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  20. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations.

    Directory of Open Access Journals (Sweden)

    Sahra Uygun

    2016-12-01

    Full Text Available Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets.

  1. Novel antidepressant candidate RO-05 modulated glucocorticoid receptors activation and FKBP5 expression in chronic mild stress model in rats.

    Science.gov (United States)

    Xing, Y; Hou, J; Meng, Q; Yang, M; Kurihara, H; Tian, J

    2015-04-02

    In this study, a novel TRI (triple reuptake inhibitors) antidepressant candidate RO-05 (4-[1-[1-(benzoyloxy)cyclohexyl]-2-(dimethylamino)ethyl]-phenyl benzoate) was investigated in TST (tail suspension test), FST (forced swimming test) and CMS (chronic mild stress) model. Results showed RO-05 significantly decreased the immobility time in FST and TST at 4.5-, 9-, 18-mg/kg in rats and 9-, 18-, 36-mg/kg in mice. Chronic administration of 18-mg/kg RO-05 improved the behavioral index, anhedonia and normalized the hyperactivity of HPA (hypothalamic-pituitary-adrenal axis) of CMS rats. We further investigated the possible mechanisms of RO-05 in the CMS model. Eighteen milligrams per kilogram of RO-05 chronic administration significantly reversed the increase of mRNA and protein expression of FKBP5 in the CMS rat hippocampus, which facilitated the activation of GR- (glucocorticoid receptor) and GR-responsive gene Foxo1 expression. RO-05 also elevated the expression of BDNF (brain-derived neurotrophic factor) in CMS rat hippocampus. In summary, our results indicated that RO-05 is a promising antidepressant candidate. The possible antidepressant mechanisms of RO-05 were the modulation of FKBP5 expression, GR activation, corresponding inhibition of HPA axis hyperactivity, and the increase of BDNF expression. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  3. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  4. Blood cell gene expression profiling in subjects with aggressive periodontitis and chronic arthritis

    DEFF Research Database (Denmark)

    Sørensen, Lars K; Poulsen, Anne Havemose; Sønder, Søren U

    2008-01-01

    with untreated localized aggressive periodontitis (LAgP) or generalized aggressive periodontitis (GAgP). Differentially expressed genes were validated in groups of subjects with LAgP, GAgP, juvenile idiopathic arthritis (JIA), or rheumatoid arthritis (RA) and controls. METHODS: Candidate genes were identified...

  5. Social cognitive role of schizophrenia candidate gene GABRB2.

    Directory of Open Access Journals (Sweden)

    Shui Ying Tsang

    Full Text Available The occurrence of positive selection in schizophrenia-associated GABRB2 suggests a broader impact of the gene product on population fitness. The present study considered the possibility of cognition-related GABRB2 involvement by examining the association of GABRB2 with psychosis and altruism, respectively representing psychiatric and psychological facets of social cognition. Four single nucleotide polymorphisms (SNPs were genotyped for quantitative trait analyses and population-based association studies. Psychosis was measured by either the Positive and Negative Syndrome Scale (PANSS or antipsychotics dosage, and altruism was based on a self-report altruism scale. The minor alleles of SNPs rs6556547, rs1816071 and rs187269 in GABRB2 were correlated with high PANSS score for positive symptoms in a Han Chinese schizophrenic cohort, whereas those of rs1816071 and rs1816072 were associated with high antipsychotics dosage in a US Caucasian schizophrenic cohort. Moreover, strongly significant GABRB2-disease associations were found among schizophrenics with severe psychosis based on high PANSS positive score, but no significant association was observed for schizophrenics with only mild psychosis. Interestingly, in addition to association with psychosis in schizophrenics, rs187269 was also associated with altruism in healthy Han Chinese. Furthermore, parallel to correlation with severe psychosis, its minor allele was correlated with high altruism scores. These findings revealed that GABRB2 is associated with psychosis, the core symptom and an endophenotype of schizophrenia. Importantly, the association was found across the breadth of the psychiatric (psychosis to psychological (altruism spectrum of social cognition suggesting GABRB2 involvement in human cognition.

  6. Screening Reliable Reference Genes for RT-qPCR Analysis of Gene Expression in Moringa oleifera.

    Science.gov (United States)

    Deng, Li-Ting; Wu, Yu-Ling; Li, Jun-Cheng; OuYang, Kun-Xi; Ding, Mei-Mei; Zhang, Jun-Jie; Li, Shu-Qi; Lin, Meng-Fei; Chen, Han-Bin; Hu, Xin-Sheng; Chen, Xiao-Yang

    2016-01-01

    Moringa oleifera is a promising plant species for oil and forage, but its genetic improvement is limited. Our current breeding program in this species focuses on exploiting the functional genes associated with important agronomical traits. Here, we screened reliable reference genes for accurately quantifying the expression of target genes using the technique of real-time quantitative polymerase chain reaction (RT-qPCR) in M. oleifera. Eighteen candidate reference genes were selected from a transcriptome database, and their expression stabilities were examined in 90 samples collected from the pods in different developmental stages, various tissues, and the roots and leaves under different conditions (low or high temperature, sodium chloride (NaCl)- or polyethyleneglycol (PEG)- simulated water stress). Analyses with geNorm, NormFinder and BestKeeper algorithms revealed that the reliable reference genes differed across sample designs and that ribosomal protein L1 (RPL1) and acyl carrier protein 2 (ACP2) were the most suitable reference genes in all tested samples. The experiment results demonstrated the significance of using the properly validated reference genes and suggested the use of more than one reference gene to achieve reliable expression profiles. In addition, we applied three isotypes of the superoxide dismutase (SOD) gene that are associated with plant adaptation to abiotic stress to confirm the efficacy of the validated reference genes under NaCl and PEG water stresses. Our results provide a valuable reference for future studies on identifying important functional genes from their transcriptional expressions via RT-qPCR technique in M. oleifera.

  7. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Piña-Sanchez Patricia

    2005-09-01

    Full Text Available Abstract Background Serial Analysis of Gene Expression (SAGE is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE, useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV, where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC. Results We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. Conclusion This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma.

  8. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    Science.gov (United States)

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  9. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis.

    Science.gov (United States)

    Chen, Chun; Xie, Tingna; Ye, Sudan; Jensen, Annette Bruun; Eilenberg, Jørgen

    2016-01-01

    The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host-pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis

    Directory of Open Access Journals (Sweden)

    Chun Chen

    2016-03-01

    Full Text Available Abstract The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host–pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S, 28S rRNA(28S and elongation factor 1 alpha-like protein (EF1, were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae, and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189, 28S (1.414 and EF1 (3. The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis.

  11. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Science.gov (United States)

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  12. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Mary McMillan

    Full Text Available Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA is sufficient for effective normalisation of qRT-PCR data.

  13. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    Science.gov (United States)

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study

  14. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    Science.gov (United States)

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT

  15. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    Directory of Open Access Journals (Sweden)

    Nikul Patel

    2012-01-01

    Full Text Available The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1, and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.

  16. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    Directory of Open Access Journals (Sweden)

    Teng Shaolei

    2013-01-01

    Full Text Available Abstract Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs and Support Vector Machines (SVMs were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.

  17. Candidate gene study of HOXB1 in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Muscarella Lucia A

    2010-05-01

    Full Text Available Abstract Background HOXB1 plays a major role in brainstem morphogenesis and could partly determine the cranial circumference in conjunction with HOXA1. In our sample, HOXA1 alleles significantly influence head growth rates both in autistic patients and in population controls. An initial report, suggesting that HOXB1 could confer autism vulnerability in interaction with HOXA1, was not confirmed by five small association studies. Methods Our sample includes 269 autistic individuals, belonging to 219 simplex and 28 multiplex families. A mutational analysis of the two exons and flanking intronic sequences of the HOXB1 gene was carried out in 84 autistic patients by denaturing high performance liquid chromatography, followed by DNA sequencing. Identified rare variants were then searched by a restriction analysis in 236 autistic patients and 325-345 controls. Case-control and family-based association studies were performed on two common variants in 169 Italian patients versus 184 Italian controls and in 247 trios. Results We identified three common polymorphisms, rs72338773 [c.82insACAGCGCCC (INS/nINS], rs12939811 [c.309A>T (Q103H], and rs7207109 [c.450G>A (A150A] and three rare variants, namely IVS1+63G>A, rs35115415 [c.702G>A (V234V] and c.872_873delinsAA (S291N. SNPs rs72338773 and rs12939811 were not associated with autism, using either a case-control (alleles, exact P = 0.13 or a family-based design [transmission/disequilibrium test (TDTχ2 = 1.774, P = 0.183]. The rare variants, all inherited from one of the parents, were present in two Italian and in two Caucasian-American families. Autistic probands in two families surprisingly inherited a distinct rare variant from each parent. The IVS1+63A allele was present in 3/690 control chromosomes, whereas rare alleles at rs35115415 and c.872_873delinsAA (S291N were not found in 662 and 650 control chromosomes, respectively. The INS-T309 allele influenced head size, but its effect appears more modest

  18. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  19. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  20. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  1. Noise minimization in eukaryotic gene expression

    International Nuclear Information System (INIS)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-01

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection

  2. QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Xinghai Yang

    2017-09-01

    Full Text Available Nitrogen is a major nutritional element in rice production. However, excessive application of nitrogen fertilizer has caused severe environmental pollution. Therefore, development of rice varieties with improved nitrogen use efficiency (NUE is urgent for sustainable agriculture. In this study, bulked segregant analysis (BSA combined with whole genome re-sequencing (WGS technology was applied to finely map quantitative trait loci (QTL for NUE. A key QTL, designated as qNUE6 was identified on chromosome 6 and further validated by Insertion/Deletion (InDel marker-based substitutional mapping in recombinants from F2 population (NIL-13B4 × GH998. Forty-four genes were identified in this 266.5-kb region. According to detection and annotation analysis of variation sites, 39 genes with large-effect single-nucleotide polymorphisms (SNPs and large-effect InDels were selected as candidates and their expression levels were analyzed by qRT-PCR. Significant differences in the expression levels of LOC_Os06g15370 (peptide transporter PTR2 and LOC_Os06g15420 (asparagine synthetase were observed between two parents (Y11 and GH998. Phylogenetic analysis in Arabidopsis thaliana identified two closely related homologs, AT1G68570 (AtNPF3.1 and AT5G65010 (ASN2, which share 72.3 and 87.5% amino acid similarity with LOC_Os06g15370 and LOC_Os06g15420, respectively. Taken together, our results suggested that qNUE6 is a possible candidate gene for NUE in rice. The fine mapping and candidate gene analysis of qNUE6 provide the basis of molecular breeding for genetic improvement of rice varieties with high NUE, and lay the foundation for further cloning and functional analysis.

  3. Ageing Drosophila selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete

    and longevity selected lines. Among the latter genes we found a clear overrepresentation of genes involved in immune functions supporting the hypothesis of the life shortening effect of an overactive immune system (inflammaging). Eighty-four genes were differentially expressed at the same physiological age...... between control and longevity selected lines, and the overlap between the same chronological and physiological age gene lists counted 40 candidate genes for increased longevity. Among these were genes with functions in starvation resistance, a regulator of immune responses and several genes which have......  We have investigated how the gene-expression profile of longevity selected lines of Drosophila melanogaster differed from control lines in young, middle-aged and old male flies. 530 genes were differentially expressed between selected and control flies at the same chronological age. We used...

  4. Multiplex reverse transcription-polymerase chain reaction combined with on-chip electrophoresis as a rapid screening tool for candidate gene sets

    DEFF Research Database (Denmark)

    Wittig, Rainer; Salowsky, Rüdiger; Blaich, Stephanie

    2005-01-01

    Combining multiplex reverse transcription-polymerase chain reaction (mRT-PCR) with microfluidic amplicon analysis, we developed an assay for the rapid and reliable semiquantitative expression screening of 11 candidate genes for drug resistance in human malignant melanoma. The functionality of thi...

  5. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Thrush Anthony

    2010-01-01

    Full Text Available Abstract Background Perennial ryegrass (Lolium perenne L. is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2 were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L. samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h, a moderately, but stably expressed eEF1A (s, and combined expression of multigene eEF1A (m. NormFinder identified eEF1A (s and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples

  6. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  7. Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).

    Science.gov (United States)

    Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie

    2017-11-01

    Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  9. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage.

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Zhang, Lili; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2018-04-01

    A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis. Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC 1 P1, BC 1 P2, F 2 , and F 2:3 populations derived from a cross between two inbred lines "195" (late-flowering) and "93219" (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F 2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F 2 and F 2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.

  10. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli.

    Science.gov (United States)

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.

  11. Suitable reference genes for accurate gene expression analysis in parsley (Petroselinum crispum for abiotic stresses and hormone stimuli

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    2016-09-01

    Full Text Available Parsley is one of the most important vegetable in Apiaceae family and widely used in food industry, medicinal and cosmetic. The recent studies in parsley are mainly focus on chemical composition, further research involving the analysis of the gene functions and expressions will be required. qPCR is a powerful method for detecting very low quantities of target transcript levels and widely used for gene expression studies. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, three software geNorm, NormFinder, and BestKeeper were used to evaluate the expression stabilities of eight candidate reference genes (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB under various conditions including abiotic stresses (heat, cold, salt, and drought and hormone stimuli treatments (GA, SA, MeJA, and ABA. The results showed that EF-1α and TUB were identified as the most stable genes for abiotic stresses, while EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes across all the tested samples, while UBC was the least stable one. The expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study provides a guideline for selection the suitable reference genes in gene expression in parsley.

  12. Selection of reference genes for expression studies with fish myogenic cell cultures

    Directory of Open Access Journals (Sweden)

    Johnston Ian A

    2009-08-01

    Full Text Available Abstract Background Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.. The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Results Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1α, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. Conclusion The geometric average of any three of Hprt1, Ef1α, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  13. Selection of reference genes for expression studies with fish myogenic cell cultures.

    Science.gov (United States)

    Bower, Neil I; Johnston, Ian A

    2009-08-10

    Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.). The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1alpha, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. The geometric average of any three of Hprt1, Ef1alpha, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  14. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  15. Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes

    NARCIS (Netherlands)

    Aghnoum, R.; Marcel, T.C.; Johrde, A.; Pecchioni, N.; Schweizer, P.; Niks, R.E.

    2010-01-01

    The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of

  16. Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    DEFF Research Database (Denmark)

    Banasik, Karina; Justesen, Johanne M.; Hornbak, Malene

    2011-01-01

    Objective: Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. Research Design and Methods: By integrating public database text mining, trans-organism protein...

  17. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-01-01

    Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  18. Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients

    DEFF Research Database (Denmark)

    de Kovel, Carolien G F; Brilstra, Eva H; van Kempen, Marjan J A

    2016-01-01

    BACKGROUND: Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. METHODS: To increase the number of validated EE...

  19. Longevity Candidate Genes and Their Association With Personality Traits in the Elderly

    NARCIS (Netherlands)

    Luciano, M.; Lopez, L.M.; de Moor, M.H.M.; Harris, S.E.; Davies, G.; Nutile, T.; Krueger, R.F.; Esko, T.; Schlessinger, D.; Toshiko, T.; Derringer, J.; Realo, A.; Hansell, N.K.; Pergadia, M.L.; Pesonen, A.-K.; Sanna, S.; Terracciano, A.; Madden, P.A.F.; Penninx, B.W.J.H.; Spinhoven, Ph.D.; Hartman, C.A.; Oostra, B.A.; Janssens, A.C.J.W.; Eriksson, J.G.; Starr, J.M.; Cannas, A.; Ferrucci, L.; Metspalu, A.; Wright, M.J.; Heath, A.C.; van Duijn, C.M.; Bierut, L.J.; Raikkonen, K.; Martin, N.G.; Ciullo, M.; Rujescu, D.; Boomsma, D.I.; Deary, I.J.

    2012-01-01

    Human longevity and personality traits are both heritable and are consistently linked at the phenotypic level. We test the hypothesis that candidate genes influencing longevity in lower organisms are associated with variance in the five major dimensions of human personality (measured by the NEO-FFI

  20. Longevity candidate genes and their association with personality traits in the elderly

    NARCIS (Netherlands)

    Luciano, Michelle; Lopez, Lorna M.; de Moor, Marleen H. M.; Harris, Sarah E.; Davies, Gail; Nutile, Teresa; Krueger, Robert F.; Esko, Tonu; Schlessinger, David; Toshiko, Tanaka; Derringer, Jaime L.; Realo, Anu; Hansell, Narelle K.; Pergadia, Michele L.; Pesonen, Anu-Katriina; Sanna, Serena; Terracciano, Antonio; Madden, Pamela A. F.; Penninx, Brenda; Spinhoven, Philip; Hartman, Catherina A.; Oostra, Ben A.; Janssens, A. Cecile J. W.; Eriksson, Johan G.; Starr, John M.; Cannas, Alessandra; Ferrucci, Luigi; Metspalu, Andres; Wright, Margeret J.; Heath, Andrew C.; van Duijn, Cornelia M.; Bierut, Laura J.; Raikkonen, Katri; Martin, Nicholas G.; Ciullo, Marina; Rujescu, Dan; Boomsma, Dorret I.; Deary, Ian J.

    Human longevity and personality traits are both heritable and are consistently linked at the phenotypic level. We test the hypothesis that candidate genes influencing longevity in lower organisms are associated with variance in the five major dimensions of human personality (measured by the NEO-FFI

  1. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    Science.gov (United States)

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. EBF factors drive expression of multiple classes of target genes governing neuronal development.

    Science.gov (United States)

    Green, Yangsook S; Vetter, Monica L

    2011-04-30

    Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  3. EBF factors drive expression of multiple classes of target genes governing neuronal development

    Directory of Open Access Journals (Sweden)

    Vetter Monica L

    2011-04-01

    Full Text Available Abstract Background Early B cell factor (EBF family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. Results We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. Conclusions The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  4. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  5. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  6. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  7. Dlx homeobox gene family expression in osteoclasts.

    Science.gov (United States)

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  8. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  9. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  10. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  11. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level l