WorldWideScience

Sample records for candidate gene analysis

  1. Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Yun-Xia Zhang

    2016-01-01

    Full Text Available Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC using a network-based strategy and to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic genes (seed genes and differentially expressed genes (DEGs between CC and normal controls. Subsequently, cluster analysis was performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal controls. From the pathogenic network, 2 intensely connected clusters were extracted, and a total of 52 candidate genes were detected under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate genes MMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion. Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe that our results can provide theoretical guidelines for future clinical application.

  2. Haplotype sharing analysis with SNPs in candidate genes : The genetic analysis workshop 12 example

    NARCIS (Netherlands)

    Fischer, C; Beckmann, L; Majoram, P; Meerman, GT; Chang-Claude, J

    2003-01-01

    Haplotype sharing analysis was used to investigate the association of affection status with single nucleotide polymorphism (SNP) haplotypes within candidate gene 1 in one sample each from the isolated and the general population of Genetic Analysis Workshop (GAW) 12 simulated data. Gene 1 has direct

  3. Candidate gene analysis of osteochondrosis in Spanish Purebred horses.

    Science.gov (United States)

    Sevane, N; Dunner, S; Boado, A; Cañon, J

    2016-10-01

    Equine osteochondrosis (OC) is a frequent developmental orthopaedic disease with high economic impact on the equine industry and may lead to premature retirement of the animal as a result of chronic pain and lameness. The genetic background of OC includes different genes affecting several locations; however, these genetic associations have been tested in only one or few populations, lacking the validation in others. The aim of this study was to identify the genetic determinants of OC in the Spanish Purebred horse breed. For that purpose, we used a candidate gene approach to study the association between loci previously implicated in the onset and development of OC in other breeds and different OC locations using radiographic data from 144 individuals belonging to the Spanish Purebred horse breed. Of the 48 polymorphisms analysed, three single nucleotide polymorphisms (SNPs) located in the FAF1, FCN3 and COL1A2 genes were found to be associated with different locations of OC lesions. These data contribute insights into the complex gene networks underlying the multifactorial disease OC, and the associated SNPs could be used in a marker-assisted selection strategy to improve horse health, welfare and competitive lifespan. PMID:27422688

  4. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  5. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  6. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  7. Candidate gene linkage analysis indicates genetic heterogeneity in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    L.V.S. Teixeira

    2011-08-01

    Full Text Available Marfan syndrome (MFS is an autosomal dominant disease of the connective tissue that affects the ocular, skeletal and cardiovascular systems, with a wide clinical variability. Although mutations in the FBN1 gene have been recognized as the cause of the disease, more recently other loci have been associated with MFS, indicating the genetic heterogeneity of this disease. We addressed the issue of genetic heterogeneity in MFS by performing linkage analysis of the FBN1 and TGFBR2 genes in 34 families (345 subjects who met the clinical diagnostic criteria for the disease according to Ghent. Using a total of six microsatellite markers, we found that linkage with the FBN1 gene was observed or not excluded in 70.6% (24/34 of the families, and in 1 family the MFS phenotype segregated with the TGFBR2 gene. Moreover, in 4 families linkage with the FBN1 and TGFBR2 genes was excluded, and no mutations were identified in the coding region of TGFBR1, indicating the existence of other genes involved in MFS. Our results suggest that the genetic heterogeneity of MFS may be greater that previously reported.

  8. In silico Analysis of Candidate Genes Involved in Sanfilippo Syndrome

    Directory of Open Access Journals (Sweden)

    Mehreen Zaka

    2015-04-01

    Full Text Available Sanfilippo syndrome is an autosomal recessive lysosomal storage disorder, caused by the deficiency of enzymes that play an important role in degradation of glycosaminoglycans and also called mucopolysaccharidosis III. Mucopolysaccharidosis is genetic disorder. Here, we searched the candidate genes for Sanfilippo syndrome by using BLAST with the query sequence. As no suitable homology was found against the query sequence we moved towards threading approach. The threading approach was carried out by employing online CPH models and LOMETS tools. Through present research, domains of the proteins were predicted by utilizing the Domain Sweep tools, GNS and two domains were reported. Motif search reported the maximum number of motifs for Type D protein as compared to other types. All four proteins were totally soluble proteins and no transmembrane domains were found. In future, these results and predicted 3D structures can be used for the molecular docking studies, binding activities and protein-protein interactions for all the four types of Sanfilippo syndrome.

  9. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Purple rice is a type of rice with anthocyanins deposited in its grain pericarp. The rice Pb gene controlling purple pericarp character is known to be on chromosome 4, and the purple color is dominant over white color. In this study, we fine mapped the Pb gene using two F2 segregating populations, i.e. Pei'ai 64S (white) × Yunanheixiannuo (purple) and Pei'ai 64S × Chuanheinuo (purple). In the first-pass mapping, the Pb gene was located in the region downstream the SSR marker RM3820. In the fine mapping, the candidate region was saturated with InDel and CAPS markers developed specifically for this study. Eventually, the Pb gene was mapped within the 25-kb region delimited by the upstream marker RID3 and the downstream marker RID4. The delimited region contained two annotated genes, Ra and bhlh16 (TIGR Rice Genome, R.5). The former is a homologue of the Myc transcription factor Lc controlling anthocyanin biosynthesis in maize, and the latter is a homologue of the TT8 gene, which is also an Myc transcription factor gene controlling the pericarp pigmentation in Arabidopsis thaliana. Sequence analysis showed that the exon 7 of the Ra gene of Yunanheixiannuo and Chuanheinuo had a 2-bp (GT) deletion compared with those of the white rice varieties Pei'ai 64S, 9311 and Nipponbare. A CAPS marker, CAPSRa, was developed according to the GT deletion for analysis of the two F2 segregating populations and 106 rice lines. The results showed that all F2 plants with white pericarp, and all non-purple rice lines (63 white and 22 red) contained no GT deletion, but all 20 purple rice lines contained the GT deletion. These results suggested that the Ra gene may be the Pb gene and the purple pericarp characteristic of rice is caused by the GT deletion within exon 7 of the Ra gene.

  10. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    OpenAIRE

    Erin M Siegel; Riggs, Bridget M; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and ...

  11. Identifying disease candidate genes via large-scale gene network analysis.

    Science.gov (United States)

    Kim, Haseong; Park, Taesung; Gelenbe, Erol

    2014-01-01

    Gene Regulatory Networks (GRN) provide systematic views of complex living systems, offering reliable and large-scale GRNs to identify disease candidate genes. A reverse engineering technique, Bayesian Model Averaging-based Networks (BMAnet), which ensembles all appropriate linear models to tackle uncertainty in model selection that integrates heterogeneous biological data sets is introduced. Using network evaluation metrics, we compare the networks that are thus identified. The metric 'Random walk with restart (Rwr)' is utilised to search for disease genes. In a simulation our method shows better performance than elastic-net and Gaussian graphical models, but topological quantities vary among the three methods. Using real-data, brain tumour gene expression samples consisting of non-tumour, grade III and grade IV are analysed to estimate networks with a total of 4422 genes. Based on these networks, 169 brain tumour-related candidate genes were identified and some were found to relate to 'wound', 'apoptosis', and 'cell death' processes. PMID:25796737

  12. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis

    DEFF Research Database (Denmark)

    Grauers, Anna; Wang, Jingwen; Einarsdottir, Elisabet;

    2015-01-01

    that are significantly associated with idiopathic scoliosis in Asian and Caucasian populations, rs11190870 close to the LBX1 gene being the most replicated finding. PURPOSE: The aim of the present study was to investigate the genetics of idiopathic scoliosis in a Scandinavian cohort by performing a candidate gene study...... samples from 100 surgically treated idiopathic scoliosis patients. Novel or rare missense, nonsense, or splice site variants were selected for individual genotyping in the 1,739 cases and 1,812 controls. In addition, the 5'UTR, noncoding exon and promoter regions of LBX1, not covered by exome sequencing......, were Sanger sequenced in the 100 pooled samples. RESULTS: Of the four candidate genes, an intergenic variant, rs11190870, downstream of the LBX1 gene, showed a highly significant association to idiopathic scoliosis in 1,739 cases and 1,812 controls (p=7.0×10(-18)). We identified 20 novel variants...

  13. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.

    Science.gov (United States)

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  14. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  15. Gene Expression Analysis in Tubule Interstitial Compartments Reveals Candidate Agents for IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2014-09-01

    Full Text Available Background/Aims: Our aim was to explore the molecular mechanism underlying development of IgA nephropathy and discover candidate agents for IgA nephropathy. Methods: The differentially expressed genes (DEGs between patients with IgA nephropathy and normal controls were identified by the data of GSE35488 downloaded from GEO (Gene Expression Omnibus database. The co-expressed gene pairs among DEGs were screened to construct the gene-gene interaction network. Gene Ontology (GO enrichment analysis was performed to analyze the functions of DEGs. The biologically active small molecules capable of targeting IgA nephropathy were identified using the Connectivity Map (cMap database. Results: A total of 55 genes involved in response to organic substance, transcription factor activity and response to steroid hormone stimulus were identified to be differentially expressed in IgA nephropathy patients compared to healthy individuals. A network with 45 co-expressed gene pairs was constructed. DEGs in the network were significantly enriched in response to organic substance. Additionally, a group of small molecules were identified, such as doxorubicin and thapsigargin. Conclusion: Our work provided a systematic insight in understanding the mechanism of IgA nephropathy. Small molecules such as thapsigargin might be potential candidate agents for the treatment of IgA nephropathy.

  16. Screening for candidate genes related to breast cancer with cDNA microarray analysis

    Institute of Scientific and Technical Information of China (English)

    Yu-Juan Xiang; Zhi-Gang Yu; Ming-Ming Guo; Qin-Ye Fu; Zhong-Bing Ma; De-Zong Gao; Qiang Zhang; Yu-Yang Li; Liang Li; Lu Liu; Chun-Miao Ye

    2015-01-01

    Objective: The aim of this study was to reveal the exact changes during the occurrence of breast cancer to explore significant new and promising genes or factors related to this disease. Methods: We compared the gene expression profiles of breast cancer tissues with its uninvolved normal breast tissues as controls using the cDNA microarray analysis in seven breast cancer patients. Further, one representative gene, named IFI30, was quanti-tatively analyzed by real-time PCR to confirm the result of the cDNA microarray analysis. Results: A total of 427 genes were identified with significantly differential expression, 221 genes were up-regulated and 206 genes were down-regulated. And the result of cDNA microarray analysis was validated by detection of IFI30 mRNA level changes by real-time PCR. Genes for cell proliferation, cell cycle, cell division, mitosis, apoptosis, and immune response were enriched in the up-regulated genes, while genes for cell adhesion, proteolysis, and transport were significantly enriched in the down-regulated genes in breast cancer tissues compared with normal breast tissues by a gene ontology analysis. Conclusion: Our present study revealed a range of differentially expressed genes between breast cancer tissues and normal breast tissues, and provide candidate genes for further study focusing on the pathogenesis and new biomarkers for breast cancer. Copyright © 2015, Chinese Medical Association Production. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  17. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle.

    Science.gov (United States)

    Taylor, J F; Coutinho, L L; Herring, K L; Gallagher, D S; Brenneman, R A; Burney, N; Sanders, J O; Turner, J W; Smith, S B; Miller, R K; Savell, J W; Davis, S K

    1998-06-01

    We present an approach to evaluate the support for candidate genes as quantitative trait loci (QTLs) within the context of genome-wide map-based cloning strategies. To establish candidacy, a bacterial artificial chromosome (BAC) clone containing a putative candidate gene is physically assigned to an anchored linkage map to localise the gene relative to an identified QTL effect. Microsatellite loci derived from BAC clones containing an established candidate gene are integrated into the linkage map facilitating the evaluation by interval analysis of the statistical support for QTL identity. Permutation analysis is employed to determine experiment-wise statistical support. The approach is illustrated for the growth hormone 1 (GH1) gene and growth and carcass phenotypes in cattle. Polymerase chain reaction (PCR) primers which amplify a 441 bp fragment of GH1 were used to systematically screen a bovine BAC library comprising 60,000 clones and with a 95% probability of containing a single copy sequence. The presence of GH1 in BAC-110R2C3 was confirmed by sequence analysis of the PCR product from this clone and by the physical assignment of BAC110R2C3 to bovine chromosome 19 (BTA19) band 22 by fluorescence in situ hybridisation (FISH). Microsatellite KHGH1 was isolated from BAC110R2C3 and scored in 529 reciprocal backcross and F2 fullsib progeny from 41 resource families derived from Angus (Bos taurus) and Brahman (Bos indicus). The microsatellite KHGH1 was incorporated into a framework genetic map of BTA19 comprising 12 microsatellite loci, the erythrocyte antigen T and a GH1-TaqI restriction fragment length polymorphism (RFLP). Interval analysis localised effects of taurus vs. indicus alleles on subcutaneous fat and the percentage of either extractable fat from the Iongissimus dorsi muscle to the region of BTA19 harbouring GH1.

  18. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle.

    Science.gov (United States)

    Taylor, J F; Coutinho, L L; Herring, K L; Gallagher, D S; Brenneman, R A; Burney, N; Sanders, J O; Turner, J W; Smith, S B; Miller, R K; Savell, J W; Davis, S K

    1998-06-01

    We present an approach to evaluate the support for candidate genes as quantitative trait loci (QTLs) within the context of genome-wide map-based cloning strategies. To establish candidacy, a bacterial artificial chromosome (BAC) clone containing a putative candidate gene is physically assigned to an anchored linkage map to localise the gene relative to an identified QTL effect. Microsatellite loci derived from BAC clones containing an established candidate gene are integrated into the linkage map facilitating the evaluation by interval analysis of the statistical support for QTL identity. Permutation analysis is employed to determine experiment-wise statistical support. The approach is illustrated for the growth hormone 1 (GH1) gene and growth and carcass phenotypes in cattle. Polymerase chain reaction (PCR) primers which amplify a 441 bp fragment of GH1 were used to systematically screen a bovine BAC library comprising 60,000 clones and with a 95% probability of containing a single copy sequence. The presence of GH1 in BAC-110R2C3 was confirmed by sequence analysis of the PCR product from this clone and by the physical assignment of BAC110R2C3 to bovine chromosome 19 (BTA19) band 22 by fluorescence in situ hybridisation (FISH). Microsatellite KHGH1 was isolated from BAC110R2C3 and scored in 529 reciprocal backcross and F2 fullsib progeny from 41 resource families derived from Angus (Bos taurus) and Brahman (Bos indicus). The microsatellite KHGH1 was incorporated into a framework genetic map of BTA19 comprising 12 microsatellite loci, the erythrocyte antigen T and a GH1-TaqI restriction fragment length polymorphism (RFLP). Interval analysis localised effects of taurus vs. indicus alleles on subcutaneous fat and the percentage of either extractable fat from the Iongissimus dorsi muscle to the region of BTA19 harbouring GH1. PMID:9720178

  19. Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population

    OpenAIRE

    Paracchini, S; Ang, Q W; Stanley, F J; Monaco, A. P.; Pennell, C E; Whitehouse, A J O

    2011-01-01

    Several genes have been suggested as dyslexia candidates. Some of these candidate genes have been recently shown to be associated with literacy measures in sample cohorts derived from the general population. Here, we have conducted an association study in a novel sample derived from the Australian population (the Raine cohort) to further investigate the role of dyslexia candidate genes. We analysed markers, previously reported to be associated with dyslexia, located within the MRPL19/C2ORF3, ...

  20. Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available BACKGROUND: High-throughput gene expression data can predict gene function through the "guilt by association" principle: coexpressed genes are likely to be functionally associated. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG, small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. CONCLUSIONS/SIGNIFICANCE: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several genetic diseases of unknown molecular basis.

  1. Transcriptomic analysis using olive varieties and breeding progenies identify candidate genes involved in plant architecture

    Directory of Open Access Journals (Sweden)

    Juan José eGonzález Plaza

    2016-03-01

    Full Text Available Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2,252 differentially expressed genes associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  2. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  3. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder.

    Science.gov (United States)

    Sabbagh, Ubadah; Mullegama, Saman; Wyckoff, Gerald J

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  4. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder

    Directory of Open Access Journals (Sweden)

    Ubadah Sabbagh

    2016-01-01

    Full Text Available The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES. A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  5. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder.

    Science.gov (United States)

    Sabbagh, Ubadah; Mullegama, Saman; Wyckoff, Gerald J

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study. PMID:27088090

  6. Molecular Mapping and Candidate Gene Analysis for Numerous Spines on the Fruit of Cucumber.

    Science.gov (United States)

    Zhang, Shengping; Liu, Shulin; Miao, Han; Wang, Min; Liu, Panna; Wehner, Todd C; Gu, Xingfang

    2016-09-01

    Number of spines on the fruit is an important quality trait in cucumber. The inheritance and identification of molecular markers for fruit spine density gene can provide a basis for breeding and lay the foundation for gene cloning. Cucumber inbred lines NCG-122 with numerous spines and NCG-121 with few spines were used for genetic analysis and gene mapping in this study. Genetic analysis showed that the numerous spines trait in NCG-122 was qualitative, and a single recessive nuclear gene (ns) controlled this trait. The few spines trait was dominant over the numerous spines trait. In the preliminary genetic mapping of the ns gene, 8 SSR markers were found to be linked to ns, which mapped to chromosome 2 (Chr.2) of cucumber. The closest flanking markers SSR22338 and SSR11596 were linked to the ns gene, with genetic distances of 10.2 and 1.7cM, respectively. One-hundred and thirty pairs of new SSR primers and 28 pairs of Indel primers were developed based on sequence information in the preliminary mapping region of ns Fifteen SSR markers and 2 Indel markers were identified to be linked to the ns gene after analysis on the F2 mapping population using the new molecular markers. The 2 closest flanking markers, SSRns-127 and SSR04219, were 0.7 and 2.4 cM from ns, respectively. The physical distance between SSRns-127 and SSR04219 was 266.1kb, containing 27 predicted genes. Csa2G285390 was speculated as the probable candidate gene for numerous spines. The accuracy of the closest linked marker to the ns gene, SSRns-127, for MAS breeding was 95.0%. PMID:27317924

  7. Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis

    Science.gov (United States)

    Closa, Adria; Cordero, David; Sanz-Pamplona, Rebeca; Solé, Xavier; Crous-Bou, Marta; Paré-Brunet, Laia; Berenguer, Antoni; Guino, Elisabet; Lopez-Doriga, Adriana; Guardiola, Jordi; Biondo, Sebastiano; Salazar, Ramon; Moreno, Victor

    2014-01-01

    In this study, we aim to identify the genes responsible for colorectal cancer risk behind the loci identified in genome-wide association studies (GWAS). These genes may be candidate targets for developing new strategies for prevention or therapy. We analyzed the association of genotypes for 26 GWAS single nucleotide polymorphisms (SNPs) with the expression of genes within a 2 Mb region (cis-eQTLs). Affymetrix Human Genome U219 expression arrays were used to assess gene expression in two series of samples, one of healthy colonic mucosa (n = 47) and other of normal mucosa adjacent to colon cancer (n = 97, total 144). Paired tumor tissues (n = 97) were also analyzed but did not provide additional findings. Partial Pearson correlation (r), adjusted for sample type, was used for the analysis. We have found Bonferroni-significant cis-eQTLs in three loci: rs3802842 in 11q23.1 associated to C11orf53, COLCA1 (C11orf92) and COLCA2 (C11orf93; r = 0.60); rs7136702 in 12q13.12 associated to DIP2B (r = 0.63) and rs5934683 in Xp22.3 associated to SHROOM2 and GPR143 (r = 0.47). For loci in chromosomes 11 and 12, we have found other SNPs in linkage disequilibrium that are more strongly associated with the expression of the identified genes and are better functional candidates: rs7130173 for 11q23.1 (r = 0.66) and rs61927768 for 12q13.12 (r = 0.86). These SNPs are located in DNA regions that may harbor enhancers or transcription factor binding sites. The analysis of trans-eQTLs has identified additional genes in these loci that may have common regulatory mechanisms as shown by the analysis of protein–protein interaction networks. PMID:24760461

  8. Analysis of breast cancer metastasis candidate genes from next generation-sequencing via systematic functional genomics

    DEFF Research Database (Denmark)

    Blomstrøm, Monica Marie

    2016-01-01

    Metastatic breast cancer remains an incurable disease accounting for the vast majority of deaths from breast cancer. Understanding the molecular mechanisms for metastatic spread is important to improve diagnosis and for generating starting points for novel treatment strategies. Inhibition...... advantage of mutations is that they are most likely stable in the metastatic cancer cell population, whereas miRNA, mRNA and protein expression profiles may change substantially prior to, throughout, or after the complex metastatic process as well as between subpopulations such as cancer stem cells (CSCs......) and non-CSCs. The main goal of this project was to functionally characterize a set of candidate genes recovered from next-generation sequencing analysis for their role in breast cancer metastasis formation. The starting gene set comprised 104 gene variants; i.e. 57 wildtype and 47 mutated variants. During...

  9. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize

    Institute of Scientific and Technical Information of China (English)

    Hongwei Zhang; Mohammed Shalim Uddin; Cheng Zou; Chuanxiao Xie; Yunbi Xu; WenXue Li

    2014-01-01

    Plants with tolerance to low-phosphorus (P) can grow better under low-P conditions, and understanding of genetic mechanisms of low-P tolerance can not only facilitate identifying relevant genes but also help to develop low-P tolerant cultivars. QTL meta-analysis was conducted after a comprehensive review of the reports on QTL mapping for low-P tolerance-related traits in maize. Meta-analysis pro-duced 23 consensus QTL (cQTL), 17 of which located in similar chromosome regions to those previously reported to influence root traits. Meanwhile, candidate gene mining yielded 215 genes, 22 of which located in the cQTL regions. These 22 genes are homologous to 14 functionally character-ized genes that were found to participate in plant low-P tolerance, including genes encoding miR399s, Pi transporters and purple acid phosphatases. Four cQTL loci (cQTL2-1, cQTL5-3, cQTL6-2, and cQTL10-2) may play important roles for low-P tolerance because each contains more original QTL and has better consistency across previous reports.

  10. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae)

    Science.gov (United States)

    Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR). This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system. PMID:27761329

  11. Candidate gene prioritization by network analysis of differential expression using machine learning approaches

    Directory of Open Access Journals (Sweden)

    Nitsch Daniela

    2010-09-01

    Full Text Available Abstract Background Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals. To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network. Results We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (Simple Expression Ranking. Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the Heat Kernel Diffusion Ranking leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%. Conclusion In this study we

  12. Genome-wide linkage analysis of global gene expression in loin muscle tissue identifies candidate genes in pigs.

    Directory of Open Access Journals (Sweden)

    Juan Pedro Steibel

    Full Text Available BACKGROUND: Nearly 6,000 QTL have been reported for 588 different traits in pigs, more than in any other livestock species. However, this effort has translated into only a few confirmed causative variants. A powerful strategy for revealing candidate genes involves expression QTL (eQTL mapping, where the mRNA abundance of a set of transcripts is used as the response variable for a QTL scan. METHODOLOGY/PRINCIPAL FINDINGS: We utilized a whole genome expression microarray and an F(2 pig resource population to conduct a global eQTL analysis in loin muscle tissue, and compared results to previously inferred phenotypic QTL (pQTL from the same experimental cross. We found 62 unique eQTL (FDR <10% and identified 3 gene networks enriched with genes subject to genetic control involved in lipid metabolism, DNA replication, and cell cycle regulation. We observed strong evidence of local regulation (40 out of 59 eQTL with known genomic position and compared these eQTL to pQTL to help identify potential candidate genes. Among the interesting associations, we found aldo-keto reductase 7A2 (AKR7A2 and thioredoxin domain containing 12 (TXNDC12 eQTL that are part of a network associated with lipid metabolism and in turn overlap with pQTL regions for marbling, % intramuscular fat (% fat and loin muscle area on Sus scrofa (SSC chromosome 6. Additionally, we report 13 genomic regions with overlapping eQTL and pQTL involving 14 local eQTL. CONCLUSIONS/SIGNIFICANCE: Results of this analysis provide novel candidate genes for important complex pig phenotypes.

  13. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage.

    Directory of Open Access Journals (Sweden)

    Khalid A Osman

    Full Text Available Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL, QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging, 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1 were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.

  14. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available BACKGROUND: Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. METHODOLOGY/PRINCIPAL FINDINGS: Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. CONCLUSIONS/SIGNIFICANCE: We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  15. Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates.

    Directory of Open Access Journals (Sweden)

    Azeem Mehmood Butt

    Full Text Available Mycobacterium ulcerans, the causative agent of Buruli ulcer, is the third most common mycobacterial disease after tuberculosis and leprosy. The present treatment options are limited and emergence of treatment resistant isolates represents a serious concern and a need for better therapeutics. Conventional drug discovery methods are time consuming and labor-intensive. Unfortunately, the slow growing nature of M. ulcerans in experimental conditions is also a barrier for drug discovery and development. In contrast, recent advancements in complete genome sequencing, in combination with cheminformatics and computational biology, represent an attractive alternative approach for the identification of therapeutic candidates worthy of experimental research. A computational, comparative genomics workflow was defined for the identification of novel therapeutic candidates against M. ulcerans, with the aim that a selected target should be essential to the pathogen, and have no homology in the human host. Initially, a total of 424 genes were predicted as essential from the M. ulcerans genome, via homology searching of essential genome content from 20 different bacteria. Metabolic pathway analysis showed that the most essential genes are associated with carbohydrate and amino acid metabolism. Among these, 236 proteins were identified as non-host and essential, and could serve as potential drug and vaccine candidates. Several drug target prioritization parameters including druggability were also calculated. Enzymes from several pathways are discussed as potential drug targets, including those from cell wall synthesis, thiamine biosynthesis, protein biosynthesis, and histidine biosynthesis. It is expected that our data will facilitate selection of M. ulcerans proteins for successful entry into drug design pipelines.

  16. Mosaic zebrafish transgenesis for functional genomic analysis of candidate cooperative genes in tumor pathogenesis.

    Science.gov (United States)

    Ung, Choong Yong; Guo, Feng; Zhang, Xiaoling; Zhu, Zhihui; Zhu, Shizhen

    2015-01-01

    Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic "drivers" among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has

  17. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations.

    Science.gov (United States)

    Rai, Rajani; Kim, Jong Joo; Misra, Sanjeev; Kumar, Ashok; Mittal, Balraj

    2015-01-01

    Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR) and Classification and Regression Tree Analysis (CRT) to investigate the gene-gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634); FAS (rs2234767); FASL (rs763110); DCC (rs2229080, rs4078288, rs7504990, rs714); PSCA (rs2294008, rs2978974); ADRA2A (rs1801253); ADRB1 (rs1800544); ADRB3 (rs4994); CYP17 (rs2486758)) involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634), DCC (rs714, rs2229080, rs4078288) and ADRB3 (rs4994) polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994) to be crucial candidate in GBC susceptibility that may act either alone (p ADRB3 rs4994 as candidate influencing GBC susceptibility. PMID:26602921

  18. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A;

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from exis...

  19. QTL analysis and candidate gene mapping for the polyphenol content in cider apple.

    Directory of Open Access Journals (Sweden)

    Cindy F Verdu

    Full Text Available Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed.

  20. Evaluating historical candidate genes for schizophrenia

    DEFF Research Database (Denmark)

    Farrell, M S; Werge, T; Sklar, P;

    2015-01-01

    Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24...... of these genes explicitly evaluated common variant hypotheses about schizophrenia. Our evaluation included a meta-analysis of the candidate gene literature, incorporation of the results of the largest genomic study yet published for schizophrenia, ratings from informed researchers who have published...... on these genes, and ratings from 24 schizophrenia geneticists. On the basis of current empirical evidence and mostly consensual assessments of informed opinion, it appears that the historical candidate gene literature did not yield clear insights into the genetic basis of schizophrenia. A likely reason why...

  1. Identification of candidate olfactory genes in Leptinotarsa decemlineata by antennal transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2015-06-01

    Full Text Available The sense of smell is critical for the survival of insects, by which insects detect the odor signals in the environment and make appropriate behavioral responses such as host preference, mate choice, and oviposition site selection. The antenna is the main olfactory organ in insects. Multiple antennal proteins have been suggested to be involved in olfactory signal transduction pathway such as odorant receptors (ORs, ionotropic receptors (IRs, odorant binding proteins (OBPs, chemosensory proteins (CSPs and sensory neuron membrane proteins (SNMPs. In this study, we identified several olfactory gene subfamilies in the economically important Coleopteran agricultural pest, Leptinotarsa decemlineata, by assembling the adult male and female antennal transcriptomes. In the male and female antennal transcriptome, we identified a total of 37 OR genes, 10 IR genes, 26 OBP genes, 15 CSP genes and 3 SNMP genes. Further all candidate ORs were validated to be expressed in male or female antenna by semi-quantitative reverse transcription PCR. Most of the candidate OR genes have similar expression level in male and female. A few OR genes have been detected as male-specific (LdecOR6 or male-bias (LdecOR5, LdecOR12, LdecOR26 and LdecOR32 expression. As well as that, two OR genes (LdecOR3 and LdecOR29 were proved to be expressed higher in female. Our findings make it possible for future research of the olfactory system of L. decemlineata at the molecular level.

  2. Genetic study of autosomal dominant progressive external ophthalmoplegia and familial myasthenia gravis : linkage analysis, candidate gene cloning and mutation detection

    OpenAIRE

    Li, Fang-Yuan

    2001-01-01

    Identification of genes responsible for familial human diseases is a major task of medical genetics. In this process, linkage analysis, candidate gene screening and mutation detection are the three major steps (Paper I-VI). The purpose of this study was to elucidate the genetic backgrounds of autosomal dominant progressive external ophthalmoplegia (adPEO) and familial inyasthenia gravis (FMG). The methods applied in this study for linkage analysis and repeat expansion we...

  3. Candidate gene prioritization with Endeavour.

    Science.gov (United States)

    Tranchevent, Léon-Charles; Ardeshirdavani, Amin; ElShal, Sarah; Alcaide, Daniel; Aerts, Jan; Auboeuf, Didier; Moreau, Yves

    2016-07-01

    Genomic studies and high-throughput experiments often produce large lists of candidate genes among which only a small fraction are truly relevant to the disease, phenotype or biological process of interest. Gene prioritization tackles this problem by ranking candidate genes by profiling candidates across multiple genomic data sources and integrating this heterogeneous information into a global ranking. We describe an extended version of our gene prioritization method, Endeavour, now available for six species and integrating 75 data sources. The performance (Area Under the Curve) of Endeavour on cross-validation benchmarks using 'gold standard' gene sets varies from 88% (for human phenotypes) to 95% (for worm gene function). In addition, we have also validated our approach using a time-stamped benchmark derived from the Human Phenotype Ontology, which provides a setting close to prospective validation. With this benchmark, using 3854 novel gene-phenotype associations, we observe a performance of 82%. Altogether, our results indicate that this extended version of Endeavour efficiently prioritizes candidate genes. The Endeavour web server is freely available at https://endeavour.esat.kuleuven.be/. PMID:27131783

  4. Identification of candidate target genes for human peripheral arterial disease using weighted gene co‑expression network analysis.

    Science.gov (United States)

    Yin, De-Xin; Zhao, Hao-Min; Sun, Da-Jun; Yao, Jian; Ding, Da-Yong

    2015-12-01

    The aim of the present study was to identify the potential treatment targets of peripheral arterial disease (PAD) and provide further insights into the underlying mechanism of PAD, based on a weighted gene co‑expression network analysis (WGCNA) method. The mRNA expression profiles (accession. no. GSE27034), which included 19 samples from patients with PAD and 18 samples from normal control individuals were extracted from the Gene Expression Omnibus database. Subsequently, the differentially expressed genes (DEGs) were obtained using the Limma package and the co‑expression network modules were screened using the WGCNA approach. In addition, the protein‑protein interaction network for the DEGs in the most significant module was constructed using Cytoscape software. Functional enrichment analyses of the DEGs in the most significant module were also performed using the Database for Annotation, Visualization and Integrated Discovery and Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology‑Based Annotation System, respectively. A total of 148 DEGs were identified in PAD, which were used to construct the WGCN, in which two modules (gray module and turquoise module) were identified, with the gray module exhibiting a higher gene significance (GS) value than the turquoise module. In addition, a co‑expression network was constructed for 60 DEGs in the gray module. The functional enrichment results showed that the DEGs in the gray module were enriched in five Gene Ontology terms and four KEGG pathways. For example, cyclin‑dependent kinase inhibitor 1A (CDKN1A), FBJ murine osteosarcoma viral oncogene homolog (FOS) and prostaglandin‑endoperoxide synthase 2 (PTGS2) were enriched in response to glucocorticoid stimulus. The results of the present study suggested that DEGs in the gray module, including CDKN1A, FOS and PTGS2, may be associated with the pathogenesis of PAD, by modulating the cell cycle, and may offer potential for use as candidate treatment

  5. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    Science.gov (United States)

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes

  6. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    Directory of Open Access Journals (Sweden)

    Nicholas M Morton

    Full Text Available BACKGROUND: Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L strain. RESULTS: To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney was performed. Known obesity quantitative trait loci (QTL information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. CONCLUSIONS: A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue

  7. Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis.

    Science.gov (United States)

    Shimizu, Motoki; Fujimoto, Ryo; Ying, Hua; Pu, Zi-jing; Ebe, Yusuke; Kawanabe, Takahiro; Saeki, Natsumi; Taylor, Jennifer M; Kaji, Makoto; Dennis, Elizabeth S; Okazaki, Keiichi

    2014-06-01

    Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.

  8. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    Directory of Open Access Journals (Sweden)

    Rajani Rai

    2015-11-01

    Full Text Available Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR and Classification and Regression Tree Analysis (CRT to investigate the gene–gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634; FAS (rs2234767; FASL (rs763110; DCC (rs2229080, rs4078288, rs7504990, rs714; PSCA (rs2294008, rs2978974; ADRA2A (rs1801253; ADRB1 (rs1800544; ADRB3 (rs4994; CYP17 (rs2486758 involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634, DCC (rs714, rs2229080, rs4078288 and ADRB3 (rs4994 polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994 to be crucial candidate in GBC susceptibility that may act either alone (p < 0.0001, CVC = 10/10 or in combination with DCC (rs714 and rs2229080, p < 0.0001, CVC = 9/10. Our CRT results are in agreement with the above findings. Further, in-silico results of studied SNPs advocated their role in splicing, transcriptional and/or protein coding regulation. Overall, our result suggested complex interactions amongst the studied SNPs and ADRB3 rs4994 as candidate influencing GBC susceptibility.

  9. A comprehensive genetic analysis of candidate genes regulating response to Trypanosoma congolense infection in mice.

    Directory of Open Access Journals (Sweden)

    Ian Goodhead

    Full Text Available BACKGROUND: African trypanosomes are protozoan parasites that cause "sleeping sickness" in humans and a similar disease in livestock. Trypanosomes also infect laboratory mice and three major quantitative trait loci (QTL that regulate survival time after infection with T. congolense have been identified in two independent crosses between susceptible A/J and BALB/c mice, and the resistant C57BL/6. These were designated Tir1, Tir2 and Tir3 for Trypanosoma infection response, and range in size from 0.9-12 cM. PRINCIPAL FINDINGS: Mapping loci regulating survival time after T. congolense infection in an additional cross revealed that susceptible C3H/HeJ mice have alleles that reduce survival time after infection at Tir1 and Tir3 QTL, but not at Tir2. Next-generation resequencing of a 6.2 Mbp region of mouse chromosome 17, which includes Tir1, identified 1,632 common single nucleotide polymorphisms (SNP including a probably damaging non-synonymous SNP in Pram1 (PML-RAR alpha-regulated adaptor molecule 1, which was the most plausible candidate QTL gene in Tir1. Genome-wide comparative genomic hybridisation identified 12 loci with copy number variants (CNV that correlate with differential gene expression, including Cd244 (natural killer cell receptor 2B4, which lies close to the peak of Tir3c and has gene expression that correlates with CNV and phenotype, making it a strong candidate QTL gene at this locus. CONCLUSIONS: By systematically combining next-generation DNA capture and sequencing, array-based comparative genomic hybridisation (aCGH, gene expression data and SNP annotation we have developed a strategy that can generate a short list of polymorphisms in candidate QTL genes that can be functionally tested.

  10. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  11. Expression analysis of 13 ovine immune response candidate genes in Visna/Maedi disease progression.

    Science.gov (United States)

    Larruskain, Amaia; Bernales, Irantzu; Luján, Lluis; de Andrés, Damián; Amorena, Beatriz; Jugo, Begoña M

    2013-07-01

    Visna/Maedi virus (VMV) is a lentivirus that infects cells of the monocyte/macrophage lineage in sheep. Infection with VMV may lead to Visna/Maedi (VM) disease, which causes a multisystemic inflammatory disorder causing pneumonia, encephalitis, mastitis and arthritis. The role of ovine immune response genes in the development of VM disease is not fully understood. In this work, sheep of the Rasa Aragonesa breed were divided into two groups depending on the presence/absence of VM-characteristic clinical lesions in the aforementioned organs and the relative levels of candidate gene expression, including cytokines and innate immunity loci were measured by qPCR in the lung and udder. Sheep with lung lesions showed differential expression in five target genes: CCR5, TLR7, and TLR8 were up regulated and IL2 and TNFα down regulated. TNFα up regulation was detected in the udder. PMID:23582860

  12. Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata.

    Directory of Open Access Journals (Sweden)

    Thomas L Turner

    Full Text Available Serpentine soil, which is naturally high in heavy metal content and has low calcium to magnesium ratios, comprises a difficult environment for most plants. An impressive number of species are endemic to serpentine, and a wide range of non-endemic plant taxa have been shown to be locally adapted to these soils. Locating genomic polymorphisms which are differentiated between serpentine and non-serpentine populations would provide candidate loci for serpentine adaptation. We have used the Arabidopsis thaliana tiling array, which has 2.85 million probes throughout the genome, to measure genetic differentiation between populations of Arabidopsis lyrata growing on granitic soils and those growing on serpentinic soils. The significant overrepresentation of genes involved in ion transport and other functions provides a starting point for investigating the molecular basis of adaptation to soil ion content, water retention, and other ecologically and economically important variables. One gene in particular, calcium-exchanger 7, appears to be an excellent candidate gene for adaptation to low CaratioMg ratio in A. lyrata.

  13. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis

    Science.gov (United States)

    Ma, Chun-Hua; Gao, Zheng-Jie; Zhang, Jia-Jin; Zhang, Wei; Shao, Jian-Hui; Hai, Mei-Rong; Chen, Jun-Wen; Yang, Sheng-Chao; Zhang, Guang-Hui

    2016-01-01

    Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. Principal findings: A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. Conclusion: The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. PMID:27242873

  14. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  15. Candidate genes in ocular dominance plasticity

    Directory of Open Access Journals (Sweden)

    M. Liset Rietman

    2012-02-01

    Full Text Available The objective of this study was to identify new candidate genes involved in experience-dependent plasticity. To this aim, we combined previously obtained data from recombinant inbred BXD strains on ocular dominance (OD plasticity and gene expression levels in the neocortex. We validated our approach using a list of genes which alter OD plasticity when inactivated. The expression levels of one fifth of these genes correlated with the amount of OD plasticity. Moreover, the two genes with the highest relative inter-strain differences were among the correlated genes. This suggests that correlation between gene expression levels and OD plasticity is indeed likely to point to genes with a causal role in modulating or generating plasticity in the visual cortex. After this validation on known plasticity genes, we identified new candidate genes by a multi-step approach. First, a list was compiled of all genes of which the expression level in BXD strains correlate with the amount of OD plasticity. To narrow this list to the more promising candidates, we took its cross-section with a list of genes co-regulated with the sensitive period for OD plasticity and a list of genes associated with pathways implicated in OD plasticity. This analysis resulted in a list of 32 candidate genes. The list contained unproven, but not surprising, candidates, such as the genes for IGF-1, NCAM1, NOGO-A, the gamma2 subunit of the GABA(A receptor, acetylcholine esterase and the catalytic subunit of cAMP-dependent protein kinase A. This was indicative of the viability of our approach, but more interesting were the novel candidate genes: Akap7, Akt1, Camk2d, Cckbr, Cd44, Crim1, Ctdsp2, Dnajc5, Gnai1, Itpka, Mapk8, Nbea, Nfatc3, Nlk, Npy5r, Phf21a, Phip, Ppm1l, Ppp1r1b, Rbbp4, Slc1a3, Slit2, Socs2, Spock3, St8sia1, Zfp207. The possible role of some of these candidates is discussed in the article.

  16. Candidate Gene Association Analysis of Neuroblastoma in Chinese Children Strengthens the Role of LMO1.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Neuroblastoma (NB is the most common extra-cranial solid tumor in children and the most frequently diagnosed cancer in the first year of life. Previous genome-wide association studies (GWAS of Caucasian and African populations have shown that common single nucleotide polymorphisms (SNPs in several genes are associated with the risk of developing NB, while few studies have been performed on Chinese children. Herein, we examined the association between the genetic polymorphisms in candidate genes and the risk of NB in Chinese children. In total, 127 SNPs in nine target genes, revealed by GWAS studies of other ethnic groups and four related lincRNAs, were genotyped in 549 samples (244 NB patients and 305 healthy controls. After adjustment for gender and age, there were 21 SNPs associated with NB risk at the two-sided P < 0.05 level, 11 of which were located in LMO1. After correction for multiple comparisons, only rs204926 in LMO1 remained significantly different between cases and controls (OR = 0.45, 95% CI: 0.31-0.65, adjusted P = 0.003. In addition, 16 haplotypes in four separate genes were significantly different between case and control groups at an unadjusted P value < 0.05, 11 of which were located in LMO1. A major haplotype, ATC, containing rs204926, rs110420, and rs110419, conferred a significant increase in risk for NB (OR = 1.82, 95% CI: 1.41-2.36, adjusted P < 0.001. The major finding of our study was obtained for risk alleles within the LMO1 gene. Our data suggest that genetic variants in LMO1 are associated with increased NB risk in Chinese children.

  17. Candidate Gene Association Analysis of Neuroblastoma in Chinese Children Strengthens the Role of LMO1

    Science.gov (United States)

    Wang, Huanmin; Jin, Yaqiong; Han, Shujing; Han, Wei; Tai, Jun; Guo, Yongli; Ni, Xin

    2015-01-01

    Neuroblastoma (NB) is the most common extra-cranial solid tumor in children and the most frequently diagnosed cancer in the first year of life. Previous genome-wide association studies (GWAS) of Caucasian and African populations have shown that common single nucleotide polymorphisms (SNPs) in several genes are associated with the risk of developing NB, while few studies have been performed on Chinese children. Herein, we examined the association between the genetic polymorphisms in candidate genes and the risk of NB in Chinese children. In total, 127 SNPs in nine target genes, revealed by GWAS studies of other ethnic groups and four related lincRNAs, were genotyped in 549 samples (244 NB patients and 305 healthy controls). After adjustment for gender and age, there were 21 SNPs associated with NB risk at the two-sided P < 0.05 level, 11 of which were located in LMO1. After correction for multiple comparisons, only rs204926 in LMO1 remained significantly different between cases and controls (OR = 0.45, 95% CI: 0.31–0.65, adjusted P = 0.003). In addition, 16 haplotypes in four separate genes were significantly different between case and control groups at an unadjusted P value < 0.05, 11 of which were located in LMO1. A major haplotype, ATC, containing rs204926, rs110420, and rs110419, conferred a significant increase in risk for NB (OR = 1.82, 95% CI: 1.41–2.36, adjusted P < 0.001). The major finding of our study was obtained for risk alleles within the LMO1 gene. Our data suggest that genetic variants in LMO1 are associated with increased NB risk in Chinese children. PMID:26030754

  18. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze).

    Science.gov (United States)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-01-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops. PMID:27465480

  19. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)

    Science.gov (United States)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-07-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.

  20. Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes

    Indian Academy of Sciences (India)

    Prathima Arvind; Shanker Jayashree; Srikarthika Jambunathan; Jiny Nair; Vijay V. Kakkar

    2015-12-01

    Molecular mechanism underlying the patho-physiology of coronary artery disease (CAD) is complex. We used global expression profiling combined with analysis of biological network to dissect out potential genes and pathways associated with CAD in a representative case–control Asian Indian cohort. We initially performed blood transcriptomics profiling in 20 subjects, including 10 CAD patients and 10 healthy controls on the Agilent microarray platform. Data was analysed with Gene Spring Gx12.5, followed by network analysis using David v 6.7 and Reactome databases. The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change > 2, P < 0.05) between the cases and the controls of which 142 genes were upregulated and 48 genes were downregulated. Genes associated with inflammation, immune response, cell regula- tion, proliferation and apoptotic pathways were enriched, while inflammatory and immune response genes were displayed as hubs in the network, having greater number of interactions with the neighbouring genes. Expression of 1/2/3, 8, 1, 2, 69, , , 4, 42, 58, and 42 genes were independently validated; 1/2/3 and 8 showed >8-fold higher expression in cases relative to the controls implying their important role in CAD. In conclusion, global gene expression profiling combined with network analysis can help in identifying key genes and pathways for CAD.

  1. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers.

    Directory of Open Access Journals (Sweden)

    Ineke C M Lavrijsen

    Full Text Available Hip dysplasia, an abnormal laxity of the hip joint, is seen in humans as well as dogs and is one of the most common skeletal disorders in dogs. Canine hip dysplasia is considered multifactorial and polygenic, and a variety of chromosomal regions have been associated with the disorder. We performed a genome-wide association study in Dutch Labrador Retrievers, comparing data of nearly 18,000 single nucleotide polymorphisms (SNPs in 48 cases and 30 controls using two different statistical methods. An individual SNP analysis based on comparison of allele frequencies with a χ(2 statistic was used, as well as a simultaneous SNP analysis based on Bayesian variable selection. Significant association with canine hip dysplasia was observed on chromosome 8, as well as suggestive association on chromosomes 1, 5, 15, 20, 25 and 32. Next-generation DNA sequencing of the exons of genes of seven regions identified multiple associated alleles on chromosome 1, 5, 8, 20, 25 and 32 (p<0.001. Candidate genes located in the associated regions on chromosomes 1, 8 and 25 included LAMA2, LRR1 and COL6A3, respectively. The associated region on CFA20 contained candidate genes GDF15, COMP and CILP2. In conclusion, our study identified candidate genes that might affect susceptibility to canine hip dysplasia. These genes are involved in hypertrophic differentiation of chondrocytes and extracellular matrix integrity of basement membrane and cartilage. The functions of the genes are in agreement with the notion that disruptions in endochondral bone formation in combination with soft tissue defects are involved in the etiology of hip dysplasia.

  2. Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19

    Directory of Open Access Journals (Sweden)

    Ferrell Robert E

    2011-01-01

    Full Text Available Abstract Background Abdominal aortic aneurysm (AAA is a complex disorder with multiple genetic risk factors. Using affected relative pair linkage analysis, we previously identified an AAA susceptibility locus on chromosome 19q13. This locus has been designated as the AAA1 susceptibility locus in the Online Mendelian Inheritance in Man (OMIM database. Methods Nine candidate genes were selected from the AAA1 locus based on their function, as well as mRNA expression levels in the aorta. A sample of 394 cases and 419 controls was genotyped for 41 SNPs located in or around the selected nine candidate genes using the Illumina GoldenGate platform. Single marker and haplotype analyses were performed. Three genes (CEBPG, PEPD and CD22 were selected for DNA sequencing based on the association study results, and exonic regions were analyzed. Immunohistochemical staining of aortic tissue sections from AAA and control individuals was carried out for the CD22 and PEPD proteins with specific antibodies. Results Several SNPs were nominally associated with AAA (p CEBPG, peptidase D (PEPD, and CD22. Haplotype analysis found a nominally associated 5-SNP haplotype in the CEBPG/PEPD locus, as well as a nominally associated 2-SNP haplotype in the CD22 locus. DNA sequencing of the coding regions revealed no variation in CEBPG. Seven sequence variants were identified in PEPD, including three not present in the NCBI SNP (dbSNP database. Sequencing of all 14 exons of CD22 identified 20 sequence variants, five of which were in the coding region and six were in the 3'-untranslated region. Five variants were not present in dbSNP. Immunohistochemical staining for CD22 revealed protein expression in lymphocytes present in the aneurysmal aortic wall only and no detectable expression in control aorta. PEPD protein was expressed in fibroblasts and myofibroblasts in the media-adventitia border in both aneurysmal and non-aneurysmal tissue samples. Conclusions Association testing

  3. Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds.

    Science.gov (United States)

    Suárez-Vega, A; Gutiérrez-Gil, B; Arranz, J J

    2016-08-01

    Because ewe milk is principally used for cheese making, its quality is related to its content of total solids and the way in which milk constituents influence cheese yield and determine the technological and organoleptic characteristics of dairy products. Therefore, an in-depth knowledge of the expression levels of milk genes influencing cheese-related traits is essential. In the present study, the milk transcriptome data set of 2 dairy sheep breeds, Assaf and Spanish Churra, was used to evaluate the expression levels of 77 transcripts related to cheese yield and quality traits. For the comparison between both breeds, we selected the RNA sequencing (RNA-Seq) data at d 10 of lactation because this is the time point at which within and between breed differences due to lactation length are minimal. The evaluated genes encode major milk proteins (caseins and whey proteins), endogenous proteases, and enzymes related to fatty acid metabolism and citrate content. Through this analysis, we identified the genes predominantly expressed in each of the analyzed pathways that appear to be key genes for traits related to sheep milk cheese. Among the highly expressed genes in both breeds were the genes encoding caseins and whey proteins (CSN2, CSN3, CSN1S1, ENSOARG00000005099/PAEP, CSN1S2, LALBA), genes related to lipid metabolism (BTN1A1, XDH, FASN, ADFP, SCD, H-FABP, ACSS2), and one endogenous protease (CTSB). Moreover, a differential expression analysis between Churra and Assaf sheep allowed us to identify 7 genes that are significantly differentially expressed between the 2 breeds. These genes were mainly linked to endogenous protease activity (CTSL, CTSK, KLK10, KLK6, SERPINE2). Additionally, there were 2 differentially expressed genes coding for an intracellular fatty acid transporter (FABP4), an intermediate molecule of the citric acid cycle (SUCNR1), and 2 heat shock proteins (HSP70, HSPB8) that could be related to high protein production. The differential expression of

  4. Identification of candidate genes for human pituitary development by EST analysis

    Directory of Open Access Journals (Sweden)

    Xiao Huasheng

    2009-03-01

    Full Text Available Abstract Background The pituitary is a critical neuroendocrine gland that is comprised of five hormone-secreting cell types, which develops in tandem during the embryonic stage. Some essential genes have been identified in the early stage of adenohypophysial development, such as PITX1, FGF8, BMP4 and SF-1. However, it is likely that a large number of signaling molecules and transcription factors essential for determination and terminal differentiation of specific cell types remain unidentified. High-throughput methods such as microarray analysis may facilitate the measurement of gene transcriptional levels, while Expressed sequence tag (EST sequencing, an efficient method for gene discovery and expression level analysis, may no-redundantly help to understand gene expression patterns during development. Results A total of 9,271 ESTs were generated from both fetal and adult pituitaries, and assigned into 961 gene/EST clusters in fetal and 2,747 in adult pituitary by homology analysis. The transcription maps derived from these data indicated that developmentally relevant genes, such as Sox4, ST13 and ZNF185, were dominant in the cDNA library of fetal pituitary, while hormones and hormone-associated genes, such as GH1, GH2, POMC, LHβ, CHGA and CHGB, were dominant in adult pituitary. Furthermore, by using RT-PCR and in situ hybridization, Sox4 was found to be one of the main transcription factors expressed in fetal pituitary for the first time. It was expressed at least at E12.5, but decreased after E17.5. In addition, 40 novel ESTs were identified specifically in this tissue. Conclusion The significant changes in gene expression in both tissues suggest a distinct and dynamic switch between embryonic and adult pituitaries. All these data along with Sox4 should be confirmed to further understand the community of multiple signaling pathways that act as a cooperative network that regulates maturation of the pituitary. It was also suggested that EST

  5. Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test.

    Science.gov (United States)

    Young, E E; Bryant, C D; Lee, S E; Peng, X; Cook, B; Nair, H K; Dreher, K J; Zhang, X; Palmer, A A; Chung, J M; Mogil, J S; Chesler, E J; Lariviere, W R

    2016-07-01

    Mechanical sensitivity is commonly affected in chronic pain and other neurological disorders. To discover mechanisms of individual differences in punctate mechanosensation, we performed quantitative trait locus (QTL) mapping of the response to von Frey monofilament stimulation in BXD recombinant inbred (BXD) mice. Significant loci were detected on mouse chromosome (Chr) 5 and 15, indicating the location of underlying polymorphisms that cause heritable variation in von Frey response. Convergent evidence from public gene expression data implicates candidate genes within the loci: von Frey thresholds were strongly correlated with baseline expression of Cacna2d1, Ift27 and Csnk1e in multiple brain regions of BXD strains. Systemic gabapentin and PF-670462, which target the protein products of Cacna2d1 and Csnk1e, respectively, significantly increased von Frey thresholds in a genotype-dependent manner in progenitors and BXD strains. Real-time polymerase chain reaction confirmed differential expression of Cacna2d1 and Csnk1e in multiple brain regions in progenitors and showed differential expression of Cacna2d1 and Csnk1e in the dorsal root ganglia of the progenitors and BXD strains grouped by QTL genotype. Thus, linkage mapping, transcript covariance and pharmacological testing suggest that genetic variation affecting Cacna2d1 and Csnk1e may contribute to individual differences in von Frey filament response. This study implicates Cacna2d1 and Ift27 in basal mechanosensation in line with their previously suspected role in mechanical hypersensitivity. Csnk1e is implicated for von Frey response for the first time. Further investigation is warranted to identify the specific polymorphisms involved and assess the relevance of these findings to clinical conditions of disturbed mechanosensation. PMID:27231153

  6. Association analysis of GWAS and candidate gene loci in a Pakistani population with psoriasis.

    Science.gov (United States)

    Munir, Saeeda; ber Rahman, Simeen; Rehman, Sadia; Saba, Nusrat; Ahmad, Wasim; Nilsson, Staffan; Mazhar, Kehkashan; Naluai, Åsa Torinsson

    2015-03-01

    Psoriasis is a common inflammatory and hyper proliferative condition of the skin and a serious chronic systemic autoimmune disease. We undertook an association study to investigate the genetic etiology of psoriasis in a Pakistani population by genotyping single-nucleotide polymorphisms (SNPs) previously reported to be associated in genome-wide association (GWAS) or in candidate gene studies of psoriasis. Fifty seven single-nucleotide polymorphisms (SNPs) from 42 loci were genotyped in 533 psoriasis patients and 373 controls. Our results showed genome wide significant association of the MHC region (rs1265181 being the most significant from five SNPs used with overall OR=3.38; p=2.97E-18), as well as nominally significant associations at ten other loci (pfactors and molecular mechanisms behind disease in Pakistani psoriasis patients as in other populations. In addition, we show that the MHC and TNIP1 regions are significantly different in patients with psoriasis onset before the age of 40 (type I) compared to after 40 years of age (type II). MHC being associated mainly with type I while TNIP1 with type II patients.

  7. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    OpenAIRE

    Rajani Rai; Jong Joo Kim; Sanjeev Misra; Ashok Kumar; Balraj Mittal

    2015-01-01

    Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactio...

  8. QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber.

    Science.gov (United States)

    Liang, Danna; Chen, Minyang; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2016-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphid is one of the most serious cucumber pests and frequently cause severe damage to commercially produced crops. Understanding the genetic mechanisms underlying pest resistance is important for aphid-resistant cucumber varieties breeding. In this study, two parental cucumber lines, JY30 (aphid susceptible) and EP6392 (aphid resistant), and pools of resistant and susceptible (n = 50 each) plants from 1000 F2 individuals derived from crossing JY30 with EP6392, were used to detect genomic regions associated with aphid resistance in cucumbers. The analysis was performed using specific length amplified fragment sequencing (SLAF-seq), bulked segregant analysis (BSA), and single nucleotide polymorphism index (SNP-index) methods. A main effect QTL (quantitative trait locus) of 0.31 Mb on Chr5, including 43 genes, was identified by association analysis. Sixteen of the 43 genes were identified as potentially associated with aphid resistance through gene annotation analysis. The effect of aphid infestation on the expression of these candidate genes screened by SLAF-seq was investigated in EP6392 plants by qRT-PCR. The results indicated that seven genes including encoding transcription factor MYB59-like (Csa5M641610.1), auxin transport protein BIG-like (Csa5M642140.1), F-box/kelch-repeat protein At5g15710-like (Csa5M642160.1), transcription factor HBP-1a-like (Csa5M642710.1), beta-glucan-binding protein (Csa5M643380.1), endo-1,3(4)-beta-glucanase 1-like (Csa5M643880.1), and proline-rich receptor-like protein kinase PERK10-like (Csa5M643900.1), out of the 16 genes were down regulated after aphid infestation, whereas 5 genes including encoding probable leucine-rich repeat (LRR) receptor-like serine/threonine-protein kinase At5g15730-like (Csa5M642150.1), Stress-induced protein KIN2 (Csa5M643240.1 and Csa5M643260.1), F-box family protein (Csa5M643280.1), F-box/kelch-repeat protein (Csa5M643290

  9. QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber

    Directory of Open Access Journals (Sweden)

    Danna Liang

    2016-07-01

    Full Text Available Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphid is one of the most serious cucumber pests and frequently cause severe damage to commercially produced crops. Understanding the genetic mechanisms underlying pest resistance is important for aphid-resistant cucumber varieties breeding. In this study, two parental cucumber lines, JY30 (aphid susceptible and EP6392 (aphid resistant, and pools of resistant and susceptible (n = 50 each plants from 1000 F2 individuals derived from crossing JY30 with EP6392, were used to detect genomic regions associated with aphid resistance in cucumbers. The analysis was performed using specific length amplified fragment sequencing (SLAF-seq, bulked segregant analysis (BSA and single nucleotide polymorphism index (SNP-index methods. A main effect QTL (quantitative trait locus of 0.31 Mb on Chr5, including 43 genes, was identified by association analysis. Sixteen of the 43 genes were identified as potentially associated with aphid resistance through gene annotation analysis. The effect of aphid infestation on the expression of these candidate genes screened by SLAF-seq was investigated in EP6392 plants by qRT-PCR. The results indicated that 7 genes including encoding transcription factor MYB59-like (Csa5M641610.1, auxin transport protein BIG-like (Csa5M642140.1, F-box/kelch-repeat protein At5g15710-like (Csa5M642160.1, transcription factor HBP-1a-like (Csa5M642710.1, beta-glucan-binding protein (Csa5M643380.1, endo-1,3(4-beta-glucanase 1-like (Csa5M643880.1, and proline-rich receptor-like protein kinase PERK10-like (Csa5M643900.1, out of the 16 genes were down regulated after aphid infestation, whereas 5 genes including encoding probable leucine-rich repeat receptor-like serine/threonine-protein kinase At5g15730-like (Csa5M642150.1, Stress-induced protein KIN2 (Csa5M643240.1 and Csa5M643260.1, F-box family protein (Csa5M643280.1, F-box/kelch-repeat protein (Csa5M643290.1, were up

  10. Genotypic diagnosis of long QT syndrome by analysis of candidate genes

    Institute of Scientific and Technical Information of China (English)

    Jiang-fang Lian; Chen Huang; Xiao-yan Huang; Ying Wang; Shi-jun Ge; Jian-qing Zhou

    2009-01-01

    Objective To diagnose 6 LQTS families by genetic analysis. Methods A total aof 6 LQTS pedigrees with 43 family members were brought together for genetic diagnosis by using short-sequence tandem-repeat (SIR) markers or sequencing. Genomic DNA was extracted from blood samples by standard procedure. STR markers or KCNQ1, KCNH2 and SCN5A were amplified. The haplotype analysis for LQTS was performed. If the family got the negative haplotype analysis, the sequencing was performed. Results LQTS patients were always linkaged with the SCNSA gene in family 1. KCNH2 was linkaged with the disease in family 2 to 5.21 gene carriers were identified from these 5 families. A mutation (A561V-KCNH2) was only found in the proband of family 6 and an SNP (G1691A) was found in all the members of the family. Conclusion Genetic diagnosis can not only improve presymptomatic diagnosis,bnt also provide the basis for personal therapy and research on disease-causing mutations.

  11. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes.

    Science.gov (United States)

    Pers, Tune H; Timshel, Pascal; Ripke, Stephan; Lent, Samantha; Sullivan, Patrick F; O'Donovan, Michael C; Franke, Lude; Hirschhorn, Joel N

    2016-03-15

    Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approach, we show that genes in associated loci: (1) are highly expressed in cortical brain areas; (2) are enriched for ion channel pathways (false discovery rates <0.05); and (3) contain 62 genes that are functionally related to each other and hence represent promising candidates for experimental follow up. We validate the relevance of the prioritized genes by showing that they are enriched for rare disruptive variants and de novo variants from schizophrenia sequencing studies (odds ratio 1.67, P = 0.039), and are enriched for genes encoding members of mouse and human postsynaptic density proteomes (odds ratio 4.56, P = 5.00 × 10(-4); odds ratio 2.60, P = 0.049).The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Author.

  12. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera

    Science.gov (United States)

    Pandey, Akansha; Swarnkar, Vishakha; Pandey, Tushar; Srivastava, Piush; Kanojiya, Sanjeev; Mishra, Dipak Kumar; Tripathi, Vineeta

    2016-01-01

    Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG’s were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes. PMID:27703261

  13. Computational analysis of candidate disease genes and variants for Salt-sensitive hypertension in indigenous Southern Africans

    KAUST Repository

    Tiffin, Nicki

    2010-09-27

    Multiple factors underlie susceptibility to essential hypertension, including a significant genetic and ethnic component, and environmental effects. Blood pressure response of hypertensive individuals to salt is heterogeneous, but salt sensitivity appears more prevalent in people of indigenous African origin. The underlying genetics of salt-sensitive hypertension, however, are poorly understood. In this study, computational methods including text- and data-mining have been used to select and prioritize candidate aetiological genes for salt-sensitive hypertension. Additionally, we have compared allele frequencies and copy number variation for single nucleotide polymorphisms in candidate genes between indigenous Southern African and Caucasian populations, with the aim of identifying candidate genes with significant variability between the population groups: identifying genetic variability between population groups can exploit ethnic differences in disease prevalence to aid with prioritisation of good candidate genes. Our top-ranking candidate genes include parathyroid hormone precursor (PTH) and type-1angiotensin II receptor (AGTR1). We propose that the candidate genes identified in this study warrant further investigation as potential aetiological genes for salt-sensitive hypertension. © 2010 Tiffin et al.

  14. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha;

    2015-01-01

    associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (Pfunctional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage...

  15. Meta-analysis of association studies between five candidate genes and type 2 diabetes in Chinese Han population.

    Science.gov (United States)

    Jing, Chen; Xueyao, Han; Linong, Ji

    2012-10-01

    The multiple small-scale association studies of candidate genes for type 2 diabetes mellitus in the Chinese Han population have shown inconsistent results. Here, we performed a meta-analysis to evaluate the contribution of five candidate genes to the pathogenesis of type 2 diabetes in the Chinese Han population. We searched for relevant published papers and used STATA v.11.0 to perform a meta-analysis on six single-nucleotide polymorphisms in five genes-ADIPOQ-rs2241766 (SNP45) and -rs1501299 (SNP276), ADRB3-rs4994 (Trp64Arg), CAPN10-rs3792267 (SNP43), ENPP1-rs1044498 (K121Q), and PPARGC1A-rs8192678 (Gly482Ser)-in the Chinese Han population under an additive genetic model. The pooled odds ratios (95% confidence intervals and P-values) were 0.71 (0.60-0.83; P ADRB3-rs4994, 0.79 (0.57-1.10; P = 0.163) for CAPN10-rs3792267, 1.41 (1.13-1.76; P = 0.003) for ENPP1-rs1044498, and 1.54 (1.34-1.81; P ADRB3-rs4994, ENPP1-rs1044498, and PPARGC1A-rs8192678 (I² = 0.0, 43.4, and 23.3%, respectively). Under an additive genetic model, the C allele of ADRB3-rs4994, the C allele of ENPP1-rs1044498, and the A allele of PPARGC1A-rs8192678 increase the risk of type 2 diabetes in the Chinese Han population. PMID:22391941

  16. Evaluating gene × gene and gene × smoking interaction in rheumatoid arthritis using candidate genes in GAW15

    OpenAIRE

    Mei Ling; Li Xiaohui; Yang Kai; Cui Jinrui; Fang Belle; Guo Xiuqing; Rotter Jerome I

    2007-01-01

    Abstract We examined the potential gene × gene interactions and gene × smoking interactions in rheumatoid arthritis (RA) using the candidate gene data sets provided by Genetic Analysis Workshop 15 Problem 2. The multifactor dimensionality reduction (MDR) method was used to test gene × gene interactions among candidate genes. The case-only sample was used to test gene × smoking interactions. The best predictive model was the single-locus model with single-nucleotide polymorphism (SNP) rs247660...

  17. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    Science.gov (United States)

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica. PMID:27003438

  18. Analysis of human genetic variation in candidate genes under positive selections on the human linage

    OpenAIRE

    Moreno Estrada, Andr??s

    2009-01-01

    Natural selection has played an important role in shaping human genetic variation, thus, finding variants that have been targeted by positive selection can provide insights about which genes influence human phenotypic variability. In this work we conduct a genome-wide survey of protein-coding genes comparing humans, chimpanzees, and closely related species in order to detect the fraction of genes undergoing positive selection on the human lineage, and further investigate intraspecific variati...

  19. Bioinformatics methods for identifying candidate disease genes

    NARCIS (Netherlands)

    Driel, M.A. van; Brunner, H.G.

    2006-01-01

    With the explosion in genomic and functional genomics information, methods for disease gene identification are rapidly evolving. Databases are now essential to the process of selecting candidate disease genes. Combining positional information with disease characteristics and functional information i

  20. Cattle Candidate Genes for Milk Production Traits

    OpenAIRE

    Kadlec, Tomáš

    2012-01-01

    The aim of this thesis is to make an overview of important candidate genes affecting milk yield and milk quality parameters, with an emphasis on genes associated with the quantity and quality of milk proteins and milk fat.

  1. Analysis of Candidate Genes in Occurrence and Growth of Colorectal Adenomas

    Directory of Open Access Journals (Sweden)

    Sylviane Olschwang

    2009-01-01

    Full Text Available Predisposition to sporadic colorectal tumours is influenced by genes with minor phenotypic effects. A case-control study was set up on 295 patients treated for a large adenoma matched with polyp-free individuals on gender, age, and geographic origin in a 1 : 2 proportion. A second group of 302 patients treated for a small adenoma was also characterized to distinguish effects on adenoma occurrence and growth. We focussed the study on 38 single nucleotide polymorphisms (SNPs encompassing 14 genes involved in colorectal carcinogenesis. Effect of SNPs was tested using unconditional logistic regression. Comparisons were made for haplotypes within a given gene and for biologically relevant genes combinations using the combination test. The APC p.Glu1317Gly variant appeared to influence the adenoma growth (P=.04, exact test but not its occurrence. This result needs to be replicated and genome-wide association studies may be necessary to fully identify low-penetrance alleles involved in early stages of colorectal tumorigenesis.

  2. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q

    DEFF Research Database (Denmark)

    Bonora, Elena; Lamb, Janine A; Barnby, Gabrielle;

    2005-01-01

    Genetic studies have provided evidence for an autism susceptibility locus (AUTS1) on chromosome 7q. Screening for mutations in six genes mapping to 7q, CUTL1, SRPK2, SYPL, LAMB1, NRCAM and PTPRZ1 in 48 unrelated individuals with autism led to the identification of several new coding variants...

  3. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney

    NARCIS (Netherlands)

    Westland, R.; Verbitsky, M.; Vukojevic, K.; Perry, B.J.; Fasel, D.A.; Zwijnenburg, P.J.; Bokenkamp, A.; Gille, J.J.P.; Saraga-Babic, M.; Ghiggeri, G.M.; D'Agati, V.D.; Schreuder, M.F.; Gharavi, A.G.; Wijk, J.A. van; Sanna-Cherchi, S.

    2015-01-01

    Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic dr

  4. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q

    DEFF Research Database (Denmark)

    Bonora, E.; Lamb, J.A.; Barnby, G.;

    2005-01-01

    Genetic studies have provided evidence for an autism susceptibility locus (AUTS1) on chromosome 7q. Screening for mutations in six genes mapping to 7q, CUTL1, SRPK2, SYPL, LAMB1, NRCAM and PTPRZ1 in 48 unrelated individuals with autism led to the identification of several new coding variants in t...

  5. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis.

    Science.gov (United States)

    Lee, Kyung Jun; Kim, Dong Sub; Kim, Jin-Baek; Jo, Sung-Hwan; Kang, Si-Yong; Choi, Hong-Il; Ha, Bo-Keun

    2016-08-01

    Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In this study, we performed whole genome resequencing by Illumina HiSeq to identify changes in flowering genes using an early-flowering phenotype of soybean mutant line Josaengserori (JS) derived from Korean landrace, Seoritae (SR), and we obtained mapped reads of 131,769,690 and 167,669,640 bp in JS and SR, respectively. From the whole genome sequencing results between JS and SR, we identified 332,821 polymorphic SNPs and 65,178 indels, respectively. Among these, 30 flowering genes were in SNPs and 25 were in indels. Among 30 flowering genes detected in SNPs, Glyma02g33040, Glyma06g22650, Glyma10g36600, Glyma13g01290, Glyma14g10530, Glyma16g01980, Glyma17g11040, Glyma18g53690, and Glyma20g29300 were non-synonymous substitutions between JS and SR. Changes in Glyma10g36600 (GI), Glya02g33040 (AGL18), Glyma17g11040 (TOC1), and Glyma14g10530 (ELF3) in JS affected the expression of GmFT2a and resulted in early flowering. These results provide insight into the regulatory pathways of flowering in soybean mutants and help to improve our knowledge of soybean mutation breeding. PMID:27033554

  6. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis.

    Science.gov (United States)

    Lee, Kyung Jun; Kim, Dong Sub; Kim, Jin-Baek; Jo, Sung-Hwan; Kang, Si-Yong; Choi, Hong-Il; Ha, Bo-Keun

    2016-08-01

    Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In this study, we performed whole genome resequencing by Illumina HiSeq to identify changes in flowering genes using an early-flowering phenotype of soybean mutant line Josaengserori (JS) derived from Korean landrace, Seoritae (SR), and we obtained mapped reads of 131,769,690 and 167,669,640 bp in JS and SR, respectively. From the whole genome sequencing results between JS and SR, we identified 332,821 polymorphic SNPs and 65,178 indels, respectively. Among these, 30 flowering genes were in SNPs and 25 were in indels. Among 30 flowering genes detected in SNPs, Glyma02g33040, Glyma06g22650, Glyma10g36600, Glyma13g01290, Glyma14g10530, Glyma16g01980, Glyma17g11040, Glyma18g53690, and Glyma20g29300 were non-synonymous substitutions between JS and SR. Changes in Glyma10g36600 (GI), Glya02g33040 (AGL18), Glyma17g11040 (TOC1), and Glyma14g10530 (ELF3) in JS affected the expression of GmFT2a and resulted in early flowering. These results provide insight into the regulatory pathways of flowering in soybean mutants and help to improve our knowledge of soybean mutation breeding.

  7. Analysis of gene expression during flowering in apomeiotic mutants of Medicago spp.: cloning of ESTs and candidate genes for 2n eggs.

    Science.gov (United States)

    Barcaccia, G; Varotto, S; Meneghetti, S; Albertini, E; Porceddu, A; Parrini, P; Lucchin, M

    2001-12-01

    Mutants showing features of apomixis have been documented in alfalfa (Medicago sativa L.), a natural outcrossing sexual species. A differential display of mRNAs that combines cDNA-AFLP markers and bulked segregant analysis was carried out with the aim of selecting expressed sequence tags (ESTs) and cloning candidate genes for apomeiosis in mutants of alfalfa characterized by 2n egg formation at high frequencies. The approach enabled us to select either mutant- or wild type-specific transcript derived-fragments and to detect transcriptional changes potentially related to 2n eggs. Sequence alignments of a subset of 40 polymorphic clones showed significant homologies to genes of known function. An EST with identity to a β-tubulin gene, highly expressed in the wild type and poorly expressed in the apomeiotic mutants, and an EST with identity to a Mob1-like gene, qualitatively polymorphic between pre- and post-meiotic stages, were selected as candidate genes for apomeiosis because of their putative roles in the cell cycle. A number of clone-specific primers were designed for performing both 5' and 3' rapid amplification of cDNA ends to obtain the full-length clones. Southern blot hybridization revealed that both clones belong to a multi-gene family with a minimum of three genomic DNA members each. Northern blot hybridization of total RNA samples and in situ hybridization of whole buds enabled the definition of their temporal and spatial expression patterns in reproductive organs. Experimental achievements towards the elucidation of apomeiotic megasporogenesis in alfalfa are presented and discussed.

  8. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis.

    Science.gov (United States)

    Cao, Depan; Liu, Yang; Wei, Jinjin; Liao, Xinyan; Walker, William B; Li, Jianhong; Wang, Guirong

    2014-01-01

    Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by multiple proteins in the antenna, especially the odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, we identified the olfactory gene repertoire of the rice stem borer, Chilo suppressalis, an economically important agricultural pest, which inflicts great damage to the rice yield in south and east part of Asia, especially in Southern China. By Illumina sequencing of male and female antennal transcriptomes, we identified 47 odorant receptors, 20 ionotropic receptors, 26 odorant binding proteins, 21 chemosensory proteins and 2 sensory neuron membrane proteins. Our findings make it possible for future research of the olfactory system of C. suppressalis at the molecular level. PMID:25076861

  9. Extensive analysis of D7S486 in primary gastric cancer supports TESTIN as a candidate tumor suppressor gene

    Directory of Open Access Journals (Sweden)

    Zhou Zhiwei

    2010-07-01

    Full Text Available Abstract Background High frequency of loss of heterozygosity (LOH was found at D7S486 in primary gastric cancer (GC. And we found a high frequency of LOH region on 7q31 in primary GC from China, and identified D7S486 to be the most frequent LOH locus. This study was aimed to determine what genes were affected by the LOH and served as tumor suppressor genes (TSGs in this region. Here, a high-throughput single nucleotide polymorphisms (SNPs microarray fabricated in-house was used to analyze the LOH status around D7S486 on 7q31 in 75 patients with primary GC. Western blot, immunohistochemistry, and RT-PCR were used to assess the protein and mRNA expression of TESTIN (TES in 50 and 140 primary GC samples, respectively. MTS assay was used to investigate the effect of TES overexpression on the proliferation of GC cell lines. Mutation and methylation analysis were performed to explore possible mechanisms of TES inactivation in GC. Results LOH analysis discovered five candidate genes (ST7, FOXP2, MDFIC, TES and CAV1 whose frequencies of LOH were higher than 30%. However, only TES showed the potential to be a TSG associated with GC. Among 140 pairs of GC samples, decreased TES mRNA level was found in 96 (68.6% tumor tissues when compared with matched non-tumor tissues (p p = 0.001. In addition, immunohistochemical staining result was in agreement with that of RT-PCR and Western blot. Down regulation of TES was shown to be correlated with tumor differentiation (p = 0.035 and prognosis (p = 0.035, log-rank test. Its overexpression inhibited the growth of three GC cell lines. Hypermethylation of TES promoter was a frequent event in primary GC and GC cell lines. However, no specific gene mutation was observed in the coding region of the TES gene. Conclusions Collectively, all results support the role of TES as a TSG in gastric carcinogenesis and that TES is inactivated primarily by LOH and CpG island methylation.

  10. Comparative Transcriptome Analysis Identifies Candidate Genes Related to Skin Color Differentiation in Red Tilapia.

    Science.gov (United States)

    Zhu, Wenbin; Wang, Lanmei; Dong, Zaijie; Chen, Xingting; Song, Feibiao; Liu, Nian; Yang, Hui; Fu, Jianjun

    2016-01-01

    Red tilapia is becoming more popular for aquaculture production in China in recent years. However, the pigmentation differentiation in genetic breeding is the main problem limiting its development of commercial red tilapia culture and the genetic basis of skin color variation is still unknown. In this study, we conducted Illumina sequencing of transcriptome on three color variety red tilapia. A total of 224,895,758 reads were generated, resulting in 160,762 assembled contigs that were used as reference contigs. The contigs of red tilapia transcriptome had hits in the range of 53.4% to 86.7% of the unique proteins of zebrafish, fugu, medaka, three-spined stickleback and tilapia. And 44,723 contigs containing 77,423 simple sequence repeats (SSRs) were identified, with 16,646 contigs containing more than one SSR. Three skin transcriptomes were compared pairwise and the results revealed that there were 148 common significantly differentially expressed unigenes and several key genes related to pigment synthesis, i.e. tyr, tyrp1, silv, sox10, slc24a5, cbs and slc7a11, were included. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in red tilapia and accelerate the molecular selection of the specific strain with consistent skin colors. PMID:27511178

  11. Candidate genes for behavioural ecology

    NARCIS (Netherlands)

    Fitzpatrick, M.J.; Ben-Sahar, Y.; Smid, H.M.; Vet, L.E.M.; Robinson, G.E.; Sokolowski, M.B.

    2005-01-01

    In spite of millions of years of evolutionary divergence, the conservation of gene function is common across distant lineages. As such, genes that are known to influence behaviour in one organism are likely to influence similar behaviours in other organisms. Recent studies of the evolution of behavi

  12. Alcoholism and Alternative Splicing of Candidate Genes

    OpenAIRE

    Toshikazu Sasabe; Shoichi Ishiura

    2010-01-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports sugg...

  13. Identification of a candidate gene for panicle length in rice (Oryza sativa L. via association and linkage analysis

    Directory of Open Access Journals (Sweden)

    Erbao eLiu

    2016-05-01

    Full Text Available Panicle length (PL is an important trait for improving panicle architecture and grain yield in rice (Oryza sativa L.. Three populations were used to identify QTLs and candidate genes associated with PL. Four QTLs for PL were detected on chromosomes 4, 6 and 9 through linkage mapping in the recombinant inbred line population derived from a cross between the cultivars Xiushui79 (short panicle and C-bao (long panicle. Ten SSR markers associated with PL were detected on chromosomes 2, 3, 5, 6, 8, 9 and 10 in the natural population consisting of 540 accessions collected from East and Southeast Asia. A major locus on chromosome 9 with the largest effect was identified via both linkage and association mapping. LONG PANICLE 1 (LP1 locus was delimited to a 90-kb region of the long arm of chromosome 9 through fine mapping using a single segment segregating F2 population. Two single nucleotide polymorphisms (SNPs leading to amino acid changes were detected in the third and fifth exons of LP1. LP1encodes a Remorin_C-containing protein of unknown function with homologs in a variety of species. Sequencing analysis of LP1 in two parents and 103 rice accessions indicated that SNP1 is associated with panicle length. The LP1 allele of Xiushui79 leads to reduced panicle length, whereas the allele of C-bao relieves the suppression of panicle length. LP1 and the elite alleles can be used to improve panicle length in rice.

  14. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows.

    Science.gov (United States)

    Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G

    2014-07-01

    The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes.

  15. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows.

    Science.gov (United States)

    Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G

    2014-07-01

    The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes. PMID:24804775

  16. Nogo Receptor 1 (RTN4R) as a Candidate Gene for Schizophrenia: Analysis Using Human and Mouse Genetic Approaches

    OpenAIRE

    Ruby Hsu; Abigail Woodroffe; Wen-Sung Lai; Cook, Melloni N.; Jun Mukai; Dunning, Jonathan P.; Swanson, Douglas J.; J Louw Roos; Abecasis, Gonçalo R; Maria Karayiorgou; Gogos, Joseph A.

    2007-01-01

    BACKGROUND: NOGO Receptor 1 (RTN4R) regulates axonal growth, as well as axon regeneration after injury. The gene maps to the 22q11.2 schizophrenia susceptibility locus and is thus a strong functional and positional candidate gene. METHODOLOGY/PRINCIPAL FINDINGS: We evaluate evidence for genetic association between common RTN4R polymorphisms and schizophrenia in a large family sample of Afrikaner origin and screen the exonic sequence of RTN4R for rare variants in an independent sample from the...

  17. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    M.L. Rietman; J.-P. Sommeijer; C.N. Levelt; J.A. Heimel; A.B. Brussaard; J.G.G. Borst; Y. Elgersma; N. Galjart; G.T. van der Horst; C.M. Pennartz; A.B. Smit; B.M. Spruijt; M. Verhage; C.I. de Zeeuw

    2012-01-01

    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  18. Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD

    Directory of Open Access Journals (Sweden)

    Rogaeva Ekaterina

    2006-12-01

    Full Text Available Abstract Background A new locus for amyotrophic lateral sclerosis – frontotemporal dementia (ALS-FTD has recently been ascribed to chromosome 9p. Methods We identified chromosome 9p segregating haplotypes within two families with ALS-FTD (F476 and F2 and undertook mutational screening of candidate genes within this locus. Results Candidate gene sequencing at this locus revealed the presence of a disease segregating stop mutation (Q342X in the intraflagellar transport 74 (IFT74 gene in family 476 (F476, but no mutation was detected within IFT74 in family 2 (F2. While neither family was sufficiently informative to definitively implicate or exclude IFT74 mutations as a cause of chromosome 9-linked ALS-FTD, the nature of the mutation observed within F476 (predicted to truncate the protein by 258 amino acids led us to sequence the open reading frame of this gene in a large number of ALS and FTD cases (n = 420. An additional sequence variant (G58D was found in a case of sporadic semantic dementia. I55L sequence variants were found in three other unrelated affected individuals, but this was also found in a single individual among 800 Human Diversity Gene Panel samples. Conclusion Confirmation of the pathogenicity of IFT74 sequence variants will require screening of other chromosome 9p-linked families.

  19. Cattle Candidate Genes for Meat Production Traits

    OpenAIRE

    Bláhová, Alice

    2013-01-01

    The objective of this study was to compile a summary of the most important candidate genes for meat production. The studied genes were: GH, GHR, MSTN, MyoD family, leptin, IGF, TG5, SCD, DGAT and STAT5A. Growth hormone (GH) is involved in physiological processes of growth and metabolism. Growth hormone receptor (GHR) has been proposed as a candidate gene for meat production in cattle. Myostatin is a significant marker. It affects the amount of muscle, reduces marbling and elevate meat tendern...

  20. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2

    Science.gov (United States)

    2012-01-01

    Background Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa), may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. Results We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05) and type 2 diabetes (P = 0.00578). Through the estimation of variance of genetic component (heritability) for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479) between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15) was most important in explaining the phenotypic variance for obesity. Conclusions Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B. PMID:23253381

  1. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2

    Directory of Open Access Journals (Sweden)

    Kim Jaemin

    2012-12-01

    Full Text Available Abstract Background Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa, may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. Results We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05 and type 2 diabetes (P = 0.00578. Through the estimation of variance of genetic component (heritability for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479 between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15 was most important in explaining the phenotypic variance for obesity. Conclusions Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B.

  2. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    Science.gov (United States)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha; Seo, Ji-Heui; Tyrer, Jonathan; Spindler, Tassja J.; Lee, Janet; Chen, Yibu; Karst, Alison; Drapkin, Ronny; Aben, Katja K. H.; Anton-Culver, Hoda; Antonenkova, Natalia; Bowtell, David; Webb, Penelope M.; deFazio, Anna; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Anne; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; James, Paul; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kruger Kjaer, Susanne; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; Nevanlinna, Heli; McNeish, Ian; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Sellers, Thomas A.; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Monteiro, Alvaro; Pharoah, Paul D.; Gayther, Simon A.; Freedman, Matthew L.

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (P<1.4 × 10−3, FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10−10 for risk variants (P<10−4) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC. PMID:26391404

  3. Identification and Expression Analysis of Candidate Genes Associated with Defense Responses to Phytophthora capsici in Pepper Line “PI 201234”

    Directory of Open Access Journals (Sweden)

    Pingyong Wang

    2015-05-01

    Full Text Available Phytophthora capsici (Leonian, classified as an oomycete, seriously threatens the production of pepper (Capsicum annuum. Current understanding of the defense responses in pepper to P. capsici is limited. In this study, RNA-sequencing analysis was utilized to identify differentially expressed genes in the resistant line “PI 201234”, with 1220 differentially expressed genes detected. Of those genes, 480 were up-regulated and 740 were down-regulated, with 211 candidate genes found to be involved in defense responses based on the gene annotations. Furthermore, the expression patterns of 12 candidate genes were further validated via quantitative real-time PCR (qPCR. These genes were found to be significantly up-regulated at different time points post-inoculation (6 hpi, 24 hpi, and 5 dpi in the resistant line “PI 201234” and susceptible line “Qiemen”. Seven genes were found to be involved in cell wall modification, phytoalexin biosynthesis, symptom development, and phytohormone signaling pathways, thus possibly playing important roles in combating exogenous pathogens. The genes identified herein will provide a basis for further gene cloning and functional verification studies and will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.

  4. Genetic determinants of facial clefting: analysis of 357 candidate genes using two national cleft studies from Scandinavia.

    Directory of Open Access Journals (Sweden)

    Astanand Jugessur

    Full Text Available BACKGROUND: Facial clefts are common birth defects with a strong genetic component. To identify fetal genetic risk factors for clefting, 1536 SNPs in 357 candidate genes were genotyped in two population-based samples from Scandinavia (Norway: 562 case-parent and 592 control-parent triads; Denmark: 235 case-parent triads. METHODOLOGY/PRINCIPAL FINDINGS: We used two complementary statistical methods, TRIMM and HAPLIN, to look for associations across these two national samples. TRIMM tests for association in each gene by using multi-SNP genotypes from case-parent triads directly without the need to infer haplotypes. HAPLIN on the other hand estimates the full haplotype distribution over a set of SNPs and estimates relative risks associated with each haplotype. For isolated cleft lip with or without cleft palate (I-CL/P, TRIMM and HAPLIN both identified significant associations with IRF6 and ADH1C in both populations, but only HAPLIN found an association with FGF12. For isolated cleft palate (I-CP, TRIMM found associations with ALX3, MKX, and PDGFC in both populations, but only the association with PDGFC was identified by HAPLIN. In addition, HAPLIN identified an association with ETV5 that was not detected by TRIMM. CONCLUSION/SIGNIFICANCE: Strong associations with seven genes were replicated in the Scandinavian samples and our approach effectively replicated the strongest previously known association in clefting--with IRF6. Based on two national cleft cohorts of similar ancestry, two robust statistical methods and a large panel of SNPs in the most promising cleft candidate genes to date, this study identified a previously unknown association with clefting for ADH1C and provides additional candidates and analytic approaches to advance the field.

  5. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens

    DEFF Research Database (Denmark)

    Deichmann, M; Mollenhauer, J; Helmke, B;

    2002-01-01

    from the majority of naevi from which melanomas frequently arise, making down-regulation of gene transcription during transformation from naevus to melanoma unlikely. Immunohistochemistry showed nerves, sweat glands and the stratum spinosum of the epidermis to be DMBT1 protein positive, whereas......Deleted in malignant brain tumours 1 (DMBT1), a candidate tumour suppressor gene located on chromosome 10q25.3-q26.1, has recently been identified and found to be deleted in several different types of human tumours. In melanomas, the chromosomal region 10q22-qter is commonly affected by losses...... the gene, suggesting loss of 1 DMBT1 allele. Three further melanomas showed LOH at 1 informative locus but were heterozygous for the second marker. Applying reverse-transcription polymerase chain reaction (RT-PCR), DMBT1 transcription was not found in melanomas. However, DMBT1 transcription was also absent...

  6. Searching for candidate genes for male infertility

    Institute of Scientific and Technical Information of China (English)

    B.N.Truong; E.K.Moses; J.E.Armes; D.J.Venter; H.W.G.Baker

    2003-01-01

    Aim: We describe an approach to search for candidate genes for male infertility using the two human genome databases: the public University of California at Santa Cruz (UCSC) and private Celera databases which list known and predicted gene sequences and provide related information such as gene function, tissue expression,known mutations and single nucleotide polymorphisms (SNPs). Methods and Results: To demonstrate this in silico research, the following male infertility candidate genes were selected: (1) human BOULE, mutations of which may lead to germ cell arrest at the primary spermatocyte stage, (2) mutations of casein kinase 2 alpha genes which may cause globozoospermia, (3) DMR-N9 which is possibly involved in the spermatogenic defect of myotonic dystrophy and (4) several testes expressed genes at or near the breakpoints of a balanced translocation associated with hypospermatogenesis. We indicate how information derived from the human genome databases can be used to confirm these candidate genes may be pathogenic by studying RNA expression in tissue arrays using in situ hybridization and gene sequencing. Conclusion: The paper explains the new approach to discovering genetic causes of male infertility using information about the human genome. ( Asian J Andro1 2003 Jun; 5:137-147 )

  7. Identification of Candidate Genes Associated with Beef Marbling Using QTL and Pathway Analysis in Hanwoo (Korean Cattle)

    OpenAIRE

    Park, Hyesun; Seo, Seongwon; Cho, Yong Min; Oh, Sung Jong; Seong, Hwan-Hoo; Lee, Seung Hwan; Lim, Dajeong

    2012-01-01

    Marbling from intramuscular fat is an important trait of meat quality and has an economic benefit for the beef industry. Quantitative trait loci (QTL) fine mapping was performed to identify the marbling trait in 266 Hanwoo steers using a 10K single nucleotide polymorphism panel with the combined linkage and linkage disequilibrium method. As a result, we found nine putative QTL regions for marbling: three on BTA6, two on BTA17, two on BTA22, and two on BTA29. We detected candidate genes for ma...

  8. Use of meta-analysis to combine candidate gene association studies: application to study the relationship between the ESR PvuII polymorphism and sow litter size

    Directory of Open Access Journals (Sweden)

    Alfonso Leopoldo

    2005-07-01

    Full Text Available Abstract This article investigates the application of meta-analysis on livestock candidate gene effects. The PvuII polymorphism of the ESR gene is used as an example. The association among ESR PvuII alleles with the number of piglets born alive and total born in the first (NBA1, TNB1 and later parities (NBA, TNB is reviewed by conducting a meta-analysis of 15 published studies including 9329 sows. Under a fixed effects model, litter size values were significantly lower in the "AA" genotype groups when compared with "AB" and "BB" homozygotes. Under the random effects model, the results were similar although differences between "AA" and "AB" genotype groups were not clearly significant for NBA and TNB. Nevertheless, the most noticeable result was the high and significant heterogeneity estimated among studies. This heterogeneity could be assigned to error sampling, genotype by environment interaction, linkage or epistasis, as referred to in the literature, but also to the hypothesis of population admixture/stratification. It is concluded that meta-analysis can be considered as a helpful analytical tool to synthesise and discuss livestock candidate gene effects. The main difficulty found was the insufficient information on the standard errors of the estimated genotype effects in several publications. Consequently, the convenience of publishing the standard errors or the concrete P-values instead of the test significance level should be recommended to guarantee the quality of candidate gene effect meta-analyses.

  9. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage;

    2014-01-01

    Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and...... biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was used. Genome-wide association analysis was performed using a univariate mixed model...... and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as XIRP2, TTC29, SOGA1, MAS1, GRK5, PROX1, GPR155 and ZFYVE26 were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located...

  10. Genetics of serum concentration of IL-6 and TNFα in systemic lupus erythematosus and rheumatoid arthritis: a candidate gene analysis.

    Science.gov (United States)

    Solus, Joseph F; Chung, Cecilia P; Oeser, Annette; Li, Chun; Rho, Young Hee; Bradley, Kevin M; Kawai, Vivian K; Smith, Jeffrey R; Stein, C Michael

    2015-08-01

    Elevated concentrations of inflammatory mediators are characteristic of autoimmune disease accompanied by chronic or recurrent inflammation. We examined the hypothesis that mediators of inflammation known to be elevated in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are associated with genetic polymorphism previously identified in studies of inflammatory disease. Serum interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) concentrations in patients with SLE (n = 117) or RA (n = 164) and in inflammatory disease-free control subjects (n = 172) were measured by multiplex ELISA. Candidate genes were chosen from studies of autoimmune and inflammatory disease. Genotypes were determined for 345 SNP markers in 75 genes. Association between serum analytes and single alleles was tested by linear regression. Polymorphisms in several genes were associated with IL-6 levels (including IL10, TYK2, and CD40L in SLE and DRB1, NOD2, and CSF1 in RA) or with TNFα levels (including TNFSF4 and CSF2 in SLE and PTPN2, DRB1, and NOD2 in RA). Some associations were shared between disease and control groups or between IL-6 and TNFα within a group. In conclusion, variation in genes implicated in disease pathology is associated with serum IL-6 or TNFα concentration. Some genetic associations are more apparent in healthy controls than in SLE or RA, suggesting dysregulation of the principal mediators of chronic inflammation in disease. Susceptibility genes may affect inflammatory response with variable effect on disease etiology. PMID:25652333

  11. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes

    DEFF Research Database (Denmark)

    Pers, Tune H; Timshel, Pascal; Ripke, Stephan;

    2016-01-01

    Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approac...

  12. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Science.gov (United States)

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  13. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Directory of Open Access Journals (Sweden)

    Alok Arun

    Full Text Available Real-time quantitative reverse transcription PCR (qRT-PCR is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae, two developmental stages (pupal and adult and two sexes (male and female, all of which were subjected to two food treatments (food stress and control feeding ad libitum. The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the

  14. Quantitative analysis of short- and long-distance racing performance in young and adult horses and association analysis with functional candidate genes in Spanish Trotter horses.

    Science.gov (United States)

    Negro Rama, S; Valera, M; Membrillo, A; Gómez, M D; Solé, M; Menendez-Buxadera, A; Anaya, G; Molina, A

    2016-10-01

    The association of five candidate genes with sporting performance in young and adult Spanish Trotter horses (STHs) was performed according to a previous selection based on quantitative analysis of the trait time per kilometre (TPK). A total of 334 516 records of TPK from 5958 STHs were used to estimate the estimated breeding values (EBVs) at different age groups (young and adults horses) throughout the range of distances (1600-2700 m) using a bicharacter random regression model. The heritability estimated by distance ranged from 0.16 to 0.40, with a different range for the two age groups. Considering the animals with the best and the worst deregressed EBV, 321 STHs were selected for SNP genotyping in MSTN, COX4I2, PDK4, DMRT3 and CKM genes. An association analysis based on ridge and logistic regression revealed that the young trotters with genotype GG in PDK4 (p < 0.05) and AA of DMRT3 (p < 0.001) SNPs show the best potential in short-distance races, while those carrying the genotype AA in DMRT3 (p < 0.001) and CC in CKM (p < 0.05) genes seem to be the best in long-distance races. Adult trotters with genotype AA in DMRT3 also display greater speed (p < 0.05) and endurance (p < 0.001).

  15. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Yinliang Wang

    Full Text Available The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs, 10 chemosensory proteins (CSPs, 34 odorant receptors (ORs, 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, Aqua

  16. Stress-sensitive neurosignalling in depression: an integrated network biology approach to candidate gene selection for genetic association analysis

    Directory of Open Access Journals (Sweden)

    J. Anke M. van Eekelen

    2012-07-01

    Full Text Available Genetic risk for depressive disorders is poorly understood despite consistent suggestions of a high heritable component. Most genetic studies have focused on risk associated with single variants, a strategy which has so far only yielded small (often non-replicable risks for depressive disorders. In this paper we argue that more substantial risks are likely to emerge from genetic variants acting in synergy within and across larger neurobiological systems (polygenic risk factors. We show how knowledge of major integrated neurobiological systems provides a robust basis for defining and testing theoretically defensible polygenic risk factors. We do this by describing the architecture of the overall stress response. Maladaptation via impaired stress responsiveness is central to the aetiology of depression and anxiety and provides a framework for a systems biology approach to candidate gene selection. We propose principles for identifying genes and gene networks within the neurosystems involved in the stress response and for defining polygenic risk factors based on the neurobiology of stress-related behaviour. We conclude that knowledge of the neurobiology of the stress response system is likely to play a central role in future efforts to improve genetic prediction of depression and related disorders.

  17. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms

    Directory of Open Access Journals (Sweden)

    Li Yongle

    2011-10-01

    Full Text Available Abstract Background Frost is an important abiotic stress that limits cereal production in the temperate zone. As the most frost tolerant small grain cereal, rye (Secale cereale L. is an ideal cereal model for investigating the genetic basis of frost tolerance (FT, a complex trait with polygenic inheritance. Using 201 genotypes from five Eastern and Middle European winter rye populations, this study reports a multi-platform candidate gene-based association analysis in rye using 161 single nucleotide polymorphisms (SNPs and nine insertion-deletion (Indel polymorphisms previously identified from twelve candidate genes with a putative role in the frost responsive network. Results Phenotypic data analyses of FT in three different phenotyping platforms, controlled, semi-controlled and field, revealed significant genetic variations in the plant material under study. Statistically significant (P ScCbf15 and one in ScCbf12, all leading to amino acid exchanges, were significantly associated with FT over all three phenotyping platforms. Distribution of SNP effect sizes expressed as percentage of the genetic variance explained by individual SNPs was highly skewed towards zero with a few SNPs obtaining large effects. Two-way epistasis was found between 14 pairs of candidate genes. Relatively low to medium empirical correlations of SNP-FT associations were observed across the three platforms underlining the need for multi-level experimentation for dissecting complex associations between genotypes and FT in rye. Conclusions Candidate gene based-association studies are a powerful tool for investigating the genetic basis of FT in rye. Results of this study support the findings of bi-parental linkage mapping and expression studies that the Cbf gene family plays an essential role in FT.

  18. Analysis of single nucleotide polymorphisms in major and candidate genes for production traits in Nero Siciliano pig breed

    Directory of Open Access Journals (Sweden)

    Alessandro Zumbo

    2010-01-01

    Full Text Available Nero Siciliano (NS; Sicilian Black is a local pig breed reared on the island of Sicily mainly under extensive management.The breed is well adapted to marginal conditions and is appreciated for its reproductive performance, disease resistanceand production of tasty meat. For a genetic characterization of this breed we analyzed the allele frequencies of singlenucleotide polymorphisms (SNPs in eight major or candidate genes (ryanodine receptor 1, RYR1; Na+, K+ ATPase subunitα 2, ATP1A2; myosin heavy chain 2B, MYH4; sarcolipin, SLN; cathepsin B, CTSB; cystatin B, CSTB; estrogen receptor,ESR; melanocortin receptor 1, MC1R for performance and phenotypic traits. The animals that were sampled andanalyzed represent about 6-8% of the total NS pig population. PCR-RFLP or PCR-SSCP techniques were used to type theDNA markers in the selected loci. Exact test of Hardy-Weinberg equilibrium was computed for each locus, Fis statisticsand heterozygosity were calculated for each locus and over all loci. Allele frequencies obtained in NS breed were comparedto the frequencies already available in literature for the Large White, Landrace, Duroc, Belgian Landrace, Piétrain,Hampshire and Meishan breeds. For the ESR locus, as no information on the distribution of the two alleles were available,we typed a sample of unrelated pigs from the considered breeds.Even if only eight loci were studied in NS breed, important elements were obtained from the data. The 1843T (n alleleat the RYR1 locus is present in NS breed, thus the molecular test to identify the carriers of this allele should be adoptedto avoid its spreading in the population. Moreover, other studies are needed to clarify the allelic structure of the MC1Rgene, which affects coat color, in order to evaluate if this gene could be used in genetic tests for the traceability of themeat products of this breed. Finally, the present work represents an attempt to evaluate data on mutations within majorand candidate genes

  19. Candidate gene effects on beef quality

    OpenAIRE

    Ekerljung, Marie

    2012-01-01

    The contribution of five candidate genes to the variation in meat tenderness, pH, colour, marbling and water holding capacity (WHC) was analysed in muscle samples from 243 young bulls of Angus, Charolais, Hereford, Limousin, or Simmental breed, raised in Swedish commercial herds. The animals were genotyped for single nucleotide polymorphisms (SNPs) in the genes encoding calpain 1 (CAPN1:c.947G>C), calpastatin, (CAST:c.155C>T), diacylglycerol O-acyltransferase 1 (DGAT1), leptin (UASMS2C>T) a...

  20. Profiling trait anxiety: transcriptome analysis reveals cathepsin B (Ctsb as a novel candidate gene for emotionality in mice.

    Directory of Open Access Journals (Sweden)

    Ludwig Czibere

    Full Text Available Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait "anxiety". We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB or low (LAB anxiety-related behavior, and also show signs of comorbid depression-like behavior. We identified and confirmed sex-independent differences in the basal expression of 13 candidate genes, using tissue from the entire brain, including coronin 7 (Coro7, cathepsin B (Ctsb, muscleblind-like 1 (Mbnl1, metallothionein 1 (Mt1, solute carrier family 25 member 17 (Slc25a17, tribbles homolog 2 (Trib2, zinc finger protein 672 (Zfp672, syntaxin 3 (Stx3, ATP-binding cassette, sub-family A member 2 (Abca2, ectonucleotide pyrophosphatase/phosphodiesterase 5 (Enpp5, high mobility group nucleosomal binding domain 3 (Hmgn3 and pyruvate dehydrogenase beta (Pdhb. Additionally, we confirmed brain region-specific differences in the expression of synaptotagmin 4 (Syt4.Our identification of about 90 polymorphisms in Ctsb suggested that this gene might play a critical role in shaping our mouse model's behavioral endophenotypes. Indeed, the assessment of anxiety-related and depression-like behaviors of Ctsb knock-out mice revealed an increase in depression-like behavior in females. Altogether, our results suggest that Ctsb has significant effects on emotionality, irrespective of the tested mouse strain, making it a promising target for future pharmacotherapy.

  1. Gene expression analysis of 4 biomarker candidates in Eisenia fetida exposed to an environmental metallic trace elements gradient: A microcosm study

    Energy Technology Data Exchange (ETDEWEB)

    Brulle, Franck; Lemiere, Sebastien [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France); Waterlot, Christophe; Douay, Francis [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Sols et Environnement, Groupe ISA, 48 boulevard Vauban, F-59046 Lille Cedex (France); Vandenbulcke, Franck, E-mail: franck.vandenbulcke@univ-lille1.fr [Univ Lille Nord de France, F-59000 Lille (France); LGCgE, Equipe Ecologie Numerique et Ecotoxicologie, Lille 1, F-59650 Villeneuve d' Ascq (France)

    2011-11-15

    Past activities of 2 smelters (Metaleurop Nord and Nyrstar) led to the accumulation of high amounts of Metal Trace Elements (TEs) in top soils of the Noyelles-Godault/Auby area, Northern France. Earthworms were exposed to polluted soils collected in this area to study and better understand the physiological changes, the mechanisms of acclimation, and detoxification resulting from TE exposure. Previously we have cloned and transcriptionally characterized potential biomarkers from immune cells of the ecotoxicologically important earthworm species Eisenia fetida exposed in vivo to TE-spiked standard soils. In the present study, analysis of expression kinetics of four candidate indicator genes (Cadmium-metallothionein, coactosin like protein, phytochelatin synthase and lysenin) was performed in E. fetida after microcosm exposures to natural soils exhibiting an environmental cadmium (Cd) gradient in a kinetic manner. TE body burdens were also measured. This microcosm study provided insights into: (1) the ability of the 4 tested genes to serve as expression biomarkers, (2) detoxification processes through the expression analysis of selected genes, and (3) influence of land uses on the response of potential biomarkers (gene expression or TE uptake). - Highlights: {yields} Expression biomarkers in animals exposed to Cadmium-contaminated field soils. {yields} Expression kinetics to test the ability of genes to serve as expression biomarkers. {yields} Study of detoxification processes through the expression analysis of selected genes.

  2. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Directory of Open Access Journals (Sweden)

    Thomas S Scerri

    Full Text Available Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s conferring susceptibility by a two stage strategy of linkage and association analysis.Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R, dymeclin (DYM and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L.Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  3. Identification of genes from the Treacher Collins candidate region

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, M.; Dixon, J.; Edwards, S. [Univ. of California, Irvine, CA (United States)]|[Univ. of Manchester (United Kingdom)] [and others

    1994-09-01

    Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development. The TCOF1 locus has previously been mapped to chromosome 5q32-33. The candidate gene region has been defined as being between two flanking markers, ribosomal protein S14 (RPS14) and Annexin 6 (ANX6), by analyzing recombination events in affected individuals. It is estimated that the distance between these flanking markers is 500 kb by three separate analysis methods: (1) radiation hybrid mapping; (2) genetic linkage; and (3) YAC contig analysis. A cosmid contig which spans the candidate gene region for TCOF1 has been constructed by screening the Los Alamos National Laboratory flow-sorted chromosome 5 cosmid library. Cosmids were obtained by using a combination of probes generated from YAC end clones, Alu-PCR fragments from YACs, and asymmetric PCR fragments from both T7 and T3 cosmid ends. Exon amplifications, the selection of genomic coding sequences based upon the presence of functional splice acceptor and donor sites, was used to identify potential exon sequences. Sequences found to be conserved between species were then used to screen cDNA libraries in order to identify candidate genes. To date, four different cDNAs have been isolated from this region and are being analyzed as potential candidate genes for TCOF1. These include the genes encoding plasma glutathione peroxidase (GPX3), heparin sulfate sulfotransferase (HSST), a gene with homology to the ETS family of proteins and one which shows no homology to any known genes. Work is also in progress to identify and characterize additional cDNAs from the candidate gene region.

  4. Identifying type 1 diabetes candidate genes by DNA microarray analysis of islet-specific CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Gregory J. Berry

    2015-09-01

    Full Text Available Type 1 diabetes (T1D is a T cell-mediated autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells and is fatal unless treated with insulin. During the last four decades, multiple insulin-dependent diabetes (Idd susceptibility/resistance loci that regulate T1D development have been identified in humans and non-obese diabetic (NOD mice, an established animal model for T1D. However, the exact mechanisms by which these loci confer diabetes risk and the identity of the causative genes remain largely elusive. To identify genes and molecular mechanisms that control the function of diabetogenic T cells, we conducted DNA microarray analysis in islet-specific CD4+ T cells from BDC2.5 TCR transgenic NOD mice that contain the Idd9 locus from T1D-susceptible NOD mice or T1D-resistant C57BL/10 mice. Here we describe in detail the contents and analyses for these gene expression data associated with our previous study [1]. Gene expression data are available at the Gene Expression Omnibus (GEO repository from the National Center for Biotechnology Information (accession number GSE64674.

  5. Identification of candidate genes and mutations in QTL regions for chicken growth using bioinformatic analysis of NGS and SNP-chip data

    Directory of Open Access Journals (Sweden)

    Muhammad eAhsan

    2013-11-01

    Full Text Available Mapping of chromosomal regions harboring genetic polymorphisms that regulate complex traits is usually followed by a search for the causative mutations underlying the observed effects. This is often a challenging task even after fine mapping, as millions of base pairs including many genes will typically need to be investigated. Thus to trace the causative mutation(s there is a great need for efficient bioinformatic strategies. Here, we searched for genes and mutations regulating growth in the Virginia chicken lines – an experimental population comprising two lines that have been divergently selected for body weight at 56 days for more than 50 generations. Several QTL regions have been mapped in an F2 intercross between the lines, and the regions have subsequently been replicated and fine mapped using an Advanced Intercross Line. We have further analyzed the QTL regions where the largest genetic divergence between the High-Weight selected (HWS and Low-Weight selected (LWS lines was observed. Such regions, covering about 37% of the actual QTL regions, were identified by comparing the allele frequencies of the HWS and LWS lines using both individual 60K SNP chip genotyping of birds and analysis of read proportions from genome resequencing of DNA pools. Based on a combination of criteria including significance of the QTL, allele frequency difference of identified mutations between the selected lines, gene information on relevance for growth, and the predicted functional effects of identified mutations we propose here a subset of candidate mutations of highest priority for further evaluation in functional studies. The candidate mutations were identified within the GCG, IGFBP2, GRB14, CRIM1, FGF16, VEGFR-2, ALG11, EDN1, SNX6 and BIRC7 genes. We believe that the proposed method of combining different types of genomic information increases the probability that the genes underlying the observed QTL effects are represented among the candidate mutations

  6. Nogo Receptor 1 (RTN4R as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches.

    Directory of Open Access Journals (Sweden)

    Ruby Hsu

    Full Text Available BACKGROUND: NOGO Receptor 1 (RTN4R regulates axonal growth, as well as axon regeneration after injury. The gene maps to the 22q11.2 schizophrenia susceptibility locus and is thus a strong functional and positional candidate gene. METHODOLOGY/PRINCIPAL FINDINGS: We evaluate evidence for genetic association between common RTN4R polymorphisms and schizophrenia in a large family sample of Afrikaner origin and screen the exonic sequence of RTN4R for rare variants in an independent sample from the U.S. We also employ animal model studies to assay a panel of schizophrenia-related behavioral tasks in an Rtn4r-deficient mouse model. We found weak sex-specific evidence for association between common RTN4R polymorphisms and schizophrenia in the Afrikaner patients. In the U.S. sample, we identified two novel non-conservative RTN4R coding variants in two patients with schizophrenia that were absent in 600 control chromosomes. In our complementary mouse model studies, we identified a haploinsufficient effect of Rtn4r on locomotor activity, but normal performance in schizophrenia-related behavioral tasks. We also provide evidence that Rtn4r deficiency can modulate the long-term behavioral effects of transient postnatal N-methyl-D-aspartate (NMDA receptor hypofunction. CONCLUSIONS: Our results do not support a major role of RTN4R in susceptibility to schizophrenia or the cognitive and behavioral deficits observed in individuals with 22q11 microdeletions. However, they suggest that RTN4R may modulate the genetic risk or clinical expression of schizophrenia in a subset of patients and identify additional studies that will be necessary to clarify the role of RTN4R in psychiatric phenotypes. In addition, our results raise interesting issues about evaluating the significance of rare genetic variants in disease and their role in causation.

  7. Tagging Blast Resistance Gene Pi 1 in Rice (Oryza sativa) Using Candidate Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    LI Ai-hong; WU Jian-li; XU Xin-ping; Menchu BERNADO; DAI Zheng-yuan; ZHUANG Jie-yun; CHEN Zong-xiang; ZHENG Kang-le; LI Bao-jian; Hei LEUNG; ZHANG Hong-xi; PAN Xue-biao

    2004-01-01

    An F3 population derived from C101LAC/CO39 containing 90 lines was analyzed for blast resistance with 48 candidate genes developed from resistance gene analogs (RGA) and suppression subtractive library. Genetic analysis confirmed that blast resistance of the population was controlled by a single gene Pi 1. One of the candidate genes, R10 was identified as associated with the blast resistance gene on the long arm of chromosome 11 and mapped using a DH population derived from Azucena/IR64.A pair of PCR based primers was designed based on the sequence of R10 for marker-aided selection of the blast resistance gene.The recombination frequency between Pi 1 and the marker was estimated as 1.28%. It suggested that strategy of employing candidate genes is useful for gene identification and mapping. A new RFLP marker and the corresponding PCR marker for tagging of Pi 1 were provided.

  8. Candidate genes of idiopathic pulmonary fibrosis: current evidence and research

    Directory of Open Access Journals (Sweden)

    Zhou W

    2016-02-01

    Full Text Available Wei Zhou,1,2 Yaping Wang1,2 1Department of Medical Genetics, 2Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, People's Republic of China Abstract: Idiopathic pulmonary fibrosis (IPF is a group of common and lethal forms of idiopathic interstitial pulmonary disease. IPF is characterized by a progressive decline in lung function with a median survival of 2–3 years after diagnosis. Although the pathogenesis of the disease remains unknown, genetic predisposition could play a causal role in IPF. A set of genes have been identified as candidate genes of IPF in the past 20 years. However, the recent technological advances that allow for the analysis of millions of polymorphisms in different subjects have deepened the understanding of the genetic complexity of IPF susceptibility. Genome-wide association studies and whole-genome sequencing continue to reveal the genetic loci associated with IPF risk. In this review, we describe candidate genes on the basis of their functions and aim to gain a better understanding of the genetic basis of IPF. The discovered candidate genes may help to clarify pivotal aspects in the diagnosis, prognosis, and therapies of IPF. Keywords: idiopathic pulmonary fibrosis, candidate genes, susceptibility 

  9. Transcriptomic Analysis Identifies Candidate Genes and Gene Sets Controlling the Response of Porcine Peripheral Blood Mononuclear Cells to Poly I:C Stimulation

    Directory of Open Access Journals (Sweden)

    Jiying Wang

    2016-05-01

    Full Text Available Polyinosinic-polycytidylic acid (poly I:C, a synthetic dsRNA analog, has been demonstrated to have stimulatory effects similar to viral dsRNA. To gain deep knowledge of the host transcriptional response of pigs to poly I:C stimulation, in the present study, we cultured and stimulated peripheral blood mononuclear cells (PBMC of piglets of one Chinese indigenous breed (Dapulian and one modern commercial breed (Landrace with poly I:C, and compared their transcriptional profiling using RNA-sequencing (RNA-seq. Our results indicated that poly I:C stimulation can elicit significantly differentially expressed (DE genes in Dapulian (g = 290 as well as Landrace (g = 85. We also performed gene set analysis using the Gene Set Enrichment Analysis (GSEA package, and identified some significantly enriched gene sets in Dapulian (g = 18 and Landrace (g = 21. Most of the shared DE genes and gene sets were immune-related, and may play crucial rules in the immune response of poly I:C stimulation. In addition, we detected large sets of significantly DE genes and enriched gene sets when comparing the gene expression profile between the two breeds, including control and poly I:C stimulation groups. Besides immune-related functions, some of the DE genes and gene sets between the two breeds were involved in development and growth of various tissues, which may be correlated with the different characteristics of the two breeds. The DE genes and gene sets detected herein provide crucial information towards understanding the immune regulation of antiviral responses, and the molecular mechanisms of different genetic resistance to viral infection, in modern and indigenous pigs.

  10. Computational disease gene identification : a concert of methods prioritizes type 2 diabetes and obesity candidate genes

    NARCIS (Netherlands)

    Tiffin, N.; Adie, E.; Turner, F.; Brunner, H.G.; Driel, M.A. van; Oti, M.O.; Lopez-Bigas, N.; Ouzounis, C.A.; Perez-Iratxeta, C.; Andrade-Navarro, M.A.; Adeyemo, A.; Patti, M.E.; Semple, C.A.; Hide, W.

    2006-01-01

    Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most li

  11. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes.

    NARCIS (Netherlands)

    Tiffin, N.; Adie, E.; Turner, F.; Brunner, H.G.; Driel, M.A. van; Oti, M.O.; Lopez-Bigas, N.; Ouzounis, C.A.; Perez-Iratxeta, C.; Andrade-Navarro, M.A.; Adeyemo, A.; Patti, M.E.; Semple, C.A.; Hide, W.

    2006-01-01

    Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most li

  12. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae.

    Science.gov (United States)

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  13. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.

    Directory of Open Access Journals (Sweden)

    En-Hua Xia

    Full Text Available Rapidly driven by the need for developing sustainable sources of nutritionally important fatty acids and the rising concerns about environmental impacts after using fossil oil, oil-plants have received increasing awareness nowadays. As an important oil-rich plant in China, Camellia oleifera has played a vital role in providing nutritional applications, biofuel productions and chemical feedstocks. However, the lack of C. oleifera genome sequences and little genetic information have largely hampered the urgent needs for efficient utilization of the abundant germplasms towards modern breeding efforts of this woody oil-plant.Here, using the 454 GS-FLX sequencing platform, we generated approximately 600,000 RNA-Seq reads from four tissues of C. oleifera. These reads were trimmed and assembled into 104,842 non-redundant putative transcripts with a total length of ∼38.9 Mb, representing more than 218-fold of all the C. oleifera sequences currently deposited in the GenBank (as of March 2014. Based on the BLAST similarity searches, nearly 42.6% transcripts could be annotated with known genes, conserved domains, or Gene Ontology (GO terms. Comparisons with the cultivated tea tree, C. sinensis, identified 3,022 pairs of orthologs, of which 211 exhibited the evidence under positive selection. Pathway analysis detected the majority of genes potentially related to lipid metabolism. Evolutionary analysis of omega-6 fatty acid desaturase (FAD2 genes among 20 oil-plants unexpectedly suggests that a parallel evolution may occur between C. oleifera and Olea oleifera. Additionally, more than 2,300 simple sequence repeats (SSRs and 20,200 single-nucleotide polymorphisms (SNPs were detected in the C. oleifera transcriptome.The generated transcriptome represents a considerable increase in the number of sequences deposited in the public databases, providing an unprecedented opportunity to discover all related-genes associated with lipid metabolic pathway in C

  14. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis.

    Science.gov (United States)

    Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H

    2014-12-01

    Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.

  15. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L. Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    Directory of Open Access Journals (Sweden)

    Renesh Bedre

    Full Text Available Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L. pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  16. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    Science.gov (United States)

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research. PMID:26366857

  17. Mapping of STS markers developed from drought tolerance candidate genes and preliminary analysis of their association with yield-related traits in common wheat (Triticum aestivum)

    Science.gov (United States)

    Drought is a severe abiotic stress that affects wheat production worldwide. In order to identify candidate genes for tolerance to water stress in wheat, sequences of 11 genes that have function of drought tolerance in other plant species were used to identify the wheat ortholog genes via homology se...

  18. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    Directory of Open Access Journals (Sweden)

    Duy Ngoc Do

    2014-09-01

    Full Text Available Residual feed intake (RFI is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs, candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2 and 60k genotypic data was used. Genome-wide association analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as XIRP2, TTC29, SOGA1, MAS1, GRK5, PROX1, GPR155 and ZFYVE26 were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kilo base pairs of SNPs significantly associated with RFI and RFI2 (q-value ≤ 0.2 were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher’s exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05. These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs.

  19. Candidate olfaction genes identified within the Helicoverpa armigera Antennal Transcriptome.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Antennal olfaction is extremely important for insect survival, mediating key behaviors such as host preference, mate choice, and oviposition site selection. Multiple antennal proteins are involved in olfactory signal transduction pathways. Of these, odorant receptors (ORs and ionotropic receptors (IRs confer specificity on olfactory sensory neuron responses. In this study, we identified the olfactory gene repertoire of the economically important agricultural pest moth, Helicoverpa armigera, by assembling the adult male and female antennal transcriptomes. Within the male and female antennal transcriptomes we identified a total of 47 OR candidate genes containing 6 pheromone receptor candidates. Additionally, 12 IR genes as well as 26 odorant-binding proteins and 12 chemosensory proteins were annotated. Our results allow a systematic functional analysis across much of conventional ORs repertoire and newly reported IRs mediating the key olfaction-mediated behaviors of H. armigera.

  20. Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of ‘Furongli’ Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq

    Science.gov (United States)

    Fang, Zhi-Zhen; Zhou, Dan-Rong; Ye, Xin-Fu; Jiang, Cui-Cui; Pan, Shao-Lin

    2016-01-01

    Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl.) cultivar ‘Furongli’. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5816 and 8585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in “biosynthesis of other secondary metabolites.” Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors, and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum. PMID:27630660

  1. Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of 'Furongli' Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq.

    Science.gov (United States)

    Fang, Zhi-Zhen; Zhou, Dan-Rong; Ye, Xin-Fu; Jiang, Cui-Cui; Pan, Shao-Lin

    2016-01-01

    Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl.) cultivar 'Furongli'. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5816 and 8585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in "biosynthesis of other secondary metabolites." Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors, and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum. PMID:27630660

  2. Identification of Candidate Anthocyanin-related Genes by Transcriptomic Analysis of ‘Furongli’ Plum (Prunus salicina Lindl. During Fruit Ripening Using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Zhizhen Fang

    2016-08-01

    Full Text Available Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl. cultivar ‘Furongli’. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5,816 and 8,585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3,548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in ‘biosynthesis of other secondary metabolites’. Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum.

  3. Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in Type 1 diabetes and insulin sensitivity

    DEFF Research Database (Denmark)

    Gylvin, T; Nolsøe, R; Hansen, T;

    2004-01-01

    Beta cell loss in Type 1 and Type 2 diabetes mellitus may result from apoptosis and necrosis induced by inflammatory mediators. The suppressor of cytokine signalling (SOCS)-3 is a natural inhibitor of cytokine signalling and also influences insulin signalling. SOCS3 could therefore be a candidate...

  4. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba).

    Science.gov (United States)

    Ye, Manhong; Zhou, Bin; Wei, Shanshan; Ding, MengMeng; Lu, Xinghui; Shi, Xuehao; Ding, Jiatong; Yang, Shengmei; Wei, Wanhong

    2016-01-01

    Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs.

  5. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba).

    Science.gov (United States)

    Ye, Manhong; Zhou, Bin; Wei, Shanshan; Ding, MengMeng; Lu, Xinghui; Shi, Xuehao; Ding, Jiatong; Yang, Shengmei; Wei, Wanhong

    2016-01-01

    Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs. PMID:27175015

  6. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba

    Directory of Open Access Journals (Sweden)

    Manhong Ye

    2016-07-01

    Full Text Available Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI’s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs.

  7. De novo characterization of the Chinese fir (Cunninghamia lanceolata transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis

    Directory of Open Access Journals (Sweden)

    Huang Hua-Hong

    2012-11-01

    Full Text Available Abstract Background Chinese fir (Cunninghamia lanceolata is an important timber species that accounts for 20–30% of the total commercial timber production in China. However, the available genomic information of Chinese fir is limited, and this severely encumbers functional genomic analysis and molecular breeding in Chinese fir. Recently, major advances in transcriptome sequencing have provided fast and cost-effective approaches to generate large expression datasets that have proven to be powerful tools to profile the transcriptomes of non-model organisms with undetermined genomes. Results In this study, the transcriptomes of nine tissues from Chinese fir were analyzed using the Illumina HiSeq™ 2000 sequencing platform. Approximately 40 million paired-end reads were obtained, generating 3.62 gigabase pairs of sequencing data. These reads were assembled into 83,248 unique sequences (i.e. Unigenes with an average length of 449 bp, amounting to 37.40 Mb. A total of 73,779 Unigenes were supported by more than 5 reads, 42,663 (57.83% had homologs in the NCBI non-redundant and Swiss-Prot protein databases, corresponding to 27,224 unique protein entries. Of these Unigenes, 16,750 were assigned to Gene Ontology classes, and 14,877 were clustered into orthologous groups. A total of 21,689 (29.40% were mapped to 119 pathways by BLAST comparison against the Kyoto Encyclopedia of Genes and Genomes (KEGG database. The majority of the genes encoding the enzymes in the biosynthetic pathways of cellulose and lignin were identified in the Unigene dataset by targeted searches of their annotations. And a number of candidate Chinese fir genes in the two metabolic pathways were discovered firstly. Eighteen genes related to cellulose and lignin biosynthesis were cloned for experimental validating of transcriptome data. Overall 49 Unigenes, covering different regions of these selected genes, were found by alignment. Their expression patterns in different tissues

  8. Analysis of porcine MUC4 gene as a candidate gene for prolificacy QTL on SSC13 in an Iberian × Meishan F2 population

    Directory of Open Access Journals (Sweden)

    Balcells Ingrid

    2011-10-01

    Full Text Available Abstract Background Reproductive traits, such as prolificacy, are of great interest to the pig industry. Better understanding of their genetic architecture should help to increase the efficiency of pig productivity through the implementation of marker assisted selection (MAS programmes. Results The Mucin 4 (MUC4 gene has been evaluated as a candidate gene for a prolificacy QTL described in an Iberian × Meishan (Ib × Me F2 intercross. For association analyses, two previously described SNPs (DQ124298:g.243A>G and DQ124298:g.344A>G were genotyped in 347 pigs from the Ib × Me population. QTL for the number of piglets born alive (NBA and for the total number of piglets born (TNB were confirmed on SSC13 at positions 44 cM and 51 cM, respectively. The MUC4 gene was successfully located within the confidence intervals of both QTL. Only DQ124298:g.344A>G MUC4 polymorphism was significantly associated with both NBA and TNB (P-value MUC4 expression level was determined in F2 sows displaying extreme phenotypes for the number of embryos (NE at 30-32 days of gestation. Differences in the uterine expression of MUC4 were found between high (NE ≥ 13 and low (NE ≤ 11 prolificacy sows. Overall, MUC4 expression in high prolificacy sows was almost two-fold increased compared with low prolificacy sows. Conclusions Our data suggest that MUC4 could play an important role in the establishment of an optimal uterine environment that would increase embryonic survival during pig gestation.

  9. Construction and analysis of tag single nucleotide polymorphism maps for six human-mouse orthologous candidate genes in type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Savage David A

    2005-02-01

    Full Text Available Abstract Background One strategy to help identify susceptibility genes for complex, multifactorial diseases is to map disease loci in a representative animal model of the disorder. The nonobese diabetic (NOD mouse is a model for human type 1 diabetes. Linkage and congenic strain analyses have identified several NOD mouse Idd (insulin dependent diabetes loci, which have been mapped to small chromosome intervals, for which the orthologous regions in the human genome can be identified. Here, we have conducted re-sequencing and association analysis of six orthologous genes identified in NOD Idd loci: NRAMP1/SLC11A1 (orthologous to Nramp1/Slc11a1 in Idd5.2, FRAP1 (orthologous to Frap1 in Idd9.2, 4-1BB/CD137/TNFRSF9 (orthologous to 4-1bb/Cd137/Tnrfrsf9 in Idd9.3, CD101/IGSF2 (orthologous to Cd101/Igsf2 in Idd10, B2M (orthologous to B2m in Idd13 and VAV3 (orthologous to Vav3 in Idd18. Results Re-sequencing of a total of 110 kb of DNA from 32 or 96 type 1 diabetes cases yielded 220 single nucleotide polymorphisms (SNPs. Sixty-five SNPs, including 54 informative tag SNPs, and a microsatellite were selected and genotyped in up to 1,632 type 1 diabetes families and 1,709 cases and 1,829 controls. Conclusion None of the candidate regions showed evidence of association with type 1 diabetes (P values > 0.2, indicating that common variation in these key candidate genes does not play a major role in type 1 diabetes susceptibility in the European ancestry populations studied.

  10. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    Science.gov (United States)

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  11. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    Directory of Open Access Journals (Sweden)

    Sirpa Arte

    Full Text Available Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%, with a mean number of missing teeth of 11.7 (range 4 to 34. Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes.

  12. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity

    Directory of Open Access Journals (Sweden)

    Fuchs Thilo M

    2008-01-01

    Full Text Available Abstract Background Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only recently been shown to be also toxic for insects. It is expected that both pathogens share an overlap of genetic determinants that play a role within the insect host. Results A selective genome comparison was applied. Proteins belonging to the class of two-component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling have been analysed. The interorganismic synopsis of selected regulatory systems uncovered common and distinct signalling mechanisms of both pathogens used for perception of signals within the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-component system that is unique for the genera Photorhabdus and Yersinia and is therefore suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights factors of both pathogens that are expressed at low temperatures as encountered in insects in contrast to higher (body temperature, providing evidence that temperature is a yet under-investigated environmental signal for bacterial adaptation to various hosts. Common degradative metabolic pathways are described that might be used to explore nutrients within the insect gut or hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence of P

  13. Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus: The DAMAGE study

    DEFF Research Database (Denmark)

    Reiling, Erwin; van Vliet-Ostaptchouk, Jana V; van 't Riet, Esther;

    2009-01-01

    Mitochondria play an important role in many processes, like glucose metabolism, fatty acid oxidation and ATP synthesis. In this study, we aimed to identify association of common polymorphisms in nuclear-encoded genes involved in mitochondrial protein synthesis and biogenesis with type II diabetes...

  14. Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus : the DAMAGE study

    NARCIS (Netherlands)

    Reiling, Erwin; van Vliet-Ostaptchouk, Jana V.; van't Riet, Esther; van Haeften, Timon W.; Arp, Pascal A.; Hansen, Torben; Kremer, Dennis; Groenewoud, Marlous J.; van Hove, Els C.; Romijn, Johannes A.; Smit, Jan W. A.; Nijpels, Giel; Heine, Robert J.; Uitterlinden, Andre G.; Pedersen, Oluf; Slagboom, P. Eline; Maassen, Johannes A.; Hofker, Marten H.; 't Hart, Leen M.; Dekker, Jacqueline M.

    2009-01-01

    Mitochondria play an important role in many processes, like glucose metabolism, fatty acid oxidation and ATP synthesis. In this study, we aimed to identify association of common polymorphisms in nuclear-encoded genes involved in mitochondrial protein synthesis and biogenesis with type II diabetes me

  15. Genetics of osteoporosis: searching for candidate genes for bone fragility.

    Science.gov (United States)

    Rocha-Braz, Manuela G M; Ferraz-de-Souza, Bruno

    2016-08-01

    The pathogenesis of osteoporosis, a common disease with great morbidity and mortality, comprises environmental and genetic factors. As with other complex disorders, the genetic basis of osteoporosis has been difficult to identify. Nevertheless, several approaches have been undertaken in the past decades in order to identify candidate genes for bone fragility, including the study of rare monogenic syndromes with striking bone phenotypes (e.g. osteogenesis imperfecta and osteopetroses), the analysis of individuals or families with extreme osteoporotic phenotypes (e.g. idiopathic juvenile and pregnancy-related osteoporosis), and, chiefly, genome-wide association studies (GWAS) in large populations. Altogether, these efforts have greatly increased the understanding of molecular mechanisms behind bone remodelling, which has rapidly translated into the development of novel therapeutic strategies, exemplified by the tales of cathepsin K (CTSK) and sclerostin (SOST). Additional biological evidence of involvement in bone physiology still lacks for several candidate genes arisen from GWAS, opening an opportunity for the discovery of new mechanisms regulating bone strength, particularly with the advent of high-throughput genomic technologies. In this review, candidate genes for bone fragility will be presented in comprehensive tables and discussed with regard to how their association with osteoporosis emerged, highlighting key players such as LRP5, WNT1 and PLS3. Current limitations in our understanding of the genetic contribution to osteoporosis, such as yet unidentified genetic modifiers, may be overcome in the near future with better genotypic and phenotypic characterisation of large populations and the detailed study of candidate genes in informative individuals with marked phenotype. PMID:27533615

  16. A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass

    Institute of Scientific and Technical Information of China (English)

    Shawn; LEVY

    2010-01-01

    Osteoporosis is a highly heritable common bone disease leading to fractures that severely impair the life quality of patients.Wrist fractures caused by osteoporosis are largely due to the scarcity of wrist bone mass.Here we report the results of a genome-wide association study (GWAS) of wrist bone mineral density (BMD).We examined ~500000 SNP markers in 1000 unrelated homogeneous Caucasian subjects and found a novel allelic association with wrist BMD at rs11023787 in the SOX6 (SRY (sex determining region Y)-box 6) gene (P=9.00×10-5).Subjects carrying the C allele of rs11023787 in SOX6 had significantly higher mean wrist BMD values than those with the T allele (0.485:0.462 g cm-2 for C allele vs.T allele carriers).For validation,we performed SOX6 association for BMD in an independent Chinese sample and found that SNP rs11023787 was significantly associated with wrist BMD in the Chinese sample (P=6.41×10-3).Meta-analyses of the GWAS scan and the replication studies yielded P-values of 5.20×10-6 for rs11023787.Results of this study,together with the functional relevance of SOX6 in cartilage formation,support the SOX6 gene as an important gene for BMD variation.

  17. Association and haplotype analysis of candidate genes in five genomic regions linked to sow maternal infanticide in a white Duroc × Erhualian resource population

    Directory of Open Access Journals (Sweden)

    Ding Nengshui

    2011-02-01

    Full Text Available Abstract Background Maternal infanticide is an extreme and failed maternal behavior, which is defined as an active attack on piglets using the jaws, resulting in serious or fatal bite wounds. It brings big economic loss to the pig industry and severe problems to piglets' welfare. But little is known about the genetic background of this behavior. Quantitative trait loci (QTL for maternal infanticide were identified in a White Duroc × Erhualian intercross by a non-parametric linkage analysis (NPL in our previous study. In this study, associations of 194 microsatellite markers used in NPL analysis with maternal infanticide behavior were further analyzed by transmission-disequilibrium test (TDT. On this basis, seven genes (ESR2, EAAT2, BDNF, OXTR, 5-HTR2C, DRD1 and GABRA6 at five genomic regions were selected and further analyzed. Associations of single nucleotide polymorphisms (SNPs and haplotypes in each gene with maternal infanticide behavior were evaluated. Results Microsatellite markers on pig chromosome (SSC 2, 13, 15, and X displayed significance at P ESR2 SNPs had nominal evidence for association (P A at EAAT2 g. 233G > A and allele T at DRD1 g.1013C > G > T also showed evidence of overtransmission to infanticidal sows. In the overall tests of association of haplotypes, candidate genes of ESR2, EAAT2 and DRD1 achieved overall significance level (P ESR2, EAAT2 and DRD1 showed higher frequencies to infanticidal sows (P Conclusions From association tests of SNPs and haplotypes, ESR2, EAAT2 and DRD1 showed significant associations with maternal infanticide. This result supported the existence of QTL for maternal infanticide behavior on SSC1, SSC2 and SSC16.

  18. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    OpenAIRE

    Caruso Marco; Merelo Paz; Distefano Gaetano; La Malfa Stefano; Lo Piero Angela; Tadeo Francisco R; Talon Manuel; Gentile Alessandra

    2012-01-01

    Abstract Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing th...

  19. Isolation, characterization, and structure analysis of a non-TIR-NBS-LRR encoding candidate gene from MYMIV-resistant Vigna mungo.

    Science.gov (United States)

    Maiti, Soumitra; Paul, Sujay; Pal, Amita

    2012-11-01

    Yellow mosaic disease of Vigna mungo caused by Mungbean yellow mosaic India virus (MYMIV) is still a major threat in the crop production. A candidate disease resistance (R) gene, CYR1 that co-segregates with MYMIV-resistant populations of V. mungo has been isolated. CYR1 coded in silico translated protein sequence comprised of 1,176 amino acids with coiled coil structure at the N-terminus, central nucleotide binding site (NBS) and C-terminal leucine-rich repeats (LRR) that belongs to non-TIR-NBS-LRR subfamily of plant R genes. CYR1 transcript was unambiguously expressed during incompatible plant virus interactions. A putative promoter-like sequence present upstream of this candidate gene perhaps regulates its expression. Enhanced transcript level upon MYMIV infection suggests involvement of this candidate gene in conferring resistance against the virus. In silico constructed 3D models of NBS and LRR regions of this candidate protein and MYMIV-coat protein (CP) revealed that CYR1-LRR forms an active pocket and successively interacts with MYMIV-CP during docking, like that of receptor-ligand interaction; indicating a critical role of CYR1 as signalling molecule to protect V. mungo plants from MYMIV. This suggests involvement of CYR1 in recognizing MYMIV-effector molecule thus contributing to incompatible interaction. This study is the first stride to understand molecular mechanism of MYMIV resistance.

  20. Adaptations to climate in candidate genes for common metabolic disorders.

    Directory of Open Access Journals (Sweden)

    Angela M Hancock

    2008-02-01

    Full Text Available Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders.

  1. Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.)

    Indian Academy of Sciences (India)

    M S Vinod; Naveen Sharma; K Manjunatha; Adnan Kanbar; N B Prakash; H E Shashidhar

    2006-03-01

    Candidate genes are sequenced genes of known biological action involved in the development or physiology of a trait. Twenty-one putative candidate genes were designed after an exhaustive search in the public databases along with an elaborate literature survey for candidate gene products and/or regulatory sequences associated with enhanced drought resistance. The downloaded sequences were then used to design primers considering the flanking sequences as well. Polymerase chain reaction (PCR) performed on 10 diverse cultivars that involved Japonica, Indica and local accessions, revealed 12 polymorphic candidate genes. Seven polymorphic candidate genes were then utilized to genotype 148 individuals of CT9993 × IR62266 doubled haploid (DH) mapping population. The segregation data were tested for deviation from the expected Mendelian ratio (1:1) using a Chi-square test (<1%). Based on this, four candidate genes were assessed to be significant and the remaining three, as non-significant. All the significant candidate genes were biased towards CT9993, the female parent in the DH mapping population. Single-marker analysis strongly associated ( < 1%) them to different traits under both well-watered and low-moisture stress conditions. Two candidate genes, EXP15 and EXP13, were found to be associated with root number and silicon content in the stem respectively, under both well-watered and low-moisture stress conditions.

  2. Investigation of two candidate genes for Hailey-Hailey disease

    Energy Technology Data Exchange (ETDEWEB)

    Peluso, A.M.; Ikeda, S.; Bonifas, J.M. [Univ. of California, San Francisco, CA (United States)] [and others

    1994-09-01

    Hailey-Hailey disease (familial benign chronic pemphigus) is an autosomal dominant skin disease characterized by impaired keratinocyte cohesion and consequent blister formation. Recently we have used linkage to map the gene for this disease to a region of chromosome 3q between D3S1589 and D3S1316. The maximum combined two point lod score in four families studied was 14.60 at {theta} = 0 at the D3S1290 microsatellite repeat. Several genes have been mapped to chromosome 3q21-24, including cellular retinol binding protein (RBP1) and rhodopsin (RHO). Using microsatellite repeat for RHO we have found a recombinant with the RHO gene and Hailey-Hailey disease in one patient. Because of the profound effects of retinoids on epidermal differentiation, RBP1 could be considered as a possible candidate gene. We have amplified genomic DNA from patients from 14 individual families with Hailey-Hailey disease and 10 different control samples for each of the 4 exons of RBP1. Thus far, SSCP analysis has failed to detect different banding patterns in patients versus controls. We are now attempting to extend this RBP1 analysis and are collecting new families to use linkage analysis to narrow this still rather large (approximately 14 cM) interval.

  3. Cat3vl and Cat3vao cataract mutations on mouse chromosome 10: phenotypic characterization, linkage studies and analysis of candidate genes.

    Science.gov (United States)

    Löster, J; Immervoll, T; Schmitt-John, T; Graw, J

    1997-12-01

    Cat3vl and Cat3vao are two allelic, dominant cataract mutations that arose independently in the F1 generation after gamma-irradiation of male mice. The cataracts are already present at birth. Examination of the eyes with a slit lamp revealed completely vacuolated lenses in Cat3vl mutants and anteriorly located opacity in Cat3vao mutants. The appearance of the opacities does not differ between the individuals or between heterozygotes and homozygotes. Penetrance of the mutations is complete. Viability and fertility of the mutants are normal except in the case of the Cat3vl homozygotes. Cat3vao was assigned to the distal part of mouse chromosome 10, 3.2 +/- 0.9 cM away from the visible marker Steel (SlgbH). Using polymorphic markers the following locus order was found: D10Mit230-(0.2 +/- 0.1 cM)-Cat3vao-(2.5 +/- 0.6 cM)-D10Mit70. No recombinants were found between Cat3vao and the markers D10Mit4l and D10Mit95 among 921 offspring. The results exclude allelism of Cat3vao with CatLop or To2, which also map to chromosome 10. Candidate genes were tested by examination of their expression in the eye of newborn mice and by analysis of cDNA sequences. So far, negative results have been obtained for the genes encoding the proteoglycans lumican and decorin, the nuclear orphan receptor Tr2-11 and the transcription factor Elk3. Based on syntenic homology of the Cat3 region to the human chromosome 12q, the Cat3 mutants are discussed as mouse models for cornea plana congenita in man. The recovery of the Cat3 mutations demonstrates the importance of the corresponding locus for proper eye development. PMID:9439574

  4. Identification of candidate genes for susceptibility to reactive arthritis

    NARCIS (Netherlands)

    M. Rihl; C. Barthel; A. Klos; R.E. Schmidt; P.P. Tak; H. Zeidler; J.G. Kuipers

    2009-01-01

    This study was undertaken to evaluate the gene expression profile in monocytes from three patients with reactive arthritis (ReA) in remission in order to identify candidate genes accounting for a potential susceptibility to ReA. Gene expression analyses revealed eight differentially expressed mRNA t

  5. The Important Candidate Genes in Goats - A Review

    Directory of Open Access Journals (Sweden)

    China SUPAKORN

    2009-01-01

    Full Text Available A total of 271 candidate genes have been detected in goats. However, comprehensive investigations have been carried out on the polymorphism of some genes, involved in the control of economic traits. Candidate genes have an effect on the physiological pathway, metabolism and expression of phenotypes. For growth traits, growth hormone (GH, growth hormone receptor (GHR, insulin like growth factor I (IGF-I, leptin (LEP, caprine pituitary specific transcription factor-1 (POU1F1, caprine myostatin (MSTN and bone morphogenetic protein (BMP genes are necessary for bone formation, birth weight, weaning weight, body condition and muscle growth. For reproduction, forkhead box L 2 (FOXL2, melatonin receptor 1A (MTNR1A, sex determination region of Y chromosome (SRY and amelogenin (AMEL genes influence sex determination and proliferation. The major candidate genes for milk yield and milk composition traits are the casein gene and their family. Keratin associated protein (KAP and melanocortin 1 receptor (MC1R genes are candidate genes for wool traits. The major histocompatibility complex (MHC gene is considered important for the immune system and disease resistance traits. The functions of these genes on economically important traits are different. Some genes have synergistic or antagonistic effects in nature for expression of phenotypic traits. On the other hand, some genes could control more than one trait. Also, the producers should be concerned with these effects because selection of a single trait by using only a gene could affect other traits. Therefore, the identification of candidate genes and their mutations which cause variations of gene expression and phenotype of economic traits will help breeders to search some genetic markers for these economic traits. It may be used as an aid in the selection of parent stock at an early age in the future.

  6. Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT.

    Science.gov (United States)

    Nicolaou, Nayia; Pulit, Sara L; Nijman, Isaac J; Monroe, Glen R; Feitz, Wout F J; Schreuder, Michiel F; van Eerde, Albertien M; de Jong, Tom P V M; Giltay, Jacques C; van der Zwaag, Bert; Havenith, Marlies R; Zwakenberg, Susan; van der Zanden, Loes F M; Poelmans, Geert; Cornelissen, Elisabeth A M; Lilien, Marc R; Franke, Barbara; Roeleveld, Nel; van Rooij, Iris A L M; Cuppen, Edwin; Bongers, Ernie M H F; Giles, Rachel H; Knoers, Nine V A M; Renkema, Kirsten Y

    2016-02-01

    The leading cause of end-stage renal disease in children is attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Familial clustering and mouse models support the presence of monogenic causes. Genetic testing is insufficient as it mainly focuses on HNF1B and PAX2 mutations that are thought to explain CAKUT in 5–15% of patients. To identify novel, potentially pathogenic variants in additional genes, we designed a panel of genes identified from studies on familial forms of isolated or syndromic CAKUT and genes suggested by in vitro and in vivo CAKUT models. The coding exons of 208 genes were analyzed in 453 patients with CAKUT using next-generation sequencing. Rare truncating, splice-site variants, and non-synonymous variants, predicted to be deleterious and conserved, were prioritized as the most promising variants to have an effect on CAKUT. Previously reported disease-causing mutations were detected, but only five were fully penetrant causal mutations that improved diagnosis. We prioritized 148 candidate variants in 151 patients, found in 82 genes, for follow-up studies. Using a burden test, no significant excess of rare variants in any of the genes in our cohort compared with controls was found. Thus, in a study representing the largest set of genes analyzed in CAKUT patients to date, the contribution of previously implicated genes to CAKUT risk was significantly smaller than expected, and the disease may be more complex than previously assumed. PMID:26489027

  7. Unifying candidate gene and GWAS Approaches in Asthma.

    Directory of Open Access Journals (Sweden)

    Sven Michel

    Full Text Available The first genome wide association study (GWAS for childhood asthma identified a novel major susceptibility locus on chromosome 17q21 harboring the ORMDL3 gene, but the role of previous asthma candidate genes was not specifically analyzed in this GWAS. We systematically identified 89 SNPs in 14 candidate genes previously associated with asthma in >3 independent study populations. We re-genotyped 39 SNPs in these genes not covered by GWAS performed in 703 asthmatics and 658 reference children. Genotyping data were compared to imputation data derived from Illumina HumanHap300 chip genotyping. Results were combined to analyze 566 SNPs covering all 14 candidate gene loci. Genotyped polymorphisms in ADAM33, GSTP1 and VDR showed effects with p-values <0.0035 (corrected for multiple testing. Combining genotyping and imputation, polymorphisms in DPP10, EDN1, IL12B, IL13, IL4, IL4R and TNF showed associations at a significance level between p = 0.05 and p = 0.0035. These data indicate that (a GWAS coverage is insufficient for many asthma candidate genes, (b imputation based on these data is reliable but incomplete, and (c SNPs in three previously identified asthma candidate genes replicate in our GWAS population with significance after correction for multiple testing in 14 genes.

  8. Expression of the dyslexia candidate gene kiaa0319-like in insect cells

    NARCIS (Netherlands)

    Holster, S.; Oers, van M.M.; Roode, E.C.; Tsang, O.W.H.; Yeung, V.S.Y.; Vlak, J.M.; Waye, M.M.Y.

    2013-01-01

    The human kiaa0319-like gene is one of the candidate genes for developmental dyslexia, but the exact function of the encoded KIAA0319L (KL) protein is not known. To allow functional analysis a purified, biologically active KL protein is required. The kiaa0319-like gene was expressed in insect cells

  9. A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137

    Science.gov (United States)

    Devanna, Paolo; Vernes, Sonja C.

    2014-02-01

    Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes.

  10. Single nucleotide polymorphisms in candidate genes and dengue severity in children: a case-control, functional and meta-analysis study.

    Science.gov (United States)

    Xavier-Carvalho, Caroline; Gibson, Gerusa; Brasil, Patrícia; Ferreira, Ralph X; de Souza Santos, Reinaldo; Gonçalves Cruz, Oswaldo; de Oliveira, Solange Artimos; de Sá Carvalho, Marília; Pacheco, Antonio G; Kubelka, Claire F; Moraes, Milton O

    2013-12-01

    Dengue is an arthropod-borne emerging viral disease with high morbidity and mortality risk in tropical countries like Brazil. Clinical manifestations are vast, ranging from asymptomatic to most severe forms of dengue such as shock. Previous data have shown that host genetics play a role in disease susceptibility and severity. Herein, we have tested the association of single nucleotide polymorphisms (SNPs) at TNF, IL10, MIF, DCSIGN, CLEC5A, NOD2, CCR5 and MRC1 as candidate genes using a matched case-control study design including 88 severe children cases of dengue patients and 335 healthy unrelated subjects that was also separated in IgG(+) and IgG(-) controls. We demonstrated that the TT genotype of CLEC5A SNP (rs1285933 C>T) is associated with dengue severity (OR=2.25; p=0.03) and that GG genotype of -336G>A DCSIGN (CD209) SNP is associated with protection to severe dengue (OR=0.12; p=0.04). Both comparisons were borderline significant when cases were compared with IgG(+) controls subgroup. Nevertheless, genotype-phenotype correlation was also assessed using serum levels of TNF from infected patients at the onset of dengue fever, and CT/TT carriers in CLEC5A secreted higher levels of TNF than CC individuals in 5-7 days of infection. No significant difference was observed in TNF levels between genotypes GG versus AG/AA at DCSIGN promoter. Next, we performed a meta-analysis retrieving results from the literature for -336G>A DCSIGN and -308G>A TNF SNPs demonstrating that the consensus estimates of these SNPs indicated no association with dengue severity (when compared to Dengue fever) in the overall analysis. But, a subgroup analysis in the -336G>A DCSIGN, the G allele was associated with severe dengue susceptibility in Asians (ORallele=2.77; p=0.0001; ORcarriers=2.99; p=0.0001) and protection in Brazilians (ORallele=0.66; p=0.013). In summary, our results suggest that genetic variations at CLEC5A increase the risk and regulate TNF secretion in dengue severity among

  11. Candidate gene studies in human anxiety disorders

    OpenAIRE

    Donner, Jonas

    2012-01-01

    Anxiety disorders, such as panic disorder (PD), obsessive-compulsive disorder, post-traumatic stress disorder, generalized anxiety disorder, and phobias are common psychiatric disorders, characterized by exaggerated, prolonged and debilitating levels of anxiety. They are complex diseases with onset influenced by both environmental and genetic factors, but so far little progress has been made in identifying solid susceptibility genes. The aim of this study was to shed light on the genetic basi...

  12. Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development

    Directory of Open Access Journals (Sweden)

    Leah Y. Liu

    2013-09-01

    Genome-wide association studies (GWAS have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10 decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50 decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to GWAS for additional disease-associated phenotypes.

  13. Transcriptomic analysis of the mussel Elliptio complanata identifies candidate stress-response genes and an abundance of novel or noncoding transcripts.

    Directory of Open Access Journals (Sweden)

    Robert S Cornman

    Full Text Available Mussels are useful indicator species of environmental stress and degradation, and the global decline in freshwater mussel diversity and abundance is of conservation concern. Elliptio complanata is a common freshwater mussel of eastern North America that can serve both as an indicator and as an experimental model for understanding mussel physiology and genetics. To support genetic components of these research goals, we assembled transcriptome contigs from Illumina paired-end reads. Despite efforts to collapse similar contigs, the final assembly was in excess of 136,000 contigs with an N50 of 982 bp. Even so, comparisons to the CEGMA database of conserved eukaryotic genes indicated that ∼ 20% of genes remain unrepresented. However, numerous candidate stress-response genes were present, and we identified lineage-specific patterns of diversification among molluscs for cytochrome P450 detoxification genes and two saccharide-modifying enzymes: 1,3 beta-galactosyltransferase and fucosyltransferase. Less than a quarter of contigs had protein-level similarity based on modest BLAST and Hmmer3 statistical thresholds. These results add comparative genomic resources for molluscs and suggest a wealth of novel proteins and noncoding transcripts.

  14. Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments, ages, and populations

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, JW; Walker, AR; Neves, LG; Munoz, P; Resende, MFR; Neale, DB; Wegrzyn, JL; Huber, DA; Kirst, M; Davis, JM; Peter, GF

    2014-09-30

    Genetically improving constitutive resin canal development in Pinus stems may enhance the capacity to synthesize terpenes for bark beetle resistance, chemical feedstocks, and biofuels. To discover genes that potentially regulate axial resin canal number (RCN), single nucleotide polymorphisms (SNPs) in 4027 genes were tested for association with RCN in two growth rings and three environments in a complex pedigree of 520 Pinus taeda individuals (CCLONES). The map locations of associated genes were compared with RCN quantitative trait loci (QTLs) in a (P.taedaxPinuselliottii)xP.elliottii pseudo-backcross of 345 full-sibs (BC1). Resin canal number was heritable (h(2)0.12-0.21) and positively genetically correlated with xylem growth (r(g)0.32-0.72) and oleoresin flow (r(g)0.15-0.51). Sixteen well-supported candidate regulators of RCN were discovered in CCLONES, including genes associated across sites and ages, unidirectionally associated with oleoresin flow and xylem growth, and mapped to RCN QTLs in BC1. Breeding is predicted to increase RCN 11% in one generation and could be accelerated with genomic selection at accuracies of 0.45-0.52 across environments. There is significant genetic variation for RCN in loblolly pine, which can be exploited in breeding for elevated terpene content.

  15. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    Science.gov (United States)

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications. PMID:27521696

  16. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    Directory of Open Access Journals (Sweden)

    Caruso Marco

    2012-02-01

    Full Text Available Abstract Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.. These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'. Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non

  17. The association of four common polymorphisms from four candidate genes (COX-1, COX-2, ITGA2B, ITGA2 with aspirin insensitivity: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Zhiyuan Weng

    Full Text Available OBJECTIVE: Evidence is mounting suggesting that a strong genetic component underlies aspirin insensitivity. To generate more information, we aimed to evaluate the association of four common polymorphisms (rs3842787, rs20417, rs201184269, rs1126643 from four candidate genes (COX-1, COX-2, ITGA2B, ITGA2 with aspirin insensitivity via a meta-analysis. METHODS AND RESULTS: In total, there were 4 (353/595, 6 (344/698, 10 (588/878 and 7 (209/676 articles (patients/controls qualified for rs3842787, rs20417, rs20118426 and rs1126643, respectively. The data were extracted in duplicate and analyzed by STATA software (Version 11.2. The risk estimate was expressed as odds ratio (OR and 95% confidence interval (95% CI. Analyses of the full data set indicated significant associations of rs20417 (OR; 95% CI; P: 1.86; 1.44-2.41; <0.0005 and rs1126643 (2.37; 1.44-3.89; 0.001 with aspirin insensitivity under allelic model. In subgroup analyses, the risk estimate for rs1126643 was greatly potentiated among patients with aspirin semi-resistance relative to those with aspirin resistance, especially under dominant model (aspirin semi-resistance: 5.44; 1.42-20.83; 0.013 versus aspirin resistance: 1.96; 1.07-3.6; 0.03. Further grouping articles by ethnicity observed a stronger prediction of all, but rs20417, examined polymorphisms for aspirin insensitivity in Chinese than in Caucasians. Finally, meta-regression analyses observed that the differences in percentage of coronary artery disease (P = 0.034 and averaged platelet numbers (P = 0.012 between two groups explained a large part of heterogeneity for rs20417 and rs1126643, respectively. CONCLUSION: Our findings provide strong evidence that COX-2 and ITGA2 genetic defects might increase the risk of having aspirin insensitivity, especially for aspirin semi-resistance and in Chinese populations.

  18. Molecular Mapping and Candidate Gene Analysis of Black Fruit Spine Gene in Cucumber (Cucumis sativus L.)%黄瓜黑色果刺基因染色体定位及候选基因分析

    Institute of Scientific and Technical Information of China (English)

    刘书林; 顾兴芳; 苗晗; 王烨; Yiqun Weng; Todd C Wehner; 张圣平

    2014-01-01

    [Objective]Cucumber (Cucumis sativus L.) is an important fruit vegetables. Fruit quality is always getting more attention in cucumber breeding program. Fruit quality includes inner quality and exterior quality, and fruit exterior quality of cucumber has important influences on its commodification. Spine color is one of the important fruit quality traits in cucumber. The clarification of the inheritance and identification of molecular markers for the fruit spine color gene will provide a theoretical basis for breeding of fruit quality and lay a foundation for fine mapping and gene cloning. [Method] Cucumber inbred lines GY14 with white fruit spines and NC76 with black fruit spines were used as the experiment materials for genetic analysis and gene mapping for black fruit spine in this study. Bulked segregation analysis (BSA) was performed in the F2 population using 2112 SSR markers. The sequence and re-sequencing information of 9930 and 100 core germplasms were used to develop new SSR and Indel markers in the primary mapping region of the black spine color gene (B). JoinMap 4.0 and MapInspect software were employed to construct a linkage map for the B gene with SSR markers. Bio-informatics was adopted to predict candidate genes in the genomic region harboring the B gene. A set of 156 recombinant inbred lines (RILs) were used to test the veracity for marker-assisted selection (MAS) of flanking molecular markers linked to the B gene.[Result]Genetic analysis showed that the trait of black fruit spine in NC76 was qualitative, and a single dominant nuclear gene (B) controlled this trait. Black was dominant to white. In the primary genetic mapping of the B gene, eight SSR markers were screened to be linked with the black fruit spine color locus. The B gene was mapped on the chromosome 4 (Chr.4) of cucumber. The closest linked marker SSR22231 was 10.8 cM away from B. A total of 212 pairs of new SSR primer and 25 pairs of Indel primer were developed based on the sequence

  19. Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI

    Science.gov (United States)

    Vimaleswaran, Karani S.; Tachmazidou, Ioanna; Zhao, Jing Hua; Hirschhorn, Joel N.; Dudbridge, Frank; Loos, Ruth J.F.

    2012-01-01

    Before the advent of genome-wide association studies (GWASs), hundreds of candidate genes for obesity-susceptibility had been identified through a variety of approaches. We examined whether those obesity candidate genes are enriched for associations with body mass index (BMI) compared with non-candidate genes by using data from a large-scale GWAS. A thorough literature search identified 547 candidate genes for obesity-susceptibility based on evidence from animal studies, Mendelian syndromes, linkage studies, genetic association studies and expression studies. Genomic regions were defined to include the genes ±10 kb of flanking sequence around candidate and non-candidate genes. We used summary statistics publicly available from the discovery stage of the genome-wide meta-analysis for BMI performed by the genetic investigation of anthropometric traits consortium in 123 564 individuals. Hypergeometric, rank tail-strength and gene-set enrichment analysis tests were used to test for the enrichment of association in candidate compared with non-candidate genes. The hypergeometric test of enrichment was not significant at the 5% P-value quantile (P = 0.35), but was nominally significant at the 25% quantile (P = 0.015). The rank tail-strength and gene-set enrichment tests were nominally significant for the full set of genes and borderline significant for the subset without SNPs at P < 10−7. Taken together, the observed evidence for enrichment suggests that the candidate gene approach retains some value. However, the degree of enrichment is small despite the extensive number of candidate genes and the large sample size. Studies that focus on candidate genes have only slightly increased chances of detecting associations, and are likely to miss many true effects in non-candidate genes, at least for obesity-related traits. PMID:22791748

  20. RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS.

    Science.gov (United States)

    Dixit, Aparna Banerjee; Banerjee, Jyotirmoy; Srivastava, Arpna; Tripathi, Manjari; Sarkar, Chitra; Kakkar, Aanchal; Jain, Mukesh; Chandra, P Sarat

    2016-05-01

    Array-based profiling studies have shown implication of aberrant gene expression patterns in epileptogenesis. We have performed transcriptome analysis of hippocampal tissues resected from patients with MTLE-HS using RNAseq approach. Healthy tissues from tumour margins obtained during tumour surgeries were used as non-epileptic controls. RNA sequencing was performed using standard protocols on Illumina HiSeq 2500 platform. Differential gene expression analysis of the RNAseq data revealed 56 significantly regulated genes in MTLE patients. Gene cluster analysis identified 3 important hubs of genes mostly linked to, neuroinflammation and innate immunity, synaptic transmission and neuronal network modulation which are supportive of intrinsic severity hypothesis of pharmacoresistance. This study identified various genes like FN1 which is central in our analysis, NEUROD6, RELN, TGFβR2, NLRP1, SCRT1, CSNK2B, SCN1B, CABP1, KIF5A and antisense RNAs like AQP4-AS1 and KIRREL3-AS2 providing important insight into the understanding of the pathophysiology or genomic basis of drug refractory epilepsy due to MTS. PMID:27094248

  1. RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS.

    Science.gov (United States)

    Dixit, Aparna Banerjee; Banerjee, Jyotirmoy; Srivastava, Arpna; Tripathi, Manjari; Sarkar, Chitra; Kakkar, Aanchal; Jain, Mukesh; Chandra, P Sarat

    2016-05-01

    Array-based profiling studies have shown implication of aberrant gene expression patterns in epileptogenesis. We have performed transcriptome analysis of hippocampal tissues resected from patients with MTLE-HS using RNAseq approach. Healthy tissues from tumour margins obtained during tumour surgeries were used as non-epileptic controls. RNA sequencing was performed using standard protocols on Illumina HiSeq 2500 platform. Differential gene expression analysis of the RNAseq data revealed 56 significantly regulated genes in MTLE patients. Gene cluster analysis identified 3 important hubs of genes mostly linked to, neuroinflammation and innate immunity, synaptic transmission and neuronal network modulation which are supportive of intrinsic severity hypothesis of pharmacoresistance. This study identified various genes like FN1 which is central in our analysis, NEUROD6, RELN, TGFβR2, NLRP1, SCRT1, CSNK2B, SCN1B, CABP1, KIF5A and antisense RNAs like AQP4-AS1 and KIRREL3-AS2 providing important insight into the understanding of the pathophysiology or genomic basis of drug refractory epilepsy due to MTS.

  2. A balanced t(5;17 (p15;q22-23 in chondroblastoma: frequency of the re-arrangement and analysis of the candidate genes

    Directory of Open Access Journals (Sweden)

    Wijers-Koster Pauline

    2009-11-01

    Full Text Available Abstract Background Chondroblastoma is a benign cartilaginous tumour of bone that predominantly affects the epiphysis of long bones in young males. No recurrent chromosomal re-arrangements have so far been observed. Methods: We identified an index case with a balanced translocation by Combined Binary Ratio-Fluorescent in situ Hybridisation (COBRA-FISH karyotyping followed by breakpoint FISH mapping and array-Comparative Genomic Hybridisation (aCGH. Candidate region re-arrangement and candidate gene expression were subsequently investigated by interphase FISH and immunohistochemistry in another 14 cases. Results A balanced t(5;17(p15;q22-23 was identified. In the index case, interphase FISH showed that the translocation was present only in mononucleated cells and was absent in the characteristic multinucleated giant cells. The t(5;17 translocation was not observed in the other cases studied. The breakpoint in 5p15 occurred close to the steroid reductase 5α1 (SRD5A1 gene. Expression of the protein was found in all cases tested. Similar expression was found for the sex steroid signalling-related molecules oestrogen receptor alpha and aromatase, while androgen receptors were only found in isolated cells in a few cases. The breakpoint in 17q22-23 was upstream of the carbonic anhydrase × (CA10 gene region and possibly involved gene-regulatory elements, which was indicated by the lack of CA10 protein expression in the index case. All other cases showed variable levels of CA10 expression, with low expression in three cases. Conclusion We report a novel t(5;17(p15;q22-23 translocation in chondroblastoma without involvement of any of the two chromosomal regions in other cases studied. Our results indicate that the characteristic multinucleated giant cells in chondroblastoma do not have the same clonal origin as the mononuclear population, as they do not harbour the same translocation. We therefore hypothesise that they might be either reactive or

  3. 茄子单性结实候选基因的表达分析%Expression Analysis of Eggplant Parthenocarpic Candidate Genes

    Institute of Scientific and Technical Information of China (English)

    张映; 刘富中; 李香景; 陈钰辉; 张振贤; 方智远; 连勇

    2011-01-01

    Differentially expressed unigenes from eggplant ( Solarium melongena L. ) suppression subtractive hybridization ( SSH ) Cdna library were BLAST analyzed in GeneBank database. The results showed that 1 109 unigenes were homologous to known genes, including methionine sulfoxide reductase, MADS-box transcription factor, histone, cryptochrome etc, and 139 unigenes could be new genes. The expression profile of 10 differentially expressed unigenes in parthenocarpic fruits and unparthenocarpic fruits were studied by Real-time PCR. According to Real-time quantitative PCR results, we screened out unigenes Z569 and Z707, which were differentially expressed in parthenocarpic fruit at low temperature, may be related with eggplant parthenocary and be used as the candidate gene for the study of eggplant parthenocarpy.%对茄子单性结实抑制差减文库中的1248个差异表达unigenes在GeneBank数据库中进行BLAST比对分析,结果表明1 109个unigenes具有同源序列,其编码的蛋白包括甲硫氨酸亚砜还原酶、MADS-box转录因子、组蛋白和隐花色素等,涉及到果实发育的多个方面,139个unigenes没有同源序列,可能为新基因.利用荧光定量PCR研究10个差异表达unigenes在茄子单性结实果实和非单性结实果实发育过程中的表达模式,分析表明,在低温条件下,unigenes Z569和Z707在单性结实果实发育中特异表达,可能与单性结实果实的形成有关,可作为研究单性结实的候选基因.

  4. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes

    DEFF Research Database (Denmark)

    Russell, Meaghan K; Longoni, Mauro; Wells, Julie;

    2012-01-01

    perturbations lead to CDH phenotypes, and E16.5 when the diaphragm is fully formed. Gene sets defining biologically relevant pathways and temporal expression trends were identified by using a series of bioinformatic algorithms. These developmental sets were then compared with a manually curated list of genes...... expression profiling of developing embryonic diaphragms would help identify genes likely to be associated with diaphragm defects. We generated a time series of whole-transcriptome expression profiles from laser captured embryonic mouse diaphragms at embryonic day (E)11.5 and E12.5 when experimental...... previously shown to cause diaphragm defects in humans and in mouse models. Our integrative filtering strategy identified 27 candidates for CDH. We examined the diaphragms of knockout mice for one of the candidate genes, pre-B-cell leukemia transcription factor 1 (Pbx1), and identified a range of previously...

  5. ZDHHC8 as a candidate gene for schizophrenia: Analysis of a putative functional intronic marker in case-control and family-based association studies

    Directory of Open Access Journals (Sweden)

    Jabs Burkhard

    2005-10-01

    Full Text Available Abstract Background The chromosome 22q11 region is proposed as a major candidate locus for susceptibility genes to schizophrenia. Recently, the gene ZDHHC8 encoding a putative palmitoyltransferase at 22q11 was proposed to increase liability to schizophrenia based on both animal models and human association studies by significant over-transmission of allele rs175174A in female, but not male subjects with schizophrenia. Methods Given the genetic complexity of schizophrenia and the potential genetic heterogeneity in different populations, we examined rs175174 in 204 German proband-parent triads and in an independent case-control study (schizophrenic cases: n = 433; controls: n = 186. Results In the triads heterozygous parents transmitted allele G preferentially to females, and allele A to males (heterogeneity χ2 = 4.43; p = 0.035. The case-control sample provided no further evidence for overall or gender-specific effects regarding allele and genotype frequency distributions. Conclusion The findings on rs175174 at ZDHHC8 are still far from being conclusive, but evidence for sexual dimorphism is moderate, and our data do not support a significant genetic contribution of rs175174 to the aetiopathogenesis of schizophrenia.

  6. LOD score exclusion analyses for candidate disease susceptibility genes using case-parents design

    Institute of Scientific and Technical Information of China (English)

    DENG Hongwen; GAO Guimin

    2006-01-01

    The focus of almost all the association studies of candidate genes is to test for their importance. We recently developed a LOD score approach that can be used to test against the importance of candidate genes for complex diseases and quantitative traits in random samples. As a complementary method to regular association analyses, our LOD score approach is powerful but still affected by the population admixture, though it is more conservative. To control the confounding effect of population heterogeneity, we develop here a LOD score exclusion analysis using case-parents design, the basic design of the transmission disequilibrium test (TDT) approach that is immune to population admixture. In the analysis, specific genetic effects and inheritance models at candidate genes can be analyzed and if a LOD score is ≤ - 2.0, the locus can be excluded from having an effect larger than that specified. Simulations show that this approach has reasonable power to exclude a candidate gene having small genetic effects if it is not a disease susceptibility locus (DSL) with sample size often employed in TDT studies. Similar to association analyses with the TDT in nuclear families, our exclusion analyses are generally not affected by population admixture. The exclusion analyses may be implemented to rule out candidate genes with no or minor genetic effects as supplemental analyses for the TDT. The utility of the approach is illustrated with an application to test the importance of vitamin D receptor (VDR) gene underlying the differential risk to osteoporosis.

  7. Candidate chemosensory genes in the Stemborer Sesamia nonagrioides.

    Science.gov (United States)

    Glaser, Nicolas; Gallot, Aurore; Legeai, Fabrice; Montagné, Nicolas; Poivet, Erwan; Harry, Myriam; Calatayud, Paul-André; Jacquin-Joly, Emmanuelle

    2013-01-01

    The stemborer Sesamia nonagrioides is an important pest of maize in the Mediterranean Basin. Like other moths, this noctuid uses its chemosensory system to efficiently interact with its environment. However, very little is known on the molecular mechanisms that underlie chemosensation in this species. Here, we used next-generation sequencing (454 and Illumina) on different tissues from adult and larvae, including chemosensory organs and female ovipositors, to describe the chemosensory transcriptome of S. nonagrioides and identify key molecular components of the pheromone production and detection systems. We identified a total of 68 candidate chemosensory genes in this species, including 31 candidate binding-proteins and 23 chemosensory receptors. In particular, we retrieved the three co-receptors Orco, IR25a and IR8a necessary for chemosensory receptor functioning. Focusing on the pheromonal communication system, we identified a new pheromone-binding protein in this species, four candidate pheromone receptors and 12 carboxylesterases as candidate acetate degrading enzymes. In addition, we identified enzymes putatively involved in S. nonagrioides pheromone biosynthesis, including a ∆11-desaturase and different acetyltransferases and reductases. RNAseq analyses and RT-PCR were combined to profile gene expression in different tissues. This study constitutes the first large scale description of chemosensory genes in S. nonagrioides. PMID:23781142

  8. Speeding disease gene discovery by sequence based candidate prioritization

    Directory of Open Access Journals (Sweden)

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  9. No Evidence for Association between Amelogenesis Imperfecta and Candidate Genes

    Directory of Open Access Journals (Sweden)

    M Ghandehari Motlagh

    2009-03-01

    Full Text Available "nBackground: Amelogenesis imperfecta (AI is an inherited tooth disorder. Despite the fact that up to now, several gene muta­tions in MMP20, ENAM, AMELX and KLK4 genes have been reported to be associated with AI, many other genes sug­gested to be involved. The main objective of this study was to find the mutations in three major candidate genes including MMP20, ENAM and KLK4 responsible for AI from three Iranian families with generalized hypoplastic phenotype in all teeth. "nMethods: All exon/intron boundaries of subjected genes were amplified by polymerase chain reaction and subjected to direct sequencing."nResults: One polymorphisms was identified in KLK4 exon 2, in one family a homozygous mutation was found in the third base of codon 22 for serine (TCG>TCT, but not in other families. Although these base substitutions have been occurred in the signaling domain, they do not seem to influence the activity of KLK4 protein."nConclusion: Our results might support the further evidence for genetic heterogeneity; at least, in some AI cases are not caused by a gene in these reported candidate genes.

  10. Are TMEM genes potential candidate genes for panic disorder?

    DEFF Research Database (Denmark)

    NO, Gregersen; Buttenschøn, Henriette Nørmølle; Hedemand, Anne;

    2014-01-01

    We analysed single nucleotide polymorphisms in two transmembrane genes (TMEM98 and TMEM132E) in panic disorder (PD) patients and control individuals from the Faroe Islands, Denmark and Germany. The genes encode single-pass membrane proteins and are located within chromosome 17q11.2-q12...

  11. Identification of candidate B-lymphoma genes by cross-species gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Van S Tompkins

    Full Text Available Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL and Burkitt lymphoma (BL. We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.

  12. Exclusion of the PAX2 gene as a candidate gene for Crouzon craniofacial dysostosis

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.A.; Gorry, M.C. [Univ. of Pittsburgh, PA (United States); Warman, M. [Harvard Univ., Boston, MA (United States)] [and others

    1994-09-01

    Crouzon craniofacial dysostosis (CFD, MIM 123500) is an abnormality of craniofacial development characterized by premature craniosynostosis, maxillary hypoplasia, and shallow orbits. We have mapped the CFD gene locus using a candidate gene approach to a 7 centiMorgan region on chromosome 10q in three CFD families. A maximal multipoint LOD score of 12.33 was achieved for a locus 2 cM distal to the microsatellite marker D10S209. A comparison of several physical, cytogenetic, and linkage maps revealed that the cytogenetic bands, 10q25-q26, most likely contain this CFD locus. The PAX2 gene, which has been mapped near another marker which in turn has been mapped to 10q25, was analyzed as a candidate gene. PAX2 was chosen for analysis because mutations in other members of the PAX gene family have been identified with human craniofacial abnormalities (e.g. Waardenburg syndrome). A YAC contig, consisting of 5 overlapping groups and composed of 11 YACs that spans the entire 7 cM region, was assembled for PAX2 analyses. None of these YACs supported PAX2-specific amplification using primer sets for both the second and third PAX2 exons. Control amplifications for YAC vector sequences produced robust amplifications in all cases. In addition, SSCP analyses of amplification products generated from the second and third PAX2 exons and the 3{prime} untranslated region of the PAX2 gene from both affected and unaffected family members in two of the kindreds failed to reveal any polymorphisms. Although it remains theoretically possible, due to artifacts in the YAC contigs, it is unlikely that PAX2 is the CFD gene.

  13. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  14. Analysis of the apo E/apo C-I, angiotensin converting enzyme and methylenetetrahydrofolate reductase genes as candidates affecting human longevity.

    Science.gov (United States)

    Galinsky, D; Tysoe, C; Brayne, C E; Easton, D F; Huppert, F A; Dening, T R; Paykel, E S; Rubinsztein, D C

    1997-03-21

    Genetic factors are likely to affect human survival, since twin studies have shown greater concordance for age of death in monozygotic compared to dizygotic twins. Coronary artery disease is an important contributor to premature mortality in the UK. Accordingly, we have chosen genes associated with cardiovascular risk, apo E/apo C-I, angiotensin converting enzyme (ACE) and methylenetetrahydrofolate reductase (MTHFR), as candidates which may affect longevity/survival into old age. An association study was performed by comparing allele and genotype frequencies at polymorphic loci associated with these genes in 182 women and 100 men aged 84 years and older with 100 boys and 100 girls younger than 17 years. MTHFR allele and genotype frequencies were similar in the elderly and young populations. Apo C-I allele and genotype frequencies were significantly different in the elderly women compared to the younger sample (P Hardy-Weinberg equilibrium and compared to observed genotypes in elderly men and women. In contrast to previous studies, apo E2 was not overrepresented in the elderly men or women. Thus, the proposition that apo E2, E3 and E4 protein isoforms are themselves functionally associated with increasing risks for early death, may be too simplistic. The I/I ACE was depleted in the elderly males but not the elderly females. Furthermore, significant differences were observed between ACE genotypes in elderly men and elderly women. These data suggest that the penetrance of loci which influence survival may vary according to sex. The depletion of the ACE I/I genotype in elderly men is generally consistent with a previous study which found decreased frequencies of the I allele in French centenarians compared to younger controls. However, these results are apparently paradoxical, since others have suggested that the I allele is associated with increased cardiovascular risk. Clarification of the overall effect of a genotype on survival will be vital if therapies are to be

  15. Genome-wide pathway analysis of memory impairment in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks.

    Science.gov (United States)

    Ramanan, Vijay K; Kim, Sungeun; Holohan, Kelly; Shen, Li; Nho, Kwangsik; Risacher, Shannon L; Foroud, Tatiana M; Mukherjee, Shubhabrata; Crane, Paul K; Aisen, Paul S; Petersen, Ronald C; Weiner, Michael W; Saykin, Andrew J

    2012-12-01

    Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer's disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions. PMID:22865056

  16. Genetics of intracerebral hemorrhage: Insights from candidate gene approaches

    OpenAIRE

    Baoqiong Liu; Le Zhang; Qidong Yang

    2012-01-01

    Intracerebral hemorrhage (ICH) is a heterogeneous disease with genetic factors playing an important role. Association studies on a wide range of candidate pathways suggest a weak but significant effect for several alleles with ICH risk. Among the most widely investigated genes are those involved in the renin-angiotensin-aldosterone system (e.g., angiotensin-converting enzyme), coagulation pathway (e.g., Factor XIII, Factor VII, platelet-activating factor acetylhydrolase, Factor V Leiden, and ...

  17. Association of candidate genes with antisocial drug dependence in adolescents

    OpenAIRE

    Corley, Robin P.; Zeiger, Joanna S.; Crowley, Thomas; Ehringer, Marissa A.; Hewitt, John K.; Christian J Hopfer; Lessem, Jeffrey; McQueen, Matthew B.; Rhee, Soo Hyun; Smolen, Andrew; Stallings, Michael C.; Young, Susan E.; Krauter, Kenneth

    2008-01-01

    The Colorado Center for Antisocial Drug Dependence (CADD) is using several research designs and strategies in its study of the genetic basis for antisocial drug dependence in adolescents. This study reports Single Nucleotide Polymorphism (SNP) association results from a Targeted Gene Assay (SNP chip) of 231 Caucasian male probands in treatment with antisocial drug dependence and a matched set of community controls. The SNP chip was designed to assay 1500 SNPs distributed across 50 candidate g...

  18. The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    DEFF Research Database (Denmark)

    Hedley, Paula L; Haundrup, Ole; Andersen, Paal S;

    2011-01-01

    The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere...... as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a...

  19. Annual Killifish Transcriptomics and Candidate Genes for Metazoan Diapause.

    Science.gov (United States)

    Thompson, Andrew W; Ortí, Guillermo

    2016-09-01

    Dormancy has evolved in all major metazoan lineages. It is critical for survival when environmental stresses are not conducive to growth, maturation, or reproduction. Embryonic diapause is a form of dormancy where development is reversibly delayed and metabolism is depressed. We report the diapause transcriptome of the annual killifish Nematolebias whitei, and compare gene expression between diapause embryos and free-living larvae to identify a candidate set of 945 differentially expressed "diapause" genes for this species. Similarity of transcriptional patterns among N. whitei and other diapausing animals is striking for a small set of genes associated with stress resistance, circadian rhythm, and metabolism, while other genes show discordant patterns. Although convergent evolution of diapause may require shared molecular mechanisms for fundamental processes, similar physiological phenotypes also may arise through modification of alternative pathways. Annual killifishes are a tractable model system for comparative transcriptomic studies on the evolution of diapause. PMID:27297470

  20. Genetic Variation in Candidate Genes Like the HMGA2 Gene in the Extremely Tall

    NARCIS (Netherlands)

    Hendriks, A. E. J.; Brown, M. R.; Boot, A. M.; Oostra, B. A.; Drop, S. L. S.; Parks, J. S.

    2011-01-01

    Background/Aims: Genetic variation in several candidate genes has been associated with short stature. Recently, a high-mobility group A2 (HMGA2) gene SNP has been robustly associated with height in the general population. Only few have attempted to study these genes in extremely tall stature. We the

  1. Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis

    Science.gov (United States)

    Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  2. Mapping of three QTLs for seed setting and analysis on the candidate gene forqSS-1 in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    Elsheikh Y M Ahmed; ZHANG Yan-pei; YU Jian-ping; Rashid M A Rehman; ZHANG Zhan-ying; ZHANG Hong-liang; LI Jin-jie; LI Zi-chao

    2016-01-01

    The lower seed setting is one of the major hindrances which face grain yield in rice. One of the main reasons to cause low spikelet fertility (seed setting) is male sterility or polen abortion. Notably, polen abortion has been frequently observed in advanced progenies of rice. In the present study, 149 BC2F6 individuals with signiifcant segregation in spikelet fertility were generated from the cross between N040212 (indica) and Nipponbare (japonica) and used for primary gene mapping. Three QTLs,qSS-1, qSS-7 andqSS-9 at chromosomes 1, 7 and 9, respectively, were found to be associated with seed setting. The recombinant analysis and the physical mapping information from publicly available resources exhibited that theqSS-1, qSS-7 andqSS-9 loci were mapped to an interval of 188, 701 and 3741 kb, respectively. The seed setting re-sponsible for QTLqSS-1 was further ifne mapped to 93.5 kb by using BC2F7 population of 1849 individuals. There are 16 possible putative genes in this 93.5 kb region. Polen vitality tests and artiifcial polination indicated that the male gamete has abnormal polen while the female gamete was normal. These data showed that low seed setting rate relative toqSS-1 may be caused by abnormal polen grains. These results wil be useful for cloning, functional analysis of the target gene governing spikelet fertility (seed setting) and understanding the genetic bases of polen sterility.

  3. Association study and expression analysis of MTNR1A as a candidate gene for body measurement and meat quality traits in Qinchuan cattle.

    Science.gov (United States)

    Yang, Wucai; Wang, Yaning; Fu, Changzhen; Zan, Lin-Seng

    2015-10-10

    Melatonin receptors, which mediate the functions of melatonin, play an important role in adipocyte differentiation, energy, and lipid metabolism. The aim of this study was to identify single nucleotide polymorphisms (SNPs) in bovine melatonin receptor 1A (MTNR1A) and to determine if these SNPs are associated with body measurement traits (BMTs) and meat quality traits (MQTs) in Qinchuan cattle. We identified three synonymous mutations (A455G, A497G, and C635T) and one missense mutation (G489A) p.Asp224Asn in MTNR1A gene in 420 Qinchuan cattle by sequencing. Association analysis indicated that these four SNPs were associated with some of the BMTs and MQTs (P<0.05). Further, 6 combined haplotypes were constructed to guarantee the reliability of analysis results. Individuals with diplotypes H2H2 (AA-GG-GG-CC) had greater chest depth, heart girth, loin muscle area, and more back fat than the other combinations (P<0.05). Pertaining to G489A mutation, RT-PCR study exhibited a higher mRNA expression of MTNR1A gene among individuals with SNP1/2/4-AG-GA-CT genotype than those with SNP1/2/4-AA-GG-CC genotype (P<0.05). These results suggest that the genotype H2H2 could be used as a molecular marker of the combined genotype for future selection for BMTs and MQTs in Qinchuan cattle.

  4. Identification of Candidate Genes related to Bovine Marbling using Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Dajeong Lim, Nam-Kuk Kim, Hye-Sun Park, Seung-Hwan Lee, Yong-Min Cho, Sung Jong Oh, Tae-Hun Kim, Heebal Kim

    2011-01-01

    Full Text Available Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein interaction (PPI from the Human Protein Reference Database (HPRD. To determine key node of marbling, the degree and betweenness centrality (BC were used. The hub nodes and biological pathways of our network are consistent with the previous reports about marbling traits, and also suggest unknown candidate genes associated with intramuscular fat. Five nodes were identified as hub genes, which was consistent with the network analysis using quantitative reverse-transcription PCR (qRT-PCR. Key nodes of the PPI network have positive roles (PPARγ, C/EBPα, and RUNX1T1 and negative roles (RXRA, CAMK2A in the development of intramuscular fat by several adipogenesis-related pathways. This study provides genetic information for identifying candidate genes for the marbling trait in bovine.

  5. Conserved co-expression for candidate disease gene prioritization

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2008-04-01

    Full Text Available Abstract Background Genes that are co-expressed tend to be involved in the same biological process. However, co-expression is not a very reliable predictor of functional links between genes. The evolutionary conservation of co-expression between species can be used to predict protein function more reliably than co-expression in a single species. Here we examine whether co-expression across multiple species is also a better prioritizer of disease genes than is co-expression between human genes alone. Results We use co-expression data from yeast (S. cerevisiae, nematode worm (C. elegans, fruit fly (D. melanogaster, mouse and human and find that the use of evolutionary conservation can indeed improve the predictive value of co-expression. The effect that genes causing the same disease have higher co-expression than do other genes from their associated disease loci, is significantly enhanced when co-expression data are combined across evolutionarily distant species. We also find that performance can vary significantly depending on the co-expression datasets used, and just using more data does not necessarily lead to better prioritization. Instead, we find that dataset quality is more important than quantity, and using a consistent microarray platform per species leads to better performance than using more inclusive datasets pooled from various platforms. Conclusion We find that evolutionarily conserved gene co-expression prioritizes disease candidate genes better than human gene co-expression alone, and provide the integrated data as a new resource for disease gene prioritization tools.

  6. A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy

    DEFF Research Database (Denmark)

    Bruhn, Sören; Fang, Yu; Barrenäs, Fredrik;

    2014-01-01

    The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identi...

  7. Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer.

    Directory of Open Access Journals (Sweden)

    George J Burghel

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN is a major driving force of microsatellite stable (MSS sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR at high frequency (>10%. Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains. Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes.

  8. Identification of Candidate Driver Genes in Common Focal Chromosomal Aberrations of Microsatellite Stable Colorectal Cancer

    Science.gov (United States)

    Burghel, George J.; Lin, Wei-Yu; Whitehouse, Helen; Brock, Ian; Hammond, David; Bury, Jonathan; Stephenson, Yvonne; George, Rina; Cox, Angela

    2013-01-01

    Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH) arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA) analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR) at high frequency (>10%). Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains). Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes. PMID:24367615

  9. Predicting sensation seeking from dopamine genes: A candidate system approach

    OpenAIRE

    Derringer, Jaime; Robert F Krueger; Dick, Danielle M; Saccone, Scott; Grucza, Richard A.; Agrawal, Arpana; Lin, Peng; Almasy, Laura; Edenberg, Howard J.; Foroud, Tatiana; Nurnberger, John I.; Hesselbrock, Victor M.; Kramer, John R.; Kuperman, Samuel; Porjesz, Bernice

    2010-01-01

    Sensation seeking is a heritable personality trait that has been reliably linked to behavior disorders. The dopamine system has been hypothesized to contribute to individual differences in sensation seeking, and both experimental and observational studies in humans and non-human animals provide evidence for this relationship. We present here a candidate-system approach to genetic association analysis of sensation seeking, in which single nucleotide polymorphisms (SNPs) from a number of dopami...

  10. Screening and analysis of candidate gene expression in asthma using microarray technology%基因芯片技术对哮喘病人相关基因的筛选和分析

    Institute of Scientific and Technical Information of China (English)

    贾少丹; 纪霞; 张为忠; 邢明青; 李靖; 王海燕; 张伟毅; 包振民

    2012-01-01

    Objective To screen different gene expressions in peripheral blood mononuclear cells between asthma patients and normal people by DNA microarray in order to provide molecular markers for early diagnosis and prevention of asthma. Methods Participants with asthma (re = 16) and healthy controls (n = 16) underwent peripheral blood collection. Monocytes were isolated using Ficoll-Paque and extracted for total RNA by QIAGEN Rneasy Kit. Then we used the Cy3 to mark the cDNA of normal people and asthma patients respectively, and used the Agilent Homo microarray chips containing 41,000 genes/ESTs to screen gene expression differentially according to the screening criteria of Ratio≥2 and Ratio≤ -2. At last, we used Gene spring software to analyze the biologic function of the candidate genes. Results By using this DNA microarray technology, 4177 candidate genes in the asthma patients were found from 34183 target genes, which expressed twice higher than those in the normal people. 19 gene expressions correlating to asthma were found with twice fold differences, as compared with the normal. Analysis showed that these differentially expressed genes mainly related to the following pathways like inflammation response, immune response, defense responses, wound responses and external stimuli. Conclusions Through screening and analysis of important candidate genes involved in asthma, we are able to investigate and explore the pathogenesis of asthma and to prevent asthma effectively in the future.%目的 利用基因芯片技术寻找哮喘病患者与正常人外周血单核细胞之间差异表达基因,拟为哮喘的早期诊断及预防提供分子标记.方法 用淋巴细胞分离液分别提取16例哮喘病患者与16例正常人外周血单核细胞,用QIAGEN Rneasy Kit提取纯化样本总RNA,并合成用荧光标记的cRNA,分别与含有41 000条基因序列的全基因芯片杂交,以基因表达倍数值≥2.0和基因表达倍数值≤-2.0为阈值来确定差异

  11. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.

    Science.gov (United States)

    Gefen, Avitan; Cohen, Raphael; Birk, Ohad S

    2010-03-01

    The identification of genomic loci associated with human genetic syndromes has been significantly facilitated through the generation of high density SNP arrays. However, optimal selection of candidate genes from within such loci is still a tedious labor-intensive bottleneck. Syndrome to Gene (S2G) is based on novel algorithms which allow an efficient search for candidate genes in a genomic locus, using known genes whose defects cause phenotypically similar syndromes. S2G (http://fohs.bgu.ac.il/s2g/index.html) includes two components: a phenotype Online Mendelian Inheritance in Man (OMIM)-based search engine that alleviates many of the problems in the existing OMIM search engine (negation phrases, overlapping terms, etc.). The second component is a gene prioritizing engine that uses a novel algorithm to integrate information from 18 databases. When the detailed phenotype of a syndrome is inserted to the web-based software, S2G offers a complete improved search of the OMIM database for similar syndromes. The software then prioritizes a list of genes from within a genomic locus, based on their association with genes whose defects are known to underlie similar clinical syndromes. We demonstrate that in all 30 cases of novel disease genes identified in the past year, the disease gene was within the top 20% of candidate genes predicted by S2G, and in most cases--within the top 10%. Thus, S2G provides clinicians with an efficient tool for diagnosis and researchers with a candidate gene prediction tool based on phenotypic data and a wide range of gene data resources. S2G can also serve in studies of polygenic diseases, and in finding interacting molecules for any gene of choice.

  12. Novel primary immunodeficiency candidate genes predicted by the human gene connectome

    Directory of Open Access Journals (Sweden)

    Yuval eItan

    2015-04-01

    Full Text Available Germline genetic mutations underlie various primary immunodeficiency (PID diseases. Patients with rare PID diseases (like most non-PID patients and healthy individuals carry, on average, 20,000 rare and common coding variants detected by high throughput sequencing. It is thus a major challenge to select only a few candidate disease-causing variants for experimental testing. One of the tools commonly used in the pipeline for estimating a potential PID candidate gene is to test whether the specific gene is included in the list of genes that were already experimentally validated as PID-causing in previous studies. However, this approach is limited because it cannot detect the PID-causing mutation(s in the many PID patients carrying causal mutations of as yet unidentified PID-causing genes. In this study, we expanded in silico the list of potential PID-causing candidate genes from 229 to 3,110. We first identified the top 1% of human genes predicted by the human genes connectome to be biologically close to the 229 known PID genes. We then further narrowed down the list of genes by retaining only the most biologically relevant genes, with functionally enriched gene ontology biological categories similar to those for the known PID genes. We validated this prediction by showing that 17 of the 21 novel PID genes published since the last IUIS classification fall into this group of 3,110 genes (p<10-7. The resulting new extended list of 3,110 predicted PID genes should be useful for the discovery of novel PID genes in patients.

  13. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Zhongwei Zou

    Full Text Available SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F(2 populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.

  14. Investigation of the molecular relationship between breast cancer and obesity by candidate gene prioritization methods

    Directory of Open Access Journals (Sweden)

    Saba Garshasbi

    2015-10-01

    Full Text Available Background: Cancer and obesity are two major public health concerns. More than 12 million cases of cancer are reported annually. Many reports confirmed obesity as a risk factor for cancer. The molecular relationship between obesity and breast cancer has not been clear yet. The purpose of this study was to investigate priorities of effective genes in the molecular relationship between obesity and breast cancer. Methods: In this study, computer simulation method was used for prioritizing the genes that involved in the molecular links between obesity and breast cancer in laboratory of systems biology and bioinformatics (LBB, Tehran University, Tehran, Iran, from March to July 2014. In this study, ENDEAVOUR software was used for prioritizing the genes and integrating multiple data sources was used for data analysis. Training genes were selected from effective genes in obesity and/or breast cancer. Two groups of candidate genes were selected. The first group was included the existential genes in 5 common region chromosomes (between obesity and breast cancer and the second group was included the results of genes microarray data analysis of research Creighton, et al (In 2012 on patients with breast cancer. The microarray data were analyzed with GER2 software (R online software on GEO website. Finally, both training and candidate genes were entered in ENDEAVOUR software package. Results: The candidate genes were prioritized to four style and five genes in ten of the first priorities were repeated twice. In other word, the outcome of prioritizing of 72 genes (Product of microarray data analysis and genes of 5 common chromosome regions (Between obesity and breast cancer showed, 5 genes (TNFRSF10B, F2, IGFALS, NTRK3 and HSP90B1 were the priorities in the molecular connection between obesity and breast cancer. Conclusion: There are some common genes between breast cancer and obesity. So, molecular relationship is confirmed. In this study the possible effect

  15. KIAA1462, a coronary artery disease associated gene, is a candidate gene for late onset Alzheimer disease in APOE carriers.

    Directory of Open Access Journals (Sweden)

    Deborah G Murdock

    Full Text Available Alzheimer disease (AD is a devastating neurodegenerative disease affecting more than five million Americans. In this study, we have used updated genetic linkage data from chromosome 10 in combination with expression data from serial analysis of gene expression to choose a new set of thirteen candidate genes for genetic analysis in late onset Alzheimer disease (LOAD. Results in this study identify the KIAA1462 locus as a candidate locus for LOAD in APOE4 carriers. Two genes exist at this locus, KIAA1462, a gene associated with coronary artery disease, and "rokimi", encoding an untranslated spliced RNA The genetic architecture at this locus suggests that the gene product important in this association is either "rokimi", or a different isoform of KIAA1462 than the isoform that is important in cardiovascular disease. Expression data suggests that isoform f of KIAA1462 is a more attractive candidate for association with LOAD in APOE4 carriers than "rokimi" which had no detectable expression in brain.

  16. Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan).

    Science.gov (United States)

    Singh, Vikas K; Khan, Aamir W; Saxena, Rachit K; Kumar, Vinay; Kale, Sandip M; Sinha, Pallavi; Chitikineni, Annapurna; Pazhamala, Lekha T; Garg, Vanika; Sharma, Mamta; Sameer Kumar, Chanda Venkata; Parupalli, Swathi; Vechalapu, Suryanarayana; Patil, Suyash; Muniswamy, Sonnappa; Ghanta, Anuradha; Yamini, Kalinati Narasimhan; Dharmaraj, Pallavi Subbanna; Varshney, Rajeev K

    2016-05-01

    To map resistance genes for Fusarium wilt (FW) and sterility mosaic disease (SMD) in pigeonpea, sequencing-based bulked segregant analysis (Seq-BSA) was used. Resistant (R) and susceptible (S) bulks from the extreme recombinant inbred lines of ICPL 20096 × ICPL 332 were sequenced. Subsequently, SNP index was calculated between R- and S-bulks with the help of draft genome sequence and reference-guided assembly of ICPL 20096 (resistant parent). Seq-BSA has provided seven candidate SNPs for FW and SMD resistance in pigeonpea. In parallel, four additional genotypes were re-sequenced and their combined analysis with R- and S-bulks has provided a total of 8362 nonsynonymous (ns) SNPs. Of 8362 nsSNPs, 60 were found within the 2-Mb flanking regions of seven candidate SNPs identified through Seq-BSA. Haplotype analysis narrowed down to eight nsSNPs in seven genes. These eight nsSNPs were further validated by re-sequencing 11 genotypes that are resistant and susceptible to FW and SMD. This analysis revealed association of four candidate nsSNPs in four genes with FW resistance and four candidate nsSNPs in three genes with SMD resistance. Further, In silico protein analysis and expression profiling identified two most promising candidate genes namely C.cajan_01839 for SMD resistance and C.cajan_03203 for FW resistance. Identified candidate genomic regions/SNPs will be useful for genomics-assisted breeding in pigeonpea. PMID:26397045

  17. Bioinformatics-driven identification and examination of candidate genes for non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Karina Banasik

    Full Text Available OBJECTIVE: Candidate genes for non-alcoholic fatty liver disease (NAFLD identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. RESEARCH DESIGN AND METHODS: By integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D, central obesity, and WHO-defined metabolic syndrome (MetS. RESULTS: 273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05 to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations. CONCLUSIONS: Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

  18. Genetics of intracerebral hemorrhage: Insights from candidate gene approaches

    Directory of Open Access Journals (Sweden)

    Baoqiong Liu

    2012-01-01

    Full Text Available Intracerebral hemorrhage (ICH is a heterogeneous disease with genetic factors playing an important role. Association studies on a wide range of candidate pathways suggest a weak but significant effect for several alleles with ICH risk. Among the most widely investigated genes are those involved in the renin-angiotensin-aldosterone system (e.g., angiotensin-converting enzyme, coagulation pathway (e.g., Factor XIII, Factor VII, platelet-activating factor acetylhydrolase, Factor V Leiden, and beta1-tubulin, lipid metabolism (e.g., apolipoproteins (ApoE, Apo(a, ApoH, homocysteine metabolism (e.g., methylenetetrahydrofolate reductase, inflammation (e.g., interleukin-6 and tumor necrosis-alpha and other candidate pathways. To identify the robustness of the above associations with ICH, a search of Pubmed (1988 through December 2011 was performed, with searches limited to English-language studies conducted among adult human subjects. This article presents a review of the examined literature on the genetics of ICH.

  19. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia.

    Science.gov (United States)

    Ingason, A; Giegling, I; Hartmann, A M; Genius, J; Konte, B; Friedl, M; Ripke, S; Sullivan, P F; St Clair, D; Collier, D A; O'Donovan, M C; Mirnics, K; Rujescu, D

    2015-10-13

    Antagonists of the N-methyl-D-aspartate (NMDA)-type glutamate receptor induce psychosis in healthy individuals and exacerbate schizophrenia symptoms in patients. In this study we have produced an animal model of NMDA receptor hypofunction by chronically treating rats with low doses of the NMDA receptor antagonist MK-801. Subsequently, we performed an expression study and identified 20 genes showing altered expression in the brain of these rats compared with untreated animals. We then explored whether the human orthologs of these genes are associated with schizophrenia in the largest schizophrenia genome-wide association study published to date, and found evidence for association for 4 out of the 20 genes: SF3B1, FOXP1, DLG2 and VGLL4. Interestingly, three of these genes, FOXP1, SF3B1 and DLG2, have previously been implicated in neurodevelopmental disorders.

  20. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case–control sample of schizophrenia

    DEFF Research Database (Denmark)

    Ingason, Andrés; Giegling, Ina; Harmann, AM;

    2015-01-01

    Antagonists of the N-methyl-D-aspartate (NMDA)-type glutamate receptor induce psychosis in healthy individuals and exacerbate schizophrenia symptoms in patients. In this study we have produced an animal model of NMDA receptor hypofunction by chronically treating rats with low doses of the NMDA...... receptor antagonist MK-801. Subsequently, we performed an expression study and identified 20 genes showing altered expression in the brain of these rats compared with untreated animals. We then explored whether the human orthologs of these genes are associated with schizophrenia in the largest...... schizophrenia genome-wide association study published to date, and found evidence for association for 4 out of the 20 genes: SF3B1, FOXP1, DLG2 and VGLL4. Interestingly, three of these genes, FOXP1, SF3B1 and DLG2, have previously been implicated in neurodevelopmental disorders....

  1. Utilization of Gene Mapping and Candidate Gene Mutation Screening for Diagnosing Clinically Equivocal Conditions:A Norrie Disease Case Study

    Institute of Scientific and Technical Information of China (English)

    Vasiliki Chini; Danai Stambouli; Florina Mihaela Nedelea; George Alexandru Filipescu; Diana Mina; Marios Kambouris; Hatem El-Shanti

    2014-01-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members..Mapping of the X chromosome and candidate gene mutation screening i-dentified a c.C267A[p.F89L] mutation in NPD previously de-scribed as possibly causing Norrie disease..The detection of the c.C267A[p.F89L] variant in another unrelated family con-firms the pathogenic nature of the mutation for the Norrie dis-ease phenotype. Gene mapping, haplotype analysis, and can-didate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information..The clinical diagnosis and mutation identification were critical for provid-ing proper genetic counseling and prenatal diagnosis for this family.

  2. Identifying Candidate Genes for Type 2 Diabetes Mellitus and Obesity through Gene Expression Profiling in Multiple Tissues or Cells

    Science.gov (United States)

    Meng, Yuhuan; Zhou, Jinghui; Zhuo, Min; Ling, Fei; Zhang, Yu; Du, Hongli; Wang, Xiaoning

    2013-01-01

    Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity. PMID:24455749

  3. Identifying Candidate Genes for Type 2 Diabetes Mellitus and Obesity through Gene Expression Profiling in Multiple Tissues or Cells

    Directory of Open Access Journals (Sweden)

    Junhui Chen

    2013-01-01

    Full Text Available Type 2 Diabetes Mellitus (T2DM and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.

  4. Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells.

    Science.gov (United States)

    Chen, Junhui; Meng, Yuhuan; Zhou, Jinghui; Zhuo, Min; Ling, Fei; Zhang, Yu; Du, Hongli; Wang, Xiaoning

    2013-01-01

    Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.

  5. Transcriptome Analysis Identifies Candidate Genes Related to Triacylglycerol and Pigment Biosynthesis and Photoperiodic Flowering in the Ornamental and Oil-Producing Plant, Camellia reticulata (Theaceae).

    Science.gov (United States)

    Yao, Qiu-Yang; Huang, Hui; Tong, Yan; Xia, En-Hua; Gao, Li-Zhi

    2016-01-01

    Camellia reticulata, which is native to Southwest China, is famous for its ornamental flowers and high-quality seed oil. However, the lack of genomic information for this species has largely hampered our understanding of its key pathways related to oil production, photoperiodic flowering process and pigment biosynthesis. Here, we first sequenced and characterized the transcriptome of a diploid C. reticulata in an attempt to identify genes potentially involved in triacylglycerol biosynthesis (TAGBS), photoperiodic flowering, flavonoid biosynthesis (FlaBS), carotenoid biosynthesis (CrtBS) pathways. De novo assembly of the transcriptome provided a catalog of 141,460 unigenes with a total length of ~96.1 million nucleotides (Mnt) and an N50 of 1080 nt. Of them, 22,229 unigenes were defined as differentially expressed genes (DEGs) across five sequenced tissues. A large number of annotated genes in C. reticulata were found to have been duplicated, and differential expression patterns of these duplicated genes were commonly observed across tissues, such as the differential expression of SOC1_a, SOC1_b, and SOC1_c in the photoperiodic flowering pathway. Up-regulation of SAD_a and FATA genes and down-regulation of FAD2_a gene in the TAGBS pathway in seeds may be relevant to the ratio of monounsaturated fatty acid (MUFAs) to polyunsaturated fatty acid (PUFAs) in seed oil. MYBF1, a transcription regulator gene of the FlaBS pathway, was found with great sequence variation and alteration of expression patterns, probably resulting in functionally evolutionary differentiation in C. reticulata. MYBA1_a and some anthocyanin-specific biosynthetic genes in the FlaBS pathway were highly expressed in both flower buds and flowers, suggesting important roles of anthocyanin biosynthesis in flower development. Besides, a total of 40,823 expressed sequence tag simple sequence repeats (EST-SSRs) were identified in the C. reticulata transcriptome, providing valuable marker resources for

  6. Transcriptome analysis identifies candidate genes related to triacylglycerol and pigment biosynthesis and photoperiodic flowering in the ornamental and oil-producing plant, Camellia reticulata (Theaceae

    Directory of Open Access Journals (Sweden)

    Qiu-Yang eYao

    2016-02-01

    Full Text Available Camellia reticulata, which is native to Southwest China, is famous for its ornamental flowers and high-quality seed oil. However, the lack of genomic information for this species has largely hampered our understanding of its key pathways related to oil production, photoperiodic flowering process and pigment biosynthesis. Here, we first sequenced and characterized the transcriptome of a diploid C. reticulata in an attempt to identify genes potentially involved in triacylglycerol biosynthesis (TAGBS, photoperiodic flowering, flavonoid biosynthesis (FlaBS, carotenoid biosynthesis (CrtBS pathways. De novo assembly of the transcriptome provided a catalogue of 141,460 unigenes with a total length of ~96.1 million nucleotides (Mnt and an N50 of 1080 nt. Of them, 22,229 unigenes were defined as differentially expressed genes (DEGs across five sequenced tissues. A large number of annotated genes in C. reticulata were found to have been duplicated, and differential expression patterns of these duplicated genes were commonly observed across tissues, such as the differential expression of SOC1_a, SOC1_b and SOC1_c in the photoperiodic flowering pathway. Up-regulation of SAD_a and FATA genes and down-regulation of FAD2_a gene in the TAGBS pathway in seeds may be relevant to the ratio of monounsaturated fatty acid (MUFAs to polyunsaturated fatty acid (PUFAs in seed oil. MYBF1, a transcription regulator gene of the FlaBS pathway, was found with great sequence variation and alteration of expression patterns, probably resulting in functionally evolutionary differentiation in C. reticulata. MYBA1_a and some anthocyanin-specific biosynthetic genes in the FlaBS pathway were highly expressed in both flower buds and flowers, suggesting important roles of anthocyanin biosynthesis in flower development. Besides, a total of 40,823 expressed sequence tag simple sequence repeats (EST-SSRs were identified in the C. reticulata transcriptome, providing valuable marker

  7. Evolutionary conservation of candidate osmoregulation genes in plant phloem sap-feeding insects.

    Science.gov (United States)

    Jing, X; White, T A; Luan, J; Jiao, C; Fei, Z; Douglas, A E

    2016-06-01

    The high osmotic pressure generated by sugars in plant phloem sap is reduced in phloem-feeding aphids by sugar transformations and facilitated water flux in the gut. The genes mediating these osmoregulatory functions have been identified and validated empirically in the pea aphid Acyrthosiphon pisum: sucrase 1 (SUC1), a sucrase in glycoside hydrolase family 13 (GH13), and aquaporin 1 (AQP1), a member of the Drosophila integral protein (DRIP) family of aquaporins. Here, we describe molecular analysis of GH13 and AQP genes in phloem-feeding representatives of the four phloem-feeding groups: aphids (Myzus persicae), coccids (Planococcus citri), psyllids (Diaphorina citri, Bactericera cockerelli) and whiteflies (Bemisia tabaci MEAM1 and MED). A single candidate GH13-SUC gene and DRIP-AQP gene were identified in the genome/transcriptome of most insects tested by the criteria of sequence motif and gene expression in the gut. Exceptionally, the psyllid Ba. cockerelli transcriptome included a gut-expressed Pyrocoelia rufa integral protein (PRIP)-AQP, but has no DRIP-AQP transcripts, suggesting that PRIP-AQP is recruited for osmoregulatory function in this insect. This study indicates that phylogenetically related SUC and AQP genes may generally mediate osmoregulatory functions in these diverse phloem-feeding insects, and provides candidate genes for empirical validation and development as targets for osmotic disruption of pest species. PMID:26896054

  8. COL1A2 gene analysis in a Czech osteogenesis imperfecta patient: a candidate novel mutation in a patient affected by osteogenesis imperfecta type 3

    Directory of Open Access Journals (Sweden)

    Hrušková L

    2015-08-01

    Full Text Available Lucie Hrušková,1 Ivo Mařík,2,3 Stella Mazurová,1 Pavel Martásek,1 Ivan Mazura1 1Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 2Ambulant Centre for Defects of Locomotor Apparatus 1.1.c., Prague, Czech Republic; 3Faculty of Medical Studies, West Bohemia University, Pilsen, Czech RepublicAbstract: Osteogenesis imperfecta is a heritable bone fragility disease with a heterogenic genetic origin. Most cases result from mutations of either the COL1A1 gene or the COL1A2 gene. We identified a novel COL1A2 gene mutation in a Czech patient, born to unaffected parents, who was diagnosed according to clinical and anthropometric findings and radiographic features as having type 3 osteogenesis imperfecta, which is a severe form of this disease. The identified Gly814Trp mutation was predicted by a number of complementary bioinformatic programs to result in functional alteration of the protein. This case report provides both evidence of a novel COL1A2 mutation resulting in type 3 osteogenesis imperfecta and a genotype:phenotype correlation in this affected individual. Keywords: osteogenesis imperfecta type 3, collagen, alpha-2 (I chain, substitution, sequencing 

  9. Association of single nucleotide polymorphisms in candidate genes residing under quantitative trait loci in beef cattle

    Science.gov (United States)

    The objective was to assess the association of single nucleotide polymorphisms (SNP) developed on candidate genes residing under previously identified quantitative trait loci for marbling score and meat tenderness. Two hundred five SNP were identified on twenty candidate genes. Genes selected under ...

  10. Association of twelve candidate gene polymorphisms and response to challenge with Salmonella enteritidis in poultry

    NARCIS (Netherlands)

    Kramer, J.; Malek, M.; Lamont, S.J.

    2003-01-01

    Breeding for disease resistance to Salmonella enteritidis (SE) could be an effective approach to control Salmonella in poultry. The candidate gene approach is a useful method to investigate genes that are involved in genetic resistance. In this study, 12 candidate genes that are involved in the path

  11. Candidate genes detected in transcriptome studies are strongly dependent on genetic background.

    Directory of Open Access Journals (Sweden)

    Pernille Sarup

    Full Text Available Whole genome transcriptomic studies can point to potential candidate genes for organismal traits. However, the importance of potential candidates is rarely followed up through functional studies and/or by comparing results across independent studies. We have analysed the overlap of candidate genes identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same genetic backgrounds. Putative candidates found using transcriptomics therefore appear very sensitive to genetic background and this can mask or override effects of treatments. The functional importance of putative candidate genes emerging from transcriptome studies needs to be validated through additional experiments and in future studies we suggest a focus on the genes, networks and pathways affecting traits in a consistent manner across backgrounds.

  12. 水稻黄绿叶突变体ygl13的鉴定及候选基因分析%Characterization and Candidate Gene Analysis of Yellow-Green Leaf Mutantygl13in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    王亚琴; 施军琼; 张婷; 李燕; 张天泉; 张小龙; 桑贤春; 凌英华; 何光华

    2015-01-01

    Objective]The current study was conducted aiming at phenotypic characterization and candidate gene analysis of the yellow-green mutantygl13, so as to add to our knowledge of the formation and regulation of the molecular mechanisms responsible for leaf-color mutations in rice.[Method]A new rice mutant exhibiting stable inheritance was identified as derived from ethyl methane sulfonate (EMS)-treated restorer lineJinhui10 (Oryza sativa), tentatively named asyellow-green leaf 13(ygl13). Morphological characteristics, the photosynthetic pigment contents and the agronomic traits were measured systematically. Transmission electron microscopy was conducted to analyze the ultrastructure of the mesophyll cells and chloroplasts in theygl13 mutant and wide-type plants. Theygl13was crossed with indica sterile line Xinong1A whose plant and leaves were normally green, and the morphological phenotype and segregation ratio of F1 and F2were used for genetic analysis, F2 for gene mapping, and putative genes in the fine mapped region were analyzed, and the candidate genes in the mutant and the wild type were sequenced, respectively.[Result]The ygl13 leaves displayed yellow-green compared with the wild type. And the photosynthetic pigment contents of chlorophyll a, chlorophyll b, and carotenoid decreased significantly at the seedling and the booting stages. The results from transmission electron microscope demonstrated that the structure of the chloroplast inthe mutantygl13developed abnormally with poor thylakoids, less grana stacks and scattered distribution when compared with the wide type. According to the performance of agronomic traits, compared with the wild type Jinhui 10, the grain number per panicle increased by 26.06%, and the pant height and seed setting rate decreased by 12.33% and 18.82%. As for the panicle length, effective panicles per plant, filled grain number per panicle and 1000-grain weight, there was no significant difference between the wild type andygl13

  13. HVP10 encoding V-PPase is a prime candidate for the barley HvNax3 sodium exclusion gene: evidence from fine mapping and expression analysis.

    Science.gov (United States)

    Shavrukov, Yuri; Bovill, Jessica; Afzal, Irfan; Hayes, Julie E; Roy, Stuart J; Tester, Mark; Collins, Nicholas C

    2013-04-01

    In cereals, a common salinity tolerance mechanism is to limit accumulation of Na(+) in the shoot. In a cross between the barley variety Barque-73 (Hordeum vulgare ssp. vulgare) and the accession CPI-71284 of wild barley (H. vulgare ssp. spontaneum), the HvNax3 locus on chromosome 7H was found to determine a ~10-25 % difference in leaf Na(+) accumulation in seedlings grown in saline hydroponics, with the beneficial exclusion trait originating from the wild parent. The Na(+) exclusion allele was also associated with a 13-21 % increase in shoot fresh weight. The HvNax3 locus was delimited to a 0.4 cM genetic interval, where it cosegregated with the HVP10 gene for vacuolar H(+)-pyrophosphatase (V-PPase). Sequencing revealed that the mapping parents encoded identical HVP10 proteins, but salinity-induced mRNA expression of HVP10 was higher in CPI-71284 than in Barque-73, in both roots and shoots. By contrast, the expression of several other genes predicted by comparative mapping to be located in the HvNax3 interval was similar in the two parent lines. Previous work demonstrated roles for V-PPase in ion transport and salinity tolerance. We therefore considered transcription levels of HVP10 to be a possible basis for variation in shoot Na(+) accumulation and biomass production controlled by the HvNax3 locus under saline conditions. Potential mechanisms linking HVP10 expression patterns to the observed phenotypes are discussed. PMID:23277165

  14. Characterization of candidate genes in inflammatory bowel disease–associated risk loci

    Science.gov (United States)

    Peloquin, Joanna M.; Sartor, R. Balfour; Newberry, Rodney D.; McGovern, Dermot P.; Yajnik, Vijay; Lira, Sergio A.

    2016-01-01

    GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis. PMID:27668286

  15. Polymorphisms of the endothelial nitric oxide synthase (NOS3 gene in preeclampsia: a candidate-gene association study

    Directory of Open Access Journals (Sweden)

    Messinis Ioannis E

    2011-11-01

    Full Text Available Abstract Background The endothelial nitric oxide synthase gene (NOS3 has been proposed as a candidate gene for preeclampsia. However, studies so far have produced conflicting results. This study examines the specific role of variants and haplotypes of the NOS3 gene in a population of Caucasian origin. Methods We examined the association of three common variants of the NOS3 gene (4b/a, T-786C and G894T and their haplotypes in a case-control sample of 102 patients with preeclampsia and 176 women with a history of uncomplicated pregnancies. Genotyping for the NOS3 variants was performed and odds ratios and 95% confidence intervals were obtained to evaluate the association between NOS3 polymorphisms and preeclampsia. Results The single locus analysis for the three variants using various genetic models and a model-free approach revealed no significant association in relation to clinical status. The analysis of haplotypes also showed lack of significant association. Conclusions Given the limitations of the candidate-gene approach in investigating complex traits, the evidence of our study does not support the major contributory role of these common NOS3 variants in preeclampsia. Future larger studies may help in elucidating the genetics of preeclampsia further.

  16. Association and haplotype analysis of candidate genes in five genomic regions linked to sow maternal infanticide in a white Duroc × Erhualian resource population

    OpenAIRE

    Ding Nengshui; Ren Jun; Guo Yuanmei; Li Pinghua; Wei Na; Li Yanying; Yang Zhuqing; Chen Congying; Huang Lusheng

    2011-01-01

    Abstract Background Maternal infanticide is an extreme and failed maternal behavior, which is defined as an active attack on piglets using the jaws, resulting in serious or fatal bite wounds. It brings big economic loss to the pig industry and severe problems to piglets' welfare. But little is known about the genetic background of this behavior. Quantitative trait loci (QTL) for maternal infanticide were identified in a White Duroc × Erhualian intercross by a non-parametric linkage analysis (...

  17. A case-control association study and family-based expression analysis of the bipolar disorder candidate gene PI4K2B

    OpenAIRE

    Houlihan, Lorna; Christoforou, A.; Arbuckle, M I; Torrance, H. S.; Anderson, S. M.; Muir, Walter,; Porteous, D. J.; Blackwood, D H; Evans, K.L.

    2009-01-01

    Bipolar disorder, schizophrenia and recurrent major depression are complex psychiatric illnesses with a substantial, yet unknown genetic component. Linkage of bipolar disorder and recurrent major depression with markers on chromosome 4p15–p16 has been identified in a large Scottish family and three smaller families. Analysis of haplotypes in the four chromosome 4p-linked families, identified two regions, each shared by three of the four families, which are also supported by a case-control ass...

  18. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  19. Identification of two new drought specific candidate genes in sugarcane (Saccharum spp.

    Directory of Open Access Journals (Sweden)

    Swapna Simon and G. Hemaprabha

    2010-07-01

    Full Text Available Effective identification and understanding of genes contribute to improve plant drought resistance. A study was conducted toidentify drought responsive candidate genes in sugarcane. Two genes viz., SOD (Superoxide dismutase and IGS (Indole 3-glycerol phosphate synthase were used as gene specific markers. Specific primers were designed based on the sequences inGenbank databases. Mapping population developed by crossing a drought tolerant parent (Co 740 and a drought susceptibleparent (Co 775 were phenotyped using physiological and sugar yield contributing parameters and were characterized into groupsof varying levels of resistance and susceptibility. Parental polymorphism for SOD and IGS specific primers was established usinggenomic DNA from field grown drought tolerant and susceptible parents, as the presence in Co 740 (resistant and absence in Co775 (susceptible respectively. Resistant and susceptible parents and six each resistant and susceptible progeny were subjected todrought imposition and RNA were isolated and RT - PCR analysis performed using these gene specific primers. A specific bandof 618 bp was identified in drought tolerant parent and progeny, absent in drought susceptible parent and progeny genotypedusing SOD gene. A specific band of 340 bp was identified in drought tolerant parent and progeny while it was absent in droughtsusceptible parent and progeny genotyped using IGS gene. These two fragments of interests were cloned in PTz57R/T vector andsequenced. SOD618 sequence was BLAST searched that showed 98 % homology with the drought inducible protein in Saccharumhybrid and IGS340 showed 80 % homology with the hypothetical protein expressed in rice genome. These new genes hold promiseimproving drought resistance of sugarcane through their use as candidate genes in marker assisted selection and in genetictransformation.

  20. Blend Analysis of HATNet Transit Candidates

    Directory of Open Access Journals (Sweden)

    Bakos G.Á.

    2011-02-01

    Full Text Available Candidate transiting planet systems discovered by wide-field groundbased surveys must go through an intensive follow-up procedure to distinguish the true transiting planets from the much more common false positives. Especially pernicious are configurations of three or more stars which produce radial velocity and light curves that are similar to those of single stars transited by a planet. In this contribution we describe the methods used by the HATNet team to reject these blends, giving a few illustrative examples.

  1. 家族性不宁腿综合征候选基因的连锁分析%Linkage Analysis of the Candidate Genes of Familial Restless Legs Syndrome

    Institute of Scientific and Technical Information of China (English)

    李靖; 胡兰靛; 王维郡; 陈宇光; 孔祥银

    2003-01-01

    This research was performed to investigate the relationship between 16 candidate genes responsible for dopaminergic transmission or iron metabolism and familial restless legs syndrome.Genotyping was performed in a Han restless legs syndrome family using the technique of fluorescence-based genescan with the microsatellite markers selected in chromosomal regions flanking the candidate genes.Classical linkage analysis was conducted under the autosomal dominant genetic mode.Results showed that all of the LOD scores at recombination fraction 0.00 are smaller than -2.00,which indicated that these loci were not linked to familial restless legs syndrome.No linkage was found between the candidate genes and RLS in this family.Familial restless legs syndrome may be caused by another gene related to dopaminergic transmission and iron metabolism or there is new mechanism involved in this disease.%不宁腿综合征(restless legs syndrome,RLS)是以下肢部出现蚁行样及酸、麻、胀等不适感而使肢体不得休息为特征的一组病症.由于症状常在晚间发作并导致运动不安,患者长期入睡困难,经受严重的继发性失眠.作为一种常见的神经系统疾病,RLS发病率高达5%,其中原发性RLS多呈阳性家族史,表现为单基因决定的常染色体显性遗传.现在,人们普遍认为RLS的发生很可能与神经系统内多巴胺能功能异常和脑内铁缺乏有关,并初步建立了脑铁-多巴胺能系统的致病模型.为了探求脑铁-多巴胺能系统在RLS中的作用,选择了与脑铁-多巴胺能系统相关的16个疾病候选基因,在每个候选基因附近染色体区域内选取若干个微卫星多态标记,应用微卫星引物荧光标记-基因扫描技术,对一个汉族家族性不宁腿综合征家系进行了基因分型和常染色体显性遗传模式下的连锁分析,试图从分子遗传学层面上确认或排除一些可能与RLS相关的重要候选基因.结果显示,当重组系数θ=0.00

  2. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    OpenAIRE

    David Behringer; Heike Zimmermann; Birgit Ziegenhagen; Sascha Liepelt

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer...

  3. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies

    Indian Academy of Sciences (India)

    N. Johns; B. H. Tan; M. Macmillan; T. S. Solheim; J. A. Ross; V. E. Baracos; S. Damaraju; K. C. H. Fearon

    2014-12-01

    Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986–2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and

  4. Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array.

    Directory of Open Access Journals (Sweden)

    Siim Sõber

    Full Text Available The outcome of Genome-Wide Association Studies (GWAS has challenged the field of blood pressure (BP genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany to address (i SNP coverage in 160 BP candidate genes; (ii the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region+/-10 kb covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11 to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15 x 10(-5, the strength of some detected associations was close to this level: rs10889553 (LEPR and systolic BP (SBP (P = 4.5 x 10(-5 as well as rs10954174 (LEP and diastolic BP (DBP (P = 5.20 x 10(-5. In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1 revealed considerable association (P<10(-3 either with SBP, DBP, and/or hypertension (HYP. None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT. However, supportive evidence for the association of rs10889553 (LEPR and rs11195419 (ADRA2A with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.

  5. Medical sequencing of candidate genes for nonsyndromic cleft lip and palate.

    Directory of Open Access Journals (Sweden)

    Alexandre R Vieira

    2005-12-01

    Full Text Available Nonsyndromic or isolated cleft lip with or without cleft palate (CL/P occurs in wide geographic distribution with an average birth prevalence of 1/700. We used direct sequencing as an approach to study candidate genes for CL/P. We report here the results of sequencing on 20 candidate genes for clefts in 184 cases with CL/P selected with an emphasis on severity and positive family history. Genes were selected based on expression patterns, animal models, and/or role in known human clefting syndromes. For seven genes with identified coding mutations that are potentially etiologic, we performed linkage disequilibrium studies as well in 501 family triads (affected child/mother/father. The recently reported MSX1 P147Q mutation was also studied in an additional 1,098 cleft cases. Selected missense mutations were screened in 1,064 controls from unrelated individuals on the Centre d'Etude du Polymorphisme Humain (CEPH diversity cell line panel. Our aggregate data suggest that point mutations in these candidate genes are likely to contribute to 6% of isolated clefts, particularly those with more severe phenotypes (bilateral cleft of the lip with cleft palate. Additional cases, possibly due to microdeletions or isodisomy, were also detected and may contribute to clefts as well. Sequence analysis alone suggests that point mutations in FOXE1, GLI2, JAG2, LHX8, MSX1, MSX2, SATB2, SKI, SPRY2, and TBX10 may be rare causes of isolated cleft lip with or without cleft palate, and the linkage disequilibrium data support a larger, as yet unspecified, role for variants in or near MSX2, JAG2, and SKI. This study also illustrates the need to test large numbers of controls to distinguish rare polymorphic variants and prioritize functional studies for rare point mutations.

  6. Medical Sequencing of Candidate Genes for Nonsyndromic Cleft Lip and Palate.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Nonsyndromic or isolated cleft lip with or without cleft palate (CL/P occurs in wide geographic distribution with an average birth prevalence of 1/700. We used direct sequencing as an approach to study candidate genes for CL/P. We report here the results of sequencing on 20 candidate genes for clefts in 184 cases with CL/P selected with an emphasis on severity and positive family history. Genes were selected based on expression patterns, animal models, and/or role in known human clefting syndromes. For seven genes with identified coding mutations that are potentially etiologic, we performed linkage disequilibrium studies as well in 501 family triads (affected child/mother/father. The recently reported MSX1 P147Q mutation was also studied in an additional 1,098 cleft cases. Selected missense mutations were screened in 1,064 controls from unrelated individuals on the Centre d'Etude du Polymorphisme Humain (CEPH diversity cell line panel. Our aggregate data suggest that point mutations in these candidate genes are likely to contribute to 6% of isolated clefts, particularly those with more severe phenotypes (bilateral cleft of the lip with cleft palate. Additional cases, possibly due to microdeletions or isodisomy, were also detected and may contribute to clefts as well. Sequence analysis alone suggests that point mutations in FOXE1, GLI2, JAG2, LHX8, MSX1, MSX2, SATB2, SKI, SPRY2, and TBX10 may be rare causes of isolated cleft lip with or without cleft palate, and the linkage disequilibrium data support a larger, as yet unspecified, role for variants in or near MSX2, JAG2, and SKI. This study also illustrates the need to test large numbers of controls to distinguish rare polymorphic variants and prioritize functional studies for rare point mutations.

  7. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Bisaria, Anjali [ORNL; Tuskan, Gerald A [ORNL; Kalluri, Udaya C [ORNL

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  8. Identification of Candidate Genes related to Bovine Marbling using Protein-Protein Interaction Networks

    OpenAIRE

    Lim, Dajeong; Kim, Nam-Kuk; Park, Hye-Sun; Lee, Seung-Hwan; Cho, Yong-Min; Oh, Sung Jong; Kim, Tae-Hun; Kim, Heebal

    2011-01-01

    Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein intera...

  9. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk.

  10. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  11. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count

    Science.gov (United States)

    Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama

    2014-01-01

    Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for

  12. Identification of candidate methylation-responsive genes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dickerson Erin B

    2007-01-01

    Full Text Available Abstract Background Aberrant methylation of gene promoter regions has been linked to changes in gene expression in cancer development and progression. Genes associated with CpG islands (CGIs are especially prone to methylation, but not all CGI-associated genes display changes in methylation patterns in cancers. Results In order to identify genes subject to regulation by methylation, we conducted gene expression profile analyses of an ovarian cancer cell line (OVCAR-3 before and after treatment with the demethylating agent 5-aza-deoxycytidine (5-aza-dC. An overlapping subset of these genes was found to display significant differences in gene expression between normal ovarian surface epithelial cells and malignant cells isolated from ovarian carcinomas. While 40% of all human genes are associated with CGIs, > 94% of the overlapping subset of genes is associated with CGIs. The predicted change in methylation status of genes randomly selected from the overlapping subset was experimentally verified. Conclusion We conclude that correlating genes that are upregulated in response to 5-aza-dC treatment of cancer cell lines with genes that are down-regulated in cancer cells may be a useful method to identify genes experiencing epigenetic-mediated changes in expression over cancer development.

  13. Association study of candidate genes for susceptibility to schizophrenia and bipolar disorder on chromosome 22Q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob; Binderup, Helle; Mors, Ole;

    Chromosome 22q is suspected to harbor risk genes for schizophrenia as well as bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. In a recent study of distantly related patients from...... the Faroe Islands we have obtained evidence suggesting two regions on chromosome 22q13 to potentially harbor susceptibility genes for both schizophrenia and bipolar affective disorder. We have selected a number of candidate genes from these two regions for further analysis, including the neuro-gene WKL1...... and unrelated controls, and in a Scottish case-control sample comprising 200 schizophrenics, 200 bipolar patients and 200 controls. None of the investigated SNPs have so far showed strong evidence of association to either bipolar disorder or schizophrenia....

  14. Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

    DEFF Research Database (Denmark)

    Hansen, Niclas Tue; Brunak, Søren; Altman, R. B.

    2009-01-01

    , but they are expensive to generate manually and may therefore have incomplete coverage. We have developed a method that ranks 12,460 genes in the human genome on the basis of their potential relevance to a specific query drug and its putative indications. Our method uses known gene-drug interactions, networks of gene...

  15. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism

    NARCIS (Netherlands)

    Vorstman, JAS; Staal, WG; van Daalen, E; van Engeland, H; Hochstenbach, PFR; Franke, L

    2006-01-01

    The identification of the candidate genes for autism through linkage and association studies has proven to be a difficult enterprise. An alternative approach is the analysis of cytogenetic abnormalities associated with autism. We present a review of all studies to date that relate patients with cyto

  16. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  17. Isolation of candidate genes and physical mapping in the Familial Dysautonomia region of chromosome 9q31

    Energy Technology Data Exchange (ETDEWEB)

    Slaugenhaupt, S.A.; Liebert, C.B.; Monahan, M. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    Familial Dysautonomia is an autosomal recessive disorder characterized by the developmental loss of both sensory and autonomic neurons. We have mapped the DYS gene to human chromosome 9q31-33 by genetic linkage analysis of 26 Ashkenazi Jewish pedigrees. The gene is located in a 3 cM interval between D9S310 and D9S105. We have examined several new SSCP and repeat polymorphisms and have successfully narrowed the minimum candidate region to approximately 300 kb using linkage disequilibrium. A YAC contig that spans 1.5 Mb has been constructed using both Alu-PCR and STS screening methods. In addition, the YACs were used to isolate cosmids by direct hybridization to the Lawrence Livermore National Laboratory chromosome 9 flow-sorted cosmid library. Having cloned the minimal candidate region, we are now constructing a detailed transcription map of the DYS region of chromosome 9. Using exon amplification, we have rapidly identified exon sequences and have used these as probes to isolate three candidate genes. These genes are currently being sequenced and will be assessed for mutations using both SSCP analysis and direct sequencing. A detailed physical map of the DYS region, as well as sequence and homology information for DYS candidate genes, will be presented.

  18. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  19. Evaluation of the porcine ACSL4 gene as a candidate gene for meat quality traits in pigs.

    Science.gov (United States)

    Corominas, J; Ramayo-Caldas, Y; Castelló, A; Muñoz, M; Ibáñez-Escriche, N; Folch, J M; Ballester, M

    2012-12-01

    Long-chain acyl-CoA synthetase (ACSL) family members catalyse the formation of long-chain acyl-CoA from fatty acid, ATP and CoA, thus playing an important role in both de novo lipid synthesis and fatty acid catabolism. Previous studies in our group evaluated ACSL4 as a positional candidate gene for quantitative trait loci located on chromosome X in an Iberian × Landrace cross. A DQ144454:c.2645G>A SNP located in the 3' untranslated region of the ACSL4 gene was associated with the percentages of oleic and monounsaturated fatty acids. The aim of the present work was to evaluate the functional implication of this genetic variant. An expression analysis was performed for 120 individuals with different genotypes for the DQ144454:c.2645G>A polymorphism using real-time quantitative PCR. Differences between genotypes were identified in liver, with the ACSL4 mRNA expression levels higher in animals with the G allele than in animals with the A allele. A SNP genome-wide association study with ACSL4 relative expression levels showed significant positions on chromosomes 6 and 12. Description of positional candidate genes for ACSL4 regulation on chromosomes 6 and 12 is provided.

  20. Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses

    Directory of Open Access Journals (Sweden)

    Lionikas Arimantas

    2012-11-01

    Full Text Available Abstract Background We have recently identified a number of Quantitative Trait Loci (QTL contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA muscle of each strain by RNA-Seq. Results 13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN. The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10 residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p Conclusion Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.

  1. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry.

    Science.gov (United States)

    Urzúa, Blanca; Ortega-Pinto, Ana; Morales-Bozo, Irene; Rojas-Alcayaga, Gonzalo; Cifuentes, Víctor

    2011-02-01

    Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.

  2. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  3. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  4. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  5. A candidate gene for X-linked Ocular Albinism (OA1)

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, M.T.; Schiaffino, V.; Rugarli, E. [Baylor College of Medicine, Houston, TX (United States)

    1994-09-01

    Ocular Albinism of the Nettleship-Fall type 1 (OA1) is the most common form of ocular albinism. It is transmitted as an X-linked recessive trait with affected males showing severe reduction of visual acuity, nystagmus, strabismus, photophobia. Ophthalmologic examination reveals foveal hypoplasia, hypopigmentation of the retina and iris translucency. Microscopic examination of melanocytes suggests that the underlying defect in OA1 is an abnormality in melanosome formation. Recently we assembled a 350 kb cosmid contig spanning the entire critical region on Xp22.3, which measures approximately 110 kb. A minimum set of cosmids was used to identify transcribed sequences using both cDNA selection and exon amplification. Two putative exons recovered by exon amplification strategy were found to be highly conserved throughout evolution and, therefore, they were used as probes for the screening of fetal and adult retina cDNA libraries. This led to the isolation of clones spanning a full-length cDNA which measures 7.6 kb. Sequence analysis revealed that the predicted protein product shows homology with syntrophines and a Xenopus laevis apical protein. The gene covers approximately 170 kb of DNA and spans the entire critical region for OA1, being deleted in two patients with contiguous gene deletion including OA1 and in one patient with isolated OA1. Therefore, this new gene represents a very strong candidate for involvement in OA1 (an alternative, but unlikely possibility to be considered is that the true OA1 gene lies within an intron of the former). Northern analysis revealed very high level of expression in retina and melanoma. Unlike most Xp22.3 genes, this gene is conserved in the mouse. We are currently performing SSCP analysis and direct sequencing of exons on DNAs from approximately 60 unrelated patients with OA1 for mutation detection.

  6. Genome-wide and candidate gene association study of cigarette smoking behaviors.

    Directory of Open Access Journals (Sweden)

    Neil Caporaso

    Full Text Available The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO Trial, and 2,282 women from the Nurses' Health Study (NHS. We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years, and three binary (ever versus never smoking, 10 cigarettes per day [CPDBI], and current versus former smoking. Association testing for each single nucleotide polymorphism (SNP was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10(-7 in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10(-5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10(-3, including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4x10(-5, our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up.

  7. Identification of candidate target genes of pituitary adenomas based on the DNA microarray.

    Science.gov (United States)

    Zhou, Wei; Ma, Chun-Xiao; Xing, Ya-Zhou; Yan, Zhao-Yue

    2016-03-01

    The present study aimed to explore molecular mechanisms involved in pituitary adenomas (PAs) and to discover target genes for their treatment. The gene expression profile GSE4488 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the Limma package and analyzed by two‑dimensional hierarchical clustering. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions of DEGs. Subsequently, the protein‑protein interaction (PPI) network was constructed using Cytoscape software. DEGs were then mapped to the connectivity map database to identify molecular agents associated with the underlying mechanisms of PAs. A total of 340 upregulated and 49 downregulated DEGs in PA samples compared with those in normal controls were identified. Hierarchical clustering analysis showed that DEGs were highly differentially expressed, indicating their aptness for distinguishing PA samples from normal controls. Significant gene ontology terms were positive regulation of immune system-associated processes for downregulated DEGs and skeletal system development for upregulated DEGs. Pathways significantly enriched by DEGs included extracellular matrix (ECM)‑receptor interaction, the Hedgehog (Hh) signaling pathway and neuroactive ligand‑receptor interaction. The PPI network was constructed with 117 nodes, 123 edges and CD44 and Gli2 as hub nodes. Furthermore, depudecin, a small molecule drug, was identified to be mechanistically associated with PA. The genes CD44 and Gli2 have important roles in the progression of PAs via ECM‑receptor interaction and the Hh signaling pathway and are therefore potential target genes of PA. In addition, depudecin may be a candidate drug for the treatment of PAs. PMID:26782791

  8. Using Improved Linkage Analysis to Screen Candidate Gene of Familial Hypercholesterolemia%应用改良连锁分析初筛家族性高胆固醇血症的候选基因

    Institute of Scientific and Technical Information of China (English)

    张筠婷; 王绿娅

    2015-01-01

    知致病基因存在。%Objective Improved linkage analysis was applied to screen candidate gene of two homozygous familial hypercholesterolemia families,providing a clear subsequent sequencing direction for early detection of pathogenic gene. Methods 2 probands of FH were enrolled in Beijing Anzhen Hospital,Capital Medical University in June 2010 and July 2010. All the family members underwent serum lipid determination,electrocardiogram,echocardiogram and carotid artery ultrasound,and other clinical informations(age,gender,age of onset,course of disease,family history and treatment)of family memberswere recorded. We selected the new microsatellite markers and capillary electrophoresis for linkage analysis of screening,and then sequenced the high linkaged one to confirm the pathogenic gene. Results The ECG of proband 1 showed left ventricular hypertrophy. The ECG of proband 2 was generally normal. The echocardiography of proband 1 showed aortic regurgitationwhile that of proband 2 showed left atrioventricular valve regurgitation. The ultrasonography of carotid artery in proband 1 found intima -media thickening and plaque formation,while that in proband 2 found carotid intima - media thickening. In family 1 the level of TC〔(6. 98 ± 1. 99) mmol/ L〕in subjects with high cholesterol level was significantly higher than that〔(3. 20 ± 1. 02) mmol/ L〕in subjects with normal blood lipid level( t = 7. 023,P < 0. 001),and the level of LDL - C〔(3. 02 ± 2. 26) mmol/ L〕in subjects with high cholesterol level was significantly higher than that〔(1. 98 ± 0. 93)mmol/ L〕in subjects with normal blood lipid level(t = 3. 497,P = 0. 004). In family 2 the level of TC〔(8. 12 ± 3. 65)mmol/ L〕in subjects with high cholesterol level was significantly higher than that〔(4. 37 ± 1. 01) mmol/ L〕in subjects with normal blood lipid level( t= 4. 355,P = 0. 001),and the level of LDL - C〔(5. 72 ± 3. 92)mmol/ L〕in subjects with high cholesterol level was higher than that〔(2. 72 ± 0. 62) mmol/ L

  9. SORBS1 gene, a new candidate for diabetic nephropathy

    DEFF Research Database (Denmark)

    Germain, Marine; Pezzolesi, Marcus G; Sandholm, Niina;

    2015-01-01

    AIMS/HYPOTHESIS: The genetic determinants of diabetic nephropathy remain poorly understood. We aimed to identify novel susceptibility genes for diabetic nephropathy. METHODS: We performed a genome-wide association study using 1000 Genomes-based imputation to compare type 1 diabetic nephropathy......-wide statistical significance. The 46 top hits (p gene were......-effect meta-analysed rs1326934-C allele OR for diabetic nephropathy was 0.83 (95% CI 0.72, 0.96; p = 0.009). CONCLUSIONS/INTERPRETATION: These data suggest that SORBS1 might be a gene involved in diabetic nephropathy....

  10. Association Studies of 3 Candidate Genes with Type 2 Diabetes Mellitus in a Chinese Population

    Institute of Scientific and Technical Information of China (English)

    鲁一兵; 缪珩; 王华; 何戎华; 马立隽; 金卫新; 华子春

    2002-01-01

    Objectives To explore the relationship between the polymorphisms of the select-ed short tandem repeats (STRs) of the candidate genes and type 2 diabetes mellitus (DM) in a Chinesepopulation, the role of genetic and environmental factors in the development of type 2 diabetes. Meth-ods STRs including D11S916 of uncoupling protein 3 (UCP3) gene,binucleotide repeat (CA). with-in intron 6 [HSLi6 (CA)n] of hormone- sensitive lipase(HSL) gene and D20S501 of protein tyrosinephosphatase- 1B (PTP-1B) gene polymorphisms were detected by polymerase chain reaction (PCR) , poly-acrylamiie gel electrophoresis and silver staining in 106 patients with type 2 DM and 102 control sub-jects. Results The allele distribution of UCP3 and HSL gene differed significantly between patientswith type 2 diabetes and control subjects (χ2 = 26. 12, P<0.005; χ2=10. 33, P<0. 005, respec-tively). For UCP3 and HSL gene,the frequencies of alleles A6,A7 ,A8 and allele B9 were much high-er in diabetic patients than in control subjects (0. 090 vs 0. 020,P<0. 005; 0. 109 vs 0. 015,P<0. 005; 0. 033 υs 0. 000,P<0.05; 0. 033 υs 0. 005,P<0. 05,respectively),while the fre-quencies of allele A1 and allele B5 were lower in diabetic patients than in control subjects (0. 090 vs0. 206,P<0. 005; 0. 057 vs 0. 118,P<0. 05,respectively). At D20S501 locus,The allele dis-tribution of PTP-1B gene had no significant difference in two groups (χ2=3. 77 ,P>0. 05). Multi-variate logistic regression analysis showed positive correlation between alleles A 6,A 7 of UCP3 gene,sys-tolic blood pressure , apolipoprotein B , lipoprotein (a) and type 2 diabetes. Conclusion Our datashow that D11S916 of UCP3 gene and HSLi6 (CA), of HSL gene polymorphisms are associated withtype 2 diabetes in Chinese suggesting that UCP3 and HSL might represent susceptibility genes for type 2diabetes. D20S501 of PTP-1B gene polymorphism isnot associated uith type 2 diabetes in Chinese. AllelesA6, A7 of UCP3 gene, systolic blood

  11. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D;

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA......-damaging agents cisplatin, etoposide, and fotemustine. Subarray analyses confirmed 57 candidate genes recovered from a genome-wide scan for differential expression. By specifically addressing cancer genes we retrieved another set of 209 candidates. Exemplary Northern blot studies indicated qualitative concordance...... converged in their expression patterns. A total of 110 genes was transiently or permanently deregulated in at least two resistant sublines. Fourteen genes displayed differential expression in all three of the sublines. We hypothesize that the variations in fotemustine and cisplatin resistance are based...

  12. Association and mutation analyses of 16p11.2 autism candidate genes.

    Directory of Open Access Journals (Sweden)

    Ravinesh A Kumar

    Full Text Available BACKGROUND: Autism is a complex childhood neurodevelopmental disorder with a strong genetic basis. Microdeletion or duplication of a approximately 500-700-kb genomic rearrangement on 16p11.2 that contains 24 genes represents the second most frequent chromosomal disorder associated with autism. The role of common and rare 16p11.2 sequence variants in autism etiology is unknown. METHODOLOGY/PRINCIPAL FINDINGS: To identify common 16p11.2 variants with a potential role in autism, we performed association studies using existing data generated from three microarray platforms: Affymetrix 5.0 (777 families, Illumina 550 K (943 families, and Affymetrix 500 K (60 families. No common variants were identified that were significantly associated with autism. To look for rare variants, we performed resequencing of coding and promoter regions for eight candidate genes selected based on their known expression patterns and functions. In total, we identified 26 novel variants in autism: 13 exonic (nine non-synonymous, three synonymous, and one untranslated region and 13 promoter variants. We found a significant association between autism and a coding variant in the seizure-related gene SEZ6L2 (12/1106 autism vs. 3/1161 controls; p = 0.018. Sez6l2 expression in mouse embryos was restricted to the spinal cord and brain. SEZ6L2 expression in human fetal brain was highest in post-mitotic cortical layers, hippocampus, amygdala, and thalamus. Association analysis of SEZ6L2 in an independent sample set failed to replicate our initial findings. CONCLUSIONS/SIGNIFICANCE: We have identified sequence variation in at least one candidate gene in 16p11.2 that may represent a novel genetic risk factor for autism. However, further studies are required to substantiate these preliminary findings.

  13. Exocrine pancreatic insufficiency in the Eurasian dog breed - inheritance and exclusion of two candidate genes

    DEFF Research Database (Denmark)

    Proschowsky, Helle Friis; Fredholm, Merete

    2007-01-01

    Exocrine pancreatic insufficiency is considered an inherited disease in several dog breeds. Affected dogs show polyphagia, weight loss and voluminous faeces of light colour due to the lack of pancreatic enzymes. In the study described herein, we performed a segregation analysis using the SINGLES...... method for three families of the Eurasian dog breed. Our data were consistent with an autosomal recessive mode of inheritance. In addition, we performed a linkage analysis in these families using four microsatellite markers on CFA3 and two microsatellites on CFA23. Based on our results, we excluded...... the canine orthologs of the human cholecystokinin (CCK) and the cholecystokinin A receptor (CCKAR) genes as candidates for exocrine pancreatic insufficiency....

  14. Integrative analysis to select cancer candidate biomarkers to targeted validation

    Science.gov (United States)

    Heberle, Henry; Domingues, Romênia R.; Granato, Daniela C.; Yokoo, Sami; Canevarolo, Rafael R.; Winck, Flavia V.; Ribeiro, Ana Carolina P.; Brandão, Thaís Bianca; Filgueiras, Paulo R.; Cruz, Karen S. P.; Barbuto, José Alexandre; Poppi, Ronei J.; Minghim, Rosane; Telles, Guilherme P.; Fonseca, Felipe Paiva; Fox, Jay W.; Santos-Silva, Alan R.; Coletta, Ricardo D.; Sherman, Nicholas E.; Paes Leme, Adriana F.

    2015-01-01

    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. PMID:26540631

  15. Candidate genes of hypertension with defective environmental expression

    Institute of Scientific and Technical Information of China (English)

    SUNYULIN; JOHANNETREMBLAY; 等

    1995-01-01

    Previous studies in our laboratory have demonstrated that the thermosensitivity locus cosegregates with blood pressure and that the elevated expression and restriction fragment length polymorphism of HSP70 gene are associated with hypertension.Cell protection against environmental stressors such as heat and chemicals is often accompanied by up-regulated expression of a wide spectrum of heat shock genes(HSP).To further investigate the interrelation between HSP expression and blood pressure regulation,we employed an effective method of cloning 2 potential hypertension-related HSPs.Synthetic oligonucleotides corresponding either to a highly-conserved region of the known HSP family or a repetitive sequence in the proteinencoding gene were used as target primers for polymerase chain reaction(PCR).cDNA prepared from heat-stressed and non-stressed vascular smooth muscle cells(VSMC)of Brown Norway rats(BN.1x)and spontaneously hypertensive rats(SHRp) respectively served as template in the reaction.The PCR products were subsequently analyzed in a single-stranded conformational polymorphism(SSCP) electrophoresing system.Differential gene expression in BN.1x and SHRp was seen on autoradiographs of SSCP gel by comparing the migration patterns of PCR-amplified DNA fragments.Using this technique,we also found that HSP27 and a new member of the large HSP gene family were differentially expressed in BN.1x and SHRp VSMC.

  16. A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Silvana Cardoso

    Full Text Available Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B, UFGT, MRP, DFR, LDOX, CHI and GST. Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B, MYC(A, UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A. Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B. SNPs within LDOX interacted with MYB11 and MYC(B, while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies.

  17. Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity

    OpenAIRE

    Rishika; Hu, Ting; Moore, Jason H.; Gilbert-Diamond, Diane

    2015-01-01

    Background Recent findings have reemphasized the importance of epistasis, or gene-gene interactions, as a contributing factor to the unexplained heritability of obesity. Network-based methods such as statistical epistasis networks (SEN), present an intuitive framework to address the computational challenge of studying pairwise interactions between thousands of genetic variants. In this study, we aimed to analyze pairwise interactions that are associated with Body Mass Index (BMI) between SNPs...

  18. Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg

    Directory of Open Access Journals (Sweden)

    Zhou Min

    2011-04-01

    Full Text Available Abstract Background The age at first egg (AFE, an important indicator for sexual maturation in female chickens, is controlled by polygenes. Based on our knowledge of reproductive physiology, 6 genes including gonadotrophin releasing hormone-I (GnRH-I, neuropeptide Y (NPY, dopamine D2 receptor (DRD2, vasoactive intestinal polypeptide (VIP, VIP receptor-1 (VIPR-1, and prolactin (PRL, were selected as candidates for influencing AFE. Additionally, the region between ADL0201 and MCW0241 of chromosome Z was chosen as the candidate QTL region according to some QTL databases. The objective of the present study was to investigate the effects of mutations in candidate genes and the QTL region on chicken AFE. Results Marker-trait association analysis of 8 mutations in those 6 genes in a Chinese native population found a highly significant association (P G840327C of the GnRH-I gene with AFE, and it remained significant even with Bonferroni correction. Based on the results of the 2-tailed χ2 test, mutations T32742394C, T32742468C, G32742603A, and C33379782T in the candidate QTL region of chromosome Z were selected for marker-trait association analysis. The haplotypes of T32742394C and T32742468C were significantly associated (P T32742394C and T32742468C were located in the intron region of the SH3-domain GRB2-like 2 (SH3GL2 gene, which appeared to be associated in the endocytosis and development of the oocyte. Conclusion This study found that G840327C of the GnRH-I gene and the haplotypes of T32742394C-T32742468C of the SH3GL2 gene were associated with the chicken AFE.

  19. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium.

    Directory of Open Access Journals (Sweden)

    Sophie Castède

    Full Text Available The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.

  20. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).

    Science.gov (United States)

    Castède, Sophie; Campoy, José Antonio; Le Dantec, Loïck; Quero-García, José; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2015-01-01

    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions. PMID:26587668

  1. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  2. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E;

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...

  3. Absolute Quantitation of DNA Methylation of 28 Candidate Genes in Prostate Cancer Using Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Nataڑa Vasiljeviš

    2011-01-01

    Full Text Available Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa. We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH samples using the pyrosequencing (PSQ method to identify genes with diagnostic and prognostic potential.

  4. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Directory of Open Access Journals (Sweden)

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  5. Identification of candidate genes for familial early-onset essential tremor.

    Science.gov (United States)

    Liu, Xinmin; Hernandez, Nora; Kisselev, Sergey; Floratos, Aris; Sawle, Ashley; Ionita-Laza, Iuliana; Ottman, Ruth; Louis, Elan D; Clark, Lorraine N

    2016-07-01

    Essential tremor (ET) is one of the most common causes of tremor in humans. Despite its high heritability and prevalence, few susceptibility genes for ET have been identified. To identify ET genes, whole-exome sequencing was performed in 37 early-onset ET families with an autosomal-dominant inheritance pattern. We identified candidate genes for follow-up functional studies in five ET families. In two independent families, we identified variants predicted to affect function in the nitric oxide (NO) synthase 3 gene (NOS3) that cosegregated with disease. NOS3 is highly expressed in the central nervous system (including cerebellum), neurons and endothelial cells, and is one of three enzymes that converts l-arginine to the neurotransmitter NO. In one family, a heterozygous variant, c.46G>A (p.(Gly16Ser)), in NOS3, was identified in three affected ET cases and was absent in an unaffected family member; and in a second family, a heterozygous variant, c.164C>T (p.(Pro55Leu)), was identified in three affected ET cases (dizygotic twins and their mother). Both variants result in amino-acid substitutions of highly conserved amino-acid residues that are predicted to be deleterious and damaging by in silico analysis. In three independent families, variants predicted to affect function were also identified in other genes, including KCNS2 (KV9.2), HAPLN4 (BRAL2) and USP46. These genes are highly expressed in the cerebellum and Purkinje cells, and influence function of the gamma-amino butyric acid (GABA)-ergic system. This is in concordance with recent evidence that the pathophysiological process in ET involves cerebellar dysfunction and possibly cerebellar degeneration with a reduction in Purkinje cells, and a decrease in GABA-ergic tone. PMID:26508575

  6. Copy number variants in candidate genes are genetic modifiers of Hirschsprung disease.

    Directory of Open Access Journals (Sweden)

    Qian Jiang

    Full Text Available Hirschsprung disease (HSCR is a neurocristopathy characterized by absence of intramural ganglion cells along variable lengths of the gastrointestinal tract. The HSCR phenotype is highly variable with respect to gender, length of aganglionosis, familiality and the presence of additional anomalies. By molecular genetic analysis, a minimum of 11 neuro-developmental genes (RET, GDNF, NRTN, SOX10, EDNRB, EDN3, ECE1, ZFHX1B, PHOX2B, KIAA1279, TCF4 are known to harbor rare, high-penetrance mutations that confer a large risk to the bearer. In addition, two other genes (RET, NRG1 harbor common, low-penetrance polymorphisms that contribute only partially to risk and can act as genetic modifiers. To broaden this search, we examined whether a set of 67 proven and candidate HSCR genes harbored additional modifier alleles. In this pilot study, we utilized a custom-designed array CGH with ∼33,000 test probes at an average resolution of ∼185 bp to detect gene-sized or smaller copy number variants (CNVs within these 67 genes in 18 heterogeneous HSCR patients. Using stringent criteria, we identified CNVs at three loci (MAPK10, ZFHX1B, SOX2 that are novel, involve regulatory and coding sequences of neuro-developmental genes, and show association with HSCR in combination with other congenital anomalies. Additional CNVs are observed under relaxed criteria. Our research suggests a role for CNVs in HSCR and, importantly, emphasizes the role of variation in regulatory sequences. A much larger study will be necessary both for replication and for identifying the full spectrum of small CNV effects.

  7. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    Science.gov (United States)

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature. PMID:25382584

  8. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids

    DEFF Research Database (Denmark)

    Brahe, Lena Kirchner; Angquist, Lars; Larsen, Lesli Hingstrup;

    2013-01-01

    after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP-diet interaction effects on total cholesterol, LDL...

  9. Novel Biomarker Candidates for Colorectal Cancer Metastasis: A Meta-analysis of In Vitro Studies.

    Science.gov (United States)

    Long, Nguyen Phuoc; Lee, Wun Jun; Huy, Nguyen Truong; Lee, Seul Ji; Park, Jeong Hill; Kwon, Sung Won

    2016-01-01

    Colorectal cancer (CRC) is one of the most common and lethal cancers. Although numerous studies have evaluated potential biomarkers for early diagnosis, current biomarkers have failed to reach an acceptable level of accuracy for distant metastasis. In this paper, we performed a gene set meta-analysis of in vitro microarray studies and combined the results from this study with previously published proteomic data to validate and suggest prognostic candidates for CRC metastasis. Two microarray data sets included found 21 significant genes. Of these significant genes, ALDOA, IL8 (CXCL8), and PARP4 had strong potential as prognostic candidates. LAMB2, MCM7, CXCL23A, SERPINA3, ABCA3, ALDH3A2, and POLR2I also have potential. Other candidates were more controversial, possibly because of the biologic heterogeneity of tumor cells, which is a major obstacle to predicting metastasis. In conclusion, we demonstrated a meta-analysis approach and successfully suggested ten biomarker candidates for future investigation. PMID:27688707

  10. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  11. Candidate driver genes in microsatellite-unstable colorectal cancer

    DEFF Research Database (Denmark)

    Alhopuro, Pia; Sammalkorpi, Heli; Niittymäki, Iina;

    2012-01-01

    . Here, we evaluated somatic mutations in microsatellite repeats of 790 genes chosen based on reduced expression in MSI CRC and existence of a coding mononucleotide repeat of 6–10 bp in length. All the repeats were initially sequenced in 30 primary MSI CRC samples and whenever frameshift mutations were...... identified in >20%, additional 70 samples were sequenced. To distinguish driver mutations from passengers, we similarly analyzed the occurrence of frameshift mutations in 121 intronic control repeats and utilized a statistical regression model to determine cut-off mutation frequencies for repeats of all...

  12. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry.

    Science.gov (United States)

    De Franceschi, P; Stegmeir, T; Cabrera, A; van der Knaap, E; Rosyara, U R; Sebolt, A M; Dondini, L; Dirlewanger, E; Quero-Garcia, J; Campoy, J A; Iezzoni, A F

    2013-01-01

    Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis. PMID:23976873

  13. The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components.

    Directory of Open Access Journals (Sweden)

    Peter C Stirling

    2011-04-01

    Full Text Available Chromosome instability (CIN is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ∼ 2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with published CIN phenotypes for other yeast genes generated a systematic CIN gene dataset comprised of 692 genes. Enriched gene ontology terms defined cellular CIN pathways that, together with sequence orthologs, created a list of human CIN candidate genes, which we cross-referenced to published somatic mutation databases revealing hundreds of mutated CIN candidate genes. Characterization of some poorly characterized CIN genes revealed short telomeres in mutants of the ASTRA/TTT components TTI1 and ASA1. High-throughput phenotypic profiling links ASA1 to TTT (Tel2-Tti1-Tti2 complex function and to TORC1 signaling via Tor1p stability, consistent with the role of TTT in PI3-kinase related kinase biogenesis. The comprehensive CIN gene list presented here in principle comprises all conserved eukaryotic genome integrity pathways. Deriving human CIN candidate genes from the list allows direct cross-referencing with tumor mutational data and thus candidate mutations potentially driving CIN in tumors. Overall, the CIN gene spectrum reveals new chromosome biology and will help us to understand CIN phenotypes in human disease.

  14. Cholesterol tethered bioresponsive polycation as a candidate for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Ying [Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou 310009 (China); Wang Youxiang, E-mail: yx_wang@zju.edu.cn [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China); Hu Qiaoling; Shen Jiacong [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China)

    2009-04-30

    The efficient unpacking of viral protein shell gave the inspiration for the synthesized vectors. In this research, novel cholesterol tethered bioresponsive polyethylenimine (PEI) was specially designed via disulfide-containing cross-linker. The cholesterol lipid had proved to increase the permeability of gene vector through cell membrane. The acid-base titration indicated that the synthesized polycation possessed efficient proton sponge effect, which was suggested to increase endosomal release of pDNA complexes into the cytoplasm. The cholesterol tethered polycation could effectively induce DNA condensation and form spherical particles with diameter about 200 nm at N/P ratio of 10. At glutathione concentration of 3 mM, the polyplexes were unpacked due to the bioresponsive cleavage of the disulfide bonds. The in-vitro experiment indicated that the polyplexes showed efficient transfection efficiency to HEK293T cells. All the results indicated that the bioresponsive polycation could be served as an effective trigger to control the release of DNA at the intracellular environment. The novel bioresponsive polycation might have great potential in non-viral gene delivery research and application.

  15. Cholesterol tethered bioresponsive polycation as a candidate for gene delivery

    International Nuclear Information System (INIS)

    The efficient unpacking of viral protein shell gave the inspiration for the synthesized vectors. In this research, novel cholesterol tethered bioresponsive polyethylenimine (PEI) was specially designed via disulfide-containing cross-linker. The cholesterol lipid had proved to increase the permeability of gene vector through cell membrane. The acid-base titration indicated that the synthesized polycation possessed efficient proton sponge effect, which was suggested to increase endosomal release of pDNA complexes into the cytoplasm. The cholesterol tethered polycation could effectively induce DNA condensation and form spherical particles with diameter about 200 nm at N/P ratio of 10. At glutathione concentration of 3 mM, the polyplexes were unpacked due to the bioresponsive cleavage of the disulfide bonds. The in-vitro experiment indicated that the polyplexes showed efficient transfection efficiency to HEK293T cells. All the results indicated that the bioresponsive polycation could be served as an effective trigger to control the release of DNA at the intracellular environment. The novel bioresponsive polycation might have great potential in non-viral gene delivery research and application.

  16. Exclusion of candidate genes in a family with arterial tortuosity syndrome.

    Science.gov (United States)

    Gardella, Rita; Zoppi, Nicoletta; Assanelli, Deodato; Muiesan, Maria Lorenza; Barlati, Sergio; Colombi, Marina

    2004-04-30

    Arterial tortuosity syndrome (ATS) is a rare hereditary disorder with variable clinical presentation including tortuosity and elongation of the major arteries, often associated with pulmonary artery stenosis, pulmonary hypertension, and skin and joint laxity, suggestive of a connective tissue disorder. ATS is transmitted in an autosomal recessive mode, but the causal gene is unknown. We report an Italian pedigree with three inbred families in which five patients show signs of ATS. In particular, four adult patients present arterial tortuosity and elongation of the main arteries. Two of these patients, with the most severe degree of arterial tortuosity, also show severe peripheral stenosis of the main pulmonary artery. The fifth young patient shows a severe pulmonary valve stenosis in the absence of arterial tortuosity. All patients show signs of Ehlers-Danlos syndrome (EDS): soft skin with abundant subcutaneous tissue and joint laxity, hernias, and disorganization of the extracellular matrix (ECM) of fibronectin (FN) and of actin microfilaments in cultured skin fibroblasts. Linkage analysis of the genes involved in EDS and other connective tissue disorders, excluded COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL5A3, COL6A1, COL6A2, ADAMTS2, ELN, FN1, TNXA, and TNXB as candidate genes in the family under study, thus indicating that ATS is a distinct clinical and molecular entity. PMID:15054833

  17. Identification of candidate SNPs for drug induced toxicity from differentially expressed genes in associated tissues.

    Science.gov (United States)

    Hasmats, Johanna; Kupershmidt, Ilya; Rodríguez-Antona, Cristina; Su, Qiaojuan Jane; Khan, Muhammad Suleman; Jara, Carlos; Mielgo, Xabier; Lundeberg, Joakim; Green, Henrik

    2012-09-10

    The growing collection of publicly available high-throughput data provides an invaluable resource for generating preliminary in silico data in support of novel hypotheses. In this study we used a cross-dataset meta-analysis strategy to identify novel candidate genes and genetic variations relevant to paclitaxel/carboplatin-induced myelosuppression and neuropathy. We identified genes affected by drug exposure and present in tissues associated with toxicity. From ten top-ranked genes 42 non-synonymous single nucleotide polymorphisms (SNPs) were identified in silico and genotyped in 94 cancer patients treated with carboplatin/paclitaxel. We observed variations in 11 SNPs, of which seven were present in a sufficient frequency for statistical evaluation. Of these seven SNPs, three were present in ABCA1 and ATM, and showed significant or borderline significant association with either myelosuppression or neuropathy. The strikingly high number of associations between genotype and clinically observed toxicity provides support for our data-driven computations strategy to identify biomarkers for drug toxicity. PMID:22759513

  18. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    Science.gov (United States)

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-01-01

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. PMID:27553646

  19. RNA deep sequencing reveals novel candidate genes and polymorphisms in boar testis and liver tissues with divergent androstenone levels.

    Directory of Open Access Journals (Sweden)

    Asep Gunawan

    Full Text Available Boar taint is an unpleasant smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone (5α-androst-16-en-3-one and skatole (3-methylindole. It is crucial to understand the genetic mechanism of boar taint to select pigs for lower androstenone levels and thus reduce boar taint. The aim of the present study was to investigate transcriptome differences in boar testis and liver tissues with divergent androstenone levels using RNA deep sequencing (RNA-Seq. The total number of reads produced for each testis and liver sample ranged from 13,221,550 to 33,206,723 and 12,755,487 to 46,050,468, respectively. In testis samples 46 genes were differentially regulated whereas 25 genes showed differential expression in the liver. The fold change values ranged from -4.68 to 2.90 in testis samples and -2.86 to 3.89 in liver samples. Differentially regulated genes in high androstenone testis and liver samples were enriched in metabolic processes such as lipid metabolism, small molecule biochemistry and molecular transport. This study provides evidence for transcriptome profile and gene polymorphisms of boars with divergent androstenone level using RNA-Seq technology. Digital gene expression analysis identified candidate genes in flavin monooxygenease family, cytochrome P450 family and hydroxysteroid dehydrogenase family. Moreover, polymorphism and association analysis revealed mutation in IRG6, MX1, IFIT2, CYP7A1, FMO5 and KRT18 genes could be potential candidate markers for androstenone levels in boars. Further studies are required for proving the role of candidate genes to be used in genomic selection against boar taint in pig breeding programs.

  20. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    Full Text Available Abstract Background Real-time quantitative PCR (RQ-PCR forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1 was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4 was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the

  1. Clinical phenotype and candidate genes for the 5q31.3 microdeletion syndrome.

    Science.gov (United States)

    Hosoki, Kana; Ohta, Tohru; Natsume, Jun; Imai, Sumiko; Okumura, Akihisa; Matsui, Takeshi; Harada, Naoki; Bacino, Carlos A; Scaglia, Fernando; Jones, Jeremy Y; Niikawa, Norio; Saitoh, Shinji

    2012-08-01

    Array-based technologies have led to the identification of many novel microdeletion and microduplication syndromes demonstrating multiple congenital anomalies and intellectual disability (MCA/ID). We have used chromosomal microarray analysis for the evaluation of patients with MCA/ID and/or neonatal hypotonia. Three overlapping de novo microdeletions at 5q31.3 with the shortest region of overlap (SRO) of 370 kb were detected in three unrelated patients. These patients showed similar clinical features including severe neonatal hypotonia, neonatal feeding difficulties, respiratory distress, characteristic facial features, and severe developmental delay. These features are consistent with the 5q31.3 microdeletion syndrome originally proposed by Shimojima et al., providing further evidence that this syndrome is clinically discernible. The 370 kb SRO encompasses only four RefSeq genes including neuregulin 2 (NRG2) and purine-rich element binding protein A (PURA). NRG2 is one of the members of the neuregulin family related to neuronal and glial cell growth and differentiation, thus making NRG2 a good candidate for the observed phenotype. Moreover, PURA is also a good candidate because Pura-deficient mice demonstrate postnatal neurological manifestations.

  2. Rapid Identification of Candidate Genes for Seed Weight Using the SLAF-Seq Method in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Xinxin Geng

    Full Text Available Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7-9. According to the 1000-seed weight (TSW data, the individual DNA of the heaviest 46 lines and the lightest 47 lines were respectively selected to establish two bulked DNA pools. A new high-throughput sequencing technology, Specific Locus Amplified Fragment Sequencing (SLAF-seq, was used to identify candidate genes of TSW in association analysis combined with bulked segregant analysis (BSA. A total of 1,933 high quality polymorphic SLAF markers were developed and 4 associated markers of TSW were procured. A hot region of ~0.58 Mb at nucleotides 25,401,885-25,985,931 on ChrA09 containing 91 candidate genes was identified as tightly associated with the TSW trait. From annotation information, four genes (GSBRNA2T00037136001, GSBRNA2T00037157001, GSBRNA2T00037129001 and GSBRNA2T00069389001 might be interesting candidate genes that are highly related to seed weight.

  3. Evaluation of Candidate Genes in Case-Control Studies: A Statistical Method to Account for Related Subjects

    OpenAIRE

    Slager, S. L.; Schaid, D J

    2001-01-01

    Traditional case-control studies provide a powerful and efficient method for evaluation of association between candidate genes and disease. The sampling of cases from multiplex pedigrees, rather than from a catchment area, can increase the likelihood that genetic cases are selected. However, use of all the related cases without accounting for their biological relationship can increase the type I error rate of the statistical test. To overcome this problem, we present an analysis method that i...

  4. A transcription map of the 6p22.3 reading disability locus identifying candidate genes

    Directory of Open Access Journals (Sweden)

    Gruen Jeffrey R

    2003-06-01

    Full Text Available Abstract Background Reading disability (RD is a common syndrome with a large genetic component. Chromosome 6 has been identified in several linkage studies as playing a significant role. A more recent study identified a peak of transmission disequilibrium to marker JA04 (G72384 on chromosome 6p22.3, suggesting that a gene is located near this marker. Results In silico cloning was used to identify possible candidate genes located near the JA04 marker. The 2 million base pairs of sequence surrounding JA04 was downloaded and searched against the dbEST database to identify ESTs. In total, 623 ESTs from 80 different tissues were identified and assembled into 153 putative coding regions from 19 genes and 2 pseudogenes encoded near JA04. The identified genes were tested for their tissue specific expression by RT-PCR. Conclusions In total, five possible candidate genes for RD and other diseases mapping to this region were identified.

  5. Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple

    Science.gov (United States)

    Chagné, David; Carlisle, Charmaine M; Blond, Céline; Volz, Richard K; Whitworth, Claire J; Oraguzie, Nnadozie C; Crowhurst, Ross N; Allan, Andrew C; Espley, Richard V; Hellens, Roger P; Gardiner, Susan E

    2007-01-01

    Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS) is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs) in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG) 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species. PMID:17608951

  6. Mapping a candidate gene (MdMYB10 for red flesh and foliage colour in apple

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2007-07-01

    Full Text Available Abstract Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs and Single Nucleotide Polymorphisms (SNPs in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.

  7. Geographic differentiation of polymorphism in the Plasmodium falciparum malaria vaccine candidate gene SERA5.

    Science.gov (United States)

    Tanabe, Kazuyuki; Arisue, Nobuko; Palacpac, Nirianne M Q; Yagi, Masanori; Tougan, Takahiro; Honma, Hajime; Ferreira, Marcelo U; Färnert, Anna; Björkman, Anders; Kaneko, Akira; Nakamura, Masatoshi; Hirayama, Kenji; Mita, Toshihiro; Horii, Toshihiro

    2012-02-21

    SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS=0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (Fst) of inter-population variance in allele frequencies

  8. Social cognitive role of schizophrenia candidate gene GABRB2.

    Directory of Open Access Journals (Sweden)

    Shui Ying Tsang

    Full Text Available The occurrence of positive selection in schizophrenia-associated GABRB2 suggests a broader impact of the gene product on population fitness. The present study considered the possibility of cognition-related GABRB2 involvement by examining the association of GABRB2 with psychosis and altruism, respectively representing psychiatric and psychological facets of social cognition. Four single nucleotide polymorphisms (SNPs were genotyped for quantitative trait analyses and population-based association studies. Psychosis was measured by either the Positive and Negative Syndrome Scale (PANSS or antipsychotics dosage, and altruism was based on a self-report altruism scale. The minor alleles of SNPs rs6556547, rs1816071 and rs187269 in GABRB2 were correlated with high PANSS score for positive symptoms in a Han Chinese schizophrenic cohort, whereas those of rs1816071 and rs1816072 were associated with high antipsychotics dosage in a US Caucasian schizophrenic cohort. Moreover, strongly significant GABRB2-disease associations were found among schizophrenics with severe psychosis based on high PANSS positive score, but no significant association was observed for schizophrenics with only mild psychosis. Interestingly, in addition to association with psychosis in schizophrenics, rs187269 was also associated with altruism in healthy Han Chinese. Furthermore, parallel to correlation with severe psychosis, its minor allele was correlated with high altruism scores. These findings revealed that GABRB2 is associated with psychosis, the core symptom and an endophenotype of schizophrenia. Importantly, the association was found across the breadth of the psychiatric (psychosis to psychological (altruism spectrum of social cognition suggesting GABRB2 involvement in human cognition.

  9. Genome-Wide Association Study with Sequence Variants Identifies Candidate Genes for Mastitis Resistance in Dairy Cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Bendixen, Christian;

    Six genomic regions affecting clinical mastitis were identified through a GWAS study with imputed BovineHD chip genotype data in the Nordic Holstein cattle population. The association analyses were carried out using a SNP-by-SNP analysis by fitting the regression of allele dosage and a polygenic...... component in a linear mixed model. A total of 90 bulls’ whole genomes were sequenced with a coverage > 10X. Sequence reads were aligned to the cattle reference genome and polymorphisms in candidate regions were identified when one or more samples differed from the reference sequence. The polymorphisms...... Effect Predictor (VEP) vers. 2.6 using ENSEMBL vers. 67 databases. Candidate polymorphisms affecting clinical mastitis were selected based on their association with the traits and functional annotations. A strong positional candidate gene for mastitis resistance on chromosome-6 is the NPFFR2 which...

  10. Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes

    Directory of Open Access Journals (Sweden)

    van Oost Bernard A

    2007-10-01

    Full Text Available Abstract Background Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. Results We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. α-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan δ, titin cap, α-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. Conclusion The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies.

  11. Third chromosome candidate genes for conspecific sperm precedence between D. simulans and D. mauritiana

    Directory of Open Access Journals (Sweden)

    Brouwers Barb

    2010-04-01

    Full Text Available Abstract Background Male - female incompatibilities can be critical in keeping species as separate and discrete units. Premating incompatibilities and postzygotic hybrid sterility/inviability have been widely studied as isolating barriers between species. In recent years, a number of studies have brought attention to postmating prezygotic barriers arising from male - male competition and male - female interactions. Yet little is known about the genetic basis of postmating prezygotic isolation barriers between species. Results Using D. simulans lines with mapped introgressions of D. mauritiana into their third chromosome, we find at least two D. mauritiana introgressions causing male breakdown in competitive paternity success. Eighty one genes within the mapped introgressed regions were identified as broad-sense candidates on the basis of male reproductive tract expression and male-related function. The list of candidates was narrowed down to five genes based on differences in male reproductive tract expression between D. simulans and D. mauritiana. Another ten genes were confirmed as candidates using evidence of adaptive gene coding sequence diversification in the D. simulans and/or D. mauritiana lineage. Our results show a complex genetic basis for conspecific sperm precedence, with evidence of gene interactions between at least two third chromosome loci. Pleiotropy is also evident from correlation between conspecific sperm precedence and female induced fecundity and the identification of candidate genes that might exert an effect through genetic conflict and immunity. Conclusions We identified at least two loci responsible for conspecific sperm precedence. A third of candidate genes within these two loci are located in the 89B cytogenetic position, highlighting a possible major role for this chromosome position during the evolution of species specific adaptations to postmating prezygotic reproductive challenges.

  12. A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia.

    Directory of Open Access Journals (Sweden)

    Christopher L Plaisier

    2009-09-01

    Full Text Available We hypothesized that a common SNP in the 3' untranslated region of the upstream transcription factor 1 (USF1, rs3737787, may affect lipid traits by influencing gene expression levels, and we investigated this possibility utilizing the Mexican population, which has a high predisposition to dyslipidemia. We first associated rs3737787 genotypes in Mexican Familial Combined Hyperlipidemia (FCHL case/control fat biopsies, with global expression patterns. To identify sets of co-expressed genes co-regulated by similar factors such as transcription factors, genetic variants, or environmental effects, we utilized weighted gene co-expression network analysis (WGCNA. Through WGCNA in the Mexican FCHL fat biopsies we identified two significant Triglyceride (TG-associated co-expression modules. One of these modules was also associated with FCHL, the other FCHL component traits, and rs3737787 genotypes. This USF1-regulated FCHL-associated (URFA module was enriched for genes involved in lipid metabolic processes. Using systems genetics procedures we identified 18 causal candidate genes in the URFA module. The FCHL causal candidate gene fatty acid desaturase 3 (FADS3 was associated with TGs in a recent Caucasian genome-wide significant association study and we replicated this association in Mexican FCHL families. Based on a USF1-regulated FCHL-associated co-expression module and SNP rs3737787, we identify a set of causal candidate genes for FCHL-related traits. We then provide evidence from two independent datasets supporting FADS3 as a causal gene for FCHL and elevated TGs in Mexicans.

  13. Genetic linkage analysis excludes HLA and several other potential candidates as being responsible for familial dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Durand, J.B.; Bachinski, L.L.; Beiling, L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Familial dilated cardiomyopthy (FDCM), manifested by ventricular dilation and decreased systolic function, is inherited as an autosomal dominant trait. We identified a family segregating DCM with 11 affected living individuals in whom the diagnosis was confirmed by echocardiography (EF <50%, left ventricular volume >80 ml/m{sup 2}). DNA was extracted and analyzed with highly polymorphmic microsatellite markers (STRs). In view of the high frequency of antibodies to specific HLA proteins in FDCM, this region was selected as a possible candidate locus. Genes whose products are sarcomeric proteins were also selected as candidates. Genetic linkage of FDCM to these candidate genes was excluded on the basis of a LOD score of <= -2. Subsequent to the candidate gene approach we pursued random mapping and completed analysis of a total of 93 chromosomal markers excluding 1000 cM.

  14. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study

    Directory of Open Access Journals (Sweden)

    Close Eimear

    2010-05-01

    Full Text Available Abstract Background Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance. The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. Methods We have evaluated six candidate genes in one of these regions (11q23, namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. Results Promotor SNPs (-607, -137 in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P IL18-137/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C/-137C (P Conclusion Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine's role in maintaining inflammation in active CD.

  15. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.

    Science.gov (United States)

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; Fonseca e Silva, Fabyano; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  16. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.

    Directory of Open Access Journals (Sweden)

    Aline Camporez Crispim

    Full Text Available Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A and maturity rate (K from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A and maturity rate (K were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167 and two hundred and sixty two (262 significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28, myogenic induction (BTG1, fetal growth (IL2, and body weights (APEX2; K genes were functionally associated with body weight, body height, average daily gain (TMEM18, and skeletal muscle development (SMN1

  17. Construction of an Americn mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Hallers, Boudewijn ten; Nefedov, Michael;

    2011-01-01

    contigs (184 kb in average) were assembled. Knowing the complete sequences of these candidate genes will enable confirmation of the association with a phenotype and the finding of causative mutations for the targeted phenotypes.Additionally, 1577 BAC clones were end sequenced; 2505 BAC end sequences (80......BACKGROUND: Bacterial artificial chromosome (BAC) libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. RESULTS: Here, we...... consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs), representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library...

  18. A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels.

    Science.gov (United States)

    Hüning, Anne K; Lange, Skadi M; Ramesh, Kirti; Jacob, Dorrit E; Jackson, Daniel J; Panknin, Ulrike; Gutowska, Magdalena A; Philipp, Eva E R; Rosenstiel, Philip; Lucassen, Magnus; Melzner, Frank

    2016-06-01

    Biomineralization processes in bivalve molluscs are still poorly understood. Here we provide an analysis of specifically expressed sequences from a mantle transcriptome of the blue mussel, Mytilus edulis. We then developed a novel, integrative shell injury assay to test, whether biomineralization candidate genes highly expressed in marginal and pallial mantle could be induced in central mantle tissue underlying the damaged shell areas. This experimental approach makes it possible to identify gene products that control the chemical micro-environment during calcification as well as organic matrix components. This is unlike existing methodological approaches that work retroactively to characterize calcification relevant molecules and are just able to examine organic matrix components that are present in completed shells. In our assay an orthogonal array of nine 1mm holes was drilled into the left valve, and mussels were suspended in net cages for 20, 29 and 36days to regenerate. Structural observations using stereo-microscopy, SEM and Raman spectroscopy revealed organic sheet synthesis (day 20) as the first step of shell-repair followed by the deposition of calcite crystals (days 20 and 29) and aragonite tablets (day 36). The regeneration period was characterized by time-dependent shifts in gene expression in left central mantle tissue underlying the injured shell, (i) increased expression of two tyrosinase isoforms (TYR3: 29-fold and TYR6: 5-fold) at day 20 with a decline thereafter, (ii) an increase in expression of a gene encoding a nacrein-like protein (max. 100-fold) on day 29. The expression of an acidic Asp-Ser-rich protein was enhanced during the entire regeneration process. This proof-of-principle study demonstrates that genes that are specifically expressed in pallial and marginal mantle tissue can be induced (4 out of 10 genes) in central mantle following experimental injury of the overlying shell. Our findings suggest that regeneration assays can be used

  19. Identification of Candidate Driver Genes in Common Focal Chromosomal Aberrations of Microsatellite Stable Colorectal Cancer

    OpenAIRE

    Burghel, George J.; Wei-Yu Lin; Helen Whitehouse; Ian Brock; David Hammond; Jonathan Bury; Yvonne Stephenson; Rina George; Angela Cox

    2013-01-01

    Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hy...

  20. Candidate gene study to investigate the genetic determinants of normal variation in central corneal thickness

    OpenAIRE

    Dimasi, David P.; Kathryn P Burdon; Hewitt, Alex W; Savarirayan, Ravi; Healey, Paul R.; Mitchell, Paul; Mackey, David A.; Craig, Jamie E

    2010-01-01

    Purpose The genetic component underlying variation in central corneal thickness (CCT) in the normal population remains largely unknown. As CCT is an identified risk factor for open-angle glaucoma, understanding the genes involved in CCT determination could improve our understanding of the mechanisms involved in this association. Methods To identify novel CCT genes, we selected eight different candidates based on a range of criteria. These included; aquaporin 1 (AQ1), aquaporin 5 (AQ5), decori...

  1. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

    OpenAIRE

    Turyagyenda, Laban F.; Kizito, Elizabeth B.; Ferguson, Morag; Baguma, Yona; Agaba, Morris; Jagger J W Harvey; Osiru, David S. O.

    2013-01-01

    Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of droug...

  2. VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams.

    Directory of Open Access Journals (Sweden)

    Guoliang Lin

    Full Text Available VennPainter is a program for depicting unique and shared sets of genes lists and generating Venn diagrams, by using the Qt C++ framework. The software produces Classic Venn, Edwards' Venn and Nested Venn diagrams and allows for eight sets in a graph mode and 31 sets in data processing mode only. In comparison, previous programs produce Classic Venn and Edwards' Venn diagrams and allow for a maximum of six sets. The software incorporates user-friendly features and works in Windows, Linux and Mac OS. Its graphical interface does not require a user to have programing skills. Users can modify diagram content for up to eight datasets because of the Scalable Vector Graphics output. VennPainter can provide output results in vertical, horizontal and matrix formats, which facilitates sharing datasets as required for further identification of candidate genes. Users can obtain gene lists from shared sets by clicking the numbers on the diagram. Thus, VennPainter is an easy-to-use, highly efficient, cross-platform and powerful program that provides a more comprehensive tool for identifying candidate genes and visualizing the relationships among genes or gene families in comparative analysis.

  3. VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams.

    Science.gov (United States)

    Lin, Guoliang; Chai, Jing; Yuan, Shuo; Mai, Chao; Cai, Li; Murphy, Robert W; Zhou, Wei; Luo, Jing

    2016-01-01

    VennPainter is a program for depicting unique and shared sets of genes lists and generating Venn diagrams, by using the Qt C++ framework. The software produces Classic Venn, Edwards' Venn and Nested Venn diagrams and allows for eight sets in a graph mode and 31 sets in data processing mode only. In comparison, previous programs produce Classic Venn and Edwards' Venn diagrams and allow for a maximum of six sets. The software incorporates user-friendly features and works in Windows, Linux and Mac OS. Its graphical interface does not require a user to have programing skills. Users can modify diagram content for up to eight datasets because of the Scalable Vector Graphics output. VennPainter can provide output results in vertical, horizontal and matrix formats, which facilitates sharing datasets as required for further identification of candidate genes. Users can obtain gene lists from shared sets by clicking the numbers on the diagram. Thus, VennPainter is an easy-to-use, highly efficient, cross-platform and powerful program that provides a more comprehensive tool for identifying candidate genes and visualizing the relationships among genes or gene families in comparative analysis. PMID:27120465

  4. Candidate qRT-PCR reference genes for barley that demonstrate better stability than traditional housekeeping genes

    Science.gov (United States)

    Gene transcript expression analysis is a useful tool for correlating gene activity with plant phenotype. For these studies, an appropriate reference gene is necessary to quantify the expression of target genes. Classic housekeeping genes have often been used for this purpose, but may not be consis...

  5. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations. PMID:24914686

  6. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L..

    Directory of Open Access Journals (Sweden)

    Jennifer R Mandel

    Full Text Available Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement. We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  7. Genetics of Estrogen-Related Traits; From Candidate Genes to GWAS

    NARCIS (Netherlands)

    L. Stolk (Lisette)

    2009-01-01

    textabstractIn the first part of this thesis, the association of polymorphisms in three candidate genes (estrogen receptor alpha (ESR1), retinoblastoma interacting zinc finger domain (RIZ1) and catechol-O-methyltransferase (COMT)) with estradiol levels, age at natural menopause, BMD and fracture ris

  8. Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    DEFF Research Database (Denmark)

    Banasik, Karina; Justesen, Johanne M.; Hornbak, Malene;

    2011-01-01

    Objective: Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. Research Design and Methods: By integrating public database text mining, trans-organism protein...

  9. Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients

    DEFF Research Database (Denmark)

    de Kovel, Carolien G F; Brilstra, Eva H; van Kempen, Marjan J A;

    2016-01-01

    BACKGROUND: Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. METHODS: To increase the number of validated EE...

  10. No association of candidate genes with cannabis use in a large sample of Australian twin families

    NARCIS (Netherlands)

    Verweij, C.J.H.; Zietsch, B.P.; Liu, J.Z.; Medland, S.E.; Lynskey, M.T.; Madden, P.A.F.; Agrawal, A.; Montgomery, G.W.; Heath, A.C.; Martin, N.G.

    2012-01-01

    While there is solid evidence that cannabis use is heritable, attempts to identify genetic influences at the molecular level have yielded mixed results. Here, a large twin family sample (n = 7452) was used to test for association between 10 previously reported candidate genes and lifetime frequency

  11. Discrimination of press fit candidate microorganism (Enterobacter cloacae, Bacillus licheniformis) by restriction fragment length polymorphic analysis of the 16SrRNA gene; 16S rRNA idenshi no sengen danpen kchotakei kaiseki niyoru atsunyukoho biseibutsu (Enterobacter cloacae, Bacillus licheni-formis) no shikibetsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuhiro; Tanaka, Shinji; Otsuka, Makiko; Ichimura, Naoya; Yonebayashi, Eiji; Enomoto, Heiji

    1999-09-01

    In MeOH viewed as one of the improvement method for recovery of the petroleum with hope, the development of discrimination technique of press fit candidate microorganism and oil reservoir resident microorganism which exists in the test object oil reservoir was tried in order to monitor the survival situation of the microorganism which inserted in the oil reservoir under pressure. 16S rRNA amplified by the PCR using the universal primer The microorganism that it cut off the gene at restriction enzyme HhaI,MspI, AluI and inhabits oil reservoir water and oil reservoir rock in the object oil reservoir by ( necessarily TaqI ) and restriction fragment length polymorphic analysis was classified. As the result, the effectiveness of the this PCR-RFLP method was indicated the microorganism which showed RFLP pattern which is identical with the press fit candidate microorganism in the oil reservoir resident microorganism for the discrimination of the press fit candidate microorganism without existing. And, it was indicated that the this PCR-RFLP method was effective for the investigation of oil reservoir resident microbial community which can positively utilize source of nutrition inserted to oil reservoir with the press fit candidate microorganism under pressure, and it was possible to grasp oil reservoir resident microorganism to be especially considered in MEOR. (translated by NEDO)

  12. Thermodynamic analysis of a kagome spin liquid candidate

    Science.gov (United States)

    Han, Tianheng; Bonnoit, Craig; Chisnell, Robin; Helton, Joel; Takano, Yasu; Lee, Young

    2013-03-01

    Herbertsmithite ZnCu3(OH)6Cl2-one of the most promising quantum spin liquid candidates-presents a promising system for studies of frustrated magnetism on an S =1/2 kagomé lattice. Following our recent success in crystal growth, specific heat has been measured at dilution fridge temperatures up to 18 T on a single crystal sample which gives further information on the low temperature phase. Additional analysis of the thermodynamic measurements on single crystal samples lends further hints on the intrinsic spin liquid physics.

  13. Candidate genes responsible for common and different pathology of infected muscle tissues between Trichinella spiralis and T. pseudospiralis infection.

    Science.gov (United States)

    Wu, Zhiliang; Nagano, Isao; Takahashi, Yuzo

    2008-09-01

    The gene expression profiles were compared between Trichinella spiralis- and T. pseudospiralis-infected muscle tissues by means of a cDNA microarray. Out of 30,000 genes, the expressions of 55 genes were up-regulated in both T. spiralis and T. pseudospiralis infections, 24 genes were down-regulated in both Trichinella infections, 30 genes were up-regulated only in T. spiralis infection, 23 genes were down-regulated only in T. spiralis infection, 25 genes were up-regulated only in T. pseudospiralis infection, and 21 genes were down-regulated only in T. pseudospiralis infection. Many of these differentially expressed genes were associated with satellite cell activation and proliferation (paired box gene 7, Pax7; Pax3; desmin; M-cadherin), myogenesis and muscle development (eyes absent 2 homolog, Eya2; myocyte enhancer factor 2C, MEF2C; pre B-cell leukemia transcription factor 1, Pbx1; chordin-like 2, Chrdl2), cell differentiation (galectin 1; insulin like growth factors, IGFs; c-ski; msh-like 1, Msx1; Numb), cell proliferation and cycle regulation (retinoblastoma 1, Rb1; granulin; p21, CDK4, cyclin A2), and apoptosis (tumor necrosis factor receptor 1, TNF-R1; programmed cell death protein 11, Pdcd11; Pdcd1; nuclear protein 1, Nuprl; clusterin, CLU). The differential expression of 17 genes was validated by quantitative real time PCR and 15 genes showed identical results with the microarray analysis. The present study listed the candidate genes that were commonly and differentially expressed between T. spiralis and/or T. pseudospiralis infection, thus suggesting that these genes need to be further investigated to reveal the mechanism of the common and/or different pathological changes induced by the two species Trichinella. PMID:18501667

  14. Obstructive heart defects associated with candidate genes, maternal obesity, and folic acid supplementation.

    Science.gov (United States)

    Tang, Xinyu; Cleves, Mario A; Nick, Todd G; Li, Ming; MacLeod, Stewart L; Erickson, Stephen W; Li, Jingyun; Shaw, Gary M; Mosley, Bridget S; Hobbs, Charlotte A

    2015-06-01

    Right-sided and left-sided obstructive heart defects (OHDs) are subtypes of congenital heart defects, in which the heart valves, arteries, or veins are abnormally narrow or blocked. Previous studies have suggested that the development of OHDs involved a complex interplay between genetic variants and maternal factors. Using the data from 569 OHD case families and 1,644 control families enrolled in the National Birth Defects Prevention Study (NBDPS) between 1997 and 2008, we conducted an analysis to investigate the genetic effects of 877 single nucleotide polymorphisms (SNPs) in 60 candidate genes for association with the risk of OHDs, and their interactions with maternal use of folic acid supplements, and pre-pregnancy obesity. Applying log-linear models based on the hybrid design, we identified a SNP in methylenetetrahydrofolate reductase (MTHFR) gene (C677T polymorphism) with a main genetic effect on the occurrence of OHDs. In addition, multiple SNPs in betaine-homocysteine methyltransferase (BHMT and BHMT2) were also identified to be associated with the occurrence of OHDs through significant main infant genetic effects and interaction effects with maternal use of folic acid supplements. We also identified multiple SNPs in glutamate-cysteine ligase, catalytic subunit (GCLC) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) that were associated with elevated risk of OHDs among obese women. Our findings suggested that the risk of OHDs was closely related to a combined effect of variations in genes in the folate, homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supplements and pre-pregnancy obesity.

  15. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvrå, Steen; Rattan, Suresh I S

    2007-01-01

    mechanisms. One such pathway includes the battery of stress response genes, especially the heat shock protein HSP70 genes. Three such genes, HSPA1A, HSPA1B and HSPA1L, are present within the MHC-III region on the short arm of chromosome 6. We and others have found alleles, genotypes and haplotypes which have...... of an appropriate study design and methodology. Since aging is characterized by a progressive accumulation of molecular damage and an attenuation of the cellular defense mechanisms, the focus of studies on human longevity association with genes has now shifted to the pathways of cellular maintenance and repair...... to heat shock. Stress response genes, particularly HSP70, are now the major candidates in the gene-longevity association studies....

  16. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels

    Directory of Open Access Journals (Sweden)

    Charcosset Alain

    2010-01-01

    Full Text Available Abstract Background Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. Results The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP and five novel 9-cis-epoxycarotenoid dioxygenase (NCED related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in

  17. Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L. Dunal.

    Directory of Open Access Journals (Sweden)

    Varinder Singh

    Full Text Available Quantitative real-time PCR (qRT-PCR is now globally used for accurate analysis of transcripts levels in plants. For reliable quantification of transcripts, identification of the best reference genes is a prerequisite in qRT-PCR analysis. Recently, Withania somnifera has attracted lot of attention due to its immense therapeutic potential. At present, biotechnological intervention for the improvement of this plant is being seriously pursued. In this background, it is important to have comprehensive studies on finding suitable reference genes for this high valued medicinal plant. In the present study, 11 candidate genes were evaluated for their expression stability under biotic (fungal disease, abiotic (wounding, salt, drought, heat and cold stresses, in different plant tissues and in response to various plant growth regulators (methyl jasmonate, salicylic acid, abscisic acid. The data as analyzed by various software packages (geNorm, NormFinder, Bestkeeper and ΔCt method suggested that cyclophilin (CYP is a most stable gene under wounding, heat, methyl jasmonate, different tissues and all stress conditions. T-SAND was found to be a best reference gene for salt and salicylic acid (SA treated samples, while 26S ribosomal RNA (26S, ubiquitin (UBQ and beta-tubulin (TUB were the most stably expressed genes under drought, biotic and cold treatment respectively. For abscisic acid (ABA treated samples 18S-rRNA was found to stably expressed gene. Finally, the relative expression level of the three genes involved in the withanolide biosynthetic pathway was detected to validate the selection of reliable reference genes. The present work will significantly contribute to gene analysis studies in W. somnifera and facilitate in improving the quality of gene expression data in this plant as well as and other related plant species.

  18. Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Singh, Varinder; Kaul, Sunil C; Wadhwa, Renu; Pati, Pratap Kumar

    2015-01-01

    Quantitative real-time PCR (qRT-PCR) is now globally used for accurate analysis of transcripts levels in plants. For reliable quantification of transcripts, identification of the best reference genes is a prerequisite in qRT-PCR analysis. Recently, Withania somnifera has attracted lot of attention due to its immense therapeutic potential. At present, biotechnological intervention for the improvement of this plant is being seriously pursued. In this background, it is important to have comprehensive studies on finding suitable reference genes for this high valued medicinal plant. In the present study, 11 candidate genes were evaluated for their expression stability under biotic (fungal disease), abiotic (wounding, salt, drought, heat and cold) stresses, in different plant tissues and in response to various plant growth regulators (methyl jasmonate, salicylic acid, abscisic acid). The data as analyzed by various software packages (geNorm, NormFinder, Bestkeeper and ΔCt method) suggested that cyclophilin (CYP) is a most stable gene under wounding, heat, methyl jasmonate, different tissues and all stress conditions. T-SAND was found to be a best reference gene for salt and salicylic acid (SA) treated samples, while 26S ribosomal RNA (26S), ubiquitin (UBQ) and beta-tubulin (TUB) were the most stably expressed genes under drought, biotic and cold treatment respectively. For abscisic acid (ABA) treated samples 18S-rRNA was found to stably expressed gene. Finally, the relative expression level of the three genes involved in the withanolide biosynthetic pathway was detected to validate the selection of reliable reference genes. The present work will significantly contribute to gene analysis studies in W. somnifera and facilitate in improving the quality of gene expression data in this plant as well as and other related plant species.

  19. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  20. Using Whole Exome Sequencing to Identify Candidate Genes With Rare Variants In Nonsyndromic Cleft Lip and Palate.

    Science.gov (United States)

    Aylward, Alana; Cai, Yi; Lee, Andrew; Blue, Elizabeth; Rabinowitz, Daniel; Haddad, Joseph

    2016-07-01

    Studies suggest that nonsyndromic cleft lip and palate (NSCLP) is polygenic with variable penetrance, presenting a challenge in identifying all causal genetic variants. Despite relatively high prevalence of NSCLP among Amerindian populations, no large whole exome sequencing (WES) studies have been completed in this population. Our goal was to identify candidate genes with rare genetic variants for NSCLP in a Honduran population using WES. WES was performed on two to four members of 27 multiplex Honduran families. Genetic variants with a minor allele frequency > 1% in reference databases were removed. Heterozygous variants consistent with dominant disease with incomplete penetrance were ascertained, and variants with predicted functional consequence were prioritized for analysis. Pedigree-specific P-values were calculated as the probability of all affected members in the pedigree being carriers, given that at least one is a carrier. Preliminary results identified 3,727 heterozygous rare variants; 1,282 were predicted to be functionally consequential. Twenty-three genes had variants of interest in ≥3 families, where some genes had different variants in each family, giving a total of 50 variants. Variant validation via Sanger sequencing of the families and unrelated unaffected controls excluded variants that were sequencing errors or common variants not in databases, leaving four genes with candidate variants in ≥3 families. Of these, candidate variants in two genes consistently segregate with NSCLP as a dominant variant with incomplete penetrance: ACSS2 and PHYH. Rare variants found at the same gene in all affected individuals in several families are likely to be directly related to NSCLP. PMID:27229527

  1. Defining the Sequence Elements and Candidate Genes for the Coloboma Mutation.

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Robb

    Full Text Available The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter, CENPH (a centromere protein, and CDK7 (a cyclin-dependent kinase, are differentially expressed (compared to normal embryos at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH are considered high-priority candidate based upon studies in other vertebrate model systems.

  2. Genomic dissection and prioritizing of candidate genes of QTL for regulating spontaneous arthritis on chromosome 1 in mice deficient for interleukin-1 receptor antagonist

    Indian Academy of Sciences (India)

    Yanhong Cao; Jifei Zhang; Yan Jiao; Jian Yan; Feng Jiao; Xiaoyun Liu; Robert W. Williams; Karen A. Hasty; John M. Stuart; Weikuan Gu

    2012-08-01

    Rheumatoid arthritis is a heterogeneous disease with clinical and biological polymorphisms. IL-1RN is a protein that binds to interleukin-1 (IL-1) receptors and inhibits the binding of IL-1-alpha and IL-1-beta. IL-1RN levels are elevated in the blood of patients with a variety of infectious, immune, and traumatic conditions. Balb/c mice deficient in IL-1ra (mouse gene of IL-1RN) develop spontaneous autoimmune arthritis while DBA/1 mice deficient in IL-1ra do not. Previously, we identified a major QTL that regulates the susceptibility to arthritis in Balb/c mice with IL-1ra deficiency. In this study, we found that the QTL may contain two peaks that are regulated by two sets of candidate genes. By haplotype analysis, the total genomic regions of candidate genes were reduced from about 19 Mbp to approximately 9 Mbp. The total number of candidate genes was reduced from 208 to 21.

  3. Genome sequencing of a virulent avian Pasteurella multocida strain GX-Pm reveals the candidate genes involved in the pathogenesis.

    Science.gov (United States)

    Yu, Chengjie; Sizhu, Suolang; Luo, Qingping; Xu, Xuewen; Fu, Lei; Zhang, Anding

    2016-04-01

    Pasteurella multocida (P. multocida) was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. First genomic study was performed on an avirulent avian strain Pm70, and until 2013, two genomes of virulent avian strains X73 and P1059 were sequenced. Comparative genome study supplied important information for further study on the pathogenesis of fowl cholera. In the previous study, a capsular serotype A strain GX-Pm was isolated from the liver of a chicken, which died during an outbreak of fowl cholera in 2011. The strain showed multiple drug resistance and was highly virulent to chickens. Therefore, the present study performed the genome sequencing and a comparative genomic analysis to reveal the candidate genes involved in virulence of P. multocida. Sequenced draft genome sequence of GX-Pm was 2,292,886 bp, contained 2941 protein-coding genes, 5 genomic islands, 4 IS elements and 2 prophage regions. Notability, all the predicted drug-resistance genes were included in predicted genomic islands. A comparative genome study on virulent avian strains P1059, X73 and GX-Pm with the avirulent avian strain Pm 70 indicated that 475 unique genes were only identified in either of virulent strains but absent in the avirulent strain. Among these genes, 20 genes were contained within genomes of all three virulent strains, including a few of putative virulence genes. Further characterization of the pathogenic functions of these genes would benefit the understanding of pathogenesis of fowl cholera. PMID:27033902

  4. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.

  5. Retinoblastoma-associated protein 140 as a candidate for a novel etiological gene to hypertension.

    Science.gov (United States)

    Crespo, Kimberley; Ménard, Annie; Deng, Alan Y

    2016-01-01

    Gene discovery in animal models may lead to the revelation of therapeutic targets for essential hypertension as well as mechanistic insights into blood pressure (BP) regulation. Our aim was to identify a disease-causing gene for a component of polygenic hypertension contrasting inbred hypertensive Dahl salt-sensitive (DSS) and normotensive Lewis rats. The chromosome segment harboring a quantitative trait locus (QTL), C16QTL, was first isolated from the rat genome via congenic strains. A candidate gene responsible for C16QTL causing a BP difference between DSS and Lewis rats was then identified using molecular analyses combining our independently-conducted total genome and gene-specific sequencings. The retinoblastoma-associated protein 140 (Rap140)/family with sequence similarity 208 member A (Fam208a) is the only candidate gene supported to be C16QTL among three genes in genome block 1 present in the C16QTL-residing interval. A mode of its actions could be to influence the expressions of genes that are downstream in a pathway potentially leading to BP regulation such as that encoding the solute carrier family 7 (cationic amino acid transporter, y+ system) member 12 (Slc7a12), which is specifically expressed in kidneys. Thus, Rap140/Fam208a probably encoding a transcription factor is the strongest candidate for a novel BP QTL that acts via a putative Rap140/Fam208a-Slc7a12-BP pathway. These data implicate a premier physiological role for Rap140/Fam208 beyond development and a first biological function for the Slc7a12 protein in any organism. PMID:27391979

  6. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    Science.gov (United States)

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  7. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels.

    Science.gov (United States)

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65-75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  8. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study.

    LENUS (Irish Health Repository)

    Brophy, Karen

    2010-01-01

    BACKGROUND: Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance). The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. METHODS: We have evaluated six candidate genes in one of these regions (11q23), namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. RESULTS: Promotor SNPs (-607, -137) in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P < 0.05). Follow-up analyses of an extended sample supported the same, moderate effect (P < 0.05) for one of these. Haplotype analysis of IL18-137\\/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C\\/-137C (P < 0.0001), which was independently associated in two case-control comparisons. This same haplotype has been noted in rheumatoid arthritis. CONCLUSION: Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine\\'s role in maintaining inflammation in active CD.

  9. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study

    LENUS (Irish Health Repository)

    Brophy, Karen

    2010-05-17

    Abstract Background Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance). The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. Methods We have evaluated six candidate genes in one of these regions (11q23), namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. Results Promotor SNPs (-607, -137) in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P < 0.05). Follow-up analyses of an extended sample supported the same, moderate effect (P < 0.05) for one of these. Haplotype analysis of IL18-137\\/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C\\/-137C (P < 0.0001), which was independently associated in two case-control comparisons. This same haplotype has been noted in rheumatoid arthritis. Conclusion Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine\\'s role in maintaining inflammation in active CD.

  10. Genetic relationships of some Citrus genotypes based on the candidate iron chlorosis genes

    OpenAIRE

    KAÇAR, Yıldız AKA; Özhan ŞİMŞEK; DÖNMEZ, Dicle; BONCUK, Melda; YEŞİLOĞLU, Turgut; Ollitrault, Patrick

    2014-01-01

    Iron is one of the most important elements in plant mineral nutrition. Fe deficiency is a critical abiotic stress factor for Mediterranean citriculture; the development of marker-assisted selection for this trait would greatly enhance rootstock breeding. In this study, DNA sequencing and single-stranded conformation polymorphism (SSCP) analyses were performed to determine the allelic diversity of genes associated with tolerance to iron chlorosis in citrus. Two candidate iron chlorosis toleran...

  11. Tales of one gene discovery of a novel candidate receptor in mammalian taste

    OpenAIRE

    Huang, Angela Lilly

    2007-01-01

    There are five basic taste modalities in mammals: bitter, sweet, sour, salty, and Umami (taste of MSG and L-amino acids). Receptors for bitter, sweet, and Umami were previously discovered. Identities of receptors for salty and sour taste modalities remained elusive. In this dissertation, I will present: 1) development of a novel bioinformatics screen to discover candidate receptors; 2) discovery of a novel gene, PKD2L1, in taste receptor cells; 3) evidence demonstrating PKD2L1-expressing tast...

  12. Spectroscopic analysis of four post-AGB candidates

    CERN Document Server

    Molina, R E; Pereira, C B; Ferro, A Arellano; Muneer, S

    2014-01-01

    We have done a detailed abundance analysis of four unexplored candidate post- Asymptotic Giant Branch(AGB) stars IRAS 13110 - 6629, IRAS 17579 - 3121, IRAS 18321 - 1401 and IRAS 18489 - 0629 using high resolution spectra. We have constructed Spectral Energy Distributions (SED) for these objects using the existing photometric data combined with infrared (IR) fluxes. For all sample stars, the SEDs exhibit double peaked energy distribution with well separated IR peaks showing the presence of dusty circumstellar material. The CNO abundances indicate the production of N via CN cycling, but observed [C/Fe] indicates the mixing of carbon produced by He burning by third dredge up although C/O ratio remains less that 1. A moderate DG effect is clearly seen for IRAS 18489 - 0629 and IRAS 17579 - 3121 while a large scatter observed in depletion plots for IRAS 18321 - 1401 and IRAS 13110 - 6629 indicate the presence of other processes affecting the observed abundance pattern.

  13. DNA sequence and haplotype variation in two candidate genes for dilated cardiomyopathy in the turkey Meleagris gallopavo.

    Science.gov (United States)

    Lin, Kuan-chin; Xu, Jun; Kamara, Davida; Geng, Tuoyu; Gyenai, Kwaku; Reed, Kent M; Smith, Edward J

    2007-05-01

    Determining variation in genes is fundamental to understanding their function in the disease state. Cardiac troponin T (cTnT) and phospholamban (PLN) genes have been implicated in dilated cardiomyopathy (DCM) in human and model species. To investigate the role of these 2 candidate genes in DCM in the turkey Meleagris gallopavo, understanding sequence variants and map position distribution is necessary. To this end, a total of 1854 and 1771 bp of cTnT and PLN gene sequences, respectively, were scanned for single nucleotide polymorphisms (SNPs) in a randomly bred population. A total of 15 SNPs was identified in the cTnT and PLN genomic sequences. Nine haplotypes, 5 in cTnT and 4 in PLN, were identified. Observed heterozygosities (0.02-0.39) in the turkey population were low for both genes. Within each gene, 1 SNP corresponding to a restriction enzyme site was identified and used to develop a PCR-restriction fragment length polymorphism (RFLP) genotyping assay. The PLN gene was genetically mapped to turkey chromosome 2, equivalent to Gallus gallus chromosome 3, and cTnT mapped to a turkey microchromosome. Although limited because of the relatively small sample size of 55 birds, the data from this SNP analysis of PLN and cTnT provide a foundation from which to evaluate the function of cTnT and PLN in the turkey. Information about the distribution of the SNPs and haplotypes will facilitate future association and linkage studies.

  14. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes

    DEFF Research Database (Denmark)

    Storling, Joachim; Brorsson, Caroline Anna

    2013-01-01

    In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease......, but more than 40 additional loci are known to significantly affect T1D risk. Since most of the currently known genetic candidates have annotated immune cell functions, it is generally considered that most of the genetic susceptibility in T1D is caused by variation in genes affecting immune cell function...

  15. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes.

    Science.gov (United States)

    Al-Hebshi, Nezar Noor; Li, Shiyong; Nasher, Akram Thabet; El-Setouhy, Maged; Alsanosi, Rashad; Blancato, Jan; Loffredo, Christopher

    2016-07-15

    The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes. PMID:26934577

  16. Sequencing of Candidate Genes Selected by Beta Cell Experts in Monogenic Diabetes of Unknown Aetiology

    Directory of Open Access Journals (Sweden)

    Emma L Edghill

    2010-01-01

    Full Text Available Context Approximately 39% of cases with permanent neonatal diabetes (PNDM and about 11% with maturity onset diabetes of the young (MODY have an unknown genetic aetiology. Many of the known genes causing MODY and PNDM were identified as being critical for beta cell function before their identification as a cause of monogenic diabetes. Objective We used nominations from the EU beta cell consortium EURODIA project partners to guide gene candidacy. Subjects Seventeen cases with permanent neonatal diabetes and 8 cases with maturity onset diabetes of the young. Main outcome measures The beta cell experts within the EURODIA consortium were asked to nominate 3 “gold”, 3 “silver” and 4 “bronze” genes based on biological or genetic grounds. We sequenced twelve candidate genes from the list based on evidence for candidacy. Results Sequencing ISL1, LMX1A, MAFA, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, SOX2, SREBF1, SYT9 and UCP2 did not identify any pathogenic mutations. Conclusion Further work is needed to identify novel causes of permanent neonatal diabetes and maturity onset diabetes of the young utilising genetic approaches as well as further candidate genes.

  17. Integrating subpathway analysis to identify candidate agents for hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jiye; Li, Mi; Wang, Yun; Liu, Xiaoping

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second most common cause of cancer-associated death worldwide, characterized by a high invasiveness and resistance to normal anticancer treatments. The need to develop new therapeutic agents for HCC is urgent. Here, we developed a bioinformatics method to identify potential novel drugs for HCC by integrating HCC-related and drug-affected subpathways. By using the RNA-seq data from the TCGA (The Cancer Genome Atlas) database, we first identified 1,763 differentially expressed genes between HCC and normal samples. Next, we identified 104 significant HCC-related subpathways. We also identified the subpathways associated with small molecular drugs in the CMap database. Finally, by integrating HCC-related and drug-affected subpathways, we identified 40 novel small molecular drugs capable of targeting these HCC-involved subpathways. In addition to previously reported agents (ie, calmidazolium), our method also identified potentially novel agents for targeting HCC. We experimentally verified that one of these novel agents, prenylamine, induced HCC cell apoptosis using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, an acridine orange/ethidium bromide stain, and electron microscopy. In addition, we found that prenylamine not only affected several classic apoptosis-related proteins, including Bax, Bcl-2, and cytochrome c, but also increased caspase-3 activity. These candidate small molecular drugs identified by us may provide insights into novel therapeutic approaches for HCC. PMID:27022281

  18. The genetic basis of quality of life in healthy Swedish women: a candidate gene approach.

    Directory of Open Access Journals (Sweden)

    Dounya Schoormans

    Full Text Available Quality of life (QoL is an increasingly important parameter in clinical practice as it predicts mortality and poor health outcomes. It is hypothesized that one may have a genetic predisposition for QoL. We therefore related 139 candidate genes, selected through a literature search, to QoL in healthy females.In 5,142 healthy females, background characteristics (i.e. demographic, clinical, lifestyle, and psychological factors were assessed. QoL was measured by the EORTC QLQ-C30, which consists of 15 domains. For all women genotype information was available. For each candidate gene, single nucleotide polymorphisms (SNPs were identified based on their functional (n = 2,663 and physical annotation (n = 10,649. SNPs were related to each QoL-domain, while controlling for background characteristics and population stratification. Finally, gene-based analyses were performed relating the combined effect of 10,649 SNPs (selected based on physical annotation for each gene, to QoL using the statistical software package VEGAS.Overall, we found no relation between genetic variations (SNPs and genes and 14 out of 15 QoL-domains. The strongest association was found between cognitive functioning and the top SNP rs1468951 (p = 1.21E-05 in the GSTZ1 gene. Furthermore, results of the gene-based test showed that the combined effect of 11 SNPs within the GSTZ1 gene is significantly associated with cognitive functioning (p = 2.60E-05.If validated, the involvement of GSTZ1 in cognitive functioning underscores its heritability which is likely the result of differences in the dopamine pathway, as GSTZ1 contributes to the equilibrium between dopamine and its neurotoxic metabolites via the glutathione redox cycle.

  19. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster.

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  20. Gene-level integrated metric of negative selection (GIMS) prioritizes candidate genes for nephrotic syndrome.

    Science.gov (United States)

    Sampson, Matthew G; Gillies, Christopher E; Ju, Wenjun; Kretzler, Matthias; Kang, Hyun Min

    2013-01-01

    Nephrotic syndrome (NS) gene discovery efforts are now occurring in small kindreds and cohorts of sporadic cases. Power to identify causal variants in these groups beyond a statistical significance threshold is challenging due to small sample size and/or lack of family information. There is a need to develop novel methods to identify NS-associated variants. One way to determine putative functional relevance of a gene is to measure its strength of negative selection, as variants in genes under strong negative selection are more likely to be deleterious. We created a gene-level, integrated metric of negative selection (GIMS) score for 20,079 genes by combining multiple comparative genomics and population genetics measures. To understand the utility of GIMS for NS gene discovery, we examined this score in a diverse set of NS-relevant gene sets. These included genes known to cause monogenic forms of NS in humans as well as genes expressed in the cells of the glomerulus and, particularly, the podocyte. We found strong negative selection in the following NS-relevant gene sets: (1) autosomal-dominant Mendelian focal segmental glomerulosclerosis (FSGS) genes (p = 0.03 compared to reference), (2) glomerular expressed genes (p = 4×10(-23)), and (3) predicted podocyte genes (p = 3×10(-9)). Eight genes causing autosomal dominant forms of FSGS had a stronger combined score of negative selection and podocyte enrichment as compared to all other genes (p = 1 x 10(-3)). As a whole, recessive FSGS genes were not enriched for negative selection. Thus, we also created a transcript-level, integrated metric of negative selection (TIMS) to quantify negative selection on an isoform level. These revealed transcripts of known autosomal recessive disease-causing genes that were nonetheless under strong selection. We suggest that a filtering strategy that includes measuring negative selection on a gene or isoform level could aid in identifying NS-related genes. Our GIMS and TIMS scores are

  1. Candidate Gene Expression in Bos indicus Ovarian Tissues: Prepubertal and Postpubertal Heifers in Diestrus

    Science.gov (United States)

    Weller, Mayara Morena Del Cambre Amaral; Fortes, Marina Rufino S.; Porto-Neto, Laercio R.; Kelly, Matthew; Venus, Bronwyn; Kidd, Lisa; do Rego, João Paulo Arcelino; Edwards, Sophia; Boe-Hansen, Gry B.; Piper, Emily; Lehnert, Sigrid A.; Guimarães, Simone Eliza Facioni; Moore, Stephen Stewart

    2016-01-01

    Growth factors such as bone morphogenetic proteins 6, 7, 15, and two isoforms of transforming growth factor-beta (BMP6, BMP7, BMP15, TGFB1, and TGFB2), and insulin-like growth factor system act as local regulators of ovarian follicular development. To elucidate if these factors as well as others candidate genes, such as estrogen receptor 1 (ESR1), growth differentiation factor 9 (GDF9), follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), bone morphogenetic protein receptor, type 2 (BMPR2), type 1 insulin-like growth factor receptor (IGFR1), and key steroidogenic enzymes cytochrome P450 aromatase and 3-β-hydroxysteroid dehydrogenase (CYP19A1 and HSD3B1) could modulate or influence diestrus on the onset of puberty in Brahman heifers, their ovarian mRNA expression was measured before and after puberty (luteal phase). Six postpubertal (POST) heifers were euthanized on the luteal phase of their second cycle, confirmed by corpus luteum observation, and six prepubertal (PRE) heifers were euthanized in the same day. Quantitative real-time PCR analysis showed that the expression of FSHR, BMP7, CYP19A1, IGF1, and IGFR1 mRNA was greater in PRE heifers, when contrasted to POST heifers. The expression of LHR and HSD3B1 was lower in PRE heifers. Differential expression of ovarian genes could be associated with changes in follicular dynamics and different cell populations that have emerged as consequence of puberty and the luteal phase. The emerging hypothesis is that BMP7 and IGF1 are co-expressed and may modulate the expression of FSHR, LHR and IGFR1, and CYP19A1. BMP7 could influence the downregulation of LHR and upregulation of FSHR and CYP19A1, which mediates the follicular dynamics in heifer ovaries. Upregulation of IGF1 expression prepuberty, compared to postpuberty diestrus, correlates with increased levels FSHR and CYP19A1. Thus, BMP7 and IGF1 may play synergic roles and were predicted to interact, from the expression data (P = 0.07, r

  2. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    Science.gov (United States)

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  3. ALLELIC VARIANTS AND EXPRESSION CANDIDATE GENES FOR ABDOMINAL FATMASS IN CHICKENS

    Directory of Open Access Journals (Sweden)

    Larkina T. A.

    2015-06-01

    Full Text Available The expression of nine candidate genes for QTL abdominal fat weight and relative abdominal fat content was investigated by real-time polymerase chain reaction (PCR in the liver, adipose tissue, colon, muscle, pituitary gland and brain of broilers. The high mobility group AT hook1 (HMG1A gene was up-regulated in liver with aratio of means of 2,90 (P≤0,01 in the «fatty» group (relative abdominal fat content 3,5±0.18%, abdominal fat weight 35,4±6,09 g relative to the «lean» group (relative abdominal fat content 1,9±0,56%, abdominal fat weight 19,2±5,06 g. Expression of this gene was highly correlated with the relative abdominal fat content (0,70, P≤0,01 and abdominal fat weight (0,70, P≤0,01. The peroxisomeproliferator-activated receptor gamma (PPARG gene was also up-regulated in the liver with a ratio of means of 3,34(P≤0,01 in the «fatty» group relative to the «lean» group. Correlation of its expression was significant with both the relative abdominal fat content (0,55, P≤0,05 and the abdominal fat weight (0,57, P≤0,01. These data obtained and the data of references will allow the statement that the HMG1A, PPARG and FABP2 genes were candidate genes for abdominal fat deposition in chickens. Searching of rSNPs in regulatory regions of thesegenes could provide a tool for gene-assisted selection

  4. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle.

    Science.gov (United States)

    Thaller, G; Kühn, C; Winter, A; Ewald, G; Bellmann, O; Wegner, J; Zühlke, H; Fries, R

    2003-10-01

    Intramuscular fat content, also assessed as marbling of meat, represents an important beef quality trait. Recent work has mapped a quantitative trait locus (QTL) with an effect on marbling to the centromeric region of bovine chromosome 14, with the gene encoding thyroglobulin (TG) being proposed as a positional and functional candidate gene for this QTL. Recently, the gene encoding diacylglycerol O-acyltransferase (DGAT1), which also has been mapped within the region of the marbling QTL, has been demonstrated to affect the fat content of milk. In the present study, the effects of a 5'-polymorphism of TG and of a lysine/alanine polymorphism of DGAT1 on the fat content of musculus (m.) semitendinosus and m. longissimus dorsi in 55 bovine animals (28 German Holstein and 27 Charolais) has been investigated. Significant effects were found for both candidate genes in both the breeds. These effects seem to be independent of one another because the alleles of the two polymorphisms showed no statistically significant disequilibrium. The DGAT1 effect is mainly on the m. semitendinosus. The TG polymorphism only affects m. longissimus dorsi. However, both intramuscular fat enhancing effects seem to be recessive. The possibility of two linked loci, acting recessively on intramuscular fat content, will require special strategies when selecting for higher marbling scores. PMID:14510671

  5. Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis.

    Directory of Open Access Journals (Sweden)

    Yuanhao Zhang

    Full Text Available Adherent-invasive Escherichia coli (AIEC strains are detected more frequently within mucosal lesions of patients with Crohn's disease (CD. The AIEC phenotype consists of adherence and invasion of intestinal epithelial cells and survival within macrophages of these bacteria in vitro. Our aim was to identify candidate transcripts that distinguish AIEC from non-invasive E. coli (NIEC strains and might be useful for rapid and accurate identification of AIEC by culture-independent technology. We performed comparative RNA-Sequence (RNASeq analysis using AIEC strain LF82 and NIEC strain HS during exponential and stationary growth. Differential expression analysis of coding sequences (CDS homologous to both strains demonstrated 224 and 241 genes with increased and decreased expression, respectively, in LF82 relative to HS. Transition metal transport and siderophore metabolism related pathway genes were up-regulated, while glycogen metabolic and oxidation-reduction related pathway genes were down-regulated, in LF82. Chemotaxis related transcripts were up-regulated in LF82 during the exponential phase, but flagellum-dependent motility pathway genes were down-regulated in LF82 during the stationary phase. CDS that mapped only to the LF82 genome accounted for 747 genes. We applied an in silico subtractive genomics approach to identify CDS specific to AIEC by incorporating the genomes of 10 other previously phenotyped NIEC. From this analysis, 166 CDS mapped to the LF82 genome and lacked homology to any of the 11 human NIEC strains. We compared these CDS across 13 AIEC, but none were homologous in each. Four LF82 gene loci belonging to clustered regularly interspaced short palindromic repeats region (CRISPR--CRISPR-associated (Cas genes were identified in 4 to 6 AIEC and absent from all non-pathogenic bacteria. As previously reported, AIEC strains were enriched for pdu operon genes. One CDS, encoding an excisionase, was shared by 9 AIEC strains. Reverse

  6. Multiplex reverse transcription-polymerase chain reaction combined with on-chip electrophoresis as a rapid screening tool for candidate gene sets

    DEFF Research Database (Denmark)

    Wittig, Rainer; Salowsky, Rüdiger; Blaich, Stephanie;

    2005-01-01

    Combining multiplex reverse transcription-polymerase chain reaction (mRT-PCR) with microfluidic amplicon analysis, we developed an assay for the rapid and reliable semiquantitative expression screening of 11 candidate genes for drug resistance in human malignant melanoma. The functionality of thi...

  7. Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families

    Directory of Open Access Journals (Sweden)

    Anas M. Alazami

    2015-01-01

    Full Text Available Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS. We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.

  8. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families.

    Science.gov (United States)

    Alazami, Anas M; Patel, Nisha; Shamseldin, Hanan E; Anazi, Shamsa; Al-Dosari, Mohammed S; Alzahrani, Fatema; Hijazi, Hadia; Alshammari, Muneera; Aldahmesh, Mohammed A; Salih, Mustafa A; Faqeih, Eissa; Alhashem, Amal; Bashiri, Fahad A; Al-Owain, Mohammed; Kentab, Amal Y; Sogaty, Sameera; Al Tala, Saeed; Temsah, Mohamad-Hani; Tulbah, Maha; Aljelaify, Rasha F; Alshahwan, Saad A; Seidahmed, Mohammed Zain; Alhadid, Adnan A; Aldhalaan, Hesham; AlQallaf, Fatema; Kurdi, Wesam; Alfadhel, Majid; Babay, Zainab; Alsogheer, Mohammad; Kaya, Namik; Al-Hassnan, Zuhair N; Abdel-Salam, Ghada M H; Al-Sannaa, Nouriya; Al Mutairi, Fuad; El Khashab, Heba Y; Bohlega, Saeed; Jia, Xiaofei; Nguyen, Henry C; Hammami, Rakad; Adly, Nouran; Mohamed, Jawahir Y; Abdulwahab, Firdous; Ibrahim, Niema; Naim, Ewa A; Al-Younes, Banan; Meyer, Brian F; Hashem, Mais; Shaheen, Ranad; Xiong, Yong; Abouelhoda, Mohamed; Aldeeri, Abdulrahman A; Monies, Dorota M; Alkuraya, Fowzan S

    2015-01-13

    Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.

  9. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL; Zhang, Xinye [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Steven P [West Virginia University

    2012-01-01

    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on the two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.

  10. Association between Variants in Atopy-Related Immunologic Candidate Genes and Pancreatic Cancer Risk.

    Directory of Open Access Journals (Sweden)

    Michelle Cotterchio

    Full Text Available Many epidemiology studies report that atopic conditions such as allergies are associated with reduced pancreas cancer risk. The reason for this relationship is not yet understood. This is the first study to comprehensively evaluate the association between variants in atopy-related candidate genes and pancreatic cancer risk.A population-based case-control study of pancreas cancer cases diagnosed during 2011-2012 (via Ontario Cancer Registry, and controls recruited using random digit dialing utilized DNA from 179 cases and 566 controls. Following an exhaustive literature review, SNPs in 180 candidate genes were pre-screened using dbGaP pancreas cancer GWAS data; 147 SNPs in 56 allergy-related immunologic genes were retained and genotyped. Logistic regression was used to estimate age-adjusted odd ratio (AOR for each variant and false discovery rate was used to adjust Wald p-values for multiple testing. Subsequently, a risk allele score was derived based on statistically significant variants.18 SNPs in 14 candidate genes (CSF2, DENND1B, DPP10, FLG, IL13, IL13RA2, LRP1B, NOD1, NPSR1, ORMDL3, RORA, STAT4, TLR6, TRA were significantly associated with pancreas cancer risk. After adjustment for multiple comparisons, two LRP1B SNPs remained statistically significant; for example, LRP1B rs1449477 (AA vs. CC: AOR=0.37, 95% CI: 0.22-0.62; p (adjusted=0.04. Furthermore, the risk allele score was associated with a significant reduction in pancreas cancer risk (p=0.0007.Preliminary findings suggest certain atopy-related variants may be associated with pancreas cancer risk. Further studies are needed to replicate this, and to elucidate the biology behind the growing body of epidemiologic evidence suggesting allergies may reduce pancreatic cancer risk.

  11. Candidate gene expression affects intramuscular fat content and fatty acid composition in pigs.

    Science.gov (United States)

    Wang, Wei; Xue, Wenda; Jin, Bangquan; Zhang, Xixia; Ma, Fei; Xu, Xiaofeng

    2013-02-01

    The objective of this study was to correlate the expression pattern of candidate genes with the intramuscular fat (IMF) content and fatty acid composition of the Longissimus dorsi muscle of Duroc × Shanzhu commercial crossbred pigs. Animals of both sexes were slaughtered at a body weight of about 90 kg. The IMF content and fatty acid composition of the Longissimus dorsi muscle were measured and correlated with candidate genes mRNA expression (AdPLA, ADRB3, LEPR, MC4R, PPARγ, PPARα, LPL, PEPCK, and SCD). Females presented higher IMF content (p < 0.05) than males. The total saturated fatty acid (SFA) in males was greater (p < 0.01), whereas the total monounsaturated fatty acid (MUFA) (p < 0.01) and polyunsaturated fatty acid (PUFA) (p < 0.05) were lower than in females. The expressions of AdPLA, MC4R, PEPCK, and SCD correlated with the IMF content (p < 0.05). AdPLA showed a positive association with MUFA and a negative association with SFA (p < 0.05). LEPR and MC4R were both positively and significantly associated with C18:3 and C20:0 (p < 0.05). PPARα and PPARγ were negatively correlated with SFA, and PPARγ was positively associated with MUFA (p < 0.05). LPL was positively associated with MUFA and negatively associated with SFA (p < 0.05). PEPCK was negatively correlated with PUFA (p < 0.05). SCD was positively associated with MUFA (p < 0.05). The revealed correlations may confirm that these candidate genes are important for fat deposition and fatty acid composition in pigs, and the evaluation and use of these genes may be useful for improving porcine meat quality. PMID:23275256

  12. Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes.

    Science.gov (United States)

    Saunders, Colleen J; Jalali Sefid Dashti, Mahjoubeh; Gamieldien, Junaid

    2016-01-01

    Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening, and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes (COL11A2, ELN, ITGB3, LOX) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge, and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies. PMID:26804977

  13. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes.

    NARCIS (Netherlands)

    Franke, L.; Bakel, H. van; Fokkens, L.; Jong, E.D. de; Egmont-Peterson, M.; Wijmenga, C.

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain

  14. Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in Arabidopsis thaliana

    Science.gov (United States)

    Lovell, John T.; Mullen, Jack L.; Lowry, David B.; Awole, Kedija; Richards, James H.; Sen, Saunak; Verslues, Paul E.; Juenger, Thomas E.; McKay, John K.

    2015-01-01

    Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. PMID:25873386

  15. Identification of novel type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin signaling systems.

    Directory of Open Access Journals (Sweden)

    Josep M Mercader

    Full Text Available Type 2 Diabetes (T2D is a highly prevalent chronic metabolic disease with strong co-morbidity with obesity and cardiovascular diseases. There is growing evidence supporting the notion that a crosstalk between mitochondria and the insulin signaling cascade could be involved in the etiology of T2D and insulin resistance. In this study we investigated the molecular basis of this crosstalk by using systems biology approaches. We combined, filtered, and interrogated different types of functional interaction data, such as direct protein-protein interactions, co-expression analyses, and metabolic and signaling dependencies. As a result, we constructed the mitochondria-insulin (MITIN network, which highlights 286 genes as candidate functional linkers between these two systems. The results of internal gene expression analysis of three independent experimental models of mitochondria and insulin signaling perturbations further support the connecting roles of these genes. In addition, we further assessed whether these genes are involved in the etiology of T2D using the genome-wide association study meta-analysis from the DIAGRAM consortium, involving 8,130 T2D cases and 38,987 controls. We found modest enrichment of genes associated with T2D amongst our linker genes (p = 0.0549, including three already validated T2D SNPs and 15 additional SNPs, which, when combined, were collectively associated to increased fasting glucose levels according to MAGIC genome wide meta-analysis (p = 8.12×10(-5. This study highlights the potential of combining systems biology, experimental, and genome-wide association data mining for identifying novel genes and related variants that increase vulnerability to complex diseases.

  16. Exploiting genomics resources to identify candidate genes underlying antioxidants content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Roberta eCalafiore

    2016-04-01

    Full Text Available The tomato is a model species for fleshy fruit development and ripening, as well as for genomics studies of others Solanaceae. Many genetic and genomics resources, including databases for sequencing, transcriptomics and metabolomics data, have been developed and are today available. The purpose of the present work was to uncover new genes and/or alleles that determine ascorbic acid and carotenoids accumulation, by exploiting one Solanum pennellii introgression lines (IL7-3 harboring quantitative trait loci (QTL that increase the content of these metabolite in the fruit. The higher ascorbic acid and carotenoids content in IL7-3 was confirmed at three fruit developmental stages. The tomato genome reference sequence and the recently released S. pennellii genome sequence were investigated to identify candidate genes that might control ascorbic acid and carotenoids accumulation. First of all, a refinement of the wild region borders in the IL7-3 was achieved by analyzing CAPS markers designed in our laboratory. Afterwards, six candidate genes associated to ascorbic acid and one with carotenoids metabolism were identified exploring the annotation and the Gene Ontology terms of genes included in the region. Variants between the sequence of the wild and the cultivated alleles of these genes were investigated for their functional relevance and their potential effects on the protein sequences were predicted. Transcriptional levels of candidate genes in the introgression region were extracted from RNA-Seq data available for the entire S. pennellii introgression lines collection and verified by Real-Time qPCR. Finally, seven IL7-3 sub-lines were genotyped using 28 species-specific markers and then were evaluated for metabolites content. These analyses evidenced a significant decrease in transcript abundance for one 9-cis-epoxycarotenoid dioxygenase and one L-ascorbate oxidase homolog, whose role in the accumulation of carotenoids and ascorbic acid is

  17. Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study

    DEFF Research Database (Denmark)

    Druley, Todd E; Wang, Lihua; Lin, Shiow J;

    2016-01-01

    BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS......: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually...... that was significantly associated with three phenotypes (GSK3B with the Healthy Aging Index, NOTCH1 with diastolic blood pressure and TP53 with serum HDL). CONCLUSIONS: Sequencing analysis of family-based associations for age-related phenotypes can identify rare or novel variants....

  18. Microphthalmia with linear skin defects syndrome (MLS): Characterization of the critical region and isolation of candidate genes

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, L.; Wapenaar, M.C.; Grillo, A. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Microphthalmia with linear skin defects syndrome (MLS) is an X-linked male-lethal disorder characterized by abnormalities in the development of the eye, skin, and brain. We defined the MLS critical region through analysis of hybrid cell lines retaining various deletion breakpoints in Xp22, including cell lines from 17 female patients showing features of MLS. Using a combination of YAC cloning and long-range restriction analysis, the MLS candidate region was estimated to be 450-550 kb. A minimally overlapping cosmid contig comprised of 20 cosmid clones was subsequently developed in this region. These cosmids are currently being used to isolate expressed sequences using cross-species conservation studies and exon-trapping. An evolutionarily conserved sequence isolated from a cosmid within the critical region has been used to isolate several overlapping cDNAs from a human embryonic library. Northern analysis using these cDNA clones identified a 5.2 kb transcript in all tissues examined. Sequence analysis revealed a 777 base pair open reading frame encoding a putative 258 amino acid protein. Using the exon-trapping method, fifty-four putative exons have been isolated from fourteen cosmids within the critical region. The expression patterns of the genes containing these exons are being analyzed by polymerase chain reaction (PCR) using reverse-transcribed mRNA from several human tissues and primers corresponding to the exon sequences. Using this approach in combination with exon connection, we determined the four of the trapped exons belong to the same cDNA transcript, which is expressed in adult retina, lymphoblast, skeletal muscle, and fetal brain. To date, we have isolated and sequenced 1 kilobase of this gene, all of which appears to be open reading frame. Both of the genes isolated from the critical region are being analyzed as possible candidates for MLS.

  19. Identification of the candidate genes associated with cellular rejection in pig-to-human xenotransplantation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To identify the genes associated with cellular rejection in pig-to-human xenotransplantation, the suppression subtractive hybridization (SSH) was used in screening the up-regulated genes from a co-culture of human peripheral blood mononuclear cells (PBMCs) and porcine vascular endothelial cell line PIEC. The up-regulated cDNAs were cloned into pGEM-T Easy vector and then sequenced. Nucleic acid homology searches were performed using the BLAST program. A subtracted cDNA library including about 300 clones with the expected up-regulated genes was obtained. Twenty-four of these clones were analyzed by sequencing and homology comparison was made. These clones represent the genes of human perforin (PRF1), proteasome, lymphocyte specific interferon regulatory factor/interferon regulatory factor 4 (LSIRF/IRF 4), muscleblind-like (MBNL) protein and a porcine expressed sequence tag (EST) which has 81% homology with human oxidative-stress responsive 1 (OSR 1). These genes might be the candidate genes which are associated with cellular rejection in pig-to-human xenotransplantation.

  20. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  1. Consortium analysis of 7 candidate SNPs for ovarian cancer

    DEFF Research Database (Denmark)

    Ramus, S.J.; Vierkant, R.A.; Johnatty, S.E.;

    2008-01-01

    The Ovarian Cancer Association Consortium selected 7 candidate single nucleotide polymorphisms (SNPs), for which there is evidence from previous studies of an association with variation in ovarian cancer or breast cancer risks. The SNPs selected for analysis were F31I (rs2273535) in AURKA, N372H...... was suggestive although no longer statistically significant (ordinal OR 0.92, 95% CI 0.79-1.06). This SNP has also been shown to have an association with decreased risk in breast cancer. There was a suggestion of an association for AURKA, when one study that caused significant study heterogeneity was excluded...... [ordinal OR 1.10 (95% CI 1.01-1.20) p = 0.027; dominant OR 1.12 (95% CI 1.01-1.24) p = 0.03]. The other 5 SNPs in BRCA2, CDKN2A, SRD5A2, CASP8 and TGFB1 showed no association with ovarian cancer risk; given the large sample size, these results can also be considered to be informative. These null results...

  2. Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    2009-07-01

    Full Text Available Identifying genetic factors responsible for serious adverse drug reaction (SADR is of critical importance to personalized medicine. However, genome-wide association studies are hampered due to the lack of case-control samples, and the selection of candidate genes is limited by the lack of understanding of the underlying mechanisms of SADRs. We hypothesize that drugs causing the same type of SADR might share a common mechanism by targeting unexpectedly the same SADR-mediating protein. Hence we propose an approach of identifying the common SADR-targets through constructing and mining an in silico chemical-protein interactome (CPI, a matrix of binding strengths among 162 drug molecules known to cause at least one type of SADR and 845 proteins. Drugs sharing the same SADR outcome were also found to possess similarities in their CPI profiles towards this 845 protein set. This methodology identified the candidate gene of sulfonamide-induced toxic epidermal necrolysis (TEN: all nine sulfonamides that cause TEN were found to bind strongly to MHC I (Cw*4, whereas none of the 17 control drugs that do not cause TEN were found to bind to it. Through an insight into the CPI, we found the Y116S substitution of MHC I (B*5703 enhances the unexpected binding of abacavir to its antigen presentation groove, which explains why B*5701, not B*5703, is the risk allele of abacavir-induced hypersensitivity. In conclusion, SADR targets and the patient-specific off-targets could be identified through a systematic investigation of the CPI, generating important hypotheses for prospective experimental validation of the candidate genes.

  3. A transcriptomic scan for potential candidate genes involved in osmoregulation in an obligate freshwater palaemonid prawn (Macrobrachium australiense)

    Science.gov (United States)

    Rahi, Md. Lifat; Nguyen, Viet Tuan; Mather, Peter B.; Hurwood, David A.

    2016-01-01

    Background Understanding the genomic basis of osmoregulation (candidate genes and/or molecular mechanisms controlling the phenotype) addresses one of the fundamental questions in evolutionary ecology. Species distributions and adaptive radiations are thought to be controlled by environmental salinity levels, and efficient osmoregulatory (ionic balance) ability is the main mechanism to overcome the problems related to environmental salinity gradients. Methods To better understand how osmoregulatory performance in freshwater (FW) crustaceans allow individuals to acclimate and adapt to raised salinity conditions, here we (i), reviewed the literature on genes that have been identified to be associated with osmoregulation in FW crustaceans, and (ii), performed a transcriptomic analysis using cDNA libraries developed from mRNA isolated from three important osmoregulatory tissues (gill, antennal gland, hepatopancreas) and total mRNA from post larvae taken from the freshwater prawn, Macrobrachium australiense using Illumina deep sequencing technology. This species was targeted because it can complete its life cycle totally in freshwater but, like many Macrobrachium sp., can also tolerate brackish water conditions and hence should have genes associated with tolerance of both FW and saline conditions. Results We obtained between 55.4 and 65.2 million Illumina read pairs from four cDNA libraries. Overall, paired end sequences assembled into a total of 125,196 non-redundant contigs (≥200 bp) with an N50 length of 2,282 bp and an average contig length of 968 bp. Transcriptomic analysis of M. australiense identified 32 different gene families that were potentially involved with osmoregulatory capacity. A total of 32,597 transcripts were specified with gene ontology (GO) terms identified on the basis of GO categories. Abundance estimation of expressed genes based on TPM (transcript per million) ≥20 showed 1625 transcripts commonly expressed in all four libraries. Among the

  4. Re-sequencing data for refining candidate genes and polymorphisms in QTL regions affecting adiposity in chicken.

    Directory of Open Access Journals (Sweden)

    Pierre-François Roux

    Full Text Available In this study, we propose an approach aiming at fine-mapping adiposity QTL in chicken, integrating whole genome re-sequencing data. First, two QTL regions for adiposity were identified by performing a classical linkage analysis on 1362 offspring in 11 sire families obtained by crossing two meat-type chicken lines divergently selected for abdominal fat weight. Those regions, located on chromosome 7 and 19, contained a total of 77 and 84 genes, respectively. Then, SNPs and indels in these regions were identified by re-sequencing sires. Considering issues related to polymorphism annotations for regulatory regions, we focused on the 120 and 104 polymorphisms having an impact on protein sequence, and located in coding regions of 35 and 42 genes situated in the two QTL regions. Subsequently, a filter was applied on SNPs considering their potential impact on the protein function based on conservation criteria. For the two regions, we identified 42 and 34 functional polymorphisms carried by 18 and 24 genes, and likely to deeply impact protein, including 3 coding indels and 4 nonsense SNPs. Finally, using gene functional annotation, a short list of 17 and 4 polymorphisms in 6 and 4 functional genes has been defined. Even if we cannot exclude that the causal polymorphisms may be located in regulatory regions, this strategy gives a complete overview of the candidate polymorphisms in coding regions and prioritize them on conservation- and functional-based arguments.

  5. Expression studies of the obesity candidate gene FTO in pig

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Birck, Malene Muusfeldt; Fredholm, Merete;

    2010-01-01

    Obesity is an increasing problem worldwide and research on candidate genes in good animal models is highly needed. The pig is an excellent model as its metabolism, organ size, and eating habits resemble that of humans. The present study is focused on the characterization of the fat mass and obesi...... compared with cerebellum of the high-cholesterol fed pigs. Furthermore, SNPs were investigated in the coding sequence of the FTO in the Gottingen minipig and in the Danish commercial pig. Eleven synonymous SNPs and a two bp insertion were found between the two pig lines....

  6. The Genetic Basis of Quality of Life in Healthy Swedish Women: A Candidate Gene Approach

    OpenAIRE

    Dounya Schoormans; Jingmei Li; Hatef Darabi; Yvonne Brandberg; Sprangers, Mirjam A. G.; Mikael Eriksson; Zwinderman, Koos H.; Per Hall

    2015-01-01

    Background Quality of life (QoL) is an increasingly important parameter in clinical practice as it predicts mortality and poor health outcomes. It is hypothesized that one may have a genetic predisposition for QoL. We therefore related 139 candidate genes, selected through a literature search, to QoL in healthy females. Methods In 5,142 healthy females, background characteristics (i.e. demographic, clinical, lifestyle, and psychological factors) were assessed. QoL was measured by the EORTC QL...

  7. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers

    OpenAIRE

    Qi, Chao; Zhu, Yiwei Tony; Hu, Liping; Zhu, Yi-Jun

    2009-01-01

    Fat, a candidate tumor suppressor in drosophila, is a component of Hippo signaling pathway involved in controlling organ size. We found that a ~3Mbp deletion in mouse chromosome 3 caused tumorigenesis of a non-tumorigenic mammary epithelial cell line. The expression of Fat4 gene, one member of the Fat family, in the deleted region was inactivated, which resulted from promoter methylation of another Fat4 allele following the deletion of one Fat4 allele. Re-expression of Fat4 in Fat4-deficient ...

  8. Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach.

    Science.gov (United States)

    Nguyen, Tuan Viet; Jung, Hyungtaek; Nguyen, Thanh Minh; Hurwood, David; Mather, Peter

    2016-02-01

    Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses

  9. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study

    Directory of Open Access Journals (Sweden)

    Ji Xinglai

    2010-08-01

    Full Text Available Abstract Background We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. Methods We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR, and real time quantitative reverse transcriptase PCR (qRT-PCR analyses on a number of genes of both regions with both human and mouse colon tumors. Results These two regions (5q22.2 and 18q21.1-q21.2 are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. Conclusions These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC

  10. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study

    International Nuclear Information System (INIS)

    We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates

  11. Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes

    OpenAIRE

    Colleen J. Saunders; Mahjoubeh Jalali Sefid Dashti; Junaid Gamieldien

    2016-01-01

    Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening, and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation...

  12. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    Science.gov (United States)

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  13. In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2012-01-01

    Full Text Available Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  14. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6

    Directory of Open Access Journals (Sweden)

    Groenen Martien AM

    2010-05-01

    Full Text Available Abstract Background In many countries, male piglets are castrated shortly after birth because a proportion of un-castrated male pigs produce meat with an unpleasant flavour and odour. Main compounds of boar taint are androstenone and skatole. The aim of this high-density genome-wide association study was to identify single nucleotide polymorphisms (SNPs associated with androstenone levels in a commercial sire line of pigs. The identification of major genetic effects causing boar taint would accelerate the reduction of boar taint through breeding to finally eliminate the need for castration. Results The Illumina Porcine 60K+SNP Beadchip was genotyped on 987 pigs divergent for androstenone concentration from a commercial Duroc-based sire line. The association analysis with 47,897 SNPs revealed that androstenone levels in fat tissue were significantly affected by 37 SNPs on pig chromosomes SSC1 and SSC6. Among them, the 5 most significant SNPs explained together 13.7% of the genetic variance in androstenone. On SSC6, a larger region of 10 Mb was shown to be associated with androstenone covering several candidate genes potentially involved in the synthesis and metabolism of androgens. Besides known candidate genes, such as cytochrome P450 A19 (CYP2A19, sulfotransferases SULT2A1, and SULT2B1, also new members of the cytochrome P450 CYP2 gene subfamilies and of the hydroxysteroid-dehydrogenases (HSD17B14 were found. In addition, the gene encoding the ß-chain of the luteinizing hormone (LHB which induces steroid synthesis in the Leydig cells of the testis at onset of puberty maps to this area on SSC6. Interestingly, the gene encoding the α-chain of LH is also located in one of the highly significant areas on SSC1. Conclusions This study reveals several areas of the genome at high resolution responsible for variation of androstenone levels in intact boars. Major genetic factors on SSC1 and SSC6 showing moderate to large effects on androstenone

  15. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas

    OpenAIRE

    Zhou, Ruigang; MAN, YIGANG

    2016-01-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed gene...

  16. Selection of Candidate Housekeeping Genes for Normalization in Human Postmortem Brain Samples

    Directory of Open Access Journals (Sweden)

    Aldo Pagano

    2011-08-01

    Full Text Available The most frequently used technique to study the expression profile of genes involved in common neurological disorders is quantitative real-time RT-PCR, which allows the indirect detection of very low amounts of selected mRNAs in tissue samples. Expression analysis by RT-qPCR requires an appropriate normalization to the expression level of genes characterized by a stable, constitutive transcription. However, the identification of a gene transcribed at a very stable level is difficult if not impossible, since significant fluctuations of the level of mRNA synthesis often accompanies changes of cell behavior. The aim of this study is to identify the most stable genes in postmortem human brain samples of patients affected by Alzheimer’s disease (AD suitable as reference genes. The experiments analyzed 12 commonly used reference genes in brain samples from eight individuals with AD and seven controls. After a careful analysis of the results calculated by geNorm and NormFinder algorithms, we found that CYC1 and EIF4A2 are the best reference genes. We remark on the importance of the determination of the best reference genes for each sample to be analyzed and suggest a practical combination of reference genes to be used in the analysis of human postmortem samples.

  17. Cell wall composition and candidate biosynthesis gene expression during rice development

    DEFF Research Database (Denmark)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra;

    2016-01-01

    strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically...

  18. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  19. Detection of differentially expressed candidate genes for a fatty liver QTL on mouse chromosome 12

    OpenAIRE

    Kobayashi, Misato; Suzuki, Miyako; Ohno, Tamio; Tsuzuki, Kana; Taguchi, Chie; Tateishi, Soushi; Kawada, Teruo; Kim, Young-Il; Murai, Atsushi; Horio, Fumihiko

    2016-01-01

    Background The SMXA-5 mouse is an animal model of high-fat diet-induced fatty liver. The major QTL for fatty liver, Fl1sa on chromosome 12, was identified in a SM/J × SMXA-5 intercross. The SMXA-5 genome consists of the SM/J and A/J genomes, and the A/J allele of Fl1sa is a fatty liver-susceptibility allele. The existence of the responsible genes for fatty liver within Fl1sa was confirmed in A/J-12SM consomic mice. The aim of this study was to identify candidate genes for Fl1sa, and to invest...

  20. Candidate glutamatergic and dopaminergic pathway gene variants do not influence Huntington’s disease motor onset

    OpenAIRE

    Ramos, Eliana Marisa; Latourelle, Jeanne C.; Gillis, Tammy; Mysore, Jayalakshmi S.; Squitieri, Ferdinando; Di Pardo, Alba; Di Donato, Stefano; Gellera, Cinzia; Hayden, Michael R.; Morrison, Patrick J.; Nance, Martha; Ross, Christopher A.; Margolis, Russell L.; Gomez-Tortosa, Estrella; Ayuso, Carmen

    2013-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and behavioral disturbances. It is caused by the expansion of the HTT CAG repeat, which is the major determinant of age at onset (AO) of motor symptoms. Aberrant function of N-methyl-D-aspartate receptors and/or overexposure to dopamine has been suggested to cause significant neurotoxicity, contributing to HD pathogenesis. We used genetic association analysis in 1,628 HD patients to evaluate candidate...

  1. Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map

    Institute of Scientific and Technical Information of China (English)

    WANG Xu-sheng; ZHU Jun; MANSUETO Locedie; BRUSKIEWICH Richard

    2005-01-01

    Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related traits under stressed and well-water conditions were assayed in mapping populations derived from crosses of Azucena×IR64 and Azucena×Bala. To find the candidate rice genes underlying Quantitative Trait Loci (QTL) in these populations, we conducted in silico analysis of a candidate region flanked by the genetic markers RM212 and RM319on chromosome 1, proximal to the semi-dwarf (sd1) locus. A total of 175annotated genes were identified from this region. These included 48 genes annotated by functional homology to known genes, 23pseudogenes, 24 ab initio predicted genes supported by an alignment match to an EST (Expressed sequence tag) of unknown function, and 80 hypothetical genes predicted solely by ab initio means. Among these, 16 candidate genes could potentially be involved in drought stress response.

  2. Combined QTL and selective sweep mappings with coding SNP annotation and cis-eQTL analysis revealed PARK2 and JAG2 as new candidate genes for adiposity regulation.

    OpenAIRE

    Roux, Pierre-François; Boitard, Simon; Blum, Anne; Parks, Brian; Montagner, Alexandra; Mouisel, Etienne; Djari, Anis; Esquerre, Diane; Désert, Colette; Boutin, Morgane; Leroux, Sophie; Lecerf, Frederic; Le Bihan-Duval, Elisabeth; Klopp, Christophe; Servin, Bertrand

    2015-01-01

    Very few causal genes have been identified by quantitative trait loci (QTLs) mapping because of the large size of QTLs, and most of them were identified thanks to functional links already known with the targeted phenotype. Here we propose to combine selection signature detection, coding SNP annotation, and cis-expression QTL analyses to identify potential causal genes underlying QTLs identified in divergent line designs. As a model, we chose experimental chicken lines divergently selected for...

  3. Real-time PCR analysis of candidate imprinted genes on mouse chromosome 11 shows balanced expression from the maternal and paternal chromosomes and strain-specific variation in expression levels

    OpenAIRE

    Tuskan, Robert G.; Tsang, Shirley; Sun, Zhonghe; Baer, Jessica; Rozenblum, Ester; Wu, Xiaolin; Munroe, David J.; Reilly, Karlyne M.

    2007-01-01

    Imprinted genes are monoallelically expressed from either the maternal or paternal genome. Because cancer develops through genetic and epigenetic alterations, imprinted genes affect tumorigenesis depending on which parental allele undergoes alteration. We have shown previously in a mouse model of neurofibromatosis type 1 (NF1) that inheriting mutant alleles of Nf1 and Trp53 on chromosome 11 from the mother or father dramatically changes the tumor spectrum of mutant progeny, likely due to alte...

  4. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae)

    Science.gov (United States)

    Pabón-Mora, Natalia; Suárez-Baron, Harold; Ambrose, Barbara A.; González, Favio

    2015-01-01

    Aristolochia fimbriata (Aristolochiaceae: Piperales) exhibits highly synorganized flowers with a single convoluted structure forming a petaloid perianth that surrounds the gynostemium, putatively formed by the congenital fusion between stamens and the upper portion of the carpels. Here we present the flower development and morphology of A. fimbriata, together with the expression of the key regulatory genes that participate in flower development, particularly those likely controlling perianth identity. A. fimbriata is a member of the magnoliids, and thus gene expression detected for all ABCE MADS-box genes in this taxon, can also help to elucidate patterns of gene expression prior the independent duplications of these genes in eudicots and monocots. Using both floral development and anatomy in combination with the isolation of MADS-box gene homologs, gene phylogenetic analyses and expression studies (both by reverse transcription PCR and in situ hybridization), we present hypotheses on floral organ identity genes involved in the formation of this bizarre flower. We found that most MADS-box genes were expressed in vegetative and reproductive tissues with the exception of AfimSEP2, AfimAGL6, and AfimSTK transcripts that are only found in flowers and capsules but are not detected in leaves. Two genes show ubiquitous expression; AfimFUL that is found in all floral organs at all developmental stages as well as in leaves and capsules, and AfimAG that has low expression in leaves and is found in all floral organs at all stages with a considerable reduction of expression in the limb of anthetic flowers. Our results indicate that expression of AfimFUL is indicative of pleiotropic roles and not of a perianth identity specific function. On the other hand, expression of B-class genes, AfimAP3 and AfimPI, suggests their conserved role in stamen identity and corroborates that the perianth is sepal and not petal-derived. Our data also postulates an AGL6 ortholog as a candidate

  5. Evaluation of nine candidate genes in patients with normal tension glaucoma: a case control study

    Directory of Open Access Journals (Sweden)

    Reinthal Eva

    2009-09-01

    Full Text Available Abstract Background Normal tension glaucoma is a major subtype of glaucoma, associated with intraocular pressures that are within the statistically normal range of the population. Monogenic forms following classical inheritance patterns are rare in this glaucoma subtype. Instead, multigenic inheritance is proposed for the majority of cases. The present study tested common sequence variants in candidate genes for association with normal tension glaucoma in the German population. Methods Ninety-eight SNPs were selected to tag the common genetic variation in nine genes, namely OPTN (optineurin, RDX (radixin, SNX16 (sorting nexin 16, OPA1 (optic atrophy 1, MFN1 (mitofusin 1, MFN2 (mitofusin 2, PARL (presenilin associated, rhomboid-like, SOD2 (superoxide dismutase 2, mitochondrial and CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1. These SNPs were genotyped in 285 cases and 282 fully evaluated matched controls. Statistical analyses comprised single polymorphism association as well as haplogroup based association testing. Results Results suggested that genetic variation in five of the candidate genes (RDX, SNX16, OPA1, SOD2 and CYP1B1 is unlikely to confer major risk to develop normal tension glaucoma in the German population. In contrast, we observed a trend towards association of single SNPs in OPTN, MFN1, MFN2 and PARL. The SNPs of OPTN, MFN2 and PARL were further analysed by multimarker haplotype-based association testing. We identified a risk haplotype being more frequent in patients and a vice versa situation for the complementary protective haplotype in each of the three genes. Conclusion Common variants of OPTN, PARL, MFN1 and MFN2 should be analysed in other cohorts to confirm their involvement in normal tension glaucoma.

  6. Candidate genes of Waldenström’s macroglobulinemia: current evidence and research

    Directory of Open Access Journals (Sweden)

    Bianchi G

    2013-07-01

    Full Text Available Giada Bianchi,1 Antonio Sacco,1 Shaji Kumar,2 Giuseppe Rossi,3 Irene Ghobrial,1 Aldo Roccaro11Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 2Division of Hematology, Mayo Clinic, Rochester, MN, USA; 3Department of Hematology, Spedali Civili di Brescia, Brescia, ItalyAbstract: Waldenström’s macroglobulinemia (WM is a relatively uncommon, indolent malignancy of immunoglobulin M-producing B cells. The World Health Organization classifies it as a lymphoplasmacytic lymphoma and patients typically present with anemia, hepatosplenomegaly and diffuse lymphadenopathies. Historically, the genetic characterization of the disease has been hampered by the relatively low proliferative rate of WM cells, thus making karyotyping challenging. The use of novel technologies such as fluorescence in situ hybridization, gene array, and whole genome sequencing has contributed greatly to establishing candidate genes in the pathophysiology of WM and to identifying potential treatment targets, such as L265P MYD88. The discovery of microRNAs and the recognition of epigenetics as a major modulatory mechanism of oncogene expression and/or oncosuppressor silencing have aided in further understanding the pathogenesis of WM. Once thought to closely resemble multiple myeloma, a cancer of terminally differentiated, immunoglobulin-secreting plasma cells, WM appears to genetically cluster with other indolent B-cell lymphomas such as chronic lymphocytic leukemia/small cell lymphoma. The relative high incidence of familial cases of WM and other B-cell malignancies has been helpful in identifying high-risk gene candidates. In this review, we focus on the established genes involved in the pathogenesis of WM, with special emphasis on the key role of derangement of the nuclear factor kappa B signaling pathway and epigenetic mechanisms.Keywords: genetics, familial cases, NF-κB, whole genome sequencing, MYD88

  7. Molecular characterization of two candidate genes associated with coat color in Tibetan sheep (Ovis arise)

    Institute of Scientific and Technical Information of China (English)

    HAN Ji-long; YANG Min; GUO Ting-ting; YUE Yao-jing; LIU Jian-bin; NIU Chun-e; WANG Chao-feng; YANG Bo-hui

    2015-01-01

    Coat color is a key economic trait in sheep. Some candidate genes associated with animal’s coat color were found. Partic-ularly, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and microphthalmia-associated transcription factor (MITF) play a key role in the modulation of hair pigmentation in mammals. This study investigated those two candidate genes’ mutations and expressions associated with wool color in Tibetan sheep. First, the gene polymorphisms of those two genes were analyzed, and then, relative mRNA expression levels of those two genes in skin tissue with different coat colors were compared. Thirdly, KIT and MITF protein expression levels were detected through Western blot and immune-histochemical. Al ele C was predominant al ele in the white coat color Tibetan sheep population of the MITF coding region g. 1548 C/T loci. The relative MITF mRNA expression in black coat skin tissue was signiifcantly higher than white (P0.05), while the level of KIT protein expression in skin tissues of white and black coats was also roughly equivalent. Our study observed that, the level of MITF protein expression in black coat skin tissue was signiifcantly higher than that in white coat skin tissue, and positive staining for MITF protein expression was detected mainly in the epidermis and the dermal papil a, bulb, and outer root sheath of hair fol icles. We conclude that the black coat of Tibetan sheep is related to high MITF expression in the hair fol icles, and MITF may be important for coat color formation of Tibetan sheep.

  8. Identification of nephropathy candidate genes by comparing sclerosis-prone and sclerosis-resistant mouse strain kidney transcriptomes

    Directory of Open Access Journals (Sweden)

    El-Meanawy Ashraf

    2012-07-01

    Full Text Available Abstract Background The genetic architecture responsible for chronic kidney disease (CKD remains incompletely described. The Oligosyndactyly (Os mouse models focal and segmental glomerulosclerosis (FSGS, which is associated with reduced nephron number caused by the Os mutation. The Os mutation leads to FSGS in multiple strains including the ROP-Os/+. However, on the C57Bl/6J background the mutation does not cause FSGS, although nephron number in these mice are equivalent to those in ROP-Os/+ mice. We exploited this phenotypic variation to identify genes that potentially contribute to glomerulosclerosis. Methods To identify such novel genes, which regulate susceptibility or resistance to renal disease progression, we generated and compared the renal transcriptomes using serial analysis of gene expression (SAGE from the sclerosis-prone ROP-Os/+ and sclerosis resistant C57-Os/+ mouse kidneys. We confirmed the validity of the differential gene expression using multiple approaches. We also used an Ingenuity Pathway Analysis engine to assemble differentially regulated molecular networks. Cell culture techniques were employed to confirm functional relevance of selected genes. Results A comparative analysis of the kidney transcriptomes revealed multiple genes, with expression levels that were statistically different. These novel, candidate, renal disease susceptibility/resistance genes included neuropilin2 (Nrp2, glutathione-S-transferase theta (Gstt1 and itchy (Itch. Of 34 genes with the most robust statistical difference in expression levels between ROP-Os/+ and C57-Os/+ mice, 13 and 3 transcripts localized to glomerular and tubulointerstitial compartments, respectively, from micro-dissected human FSGS biopsies. Network analysis of all significantly differentially expressed genes identified 13 connectivity networks. The most highly scored network highlighted the roles for oxidative stress and mitochondrial dysfunction pathways. Functional analyses of

  9. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-03-01

    Full Text Available Abstract Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP, Duffy-binding protein (DBP, Merozoite surface protein-1 (MSP-1, Apical membrane antigen-1 (AMA-1 and Thrombospondin related anonymous protein (TRAP. Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.

  10. Association study of candidate gene polymorphisms with amnestic mild cognitive impairment in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liu

    Full Text Available To investigate the relationship between amnestic mild cognitive impairment (aMCI and candidate gene polymorphisms in a Chinese population, 116 aMCI patients and 93 normal controls were recruited. Multi-dimensional neuropsychological tests were used to extensively assess the cognitive functions of the subjects. MassARRAY and iPLEX systems were used to measure candidate single nucleotide polymorohisms (SNPs and analyse allelic, genotypic or haplotypic distributions. The scores of the neuropsychological tests were significantly lower for the aMCI patients than for the normal controls. The distributions of SNPs relating to the amyloid cascade hypothesis (TOMM40 rs157581 G and TOMM40 rs2075650 G, to the cholesterol metabolism hypothesis (ApoE rs429358 C, LDLR rs11668477 G and CH25H rs7091822 T and PLAU rs2227564 CT and to the tau hypothesis (MAPT/STH rs242562 GG in aMCI were significantly different than those in normal controls. Interactions were also found in aMCI amongst SNPs in LDLR rs11668477, PLAU rs2227564, and TOMM40 rs157581, between SNPs in TOMM40 rs157580 and BACE2 rs9975138. The study suggests that aMCI is characterised by memory impairment and associated with SNPs in three systems relating to the pathogenesis of AD--those of the amyloid cascade, tau and cholesterol metabolism pathways. Interactions were also observed between genes in the amyloid pathway and between the amyloid and cholesterol pathways.

  11. Structural, phylogenetic and docking studies of D-amino acid oxidase activator (DAOA, a candidate schizophrenia gene

    Directory of Open Access Journals (Sweden)

    Sehgal Sheikh

    2013-01-01

    Full Text Available Abstract Background Schizophrenia is a neurodegenerative disorder that occurs worldwide and can be difficult to diagnose. It is the foremost neurological disorder leading to suicide among patients in both developed and underdeveloped countries. D-amino acid oxidase activator (DAOA, also known as G72, is directly implicated in the glutamateric hypothesis of schizophrenia. It activates D-amino acid oxidase, which oxidizes D-serine, leading to modulation of the N-methyl-D-aspartate receptor. Methods MODELLER (9v10 was utilized to generate three dimensional structures of the DAOA candidate gene. The HOPE server was used for mutational analysis. The Molecular Evolutionary Genetics Analysis (MEGA5 tool was utilized to reconstruct the evolutionary history of the candidate gene DAOA. AutoDock was used for protein-ligand docking and Gramm-X and PatchDock for protein-protein docking. Results A suitable template (1ZCA was selected by employing BLASTp on the basis of 33% query coverage, 27% identity and E-value 4.9. The Rampage evaluation tool showed 91.1% favored region, 4.9% allowed region and 4.1% outlier region in DAOA. ERRAT demonstrated that the predicted model had a 50.909% quality factor. Mutational analysis of DAOA revealed significant effects on hydrogen bonding and correct folding of the DAOA protein, which in turn affect protein conformation. Ciona was inferred as the outgroup. Tetrapods were in their appropriate clusters with bifurcations. Human amino acid sequences are conserved, with chimpanzee and gorilla showing more than 80% homology and bootstrap value based on 1000 replications. Molecular docking analysis was employed to elucidate the binding mode of the reported ligand complex for DAOA. The docking experiment demonstrated that DAOA is involved in major amino acid interactions: the residues that interact most strongly with the ligand C28H28N3O5PS2 are polar but uncharged (Gln36, Asn38, Thr 122 and non-polar hydrophobic (Ile119, Ser171

  12. Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma1

    OpenAIRE

    Vibhakar, Rajeev; Foltz, Greg; Yoon, Jae-Geun; Field, Lorie; Lee, Hwahyung; Ryu, Gi-Yung; Pierson, Jessica; Davidson, Beverly; Madan, Anup

    2007-01-01

    Medulloblastoma is a heterogeneous pediatric brain tumor with significant therapy-related morbidity, its five-year survival rates ranging from 30% to 70%. Improvement in diagnosis and therapy requires better understanding of medulloblastoma pathology. We used whole-genome microarray analysis to identify putative tumor suppressor genes silenced by epigenetic mechanisms in medulloblastoma. This analysis yielded 714 up-regulated genes in immortalized medulloblastoma cell line D283 on treatment w...

  13. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice.

    Science.gov (United States)

    Nguyen, T T T; Klueva, N; Chamareck, V; Aarti, A; Magpantay, G; Millena, A C M; Pathan, M S; Nguyen, H T

    2004-08-01

    We have developed 85 new markers (50 RFLPs, 5 SSRs, 12 DD cDNAs, 9 ESTs, 8 HSP-encoding cDNAs and one BSA-derived AFLP marker) for saturation mapping of QTL regions for drought tolerance in rice, in our efforts to identify putative candidate genes. Thirteen of the markers were localized in the close vicinity of the targeted QTL regions. Fifteen of the additional markers mapped, respectively, inside one QTL region controlling osmotic adjustment on chromosome 3 ( oa3.1) and 14 regions that affect root traits on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 10 and 12. Differential display was used to identify more putative candidate genes and to saturate the QTL regions of the genetic map. Eleven of the isolated cDNA clones were found to be derived from drought-inducible genes. Two of them were unique and did not match any genes in the GenBank, while nine were highly similar to cDNAs encoding known proteins, including a DnaJ-related protein, a zinc-finger protein, a protease inhibitor, a glutathione-S-transferase, a DNA recombinase, and a protease. Twelve new cDNA fragments were mapped onto the genetic linkage map; seven of these mapped inside, or in close proximity to, the targeted QTL regions determining root thickness and osmotic adjustment capacity. The gene I12A1, which codes for a UDP-glucose 4-epimerase homolog, was identified as a putative target gene within the prt7.1/brt7.1 QTL region, as it is involved in the cell wall biogenesis pathway and hence may be implicated in modulating the ability of rice roots to penetrate further into the substratum when exposed to drought conditions. RNAs encoding elongation factor 1beta, a DnaJ-related protein, and a homolog of wheat zinc-finger protein were more prominently induced in the leaves of IR62266 (the lowland rice parent of the mapping materials used) than in those of CT9993 (the upland rice parent) under drought conditions. Homologs of 18S ribosomal RNA, and mRNAs for a multiple-stress induced zinc-finger protein, a protease

  14. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  15. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    Science.gov (United States)

    Crasta, Oswald R; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism. PMID:18478107

  16. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    Directory of Open Access Journals (Sweden)

    Oswald R Crasta

    Full Text Available The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism.

  17. Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica

    Directory of Open Access Journals (Sweden)

    Lulu Xie

    2016-08-01

    Full Text Available Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound. We performed RNA-seq analysis by using two pipelines, one with and one without a reference sequence, to obtain transcriptome data. We identified 930 significantly differentially expressed genes (DEGs between the purple-leaf introgression line and B. rapa green cultivar, namely, 389 up-regulated and 541 down-regulated DEGs that mapped to the B. rapa reference genome. Since only one anthocyanin pathway regulatory gene was identified, i.e., Bra037887 (bHLH, we mined unmapped reads, revealing 2,031 de novo assembled unigenes, including c3563g1i2. Phylogenetic analysis suggested that c3563g1i2, which was transferred from the Brassica B genome of the donor parental line Brassica juncea, may represent an R2R3-MYB transcription factor that participates in the ternary transcriptional activation complex responsible for the anthocyanin overaccumulation phenotype of the B. rapa introgression line. We also identified genes involved in cold and light reaction pathways that were highly upregulated in the introgression line, as confirmed using quantitative real-time PCR analysis. The results of this study shed light on the mechanisms underlying the purple leaf trait in Brassica plants and may facilitate the use of introgressive hybridization for many traits of interest.

  18. Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica.

    Science.gov (United States)

    Xie, Lulu; Li, Fei; Zhang, Shifan; Zhang, Hui; Qian, Wei; Li, Peirong; Zhang, Shujiang; Sun, Rifei

    2016-01-01

    Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis) introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound. We performed RNA-seq analysis by using two pipelines, one with and one without a reference sequence, to obtain transcriptome data. We identified 930 significantly differentially expressed genes (DEGs) between the purple-leaf introgression line and B. rapa green cultivar, namely, 389 up-regulated and 541 down-regulated DEGs that mapped to the B. rapa reference genome. Since only one anthocyanin pathway regulatory gene was identified, i.e., Bra037887 (bHLH), we mined unmapped reads, revealing 2031 de novo assembled unigenes, including c3563g1i2. Phylogenetic analysis suggested that c3563g1i2, which was transferred from the Brassica B genome of the donor parental line Brassica juncea, may represent an R2R3-MYB transcription factor that participates in the ternary transcriptional activation complex responsible for the anthocyanin overaccumulation phenotype of the B. rapa introgression line. We also identified genes involved in cold and light reaction pathways that were highly upregulated in the introgression line, as confirmed using quantitative real-time PCR analysis. The results of this study shed light on the mechanisms underlying the purple leaf trait in Brassica plants and may facilitate the use of introgressive hybridization for many traits of interest. PMID:27597857

  19. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    Science.gov (United States)

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  20. Molecular basis of albinism in India: evaluation of seven potential candidate genes and some new findings.

    Science.gov (United States)

    Mondal, M; Sengupta, M; Samanta, S; Sil, A; Ray, K

    2012-12-15

    Albinism represents a group of genetic disorders with a broad spectrum of hypopigmentary phenotypes dependent on the genetic background of the patients. Oculocutaneous albinism (OCA) patients have little or no pigment in their eyes, skin and hair, whereas ocular albinism (OA) primarily presents the ocular symptoms, and the skin and hair color may vary from near normal to very fair. Mutations in genes directly or indirectly regulating melanin production are responsible for different forms of albinism with overlapping clinical features. In this study, 27 albinistic individuals from 24 families were screened for causal variants by a PCR-sequencing based approach. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, TYRP2 and SILV were selected as candidate genes. We identified 5 TYR and 3 OCA2 mutations, majority in homozygous state, in 8 unrelated patients including a case of autosomal recessive ocular albinism (AROA). A homozygous 4-nucleotide novel insertion in SLC24A5 was detected in a person showing with extreme cutaneous hypopigmentation. A potential causal variant was identified in the TYRP2 gene in a single patient. Haplotype analyses in the patients carrying homozygous mutations in the classical OCA genes suggested founder effect. This is the first report of an Indian AROA patient harboring a mutation in OCA2. Our results also reveal for the first time that mutations in SLC24A5 could contribute to extreme hypopigmentation in humans.

  1. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer.

    Science.gov (United States)

    Mercier, Pierre-Luc; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Ghani, Karim; Têtu, Bernard; Bairati, Isabelle; Bachvarov, Dimcho

    2011-10-01

    In attempt to discover novel aberrantly hypermethylated genes with putative tumor suppressor function in epithelial ovarian cancer (EOC), we applied expression profiling following pharmacologic inhibition of DNA methylation in EOC cell lines. Among the genes identified, one of particular interest was DOK1, or downstream of tyrosine kinase 1, previously recognized as a candidate tumor suppressor gene (TSG) for leukemia and other human malignancies. Using bisulfite sequencing, we determined that a 5'-non-coding DNA region (located at nt -1158 to -850, upstream of the DOK1 translation start codon) was extensively hypermethylated in primary serous EOC tumors compared with normal ovarian specimens; however, this hypermethylation was not associated with DOK1 suppression. On the contrary, DOK1 was found to be strongly overexpressed in serous EOC tumors as compared to normal tissue and importantly, DOK1 overexpression significantly correlated with improved progression-free survival (PFS) values of serous EOC patients. Ectopic modulation of DOK1 expression in EOC cells and consecutive functional analyses pointed toward association of DOK1 expression with increased EOC cell migration and proliferation, and better sensitivity to cisplatin treatment. Gene expression profiling and consecutive network and pathway analyses were also confirmative for DOK1 association with EOC cell migration and proliferation. These analyses were also indicative for DOK1 protective role in EOC tumorigenesis, linked to DOK1-mediated induction of some tumor suppressor factors and its suppression of pro-metastasis genes. Taken together, our findings are suggestive for a possible tumor suppressor role of DOK1 in EOC; however its implication in enhanced EOC cell migration and proliferation restrain us to conclude that DOK1 represents a true TSG in EOC. Further studies are needed to more completely elucidate the functional implications of DOK1 and other members of the DOK gene family in ovarian

  2. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  3. A combination of transcriptome and methylation analyses reveals embryologically-relevant candidate genes in MRKH patients

    Directory of Open Access Journals (Sweden)

    Riess Olaf

    2011-05-01

    Full Text Available Abstract Background The Mayer-Rokitansky-Küster-Hauser (MRKH syndrome is present in at least 1 out of 4,500 female live births and is the second most common cause for primary amenorrhea. It is characterized by vaginal and uterine aplasia in an XX individual with normal secondary characteristics. It has long been considered a sporadic anomaly, but familial clustering occurs. Several candidate genes have been studied although no single factor has yet been identified. Cases of discordant monozygotic twins suggest that the involvement of epigenetic factors is more likely. Methods Differences in gene expression and methylation patterns of uterine tissue between eight MRKH patients and eight controls were identified using whole-genome microarray analyses. Results obtained by expression and methylation arrays were confirmed by qRT-PCR and pyrosequencing. Results We delineated 293 differentially expressed and 194 differentially methylated genes of which nine overlap in both groups. These nine genes are mainly embryologically relevant for the development of the female genital tract. Conclusion Our study used, for the first time, a combined whole-genome expression and methylation approach to reveal the etiology of the MRKH syndrome. The findings suggest that either deficient estrogen receptors or the ectopic expression of certain HOXA genes might lead to abnormal development of the female reproductive tract. In utero exposure to endocrine disruptors or abnormally high maternal hormone levels might cause ectopic expression or anterior transformation of HOXA genes. It is, however, also possible that different factors influence the anti-Mullerian hormone promoter activity during embryological development causing regression of the Müllerian ducts. Thus, our data stimulate new research directions to decipher the pathogenic basis of MRKH syndrome.

  4. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  5. Operational support and analysis a guide for ITIL exam candidates

    CERN Document Server

    Sansbury, John

    2014-01-01

    This user-friendly book aims to assist candidates pass the ITIL® OSA Intermediate examination. It references material from the core ITIL texts and gives practical guidance. This new edition includes the latest ITIL guidance as well as additional insights from the author's own experience of developing effective solutions. An ITIL® licensed product.

  6. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  7. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  8. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Arvidson, Sandra Marie Neumann;

    2016-01-01

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The a...

  9. Stress analysis for the candidate of lower end fitting of advanced LWR fuel using FEM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. S.; Moon, Y. C. [Korea University of Technology and Education, Chonan (Korea, Republic of); Kim, H. K. [Korea Nuclear Fuel Company, Taejon (Korea, Republic of)

    2002-10-01

    The geometric modeling has been conducted for the candidate of advanced LWR fuel using the three-dimensional solid modeler. Then the three-dimensional stress analysis using MSC/NASTRAN has been performed. The evaluation for the mechanical integrity of the candidate has been performed based on the stress distribution obtained from the finite elements analysis.

  10. Exclusion of the neuronal nitric oxide synthase gene and the human achaete-scute homologue 1 gene as candidate loci for spinal cerebellar ataxia 2 (SCA2)

    Energy Technology Data Exchange (ETDEWEB)

    Twells, R.; Xu, W. [Imperial College, London (United Kingdom)]|[Institute of Animal Physiology and Genetics Research, Babraham, Cambridge (United Kingdom); Ball, D. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1994-09-01

    The autosomal dominant ataxias are a heterogeneous group of disorders, characterized by progressive degeneration of the cerebellum, pons and inferior olives, as well as the spinal cord. We previously mapped the spinal cerebellar ataxia 2 locus (SCA2) to chromosome 12q23-24.1 in a large Cuban founder population, flanked by the markers D12S58 and PLA2. Anticipation is a common feature of this disorder and therefore we have examined genes in this region which contain trinucleotide repeat motifs as candidate loci for SCA2. The neuronal nitric oxide synthase gene (NOS) has recently been assigned to chromosome 12q24.2-24.3 by fluorescent in situ hybridization. Neuronal NOS is responsible for the production of nitric oxide, a neurotransmitter expressed in high levels in the cerebellum as well as other regions of the nervous system. We report here the identification and analysis of an (AAT){sub n} repeat motif in an intronic region of the neuronal NOS gene, genetic mapping data and its exclusion from being involved in SCA2. We also report the exclusion of the human achaete-scute homologue 1 gene (HASH1), instrumental in neurosensory development in mouse, from being involved in SCA2 by the analysis of a proximal (CAG){sub n} repeat motif in the Cuban pedigrees, and its genetic location on chromosome 12q.

  11. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Directory of Open Access Journals (Sweden)

    Andrew J Burt

    Full Text Available Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris. Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08 where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  12. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean

    Science.gov (United States)

    Burt, Andrew J.; William, H. Manilal; Perry, Gregory; Khanal, Raja; Pauls, K. Peter; Kelly, James D.; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co–4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co–4 is localized. Three SCAR markers with known linkage to Co–4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK–4 loci found in previous studies. It is possible that the Co–4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases. PMID:26431031

  13. Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

    Directory of Open Access Journals (Sweden)

    Montserrat García-Closas

    2007-02-01

    Full Text Available Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5' UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 x 10(-5. To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5' UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651 were associated with increased risk for bladder cancer: odds ratio (95% confidence interval: 2.52 (1.06-5.97, 2.74 (1.26-5.98, and 3.02 (1.36-6.63, respectively; and a polymorphism in intron 2 (rs3024994 was associated with reduced risk: 0.65 (0.46-0.91. Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5' UTR (global p = 0.02 and 0.009, respectively. These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5' UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.

  14. Candidate Gene Discovery Procedure after Follow-Up Confirmatory Analyses of Candidate Regions of Interests for Alzheimer’s Disease in the NIMH Sibling Dataset

    Directory of Open Access Journals (Sweden)

    Tesfaye M. Baye

    2008-01-01

    Full Text Available The objective of this research was to develop a procedure to identify candidate genes under linkage peaks confirmed in a follow-up of candidate regions of interests (CRIs identified in our original genome scan in the NIMH Alzheimer’s diseases (AD Initiative families (Blacker et al. [1]. There were six CRIs identified that met the threshold of multipoint lod score (MLS of ≥ 2.0 from the original scan. The most significant peak (MLS = 7.7 was at 19q13, which was attributed to APOE. The remaining CRIs with ‘suggestive’ evidence for linkage were identified at 9q22, 6q27, 14q22, 11q25, and 3p26. We have followed up and narrowed the 9q22 CRI signal using simple tandem repeat (STR markers (Perry et al. [2]. In this confirmatory project, we have followed up the 6q27, 14q22, 11q25, and 3p26 CRIs with a total of 24 additional flanking STRs, reducing the mean interval marker distance (MID in each CRI, and substantially increase in the information content (IC. The linkage signals at 6q27, 14q22 and 11q25 remain ‘suggestive’, indicating that these CRIs are promising and worthy of detailed fine mapping and assessment of candidate genes associated with AD.

  15. A novel tumor-suppressor candidate gene-ndr2 is differentially expressed between osteoarthritis synovium cells and rheumatoid arthritis synovium fibroblasts

    Institute of Scientific and Technical Information of China (English)

    DENG Yan-chun; WANG Ji-cun; LIU Xin-ping; YAO Li-bo

    2004-01-01

    To test whether the novel tumor-suppressor candidate gene-ndr2 is also differentially expressed between osteoarthritis synovium cells (OASC) and rheumatoid arthritis synovium fibroblasts (RASF), and whether ndr2 can suppress the growth of RASF in vitro. Methods: Dot blotting, cell culture and gene transfection, cell cycle nalysis techniques were applied to investigate the effect of ndr2 on the cell phenotype and cell cycles. Results: ndr2 is expressed in OASC but absent in RASF. Transient transfection of ndr2 into RASF can suppress the growth of RASF from phenotype observation. Cell cycle analysis showed that apoptotic peaks can be detected in RASF cells transfected with ndr2 gene. Conclusion: Novel tumor suppressor candidate ndr2 is not only differentially expressed between OASC and RASF but also can induce the apoptosis of RASF in vitro.

  16. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets

    Directory of Open Access Journals (Sweden)

    Karacali Bilge

    2007-10-01

    Full Text Available Abstract Background Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a all genes on the microarray platform and b a list of known disease-related genes (a priori selection. We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms. Results Highly discriminative expression profiles were produced on both simulated gene expression data and expression data from breast cancer and lymphoma datasets on the basis of ER and BCL-6 expression, respectively. Use of relapse-free status to identify profiles for prognosis prediction resulted in poorly discriminative decision rules. Supervised feature selection resulted in more accurate classifications than random or a priori selection, however, the difference in prediction error decreased as the number of features increased. These results held when decision rules were applied across-datasets to samples profiled on the same microarray platform. Conclusion Our results show that many gene sets predict molecular phenotypes accurately. Given this, expression profiles identified using different training datasets should be expected to show little agreement. In addition, we demonstrate the difficulty in predicting relapse directly from microarray data using supervised machine

  17. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  18. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2

    Science.gov (United States)

    Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C.; McCartney, Curt

    2016-01-01

    Background Fusarium head blight (FHB) caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance. Findings In our study recombinant inbred lines (RILs) carrying resistant (R-RIL) and susceptible (S-RIL) alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL), callose synthase (CS), basic Helix Loop Helix (bHLH041) transcription factor, glutathione S-transferase (GST), ABC transporter-4 (ABC4) and cinnamyl alcohol dehydrogenase (CAD) as putative resistance genes localized within the QTL-Fhb2 region. Conclusion Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we

  19. Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nicholette D Palmer

    Full Text Available Type 2 diabetes (T2D-associated end-stage kidney disease (ESKD is a complex disorder resulting from the combined influence of genetic and environmental factors. This study contains a comprehensive genetic analysis of putative nephropathy loci in 965 African American (AA cases with T2D-ESKD and 1029 AA population-based controls extending prior findings. Analysis was based on 4,341 directly genotyped and imputed single nucleotide polymorphisms (SNPs in 22 nephropathy candidate genes. After admixture adjustment and correction for multiple comparisons, 37 SNPs across eight loci were significantly associated (1.6E-05candidate loci (FRMD3 and TRPC6 trended toward association with T2D-ESKD (P(emp<0.05. These results suggest that risk contributed by putative nephropathy genes is shared across populations of African and European ancestry.

  20. Molecular characterization of the leptin receptor gene as a candidate gene in the pulmonary hypertension syndrome in broiler chickens.

    Science.gov (United States)

    Bamidele, O; Van As, P; Elferink, M G

    2012-12-15

    Leptin Receptor Gene (LEPR) is a candidate gene in understanding the genetic basis of the Pulmonary Hypertension Syndrome (PHS) in broilers. Identification and evaluation of genetic polymorphisms in LEPR may provide a link between traits like Body Weight (BW) and Total Ventricle weight (TV) to the development of PHS. In this study, primers were designed in exons, upstream and downstream sequences to identify mutations in the LEPR on four broilers selected with respect to the PHS-related traits. About 77% of the 11,820 bp of the LEPR gene covered by the primers were sequenced. No mutations were found between the chickens associating the traits to the occurrence of PHS. However, 42 single nucleotide polymorphisms and four Indels were found between the reference sequences of the red jungle fowl and the experimental population. Ten of these mutations were not previously reported in LEPR at the genomic and transcript sequences (NP_989654.1, ENSGALT00000018009). The 10 mutations include six SNPs in intron regions, two Indels and two non-synonymous SNPs. The two new non-synonymous SNPs; G301A and A1637G, led to amino acid change A89T and N534S, respectively. PMID:23755410

  1. Fine mapping and candidate gene prediction of the photoperiod and thermo-sensitive genic male sterile gene pms1(t) in rice

    Institute of Scientific and Technical Information of China (English)

    Yuan-fei ZHOU; Xian-yin ZHANG; Qing-zhong XUE

    2011-01-01

    Pei'ai64S, an indica sterile variety with photoperiod and thermo-sensitive genic male sterile (PTGMS) genes, has been widely exploited for commercial seed production for "two-line" hybrid rice in China. One PTGMS gene from Pei'ai64S, pms1(t), was mapped by a strategy of bulked-extreme and recessive-class approach with simple sequence repeat (SSR) and insert and deletion (In-Del) markers. Using linkage analysis for the F2 mapping population consisting of 320 completely male sterile individuals derived from a cross between Pei'ai64S and 93-11 (indica restorer) lines, the pms1(t) gene was delimited to the region between the RM21242 (0.2 cM) and YF11 (0.2 cM) markers on the short arm of chromosome 7. The interval containing the pms1(t) locus, which was co-segregated with RM6776, is a 101.1 kb region based on the Nipponbare rice genome. Fourteen predicted loci were found in this region by the Institute for Genomic Research (TIGR) Genomic Annotation. Based on the function of the locus LOC_Os07g12130 by bioinformatics analysis, it is predicted to encode a protein containing a Myb-like DNA-binding domain, and may process the transcript with thermosensory response. The reverse transcription-polymerase chain reaction (RT-PCR) results revealed that the mRNA levels of LOC_Os07g12130 were altered in different photoperiod and temperature treatments. Thus, the LOC_Os07g12130 locus is the most likely candidate gene for pms1(t). These results may facilitate not only using the molecular marker assisted selection of PTGMS genes, but also cloning of the pms1(t) gene itself.

  2. Construction of SMART cDNA Library of Sheep Ovary and Identification of Candidate Gene by Homologous Cloning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cDNA library of an ovary from Small Tail Han sheep before estrus was constructed by switching mechanism at 5' end of RNA transcript (SMART) approach. This library had a plaque titer of 1 × 109pfu mL-1 and a 96% recombinant ratio of which the fragment length of inserted average eDNA sequences was 1.0 kb. Based on bioinformatics analysis of the sequences, we obtained 338 expressed sequence tags (ESTs) from 380 cDNA clones which indicated 191 contigs. These contigs consist of 89 unmatched ESTs, 9 homologous known genes in sheep, and 93 homologous sequences in species of mouse, bovine, and human beings, including 19 sequences expressed in the ovary or follicle and 14 unknown sequences.Several candidate genes associated with sheep reproduction trait such as epidermal growth factor (EGF), estrogen receptor (ESR), Inhibin, follicle stimulating hormone receptor (FSHR), prostaglandin (PG), and transforming growth factor-β (TGF-β) were identified and the homologous were cloned from this library, which will contribute to compile expression profies and find the major genes of prolificacy of Small Tail Han sheep.

  3. Association between single-nucleotide polymorphisms in six hypertensive candidate genes and hypertension among northern Han Chinese individuals.

    Science.gov (United States)

    Wang, Lijuan; Zhang, Bei; Li, Mei; Li, Chuang; Liu, Jielin; Liu, Ya; Wang, Zuoguang; Zhou, Jiapeng; Wen, Shaojun

    2014-12-01

    Hypertension is one of the leading risk factors for mortality. The renin-angiotensin-aldosterone system (RAAS) is a potent and powerful mediator in the homeostasis of hypertension. Here, the association between six candidate genes, renin, adrenoceptor β3, angiotensinogen, aldosterone synthase, angiotensin II receptor type 1 and angiotensin II receptor type 2, that are related to RAAS and essential hypertension (EH) was evaluated and explored in northern Chinese Han individuals. A case-control study including 1090 EH cases and 700 controls was performed. Eight single-nucleotide polymorphisms (SNPs), rs699, rs4762, rs5707, rs5186, rs4994, rs1799998, rs5193 and rs5194, located in the six genes were genotyped with TaqMan real-time PCR method. Statistical analysis software (SPSS 17.0) was used for descriptive statistics and association analyses. Among the six genes related to RAAS, the frequencies of rs4994 (ADRB3) and rs5194 (AGTR2) were found to be significantly different between the EH cases and controls (P ADRB3 rs4994 and CYP11B2 rs1799998 were significantly closely associated with EH in northern Han Chinese individuals. The CC of rs4994 and CC or C allele of rs1799998 might be protective genetic factors of hypertension. PMID:25099490

  4. Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    Directory of Open Access Journals (Sweden)

    Hasson Esteban

    2008-08-01

    Full Text Available Abstract Background Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line. In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive

  5. Genetic variation at hair length candidate genes in elephants and the extinct woolly mammoth

    Directory of Open Access Journals (Sweden)

    Tisdale Michele

    2009-09-01

    Full Text Available Abstract Background Like humans, the living elephants are unusual among mammals in being sparsely covered with hair. Relative to extant elephants, the extinct woolly mammoth, Mammuthus primigenius, had a dense hair cover and extremely long hair, which likely were adaptations to its subarctic habitat. The fibroblast growth factor 5 (FGF5 gene affects hair length in a diverse set of mammalian species. Mutations in FGF5 lead to recessive long hair phenotypes in mice, dogs, and cats; and the gene has been implicated in hair length variation in rabbits. Thus, FGF5 represents a leading candidate gene for the phenotypic differences in hair length notable between extant elephants and the woolly mammoth. We therefore sequenced the three exons (except for the 3' UTR and a portion of the promoter of FGF5 from the living elephantid species (Asian, African savanna and African forest elephants and, using protocols for ancient DNA, from a woolly mammoth. Results Between the extant elephants and the mammoth, two single base substitutions were observed in FGF5, neither of which alters the amino acid sequence. Modeling of the protein structure suggests that the elephantid proteins fold similarly to the human FGF5 protein. Bioinformatics analyses and DNA sequencing of another locus that has been implicated in hair cover in humans, type I hair keratin pseudogene (KRTHAP1, also yielded negative results. Interestingly, KRTHAP1 is a pseudogene in elephantids as in humans (although fully functional in non-human primates. Conclusion The data suggest that the coding sequence of the FGF5 gene is not the critical determinant of hair length differences among elephantids. The results are discussed in the context of hairlessness among mammals and in terms of the potential impact of large body size, subarctic conditions, and an aquatic ancestor on hair cover in the Proboscidea.

  6. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L. by expression profiling

    Directory of Open Access Journals (Sweden)

    Wenzel Gerhard

    2009-02-01

    Full Text Available Abstract Background The potyviruses sugarcane mosaic virus (SCMV and maize dwarf mosaic virus (MDMV are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions. Results By employing time course microarray experiments we identified 68 significantly differentially expressed sequences within the different time points. The majority of differentially expressed genes differed between the near-isogenic line carrying Scmv1 resistance locus at chromosome 6 and the other isogenic lines. Most differentially expressed genes in the SCMV experiment (75% were identified one hour after virus inoculation, and about one quarter at multiple time points. Furthermore, most of the identified mapped genes were localised outside the Scmv QTL regions. Annotation revealed differential expression of promising pathogenesis-related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. Conclusion Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize.

  7. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores.

    Directory of Open Access Journals (Sweden)

    Madhan R Tirumalai

    Full Text Available The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T. This cluster of five genes is considered to be an especially promising target for future experimental

  8. Mapping of Mcs30, a new mammary carcinoma susceptibility quantitative trait locus (QTL30 on rat chromosome 12: identification of fry as a candidate Mcs gene.

    Directory of Open Access Journals (Sweden)

    Xuefeng Ren

    Full Text Available Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop and susceptible Fischer 344 (F344 strains, we mapped a novel mammary carcinoma susceptibility (Mcs30 locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker. The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs, one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry