WorldWideScience

Sample records for candida albicans determines

  1. The determination of optimal cells disintegration method of Candida albicans and Candida tropicalis fungals

    Directory of Open Access Journals (Sweden)

    M. V. Rybalkyn

    2014-08-01

    Candida tropicalis fungi has been prepared separately on Sabouraud agar. Incubation has been done at 25 ± 2º C for 6 days and then washed by 25 ml of sterile 0.9% isotonic sodium chloride solution. We determined the microbiological purity of cell suspension of Candida albicans and Candida tropicalis fungi visually and by microscopy. Further washings has been obtained by centrifuged at speed 3000 r / min for 10 min. The resulting precipitate of fungi has been proved by sterile isotonic 0.9% sodium chloride solution to (8,5 – 9х108 in 1 ml of standardized suspension and by counting the cells in the Goryaeva fungi cell. For cell disruption fungi has been resorted to the action of ultrasound, rubbing with abrasive material and freeze-thaw. Key parameters in the ultrasonic disintegration are: frequency 22 kHz, the intensity of 5 W/cm2, a temperature of 25 ± 2° C, time 15 minutes, 10 ml of 0,9% isotonic sterile sodium chloride solution. For grinding fungal cells using mortar, pestle, quartz sand and biomaterial in a 1:1 ratio, and 10 mL of sterile isotonic 0,9% sodium chloride solution. Freezing and thawing have been performed in 10 ml sterile isotonic 0.9% sodium chloride solution at a temperature of -25 ± 2 ° C and 25 ± 2 ° C. In each case the amount of protein and polysaccharides has been calculated. For a more detailed analysis the monosaccharide composition has been determined in each case. It is possible to establish the optimal method of cell disruption of Candida albicans and Candida tropicalis fungi, namely ultrasonic disintegration. In the future we plan to study the immunological properties of the proteins and polysaccharides on animals.

  2. Novel insight into neutrophil immune responses by dry mass determination of Candida albicans morphotypes.

    Directory of Open Access Journals (Sweden)

    Ava Hosseinzadeh

    Full Text Available The common fungal pathogen Candida albicans has the ability to grow as a yeast or as a hypha and can alternate between these morphotypes. The overall biomass of both morphotypes increases with growth. However, only yeasts, but not hyphae, exist as discrete cellular entities. Multiplicity of infection (MOI is a useful parameter to determine the initial inoculum of yeasts for in vitro infection assays. Since the amount of hyphae is difficult to quantify, comparable starting conditions in such assays cannot be determined accurately for yeasts and hyphae using MOI. To circumvent this problem, we have established a set of correlation coefficients to convert fungal metabolic activity and optical density to dry mass. Using these correlations, we were able to accurately compare ROS production and IL-8 release by polymorphonuclear neutrophils upon infection with equal dry mass amounts of yeast and hyphal morphotypes. Neutrophil responses depended on the initial form of infection, irrespective of C. albicans wild-type yeasts transforming to hyphal growth during the assay. Infection with a high mass of live C. albicans yeasts resulted in lower neutrophil ROS and this decrease stems from efficient ROS detoxification by C. albicans without directly affecting the phagocyte ROS machinery. Moreover, we show that dead C. albicans induces significantly less ROS and IL-8 release than live fungi, but thimerosal-killed C. albicans were still able to detoxify neutrophil ROS. Thus, the dry mass approach presented in this study reveals neutrophil responses to different amounts and morphotypes of C. albicans and serves as a template for studies that aim to identify morphotype-specific responses in a variety of immune cells.

  3. Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics.

    Science.gov (United States)

    Kniemeyer, Olaf; Schmidt, André D; Vödisch, Martin; Wartenberg, Dirk; Brakhage, Axel A

    2011-06-01

    Both fungi Candida albicans and Aspergillus fumigatus can cause a number of life-threatening systemic infections in humans. The commensal yeast C. albicans is one of the main causes of nosocomial fungal infectious diseases, whereas the filamentous fungus A. fumigatus has become one of the most prevalent airborne fungal pathogens. Early diagnosis of these fungal infections is challenging, only a limited number of antifungals for treatment are available, and the molecular details of pathogenicity are hardly understood. The completion of both the A. fumigatus and C. albicans genome sequence provides the opportunity to improve diagnosis, to define new drug targets, to understand the functions of many uncharacterised proteins, and to study protein regulation on a global scale. With the application of proteomic tools, particularly two-dimensional gel electrophoresis and LC/MS-based methods, a comprehensive overview about the proteins of A. fumigatus and C. albicans present or induced during environmental changes and stress conditions has been obtained in the past 5 years. However, for the discovery of further putative virulence determinants, more sensitive and targeted proteomic methods have to be applied. Here, we review the recent proteome data generated for A. fumigatus and C. albicans that are related to factors required for pathogenicity. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. In vitro modification of Candida albicans invasiveness.

    Science.gov (United States)

    Fontenla de Petrino, S E; de Jorrat, M E; Sirena, A; Valdez, J C; Mesón, O

    1986-05-01

    Candida albicans produces germ-tubes (GT) when it is incubated in animal or human serum. This dimorphism is responsible for its invasive ability. The purpose of the present paper is (1) to evaluate the ability of rat peritoneal macrophages to inhibit GT production of ingested Candida albicans, obtained from immunized rats and then activated in vitro with Candida-induced lymphokines; (2) to determinate any possible alteration of phagocytic and candidacidal activities. The phagocytes were obtained from rats immunized with viable C. albicans. Some of them were exposed to Candida-induced lymphokines in order to activate the macrophages in vitro. The monolayers of activated, immune and normal macrophages were infected with a C. albicans suspension during 4 hr. Activated macrophages presented not only the highest phagocytic and candidacidal activities but a noticeable inhibition of GT formation and incremented candidacidal activity.

  5. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    Science.gov (United States)

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Undecylenic Acid Inhibits Morphogenesis of Candida albicans

    OpenAIRE

    McLain, Nealoo; Ascanio, Rhoda; Baker, Carol; Strohaver, Robert A.; Dolan, Joseph W.

    2000-01-01

    Resilient liners are frequently used to treat denture stomatitis, a condition often associated with Candida albicans infections. Of 10 liners tested, 2 were found to inhibit the switch from the yeast form to hyphae and a third was found to stimulate this switch. The inhibitor was determined to be undecylenic acid.

  7. Undecylenic acid inhibits morphogenesis of Candida albicans.

    Science.gov (United States)

    McLain, N; Ascanio, R; Baker, C; Strohaver, R A; Dolan, J W

    2000-10-01

    Resilient liners are frequently used to treat denture stomatitis, a condition often associated with Candida albicans infections. Of 10 liners tested, 2 were found to inhibit the switch from the yeast form to hyphae and a third was found to stimulate this switch. The inhibitor was determined to be undecylenic acid.

  8. Determination of antibody levels to Candida albicans in healthy and hospitalised adults using a radioimmunoassay

    International Nuclear Information System (INIS)

    Cobb, S.J.; Parratt, D.

    1978-01-01

    A radioimmunoassay for antibody to Candida albicans is described. The test uses whole, killed of organisms as the antigen and radiolabelled sheep anti-human globulins to quantitate different classes of antibody to C. albicans. The assay has been compared with an Ouchterlony precipitin method and found to be simpler, more rapid, and more sensitive than the latter. Results obtained from two groups of symptomless adults indicated that the range of antibody level was wider for a hospitalised group than for a group of blood transfusion donors, particularly in respect of IgG and IgA antibody. The reason for the increase of antibody in hospital patients was not clear but may have been related to antibiotic therapy. The difficulties in interpretation of Candida serology have therefore been re-assessed in the light of more detailed knowledge of the range and type of antibody to be expected in normal individuals. (author)

  9. Emerging azole resistance among Candida albicans from clinical ...

    African Journals Online (AJOL)

    Candida albicans is one of the most frequently isolated yeasts in clinical laboratories and accounts for up to 80 % of the yeasts recovered from sites of infection. The study was set out to determine antifungal susceptibility of clinical isolates of Candida albicans and to establish the Minimum Inhibitory Concentrations (MIC) to ...

  10. Frequency of Candida albicans in Patients with Funguria.

    Science.gov (United States)

    Jamil, Sana; Jamil, Naz; Saad, Uzma; Hafiz, Saleem; Siddiqui, Sualleha

    2016-02-01

    To determine the frequency of Candida albicansin patients with funguria. Descriptive cross-sectional study. Department of Microbiology, Sindh Institute of Urology and Transplantation, from July to December 2012. Patients’ urine samples with fungus/Candida were included. Candida albicans was identified by the production of tubular structures (germ tubes) on microscopy as per standard procedure followed by inoculation on Chrom agar (Oxoid) and Corn Meal-Tween 80 agar (Oxoid). The identification of other non-albicans Candidaspecies was also done both microscopically and macroscopically as per standard procedure. Out of the 289 isolates, 204 (70.6%) were male patients and 85 (29.4%) were female patients, with 165 (57.1%) from the out-patients and 124 (42.9%) from the in-patients. Five species of Candidawere found to be prevalent including 87 (30.1%) Candida albicans, 176 (60.9%) Candida tropicalis, 14 (4.8%) Candida parapsilosis, 8 (2.8%) Candida glabrata and 4 (1.4%) Candida lusitaniae. Majority of patients with funguria were aged above 50 years (60.2%). In the present study, 30.1% patients with funguria had Candida albicans. The most frequently isolated species was Candida tropicalis(60.9%), followed by other non-albicansCandida. This study has shown the emergence of non-albicans Candidaas a major cause of candiduria.

  11. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  12. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans

    Directory of Open Access Journals (Sweden)

    Antonella Souza Mattei

    2013-06-01

    Full Text Available Introduction Candida albicans is a commensal and opportunistic agent that causes infection in immunocompromised individuals. Several attributes contribute to the virulence and pathogenicity of this yeast, including the production of germ tubes (GTs and extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate GT production and phospholipase and proteinase activities in bloodstream isolates of C. albicans. Methods One hundred fifty-three C. albicans isolates were obtained from blood samples and analyzed for GT, phospholipase, and proteinase production. The assays were performed in duplicate in egg yolk medium containing bovine serum albumin and human serum. Results Detectable amounts of proteinase were produced by 97% of the isolates, and 78% of the isolates produced phospholipase. GTs were produced by 95% of the isolates. A majority of the isolates exhibited low levels of phospholipase production and high levels of proteinase production. Conclusions Bloodstream isolates of C. albicans produce virulence factors such as GT and hydrolytic enzymes that enable them to cause infection under favorable conditions.

  13. Frequency of Candida albicans in Patients with Funguria

    International Nuclear Information System (INIS)

    Jamil, S.; Jamil, N.; Hafiz, S.; Siddiqui, S.; Saad, U.

    2016-01-01

    Objective: To determine the frequency of Candida albicans in patients with funguria. Study Design: Descriptive cross-sectional study. Place and Duration of Study: Department of Microbiology, Sindh Institute of Urology and Transplantation, from July to December 2012. Methodology: Patients urine samples with fungus/Candida were included. Candida albicans was identified by the production of tubular structures (germ tubes) on microscopy as per standard procedure followed by inoculation on Chrom agar (Oxoid) and Corn Meal-Tween 80 agar (Oxoid). The identification of other non-albicans Candida species was also done both microscopically and macroscopically as per standard procedure. Results: Out of the 289 isolates, 204 (70.6 percentage) were male patients and 85 (29.4 percentage) were female patients, with 165 (57.1 percentage) from the out-patients and 124 (42.9 percentage) from the in-patients. Five species of Candida were found to be prevalent including 87 (30.1 percentage) Candida albicans, 176 (60.9 percentage) Candida tropicalis, 14 (4.8 percentage) Candida parapsilosis, 8 (2.8 percentage) Candida glabrata and 4 (1.4 percentage) Candida lusitaniae. Majority of patients with funguria were aged above 50 years (60.2 percentage). Conclusion: In the present study, 30.1 percentage patients with funguria had Candida albicans. The most frequently isolated species was Candida tropicalis (60.9 percentage), followed by other non-albicans Candida. This study has shown the emergence of non-albicans Candida as a major cause of candiduria. (author)

  14. Growth of Candida albicans hyphae.

    Science.gov (United States)

    Sudbery, Peter E

    2011-08-16

    The fungus Candida albicans is often a benign member of the mucosal flora; however, it commonly causes mucosal disease with substantial morbidity and in vulnerable patients it causes life-threatening bloodstream infections. A striking feature of its biology is its ability to grow in yeast, pseudohyphal and hyphal forms. The hyphal form has an important role in causing disease by invading epithelial cells and causing tissue damage. This Review describes our current understanding of the network of signal transduction pathways that monitors environmental cues to activate a programme of hypha-specific gene transcription, and the molecular processes that drive the highly polarized growth of hyphae.

  15. Oral candidiasis-adhesion of non-albicans Candida species

    Directory of Open Access Journals (Sweden)

    Bokor-Bratić Marija B.

    2008-01-01

    Full Text Available Oral candidiasis is an opportunistic infection caused primarily by Candida albicans. However, in recent years, species of non-albicans Candida have been implicated more frequently in mucosal infection. Candida species usually reside as commensal organisms and are part of normal oral microflora. Determining exactly how transformation from commensal to pathogen takes place and how it can be prevented is continuous challenge for clinical doctors. Candidal adherence to mucosal surfaces is considered as a critical initial step in the pathogenesis of oral candidiasis. Acrylic dentures, acting as reservoirs, play an important role in increasing the risk from Candida colonisation. Thus, this review discusses what is currently known about the adhesion of non-albicans Candida species of oral origin to buccal epithelial cells and denture acrylics.

  16. A rapid [3H]glucose incorporation assay for determination of lymphoid cell-mediated inhibition of Candida albicans growth

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanissios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    [ 3 H]glucose uptake by Candida albicans after interaction with lymphoid effector cells was used to provide a quick, accurate and objective assessment of the growth inhibitory potential of lymphoid cells on candida. After 18 h coincubation of effector cells with candida, [ 3 H]glucose was added for 3 h and the amount of radiolabel incorporated into residual candida was measured. The results showed that [ 3 H]glucose uptake was proportional to the number of candida organisms left in the microwell and is dose dependent on the effector/target (E/T) ratio. At an E/T ratio of 300/1, complete inhibition of candida was seen, with significant inhibition still present at 30/1. In addition, monocytes and polymorphonuclear cells were found to be the primary cells responsible for eliminating candida. (Auth.)

  17. Daya hambat xylitol dan nistation terhadap pertumbuhan Candida albicans (in vitro (Inhibition effect of xylitol and nistatin combination on Candida albicans growth (in vitro

    Directory of Open Access Journals (Sweden)

    Sarah Kartimah Djajusman

    2014-09-01

    Full Text Available Background: The growth of Candida albicans can be controlled by using antifungal such as nystatin. These days we found that using antifungal is not enough to control Candida albicans, we also have to control the intake of sugar by using xylitol. Purpose: Purpose of the study was to determine the optimal inhibitory concentration of xylitol-nystatin in the Candida albicans growth. Methods: This was an in-vitro study using an antimicrobial test of serial dilution with xylitol-nystatin and sucrose–nystatin consentration of 1%, 3%, 5%, 7%, 9%, and 10%.Growth inhibition of C. albicans was determined by the inhibition zone of xylitol + nystatin on C. albicans culture media (in vitro Results: The result of study was the inhibitory consentration of xylitol-nystatin to inhibit Candida albicans growth was 3%-10%. Conclusion: The study showed that combination of xylitol and nystation could inhibit the growth of Candida albicans.Latar belakang: Pertumbuhan Candida albicans dapat dikontrol dengan menggunakan antijamur seperti nistatin. Penggunakan antijamur saja tidak cukup untuk mengontrol Candida albicans, namun perlu pula mengontrol asupan gula dengan menggunakan xylitol. Tujuan: Tujuan dari penelitian ini adalah untuk menentukan konsentrasi hambat optimal xylitol-nistatin dalam pertumbuhan Candida albicans. Metode: Penelitian ini merupakan penelitian in vitro menggunakan uji antimikroba pengenceran serial dengan xylitol-nistatin dan nystatin-sukrosa konsentrasi 1%, 3 %, 5 %, 7%, 9%, dan 10%. Daya hambat pertumbuhan C. albicans diukur dari zona hambat xylitol + nistatin pada media kultur C. albicans (in vitro Hasil: Konsentrasi penghambatan xylitol-nistatin untuk menghambat pertumbuhan Candida albicans adalah 3-10%. Simpulan: Hasil penelitian menunjukkan bahwa kombinasi xylitol dan nystation bisa menghambat pertumbuhan Candida albicans.

  18. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions.

    Science.gov (United States)

    Mora-Montes, Héctor M; Bates, Steven; Netea, Mihai G; Castillo, Luis; Brand, Alexandra; Buurman, Ed T; Díaz-Jiménez, Diana F; Jan Kullberg, Bart; Brown, Alistair J P; Odds, Frank C; Gow, Neil A R

    2010-04-16

    The cell wall proteins of fungi are modified by N- and O-linked mannosylation and phosphomannosylation, resulting in changes to the physical and immunological properties of the cell. Glycosylation of cell wall proteins involves the activities of families of endoplasmic reticulum and Golgi-located glycosyl transferases whose activities are difficult to infer through bioinformatics. The Candida albicans MNT1/KRE2 mannosyl transferase family is represented by five members. We showed previously that Mnt1 and Mnt2 are involved in O-linked mannosylation and are required for virulence. Here, the role of C. albicans MNT3, MNT4, and MNT5 was determined by generating single and multiple MnTDelta null mutants and by functional complementation experiments in Saccharomyces cerevisiae. CaMnt3, CaMnt4, and CaMnt5 did not participate in O-linked mannosylation, but CaMnt3 and CaMnt5 had redundant activities in phosphomannosylation and were responsible for attachment of approximately half of the phosphomannan attached to N-linked mannans. CaMnt4 and CaMnt5 participated in N-mannan branching. Deletion of CaMNT3, CaMNT4, and CaMNT5 affected the growth rate and virulence of C. albicans, affected the recognition of the yeast by human monocytes and cytokine stimulation, and led to increased cell wall chitin content and exposure of beta-glucan at the cell wall surface. Therefore, the MNT1/KRE2 gene family participates in three types of protein mannosylation in C. albicans, and these modifications play vital roles in fungal cell wall structure and cell surface recognition by the innate immune system.

  19. Killing of Candida albicans by Human Salivary Histatin 5 Is Modulated, but Not Determined, by the Potassium Channel TOK1

    OpenAIRE

    Baev, Didi; Rivetta, Alberto; Li, Xuewei S.; Vylkova, Slavena; Bashi, Esther; Slayman, Clifford L.; Edgerton, Mira

    2003-01-01

    Salivary histatin 5 (Hst 5), a potent toxin for the human fungal pathogen Candida albicans, induces noncytolytic efflux of cellular ATP, potassium, and magnesium in the absence of cytolysis, implicating these ion movements in the toxin's fungicidal activity. Hst 5 action on Candida resembles, in many respects, the action of the K1 killer toxin on Saccharomyces cerevisiae, and in that system the yeast plasma membrane potassium channel, Tok1p, has recently been reported to be a primary target o...

  20. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species

    Science.gov (United States)

    Whibley, Natasha; Gaffen, Sarah L.

    2015-01-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on C. albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. PMID:26276374

  1. Plasticity of Candida albicans Biofilms

    Science.gov (United States)

    Daniels, Karla J.

    2016-01-01

    SUMMARY Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal. PMID:27250770

  2. Screening of metabolites secondary compounds in extract of moringa fruit and determination of inhibitory effect on growth of the fungus Candida albicans

    Science.gov (United States)

    Nuryanti, Siti; Puspitasari, Dwi Juli

    2017-08-01

    Moringa (Moringa oleifera Lamk) is a nutritious plant that can cure various diseases. Parts of this plant like leave, root, flower, and fruit can be used as a traditional medicine. The research about screening of secondary metabolites in moringa extracts and the determination of their inhibitory effect on growth of the fungus Candida albicans have been done. This research was conducted by extracting the moringa fruit with various solvent with different polarity namely hexane, distilled water and ethanol. The fungal inhibition test was done by well-difuse method. Suspensions of Candida albicans was standardized by 0.5 Mc Farland standard. The results showed that the extracts of Moringa with distilled water provided the greatest inhibition on the growth of the fungus Candida albicans compared to moringa fruit extracted by ethanol and hexane. The percentages inhibition of Moringa extracts on the growth of the Candida albicans with distilled water, ethanol and hexane solvents were 89.90%, 57.90% and 8.97% respectively. Phytochemical screening test showed that the moringa fruit contain alkaloids, flavonoids and steroids.

  3. Development of DNA probes for Candida albicans

    International Nuclear Information System (INIS)

    Cheung, L.L.; Hudson, J.B.

    1988-01-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both 32 P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis

  4. Development of DNA probes for Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  5. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.

    Science.gov (United States)

    de Barros, Patrícia Pimentel; Freire, Fernanda; Rossoni, Rodnei Dennis; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2017-07-01

    Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.

  6. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.

    Science.gov (United States)

    Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R

    2008-10-01

    The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.

  7. Candida albicans osteomyelitis of the cervical spine

    International Nuclear Information System (INIS)

    Cha, Jang-Gyu; Hong, Hyun-Sook; Koh, Yoon-Woo; Kim, Hee-Kyung; Park, Jung-Mi

    2008-01-01

    Fungal osteomyelitis is a rare infection that usually develops in immunocompromised patients. Additionally, involvement of the cervical spine by Candida albicans is extremely rare; only three previous cases of Candida vertebral osteomyelitis have been reported in the literature. The diagnosis may be delayed due to nonspecific radiologic findings and a slow progression. We report the CT, MRI, bone scan, and PET-CT findings in a patient who developed Candida osteomyelitis, which was initially misdiagnosed as metastasis, at the atlas and axis following treatment for nasopharyngeal cancer. (orig.)

  8. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species

    Science.gov (United States)

    Whaley, Sarah G.; Berkow, Elizabeth L.; Rybak, Jeffrey M.; Nishimoto, Andrew T.; Barker, Katherine S.; Rogers, P. David

    2017-01-01

    Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species. PMID:28127295

  10. Postantifungal Effect of Micafungin against the Species Complexes of Candida albicans and Candida parapsilosis.

    Directory of Open Access Journals (Sweden)

    Sandra Gil-Alonso

    Full Text Available Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. Candida albicans is the most common cause of invasive candidiasis; however, infections due to non-C. albicans species, such as Candida parapsilosis, are rising. Killing and postantifungal effects (PAFE are important factors in both dose interval choice and infection outcome. The aim of this study was to determinate the micafungin PAFE against 7 C. albicans strains, 5 Candida dubliniensis, 2 Candida Africana, 3 C. parapsilosis, 2 Candida metapsilosis and 2 Candida orthopsilosis. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 μg/ml. Time-kill experiments (TK were conducted at the same concentrations. Samples were removed at each time point (0-48 h and viable counts determined. Micafungin (2 μg/ml was fungicidal (≥ 3 log10 reduction in TK against 5 out of 14 (36% strains of C. albicans complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%. In TK against C. parapsilosis, 8 μg/ml of micafungin turned out to be fungicidal against 4 out 7 (57% strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for C. albicans complex (41.83 ± 2.18 h differed from C. parapsilosis complex (8.07 ± 4.2 h at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against C. albicans and C. parapsilosis complexes, being PAFE for the C. albicans complex longer than for the C. parapsilosis complex.

  11. FarnesoI beyond morphogenesis controI: effect in Non- Candida albicans Candida species

    OpenAIRE

    Martins, Margarida Isabel Barros Coelho; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2007-01-01

    Candididasis is one of the most important life-tbreatening opportunistic mycosis mainly occurring in individuais with impaired immunity. Although Candida albicans remains the most common fungai isolate, an increase in Non-Candida albicans Candida (NCAC) species is being reported. ln fact, Candida glabrata, Candida krusei, Candida parapsilosis and Candida tropicalis are emerging as clinically relevant pathogens. So it is of great importance to study the mechanisms of infection b...

  12. Detecting Candida albicans in human milk.

    Science.gov (United States)

    Morrill, Jimi Francis; Pappagianis, Demosthenes; Heinig, M Jane; Lönnerdal, Bo; Dewey, Kathryn G

    2003-01-01

    Procedures for diagnosis of mammary candidosis, including laboratory confirmation, are not well defined. Lactoferrin present in human milk can inhibit growth of Candida albicans, thereby limiting the ability to detect yeast infections. The inhibitory effect of various lactoferrin concentrations on the growth of C. albicans in whole human milk was studied. The addition of iron to the milk led to a two- to threefold increase in cell counts when milk contained 3.0 mg of lactoferrin/ml and markedly reduced the likelihood of false-negative culture results. This method may provide the necessary objective support needed for diagnosis of mammary candidosis.

  13. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    Science.gov (United States)

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  14. Risk factors for fatal candidemia caused by Candida albicans and non-albicans Candida species

    Directory of Open Access Journals (Sweden)

    Tang Ran-Bin

    2005-04-01

    Full Text Available Abstract Background Invasive fungal infections, such as candidemia, caused by Candida species have been increasing. Candidemia is not only associated with a high mortality (30% to 40% but also extends the length of hospital stay and increases the costs of medical care. Sepsis caused by Candida species is clinically indistinguishable from bacterial infections. Although, the clinical presentations of the patients with candidemia caused by Candida albicans and non-albicans Candida species (NAC are indistinguishable, the susceptibilities to antifungal agents of these species are different. In this study, we attempted to identify the risk factors for candidemia caused by C. albicans and NAC in the hope that this may guide initial empiric therapy. Methods A retrospective chart review was conducted during 1996 to 1999 at the Veterans General Hospital-Taipei. Results There were 130 fatal cases of candidemia, including 68 patients with C. albicans and 62 with NAC. Candidemia was the most likely cause of death in 55 of the 130 patients (42.3 %. There was no significant difference in the distribution of Candida species between those died of candidemia and those died of underlying conditions. Patients who had one of the following conditions were more likely to have C. albicans, age ≧ 65 years, immunosuppression accounted to prior use of steroids, leukocytosis, in the intensive care unit (ICU, and intravascular and urinary catheters. Patients who had undergone cancer chemotherapy often appeared less critically ill and were more likely to have NAC. Conclusion Clinical and epidemiological differences in the risk factors between candidemia caused by C. albicans and NAC may provide helpful clues to initiate empiric therapy for patients infected with C. albicans versus NAC.

  15. Risk factors for fatal candidemia caused by Candida albicans and non-albicans Candida species

    Science.gov (United States)

    Cheng, Ming-Fang; Yang, Yun-Liang; Yao, Tzy-Jyun; Lin, Chin-Yu; Liu, Jih-Shin; Tang, Ran-Bin; Yu, Kwok-Woon; Fan, Yu-Hua; Hsieh, Kai-Sheng; Ho, Monto; Lo, Hsiu-Jung

    2005-01-01

    Background Invasive fungal infections, such as candidemia, caused by Candida species have been increasing. Candidemia is not only associated with a high mortality (30% to 40%) but also extends the length of hospital stay and increases the costs of medical care. Sepsis caused by Candida species is clinically indistinguishable from bacterial infections. Although, the clinical presentations of the patients with candidemia caused by Candida albicans and non-albicans Candida species (NAC) are indistinguishable, the susceptibilities to antifungal agents of these species are different. In this study, we attempted to identify the risk factors for candidemia caused by C. albicans and NAC in the hope that this may guide initial empiric therapy. Methods A retrospective chart review was conducted during 1996 to 1999 at the Veterans General Hospital-Taipei. Results There were 130 fatal cases of candidemia, including 68 patients with C. albicans and 62 with NAC. Candidemia was the most likely cause of death in 55 of the 130 patients (42.3 %). There was no significant difference in the distribution of Candida species between those died of candidemia and those died of underlying conditions. Patients who had one of the following conditions were more likely to have C. albicans, age ≧ 65 years, immunosuppression accounted to prior use of steroids, leukocytosis, in the intensive care unit (ICU), and intravascular and urinary catheters. Patients who had undergone cancer chemotherapy often appeared less critically ill and were more likely to have NAC. Conclusion Clinical and epidemiological differences in the risk factors between candidemia caused by C. albicans and NAC may provide helpful clues to initiate empiric therapy for patients infected with C. albicans versus NAC. PMID:15813977

  16. Candida albicans response to spaceflight (NASA STS-115)

    Data.gov (United States)

    National Aeronautics and Space Administration — This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen Candida albicans...

  17. Evaluation of Candida Albicans Biofilm Formation on Various Dental ...

    African Journals Online (AJOL)

    2016-06-24

    Jun 24, 2016 ... This study compared the susceptibility of six dental restorative materials to Candida albicans adhesion. ... found for the composite and the compomer samples. ..... Candida colonization on acrylic resins and denture liners:.

  18. Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-01-01

    Candida albicans and Candida dubliniensis are highly related pathogenic yeast species. However, C. albicans is far more prevalent in human infection and has been shown to be more pathogenic in a wide range of infection models. Comparison of the genomes of the two species has revealed that they are very similar although there are some significant differences, largely due to the expansion of virulence-related gene families (e.g., ALS and SAP) in C. albicans, and increased levels of pseudogenisation in C. dubliniensis. Comparative global gene expression analyses have also been used to investigate differences in the ability of the two species to tolerate environmental stress and to produce hyphae, two traits that are likely to play a role in the lower virulence of C. dubliniensis. Taken together, these data suggest that C. dubliniensis is in the process of undergoing reductive evolution and may have become adapted for growth in a specialized anatomic niche.

  19. Isolation of a variant of Candida albicans.

    Science.gov (United States)

    Buckley, H R; Price, M R; Daneo-Moore, L

    1982-01-01

    During the course of Candida albicans antigen production, a variant of this organism was encountered which did not produce hyphae at 37 degrees C. Presented here are some of the characteristics of this variant. It produces hyphae at 25 degrees C on cornmeal agar and synthetic medium plus N-acetylglucosamine and Tween 80. At 37 degrees C, it does not produce hyphae on these media, although C. albicans normally does produce hyphae under these circumstances. In liquid synthetic medium, this variant does not produce hyphae at 37 degrees C. The variant strain was analyzed for DNA, RNA, protein content, and particle size. After 50 to 70 h in balanced exponential-phase growth, particle size distribution was narrow, and there were no differences in the DNA, RNA, or protein content per particle in the two strains. When balanced exponential-phase cultures were brought into stationary phase, both strains contained the same amount of DNA per cell. Images PMID:6752021

  20. Isolation of a variant of Candida albicans.

    Science.gov (United States)

    Buckley, H R; Price, M R; Daneo-Moore, L

    1982-09-01

    During the course of Candida albicans antigen production, a variant of this organism was encountered which did not produce hyphae at 37 degrees C. Presented here are some of the characteristics of this variant. It produces hyphae at 25 degrees C on cornmeal agar and synthetic medium plus N-acetylglucosamine and Tween 80. At 37 degrees C, it does not produce hyphae on these media, although C. albicans normally does produce hyphae under these circumstances. In liquid synthetic medium, this variant does not produce hyphae at 37 degrees C. The variant strain was analyzed for DNA, RNA, protein content, and particle size. After 50 to 70 h in balanced exponential-phase growth, particle size distribution was narrow, and there were no differences in the DNA, RNA, or protein content per particle in the two strains. When balanced exponential-phase cultures were brought into stationary phase, both strains contained the same amount of DNA per cell.

  1. Otite externe maligne à Candida Albicans

    Science.gov (United States)

    Elayoubi, Fahd; Lachkar, Azeddine; Aabach, Ahmed; Chouai, Mohamed; Ghailan, Mohamed Rachid

    2016-01-01

    L’otite externe maligne est une ostéomyélite de la base du crane. Le Pseudomonas aeruginosa est le germe le plus incriminé. Cependant l’origine fongique n’est pas rare. Patiente âgée de 80 ans avait présenté une otalgie gauche persistante depuis deux mois malgré un traitement bien conduit. L’examen otologique mettait en évidence des signes inflammatoires au niveau du pavillon, une sténose du conduit avec des granulomes, et otorrhée d’allure purulente. Le scanner montrait un comblement otomastoïdien, un processus inflammatoire extensif des tissus pré et rétro-auriculaire et une lyse du tympanal. Vu l’absence d’amélioration un examen mycologique a été réalisé et qui a révélé la présence de Candida Albicans. Les cas d’otite externe maligne à Candida Albicans sont rarement rapportés. L’origine fongique doit être suspecté devant la négativité des prélèvements bactériologiques et la non amélioration malgré un traitement antibiotique bien conduit, et confirmée par des prélèvements mycologiques parfois multiples. L’otite externe maligne à Candida Albicans est une infection rare potentiellement mortelle. PMID:28154677

  2. Triclosan antagonizes fluconazole activity against Candida albicans.

    LENUS (Irish Health Repository)

    Higgins, J

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg\\/L. However, at subinhibitory concentrations (0.5-2 mg\\/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes.

  3. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  4. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  5. Relationship between salivary flow rates and Candida albicans counts.

    Science.gov (United States)

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p Candida counts. Unstimulated whole saliva significantly (p Candida counts of 0 versus or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  6. Sputum Candida albicans presages FEV₁ decline and hospital-treated exacerbations in cystic fibrosis.

    LENUS (Irish Health Repository)

    Chotirmall, Sanjay H

    2010-11-01

    The role of Candida albicans in the cystic fibrosis (CF) airway is underexplored. Considered a colonizer, few question its pathogenic potential despite high isolation frequencies from sputum culture. We evaluated the frequency and identified the strongest predictors of C albicans colonization in CF. Independent associations of colonization with clinical outcomes were determined, and the longitudinal effects of C albicans acquisition on BMI and FEV₁ were evaluated.

  7. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    Science.gov (United States)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  8. Candida albicans infection in patients with oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Čanković Miloš

    2010-01-01

    Full Text Available Bacground/Aim. Systemic candidiasis in intensive care units remains an improtant problem due to antifungal resistance. Patients undergoing radiotherapy for head and neck cancer are at increased risk of developing oral candidiasis and they more frequent have prior fungi colonization. Due to identification of specific risk factors predisposing to fungal infection in order to threat such patients the aim of this study was to determine the presence of Candida species in patients with oral squamous cell carcinoma and compare it to the control subjects (patients with benign oral mucosal lesions. Methods. A total number of 30 consecutive oral cancer examined patients were included in this prospective study (24 men and 6 women with a mean age of 61.47 years, range 41-81 years. The control group consisted of 30 consecutive patients with histologically proven benign oral mucosal lesions (16 men and 14 women with a mean age of 54.53 years, range 16- 83 years. The samples for mycological examination were obtained by using sterile cotton swabs from the cancer lesion surface and in the patients of the control group from the benign mucosal lesion surface. Samples were inoculated in Sabouraud' dextrose agar. For identification purposes, Mackenzie germ tube test was performend on all isolates. Results. The prevalence of Candida was significantly higher in oral cancer patients than in control subjects (χ2 = 5.455, p = 0.020. Candida was found on nine of the 30 cancer surfaces; 5 (16.7% were identified as non-albicans Candida and 4 (13.3% as Candida albicans. In the control group, only Candida albicans was isolated from 2 (6.7% patients. In this study, no statistically significant differences in the presence of Candida species was found with respect to gender, age, smoking, alcohol consumption, wearing of dental protheses and the site of cancer lesion. Conclusion. The increased prevalence of yeasts on the surfaces of oral carcinoma indicates a need for their

  9. Budding off: bringing functional genomics to Candida albicans

    Science.gov (United States)

    Anderson, Matthew Z.

    2016-01-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein–DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species. PMID:26424829

  10. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities.

    Science.gov (United States)

    Muadcheingka, Thaniya; Tantivitayakul, Pornpen

    2015-06-01

    The purposes of this investigation were to study the prevalence of Candida albicans and non-albicans Candida (NAC) species from oral candidiasis patients and evaluate the cell surface hydrophobicity (CSH) and biofilm forming capacity of the clinical isolates Candida species from oral cavity. This study identified a total of 250 Candida strains isolated from 207 oral candidiasis patients with PCR-RFLP technique. CSH value, total biomass of biofilm and biofilm forming ability of 117 oral Candida isolates were evaluated. C. albicans (61.6%) was still the predominant species in oral candidiasis patients with and without denture wearer, respectively, followed by C. glabrata (15.2%), C. tropicalis (10.4%), C. parapsilosis (3.2%), C. kefyr (3.6%), C. dubliniensis (2%), C. lusitaniae (2%), C. krusei (1.6%), and C. guilliermondii (0.4%). The proportion of mixed colonization with more than one Candida species was 18% from total cases. The relative CSH value and biofilm biomass of NAC species were greater than C. albicans (poral isolates NAC species had biofilm forming ability, whereas 78% of C. albicans were biofilm formers. Furthermore, the significant difference of relative CSH values between biofilm formers and non-biofilm formers was observed in the NAC species (poral cavity was gradually increasing. The possible contributing factors might be high cell surface hydrophobicity and biofilm forming ability. The relative CSH value could be a putative factor for determining biofilm formation ability of the non-albicans Candida species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of Candida albicans and Candida dubliniensis planktonic/biofilm quorum sensing molecules on yeast morphogenesis

    OpenAIRE

    Henriques, Mariana; Martins, Margarida Isabel Barros Coelho; Azeredo, Joana; Oliveira, Rosário

    2006-01-01

    One of the aims of this work was to study the effect of farnesol, a quorum sensing molecule for Candida albicans, on morphologic inhibition of Candida dubliniensis. The second goal of this work was to confirm if Candida dubliniensis also excreted quorum sensing molecules, on both planktonic and biofilm forms. The results clearly demonstrate that Candida dubliniensis undergoes morphological alterations triggered by farnesol. It was also found that supernatants of Candida dubliniensis and Ca...

  12. Acid production by oral strains of Candida albicans and Lactobacilli

    NARCIS (Netherlands)

    Klinke, T.; Kneist, S.; de Soet, J.J.; Kuhlisch, E.; Mauersberger, S.; Forster, A.; Klimm, W.

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed,

  13. Comparison of the adhesion ability of Candida albicans strains to ...

    African Journals Online (AJOL)

    The purpose of the present study is to investigate the ability of oral Candida albicans strains to adhere to Caco-2 and Hep-2 epithelial cells, to produce slime using Congo red and Safranin methods and to form a biofilm on polymethylmethacrylate. A total of 20 C. albicans strains were tested in the present work. The biofilm ...

  14. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    Science.gov (United States)

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  15. Elderly nutritional status effection salivary anticandidal capacity against Candida albicans

    Directory of Open Access Journals (Sweden)

    Ria Puspitawati

    2011-06-01

    Full Text Available Background: Elderly often suffer malnutrition and oral candidiasis. Candida albicans (C. albicans which is the most prominent cause of oral candidiasis, is one of commensal oral micro-flora. Nutritional status affect the characteristic of saliva. Saliva is the regulator in the development of C. albicans from comensal into pathogen. Purpose: The purpose of this study was to determining the correlation between elderly nutritional status with salivary total protein and its activity in inhibiting C. albicans growth and biofilm formation. Methods: Using mini nutritional assessment 30 elderly were classified into normal and malnutrition groups. Total protein of unstimulated saliva was measured using Bradford protein assay. The colony forming unit (CFU of C. albicans was counted on 72 hours on SDA cultures without (control or with 2 hour saliva exposure. Biofilm formation was analyzed from the optical density of 10–5 C. albicans suspension without saliva exposure (control or with exposure of 10.000 μg/ml saliva and incubated in 37° C for 2 days. The suspension was put into 96 well plates, stained with crystal-violet dye, and analyzed using microplate reader. Differences between groups were analyzed using independent t-test or Kruskall-Wallis. Correlation between variables was analyzed using Spearman test. Results: Salivary total protein of normal elderly (1.113.5 ± 1.1143.3 was higher than those of malnutrition (613.6 ± 253.6 but not statistically significant (p > 0.05. The CFU of C. albicans exposed to saliva of normal samples (2.060 cfu/ml was significantly lower than control (24.100 cfu/ml and those exposed to malnutrition saliva (5.513.3 cfu/ml. C. albicans biofilm formation is highest in controls (0.177, lower in those exposed to malnourished saliva (0.151 and lowest in those exposed to saliva of good nourished elderly (0.133. Conclusion: Although does not cause significant decrease of salivary total protein, malnutrition in elderly results

  16. Induction of suppressor cells in vitro by Candida albicans.

    Science.gov (United States)

    Cuff, C F; Rogers, C M; Lamb, B J; Rogers, T J

    1986-06-01

    Normal splenocytes cultured with Formalin-killed Candida albicans were shown to acquire significant suppressor cell activity in a period of 3 days. These cells were found to suppress both the phytohemagglutinin-induced mitogen response as well as the anti-sheep erythrocyte antibody response. Experiments were carried out to determine the nature of the suppressor cell population. Results showed that these cells were not susceptible to treatment with anti-Thy 1 antibody and complement. Panning experiments showed that the suppressor cells were not plastic-adherent or Mac-1 antigen-positive. The suppressor cells were, however, adherent to anti-mouse immunoglobulin (F(ab')2-fragment)-coated dishes. Additional experiments showed that the suppressor cell activity was susceptible to treatment with monoclonal anti-Lyb 2.1 antibody and complement. These results suggest that the suppressor cell induced in vitro by Candida is a member of the B-lymphocyte lineage.

  17. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces

    NARCIS (Netherlands)

    Pereira-Cenci, T.; Deng, D.M.; Kraneveld, E.A.; Manders, E.M.M.; Del Bel Cury, A.A.; ten Cate, J.M.; Crielaard, W.

    2008-01-01

    Although Candida containing biofilms contribute to the development of oral candidosis, the characteristics of multi-species Candida biofilms and how oral bacteria modulate these biofilms is poorly understood. The aim of this study was to investigate interactions between Candida albicans and either

  18. Candida albicans importance to denture wearers. A literature review.

    Science.gov (United States)

    Gleiznys, Alvydas; Zdanavičienė, Eglė; Žilinskas, Juozas

    2015-01-01

    Opportunistic oral fungal infections have spred, especially in denture wearers. Denture stomatitis is a common inflammatory reaction, multifactorial etiology, which is usually associated with Candida species, particularly Candida albicans, due to its high virulence, ability to adhere and form biofilms on oral cavity tissues and denture surfaces. This article highlights the pathogenesis, clinical presentation, and management strategies of Candida-associated denture stomatitis commonly encountered in dental practice.

  19. Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †

    Science.gov (United States)

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256

  20. The Candida albicans Biofilm Matrix: Composition, Structure and Function.

    Science.gov (United States)

    Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L

    2017-03-01

    A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

  1. Comparative Evaluation of Oral Candida albicans Carriage in Children with and without Dental Caries: A Microbiological in vivo Study.

    Science.gov (United States)

    Srivastava, Binita; Bhatia, Hind Pal; Chaudhary, Visuja; Aggarwal, Archana; Kumar Singh, Ashish; Gupta, Nidhi

    2012-05-01

    The aim of this study was to examine the presence of Candida albicans in extensive carious lesions before and after treatment of the carious lesions and to evaluate the carriage of Candida albicans in children with and without caries. The study was conducted on 60 childrens who were divided into two groups: Experimental group (group 1) and controlled group (group 2). Each group was further divided into 3 subgroups according to the dentition as: Group A (Deciduous), group B (Mixed) and group C (Permanent). Swab samples for mycological studies were collected from the dorsum of the tongue, vestibular sulcus and peak of the palatal vault. All samples were cultured directly on SDA plate (Sabouraud's dextrose agar). Number of Candida colonies was determined by counting colony forming unit on SDA plates. Further identification of Candida albicans was done by germ-tube test and corn-meal agar. Overall prevalence of Candida albicans carriage was significantly higher and mean value of Candida albicans CFU (colony forming unit) was remarkably higher in group 1 (experimental group) as compare to group 2 (control group). Significant reduction in the frequency and mean value of Candida albicans CFU/plate was seen in children after treatment of carious lesions. This study supports the active role of Candida species in dental caries. Hence, Candida albicans may play an important role as a risk factor for dental caries. It was also seen that the oral environment stabilization procedures were able to reduce Candida albicans counts. Thus, these procedures can be considered efficient in the reduction of caries risk. How to cite this article: Srivastava B, Bhatia HP, Chaudhary V, Aggarwal A, Singh AK, Gupta N. Comparative Evaluation of Oral Candida albicans Carriage in Children with and without Dental Caries: A Microbiological in vivo Study. Int J Clin Pediatr Dent 2012;5(2):108-112.

  2. The interplay between NSAIDs and Candida albicans on the gastrointestinal tract of guinea pigs.

    Science.gov (United States)

    Nadăş, George C; Taulescu, Marian A; Ciobanu, Lidia; Fiţ, Nicodim I; Flore, Chirilă; Răpuntean, Sorin; Bouari, Cosmina M; Catoi, Cornel

    2013-04-01

    Recent studies suggest that Candida albicans colonization is associated with several gastrointestinal inflammatory disorders and is also responsible for the delay in ulcer healing. No data are reported about the effects of C. albicans on the nonsteroidal anti-inflammatory drugs (NSAIDs)-induced necroinflammatory lesions. On the other hand, beneficial effects of NSAIDs regarding the colonization potential with C. albicans have been reported. Our aim was to investigate whether the association between NSAIDs and C. albicans could potentially induce necroinflammatory lesions in the guinea pigs gastric and enteral mucosa. Three interventional groups of 11 guinea pigs each were investigated after 5 days of receiving indomethacin, C. albicans or the association of both. C. albicans and necroinflammatory lesions were graded based on histological examinations. Statistical analysis used Mann-Whitney nonparametric test. NSAIDs did not significantly decrease C. albicans colonization grades on gastrointestinal mucosa. Administration of indomethacin subsequent to C. albicans determined significantly more severe necroinflammatory lesions compared to group that only received C. albicans. The association of NSAIDs and C. albicans did not cause significantly more severe degenerative or inflammatory lesions compared to the administration of only NSAIDs in this experimental model. Associations between NSAIDs and C. albicans caused significantly more severe necroinflammatory injuries than the lesions produced by C. albicans, without enhancing the mucosal injury or inflammation caused by NSAIDs.

  3. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

    Directory of Open Access Journals (Sweden)

    Gilbert Ian

    2011-01-01

    Full Text Available Abstract Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51, but other enzymes of this pathway, such as squalene synthase (SQS which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy-phenyl}]-quinuclidine-2-ene (WSP1267 had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a loss of cell wall integrity, (b detachment of the plasma membrane from the fungal cell wall, (c accumulation of small vesicles in the periplasmic region, (d presence of large electron-dense vacuoles and (e significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new

  4. Anti-Candida albicans biofilm effect of novel heterocyclic compounds.

    Science.gov (United States)

    Kagan, Sarah; Jabbour, Adel; Sionov, Edward; Alquntar, Abed A; Steinberg, Doron; Srebnik, Morris; Nir-Paz, Ran; Weiss, Aryeh; Polacheck, Itzhack

    2014-02-01

    The aims of this study were to develop new anti-biofilm drugs, examine their activity against Candida albicans biofilm and investigate their structure-activity relationship and mechanism of action. A series of thiazolidinedione and succinimide derivatives were synthesized and their ability to inhibit C. albicans biofilm formation and destroy pre-formed biofilm was tested. The biofilms' structure, metabolic activity and viability were determined by XTT assay and propidium iodide and SYTO 9 live/dead stains combined with confocal microscopic analysis. The effect of the most active compounds on cell morphology, sterol distribution and cell wall morphology and composition was then determined by specific fluorescent stains and transmission electron microscopy. Most of the compounds were active at sub-MICs. Elongation of the aliphatic side chain resulted in reduced anti-biofilm activity and the sulphur atom contributed to biofilm killing, indicating a structure-activity relationship. The compounds differed in their effects on biofilm viability, yeast-to-hyphal form transition, hyphal morphology, cell wall morphology and composition, and sterol distribution. The most effective anti-biofilm compounds were the thiazolidinedione S8H and the succinimide NA8. We developed novel anti-biofilm agents that both inhibited and destroyed C. albicans biofilm. With some further development, these agents might be suitable for therapeutic purposes.

  5. Candida albicans survival and biofilm formation under starvation conditions.

    Science.gov (United States)

    Ning, Y; Hu, X; Ling, J; Du, Y; Liu, J; Liu, H; Peng, Z

    2013-01-01

    To investigate the survival and biofilm formation capacity of Candida albicans in starvation and under anaerobic conditions. Candida albicans growth and survival were monitored in vitro for up to 8 months. Fungal suspensions from late exponential, stationary and starvation phases were incubated on human dentine, polystyrene and glass slides. Scanning electron microscopy (SEM) was used to observe the process of biofilm formation. 2,3-bis(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide inner salt (XTT) reduction assay was performed to quantify the biofilm formation capability, and confocal laser scanning microscopy (CLSM) was used to study and make semi-quantitative comparisons of the ultrastructure of biofilms formed on human dentine. 'XTT bioactivity' and 'COMSTAT results' were analysed by two-way analysis of variance (ANOVA) and one-way ANOVA, respectively. Candida albicans survived for over six months. SEM demonstrated that starving C. albicans produced mature biofilms on different substrata. C. albicans of the same growth phase incubated on human dentine displayed significantly higher biofilm formation capability than on polystyrene or glass slides (P roughness coefficient and surface/volume ratio (P < 0.05). Candida albicans cells can survive and form biofilms in anaerobic and nutrient-limited conditions and may pose a treatment challenge. © 2012 International Endodontic Journal.

  6. Rutas de glicosilación en Candida albicans: circuitos reguladores y efectos sobre virulencia

    OpenAIRE

    Domínguez Cantero, María del Pilar

    2011-01-01

    [ES]Esta tesis trata sobre las rutas de glicosilación en Candida albicans: circuitos reguladores y efectos sobre virulencia. [EN]This thesis is about glycosylation pathways in Candida albicans: regulatory circuits and effects on virulence.

  7. In Vitro Activities of Terbinafine against Cutaneous Isolates of Candida albicans and Other Pathogenic Yeasts

    Science.gov (United States)

    Ryder, Neil S.; Wagner, Sonja; Leitner, Ingrid

    1998-01-01

    Terbinafine is active in vitro against a wide range of pathogenic fungi, including dermatophytes, molds, dimorphic fungi, and some yeasts, but earlier studies indicated that the drug had little activity against Candida albicans. In contrast, clinical studies have shown topical and oral terbinafine to be active in cutaneous candidiasis and Candida nail infections. In order to define the anti-Candida activity of terbinafine, we tested the drug against 350 fresh clinical isolates and additional strains by using a broth dilution assay standardized according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) M27-A assay. Terbinafine was found to have an MIC of 1 μg/ml for reference C. albicans strains. For 259 clinical isolates, the MIC at which 50% of the isolates are inhibited (MIC50) of terbinafine was 1 μg/ml (fluconazole, 0.5 μg/ml), and the MIC90 was 4 μg/ml (fluconazole, 1 μg/ml). Terbinafine was highly active against Candida parapsilosis (MIC90, 0.125 μg/ml) and showed potentially interesting activity against isolates of Candida dubliniensis, Candida guilliermondii, Candida humicola, and Candida lusitaniae. It was not active against the Candida glabrata, Candida krusei, and Candida tropicalis isolates in this assay. Cryptococcus laurentii and Cryptococcus neoformans were highly susceptible to terbinafine, with MICs of 0.06 to 0.25 μg/ml. The NCCLS macrodilution assay provides reproducible in vitro data for terbinafine against Candida and other yeasts. The MICs for C. albicans and C. parapsilosis are compatible with the known clinical efficacy of terbinafine in cutaneous infections, while the clinical relevance of its activities against the other species has yet to be determined. PMID:9593126

  8. Candida albicans Hom6 is a homoserine dehydrogenase involved in protein synthesis and cell adhesion

    Directory of Open Access Journals (Sweden)

    Pei-Wen Tsai

    2017-12-01

    Full Text Available Background/Purpose: Candida albicans is a common fungal pathogen in humans. In healthy individuals, C. albicans represents a harmless commensal organism, but infections can be life threatening in immunocompromised patients. The complete genome sequence of C. albicans is extremely useful for identifying genes that may be potential drug targets and important for pathogenic virulence. However, there are still many uncharacterized genes in the Candida genome database. In this study, we investigated C. albicans Hom6, the functions of which remain undetermined experimentally. Methods: HOM6-deleted and HOM6-reintegrated mutant strains were constructed. The mutant strains were compared with wild-type in their growth in various media and enzyme activity. Effects of HOM6 deletion on translation were further investigated by cell susceptibility to hygromycin B or cycloheximide, as well as by polysome profiling, and cell adhesion to polystyrene was also determined. Results: C. albicans Hom6 exhibits homoserine dehydrogenase activity and is involved in the biosynthesis of methionine and threonine. HOM6 deletion caused translational arrest in cells grown under amino acid starvation conditions. Additionally, Hom6 protein was found in both cytosolic and cell-wall fractions of cultured cells. Furthermore, HOM6 deletion reduced C. albicans cell adhesion to polystyrene, which is a common plastic used in many medical devices. Conclusion: Given that there is no Hom6 homologue in mammalian cells, our results provided an important foundation for future development of new antifungal drugs. Keywords: Candida albicans, cell adhesion, Hom6, homoserine dehydrogenase, protein synthesis

  9. Dental Caries in Rats Associated with Candida albicans

    OpenAIRE

    Klinke, Thomas; Guggenheim, Bernhard; Klimm, Wolfgang; Thurnheer, Thomas

    2014-01-01

    In addition to occasional opportunistic colonization of the oral mucosa, Candida albicans is frequently found in carious dentin. The yeast’s potential to induce dental caries as a consequence of its pronounced ability to produce and tolerate acids was investigated. Eighty caries-active Osborne-Mendel rats were raised on an ampicillin-supplemented diet and exposed to C. albicans and/or Streptococcus mutans, except for controls. Throughout the 28-day test period, the animals were offered the mo...

  10. Aktivitas Antijamur Senyawa Bioaktif Ekstrak Gelidium Latifolium Terhadap Candida Albicans

    OpenAIRE

    Lutfiyanti, Rosiska; Ma'ruf, Widodo Farid; Dewi, Eko Nurcahya

    2012-01-01

    Gelidium sp. has bioactive compounds which is estimated has potential activity as antifungal. The aim of this study were to know bioactive compounds from Gelidium latifolium with different solvent, to know the potency of Gelidium latifolium extract as antifungal towards C. albicans and to know the effect of different concentration of Gelidium latifolium extract towards antifungal activity. The result showed that the methanol extract is able to produce inhibition zones toward Candida albicans,...

  11. A radiolabel release microassay for phagocytic killing of Candida albicans

    International Nuclear Information System (INIS)

    Bistoni, F.; Baccarini, M.; Blasi, E.; Marconi, P.; Puccetti, P.

    1982-01-01

    The chromium-51 release technique for quantifying intracellular killing of radiolabelled Candida albicans particles was exploited in a microassay in which murine and human phagocytes acted as effectors under peculiarly simple conditions. At appropriate effector: target ratios and with a 4 h incubation, up to 50% specific chromium release could be detected in the supernatant with no need for opsonization or lysis of phagocytes. This simple microassay permits easy-to-perform, simultaneous testing of a variety of different phagocytes even if only available in limited amounts, and provides an objective measurement of intracellular killing of Candida albicans. (Auth.)

  12. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B

    Directory of Open Access Journals (Sweden)

    Demet Toprak

    2015-01-01

    Full Text Available Central nervous system (CNS infection with Candida is rare but significant because of its high morbidity and mortality. When present, it is commonly seen among immunocompromised and hospitalized patients. Herein, we describe a case of a four-year-old boy with acute lymphoblastic leukemia (ALL who experienced recurrent Candida albicans meningitis. The patient was treated successfully with intravenous liposomal amphotericin B at first attack, but 25 days after discharge he was readmitted to hospital with symptoms of meningitis. Candida albicans was grown in CFS culture again and cranial magnetic resonance imaging (MRI showed ventriculitis. We administered liposomal amphotericin B both intravenously and intraventricularly and favorable result was achieved without any adverse effects. Intraventricular amphotericin B may be considered for the treatment of recurrent CNS Candida infections in addition to intravenous administration.

  13. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells.

    Science.gov (United States)

    Vila, Taissa; Ishida, Kelly; Seabra, Sergio Henrique; Rozental, Sonia

    2016-11-01

    Candida spp. can adhere to and form biofilms over different surfaces, becoming less susceptible to antifungal treatment. Resistance of biofilms to antifungal agents is multifactorial and the extracellular matrix (ECM) appears to play an important role. Among the few available antifungals for treatment of candidaemia, only the lipid formulations of amphotericin B (AmB) and the echinocandins are effective against biofilms. Our group has previously demonstrated that miltefosine has an important effect against Candida albicans biofilms. Thus, the aim of this work was to expand the analyses of the in vitro antibiofilm activity of miltefosine to non-albicans Candida spp. Miltefosine had significant antifungal activity against planktonic cells and the development of biofilms of C. albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. The activity profile in biofilms was superior to fluconazole and was similar to that of AmB and caspofungin. Biofilm-derived cells with their ECM extracted became as susceptible to miltefosine as planktonic cells, confirming the importance of the ECM in the biofilm resistant behaviour. Miltefosine also inhibited biofilm dispersion of cells at the same concentration needed to inhibit planktonic cell growth. The data obtained in this work reinforce the potent inhibitory activity of miltefosine on biofilms of the four most pathogenic Candida spp. and encourage further studies for the utilisation of this drug and/or structural analogues on biofilm-related infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  14. Relationship between Antifungal Activity against Candida albicans and Electron Parameters of Selected N-Heterocyclic Thioamides

    Science.gov (United States)

    Stachowicz, Jadwiga; Krajewska-Kułak, Elżbieta; Łukaszuk, Cecylia; Niewiadomy, A.

    2014-01-01

    Due to the increasing demand for new pharmaceuticals showing biological activity against pathogenic microorganisms, there is increasing search for new compounds with predicted biological activity. Variously substituted thioamide derivatives with 1.3 and 1.2 ring of thiazole and 1,3,4-thiadiazole, as well as pyrazole were assessed for their activity against Candida albicans. Activity of majority of tested thioamides was larger as compared with that of the reference drugs. The electron parameters of obtained N-heterocyclic thioamides were determined and dependencies on their biological activity against Candida albicans were studied. The best electron compliance of produced bindings with the activity against Candida albicans was observed for the derivatives containing 1,3,4-thiadiazole ring. PMID:25284926

  15. Farnesol signalling in Candida albicans - more than just communication.

    Science.gov (United States)

    Polke, Melanie; Leonhardt, Ines; Kurzai, Oliver; Jacobsen, Ilse D

    2018-03-01

    Candida albicans is a successful colonizer of the human host, which can, under certain circumstances cause a range of clinically diverse infections. Important virulence-associated traits of the fungus, such as the dimorphic switch and biofilm formation, are controlled by the quorum sensing molecule farnesol. Given the potential of farnesol as a novel antifungal drug, there has been increasing research into the mechanism underlying farnesol sensing and action in C. albicans. However, despite the identification of various factors involved in farnesol signalling, its exact mode of action remains largely unclear. This review provides an overview of the currently known aspects of farnesol production, sensing and action within C. albicans. We also illustrate the characteristic of C. albicans to simultaneously produce and tolerate high farnesol concentrations that are lethal to other microbes. Furthermore, we summarize new literature on the role of farnesol in the interaction of C. albicans with the human host and highlight its action as a potent immunomodulatory molecule.

  16. Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea.

    NARCIS (Netherlands)

    Jacobsen, M.D.; Boekhout, T.; Odds, F.C.

    2008-01-01

    We used multi-locus sequence typing (MLST) to investigate 35 yeast isolates representing the two genome-sequenced strains plus the type strain of Candida albicans, four isolates originally identified as Candida stellatoidea type I and 28 representing type strains of other species now regarded as

  17. Purification and germination of Candida albicans and Candida dubliniensis chlamydospores cultured in liquid media

    OpenAIRE

    Citiulo, Francesco; Moran, Gary; COLEMAN, DAVID; SULLIVAN, DEREK

    2009-01-01

    PUBLISHED Candida albicans and Candida dubliniensis are the only Candida species that have been observed to produce chlamydospores. The function of these large, thick-walled cells is currently unknown. In this report we describe the production and purification of chlamydospores from these species in defined liquid media. Staining with the fluorescent dye FUN-1 indicated that chlamydospores are metabolically active cells, but that metabolic activity is undetectable in chlamydospores that...

  18. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.

    Science.gov (United States)

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G; Cormack, Brendan; Edgerton, Mira

    2016-03-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.

  19. Host defence against disseminated and invasive candida albicans infections.

    NARCIS (Netherlands)

    Vonk, A.G.

    2004-01-01

    The yeast Candida albicans is the primary etiologic agent of disseminated and invasive candidiasis. The incidence of disseminated and invasive candidiasis has paralleled the use of modern medical procedures that adversely affect the immune system, and highlights the difficulty of treating

  20. Evaluation of Candida Albicans Biofilm Formation on Various Parts ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... Aims: Candida albicans adhesion to any oral substrata is the first and essential stage in forming a .... kinds of resin, glass, and even metal surfaces.[14] ... various parts of implant materials [tissue level implant, bone level ...

  1. Evaluation of Candida albicans biofilm formation on various dental ...

    African Journals Online (AJOL)

    Evaluation of Candida albicans biofilm formation on various dental restorative material surfaces. ... Nigerian Journal of Clinical Practice ... was significantly lower on the resin-modified glass ionomer and glass-ionomer cement samples. ... Conclusion: This finding emphasizes the use of glass ionomer restorative cements and ...

  2. Differentiation between Candida albicans and Candida dubliniensis using hypertonic Sabouraud broth and tobacco agar

    Directory of Open Access Journals (Sweden)

    Fabíola Silveira-Gomes

    2011-08-01

    Full Text Available INTRODUCTION: Opportunistic fungal infections in immunocompromised hosts are caused by Candida species, and the majority of such infections are due to Candida albicans. However, the emerging pathogen Candida dubliniensis demonstrates several phenotypic characteristics in common with C. albicans, such as production of germ tubes and chlamydospores, calling attention to the development of stable resistance to fluconazole in vitro. The aim of this study was to evaluate the performance of biochemistry identification in the differentiating between C. albicans and C. dubliniensis, by phenotyping of yeast identified as C. albicans. METHODS: Seventy-nine isolates identified as C. albicans by the API system ID 32C were grown on Sabouraud dextrose agar at 30°C for 24-48h and then inoculated on hypertonic Sabouraud broth and tobacco agar. RESULTS: Our results showed that 17 (21.5% isolates were growth-inhibited on hypertonic Sabouraud broth, a phenotypic trait inconsistent with C. albicans in this medium. However, the results observed on tobacco agar showed that only 9 (11.4% of the growth-inhibited isolates produced characteristic colonies of C. dubliniensis (rough colonies, yellowish-brown with abundant fragments of hyphae and chlamydospores. CONCLUSIONS: The results suggest that this method is a simple tool for screening C. albicans and non-albicans yeast and for verification of automated identification.

  3. Differentiation between Candida albicans and Candida dubliniensis using hypertonic Sabouraud broth and tobacco agar.

    Science.gov (United States)

    Silveira-Gomes, Fabíola; Sarmento, Dayse Nogueira; Espírito-Santo, Elaine Patrícia Tavares do; Souza, Nádia de Oliveira; Pinto, Thifany Mendes; Marques-da-Silva, Silvia Helena

    2011-01-01

    Opportunistic fungal infections in immunocompromised hosts are caused by Candida species, and the majority of such infections are due to Candida albicans. However, the emerging pathogen Candida dubliniensis demonstrates several phenotypic characteristics in common with C. albicans, such as production of germ tubes and chlamydospores, calling attention to the development of stable resistance to fluconazole in vitro. The aim of this study was to evaluate the performance of biochemistry identification in the differentiating between C. albicans and C. dubliniensis, by phenotyping of yeast identified as C. albicans. Seventy-nine isolates identified as C. albicans by the API system ID 32C were grown on Sabouraud dextrose agar at 30°C for 24-48h and then inoculated on hypertonic Sabouraud broth and tobacco agar. Our results showed that 17 (21.5%) isolates were growth-inhibited on hypertonic Sabouraud broth, a phenotypic trait inconsistent with C. albicans in this medium. However, the results observed on tobacco agar showed that only 9 (11.4%) of the growth-inhibited isolates produced characteristic colonies of C. dubliniensis (rough colonies, yellowish-brown with abundant fragments of hyphae and chlamydospores). The results suggest that this method is a simple tool for screening C. albicans and non-albicans yeast and for verification of automated identification.

  4. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shulong; Fu, Yingyuan, E-mail: yingyuanfu@126.com; Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  5. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    International Nuclear Information System (INIS)

    Yang, Shulong; Fu, Yingyuan; Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-01-01

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca 2+ –Mg 2+ ATPase in C. albicans. • Baicalin increases the endocytic free Ca 2+ concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of 3 H-UdR, 3 H-TdR and 3 H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca 2+ –Mg 2+ ATPase, cytosolic Ca 2+ concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited 3 H-UdR, 3 H-TdR and 3 H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca 2+ –Mg 2+ ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca 2+ concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca 2+ –Mg 2+ ATPase, increasing cytosolic Ca 2+ content and damaging the ultrastructure of C. albicans

  6. Differentiation of Candida albicans, Candida glabrata, and Candida krusei by FT-IR and chemometrics by CHROMagar™ Candida.

    Science.gov (United States)

    Wohlmeister, Denise; Vianna, Débora Renz Barreto; Helfer, Virginia Etges; Calil, Luciane Noal; Buffon, Andréia; Fuentefria, Alexandre Meneghello; Corbellini, Valeriano Antonio; Pilger, Diogo André

    2017-10-01

    Pathogenic Candida species are detected in clinical infections. CHROMagar™ is a phenotypical method used to identify Candida species, although it has limitations, which indicates the need for more sensitive and specific techniques. Infrared Spectroscopy (FT-IR) is an analytical vibrational technique used to identify patterns of metabolic fingerprint of biological matrixes, particularly whole microbial cell systems as Candida sp. in association of classificatory chemometrics algorithms. On the other hand, Soft Independent Modeling by Class Analogy (SIMCA) is one of the typical algorithms still little employed in microbiological classification. This study demonstrates the applicability of the FT-IR-technique by specular reflectance associated with SIMCA to discriminate Candida species isolated from vaginal discharges and grown on CHROMagar™. The differences in spectra of C. albicans, C. glabrata and C. krusei were suitable for use in the discrimination of these species, which was observed by PCA. Then, a SIMCA model was constructed with standard samples of three species and using the spectral region of 1792-1561cm -1 . All samples (n=48) were properly classified based on the chromogenic method using CHROMagar™ Candida. In total, 93.4% (n=45) of the samples were correctly and unambiguously classified (Class I). Two samples of C. albicans were classified correctly, though these could have been C. glabrata (Class II). Also, one C. glabrata sample could have been classified as C. krusei (Class II). Concerning these three samples, one triplicate of each was included in Class II and two in Class I. Therefore, FT-IR associated with SIMCA can be used to identify samples of C. albicans, C. glabrata, and C. krusei grown in CHROMagar™ Candida aiming to improve clinical applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Stability of candida albicans over long and short term storage in a ...

    African Journals Online (AJOL)

    BACKGROUND: Candida albicans are widely isolated fungal yeast agents from clinical samples. ... water,Chromagar plate,mineral oil overlay and brain heart infusion broth plus 10% glycerol at -20OC.Recovery rates were determined at six months,12 months and 18 months by sub-culturing onto sabouraud dextrose agar.

  8. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    2011-04-01

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  9. Molecular genetic techniques for gene manipulation in Candida albicans.

    Science.gov (United States)

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-05-15

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains.

  10. Short peptides allowing preferential detection of Candida albicans hyphae.

    Science.gov (United States)

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  11. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans

    Science.gov (United States)

    Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul

    2017-05-01

    This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.

  12. Candida Albicans and Non-Albicans Species as Etiological Agent of Vaginitis in Pregnant and Non-Pregnant Women

    Directory of Open Access Journals (Sweden)

    Mirela Babić

    2010-02-01

    Full Text Available Pregnancy represents a risk factor in the occurrence of vaginal candidosis. The objectives of our study were: to make determination of the microscopic findings of vaginal swab, frequency of Candida species in the culture of pregnant women and patients who are not pregnant, determine the Candida species in all cultures, and to determine the frequency and differences in the frequency of C. albicans and other non-albicans species. In one year study performed during 2006 year, we tested patients of Gynaecology and Obstetrics clinic of the Clinical Centre in Sarajevo and Gynaecology department of the General hospital in Sarajevo. 447 woman included in the study were separated in two groups: 203 pregnant (in the last trimester of pregnancy, and 244 non-pregnant woman in period of fertility. Each vaginal swab was examined microscopically. The yeast, number of colonies, and the species of Candida were determined on Sabouraud dextrose agar with presence of antibiotics. For determination of Candida species, we used germ tube test for detection of C. albicans, and cultivation on the selective medium and assimilation tests for detection of non-albicans species. The results indicated positive microscopic findings in the test group (40,9%, as well as greater number of positive cultures (46,8%. The most commonly detected species for both groups was C. albicans (test group 40.9% and control group 23,0%. The most commonly detected non-albicans species for the test group were C. glabrata (4,2 % and C. krusei (3,2%, and for the control group were C. glabrata (3,2% and C. parapsilosis (3,2%. The microscopic findings correlated with the number of colonies in positive cultures. In the test group, we found an increased number of yeasts (64,3%, and the pseudopyphae and blastopores by microscopic examination as an indication of infection. In the control group, we found a small number of yeasts (64,6%, in the form of blastopores, as an indication of the candida

  13. Prevalence of Candida albicans, Candida dubliniensis and Candida africana in pregnant women suffering from vulvovaginal candidiasis in Argentina.

    Science.gov (United States)

    Mucci, María Josefina; Cuestas, María Luján; Landanburu, María Fernanda; Mujica, María Teresa

    Vulvovaginal candidiasis (VVC) is a vulvovaginitis commonly diagnosed in gynecology care. In recent years, the taxonomy of the most important pathogenic Candida species, such as Candida albicans have undergone significant changes. This study examined the prevalence of C. albicans, Candida africana, and Candida dubliniensis in vaginal specimens from 210 pregnant women suffering from vulvovaginitis or having asymptomatic colonization. Phenotypic and molecular methods were used for the identification of the species. During the studied period, 55 isolates of Candida or other yeasts were obtained from specimens collected from 52 patients suffering from vulvovaginitis (24.8%). C. albicans was the predominant Candida species in 42 isolates (80.7%), either alone or in combination with other species of the genus (5.7%, n=3). Additionally, nine isolates of C. albicans (50%) were obtained from asymptomatic patients (n=18). C. dubliniensis was the causative agent in 2 (3.8%) cases of VVC, and was also isolated in one asymptomatic patient. Molecular assays were carried out using specific PCR to amplify the ACT1-associated intron sequence of C. dubliniensis. The amplification of the HWP1 gene also correctly identified isolates of the species C. albicans and C. dubliniensis. No C. africana was isolated in this work. Some C. albicans isolates were either homozygous or heterozygous at the HWP1 locus. The distribution of heterozygous and homozygous C. albicans isolates at the HWP1 locus was very similar among patients suffering from VVC and asymptomatic patients (p=0.897). The presence of C. albicans and C. dubliniensis, and the absence of C. africana in pregnant is noteworthy. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  15. Selection of aptamers for Candida albicans by cell-SELEX

    International Nuclear Information System (INIS)

    Miranda, Alessandra Nunes Duarte

    2017-01-01

    The growing concern with invasive fungal infections, responsible for an alarming mortality rate of immunosuppressed patients and in Intensive Care Units, evidences the need for a fast and specific method for the Candida albicans detection, since this species is identified as one of the main causes of septicemia. Commonly, it is a challenge for clinicians to determine the primary infection foci, the dissemination degree, or whether the site of a particular surgery is involved. Although scintigraphic imaging represents a promising tool for infectious foci detection, it still lacks a methodology for C. albicans diagnosis due to the absence of specific radiotracers for this microorganism. Aptamers are molecules that have almost ideal properties for use as diagnostic radiopharmaceuticals, such as high specificity for their molecular targets, lack of immunogenicity and toxicity, high tissue penetration and rapid blood clearance. Aptamers can also be labeled with different radionuclides. This work aims to obtain aptamers for specific binding to C. albicans cells for future application as a radiopharmaceutical. It was used a variation of the SELEX (Systematic Evolution of Ligands by EXponential Enrichment) technique, termed cell-SELEX, in which cells are the targets for selection. A selection protocol was standardized using a random library of single-stranded oligonucleotides, each containing two fixed regions flanking a sequence of 40 random nucleotides. This library was incubated with C. albicans cells in the presence of competitors. Then, the binding sequences were separated by centrifugation, resuspended and amplified by PCR. The amplification was confirmed by agarose gel electrophoresis. After that, the ligands were purified to obtain a new pool of ssDNA, from which a new incubation was carried out. The selection parameters were gradually modified in order to increase stringency. This cycle was repeated 12 times to allow the selection of sequences with the maximum

  16. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms.

    Science.gov (United States)

    Monteiro, D R; Silva, S; Negri, M; Gorup, L F; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2013-04-01

    The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

  17. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed...

  18. UJI AKTIVITAS ANTIJAMUR INFUSA UMBI BAWANG PUTIH (Allium sativum L. TERHADAP Candida albicans SERTA PROFIL KROMATOGRAFINYA

    Directory of Open Access Journals (Sweden)

    Khusnul Diana

    2016-03-01

    Full Text Available As traditional medicine, bawang putih or garlic ( Allium sativum L. can cure as antibacterial and antifungal beside on can restorative as antihypertension, antacid, carminativa (in the dyspepsia, expectorancia and anticolesterol. This research was conducted in order to know the antifungal activity of infusion of Allium sativum against Candida albicans and to identify chemical component’s of this infusion. The antifungal activity was done by liquid dilution method. The MIC (Minimal Inhibitory Concentration and MFC (Minimal Fungicidal Concentration value were used as parameter to determine the antifungal activity. Concentration used in this reseach were 17,5%; 16,25%; 15%; 13,75% ; 12,5% dan 11,25% v/v for Candida albicans. The activity was done by incubating the infusion with fungal in CYG DS media of 37ºC for 18-24 hours. Identification of chemical component was carried out by paper chromatography and thin layer chromatography. The result showed that the MIC (Minimum Inhibitor Concentration for Candida albicans could not be observed because the mixture was turbid. The MFC (Minimum Fungicidal Concentration for Candida albicans was 15% v/v. The tube test and chromatogram showed that the infusion of Allium sativum contained flavonoid, and saponin.

  19. Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?

    Science.gov (United States)

    Bona, E; Cantamessa, S; Pavan, M; Novello, G; Massa, N; Rocchetti, A; Berta, G; Gamalero, E

    2016-12-01

    Candida albicans is an important opportunistic pathogen, responsible for the majority of yeast infections in humans. Essential oils, extracted from aromatic plants, are well-known antimicrobial agents, characterized by a broad spectrum of activities, including antifungal properties. The aim of this work was to assess the sensitivity of 30 different vaginal isolated strains of C. albicans to 12 essential oils, compared to the three main used drugs (clotrimazole, fluconazole and itraconazole). Thirty strains of C. albicans were isolated from vaginal swab on CHROMagar ™ Candida. The agar disc diffusion method was employed to determine the sensitivity to the essential oils. The antifungal activity of the essential oils and antifungal drugs (clotrimazole, itraconazole and fluconazole) were investigated using a microdilution method. Transmission and scanning electron microscopy analyses were performed to get a deep inside on cellular damages. Mint, basil, lavender, tea tree oil, winter savory and oregano essential oils inhibited both the growth and the activity of C. albicans more efficiently than clotrimazole. Damages induced by essential oils at the cellular level were stronger than those caused by clotrimazole. Candida albicans is more sensitive to different essential oils compared to the main used drugs. Moreover, the essential oil affected mainly the cell wall and the membranes of the yeast. The results of this work support the research for new alternatives or complementary therapies against vaginal candidiasis. © 2016 The Society for Applied Microbiology.

  20. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  1. Global Transcriptome Sequencing Identifies Chlamydospore Specific Markers in Candida albicans and Candida dubliniensis

    LENUS (Irish Health Repository)

    Palige, Katja

    2013-04-15

    Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.

  2. Selection of aptamers for Candida albicans by cell-SELEX; Selecao de aptameros para Candida albicans por cell-SELEX

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Alessandra Nunes Duarte

    2017-07-01

    The growing concern with invasive fungal infections, responsible for an alarming mortality rate of immunosuppressed patients and in Intensive Care Units, evidences the need for a fast and specific method for the Candida albicans detection, since this species is identified as one of the main causes of septicemia. Commonly, it is a challenge for clinicians to determine the primary infection foci, the dissemination degree, or whether the site of a particular surgery is involved. Although scintigraphic imaging represents a promising tool for infectious foci detection, it still lacks a methodology for C. albicans diagnosis due to the absence of specific radiotracers for this microorganism. Aptamers are molecules that have almost ideal properties for use as diagnostic radiopharmaceuticals, such as high specificity for their molecular targets, lack of immunogenicity and toxicity, high tissue penetration and rapid blood clearance. Aptamers can also be labeled with different radionuclides. This work aims to obtain aptamers for specific binding to C. albicans cells for future application as a radiopharmaceutical. It was used a variation of the SELEX (Systematic Evolution of Ligands by EXponential Enrichment) technique, termed cell-SELEX, in which cells are the targets for selection. A selection protocol was standardized using a random library of single-stranded oligonucleotides, each containing two fixed regions flanking a sequence of 40 random nucleotides. This library was incubated with C. albicans cells in the presence of competitors. Then, the binding sequences were separated by centrifugation, resuspended and amplified by PCR. The amplification was confirmed by agarose gel electrophoresis. After that, the ligands were purified to obtain a new pool of ssDNA, from which a new incubation was carried out. The selection parameters were gradually modified in order to increase stringency. This cycle was repeated 12 times to allow the selection of sequences with the maximum

  3. Comparison of the Candida albicans and biofilm formation amount on natural tooth,

    Directory of Open Access Journals (Sweden)

    Serdar Polat

    2012-03-01

    Full Text Available Objective: This study compared the retention of the Candidaalbicans and biofilm formation on natural teeth, porcelainand acrylic resin.Materials and methods: Samples are taken with thesterile ecuvion sticks from the buccal embrasures of thenatural tooth, porcelain and acrylic. The biofilm productionof candida reproducing strains was determined withmicroplate method. Samples are settled in 0.5 ml sterilephosphate buffered saline. Reproduction detected coloniesdefined to species in accordance with their macroscopicand microscopic features and germ tube test inmicrobiology laboratory.Results: There was significant differences for retention ofCandida albicans and biofilm formation on the surface oftooth, porcelain and acrylic (p<0.05.Conclusion: Adherence of Candida albicans and biofilmformation on the porcelain significantly less than naturaltooth and acrylic, and retention and biofilm formation onthe tooth less than acrylic.

  4. Genoma de Candida albicans y resistencia a las drogas

    OpenAIRE

    Cruz Quintana, Sandra; Díaz Sjostrom, Pedro; Mazón Baldeón, Gloria; Arias Socarrás, Dunier; Calderón Paz, María; Herrera Molina, Angélica

    2017-01-01

    Resumen Candida albicans es un importante patógeno fúngico en los humanos tanto por su importancia clínica como por su uso como un modelo experimental para la investigación científica. La comprensión de la biología de este patógeno es un requisito importante para la identificación de nuevas dianas de medicamentos para la terapia antifúngica. En esta revisión nos proponemos profundizar en las características del genoma de Candida albicans, su relación con la virulencia y cómo influye en la res...

  5. Genoma de Candida albicans y resistencia a las drogas

    OpenAIRE

    Sandra Cruz Quintana; Pedro Díaz Sjostrom; Gloria Mazón Baldeón; Dunier Arias Socarrás; María Calderón Paz; Angélica Herrera Molina

    2017-01-01

    Candida albicans es un importante patógeno fúngico en los humanos tanto por su importan - cia clínica como por su uso como un modelo experimental para la investigación científica. La comprensión de la biología de este patógeno es un requisito importante para la identificación de nuevas dianas de medicamentos para la terapia antifúngica. En esta revisión nos proponemos profundizar en las características del genoma de Candida albicans, su relación con la virulen - cia y cómo influye en la re...

  6. Candida albicans in patients with oronasal communication and obturator prostheses

    OpenAIRE

    MATTOS, Beatriz Silva Câmara; SOUSA, Andréa Alves de; MAGALHÃES, Marina Helena C. G. de; ANDRÉ, Marcia; BRITO E DIAS, Reinaldo

    2009-01-01

    Patients using obturator prostheses often present denture-induced stomatitis. In order to detect the presence of oral Candida albicans in patients with oronasal communications and to evaluate the effectiveness of a topical antifungal treatment, cytological smears obtained from the buccal and palatal mucosa of 10 adult patients, and from the nasal acrylic surface of their obturator prostheses were examined. A therapeutic protocol comprising the use of oral nystatin (Mycostatin®) and prosthesis...

  7. Limonene inhibits Candida albicans growth by inducing apoptosis.

    Science.gov (United States)

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  8. ANTAGONISTIC EFFECT OF EDIBLE MUSHROOM EXTRACT ON CANDIDA ALBICANS GROWTH

    Directory of Open Access Journals (Sweden)

    Paccola Edneia A. de Souza

    2001-01-01

    Full Text Available Five species of edible mushrooms, Lentinula edodes, Pleurotus ostreatus, Pholiota nameko, Macrolepiota bonaerensis and Agaricus blazei, were tested for their potential to inhibit the in vitro growth of the pathogenic yeast Candida albicans. Only L. edodes had a fungistatic effect on this human pathogen. The inhibitory compound was produced intra and extracellularly in submersed L. edodes culture, and was also present in fresh and dehydrated mushroom basidiocarps. The fungistatic compound was heat sensitive and lost activity after 72 hours.

  9. Deoxyribonucleic acid-deficient strains of Candida albicans.

    OpenAIRE

    Olaiya, A F; Steed, J R; Sogin, S J

    1980-01-01

    We analyzed a series of germ tube-negative variants isolated from Candida albicans 3153A for deoxyribonucleic acid content. As analyzed by flow microfluorometry, the deoxyribonucleic acid level in these variant strains was 50% of that of the parental strain and equivalent to that of haploid Saccharomyces cerevisiae. This finding was confirmed by comparison of survival rates when exposed to the mutagens ultraviolet light, ethyl methane sulfonate, and methyl methane sulfonate. The diameter of t...

  10. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans.

    LENUS (Irish Health Repository)

    Jackson, Andrew P

    2009-12-01

    Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis.

  11. Psd1 Effects on Candida albicans Planktonic Cells and Biofilms

    Directory of Open Access Journals (Sweden)

    Sónia Gonçalves

    2017-06-01

    Full Text Available Candida albicans is an important human pathogen, causing opportunistic infections. The adhesion of planktonic cells to a substrate is the first step for biofilm development. The antimicrobial peptide (AMP Psd1 is a defensin isolated from Pisum sativum seeds. We tested the effects of this AMP on C. albicans biofilms and planktonic cells, comparing its activity with amphotericin B and fluconazole. Three C. albicans variants were studied, one of them a mutant deficient in glucosylceramide synthase, conferring resistance to Psd1 antifungal action. Atomic force microscopy (AFM was used to assess morphological and biomechanical changes on fungal cells. Surface alterations, with membrane disruption and leakage of cellular contents, were observed. Cytometry assays and confocal microscopy imaging showed that Psd1 causes cell death, in a time and concentration-dependent manner. These results demonstrate Psd1 pleiotropic action against a relevant fungal human pathogen, suggesting its use as natural antimycotic agent.

  12. EFEITO ANTIFÚNGICO DO RESVERATROL SOBRE A CANDIDA ALBICANS

    Directory of Open Access Journals (Sweden)

    Bruna Graziele Marques da Silva

    2017-05-01

    Full Text Available A Candida albicans é um fungo comensal da microbiota normal, sendo capaz de produzir infecções em pacientes imunocomprometidos. As infecções estão apresentando resistência às terapias convencionais. Recentemente diversos compostos derivados de produtos naturais vêm sendo testados, destacando o polifenol Resveratrol que possui efeitos farmacológicos. Desse modo o objetivo deste estudo foi avaliar os efeitos do polifenol sobre o crescimento e a viabilidade do biofilme da C. albicans. Foram utilizadas as concentrações do Resveratrol em 5 μΜ, 10 μΜ, 20 μΜ, 50 μΜ, 100 μΜ, 200 μΜ, 300μΜ, 400μΜ e 500μΜ e a densidade de C.albicans foram de 105, 106 e 107 células viáveis/ml, e ainda, foi analisada a morfologia. Os resultados obtidos demonstram maior inibição no crescimento e viabilidade do biofilme na concentração de 500μΜ de polifenol, em comparação ao controle. Dessa forma, o polifenol Resveratrol foi capaz de alterar a morfologia das células e reduzir a viabilidade do biofilme da Candida albicans.

  13. Allergen cross-reactivity between Pityrosporum orbiculare and Candida albicans.

    Science.gov (United States)

    Huang, X; Johansson, S G; Zargari, A; Nordvall, S L

    1995-08-01

    Pityrosporum orbiculare and Candida albicans extracts were separated by SDS-PAGE, and IgE binding was detected by immunoblotting with 21 patient sera that were RAST positive to both yeasts. Cross-wise inhibition was performed of IgE binding of a serum pool containing IgE antibodies to both yeasts. The pool was mixed with serial dilutions of P. orbiculare or C. albicans extracts, and incubated with strips containing separated allergen. IgE binding was quantified by densitometric scanning and percent inhibition was calculated as well as the respective ratios between required extract concentration for 50% inhibition in heterologous compared to homologous inhibition for each component (inhibition ratio). Ten components of P. orbiculare were detected by more than 60% of the sera. IgE binding to C. albicans was weak, and only to four bands was IgE binding detected by more than 30% of the sera. The most important C. albicans allergen was a 48-kDa band, to which IgE of half of the patient sera bound. There was little inhibition of IgE binding to P. orbiculare with C. albicans. Thus, all but three components exhibited an inhibition ratio higher than 100. The inhibition ratio of the 48-kDa C. albicans compound was 50, thus indicating some degree of cross-reactivity. Significant cross-reactivity was shown by C. albicans compounds of 18, 24, 26, 34, and 38 kDa, the inhibition ratios of which were less than 10. There was some degree of cross-reactivity between apparent protein allergens of the two yeasts, but IgE antibodies to C. albicans do not merely reflect sensitization to P. orbiculare.

  14. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  15. Spaceflight enhances cell aggregation and random budding in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Aurélie Crabbé

    Full Text Available This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans-induced genes involved in cell aggregation (similar to flocculation, which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p. infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the

  16. A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Timothy F Meiller

    Full Text Available Oropharyngeal candidiasis is an opportunistic infection considered to be a harbinger of AIDS. The etiologic agent Candida albicans is a fungal species commonly colonizing human mucosal surfaces. However, under conditions of immune dysfunction, colonizing C. albicans can become an opportunistic pathogen causing superficial or even life-threatening infections. The reasons behind this transition, however, are not clear. In the oral cavity, salivary antimicrobial peptides are considered to be an important part of the host innate defense system in the prevention of microbial colonization. Histatin-5 specifically has exhibited potent activity against C. albicans. Our previous studies have shown histatin-5 levels to be significantly reduced in the saliva of HIV+ individuals, indicating an important role for histatin-5 in keeping C. albicans in its commensal stage. The versatility in the pathogenic potential of C. albicans is the result of its ability to adapt through the regulation of virulence determinants, most notably of which are proteolytic enzymes (Saps, involved in tissue degradation. In this study, we show that C. albicans cells efficiently and rapidly degrade histatin-5, resulting in loss of its anti-candidal potency. In addition, we demonstrate that this cellular activity is due to proteolysis by a member of the secreted aspartic proteases (Sap family involved in C. albicans pathogenesis. Specifically, the proteolysis was attributed to Sap9, in turn identifying histatin-5 as the first host-specific substrate for that isoenzyme. These findings demonstrate for the first time the ability of a specific C. albicans enzyme to degrade and deactivate a host antimicrobial peptide involved in the protection of the oral mucosa against C. albicans, thereby providing new insights into the factors directing the transition of C. albicans from commensal to pathogen, with important clinical implications for alternative therapy. This report characterizes the

  17. Genoma de Candida albicans y resistencia a las drogas

    Directory of Open Access Journals (Sweden)

    Sandra Cruz Quintana

    2017-01-01

    Full Text Available Candida albicans es un importante patógeno fúngico en los humanos tanto por su importan - cia clínica como por su uso como un modelo experimental para la investigación científica. La comprensión de la biología de este patógeno es un requisito importante para la identificación de nuevas dianas de medicamentos para la terapia antifúngica. En esta revisión nos proponemos profundizar en las características del genoma de Candida albicans, su relación con la virulen - cia y cómo influye en la resistencia a las drogas antifùngicas, que nos permita comprender los mecanismos por los cuales ejerce su acción patógena y desarrollar otros enfoques en la búsqueda de nuevos antifúngicos. La revisión se realizó a través de los buscadores y plataformas HINARI , SciELO y MEDLINE . Se revisaron 40 revistas de impacto de la Web of Science relacionadas con el tema. Los descriptores empleados fueron: “genome of Candida albicans”, “drug resistance genes”, “dimorphism”, “virulence” y la combinación entre ellos y sus equivalentes en español. El análisis de los genomas fúngicos hace posible predecir el rol de genes con potencial terapéu - tico, con la secuenciación del genoma de Candida albicans ha aumentado la información sobre la función de los genes, entre los que destacan los posibles objetivos farmacológicos. El estudio del genoma de Candida albicans resulta imprescindible para diseñar en el futuro protocolos diagnósticos seguros, así como hallar nuevas dianas antifúngicas que permitan formular te - rapias más efectivas.

  18. Simvastatin inhibits Candida albicans biofilm in vitro.

    Science.gov (United States)

    Liu, Geoffrey; Vellucci, Vincent F; Kyc, Stephanie; Hostetter, Margaret K

    2009-12-01

    By inhibiting the conversion of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) to mevalonate, statins impair cholesterol metabolism in humans. We reasoned that statins might similarly interfere with the biosynthesis of ergosterol, the major sterol of the yeast cell membrane. As assessed by spectrophotometric and microscopic analysis, significant inhibition of biofilm production was noted after 16-h incubation with 1, 2.5, and 5 muM simvastatin, concentrations that did not affect growth, adhesion, or hyphal formation by C. albicans in vitro. Higher concentrations (10, 20, and 25 muM simvastatin) inhibited biofilm by >90% but also impaired growth. Addition of exogenous ergosterol (90 muM) overcame the effects of 1 and 2.5 muM simvastatin, suggesting that at least one mechanism of inhibition is interference with ergosterol biosynthesis. Clinical isolates from blood, skin, and mucosal surfaces produced biofilms; biofilms from bloodstream isolates were similarly inhibited by simvastatin. In the absence of fungicidal activity, simvastatin's interruption of a critical step in an essential metabolic pathway, highly conserved from yeast to man, has unexpected effects on biofilm production by a eukaryotic pathogen.

  19. Enrichment of Multilocus Sequence Typing Clade 1 with Oral Candida albicans Isolates in Patients with Untreated Periodontitis

    Science.gov (United States)

    McManus, Brenda A.; Maguire, Rory; Cashin, Phillipa J.; Claffey, Noel; Flint, Stephen; Abdulrahim, Mohammed H.

    2012-01-01

    This study investigated the prevalence and cell density of Candida species in periodontal pockets, healthy subgingival sites, and oral rinse samples of patients with untreated periodontitis. Twenty-one periodontitis patients underwent sampling at two periodontitis sites, and 19/21 of these patients underwent sampling at one periodontally healthy site. Both paper point and curette sampling techniques were employed. The periodontitis patients and 50 healthy subjects were also sampled by oral rinse. Candida isolates were recovered on CHROMagar Candida medium, and representative isolates were identified. Candida spp. were recovered from 10/21 (46.7%) periodontitis patients and from 16/50 (32%) healthy subjects. C. albicans predominated in both groups and was recovered from all Candida-positive subjects. Candida-positive periodontitis patients yielded Candida from periodontal pockets with average densities of 3,528 and 3,910 CFU/sample from curette and paper point samples, respectively, and 1,536 CFU/ml from oral rinse samples. The majority (18/19) of the healthy sites sampled from periodontitis patients were Candida negative. The 16 Candida-positive healthy subjects yielded an average of 279 CFU/ml from oral rinse samples. C. albicans isolates were investigated by multilocus sequence typing (MLST) to determine if specific clonal groups were associated with periodontitis. MLST analysis of 31 C. albicans isolates from periodontitis patients yielded 19 sequence types (STs), 13 of which were novel. Eleven STs belonged to MLST clade 1. In contrast, 16 C. albicans isolates from separate healthy subjects belonged to 16 STs, with 4 isolates belonging to clade 1. The distributions of STs between both groups were significantly different (P = 0.04) and indicated an enrichment of C. albicans isolates in periodontal pockets, which warrants a larger study. PMID:22875886

  20. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development.

    Science.gov (United States)

    Weerasekera, Manjula M; Wijesinghe, Gayan K; Jayarathna, Thilini A; Gunasekara, Chinthika P; Fernando, Neluka; Kottegoda, Nilwala; Samaranayake, Lakshman P

    2016-11-01

    As there are sparse data on the impact of growth media on the phenomenon of biofilm development for Candida we evaluated the efficacy of three culture media on growth, adhesion and biofilm formation of two pathogenic yeasts, Candida albicans and Candida tropicalis. The planktonic phase yeast growth, either as monocultures or mixed cultures, in sabouraud dextrose broth (SDB), yeast nitrogen base (YNB), and RPMI 1640 was compared, and adhesion as well as biofilm formation were monitored using MTT and crystal violet (CV) assays and scanning electron microscopy. Planktonic cells of C. albicans, C. tropicalis and their 1:1 co-culture showed maximal growth in SDB. C. albicans/C. tropicalis adhesion was significantly facilitated in RPMI 1640 although the YNB elicited the maximum growth for C. tropicalis. Similarly, the biofilm growth was uniformly higher for both species in RPMI 1640, and C. tropicalis was the slower biofilm former in all three media. Scanning electron microscopy images tended to confirm the results of MTT and CV assay. Taken together, our data indicate that researchers should pay heed to the choice of laboratory culture media when comparing relative planktonic/biofilm growth of Candida. There is also a need for standardisation of biofilm development media so as to facilitate cross comparisons between laboratories.

  1. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Fikadu G Tafesse

    2015-10-01

    Full Text Available The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.

  2. Low virulent oral Candida albicans strains isolated from smokers.

    Science.gov (United States)

    de Azevedo Izidoro, Ana Claudia Santos; Semprebom, Andressa Marafon; Baboni, Fernanda Brasil; Rosa, Rosimeire Takaki; Machado, Maria Angela Naval; Samaranayake, Lakshman Perera; Rosa, Edvaldo Antonio Ribeiro

    2012-02-01

    It is widely accepted that tabagism is a predisposing factor to oral candidosis and cumulate data suggest that cigarette compounds may increase candidal virulence. To verify if enhanced virulence occurs in Candida albicans from chronic smokers, a cohort of 42 non-smokers and other of 58 smokers (all with excellent oral conditions and without signs of candidosis) were swabbed on tong dorsum and jugal mucosa. Results showed that oral candidal loads do not differ between smoker and non-smokers. Activities of secreted aspartyl-protease (Sap), phospholipase, chondroitinase, esterase-lipase, and haemolysin secretions were screened for thirty-two C. albicans isolates. There were detected significant increments in phospholipasic and chondroitinasic activities in isolates from non-smokers. For other virulence factors, no differences between both cohorts were achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Deoxyribonucleic acid-deficient strains of Candida albicans.

    Science.gov (United States)

    Olaiya, A F; Steed, J R; Sogin, S J

    1980-03-01

    We analyzed a series of germ tube-negative variants isolated from Candida albicans 3153A for deoxyribonucleic acid content. As analyzed by flow microfluorometry, the deoxyribonucleic acid level in these variant strains was 50% of that of the parental strain and equivalent to that of haploid Saccharomyces cerevisiae. This finding was confirmed by comparison of survival rates when exposed to the mutagens ultraviolet light, ethyl methane sulfonate, and methyl methane sulfonate. The diameter of the variant cells as compared to the diameter of the parental 3153A strain showed a relationship similar to that of the diameters of haploid versus diploid S. cerevisiae. These results indicate that those strains may be representative of the imperfect stage of C. albicans.

  4. The efficacy of crude extract of Aloe secundiflora on Candida Albicans

    African Journals Online (AJOL)

    In- vitro studies on the efficacy of crude extracts of Aloe secundiflora on Candida albicans was conducted. Five mature leaves of Aloe secundiflora were collected and the crude extract was prepared, then autoclaved. The extract was then tested on Candida albicans grown on solid media. The results from these studies ...

  5. POTENSI ANTIMIKROBIA KRIM EKSTRAK RANTING PATAH TULANG (Euphorbia tirucalli Linn. TERHADAP Propionibacterium acnes ATCC 11827 DAN Candida albicans ATCC 24433

    Directory of Open Access Journals (Sweden)

    Melina Scandinovita Setiorini

    2016-04-01

    extracts with cream for testing Candida albicans.The final results were 10% test extract had MIC to Propionibacterium acnes and 6% test extract had MIC in cream to Candida albicans. Keywords: Euphorbia tirucalli L., DMSO, Thymol, antimicrobial potency, cream (o/w, Propionibacterium acnes, Candida albicans

  6. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation.

    Science.gov (United States)

    Olson, Michelle L; Jayaraman, Arul; Kao, Katy C

    2018-04-15

    Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species- Candida albicans and Candida glabrata -are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans / C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans / C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans / C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner. IMPORTANCE Candida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in

  7. Effect of Delta-9-tetrahydrocannabinol on mouse resistance to systemic Candida albicans infection.

    Directory of Open Access Journals (Sweden)

    Gideon W Blumstein

    Full Text Available Delta-9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg in vehicle on days 1-4, 8-11 and 15-18. On day 19, mice were infected with 5×10(5 C. albicans. We also determined the effect of chronic Δ9-THC (4-64 mg/kg treatment on mice infected with a non-lethal dose of 7.5×10(4 C. albicans on day 2, followed by a higher challenge with 5×10(5 C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.

  8. Antimicrobial effects of Coleus amboinicus, Lour folium infusum towards Candida albicans and Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Devi Rianti

    2006-03-01

    Full Text Available A laboratory experimental study conducted on antimicrobial effects of Coleus amboinicus, Lour folium Infusum towards Candida albicans and Streptococcus mutans (S. mutans. Effective concentration of Coleus amboinicus, Lour to decrease the quantities Candida albicans and S. mutans colonies is expected to be found out in this study. This study was using Coleus Amboinicus, Lour folium infusum with 12.5%, 15%, 17.5%, 20%, and 22.5% concentrations. Sterilized aquadest used as a control. Candida albicans and S. mutans quantities was enumerated by counting the amount of Candida albicans and S. mutans growth in the Sabouraud ,s dextrose agar and Tryptone and yeast Agar media, using Colony Forming Unit per milliliter (CFU/ ml unit. Data analysis was using a One-Way ANOVA and LSD with 5% degree of significance. The result showed 22.5% concentration of CAL folium infusum was the most effective in decreasing the quantity Candida albicans and S. mutans colonies.

  9. A Case Report of Penile Infection Caused by Fluconazole- and Terbinafine-Resistant Candida albicans.

    Science.gov (United States)

    Hu, Yongxuan; Hu, Yanqing; Lu, Yan; Huang, Shiyun; Liu, Kangxing; Han, Xue; Mao, Zuhao; Wu, Zhong; Zhou, Xianyi

    2017-04-01

    Candida albicans is the most common pathogen that causes balanoposthitis. It often causes recurrence of symptoms probably due to its antifungal resistance. A significant number of balanitis Candida albicans isolates are resistant to azole and terbinafine antifungal agents in vitro. However, balanoposthitis caused by fluconazole- and terbinafine-resistant Candida albicans has rarely been reported. Here, we describe a case of a recurrent penile infection caused by fluconazole- and terbinafine-resistant Candida albicans, as well as the treatments administered to this patient. The isolate from the patient was tested for drug susceptibility in vitro. It was sensitive to itraconazole, voriconazole, clotrimazole and amphotericin B, but not to terbinafine and fluconazole. Thus, oral itraconazole was administrated to this patient with resistant Candida albicans penile infection. The symptoms were improved, and mycological examination result was negative. Follow-up treatment of this patient for 3 months showed no recurrence.

  10. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    Science.gov (United States)

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  11. Reduced CX3CL1 secretion contributes to the susceptibility of oral leukoplakia-associated fibroblasts to Candida albicans

    Directory of Open Access Journals (Sweden)

    Ran Cheng

    2016-11-01

    Full Text Available Candida leukoplakia (OLK is a kind of oral leukoplakia combined with chronic candidal infection, which plays an important role in the malignant transformation of OLK. However, little is known about the etiology, including susceptibility of leukoplakia to candidal adhesion, invasion and infection. Some antimicrobial peptides secreted by oral epithelial cells or fibroblasts potentially have antifungal activities against Candida albicans (C. albicans. In this study, we established three co-culture models to simulate different C. albicans-fibroblasts interactions during progression of candida leukoplakia. The susceptibility of oral leukoplakia-associated fibroblasts (LKAFs to C. albicans and its underlying mechanism were determined. Samples of 14 LKAFs and 10 normal fibroblasts (NFs were collected. The co-culture models showed that LKAFs had promoted the adhesion, invasion, and survival of C. albicans compared with NFs. CX3CL1, a chemokine with antifungal activity, was less abundant in LKAFs than NFs. Overexpression of CX3CL1 via transfection in LKAFs could partly restore the resistance to C. albicans. We also showed that inhibition of ERK could suppress CX3CL1 secretion. While phosphor-ERK was inhibited in LKAFs compared with NFs. Besides, the expression of a shedding enzyme for CX3CL1, disintegrin and metalloproteinase domain (ADAM 17 was decreased in LKAFs than NFs. In conclusion, LKAFs produced and secreted less CX3CL1 by inhibiting the ERK signaling pathway, thereby contributing to impaired cell resistance to C. albicans.

  12. Effect of Shark Liver Oil on Peritoneal Murine Macrophages in Responses to Killed-Candida albicans

    Directory of Open Access Journals (Sweden)

    Monire Hajimoradi

    2009-09-01

    Full Text Available Objective(sShark Liver Oil (SLO is an immunomodulator. Macrophages play a key role in host defense against pathogens like fungi. Candida albicans have mechanisms to escape immune system. We determined the effect of killed-Candida on the in vitro viability of macrophages and the effect of SLO on augmentation of this potency.Materials and MethodsPeritoneal macrophages were separated and cultured (3×105/well. At first, the effect of killed-Candida (200 cells/well on macrophage viability was evaluated, using MTT test. Then, MTT was performed on macrophages stimulated with killed-Candida in the presence of SLO. ResultsKilled-Candida suppressed the ability of MTT reduction and hence macrophages viability (P=0.026, but addition of SLO (100 mg/ml significantly enhanced cell viability (P=0.00. So, SLO could neutralize the inhibitory effect of Candida.ConclusionSimultaneous with cytotoxic effect of killed-Candida cells on macrophages viability, SLO augment macrophages viability. So, it can be applied in candidiasis as a complement.

  13. Proteomic analysis of protein phosphatase Z1 from Candida albicans.

    Directory of Open Access Journals (Sweden)

    Bernadett Márkus

    Full Text Available Protein phosphatase Z is a "novel type" fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0 that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly

  14. Proteomic analysis of protein phosphatase Z1 from Candida albicans

    Science.gov (United States)

    Pfliegler, Walter P.; Petrényi, Katalin; Boros, Enikő; Pócsi, István; Tőzsér, József; Dombrádi, Viktor

    2017-01-01

    Protein phosphatase Z is a “novel type” fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for

  15. Antimicrobial effects of Coleus amboinicus, Lour folium infusum towards Candida albicans and Streptococcus mutans

    OpenAIRE

    Rianti, Devi; Yogyarti, Sri

    2006-01-01

    A laboratory experimental study conducted on antimicrobial effects of Coleus amboinicus, Lour folium Infusum towards Candida albicans and Streptococcus mutans (S. mutans). Effective concentration of Coleus amboinicus, Lour to decrease the quantities Candida albicans and S. mutans colonies is expected to be found out in this study. This study was using Coleus Amboinicus, Lour folium infusum with 12.5%, 15%, 17.5%, 20%, and 22.5% concentrations. Sterilized aquadest used as a control. Candida al...

  16. Efek Antijamur Minyak Atsiri Jahe Merah (Zingiber officinale Var. Rubrum terhadap Candida albicans

    Directory of Open Access Journals (Sweden)

    Hermina Karuna Atmaja

    2015-10-01

    Full Text Available The prevalence of Candida albicans infections is increasing in the society. Therefore, an effective and affordable antifungal drug with minimal side effect is needed. Ginger (Zingiber officinale is a traditional herb which has an antifungal effect in its volatile oil. Objective: To investigate antifungal effect of volatile oil from Zingiber officinale var rubrum against C. albicans in vitro, to determine the optimum concentration, and finally to determine the correlation between the various concentrations of the oil and the inhibition zone. Material and method: Strain C. albicans tested was obtained from the Department of Parasitology, Medical Faculty, University of Indonesia. Volatile oil of Zingiber officinale var. rubrum was produced from water and steam distillation of fresh ginger in BALLITRO, Bogor. Concentrations of the volatile oil used were 100%, 50%, 25%, 12,5% 6.25%, 3.125%, 1.56% and 0.78%. Methods used were colony counting and disk diffusion method (by using 6 mm blank disk. The specimens were divided into two groups, treatment group (C. albicans with application of volatile oil and control group (C. albicans without application of volatile oil. Result: There was a significant decrease in the amount of C. albicans colonies from 3.125% to 6.25% of concentration. The amount of C. albicans colonies at concentration 6.25% was also significantly lower than in the control group. Moreover, there was strong and positive correlation between the concentration of the volatile oil and the inhibition zone. Conclusion: Volatile oil from Zingiber officinale var. rubrum has an antifungal effect against C. albicans in vitro with optimum concentration at 6.25%. Increasing concentrations of the oil correlates with increasing inhibition zome.

  17. Suppression of humoral response during the course of Candida albicans infection in mice.

    Science.gov (United States)

    Valdez, J C; Meson, O E; de Valdez, G A; Sirena, A

    1984-10-30

    This paper aims at demonstrating the non-specific immunosuppression as regards thyme-dependent antigens sheep erythrocytes (SRBC) during the course of Candida albicans systemic infection. Three lots of syngeneic/BALB/c mice, 8-12 weeks of age, were used. The first normal lot was inoculated via the intraperitoneal route with a (SRBC) suspension (4 X 10(8) cells ml) in a Hank's balanced saline solution. The primary response of antibodies formed by splenic cells was measured from 4 to 8 days after inoculation using the direct plaque forming cells technique. The second lot was infected by the same route with a suspension of Candida albicans (1 X 10(7) cells). Positive retrocultures from the blood and kidneys of these infected mice were obtained. These yeasts cultivated in a Sabouraud medium were harvested after 20 h at 37 degrees C. Following the same methodology the immune response to SRBC was determined. The serum obtained from infected mice was transferred to a third lot of mice at different intervals during the course of the infection. The immune response to SRBC was done by the direct plaque-forming cells technique. Controls were carried out using normal donors and recipients. A suppression of the immune response was obtained as from the 2nd day of inoculation up to the 28th day. It was not possible to transfer such suppression passively by means of the serum. These results suggest that the systemic infection by Candida albicans induce a non-specific immunosuppression in the organism, already demonstrated in viral infections, bacteria, protozoaria and metazoaria in mammals. In some way, this will contribute to explain the mechanisms of immune response to Candida albicans.

  18. Prevalence of Candida albicans and carriage of Candida non-albicans in the saliva of preschool children, according to their caries status.

    Science.gov (United States)

    Lozano Moraga, Carla Paola; Rodríguez Martínez, Gonzalo Andrés; Lefimil Puente, Claudia Andrea; Morales Bozo, Irene Cecilia; Urzúa Orellana, Blanca Regina

    2017-01-01

    This study was conducted to establish associations among the Candida carriage rate, the diversity of Candida species carried and the different caries status of preschool children. Sixty-one children between 2 and 5 years of age were examined by a single expert examiner and were divided into three groups, the caries-free, moderate caries and severe caries groups, according to the criteria of the International Caries Detection and Assessment System II (ICDAS). Saliva samples were obtained from the members of each group and were plated on Sabouraud agar plates to assess the Candida carriage rates. CHROMagar Candida medium was used for the preliminary screening. Biochemical testing or PCR/sequencing was conducted to identify the different Candida species in the samples. The differences observed were considered significant if the p value was Candida carriage rate and the number of species of this fungus carried were higher in the group with the highest level of caries severity (p Candida albicans was the most predominant Candida species in the saliva of all of the children, C. dubliniensis was identified only in the most caries-affected group in addition to other rare species of Candida non-albicans. A high salivary Candida carriage rate and the presence of specific species of this fungus (such as C. albicans and C. dubliniensis) appear to be related to the severity of caries experienced by preschool children.

  19. Candida albicans menengitis in a newborn with classical galactosemia

    Directory of Open Access Journals (Sweden)

    Hüseyin Altunhan

    2012-12-01

    Full Text Available Classical galactosemia is a rarely seen carbohydrate metabolismdisorder. The frequency of sepsis significantlyincreases in patients with galactosemia. The most commonagent causing sepsis is E. coli. Sepsis due to fungusin patients with galactosemia is rarely reported. Candidais an important cause of sepsis in newborn intensive careunits especially in newborns with underlying risk factorssuch as prematurity and low birth weight. Although themost common etiologic agent of sepsis is E. coli in caseswith galactosemia, it should be kept in mind that candidamay also be causative agent of sepsis and meningitis inthese patients even though there is no underlying risk factor.Also the clinical and laboratory findings of candidiasismay be obscure. For this reason, especially in newborncandida meningitis, the index of suspicion should be kepthigh for early diagnosis and treatment. In such patientscerebrospinal fluid analysis, culture and brain imagingshould be done necessarily, because early diagnosis andtreatment will be life saving. In this article we reported agalactosemia case with the diagnosis of meningitis andCandida albicans grown in his blood culture derived onthe fourth day of admission to clinic.Key words: Candida albicans, galactosemia, meningitis,newborn, sepsis

  20. Antimicrobial effects of liquid anesthetic isoflurane on Candida albicans

    Directory of Open Access Journals (Sweden)

    Armstead Valerie

    2006-11-01

    Full Text Available Abstract Candida albicans is a dimorphic fungus that can grow in yeast morphology or hyphal form depending on the surrounding environment. This ubiquitous fungus is present in skin and mucus membranes as a potential pathogen that under opportunistic conditions causes a series of systemic and superficial infections known as candidiasis, moniliasis or simply candidiasis. There has been a steady increase in the prevalence of candidiasis that is expressed in more virulent forms of infection. Although candidiasis is commonly manifested as mucocutaneous disease, life-threatening systemic invasion by this fungus can occur in every part of the body. The severity of candidal infections is associated with its morphological shift such that the hyphal morphology of the fungus is most invasive. Of importance, aberrant multiplication of Candida yeast is also associated with the pathogenesis of certain mucosal diseases. In this study, we assessed the anti-candidal activity of the volatile anesthetic isoflurane in liquid form in comparison with the anti-fungal agent amphotericin B in an in vitro culture system. Exposure of C. albicans to isoflurane (0.3% volume/volume and above inhibited multiplication of yeast as well as formation of hyphae. These data suggest development of potential topical application of isoflurane for controlling a series of cutaneous and genital infections associated with this fungus. Elucidiation of the mechanism by which isoflurane effects fungal growth could offer therapeutic potential for certain systemic fungal infections.

  1. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    Science.gov (United States)

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  2. Sapodilla (Manilkara zapota Broth as an Alternative Media for Candida albicans

    Directory of Open Access Journals (Sweden)

    Chen Chui Ying

    2017-03-01

    Full Text Available Objective: To determine whether sapodilla can be used to grow Candida albicans. Among all the high galactose and arabinose content fruits, the sapodilla was chosen because it is available year round and can get easily in market. Other than that, it also contains vitamins, calcium and phosphorus which are very useful for fungi growth. Methods: This study used an experimental study as a method of research. The researcher culture Candida albicans on the experimental sapodilla media and identifies the morphology of the fungi by using Gram staining method. The experiment will be replicated two times to get accurate result. The procedure of this experiment constitute of sapodilla media preparation, sapodilla media observation, organism preparation, planting and incubation, observation of fungal colonies and identification of the fungi. Results: In 0%, there was no fungal growth at all. In 5%, there was mild density of fungal colonies. In 10%, there was moderate density of fungal colonies and in 15% the fungal grew with very dense colonies. Conclusions: Sapodilla (Manilkara zapota broth can be used as an alternative media for Candida albicans.

  3. Effect of sodium bicarbonate on Candida albicans adherence to thermally activated acrylic resin

    Directory of Open Access Journals (Sweden)

    Fernando Augusto Cervantes Garcia de Sousa

    2009-12-01

    Full Text Available The purpose of this study was to evaluate the effect of 5% sodium bicarbonate on the adherence of Candida albicans to thermally activated acrylic resin. Fifty 4 mm² specimens of acrylic resin were obtained using a metallic matrix. The specimens received chemical polishing, were sterilized and then immersed in Sabouraud broth, inoculated with Candida albicans standardized suspension. After 24 hours of incubation at 37ºC, the specimens were divided into four groups according to the substance used for disinfection (5% sodium bicarbonate, 0.12% digluconate chlorhexidine, vinegar and Corega Tabs. A control group was included, in which distilled water was used. The adhered microorganisms were dispersed, diluted and plated onto culture media to determine the number of colony-forming units (cfu/mL. The results were analyzed through the Mann-Whitney statistical test at the 5% level of significance. Only 0.12% digluconate chlorhexidine and 5% sodium bicarbonate presented a statistically significant difference (p = 0.0010 and p = 0.0156, respectively compared to the control group, decreasing the number of cfu/mL. However, when the different disinfecting solutions were compared with each other, only 0.12% digluconate chlorhexidine presented a statistically significant difference in the reduction of cfu/mL. It was concluded that although 0.12% digluconate chlorhexidine was more effective in the reduction of Candida albicans adherence values to thermally activated acrylic resin, 5% sodium bicarbonate also proved to be a viable alternative.

  4. Antifungal activity of caspofungin in experimental infective endocarditis caused by Candida albicans.

    Science.gov (United States)

    Victorio, Gerardo Becerra; Bourdon, Lorena Michele Brennan; Benavides, Leonel García; Huerta-Olvera, Selene G; Plascencia, Arturo; Villanueva, José; Martinez-Lopez, Erika; Hernández-Cañaveral, Iván Isidro

    2017-05-01

    Infective endocarditis is a disease characterised by heart valve lesions, which exhibit extracellular matrix proteins that act as a physical barrier to prevent the passage of antimicrobial agents. The genus Candida has acquired clinical importance given that it is increasingly being isolated from cases of nosocomial infections. To evaluate the activity of caspofungin compared to that of liposomal amphotericin B against Candida albicans in experimental infective endocarditis. Wistar rats underwent surgical intervention and infection with strains of C. albicans to develop infective endocarditis. Three groups were formed: the first group was treated with caspofungin, the second with liposomal amphotericin B, and the third received a placebo. In vitro sensitivity was first determined to further evaluate the effect of these treatments on a rat experimental model of endocarditis by semiquantitative culture of fibrinous vegetations and histological analysis. Our semiquantitative culture of growing vegetation showed massive C. albicans colonisation in rats without treatment, whereas rats treated with caspofungin showed significantly reduced colonisation, which was similar to the results obtained with liposomal amphotericin B. The antifungal activity of caspofungin is similar to that of liposomal amphotericin B in an experimental model of infective endocarditis caused by C. albicans.

  5. Studies on effect of Microbial Iron Chelators on Candida Albican

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.; Milicent, S.; Zaheer-Uddin

    2005-01-01

    Iron is an essential for the life of all microbe cells. It generally exists in the oxidized form Fe(III). Even under anaerobic reducing condition the metal appear to be taken up as Fe(III). Thus free-living microorganisms require specific and effective ferric ion transport system to cope with low availability of the metal. In iron deficient environment they produce a low molecular weight specific chelators called siderphores or microbial iron chelators. Siderphores compete for limited supplied of iron. These compounds came out of the cell but can not re-enter without iron due to high affinity of these siderphores often have more than one catechol/hydroxamate functions and are multidentate (usually hexadentate ligands). The aim of the present research is to check the effect of iron chelators, namely gallic acid and salisyl hydroxamate on the growth of Candida albican in vitro. C. albican is the opportunistic paltogen present as the normal flora inside human body. In vivo the growth of C. albican is distributed by the use of antibiotics and immuno suppressers. In cases of iron over-dosage in human being, the patients are treated with certain a-iron chelators. Hence an attempt is made to notice the effect that might be inhibition or enhancement of the organism in vitro. (author)

  6. Candida albicans biofilm on titanium: effect of peroxidase precoating

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois1,21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, 2UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30 and 0.50 ± 0.04 × 106 blastoconidia per cm² of titanium foil (n = 12. The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate, Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated and liquid environment (containing peroxidase substrates to limit C. albicans biofilm formation.Keywords: adhesion, material, oral, yeast

  7. [Antimycotic activity in vitro and in vivo of 5-fluorocytosine on pathogenic strains of Candida albicans and Cryptococcus neoformans].

    Science.gov (United States)

    Costa, A L; Valenti, A; Costa, G; Calogero, F

    1976-01-01

    The authors have analyzed the 5 Fluoro Cytosine (5FC) activity on strains of Candida albicans and Criptococcus neoformans, both in vitro and in vivo. In vitro the minimal inhibitory concentration (MIC) was determined; in vivo tests of pathogenicity on rabbit and mouse have been executed. The various findings obtained have shown a strong activity of the 5FC on strains of Candida and Criptococcus.

  8. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis.

    Science.gov (United States)

    Baena-Monroy, Tania; Moreno-Maldonado, Víctor; Franco-Martínez, Fernando; Aldape-Barrios, Beatriz; Quindós, Guillermo; Sánchez-Vargas, Luis Octavio

    2005-04-01

    Denture stomatitis is associated to Candida albicans, different bacteria and other co-factors such as an acid pH, a carbohydrate ingestion increase, different systemic illnesses and pharmacological treatments. The aim of this study was to determine Candida albicans, Staphylococcus aureus and Streptococcus mutans prevalence in the mucous membrane and prosthesis of patients with and without atrophic denture stomatitis and its relationship with other potential clinical co-factors. Saliva was collected from 105 patients (62 female and 43 male) wearing dental prosthesis in order to measure their pH. Oral samples of the mucous membrane and the internal surface of dental prosthesis were taken with sterile cotton to proceed with the microbiological study. The identification of the isolated microorganisms was performed using conventional microbiological methods. Diabetes and Hypertension were the most frequent systemic illnesses. High carbohydrate ingestion was observed in numerous patients. Atrophic denture stomatitis was reported in 50 patients and the pH average in saliva was of 5.2. The presence of C albicans, S. aureus and S. mutans in the mucous membrane and prosthesis was of 51.4%, 52.4% and 67.6%, respectively. C. albicans was isolated in 66.7% from the prosthesis, whereas S. aureus and S. mutans were isolated in 49.5% of those same prosthesis. C. albicans was isolated in 86% of the patients with atrophic denture stomatitis and S. aureus was isolated in a similar percentage (84% of patients). The isolation of S. mutans was less frequent, and it was observed in 16% of the oral samples of these patients. C. albicans, S. aureus and S. mutans frequently colonize the oral mucous of patients wearing dental prosthesis. This illness-bearing condition is more frequent in patients with denture stomatitis, even though dental prosthesis colonization is lower than in the oral mucous.

  9. Prevalence of Candida albicans and Candida dubliniensis in caries-free and caries-active children in relation to the oral microbiota-a clinical study.

    Science.gov (United States)

    Al-Ahmad, A; Auschill, T M; Dakhel, R; Wittmer, A; Pelz, K; Heumann, C; Hellwig, E; Arweiler, N B

    2016-11-01

    The correlation between caries and the oral prevalence of Candida spp. in children is contradictory in literature. Thereby, authors focused on Candida albicans as the most isolated Candida species from the oral cavity. Therefore, the aim of the present study was to compare caries-free and caries-bearing children regarding their oral carriage of Candida spp. Twenty-six caries-free (CF group) and 26 caries-active children (CA group) were included into this study. Three different types of specimens were assessed, saliva and plaque, and in the case of caries, infected dentine samples were microbiologically analyzed for aerobic and anaerobic microorganisms and their counts. Special attention was given to the differentiation between C. albicans and Candida dubliniensis. Additionally, different biochemical tests, VITEK 2 (VITEK®2, bioMérieux, Marcy-l'Etoile, France) and 16S and 18S ribosomal DNA (rDNA) sequencing, were applied for identification. The detection of C. albicans did not differ between the CF and CA groups. C. dubliniensis was never detected in any specimen of the CF group, but occurred in one quarter of the CA group (27 % in plaque, 23 % in saliva), thus leading to a statistically significant difference between the two groups (p oral Candida species-is an important determinant for identifying etiological factors of dental caries in children.

  10. Competitive Fitness of Fluconazole-Resistant Clinical Candida albicans Strains.

    Science.gov (United States)

    Popp, Christina; Hampe, Irene A I; Hertlein, Tobias; Ohlsen, Knut; Rogers, P David; Morschhäuser, Joachim

    2017-07-01

    The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1 and Tac1, which result in constitutive overexpression of multidrug efflux pumps, and Upc2, which result in constitutive overexpression of ergosterol biosynthesis genes. However, the deregulated gene expression that is caused by hyperactive forms of these transcription factors also reduces the fitness of the cells in the absence of the drug. To investigate whether fluconazole-resistant clinical C. albicans isolates have overcome the fitness costs of drug resistance, we assessed the relative fitness of C. albicans isolates containing resistance mutations in these transcription factors in competition with matched drug-susceptible isolates from the same patients. Most of the fluconazole-resistant isolates were outcompeted by the corresponding drug-susceptible isolates when grown in rich medium without fluconazole. On the other hand, some resistant isolates with gain-of-function mutations in MRR1 did not exhibit reduced fitness under these conditions. In a mouse model of disseminated candidiasis, three out of four tested fluconazole-resistant clinical isolates did not exhibit a significant fitness defect. However, all four fluconazole-resistant isolates were outcompeted by the matched susceptible isolates in a mouse model of gastrointestinal colonization, demonstrating that the effects of drug resistance on in vivo fitness depend on the host niche. Collectively, our results indicate that the fitness costs of drug resistance in C. albicans are not easily remediated, especially when proper control of gene expression is required for successful adaptation to life within a mammalian host. Copyright © 2017 American Society for Microbiology.

  11. Human vaginal epithelial cells augment autophagy marker genes in response to Candida albicans infection.

    Science.gov (United States)

    Shroff, Ankit; Sequeira, Roicy; Reddy, Kudumula Venkata Rami

    2017-04-01

    Autophagy plays an important role in clearance of intracellular pathogens. However, no information is available on its involvement in vaginal infections such as vulvo-vaginal candidiasis (VVC). VVC is intimately associated with the immune status of the human vaginal epithelial cells (VECs). The objective of our study is to decipher if autophagy process is involved during Candida albicans infection of VECs. In this study, C. albicans infection system was established using human VEC line (VK2/E6E7). Infection-induced change in the expression of autophagy markers like LC3 and LAMP-1 were analyzed by RT-PCR, q-PCR, Western blot, immunofluorescence and transmission electron microscopy (TEM) studies were carried out to ascertain the localization of autophagosomes. Multiplex ELISA was carried out to determine the cytokine profiles. Analysis of LC3 and LAMP-1 expression at mRNA and protein levels at different time points revealed up-regulation of these markers 6 hours post C. albicans infection. LC3 and LAMP-1 puncti were observed in infected VECs after 12 hours. TEM studies showed C. albicans entrapped in autophagosomes. Cytokines-TNF-α and IL-1β were up-regulated in culture supernatants of VECs at 12 hours post-infection. The results suggest that C. albicans invasion led to the activation of autophagy as a host defense mechanism of VECs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation.

    Science.gov (United States)

    Krasowska, Anna; Murzyn, Anna; Dyjankiewicz, Agnieszka; Łukaszewicz, Marcin; Dziadkowiec, Dorota

    2009-12-01

    The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans. We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans, i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.

  13. The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells

    Directory of Open Access Journals (Sweden)

    Laura Popolo

    2017-10-01

    Full Text Available Candida albicans is an opportunistic microorganism that can become a pathogen causing mild superficial mycosis or more severe invasive infections that can be life-threatening for debilitated patients. In the etiology of invasive infections, key factors are the adaptability of C. albicans to the different niches of the human body and the transition from a yeast form to hypha. Hyphal morphology confers high adhesiveness to the host cells, as well as the ability to penetrate into organs. The cell wall plays a crucial role in the morphological changes C. albicans undergoes in response to specific environmental cues. Among the different categories of enzymes involved in the formation of the fungal cell wall, the GH72 family of transglycosylases plays an important assembly role. These enzymes cut and religate β-(1,3-glucan, the major determinant of cell shape. In C. albicans, the PHR family encodes GH72 enzymes, some of which work in specific environmental conditions. In this review, we will summarize the work from the initial discovery of PHR genes to the study of the pH-dependent expression of PHR1 and PHR2, from the characterization of the gene products to the recent findings concerning the stress response generated by the lack of GH72 activity in C. albicans hyphae.

  14. Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae.

    Science.gov (United States)

    Ovchinnikova, Ekaterina S; Krom, Bastiaan P; Busscher, Henk J; van der Mei, Henny C

    2012-11-27

    Candida albicans is a human fungal pathogen, able to cause both superficial and serious, systemic diseases and is able to switch from yeast cells to long, tube-like hyphae, depending on the prevailing environmental conditions. Both morphological forms of C. albicans are found in infected tissue, often in combination with Staphylococcus aureus. Although bacterial adhesion to the different morphologies of C. albicans has been amply studied, possible differences in staphylococcal adhesion forces along the length of C. albicans hyphae have never been determined. In this study, we aim to verify the hypothesis that the forces mediating S. aureus NCTC8325-4GFP adhesion to hyphae vary along the length of C. albicans SC5314 and MB1 hyphae, as compared with adhesion to yeast cells. C. albicans hyphae were virtually divided into a "tip" (the growing and therefore youngest part of the hyphae), a "middle" and a so-called "head" region (the yeast cell from which germination started). Adhesion forces between S. aureus NCTC8325-4GFP and the different regions of C. albicans SC5314 hyphae were measured using atomic force microscopy. Strong adhesion forces were found at the tip and middle regions of C. albicans hyphae (-4.1 nN and -4.0 nN, respectively), while much smaller adhesion forces were measured at the head region (-0.3 nN). Adhesion forces exerted by the head region were comparable with the forces arising from budding yeast cells (-0.5 nN). A similar regional dependence of the staphylococcal adhesion forces was found for the clinical isolate involved in this study, C. albicans MB1. This is the first time that differences in adhesion forces between S. aureus and different regions of C. albicans hyphae have been demonstrated on a quantitative basis, supporting the view that the head region is different from the remainder of the hyphae. Notably it can be concluded that the properties of the hyphal head region are similar to those of budding yeast cells. These novel findings

  15. Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells.

    Science.gov (United States)

    Matsuda, Yuko; Cho, Otomi; Sugita, Takashi; Ogishima, Daiki; Takeda, Satoru

    2018-03-30

    Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated. Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells. The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells. The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.

  16. Candida albicans meningitis in an infant with noonan syndrome

    Directory of Open Access Journals (Sweden)

    Faezeh Ahmadi

    Full Text Available Noonan syndrome is a rare disorder, characterized by several malformations such as dysplasia and stenosis of the pulmonary valve, atrial septal defect and a typical pattern of hypertrophic cardiomyopathy. We describe here a 1-month old girl, who was referred to our center with seizure and apnea. She had wide anterior fontanel, head circumference and sunset eye. Intaventricular hemorrhage by sonography and atrial septal defect and hypertrophy cardiomyopathy by echocardiography were detected. Clinical and laboratory findings of the patient were compatible with a diagnosis of Noonan syndrome, which was also confirmed by molecular analysis. Candida albicans was grown in the blood and cerebrospinal fluid cultures. Treatment with Amphotrycine B was started for the patient and she responded well to this therapy. Early diagnosis and appropriate diagnosis of a rare condition in the patient with such rare disease are the main keys to avoid further complications and even death of patient.

  17. Purification and germination of Candida albicans and Candida dubliniensis chlamydospores cultured in liquid media.

    LENUS (Irish Health Repository)

    Citiulo, Francesco

    2009-10-01

    Candida albicans and Candida dubliniensis are the only Candida sp. that have been observed to produce chlamydospores. The function of these large, thick-walled cells is currently unknown. In this report, we describe the production and purification of chlamydospores from these species in defined liquid media. Staining with the fluorescent dye FUN-1 indicated that chlamydospores are metabolically active cells, but that metabolic activity is undetectable in chlamydospores that are >30 days old. However, 5-15-day-old chlamydospores could be induced to produce daughter chlamydospores, blastospores, pseudohyphae and true hyphae depending on the incubation conditions used. Chlamydospores that were preinduced to germinate were also observed to escape from murine macrophages following phagocytosis, suggesting that these structures may be viable in vivo. Mycelium-attached and purified chlamydospores rapidly lost their viability in water and when subjected to dry stress, suggesting that they are unlikely to act as long-term storage structures. Instead, our data suggest that chlamydospores represent an alternative specialized form of growth by C. albicans and C. dubliniensis.

  18. Biophysical Effects of a Polymeric Biosurfactant in Candida krusei and Candida albicans Cells.

    Science.gov (United States)

    Ferreira, Gabriella Freitas; Dos Santos Pinto, Bruna Lorrana; Souza, Eliene Batista; Viana, José Lima; Zagmignan, Adrielle; Dos Santos, Julliana Ribeiro Alves; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Denadai, Ângelo Márcio Leite; Monteiro, Andrea Souza

    2016-12-01

    This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.

  19. Antimicrobial activity of plant extracts on Candida albicans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Sunitha Jagalur Doddanna

    2013-01-01

    Full Text Available Background and Objectives: Plants as sources of medicinal compounds have continued to play a predominant role in the maintenance of human health since ancient times. Even though several effective antifungal agents are available for oral candida infections, the failure is not uncommon because isolates of Candida albicans may exhibits resistance to the drug during therapy. The present study was conducted to evaluate the antimicrobial effects of few plant extracts on Candida albicans. An additional objective was to identify an alternative, inexpensive, simple, and effective method of preventing and controlling Candida albicans. Materials and Methods: Fine texture powder or paste form of leaves was soaked in sterile distilled water and 100% ethyl alcohol, which were kept in refrigerator at 4°C for 24 h. Then filtrates were prepared and kept in a hot air oven to get a black shining crystal powder/paste form. Stock solutions of plant extracts were inoculated on petri plates containing species of Candida albicans and incubated at 25 ± 2°C for 72 h. Results: Alcoholic curry leaves showed the maximum zone of inhibition on Candida albicans followed by aqueous tea leaves. The other plant extracts like alcoholic onion leaves, alcoholic tea leaves, alcoholic onion bulb, alcoholic aloe vera, and alcoholic mint leaves also inhibited the growth of Candida albicans but lesser extent. Conclusion: The present study renders few medicinal plants as an alternative medicines to the field of dentistry which can be used adjunct to conventional therapy of oral candidasis.

  20. Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures.

    Science.gov (United States)

    Hovijitra, Ray S; Choonharuangdej, Suwan; Srithavaj, Theerathavaj

    2016-01-01

    Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).

  1. Exoenzyme activity and possibility identification of Candida dubliniensis among Candida albicans species isolated from vaginal candidiasis.

    Science.gov (United States)

    Jafari, Maryam; Salari, Samira; Pakshir, Keyvan; Zomorodian, Kamiar

    2017-09-01

    Vulvovaginal candidiasis (VVC) or vaginal candidiasis is a common fungal infection of the genitals causing inflammation, irritation, itching, and vaginal discharge. Common yeast infections are caused by the yeast species C. albicans. However, there are other species of Candida such as C. dubliniensis which are considered as the causative agents of this infection. Hydrolytic enzymes such as proteinase and coagulase are known as virulence factors. The aim of this study was the molecular confirmation and differentiation of C. dubliniensis among C. albicans strains isolated from women with vulvovaginal candidiasis by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) and the evaluation of proteinase and coagulase activities. A total of 100 C. albicans strains isolated from women with vulvovaginal candidiasis referred to Shiraz medical clinics were enrolled in the study. All the isolates were primarily identified by conventional methods. PCR-RFLP method was used for the confirmation and identification of C. albicans and C. dubliniensis. Moreover, in vitro proteinase and coagulase activities of these isolates were evaluated using bovine serum albumin media and classical rabbit plasma tube test. As a result, PCR-RFLP identified 100% of the isolates as C. albicans, and no C. dubliniensis could be identified in this study. 84% of the isolates showed proteinase activity, whereas coagulase activity was only detected in 5% of the isolates. This study reveals that C. dubliniensis plays no role in vaginal candidiasis in Iranian patients. Proteinase production could be an essential virulence factor in C. albicans pathogenicity, but coagulase activity has less potential in this matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genetic and phenotypic intra-species variation in Candida albicans.

    Science.gov (United States)

    Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A

    2015-03-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. © 2015 Hirakawa et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Phenotypic Analysis and Virulence of Candida albicans LIG4 Mutants

    Science.gov (United States)

    Andaluz, Encarnación; Calderone, Richard; Reyes, Guadalupe; Larriba, Germán

    2001-01-01

    In previous studies, we reported the isolation and preliminary characterization of a DNA ligase-encoding gene of Candida albicans. This gene (LIG4) is the structural and functional homologue of both yeast and human ligase IV, which is involved in nonhomologous end joining (NHEJ) of DNA double-strand breaks. In the present study, we have shown that there are no other LIG4 homologues in C. albicans. In order to study the function of LIG4 in morphogenesis and virulence, we constructed gene deletions. LIG4 transcript levels were reduced in the heterozygote and were completely absent in null strains. Concomitantly, the heterozygote showed a pronounced defect in myceliation, which was slightly greater in the null strain. This was true with several solid and liquid media, such as Spider medium, medium 199, and 2% glucose–1% yeast extract–2% Bacto Peptone, at several pHs. Reintroduction of the wild-type allele into the null mutant partially restored the ability of cells to form hyphae. In agreement with the positive role of LIG4 in morphogenesis, we detected a significant rise in mRNA levels during the morphological transition. LIG4 is not essential for DNA replication or for the repair of DNA damage induced by ionizing radiation or UV light, indicating that these lesions are repaired primarily by homologous recombination. However, our data show that the NHEJ apparatus of C. albicans may control morphogenesis in this diploid organism. In addition, deletion of one or both copies of LIG4 resulted in attenuation of virulence in a murine model of candidiasis. PMID:11119499

  4. Chronic vulvovaginal candidiasis: characteristics of women with Candida albicans, C glabrata and no candida.

    Science.gov (United States)

    Geiger, A M; Foxman, B; Sobel, J D

    1995-01-01

    INTRODUCTION--Although as many as 5% of all women complain of chronic vulvovaginitis, little is known about these women. They may often be misdiagnosed and the role of vaginal yeast culture in diagnosing vulvovaginal candidiasis (VVC) among them has not been clearly defined. METHODS--To address these deficiencies, we tabulated initial diagnoses among new patients and conducted a medical record-based, unmatched case-control study among women reporting a history of chronic vulvovaginitis (four or more episodes in the past year) at a vulvovaginitis specialty clinic. Clinical presentation and medical history were compared for women who had a positive vaginal yeast culture for either Candida albicans or C glabrata, or who had a negative culture. RESULTS--One-third of the women had no apparent vulvovaginal disease at their initial visit. All women reported similar symptoms, except for an increased prevalence of painful sexual intercourse in women with C albicans (chi 2 p = 0.014 versus women with C glabrata and p vulvovaginitis. Among women with VVC, subtle differences in clinical presentation do not reliably distinguish women with C albicans from those with C glabrata. Our study also indicates that vaginal yeast cultures, while not necessary for every patient, are valuable in confirming negative diagnoses, detecting microscopy false-negatives, and identifying non-C albicans isolates. Images PMID:7490047

  5. In Vitro Effect of Local Anesthetics on Candida albicans Germ Tube Formation

    Directory of Open Access Journals (Sweden)

    Acácio Rodrigues

    1994-01-01

    Full Text Available Objective: This study was planned to clarify the in vitro effect of lidocaine and bupivacaine on germ tube formation by Candida albicans isolates from cases of clinical vaginal candidiasis.

  6. In Vitro Study on the Adhesion and Colonization of Candida Albicans on Metal and Acrylic Piercings

    Directory of Open Access Journals (Sweden)

    Stamenov N.

    2016-03-01

    Full Text Available Oral/perioral piercing may provide an ideal environment for adhesion and colonization of microorganisms. The aim of this study is to perform an “in vitro” research on the capabilities of adhesion of Candida albicans on oral piercings made of plastic and metal. Acrylic and metal piercings were incubated with Candida albicans and then were observed using scanning electron microscopy under different magnifications. A lot of irregularities and roughness were observed on the surface of the plastic piercing unlike the surface of the metal one, which is not so rough. Nevertheless, the number of Candida albicans colonies was considerably larger on the scanned metal surface in comparison to the plastic surface. In vitro the metal surface of the piercing creates better environment for the adhesion and colonization of microorganisms than the acrylic. This could be attributed to the electrostatic forces that most likely attract Candida albicans to the metal piercing in the early stages of biofilm formation.

  7. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.

    LENUS (Irish Health Repository)

    Spiering, Martin J

    2010-02-01

    Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. DeltaDeltasfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the DeltaDeltasfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, DeltaDeltasfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues.

  8. Effect of sodium bicarbonate against Candida albicans in denture stomatitis: An in vitro study

    Directory of Open Access Journals (Sweden)

    Shamsolmoulouk Najafi

    2016-11-01

    Full Text Available Background and Aims: The aim of this study was to investigate the effects of sodium bicarbonate against candida albicans, the main infectious factor of denture stomatitis, and to compare it with other common anti-candida medications. Materials and Methods: Three concentrations of Candida albicans (105, 106, 107 CFU/mL were prepared. Experimental substances were 5% sodium bicarbonate, nystatin, chlorhexidine, and sterile saline (as control. Each of them was added separately to the same amounts of Candida albicans of different concentrations, and sampled at the intervals of 1, 2, 3 and 4 min. Then, the samples were cultured and incubated. The number of formed colonies was counted for each plate. The data were analyzed, using ANOVA and Tukey test. Results: Sodium bicarbonate showed a noticeable anti-candida effect on the concentrations of 105 and 106 CFU/mL, with almost similar anti-candida effect as nystatin and chlorehexidine(P=0.29, P=0.32. Nystatin was the most effective medication on the concentration of 107 CFU/mL of candida (P=0.03, P=0.01. Sodium bicarbonate and chlorhexidine were less effective in this concentration with no statistically significant difference (P=1.00. Conclusion: Sodium bicarbonate showed a significant anti-candida effect at low and medium concentrations of Candida albicans, but nystatin was more effective in the higher concentrations.

  9. Translocation of Candida albicans is related to the blood flow of individual intestinal villi.

    Science.gov (United States)

    Gianotti, L; Alexander, J W; Fukushima, R; Childress, C P

    1993-08-01

    Splanchnic ischemia is associated with increased bacterial translocation, but previous observations showed that translocation of Candida albicans did not occur uniformly among individual intestinal villi. This study was performed to investigate the relationship between the degree of Candida translocation and the microcirculation of individual villi. Thiry-Vella intestinal loops were created in eight guinea pigs. One week later, the distal aorta and right carotid artery were cannulated, and systemic blood pressure was recorded throughout the entire experiment. C. albicans (1 x 10(10)) was introduced into the Thiry-Vella loop, and the animals underwent a 40% full-thickness burn. Systolic hypotension was observed in the first 75 minutes postburn; then the systemic blood pressure returned to a normal range. Four hours after burn, 8 x 10(7) microspheres (10 microns) were injected into the aorta. The animals were sacrificed, and the Thiry-Vella loops were harvested and processed for light microscopy. At the microscopic level, within each villus, both the number of beads trapped in the arterioles and the number of Candida translocated into the enterocytes were counted. An inverse linear correlation between number of beads and number of translocated yeast per individual villus was found (r = -0.78; P flow is an important determinant of the magnitude of microbial translocation, even within individual villi.

  10. Candida albicans septicemia in a premature infant successfully treated with oral fluconazole

    DEFF Research Database (Denmark)

    Bodé, S; Pedersen-Bjergaard, Lars; Hjelt, K

    1992-01-01

    A premature male infant, birth-weight 1460 g, was treated successfully for a Candida albicans septicemia with orally administered fluconazole for 20 days. Dosage was 5 mg/kg/day. No side effects were seen. Fluconazole may present a major progress in treatment of invasive C. albicans infections...

  11. Biochemical characterization of recombinant dihydroorotate dehydrogenase from the opportunistic pathogenic yeast Candida albicans

    DEFF Research Database (Denmark)

    Zameitat, E.; Gojkovic, Zoran; Knecht, Wolfgang

    2006-01-01

    Candida albicans is the most prevalent yeast pathogen in humans, and recently it has become increasingly resistant to the current antifungal agents. In this study we investigated C. albicans dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), which catalyzes the fourth step of de novo pyrimidine...

  12. Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae

    NARCIS (Netherlands)

    Ovchinnikova, E.S.; Krom, B.P.; Busscher, H.J.; van der Mei, H.C.

    2012-01-01

    Background Candida albicans is a human fungal pathogen, able to cause both superficial and serious, systemic diseases and is able to switch from yeast cells to long, tube-like hyphae, depending on the prevailing environmental conditions. Both morphological forms of C. albicans are found in infected

  13. Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae

    NARCIS (Netherlands)

    Ovchinnikova, Ekaterina S.; Krom, Bastiaan P.; Busscher, Henk J.; van der Mei, Henny C.

    2012-01-01

    Background: Candida albicans is a human fungal pathogen, able to cause both superficial and serious, systemic diseases and is able to switch from yeast cells to long, tube-like hyphae, depending on the prevailing environmental conditions. Both morphological forms of C. albicans are found in infected

  14. Inhibition of Candida albicans by Fluvastatin Is Dependent on pH

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2009-01-01

    Full Text Available The cholesterol-lowering drug fluvastatin (FS has an inhibitory effect on the growth of the pathogenic yeast Candida albicans that is dependent on the pH of the medium. At the low pH value of the vagina, FS is growth inhibitory at low and at high concentrations, while at intermediate concentrations (1–10 mM, it has no inhibitory effect. Examination of the effect of the common antifungal drug fluconazole in combination with FS demonstrates drug interactions in the low concentration range. Determination of intracellular stress and the activity of the FS target enzyme HMG-CoA reductase confirm our hypothesis that in the intermediate dose range adjustments to the sterol biosynthesis pathway can compensate for the action of FS. We conclude that the pH dependent uptake of FS across yeast membranes might make FS combination therapy an attractive possibility for treatment of vaginal C. albicans infections.

  15. Streptococcus agalactiae Inhibits Candida albicans Hyphal Development and Diminishes Host Vaginal Mucosal TH17 Response

    OpenAIRE

    Xiao-Yu Yu; Fei Fu; Wen-Na Kong; Qian-Kun Xuan; Dong-Hua Wen; Xiao-Qing Chen; Yong-Ming He; Li-Hua He; Jian Guo; Ai-Ping Zhou; Yang-Hong Xi; Li-Jun Ni; Yu-Feng Yao; Wen-Juan Wu

    2018-01-01

    Streptococcus agalactiae and Candida albicans often co-colonize the female genital tract, and under certain conditions induce mucosal inflammation. The role of the interaction between the two organisms in candidal vaginitis is not known. In this study, we found that co-infection with S. agalactiae significantly attenuated the hyphal development of C. albicans, and that EFG1-Hwp1 signal pathway of C. albicans was involved in this process. In a mouse model of vulvovaginal candidiasis (VVC), the...

  16. Antibiofilm and Antihyphal Activities of Cedar Leaf Essential Oil, Camphor, and Fenchone Derivatives against Candida albicans

    OpenAIRE

    Manoharan, Ranjith Kumar; Lee, Jin-Hyung; Lee, Jintae

    2017-01-01

    Candida albicans can form biofilms composed of yeast, hyphal, and pseudohyphal elements, and C. albicans cells in the hyphal stage could be a virulence factor. The present study describes the chemical composition, antibiofilm, and antihyphal activities of cedar leaf essential oil (CLEO), which was found to possess remarkable antibiofilm activity against C. albicans but not to affect its planktonic cell growth. Nineteen components were identified in CLEO by gas chromatography/mass spectrometry...

  17. Whole Saliva has a Dual Role on the Adherence of Candida albicans to Polymethylmetacrylate

    OpenAIRE

    Elguezabal, N; Maza, J.L.; Dorronsoro, S.; Pont?n, J.

    2008-01-01

    Adhesion of Candida albicans to acrylic of dental prostheses or to salivary macromolecules adsorbed on their surface is believed to be a critical event in the development of denture stomatitis. In previous studies our group has shown that adhesion of C. albicans germ tubes to polystyrene is decreased by saliva whereas C. albicans yeast cells adhesion to the same material is enhanced. The results presented in this study confirm this dual role played by whole saliva, since it decreased the adhe...

  18. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    International Nuclear Information System (INIS)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-01-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51 Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51 Cr release from radiolabeled monolayers

  19. Candida albicans biofilm development in vitro for photodynamic therapy study

    International Nuclear Information System (INIS)

    Suzuki, Luis Claudio

    2009-01-01

    Photodynamic therapy (PDT) is a phototherapy based on the use of a photo sensitizer (PS) in the presence of low intensity light with resonant wavelength of absorption of the PS and biological systems that can raise awareness, generating reactive oxygen species. Studies show that PDT has a lethal effect on Candida albicans. The biofilm formed by C. albicans is the cause of infections associated with medical devices such as catheters, with a proven resistance to antifungal agents, and the removal of the catheter colonized almost always is necessary. However, few studies in literature report the behavior and response of biofilm organized by C. albicans against PDT. The aims of this study were to develop a methodology for in vitro biofilm formation of C. albicans, evaluate the sensitivity of the biofilm of C. albicans to antimicrobial photodynamic therapy using PS as the methylene blue (MB) and hypocrellin B: La +3 (HBL a+3 ) and analyze the biofilm by Optical Coherence Tomography (OCT). For biofilm formation, discs were made from elastomeric silicone catheters. The PS were dissolved in solution of PBS, and the MB had two different concentrations tested in the biofilm: 100μM and 1mM; HBLa +3 only one of 10μM. The irradiation of both dyes with the microorganism was done by two different LEDs, one with red emission at λ = 630nm ± 20nm and the other one blue emission at λ = 460nm ± 30nm. We performed a curve of survival fraction versus time of irradiation of each sample with biofilm and suspension of the microorganism in the yeast form to verify the susceptibility of the front PDT. The yeast showed 100% reduction using both PS, but at different times of irradiation (30s to HBLa +3 and 6 min for the MB at 100μM). When the therapy was applied in biofilm, the MB 100μM did not show any significant reduction, while at concentration of 1mM was reduced by 100% after 6 min of irradiation. The HBLa +3 biofilm group showed a lower reduction in the concentration of 10μM in

  20. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus.

    Science.gov (United States)

    Costa, G M; Endo, E H; Cortez, D A G; Nakamura, T U; Nakamura, C V; Dias Filho, B P

    2016-09-01

    Three chalcones, 2'-hydroxy-4,4',6'-trimethoxychalcone, 2'-hydroxy-4,4',6'-tetramethoxychalcone, and 3,2'-dihydroxy-4,4',6'-trimethoxychalcone, were isolated from the leaves of Piper hispidum in a bioguided fractionation of crude extract. The antimicrobial activity of crude extract of P. hispidum leaves was determined against bacteria Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and yeasts Candida albicans, C. parapsilosis and C. tropicalis. Fractions and chalcones were tested against C. albicans and S. aureus. The checkerboard assay was performed to assess synergic interactions between extract and antifungal drugs, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay was used to evaluate anti-biofilm effects of extract. The extract was active against yeasts, S. aureus and B. subtilis with MIC values between 15.6 and 62.5μg/mL. Synergistic effects of extract associated with fluconazole and nystatin were observed against C. albicans, with fractional inhibitory concentration indices of 0.37 and 0.24, respectively. The extract was also effective against C. albicans and S. aureus biofilm cells at concentrations of 62.5 and 200μg/mL, respectively. Thus, P. hispidum may be a possible source of bioactive substances with antimicrobial properties. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Induction of the immune response suppression in mice inoculated with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, D E; Sirena, A; de Petrino, S F; Eugenia, M; de Jorrat, B B; de Valdex, M G

    1986-03-01

    There is a controversy in respect to the immunological response (humoral or cellular) concerning the defense against Candida albicans. Candidosis would induce sub-populations of suppressor cells in the host cell-immune response. This report tries to show the effect of different doses of C. albicans (alive or heat-killed) on the expression of cell-mediated and humoral immunity. The effect upon cell immunity was determined by inoculating different lots of singeneic mice, doses of varied concentration of C. albicans and checking for delayed-type hipersensitivity (D.T.H.). D.T.H. was also controlled in syngeneic normal mice which had previously been injected with inoculated mice spleen cells. Humoral immunity was assayed by measuring the induced blastogenesis by Pokeweed Mitogen on spleen mononuclear cells with different doses of C. albicans. Results obtained show that the different doses gave origin to: Suppression of humoral and cell response (10(8) alive); Suppression of only humoral response (10(6) alive); Suppression of cell response and increase of humoral response (10(9) dead); Increase of both responses (10(8) dead).

  2. Use of multilocus sequence typing for the investigation of colonisation by Candida albicans in intensive care unit patients.

    Science.gov (United States)

    Cliff, P R; Sandoe, J A T; Heritage, J; Barton, R C

    2008-05-01

    A prospective study was performed to determine the prevalence of candidal colonisation on the general intensive care unit at a large teaching hospital. Colonisation with Candida spp. was found to be common, occurring in 79% of patients on the unit. C. albicans was the commonest species, colonising 64% of patients, followed by C. glabrata (18%) and C. parapsilosis (14%). Most of the members of staff tested carried Candida spp. at some point, although carriage appeared to be transient. C. parapsilosis was the most commonly isolated species from staff hands, whereas C. albicans was the most commonly isolated species from the mouth. The molecular epidemiology of C. albicans was investigated using Ca3 typing and multilocus sequence typing (MLST). MLST proved to be a reproducible typing method and a useful tool for the investigation of the molecular epidemiology of C. albicans. The results of the molecular typing provided evidence for the presence of an endemic strain on the unit, which was isolated repeatedly from patients and staff. This finding suggests horizontal transmission of C. albicans on the unit though it may also reflect the relative frequency of C. albicans strain types colonising patients on admission. This study has important implications for the epidemiology of systemic candidal infections.

  3. Candida albicans-associated necrotizing vasculitis producing life-threatening gastrointestinal hemorrhage.

    LENUS (Irish Health Repository)

    Sargent, Jeremy

    2012-02-01

    Patients undergoing treatment of acute lymphoblastic leukemia are at risk for fungal infections including disseminated candidiasis. We describe a case of systemic Candida albicans infection associated with life-threatening gastrointestinal hemorrhage due to unusual necrotizing vasculitis involving the gastrointestinal tract. We explore the association between Candida and such vasculopathy.

  4. Synergistic combinations of antifungals and antivirulence agents to fight against Candida albicans

    DEFF Research Database (Denmark)

    Cui, Jinhui; Ren, Biao; Tong, Yaojun

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resist...

  5. Identification of Candida Species Using MP65 Gene and Evaluation of the Candida albicans MP65 Gene Expression in BALB/C Mice.

    Science.gov (United States)

    Bineshian, Farahnaz; Yadegari, Mohammad Hossien; Sharifi, Zohre; Akbari Eidgahi, Mohammadreza; Nasr, Reza

    2015-05-01

    Systemic candidiasis is a major public health concern. In particular, in immunocompromised people, such as patients with neutropenia, patients with Acquired Immune Deficiency Syndrome (AIDS) and cancer who are undergoing antiballistic chemotherapy or bone marrow transplants, and people with diabetes. Since the clinical signs and symptoms are nonspecific, early diagnosis is often difficult. The 65-kDa mannoprotein (MP65) gene of Candida albicans is appropriate for detection and identification of systemic candidiasis. This gene encodes a putative b-glucanase mannoprotein of 65 kDa, which plays a major role in the host-fungus relationship, morphogenesis and pathogenicity. The current study aimed to identify different species of Candida (C. albicans, C. glabrata and C. parapsilosis) using the Polymerase Chain Reaction (PCR) technique and also to evaluate C. albicans MP65 gene expression in BALB/C mice. All yeast isolates were identified on cornmeal agar supplemented with tween-80, germ tube formation in serum, and assimilation of carbon sources in the API 20 C AUX yeast identification system. Polymerase Chain Reaction was performed on all samples using species-specific primers for the MP65 65 kDa gene. After RNA extraction, cDNA synthesis was performed by the Maxime RT Pre Mix kit. Candida albicans MP65 gene expression was evaluated by quantitative Real-Time (q Real-Time) and Real-Time (RT) PCR techniques. The 2-ΔΔCT method was used to analyze relative changes in gene expression of MP65. For statistical analysis, nonparametric Wilcoxon test was applied using the SPSS version 16 software. Using biochemical methods, one hundred, six and one isolates of clinical samples were determined as C. albicans, C. glabrata and C. parapsilosis, respectively. Species-specific primers for PCR experiments were applied to clinical specimens, and in all cases a single expected band for C. albicans, C. glabrata and C. parapsilosis was obtained (475, 361 and 124 base pairs, respectively

  6. Identification of Candida albicans and Candida dubliniensis Species Isolated from Bronchoalveolar Lavage Samples Using Genotypic and Phenotypic Methods

    Directory of Open Access Journals (Sweden)

    Sahar Kianipour

    2018-01-01

    Full Text Available Background: Candida dubliniensis is a newly diagnosed species very similar to Candida albicans phenotypically and first discovered in the mouth of people with AIDS in 1995. Among the different phenotypic and genotypic methods, a cost-effective method should be selected which makes it possible to differentiate these similar species. Materials and Methods: Polymerase chain reaction (PCR-restriction fragment length polymorphism with MspI enzyme and the Duplex-PCR method were done by DNA extraction using boiling. The sequencing of the amplified ribosomal region was used to confirm the C. dubliniensis species. Direct examination and colony count of the yeasts were applied for bronchoalveolar lavage (BAL samples and the growth rate of the yeasts were studied at 45°C. To understand the ability formation of chlamydoconidia in yeast isolates, they were separately cultured on the sunflower seed agar, wheat flour agar, and corn meal agar media. Results: Fifty-nine (49.2% yeast colonies were identified from the total of 120 BAL specimens. Twenty-nine isolated yeasts; including 17 (58.6% of C. albicans/dubliniensis complex and 12 (41.4% of nonalbicans isolates produced pseudohypha or blastoconidia in direct smear with a mean colony count of 42000 CFU/mL. C. albicans with the frequency of 15 (42.9% were the most common isolated yeasts, whereas C. dubliniensis was identified in two nonHIV patients. Conclusion: Sequencing of the replicated gene fragment is the best method for identifying the yeasts, but the determination of the species by phenotypic methods such as the creation of chlamydoconidia in sunflower seeds agar and wheat flour agar media can be cost-effective, have sensitivity and acceptable quality.

  7. Identification of Candida albicans and Candida dubliniensis Species Isolated from Bronchoalveolar Lavage Samples Using Genotypic and Phenotypic Methods.

    Science.gov (United States)

    Kianipour, Sahar; Ardestani, Mohammad Emami; Dehghan, Parvin

    2018-01-01

    Candida dubliniensis is a newly diagnosed species very similar to Candida albicans phenotypically and first discovered in the mouth of people with AIDS in 1995. Among the different phenotypic and genotypic methods, a cost-effective method should be selected which makes it possible to differentiate these similar species. Polymerase chain reaction (PCR)-restriction fragment length polymorphism with MspI enzyme and the Duplex-PCR method were done by DNA extraction using boiling. The sequencing of the amplified ribosomal region was used to confirm the C. dubliniensis species. Direct examination and colony count of the yeasts were applied for bronchoalveolar lavage (BAL) samples and the growth rate of the yeasts were studied at 45°C. To understand the ability formation of chlamydoconidia in yeast isolates, they were separately cultured on the sunflower seed agar, wheat flour agar, and corn meal agar media. Fifty-nine (49.2%) yeast colonies were identified from the total of 120 BAL specimens. Twenty-nine isolated yeasts; including 17 (58.6%) of C. albicans / dubliniensis complex and 12 (41.4%) of nonalbicans isolates produced pseudohypha or blastoconidia in direct smear with a mean colony count of 42000 CFU/mL. C. albicans with the frequency of 15 (42.9%) were the most common isolated yeasts, whereas C. dubliniensis was identified in two nonHIV patients. Sequencing of the replicated gene fragment is the best method for identifying the yeasts, but the determination of the species by phenotypic methods such as the creation of chlamydoconidia in sunflower seeds agar and wheat flour agar media can be cost-effective, have sensitivity and acceptable quality.

  8. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates.

    OpenAIRE

    Baumgartner, C; Freydiere, A M; Gille, Y

    1996-01-01

    Two chromogenic media, Albicans ID and CHROMagar Candida agar plates, were compared with a reference medium, Sabouraud-chloramphenicol agar, and standard methods for the identification of yeast species. This study involved 951 clinical specimens. The detection rates for the two chromogenic media for polymicrobial specimens were 20% higher than that for the Sabouraud-chloramphenicol agar plates. The rates of identification of Candida albicans for Albicans ID and CHROMagar Candida agar plates w...

  9. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.

    Science.gov (United States)

    Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi

    2017-09-25

    Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.

  10. A phenotypic profile of the Candida albicans regulatory network.

    Directory of Open Access Journals (Sweden)

    Oliver R Homann

    2009-12-01

    Full Text Available Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of

  11. A phenotypic profile of the Candida albicans regulatory network.

    Science.gov (United States)

    Homann, Oliver R; Dea, Jeanselle; Noble, Suzanne M; Johnson, Alexander D

    2009-12-01

    Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but

  12. Evaluation of Susceptibility of Strains of Candida Albicans Isolated from AIDS Patients to Fluconazole and Determination of CDR2 Resistance Gene in Resistant Strains by RT-PCR Method

    Directory of Open Access Journals (Sweden)

    E Farahbakhsh

    2011-08-01

    Full Text Available Introduction & Objective: Nowadays, opportunistic fungi especially Candida albicans are the most common cause of life-threatening infections in immunodeficiency patients. Increasing Azole-resistant strains of C.albicans are a main problem in human immunodeficiency virus-infected patients. The aim of this study was to evaluate the CDR2 gene in C.albicans azole resistant strains, isolated from AIDS patients with oropharyngeal candidiasis by RT-PCR method. Materials & Methods: The present experimental study was conducted at Tarbiat Modares University of Medical Sciences in 2009. C. albicans isolates from HIV infected patients were identified by standard procedures, including germ tube formation, clamidospor and color of colonies on CHROM agar. At first, susceptibility of C. albicans isolates was assessed by disk diffusion agar technique. Then, CDR2 resistance gene was analyzed by RT-PCR and electrophoresis of the PCR products. Finally, patterns of the resulted bands were compared with standard fluconazole resistant strains. The collected data was analyzed using the SPSS software. Results: The results of drug sensitivity of 66 C. albicans isolates from AIDS patients revealed that 62.6% were susceptible, 8.6% were susceptible-dose dependent (SDD and 28.7% were resistant. In RT-PCR analysis, 6% of patients had the CDR2 gene. Conclusion: The use of phenotypic methods like disk diffusion agar, which is cheaper, along with genotypic methods, like RT-PCR, which provide the possibility of studying the mechanism of drug resistance, is recommended.

  13. The role of candida albicans in the pathogenesis of psoriasis vulgaris: a systematic literature review

    Directory of Open Access Journals (Sweden)

    Sona Sepahi

    2016-07-01

    Full Text Available Introduction: Psoriasis is a chronic, inflammatory skin disease that is related to many genetic, and environmental factors, as well as infectious pathogens. Findings suggest that the Candida species, particularly Candida albicans, may play a role in the pathogenesis of psoriasis vulgaris. In this study, we aimed to systematically review the possible association between C. albicans and the prevalence of psoriasis. Methods: A systematic search of existing literature was performed in the PubMed, Scopus and Google Scholar databases and the Google search engine using the following search strategy ((Candida albicans OR C. albicans OR Candida AND (psoriasis vulgaris OR plaque psoriasis OR psoriasis to find relevant articles that described a possible positive or negative association between C. albicans and the incidence or progression of psoriasis. The search was not limited to articles that were published within a specific time period; however, only those written in the English language were included in the review.Result: Of the 499 articles in total that were identified during the initial database search, 491 were excluded from the review because they failed to meet the inclusion/exclusion criteria. The total number of people involved in the selected studies, including both patients and healthy controls, was 1260. The analysis of the results of the included documents showed that the colonization of C. albicans is more prevalent in biological specimens taken from psoriatic patients.Conclusion: Studies show that C. albicans, opportunistic yeast, like diploid fungus, may be involved in the pathogenesis of psoriasis.

  14. Effect of Low-Level Laser therapy on the fungal proliferation of Candida albicans

    Science.gov (United States)

    Carneiro, Vanda S. M.; Araújo, Natália C.; Menezes, Rebeca F. d.; Moreno, Lara M.; Santos-Neto, Alexandrino d. P.; Gerbi, Marleny Elizabeth M.

    2016-03-01

    Candida albicans plays an important role in triggering infections in HIV+ patients. The indiscriminate use of antifungals has led to resistance to Candida albicans, which requires new treatment alternatives for oral candidiasis. Low-level laser therapy promotes a considerable improvement in the healing of wounds and in curing illnesses caused by microorganisms. The aim of the present study was to assess the effect of laser radiation on the cell proliferation of Candida albicans in immunosuppressed patients. Six Candida albicans strains that had been isolated from immunosuppressed patients were divided into a control group and experimental groups, which received eight sessions of laser therapy (InGaAlP, λ685nm, P = 30mW, CW, Φ~6 mm and GaAlAs, λ830nm, P = 40mW, CW, Φ~6 mm) using dosimetries of 6J/cm2, 8J/cm2, 10J/cm2 and 12J/cm2 for each wavelength and power. The results were not statistically significant (Kruskal Wallis, p > 0.05), although the proliferation of Candida albicans was lower in some of the experimental groups. The dosimetry of 6J/cm2 (GaAlAs, λ830nm, P = 40mW) provided lower mean scores than the other groups for the growth of Candida. Further studies are required to confirm whetehr laser therapy is a viable option in the treatment of fungal infections.

  15. Evaluation of CAMP-Like Effect, Biofilm Formation, and Discrimination of Candida africana from Vaginal Candida albicans Species

    Directory of Open Access Journals (Sweden)

    Keyvan Pakshir

    2017-01-01

    Full Text Available Candida africana as a species recovered from female genital specimens is highly close to C. albicans. The present study was conducted to discriminate C. africana from presumptive vaginal C. albicans strains by molecular assay and evaluate their hemolysin activity, biofilm formation, and cohemolytic effect (CAMP with vaginal bacterial flora. A total of 110 stock vaginal C. albicans isolates were examined by HWP1 gene amplification. Hemolysin activity and the ability of biofilm formation were evaluated by blood plate assay and visual detection methods, respectively. Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae were used to evaluate the CAMP-like effects in Sabouraud blood agar media. Based on the size of the amplicons (941 bp, all isolates were identified as C. albicans. All samples were able to produce beta-hemolysin. Moreover, 69 out of 110 of the isolates (62.7% were biofilm-positive, 54 out of 110 Candida isolates (49% demonstrated cohemolytic effects with S. agalactiae, and 48 out of 110 showed this effect with S. aureus (43.6%. All isolates were CAMP-negative with S. epidermidis. We detected all isolates as Candida albicans and almost half of the isolates were CAMP-positive with S. aureus and S. agalactiae, suggesting that these bacteria increase the pathogenicity of Candida in vaginal candidiasis.

  16. Evaluation of CAMP-Like Effect, Biofilm Formation, and Discrimination of Candida africana from Vaginal Candida albicans Species

    Science.gov (United States)

    Bordbar, Mahboubeh; Nouraei, Hasti; Khodadadi, Hossein

    2017-01-01

    Candida africana as a species recovered from female genital specimens is highly close to C. albicans. The present study was conducted to discriminate C. africana from presumptive vaginal C. albicans strains by molecular assay and evaluate their hemolysin activity, biofilm formation, and cohemolytic effect (CAMP) with vaginal bacterial flora. A total of 110 stock vaginal C. albicans isolates were examined by HWP1 gene amplification. Hemolysin activity and the ability of biofilm formation were evaluated by blood plate assay and visual detection methods, respectively. Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae were used to evaluate the CAMP-like effects in Sabouraud blood agar media. Based on the size of the amplicons (941 bp), all isolates were identified as C. albicans. All samples were able to produce beta-hemolysin. Moreover, 69 out of 110 of the isolates (62.7%) were biofilm-positive, 54 out of 110 Candida isolates (49%) demonstrated cohemolytic effects with S. agalactiae, and 48 out of 110 showed this effect with S. aureus (43.6%). All isolates were CAMP-negative with S. epidermidis. We detected all isolates as Candida albicans and almost half of the isolates were CAMP-positive with S. aureus and S. agalactiae, suggesting that these bacteria increase the pathogenicity of Candida in vaginal candidiasis. PMID:29318048

  17. Effects of Acetone Fraction From Buchenavia tomentosa Aqueous Extract and Gallic Acid on Candida albicans Biofilms and Virulence Factors

    Directory of Open Access Journals (Sweden)

    Guilherme R. Teodoro

    2018-04-01

    Full Text Available A promising anti-Candida activity of Buchenavia tomentosa extracts was recently described. In the present work, experiments were carried out to determine the fraction with higher antifungal activity from a B. tomentosa extract. Acetone fraction (AF was obtained from the aqueous extract from dried leaves (5 min/100°C and it was the most effective one. Gallic acid (GA was identified by electrospray ionization mass spectrometry (ESI–MS and also chosen to perform antifungal tests due to its promising activity on Candida albicans. Minimal inhibitory and fungicidal concentrations (MIC and MFC were determined by broth microdilution technique. The effect on virulence factors of C. albicans was evaluated, and the cytotoxicity was determined. MIC50 and MIC90 values were both equal to 0.625 mg ml-1 for AF and 2.5 and 5 mg ml-1, respectively, for GA. AF and GA showed ability to inhibit C. albicans adherence and to disrupt 48 h-biofilm. AF and GA were effective in reducing the formation of hyphae of C. albicans SC5314. AF and GA decreased adherence of C. albicans to oral epithelial cells. AF and GA showed slight to moderate toxicity to Vero cells. This result suggests further studies for topic use of these compounds. AF, which contains a combination of several molecules, presented greater potential of antimicrobial activity than GA, with lower values of MIC and lower cytoxicity.

  18. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.

    Science.gov (United States)

    Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G

    2017-11-01

    Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation.

    Science.gov (United States)

    Dong, Shuai; Shi, Hongxi; Zhang, Xintong; Chen, Xi; Cao, Donghui; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2018-01-01

    Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA's phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans . We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and metacaspase activation

  1. Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses.

    Science.gov (United States)

    Bishu, Shrinivas; Su, Ee Wern; Wilkerson, Erich R; Reckley, Kelly A; Jones, Donald M; McGeachy, Mandy J; Gaffen, Sarah L; Levesque, Marc C

    2014-02-11

    Accumulating data implicate the CD4+ T cell subset (Th17 cells) in rheumatoid arthritis (RA). IL-17 is an inflammatory cytokine that induces tumor necrosis factor (TNF)α, IL-1β and IL-6, all of which are targets of biologic therapies used to treat RA. RA patients are well documented to experience more infections than age-matched controls, and biologic therapies further increase the risk of infection. The Th17/IL-17 axis is vital for immunity to fungi, especially the commensal fungus Candida albicans. Therefore, we were prompted to examine the relationship between RA and susceptibility to C. albicans because of the increasing interest in Th17 cells and IL-17 in driving autoimmunity, and the advent of new biologics that target this pathway. We analyzed peripheral blood and saliva from 48 RA and 33 healthy control subjects. To assess C. albicans-specific Th17 responses, PBMCs were co-cultured with heat-killed C. albicans extract, and IL-17A levels in conditioned supernatants were measured by ELISA. The frequency of Th17 and Th1 cells was determined by flow cytometry. As a measure of IL-17A-mediated effector responses, we evaluated C. albicans colonization rates in the oral cavity, salivary fungicidal activity and levels of the antimicrobial peptide β-defensin 2 (BD2) in saliva. Compared to controls, PBMCs from RA subjects exhibited elevated baseline production of IL-17A (P = 0.004), although they had similar capacity to produce IL-17A in response to Th17 cell differentiating cytokines (P = 0.91). However RA PBMCs secreted less IL-17A in response to C. albicans antigens (P = 0.006). Significantly more RA patients were colonized with C. albicans in the oral cavity than healthy subjects (P = 0.02). Concomitantly, RA saliva had reduced concentrations of salivary BD2 (P = 0.02). Nonetheless, salivary fungicidal activity was preserved in RA subjects (P = 0.70). RA subjects exhibit detectable impairments in oral immune responses to C. albicans, a

  2. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation

    Directory of Open Access Journals (Sweden)

    Dong S

    2018-04-01

    Full Text Available Shuai Dong,1,2 Hongxi Shi,1 Xintong Zhang,1,2 Xi Chen,1 Donghui Cao,2 Chuanbin Mao,3,4 Xiang Gao,1 Li Wang1 1Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, 2First Hospital of Jilin University, Changchun, Jilin, 3School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China; 4Department of Chemistry and Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK, USA Background: Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA’s phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. Methods: In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway.Results: A single-chain variable-fragment phage (JM with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate

  3. Release of lysosomal enzymes in Candida albicans phagocytosis by rat peritoneal macrophages.

    Science.gov (United States)

    Fontenla de Petrino, S E; Sirena, A

    1984-02-15

    The present paper reports the in vitro release of lysosomal enzymes in the supernatant of cultures of rat peritoneal macrophages, with the addition of Candida albicans cells. Macrophages were taken from the rat peritoneal cavity 72 hr after non-specific activation with Brain-Heart-Infusion (B.H.I.) broth containing 10% proteose-peptone No. 3. They were then cultured in Parker medium No. 199 (TC 199). After 24 hr a suspension of Candida albicans cells, in a determined concentration, was added to the peritoneal macrophage cultures. At that time, and during pre-determined periods, the following enzymes in the culture supernatants were studied using colorimetric methods: beta-glucuronidase, beta-galactosidase and acid phosphatase. It is concluded that, under identical conditions, the release of beta-galactosidase and acid phosphatase is higher than for beta-glucuronidase. The release rate of all three enzymes is the highest at a 6 hr incubation period, after which, a gradual decrease leads to the rate down to 50% at 24 hr.

  4. Emergence of non-albicans Candida among candidal vulvovaginitis cases and study of their potential virulence factors, from a tertiary care center, North India.

    Science.gov (United States)

    Kumari, Varsha; Banerjee, Tuhina; Kumar, Pankaj; Pandey, Sulekha; Tilak, Ragini

    2013-01-01

    The purpose of this study was to determine the prevalence of various Candida species and study some of their virulence factors among thevulvovaginal candidiasis(VVC)patients. The study was conducted in a Tertiary Care University Hospital in North India. This study was carried out prospectively for a period of 1 year. High vaginal swabs (HVSs) were collected from women in childbearing age group attending the gynecology and obstetrics out-patient departments with the complaints suggestive of vulvovaginitis. Samples were plated on Sabouraud's dextrose agar slope. Candida spp. isolated was further speciated based on microscopy, biochemical tests and culture characteristics on special media. Virulence factors of these strains were determined by biofilm formation and phospholipase activity. A total of 464 HVS from 232 patients with the complaints of vulvovaginitis were included in this study. Following laboratory workup, 71 specimens were positive for genus Candida (30.6%). Further speciation showed 32.4% as Candida albicans, 45.07% Candida parapsilosis and 22.53% of Candida glabrata. Biofilm production was shown by 50 candidal strains (70.4%) and phospholipase activity was given by 41 candidal strains (57.74%). Our study suggests increasing prevalence of non-albicans Candida among the VVC cases along with their virulence factors. Therefore, we recommend that microbiological investigation upto species level should be mandatory to determine the emergence of non-albicans Candida as a major cause of VVC.

  5. Emergence of non-albicans Candida among candidal vulvovaginitis cases and study of their potential virulence factors, from a tertiary care center, North India

    Directory of Open Access Journals (Sweden)

    Varsha Kumari

    2013-01-01

    Full Text Available Purpose: The purpose of this study was to determine the prevalence of various Candida species and study some of their virulence factors among thevulvovaginal candidiasis(VVCpatients. Study Design and Settings: The study was conducted in a Tertiary Care University Hospital in North India. Materials and Methods: This study was carried out prospectively for a period of 1 year. High vaginal swabs (HVSs were collected from women in childbearing age group attending the gynecology and obstetrics out-patient departments with the complaints suggestive of vulvovaginitis. Samples were plated on Sabouraud′s dextrose agar slope. Candida spp. isolated was further speciated based on microscopy, biochemical tests and culture characteristics on special media. Virulence factors of these strains were determined by biofilm formation and phospholipase activity. Result: A total of 464 HVS from 232 patients with the complaints of vulvovaginitis were included in this study. Following laboratory workup, 71 specimens were positive for genus Candida (30.6%. Further speciation showed 32.4% as Candida albicans, 45.07% Candida parapsilosis and 22.53% of Candida glabrata. Biofilm production was shown by 50 candidal strains (70.4% and phospholipase activity was given by 41 candidal strains (57.74%. Conclusion: Our study suggests increasing prevalence of non-albicans Candida among the VVC cases along with their virulence factors. Therefore, we recommend that microbiological investigation upto species level should be mandatory to determine the emergence of non-albicans Candida as a major cause of VVC.

  6. The effect of ultraviolet radiation on the pathogenesis of Candida albicans in mice

    International Nuclear Information System (INIS)

    Denkins, Y.M.

    1991-01-01

    This dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans. UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the delayed type hypersensitivity (DTH) response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice. These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections

  7. Prevalence and intraoral distribution of Candida albicans in Sjögren's syndrome.

    Science.gov (United States)

    Tapper-Jones, L; Aldred, M; Walker, D M

    1980-03-01

    An imprint culture technique has been employed to study the prevalence and intraoral distribution of Candida albicans in 16 patients with Sjögren's syndrome and in 16 healthy controls matched for age, sex, and dental status. The prevalence and intraoral density of C. albicans was found to be significantly higher at almost all sites in the Sjögren's patients than in the controls. The distribution of candida was also altered, being significantly higher in the floor of the mouth and anterior labial sulcus in the Sjögren's group. There was an approximate inverse relationship between candida populations and rate of salivary flow. Mean candida densities were found to be significantly higher in those Sjögren's patients with detectable serum rheumatoid factor in the serum. However, patients with primary Sjögren's syndrome had significantly higher mean candida densities compared with patients with secondary Sjögren's syndrome.

  8. Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.

    Science.gov (United States)

    Serra, Elisa; Hidalgo-Bastida, Lilia Araida; Verran, Joanna; Williams, David; Malic, Sladjana

    2018-01-25

    Management of oral candidosis, most frequently caused by Candida albicans , is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% ( v / v ) to 0.4% ( v / v )) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% ( v / v )). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans , although host cell cytotoxicity is a consideration when developing these new treatments.

  9. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans

    Directory of Open Access Journals (Sweden)

    Daniel ePrieto

    2015-08-01

    Full Text Available Candida albicans is a member of the human microbiota, colonizing both the vaginal and gastrointestinal tracts. This yeast is devoid of a life style outside the human body and the mechanisms underlying the adaptation to the commensal status remain to be determined. Using a model of mouse gastrointestinal colonization, we show here that C. albicans stably colonizes the mouse gut in about 3 days starting from a dose as low as 100 cells, reaching steady levels of around 107 cells/g of stools. Using fluorescent labeled strains we have assessed the competition between isogenic populations from different sources in cohoused animals. We show that long term (15 days colonizing cells have increased fitness in the gut niche over those grown in vitro or residing in the gut for 1-3 days. Therefore, two distinct states, proliferation and adaptation, seem to exist in the adaptation of this fungus to the mouse gut, a result with potential significance in the prophylaxis and treatment of Candida infections.

  10. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation.

    Science.gov (United States)

    Furletti, V F; Teixeira, I P; Obando-Pereda, G; Mardegan, R C; Sartoratto, A; Figueira, G M; Duarte, R M T; Rehder, V L G; Duarte, M C T; Höfling, J F

    2011-01-01

    The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration-MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F(8-10) fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F(8-10) fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.

  11. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    V. F. Furletti

    2011-01-01

    Full Text Available The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration—MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS. C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM. The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F8–10 fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F8–10 fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.

  12. POTENSI EKSTRAK RIMPANG KENCUR (Kaempferia galanga L. MENGHAMBAT PERTUMBUHAN Candida albicans

    Directory of Open Access Journals (Sweden)

    Annisa Rahmi

    2016-12-01

    Full Text Available Candida albicans infection is the cause of candidiasis. Candidiasis treatment can be done with a variety of antifungal drugs, one of them is rhizome of kencur (Kaempferia galanga L.. The Rhizome of kencur is selected as a traditional medicine because it contains chemical compounds such as flavonoids, tannins, saponins and essential oil that serves as an antifungal. This study aimed to determine the minimal inhibitory and minimal killing power and also an influence of kencur rhizome extract on the growth of Candida albicans in vitro. This research was true experimental design with posttest only control group design with tube dilution method. Results of Minimal Inhibitory Concentrations (MICs research showed there was no clarity at concentration of 20 mg/mL, 30 mg/mL, 40 mg/mL, and it shows clarity at concentration of 50 mg/mL and 60 mg/mL. Results of Minimum Bactericidal Concentrations (MBCs showed the number of colonies at concentration of 20 mg/mL were 84 colonies, concentration of 30 mg/mL were 48 colonies, concentration of 40 mg/mL were 27 colonies, concentration of mg/mL were 12 colonies and concentration of 60 mg/mL were 0 colony. Based on linear regression test, the result showed significance value of 0.000

  13. Antifungal Activity of Lavandula Angustifolia and Quergues Infectoria Extracts in Comparison with Nystatin on Candida Albicans

    Directory of Open Access Journals (Sweden)

    F. Nouri

    2016-07-01

    Full Text Available Introduction & Objective: Nowadays,herbal extracts are used to treat diseases, especially infec-tious ones. Candida albicans is the most common causes of oral opportunistic infections.In this study, antifungal effects of two herbal extracts were evaluated on an oral pathogen i.e. Candida albicans. Materials & Methods: In this descriptive- analytic study, the Department of Prosthodontics, ,Tehran University of Medical Sciences, school of Dentistry the oral samples of 25 patients with denture stomatitis were collected using sterile swabs. Then the isolated candida albicans and standard candida albicans PTCC 5027 were cultured. The antifungal effect was evaluated with disk plate method. Nystatin and methanol were used as positive and negative control groups, respectively. The power of antifungal activity was evaluated with the inhibition zone diameter of each of the extracts. At the end, the data were analyzed by ANOVA and Fried-man statistical tests. Results: Results showed that extracts of Querques infectoria had great antifungal effects. There was not statistically significant difference between nystatine and Querques infectoria extract (P>0.05 however , Querques infectoria was statistically more effective than lavender extract and nystatin showed the highest antifungal activity (P <0.001. Conclusion: This study showed that plant extracts had positive effects on Candida albicans as compared to nystatin. Thus, we hope to find new herbal medicines and compounds to treat candidiasis in the future. (Sci J Hamadan Univ Med Sci 2016; 23 (2:172-178

  14. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship.

    Science.gov (United States)

    Kulikov, Sergey N; Lisovskaya, Svetlana A; Zelenikhin, Pavel V; Bezrodnykh, Evgeniya A; Shakirova, Diana R; Blagodatskikh, Inesa V; Tikhonov, Vladimir E

    2014-03-03

    A series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well. For the first time it was shown that even sub-MIC oligochitosan concentration suppressed the formation of C. albicans hyphal structures, cause severe cell wall alterations, and altered internal cell structure. These results indicate that oligochitosan should be considered as a possible alternative/additive to known anti-yeast agents in pharmaceutical compositions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans

    Directory of Open Access Journals (Sweden)

    Maria Clerya Alvino Leite

    2014-01-01

    Full Text Available Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC and the minimum fungicidal concentration (MFC were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol, cell membranes (citral to ergosterol binding, the time-kill curve, and biological activity on the yeast’s morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral’s mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.

  16. Effect of Schinus terebinthifolius on Candida albicans growth kinetics, cell wall formation and micromorphology.

    Science.gov (United States)

    Alves, Lívia Araújo; Freires, Irlan de Almeida; Pereira, Tricia Murielly; de Souza, Andrade; Lima, Edeltrudes de Oliveira; de Castro, Ricardo Dias

    2013-01-01

    To evaluate the anti-fungal activity of a tincture from Schinus terebinthifolius (Brazilian pepper tree) on Candida albicans (ATCC 289065), a micro-organism associated with fungal infections of the oral cavity. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through microdilution technique, as well as the microbial growth curve of C. albicans promoted by S. terebinthifolius. In addition, this study investigated a possible activity of the product on the fungal cell wall and its biological activity on fungal morphology. Nystatin was used as control and all tests were performed in triplicate. S. terebinthifolius showed MIC of 312.5 µg/mL and MFC of 2500 µg/mL upon the strain tested, while Nystatin showed MIC and MFC of 6.25 µg/mL. As regards the microbial growth curve, S. terebinthifolius was able to significantly reduce the number of CFU/mL when compared to growth control until the time of 60 min. In the times 120 and 180 min there was no statistically significant difference between the growth control and the experimental product. S. terebinthifolius possibly acts on the fungal cell wall, once the sorbitol test indicated a MIC of 1250 µg/mL. In the fungal morphology, a reduction was observed of pseudo-hyphae, chlamydoconidia and blastoconidia in the presence of the experimental product. S. terebinthifolius showed anti-fungal activity against C. albicans, inhibiting, probably, the fungal cell wall formation.

  17. Candida não albicans como patogénicos emergentes

    OpenAIRE

    Vieira, Francisca Moreira Raposo de Mello

    2016-01-01

    Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz As espécies do género Candida, comensais no Homem, podem tornar-se patogénicas quando existe um desequilíbrio na resposta do sistema imunitário, desencadeando infecções superficiais ou sistémicas. Embora Candida albicans (C. albicans) seja considerada a espécie com maior patogenicidade, dados epidemiológicos apontam para a emergência das espécies de Candida não-albicans (CNA), nomeadamente em ...

  18. DAYA ANTIMIKROBA EKSTRAK COLEUS AMBOINICUS, LOUR TERHADAP CANDIDA ALBICANS PADA RESIN AKRILIK

    Directory of Open Access Journals (Sweden)

    Devi Rianti

    2015-08-01

    Full Text Available A laboratory experimental study conducted on antimicrobial effects of Coleus amboinicus, Lour concentrate towards Candida albicans on acrylic resin. Samples of this study are 10x10x1 mm heat cured acrylic plates immersed in 15%, 12.5%, 10%, 7.5% of Coleus amboinicus, Lour concentrate solution. Sterilized aquadest was used as control. 16 samples were used for each exercise. Statistical analyses used are One-way Anova and LSD with 5% significance degree. The result showed that increasing Coleus amboinicus, Lour concentrate solution i.e. 7.5%, 10%, 12.5%, 15% will increased the antimicrobial effects towards Candida albicans. The most effective concentrate solution in reducing Candida albicans colonies is 15%.

  19. Study of the prevalence and association of ocular chlamydial conjunctivitis in women with genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans attending outpatient clinic.

    Science.gov (United States)

    Khattab, Rania Abdelmonem; Abdelfattah, Maha Mohssen

    2016-01-01

    To determine the association between chlamydial conjunctivitis and genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans, in addition to the possible relationship between cultured bacterial pathogens and oculogenital chlamydial infection. This study was performed on 100 (50 symptomatic and 50 asymptomatic) women attending the Gynecological and Obstetric outpatient clinic of Alzahra hospital, Alazhar University. Simultaneously a conjunctival swab was taken from these patients. Polymerase chain reaction (PCR) was done on DNA extracted from both vaginal and conjunctival swab samples. Culture for both vaginal and conjunctival swabs was also done. Candida albicans was the predominant organism isolated by culture in 20% and 40% of conjunctival and vaginal swabs respectively. By the PCR method, ocular Chlamydia trachomatis was present in 60% of symptomatic women, while genital Chlamydia trachomatis infection was present in 30% of symptomatic women. The results of this method also indicated that 25/50 (50%) vaginal swabs were positive with PCR for Candida albicans versus 15/50 (30%) were PCR positive in conjunctival swab. Mycoplasma genitalium was present in only 10% of vaginal swabs. Concomitant oculogenital PCR positive results for Chlamydia trachomatis and Candida albicans were 30% and 28% respectively. Ocular Chlamydia trachomatis was associated with genital Chlamydia trachomatis in a high percentage of women followed by Candida albicans. Cultured bacterial organisms do not play a role in enhancement of Chlamydia trachomatis infection.

  20. Differential virulence of Candida albicans and C. dubliniensis: A role for Tor1 kinase?

    LENUS (Irish Health Repository)

    Sullivan, Derek J

    2011-01-01

    Candida albicans and Candida dubliniensis are two very closely related species of pathogenic yeast. C. albicans is the most prevalent species in the human gastrointestinal tract and is responsible for far more opportunistic infections in comparison with C. dubliniensis. This disparity is likely to be due to the reduced ability of C. dubliniensis to undergo the yeast to hypha transition, a change in morphology that plays an important role in C. albicans virulence. We have recently shown that hypha formation by C. dubliniensis is specifically repressed by nutrients at alkaline pH. In this article, we present new data showing that this can be partly reversed by treatment with rapamycin, an inhibitor of the nutrient sensing kinase Tor1 (Target Of Rapamycin). We also provide a speculative model to describe why C. albicans filaments more efficiently in nutrient rich environments, citing recently described data on Mds3, a pH responsive regulator of Tor1 kinase activity.

  1. Cell wall damage and oxidative stress in Candida albicans ATCC10231 and Aspergillus niger caused by palladium nanoparticles.

    Science.gov (United States)

    Athie-García, Martha Samira; Piñón-Castillo, Hilda Amelia; Muñoz-Castellanos, Laila Nayzzel; Ulloa-Ogaz, Ana Laura; Martínez-Varela, Perla Ivonne; Quintero-Ramos, Armando; Duran, Robert; Murillo-Ramirez, José Guadalupe; Orrantia-Borunda, Erasmo

    2018-04-01

    In this work the toxic effect of Palladium nanoparticles (PdNPs) was investigated in two eukaryotic cell models, Candida albicans and Aspergillus niger. PdNPs were synthesized by chemical reduction method, obtaining spherical NPs with a primary size ranging from 3 to 15 nm. PdNPs showed a hydrodynamic size of 1548 nm in Lee's minimum media. Minimal inhibitory concentration was determined at 200 and 250 ppm for Candida albicans and Aspergillus niger respectively, revealing a significant cell growth inhibition (ANOVA and tukey analysis, α = 0.5). Reactive Oxygen Species levels were increased in both microorganisms. Confocal, scanning and transmission electron microscopy studies revealed cell wall damage and cellular morphology changes, induced by the interaction of PdNPs, in both microorganisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. PENGARUH KOMBINASI EKSTRAK PETROLEUM ETER BAWANG PUTIH (Allium sativum Linn DENGAN VITAMIN C TERHADAP AKTIVITAS Candida albicans

    Directory of Open Access Journals (Sweden)

    Nurul Khaira

    2016-03-01

    Full Text Available Garlic (Allium sativum contains organosulfur compound that plays an important role as an antibacterial and antifungal activities. Ascorbic acid or vitamine C also has been show has a good activity as an antioxidant and as an antifungal. The aims of the research is to determine the effect of the combination of petroleum ether garlic extract with vitamin C against Candida albicans. Zone of inhibition testing done by Kirby-Bauer method. The results showed that the combination of petroleum ether garlic extract with vitamin C in concentration of 50% did not show an activity significantly. Meanwhile, the activity of petroleum ether garlic extract alone at concentration of 50 and 75% showed activities towards Candida albicans with a diameter of inhibition zone are 19.46 and 27.46 mm respectively.

  3. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans

    OpenAIRE

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Abstract Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later chall...

  4. Comparison of dielectric barrier discharge modes fungicidal effect on candida albicans growth

    International Nuclear Information System (INIS)

    Slama, J.; Kriha, V.; Fantova, V.; Julak, J.

    2013-01-01

    Filamentary and quasi-homogeneous mode of dielectric barrier discharge (DBD) was investigated as a plasma source with fungicidal effect on Candida albicans yeast inoculated on Sabouraud agar wafers. As compared with the filamentary DBD mode, the quasi-homogeneous mode had significantly better results: shorter exposition time needed for inhibiting C. albicans yeast, moreover the quasi-homogeneous mode had gentle influence on the agar surface structure.

  5. Antifungal Activity of Aqueous Extracts from Ferula Assa foetida Aerial parts on Candida Albicans and its Comparison with Fluconazole in vitro

    Directory of Open Access Journals (Sweden)

    AA Jafari

    2014-09-01

    Results:Concentrations of 8.75 mg/ml aerial parts of Ferula assafoetida completely inhibited the growth of Candida albicans and killed all viable cells (MFC. Concentrations of 0.273 and 4.4 mg/ml Ferula aqueous extracts were also determined as MIC50 and MIC90. In case of Fluconazole, 128 µg/ml concentrationis determined as MFC and 0.5 µg/ml concentration is also known as MIC50. Conclusion:Results of the current study showed that the aqueous extract of Ferula assafoetida aerial parts has inhibitory and candidacidal effect against Candida albicans and further in vivo studies are suggested.

  6. Prevalence and intraoral distribution of Candida albicans in Sjögren's syndrome.

    OpenAIRE

    Tapper-Jones, L; Aldred, M; Walker, D M

    1980-01-01

    An imprint culture technique has been employed to study the prevalence and intraoral distribution of Candida albicans in 16 patients with Sjögren's syndrome and in 16 healthy controls matched for age, sex, and dental status. The prevalence and intraoral density of C. albicans was found to be significantly higher at almost all sites in the Sjögren's patients than in the controls. The distribution of candida was also altered, being significantly higher in the floor of the mouth and anterior lab...

  7. In vitro activity of xanthorrhizol isolated from the rhizome of Javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms.

    Science.gov (United States)

    Rukayadi, Yaya; Hwang, Jae-Kwan

    2013-07-01

    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections. Copyright © 2012 John Wiley & Sons, Ltd.

  8. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn.

    Science.gov (United States)

    Lv, Quan-Zhen; Yan, Lan; Jiang, Yuan-Ying

    2016-08-17

    Sterols are the basal components of the membranes of the fungal pathogen Candida albicans, and these membranes determine the susceptibility of C. albicans cells to a variety of stresses, such as ionic, osmotic and oxidative pressures, and treatment with antifungal drugs. The common antifungal azoles in clinical use are targeted to the biosynthesis of ergosterol. In the past years, the synthesis, storage and metabolism of ergosterol in Saccharomyces cerevisiae has been characterized in some detail; however, these processes has not been as well investigated in the human opportunistic pathogen C. albicans. In this review, we summarize the genes involved in ergosterol synthesis and regulation in C. albicans. As well, genes in S. cerevisiae implicated in ergosterol storage and conversions with other lipids are noted, as these provide us clues and directions for the study of the homologous genes in C. albicans. In this report we have particularly focused on the essential roles of ergosterol in the dynamic process of cell biology and its fundamental status in the biological membrane system that includes lipid rafts, lipid droplets, vacuoles and mitochondria. We believe that a thorough understanding of this classic and essential pathway will give us new ideas about drug resistance and morphological switching in C. albicans.

  9. Particular Candida albicans strains in the digestive tract of dyspeptic patients, identified by multilocus sequence typing.

    Directory of Open Access Journals (Sweden)

    Yan-Bing Gong

    Full Text Available BACKGROUND: Candida albicans is a human commensal that is also responsible for chronic gastritis and peptic ulcerous disease. Little is known about the genetic profiles of the C. albicans strains in the digestive tract of dyspeptic patients. The aim of this study was to evaluate the prevalence, diversity, and genetic profiles among C. albicans isolates recovered from natural colonization of the digestive tract in the dyspeptic patients. METHODS AND FINDINGS: Oral swab samples (n = 111 and gastric mucosa samples (n = 102 were obtained from a group of patients who presented dyspeptic symptoms or ulcer complaints. Oral swab samples (n = 162 were also obtained from healthy volunteers. C. albicans isolates were characterized and analyzed by multilocus sequence typing. The prevalence of Candida spp. in the oral samples was not significantly different between the dyspeptic group and the healthy group (36.0%, 40/111 vs. 29.6%, 48/162; P > 0.05. However, there were significant differences between the groups in the distribution of species isolated and the genotypes of the C. albicans isolates. C. albicans was isolated from 97.8% of the Candida-positive subjects in the dyspeptic group, but from only 56.3% in the healthy group (P < 0.001. DST1593 was the dominant C. albicans genotype from the digestive tract of the dyspeptic group (60%, 27/45, but not the healthy group (14.8%, 4/27 (P < 0.001. CONCLUSIONS: Our data suggest a possible link between particular C. albicans strain genotypes and the host microenvironment. Positivity for particular C. albicans genotypes could signify susceptibility to dyspepsia.

  10. [The effects of an aroma candy on oral Candida albicans colony-forming units (CFU) and oral hygiene states in healthy elderly carrying Candida albicans].

    Science.gov (United States)

    Suzuki, Motofumi; Hayama, Kazumi; Takahashi, Miki; Ezawa, Kunio; Yamazaki, Masatoshi; Matsukawa, Taiji; Kishi, Akinobu; Satou, Nobuya; Abe, Shigeru

    2015-01-01

    In a preceding paper, we showed that aroma candy containing oligonol, capric acid, and cinnamon (cassia) powder had potent inhibitory activity against mycelial growth of Candida albicans in vitro and protective activity against murine oral candidiasis. In order to assess the effects of this candy (the test candy) on oral C. albicans colony-forming units (CFU) and oral hygiene states, a placebo-controlled double-blind crossover comparative study was performed. Twenty subjects were divided into two groups. One group ingested the test candy in the first 7 days followed by 2 weeks washing-off period, then ingested the placebo candy (control candy) for 7 days. The other group was vice versa. C. albicans CFU in all oral rinse samples from the subjects before and after 7 days ingestion of candy was measured. The degree of oral malodor in all subjects was monitored using a portable measuring instrument. The results showed no statistically significant difference between test-candy group and placebo group for C. albicans CFU. However, C. albicans CFU in test-candy group with>4,000 CFUs was significantly decreased after 7 days ingestion of test-candy (poral malodor in the test-candy group was significantly decreased after 7 days ingestion of test-candy (poral hygiene states indicated that in the test-candy group, oral malodor, glutinous feeling, and refreshing feeling significantly improved in comparison with control-candy group (poral health care of elderly carrying C. albicans.

  11. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation.

    Science.gov (United States)

    Hosida, Thayse Yumi; Cavazana, Thamires Priscila; Henriques, Mariana; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo; Monteiro, Douglas Roberto

    2018-04-01

    The relationship among Candida species may be influenced by several factors. Thus, this study evaluated the interactions between Candida albicans and Candida glabrata in biofilms, varying the strain type, culture medium and glucose supplementation. Biofilms were formed for 48 hours in Sabouraud dextrose broth (SDB) or RPMI 1640, supplemented with 0%, 1% or 5% glucose. Each strain of C. albicans was combined with two strains of C. glabrata, generating four biofilm associations, which were quantified by colony-forming units (CFUs), total biomass and metabolic activity. Data were analysed by ANOVA and Tukey's HSD test (α = 0.05). For CFUs, all associations were classified as indifferent for biofilms formed in RPMI 1640, while for SDB the interactions were antagonistic for C. albicans and indifferent for C. glabrata. The association of reference strains resulted in a dual-species biofilm with biomass significantly higher than that observed for each single biofilm developed in SDB. The metabolic activity of dual-species biofilms did not significantly differ from that found for single ones, except for co-culture of the reference strains. Glucose supplementation and culture media had a significant influence on all parameters. In conclusion, the strain type, culture medium and glucose supplementation influenced the interactions between C. albicans and C. glabrata. © 2017 Blackwell Verlag GmbH.

  12. In vitro sensitivity of Trichomonas vaginalis and Candida albicans to chemotherapeutic agents.

    Science.gov (United States)

    Lövgren, T; Salmela, I

    1978-06-01

    Strains of fresh clinical isolates of Trichomonas vaginalis and Candida albicans have been tested in vitro for their sensitivity to eight drugs used in the therapy of monilial and trichomonal vaginitis. Three of the chemotherapeutic agents, chlorchinaldol, clotrimazole and broxyquinoline were effective against both organisms. Tinidazole and metronidazole were active against T. vaginalis. The strains of C. albicans were also sensitive to trichomycin, natamycin and nystatin. Tinidazole was the most effective trichomonacide, clotrimazole and chlorchinaldol were most effective against C. albicans, while chlorchinaldol had the best in vitro effect against both organisms. The ranges of the MICs are compared to values previously reported.

  13. Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence

    OpenAIRE

    McCourt, Paula; Liu, Hsing-Yin; Parker, Josie E.; Gallo-Ebert, Christina; Donigan, Melissa; Bata, Adam; Giordano, Caroline; Kelly, Steven L.; Nickels, Joseph T.

    2016-01-01

    Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD) that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to...

  14. Phospholipid biosynthesis in Candida albicans: Regulation by the precursors inositol and choline

    International Nuclear Information System (INIS)

    Klig, L.S.; Friedli, L.; Schmid, E.

    1990-01-01

    Phospholipid metabolism in the pathogenic fungus Candida albicans was examined. The phospholipid biosynthetic pathways of C. albicans were elucidated and were shown to be similar to those of Saccharomyces cerevisiae. However, marked differences were seen between these two fungi in the regulation of the pathways in response to exogenously provided precursors inositol and choline. In S. cerevisiae, the biosynthesis of phosphatidylcholine via methylation of phosphatidylethanolamine appears to be regulated in response to inositol and choline; provision of choline alone does not repress the activity of this pathway. The same pathway in C. albicans responds to the exogenous provision of choline. Possible explanations for the observed differences in regulation are discussed

  15. Influence of radiation therapy on oral Candida albicans colonization: a quantitative assessment

    International Nuclear Information System (INIS)

    Rossie, K.M.; Taylor, J.; Beck, F.M.; Hodgson, S.E.; Blozis, G.G.

    1987-01-01

    An increase in quantity of oral Candida albicans was documented in patients receiving head and neck radiation therapy during and after therapy, as assessed by an oral-rinse culturing technique. The amount of the increase was greater in denture wearers and directly related to increasing radiation dose and increasing volume of parotid gland included in the radiation portal. A significant number of patients who did not carry C. albicans prior to radiation therapy developed positive cultures by 1 month after radiation therapy. The percentage of patients receiving head and neck radiation therapy who carried C. albicans prior to radiation therapy did not differ significantly from matched dental patient controls

  16. 17-β-Estradiol Upregulates the Stress Response in Candida albicans: Implications for Microbial Virulence

    OpenAIRE

    C. O’Connor; M. Essmann; B. Larsen

    1998-01-01

    Objective: The influence of 17-β-estradiol on the stress response of Candida albicans was studied.Methods: The survival of clinical isolates of C. albicans treated with 17-β-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDSPAGE.Results: The heat stress response induced by 17-β-estradiol in C. albicans grown at 25 ℃ protected the organisms against the lethal temperature of 48.5 ℃, as shown by viable plate counts. 17-β-estradi...

  17. 17-beta-estradiol upregulates the stress response in Candida albicans: implications for microbial virulence.

    OpenAIRE

    O'Connor, C; Essmann, M; Larsen, B

    1998-01-01

    OBJECTIVE: The influence of 17-beta-estradiol on the stress response of Candida albicans was studied. METHODS: The survival of clinical isolates of C. albicans treated with 17-beta-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDS-PAGE. RESULTS: The heat stress response induced by 17-beta-estradiol in C. albicans grown at 25 degrees C protected the organisms against the lethal temperature of 48.5 degrees C, as shown by viabl...

  18. Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders.

    Science.gov (United States)

    Gainza-Cirauqui, M L; Nieminen, M T; Novak Frazer, L; Aguirre-Urizar, J M; Moragues, M D; Rautemaa, R

    2013-03-01

    Production of carcinogenic acetaldehyde by Candida has been suggested to contribute to epithelial dysplasia and oral carcinogenesis. Oral lichen planus (OLP), oral lichenoid lesion (OLL) and oral leukoplakia (OL) are potentially carcinogenic oral diseases where colonisation by Candida is common, but acetaldehyde production by Candida has not been studied. Acetaldehyde production in ethanol (11 mM), glucose (100 mM), ethanol-glucose (11 mM and 100 mM) or red wine (1200 mM ethanol) incubation by Candida albicans from patients with OLL (n = 6), OLP (n = 16), OL (n = 6) and controls (n = 6) was measured by gas chromatography. Participants completed a questionnaire regarding their smoking habits and alcohol consumption. All Candida albicans isolates produced potentially carcinogenic levels of acetaldehyde (>100 μM) in all incubations containing ethanol. The control group isolates produced the highest acetaldehyde levels. Isolates from smokers produced more acetaldehyde in all incubations than those from non-smokers. The difference was significant in ethanol-glucose incubation. Isolates from patients who were both smokers and drinkers produced the highest amounts when incubated in ethanol, ethanol-glucose and wine. Candida albicans isolated from potentially carcinogenic oral diseases can produce mutagenic amounts of acetaldehyde. Cigarette smoking and alcohol consumption may favour adaptational changes resulting in the upregulation of candidal acetaldehyde metabolism. © 2012 John Wiley & Sons A/S. All rights reserved.

  19. Whole Saliva has a Dual Role on the Adherence of Candida albicans to Polymethylmetacrylate.

    Science.gov (United States)

    Elguezabal, N; Maza, J L; Dorronsoro, S; Pontón, J

    2008-01-01

    Adhesion of Candida albicans to acrylic of dental prostheses or to salivary macromolecules adsorbed on their surface is believed to be a critical event in the development of denture stomatitis. In previous studies our group has shown that adhesion of C. albicans germ tubes to polystyrene is decreased by saliva whereas C. albicans yeast cells adhesion to the same material is enhanced. The results presented in this study confirm this dual role played by whole saliva, since it decreased the adhesion of germ tubes but increased the adhesion of yeast cells to polymethylmetacrylate (PMMA). These effects mediated by whole saliva do not seem to be related to an inhibition of the germination of C. albicans, since similar levels of filamentation were observed in presence and absence of saliva. These results may give new insights into the conflicting role of saliva in the adhesion of C. albicans to acrylic resins of dental prostheses.

  20. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage

    Science.gov (United States)

    Fong, Wing-Ping; Samaranayake, Lakshman Perera

    2017-01-01

    Candida albicans is a clinically important human fungal pathogen. We previously identified the presence of cell-associated phytase activity in C. albicans. Here, we reveal for the first time, that orf19.3727 contributes to phytase activity in C. albicans and ultimately to its virulence potency. Compared with its wild type counterpart, disruption of C. albicans orf19.3727 led to decreased phytase activity, reduced ability to form hyphae, attenuated in vitro adhesion, and reduced ability to penetrate human epithelium, which are the major virulence attributes of this yeast. Thus, orf19.3727 of C. albicans plays a key role in fungal pathogenesis. Further, our data uncover a putative novel strategy for anti-Candidal drug design through inhibition of phytase activity of this common pathogen. PMID:29216308

  1. The effect of denture adhesives on Candida albicans growth in vitro.

    Science.gov (United States)

    Sampaio-Maia, Benedita; Figueiral, Maria Helena; Sousa-Rodrigues, Patricia; Fernandes, Maria Helena; Scully, Crispian

    2012-06-01

    Denture-wearing favours the growth of Candida. In view of the fact that many denture wearers regularly use adhesives to enhance denture retention, stability and function, the aim of this work was to study the effect of denture adhesives on Candida albicans growth in vitro. The denture adhesives tested were Corega(®) cream, Kukident(®) cream, Novafix(®) cream, Polident(®) cream, Protefix(®) cream, Steradent(®) cream, Aderyn(®) powder, Corega(®) ultra powder, Protefix(®) powder and Corega(®) strip. C. albicans growth curves were obtained in the presence or absence of a 1% solution of the denture adhesive diluted in Sabouraud broth. Macro- and microscopic morphological changes in C. albicans were analysed, as was microbial contamination of the denture adhesive. Most of the denture adhesives studied induced morphological changes in C. albicans cells and colonies, but only two had any significant inhibitory effect on yeast growth. Kukident(®) cream markedly inhibited C. albicans growth in a concentration-dependent way, reducing the growth rate by 95%, whereas Corega(®) cream also inhibited C. albicans growth but in a non-concentration-dependent way, reducing the growth rate by 37%. In addition, denture adhesives available as powders had detectable microbial contamination. Some commercially available denture adhesives showed microbial contamination and some had significant inhibitory effect on C. albicans growth. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  2. Candida albicans adherence to resin-composite restorative dental material: influence of whole human saliva.

    Science.gov (United States)

    Maza, José Luis; Elguezabal, Natalia; Prado, Carlota; Ellacuría, Joseba; Soler, Iñaki; Pontón, José

    2002-11-01

    Attachment of Candida albicans to oral surfaces is believed to be a critical event in the colonization of the oral cavity and in the development of oral diseases such as Candida-associated denture stomatitis. Although there is considerable information about the adhesion of C albicans to buccal epithelial cells and prosthetic materials, there is very little information about the adhesion of C albicans to composite restorative materials. The purpose of this study was to investigate the degree of adhesion of C albicans to a resin-composite restorative material (Herculite). The adhesion of 2 strains of C albicans, a germinative and a germ tube-deficient mutant, was studied by a visual method after incubating the fungus and the resin with and without human whole saliva. In absence of saliva, the adhesion of the C albicans germinative isolate to the resin showed an increase in parallel with the germination, reaching a maximum at the end of the experiment (120 minutes). However, no significant differences were observed in the adhesion of the agerminative mutant during the period of time studied. In the presence of saliva, the adhesion of both isolates to the resin was significantly lowered. Germination and the presence of human whole saliva are important factors in the adhesion of C albicans to the resin-composite restorative material Herculite.

  3. Invitro Anti-mycotic Activity of Hydro Alcoholic Extracts of Some Indian Medicinal Plants against Fluconazole Resistant Candida albicans.

    Science.gov (United States)

    Varadarajan, Saranya; Narasimhan, Malathi; Malaisamy, Malaiyandi; Duraipandian, Chamundeeswari

    2015-08-01

    Candidiasis is one of the most common opportunistic infections caused by Candida albicans. Fluconazole is the drug of choice for prevention and management of this condition. However, the emergence of fluconazole resistant candidal strains has become a major concern. Many herbs like fenugreek, cinnamon, papaya, oregano, garlic are rich in phytochemical constituents known to express antimycotic activity. With the available information, the present research study was carried out to assess the invitro anti-mycotic activity of hydro alcoholic extracts of Trigonella foenum-graecum seeds, Cinnamomum verum bark and Carica papaya leaves and seeds against fluconazole resistant Candida albicans. Hydro alcoholic extracts of Trigonella foenum-graecum (seeds), Cinnamomum verum (bark), Carica papaya CO.2 strain (male and female leaves) and Carica papaya CO.2 strain (seeds) were prepared by maceration. The anti-mycotic activity of the prepared extracts against Candida albicans was assessed by agar well diffusion method. Three independent experiments were performed in triplicates and the mean and standard deviation were calculated. Minimum inhibitory concentration was determined. The results of the present study revealed that all the extracts exhibited anti-mycotic activity in a dose dependent manner and minimum inhibitory concentration of all the extracts was found to be 15.62 μg/ml. The results of the present study shed light on the fact that plant extracts could be used not only as an alternate drug for management of fluconazole resistant candidiasis but also explored further for oral cancer prevention as a therapeutic adjunct.

  4. Antifungal Effects of Gold Nanoparticles Conjugated Fluconazole against Fluconazole Resistant Strains of Candida albicans Isolated From Patients with Chronic Vulvovaginitis

    Directory of Open Access Journals (Sweden)

    Mehrdad Memarian

    2016-09-01

    Full Text Available Background and Objectives: A number of women with volvuvaginal candidiasis suffer from certain chronic and recurrent types of this infection that affect their quality of life. Meanwhile, increased use of antifungal drugs, especially azoles, for treatment of chronic candidiasis is an important factor for incidence of drug resistance in Candida isolates from patients with vulvovaginal candidiasis. The aim of this study was to investigate anticandidal effects of gold nanoparticles conjugated fluconazole to develop better drugs for treatment of patients with candidal vaginitis, especially its chronic type. Methods: After collection of 300 vaginal swab specimens and culture and isolation of primary colonies and determination of Candida species, fluconazole resistant strains of Candida albicans were detected using disc diffusion. Finally, antifungal effects of gold nanoparticles conjugated fluconazole and fluconazole were compared by broth microdilution. Results: Only one fluconazole resistant strain of C. albicans was isolated from patients (MIC=64µg/ml. The results obtained from drug susceptibility test showed that this strain was sensitive to gold nanoparticles conjugated fluconazole (MIC=2µg/ml. Conclusion: Given the optimal anticandidal effects of gold nanoparticles conjugated fluconazole on resistant strains of C. albicans, a suitable compound with great anticandidal properties may be achieved in the future.

  5. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10μg/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4μg/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated

  6. Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis.

    Science.gov (United States)

    Mason, Katie L; Erb Downward, John R; Falkowski, Nicole R; Young, Vincent B; Kao, John Y; Huffnagle, Gary B

    2012-01-01

    The indigenous bacterial microbiome of the stomach, including lactobacilli, is vital in promoting colonization resistance against Candida albicans. However, there are gaps in our understanding about C. albicans gastric colonization versus disease, especially during the postantibiotic recovery phase. This study compared the gastric responses to C. albicans strains CHN1 and SC5314 in microbiome-disturbed and germfree mice to elucidate the contribution of the indigenous microbiota in C. albicans colonization versus disease and yeast-bacterium antagonism during the post-cefoperazone recolonization period. C. albicans can prevent the regrowth of Lactobacillus spp. in the stomach after cefoperazone and promote increased colonization by Enterococcus spp. Using a culture-independent analysis, the effects of oral cefoperazone on the gastric bacterial microbiota were observed to last at least 3 weeks after the cessation of the antibiotic. Disturbance of the gastric bacterial community by cefoperazone alone was not sufficient to cause gastritis, C. albicans colonization was also needed. Gastritis was not evident until after day 7 in cefoperazone-treated infected mice. In contrast, in germfree mice which lack a gastric microbiota, C. albicans induced gastric inflammation within 1 week of inoculation. Therefore, the gastric bacterial community in cefoperazone-treated mice during the first week of postantibiotic recolonization was sufficient to prevent the development of gastritis, despite being ineffective at conferring colonization resistance against C. albicans. Altogether, these data implicate a dichotomy between C. albicans colonization and gastric disease that is bacterial microbiome dependent.

  7. Female genital tract bacterial coisolates with Candida albicans in patients without clinical vaginitis.

    Science.gov (United States)

    Monif, G R; Carson, H J

    1998-01-01

    In vitro, Candida albicans has demonstrated the ability to inhibit replication of selected bacteria. Little information exists on the impact of C. albicans on the vaginal bacterial flora in vivo. The purpose of this study is to identify the coexisting bacterial flora when C. albicans is isolated from vaginal cultures submitted to a hospital-based testing facility for reasons other than vulvovaginitis. All specimens (240) received from ambulatory care clinics over a six-month period were cultured for aerobic and anaerobic bacteria and Candida species. Those specimens submitted for cervicitis, vaginitis, or vaginal discharge and those from which yeasts other than C. albicans were isolated were eliminated. To control for sample biases, a subgroup composed of all pregnant women for whom cultures were done as screening procedures was similarly studied. Chi-square analyses, comparing the prevalence of individual bacteria isolated with and without the presence of C. albicans, were done for all study populations using SPSS for Windows software (1994). Two hundred and forty consecutive specimens were bacteriologically analyzed. Of the 220 vaginal samples used in the study, C. albicans was isolated in 44 instances (20%). Neither the presence of the lactobacilli nor the presence of Gardnerella vaginalis markedly influenced the isolation rate of C. albicans. The group B streptococci had a greater probability of coisolation when C. albicans was present (27.3% verses 16%), but this was not statistically significant (P aerobic bacilli was reduced in the presence of C. albicans (30/176 [17.1%] versus 6/44 [13.6%]), this reduced incidence was not statistically significant. Isolation data of the subgroup of pregnant women supported these observations. Within the limitations of the study, statistically, the data suggests that an inverse relationship exists between the presence of C. albicans and recovery of Peptostreptococcus and anaerobic gram-positive cocci and bacilli.

  8. A trypsin inhibitor from Tecoma stans leaves inhibits growth and promotes ATP depletion and lipid peroxidation in Candida albicans and Candida krusei

    Directory of Open Access Journals (Sweden)

    Leydianne Leite de Siqueira Patriota

    2016-04-01

    Full Text Available Tecoma stans (yellow elder has shown medicinal properties and antimicrobial activity. Previous reports on antifungal activity of T. stans preparations and presence of trypsin inhibitor activity from T. stans leaves stimulated the investigation reported here. In this work, we proceeded to the purification and characterization of a trypsin inhibitor (TesTI, which was investigated for anti-Candida activity. Finally, in order to determine the potential of TesTI as a new natural chemotherapeutic product, its cytotoxicity to human peripheral blood mononuclear cells (PBMCs was evaluated. TesTI was isolated from saline extract by ammonium sulphate fractionation followed by ion exchange and gel filtration chromatographies. Antifungal activity was evaluated by determining the minimal inhibitory (MIC and fungicide (MFC concentrations using fungal cultures containing only yeast form or both yeast and hyphal forms. Candida cells treated with TesTI were evaluated for intracellular ATP levels and lipid peroxidation. Cytotoxicity of TesTI to PBMCs was evaluated by MTT assay. TesTI (39.8 kDa, pI 3.41, Ki 43 nM inhibited similarly the growth of both C. albicans and C. krusei culture types at MIC of 100 µg/mL. The MFCs were 200 µg/mL for C. albicans and C. krusei. Time-response curves revealed that TesTI (at MIC was more effective at inhibiting the replication of C. albicans cells. At MIC, TesTI promoted reduction of ATP levels and lipid peroxidation in the Candida cells, being not cytotoxic to PBMCs. In conclusion, TesTI is an antifungal agent against C. albicans and C. krusei, without toxicity to human cells.

  9. Technetium-99m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections

    Energy Technology Data Exchange (ETDEWEB)

    Lupetti, Antonella [Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden (Netherlands); Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Univ. di Pisa (Italy); Welling, Mick M. [Department of Radiology, Division of Nuclear Medicine, LUMC, Leiden (Netherlands); Mazzi, Ulderico [Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Padova (Italy); Nibbering, Peter H. [Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden (Netherlands); Pauwels, Ernest K.J. [Department of Radiology, Division of Nuclear Medicine, LUMC, Leiden (Netherlands); Department of Radiology, Leiden University Medical Center (LUMC) (Netherlands)

    2002-05-01

    The aim of this study was to investigate whether technetium-99m labelled fluconazole can distinguish fungal from bacterial infections. Fluconazole was labelled with {sup 99m}Tc and radiochemical analysis showed less than 5% impurities. The labelling solution was injected into animals with experimental infections. For comparison, we used two peptides for infection detection, i.e. UBI 29-41 and hLF 1-11, and human IgG, all labelled with {sup 99m}Tc. Mice were infected with Candida albicans or injected with heat-killed C. albicans or lipopolysaccharides to induce sterile inflammation. Also, mice were infected with Staphylococcus aureus or Klebsiella pneumoniae. Next, accumulation of {sup 99m}Tc-fluconazole and {sup 99m}Tc-labelled peptides/IgG at affected sites was determined scintigraphically. {sup 99m}Tc-fluconazole detected C. albicans infections (T/NT ratio=3.6{+-}0.47) without visualising bacterial infections (T/NT ratio=1.3{+-}0.04) or sterile inflammatory processes (heat-killed C. albicans: T/NT ratio=1.3{+-}0.2; lipopolysaccharide: T/NT ratio=1.4{+-}0.1). C. albicans infections were already seen within the first hour after injection of {sup 99m}Tc-fluconazole (T/NT ratio=3.1{+-}0.2). A good correlation (R{sup 2}=0.864; P<0.05) between T/NT ratios for this tracer and the number of viable C. albicans was found. Although {sup 99m}Tc-UBI 29-41 and {sup 99m}Tc-hLF 1-11 were able to distinguish C. albicans infections from sterile inflammatory processes in mice, these {sup 99m}Tc-labelled peptides did not distinguish these fungal infections from bacterial infections. It is concluded that {sup 99m}Tc-fluconazole distinguishes infections with C. albicans from bacterial infections and sterile inflammations. (orig.)

  10. Menadione 処理した Candida albicans ROS 生産機構の解析

    OpenAIRE

    上野, 将明; 小笠原, 綾子; 渡部, 俊彦; 三上, 健; 松本, 達二; ウエノ, ユキヒロ; オガサワラ, アヤコ; ワタナベ, トシユキ; ミカミ, タケシ; マツモト, タツジ; Yukihiro, UENO; Ayako, OGASAWARA; Toshihiko, WATANABE; Takeshi, MIKAMI; Tatsuji, MATSUMOTO

    2008-01-01

    Menadione shows anti Condida activity by promoting ROS production. However, the ROS production mechanism has not been clarifield. Thus, in this study, we studied thr relation between anti Candida activity of menadione and ROS production. Menadione inhibited the growth of C. albicans BWP17 strain, the growth of C. albicans JM02 strain was not inhibited. ROS production in C. albicans BWP17 strain was enhanced by addition of menadione. The ROS production in C. albicans JM02 strain was also enhan...

  11. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    OpenAIRE

    Ahmed Moussa; Djebli Noureddine; Aissat Saad; Meslem Abdelmelek; Benhalima Abdelkader

    2012-01-01

    Objective: To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods: Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains...

  12. Candida albicans pancreatitis in a child with cystic fibrosis post lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Mark M.; Sheybani, Elizabeth F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Blvd., Campus Box 8131, St. Louis, MO (United States); Zhang, Lingxin [Washington University School of Medicine, Department of Pathology, St. Louis, MO (United States); Stoll, Janis M. [Washington University School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, St. Louis, MO (United States)

    2016-04-15

    We present a case of Candida albicans infection of a previously intact pancreas in a child with cystic fibrosis status post lung transplantation. Although Candida superinfection in necrotizing pancreatitis is not uncommon, this is a unique case of Candida infection of non-necrotic pancreatic parenchyma. This case presented a diagnostic dilemma for radiologists because it appeared virtually identical to acute interstitial edematous pancreatitis on imaging. Ultimately, endoscopic US-based biopsy was pursued for diagnosis. Although difficult to treat and compounded by the immunocompromised status of the child, the pancreatic infection improved with antifungal therapy. (orig.)

  13. Candida albicans pancreatitis in a child with cystic fibrosis post lung transplantation

    International Nuclear Information System (INIS)

    Hammer, Mark M.; Sheybani, Elizabeth F.; Zhang, Lingxin; Stoll, Janis M.

    2016-01-01

    We present a case of Candida albicans infection of a previously intact pancreas in a child with cystic fibrosis status post lung transplantation. Although Candida superinfection in necrotizing pancreatitis is not uncommon, this is a unique case of Candida infection of non-necrotic pancreatic parenchyma. This case presented a diagnostic dilemma for radiologists because it appeared virtually identical to acute interstitial edematous pancreatitis on imaging. Ultimately, endoscopic US-based biopsy was pursued for diagnosis. Although difficult to treat and compounded by the immunocompromised status of the child, the pancreatic infection improved with antifungal therapy. (orig.)

  14. Phagocytosis and killing of Candida albicans by human neutrophils after exposure to structurally different lipid emulsions.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Curfs, J.H.A.J.; Meis, J.F.G.M.; Naber, A.H.J.

    2001-01-01

    BACKGROUND: To test the hypothesis that structurally different lipid emulsions have distinct immune-modulating properties, we analyzed the elimination of Candida albicans by neutrophils after exposure to various emulsions. METHODS: Neutrophils from 8 volunteers were incubated in physiologic 5 mmol/L

  15. Host responses to Candida albicans: Th17 cells and mucosal candidiasis

    OpenAIRE

    Conti, Heather R.; Gaffen, Sarah L.

    2010-01-01

    Candida albicans causes mucosal and disseminated candidiasis, which represent serious problems for the rapidly expanding immunocompromised population. Until recently, Th1-mediated immunity was thought to confer the primary protection, particularly for oral candidiasis. However, emerging data indicate that the newly-defined Th17 compartment appears to play the predominant role in mucosal candidiasis.

  16. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation

    NARCIS (Netherlands)

    Jarosz, L.M.; Deng, D.M.; van der Mei, H.C.; Crielaard, W.; Krom, B.P.

    2009-01-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the

  17. Streptococcus mutans Competence-Stimulating Peptide Inhibits Candida albicans Hypha Formation

    NARCIS (Netherlands)

    Jarosz, Lucja M.; Deng, Dong Mei; van der Mei, Henny C.; Crielaard, Wim; Krom, Bastiaan P.

    2009-01-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the

  18. Role of the Candida albicans MNN1 gene family in cell wall structure and virulence

    NARCIS (Netherlands)

    Bates, S.; Hall, R.A.; Cheetham, J.; Netea, M.G.; MacCallum, D.M.; Brown, A.J.; Odds, F.C.; Gow, N.A.

    2013-01-01

    BACKGROUND: The Candida albicans cell wall is the first point of contact with the host, and its outer surface is heavily enriched in mannoproteins modified through the addition of N- and O-mannan. Previous work, using mutants with gross defects in glycosylation, has clearly identified the importance

  19. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs

    DEFF Research Database (Denmark)

    Cheng, Shih-Chin; Sprong, Tom; Joosten, Leo A B

    2012-01-01

    In experimental studies, the role of complement in antifungal host defense has been attributed to its opsonizing capability. In this study, we report that in humans an activated complement system mainly augments Candida albicans-induced host proinflammatory cytokine production via C5a-C5aR signal...

  20. Promotion of chlamydoconidium formation in Candida albicans by corn meal broth incubation.

    Science.gov (United States)

    Nakamoto, S

    1998-04-01

    Chlamydoconidium formation can be used as a tool for the identification of Candida albicans. While chlamydoconidia are known to be inducible on corn meal agar, this report demonstrates that testing in liquid media supplemented with milk or serum enhances chlamydoconidium formation and the formation of complex mycelial clusters.

  1. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans

    NARCIS (Netherlands)

    Leito, J.T.D.; Ligtenberg, A.J.M.; Nazmi, K.; Veerman, E.C.I.

    2009-01-01

    Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on

  2. Fournier Gangrene Caused by Candida albicans in an Infant After Cardiac Surgery.

    Science.gov (United States)

    Jaworski, Radoslaw; Irga-Jaworska, Ninela; Naumiuk, Łukasz; Chojnicki, Maciej; Haponiuk, Ireneusz

    2017-04-01

    Fournier gangrene is a rare, rapidly progressive, life-threatening condition. We report a 23-day-old boy with pulmonary atresia and ventricular septal defect treated surgically, who developed Fournier gangrene. Emergency surgery was performed with tissue sampling for microbiological examination. Candida albicans was confirmed; caspofungin followed by fluconazole was administered with excellent results.

  3. Antifungal Activity of Coumarin from Ageratum conyzoides L. Leaves on Candida albicans cells

    Directory of Open Access Journals (Sweden)

    Gunawan Pamudji Widodo

    2012-07-01

    Full Text Available The aim of this study was to identify the antifungal activity of coumarin isolated from Ageratum conyzoides L. leaves and to observe its influence on Candida albicans cells by scanning electron microscope (SEM and transmission electron microscope (TEM. Antifungal activity testing by disk diffusion method showed coumarin was active toward pathogenic fungus, Candida albicans with the MIC value of coumarin of 125 g mL-1. The influence of this substance on C. albicans cells was observed by scanning and transmission electron microscopies. The result showed that this compound damaged the cell by pores formation on the cell wall. The death of cells occurred due to leakage and necrotic of cytoplasmic content.

  4. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.

    Science.gov (United States)

    Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F

    2013-12-15

    Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Detection of phospholipase activity of Candida albicans and non albicans isolated from women of reproductive age with vulvovaginal candidiasis in rural area

    Directory of Open Access Journals (Sweden)

    S R Fule

    2015-01-01

    Full Text Available Background: Vulvovaginal candidiasis (VVC is most common accounting for 17 to 39% of symptomatic women. Both Candida albicans and non albicans Candida species are involved in VVC. Amongst various virulence factors proposed for Candida, extracellular phospholipases is one of the virulence factor implicated in its pathogenicity. With this background the present study was carried out to find the prevalence of different Candida species and to detect phospholipase producing strains isolated from symptomatic women with VVC. Materials and Methods: At least two vaginal swabs from 156 women of reproductive age with abnormal vaginal discharge were collected. Direct microscopy and Gram′s stained smear examined for presence of budding yeast and pseudo mycelia followed by isolation and identification of Candida species. Extracellular phospholipase activity was studied by inoculating all isolates on Sabouraud′s dextrose egg yolk agar (SDA medium. Results: Of the 156 women with curdy white discharge alone or in combination with other signs, 59 (37.82% women showed laboratory evidence of VVC. A total of 31 (52.54% women had curdy white discharge followed by 12 (20.33% with other signs and symptoms. C. albicans (62.59% and non albicans Candida (37.28% in a ratio of 1.68:1 were isolated. Of the 37 strains of C. albians 30 (81.08% showed the enzyme activity. Seventeen (56.66% strains showed higher Pz value of < 0.70 (++++. Conclusion: Although there may be typical clinical presentation of Candidiasis. all the patients did not show laboratory evidence of infection. Pregnancy was found to be major risk factor for development of VVC. C. albicans was prevalent species but non albicans species were also frequently isolated. Extracellular phospholipase activity was seen in C. albicans and not in non albicans Candida isolates.

  6. Hexosomes with Undecylenic Acid Efficient against Candida albicans.

    Science.gov (United States)

    Mionić Ebersold, Marijana; Petrović, Milica; Fong, Wye-Khay; Bonvin, Debora; Hofmann, Heinrich; Milošević, Irena

    2018-02-07

    Due to the growing issues with fungal infections, especially with Candida , there is still a need to develop novel anti- Candida materials. One of the known antifungal agents is undecylenic acid (UA), which still cannot be efficiently used due to its oily nature, and thus limited solubility. By taking advantage of the properties of UA, we developed an emulsion with hexagonal phase, i.e., hexosomes, whose structure and morphology was studied by small-angle X-ray scattering and cryo-electron microscopy, respectively. The presence of UA in the hexosome was confirmed by spectroscopy. Moreover, we studied the anti- Candida effect of hexosomes and their cytotoxicity toward human cells. The minimal inhibitory concentration for the 50% and 90% Candida -growth reduction was found at 0.01 and 0.16 wt % hexosomes, respectively (i.e., 2 and 32 pg hex / C.a. cell, respectively). The percentage of metabolically active Candida was reduced by 72-96% at hexosome concentrations of 1.0-8.2 pg hex / C.a. cell as compared to untreated Candida . Furthermore, at the same concentration range the embedded filamentation test after 24 and 48 h showed the inhibition of both the filamentation and growth of Candida , while the preliminary toxicity test showed that hexosomes were nontoxic for human cells. All these render the here-developed hexosomes with UA efficient and promising anti- Candida agents.

  7. Hexosomes with Undecylenic Acid Efficient against Candida albicans

    Directory of Open Access Journals (Sweden)

    Marijana Mionić Ebersold

    2018-02-01

    Full Text Available Due to the growing issues with fungal infections, especially with Candida, there is still a need to develop novel anti-Candida materials. One of the known antifungal agents is undecylenic acid (UA, which still cannot be efficiently used due to its oily nature, and thus limited solubility. By taking advantage of the properties of UA, we developed an emulsion with hexagonal phase, i.e., hexosomes, whose structure and morphology was studied by small-angle X-ray scattering and cryo-electron microscopy, respectively. The presence of UA in the hexosome was confirmed by spectroscopy. Moreover, we studied the anti-Candida effect of hexosomes and their cytotoxicity toward human cells. The minimal inhibitory concentration for the 50% and 90% Candida-growth reduction was found at 0.01 and 0.16 wt % hexosomes, respectively (i.e., 2 and 32 pghex/C.a.cell, respectively. The percentage of metabolically active Candida was reduced by 72–96% at hexosome concentrations of 1.0–8.2 pghex/C.a.cell as compared to untreated Candida. Furthermore, at the same concentration range the embedded filamentation test after 24 and 48 h showed the inhibition of both the filamentation and growth of Candida, while the preliminary toxicity test showed that hexosomes were nontoxic for human cells. All these render the here-developed hexosomes with UA efficient and promising anti-Candida agents.

  8. Antifungal activity of components used for decontamination of dental prostheses on the growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Cíntia Lima Gouveia

    Full Text Available Introduction: The effectiveness of antimicrobial solutions employed in dental prosthesis decontamination is still uncertain. Aim: To evaluate the antifungal activity of cleaners used in the decontamination of dental prostheses on the growth of Candida albicans. Material and method: The evaluated products were: Corega Tabs(r (S1, Sodium Hypochlorite 1% (S2, Sodium Bicarbonate 1% (S3, Hydrogen Peroxide 1% (S4, Chlorhexidine Digluconate 0.12% - Periogard (r (S5, Mouthrinse based on essential oils - Listerine(r (S6, essential oil from Rosmarinus officinalis (rosemary at concentrations of 1% (S7 and 2% (S8. The antifungal activity of the products was evaluated by agar diffusion technique and the determination of microbial death curve of samples of C. albicans (ATCC 90028 in concentration 1.5 × 106 CFU/mL. The tests were performed in triplicate and statistical analysis was made by ANOVA Two-Way and Tukey tests, with the confidence level of 95%. Result: The average of the zones of inhibition growth, in millimeters, obtained for the products were: 0.0 (S1, 44.7 (S2, 0.0 (S3, 21.6 (S4, 10.0 (S5, 6.1 (S6, 0.0 (S7 and 2.4 (S8. Considering the determination of microbial death curve, all products showed a statistical difference (p<0.01 from control (0.85% sodium chloride and S3 groups. Fungal growth less than 2×104 CFU/mL and an accentuation of the microbial death curve were observed after 30 minutes, with exception for S3 and control groups. Conclusion: The studied compounds, with the exception of Sodium Bicarbonate, have antifungal effect against C. albicans, which contribute for dental prostheses hygiene.

  9. Non-albicans Candida Vulvovaginitis: Treatment Experience at a Tertiary Care Vaginitis Center.

    Science.gov (United States)

    Powell, Anna M; Gracely, Edward; Nyirjesy, Paul

    2016-01-01

    The aims of this study are to analyze a cohort of women with vulvovaginal symptoms and positive cultures for non-albicans Candida (NAC) to determine whether yeast was responsible for their symptoms and to evaluate the mycological effectiveness of various regimens. This observational study was performed from retrospective chart review of patients with positive NAC cultures between April 1, 2008, and January 31, 2011, at a tertiary care vaginitis center. Patient intake demographics were entered into a database. Follow-up visits were analyzed for data about patient treatments and outcomes. Patients were considered a clinical cure if their symptoms were significantly improved and mycologic cure (MC) if later yeast cultures were negative. If clinical symptoms improved at the same time as MC, the isolate was considered the proximate cause for the symptoms. One hundred eight patients meeting entry criteria were analyzed. Boric acid was effective at obtaining MC in 32 (78%) of 41 patients with C. glabrata, 3 of 3 patients with C. tropicalis, and 3 of 3 patients with C. lusitaniae. Fluconazole was effective as initial treatment for 3 (60%) of 5 patients with C. glabrata and 13 (81%) of 16 patients with C. parapsilosis. In 52.7% of C. glabrata, 66.7% of C. parapsilosis, and 57.1% of C. tropicalis cases, effective antifungal therapy led to symptom improvement. In a tertiary care vaginitis center, NAC, when isolated on culture, caused clinically significant infections in approximately half of symptomatic patients. A majority of infections can be effectively treated with boric acid or fluconazole regardless of the non-albicans Candida species.

  10. Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans

    Directory of Open Access Journals (Sweden)

    Marion Millot

    2017-04-01

    Full Text Available Candida albicans is a commensal coloniser of the human gastrointestinal tract and an opportunistic pathogen, especially thanks to its capacity to form biofilms. This lifestyle is frequently involved in infections and increases the yeast resistance to antimicrobials and immune defenses. In this context, 38 lichen acetone extracts have been prepared and evaluated for their activity against C. albicans planktonic and sessile cells. Minimum inhibitory concentrations of extracts (MICs were determined using the broth microdilution method. Anti-biofilm activity was evaluated using tetrazolium salt (XTT assay as the ability to inhibit the maturation phase (anti-maturation or to eradicate a preformed 24 h old biofilm (anti-biofilm. While none of the extracts were active against planktonic cells, biofilm maturation was limited by 11 of the tested extracts. Seven extracts displayed both anti-maturation and anti-biofilm activities (half maximal inhibitory concentrations IC50_mat and IC50_biof ≤ 100 µg/mL; Evernia prunastri and Ramalina fastigiata were the most promising lichens (IC50_mat < 4 µg/mL and IC50_biof < 10 µg/mL. Chemical profiles of the active extracts performed by thin layer chromatography (TLC and high performance liquid chromatography (HPLC have been analyzed. Depsides, which were present in large amounts in the most active extracts, could be involved in anti-biofilm activities. This work confirmed that lichens represent a reservoir of compounds with anti-biofilm potential.

  11. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shuyuan Liu

    Full Text Available Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers, amlodipine (AML, nifedipine (NIF, benidipine (BEN and flunarizine (FNZ with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1 expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2. The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin and YVC1 (encoding calcium channel protein in vacuole membrane.

  12. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    Science.gov (United States)

    Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan

    2016-01-01

    Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).

  13. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.

    LENUS (Irish Health Repository)

    2009-03-01

    The expression of the ERG1, ERG3, ERG7, ERG9, ERG11 and ERG25 genes in response to incubation with fluconazole and biofilm formation was investigated using reverse-transcription PCR and real-time PCR in Candida albicans and Candida dubliniensis clinical isolates. The viability of biofilm was measured using an 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and confocal scanning laser microscopy (CSLM). Expression of the ERG11 gene was found to be low or moderate and it was regulated by fluconazole addition more so than by biofilm formation. Very low or non-detectable expression of ERG1, ERG7 and ERG25 genes was detected in C. albicans. The expression of the ERG9 increased in the presence of fluconazole in some isolates. Following incubation with fluconazole, formation of biofilm by C. dubliniensis was coupled with up-regulation of the ERG3 and ERG25 genes as have been observed previously in C. albicans. Planktonic cells of both Candida species released from biofilm displayed similar resistance mechanisms to fluconazole like attached cells. The XTT reduction assay and CSLM revealed that although incubation with fluconazole decreased the biofilm thickness, these were still comprised metabolically active cells able to disseminate and produce biofilm. Our data indicate that biofilm represents a highly adapted community reflecting the individuality of clinical isolates.

  14. Oral candidosis by Candida albicans in normal and xerostomic mice Candidose oral por Candida albicans em camundongos normais e xerostômicos

    Directory of Open Access Journals (Sweden)

    Marilda Aparecida Gonçalves Totti

    2004-09-01

    Full Text Available The aim of this study was to analyze the effect of sialoadenectomy on the development of oral candidosis after one or four inoculations of Candida albicans. Initially, a suspension containing 10(8 cells/ml of C. albicans ATCC 36801 was prepared. Seventy-eight sialoadenectomized mice and a similar amount of mice with normal salivary flow received a single inoculation of C. albicans suspension. Another group with a similar number of mice received 4 inoculations. The control group consisted of 6 sialoadenectomized mice and 6 mice with normal salivary flow that were not inoculated with C. albicans. Candidosis development was studied histologically in the tongue of the animals 1, 2, 3, 5, and 8 days after inoculation and at 15-day intervals up to 165 days. According to the results obtained, it could be concluded that sialoadenectomy and a higher frequency of yeast inoculation influenced the presence and extension of candidosis lesions.O objetivo deste estudo foi analisar o efeito da sialoadenectomia sobre o desenvolvimento da candidose oral após uma ou quatro inoculações de Candida albicans. Inicialmente, uma suspensão contendo 10(8 células/ml de C. albicans ATCC 36801 foi preparada. Setenta e oito camundongos sialoadenectomizados e mesma quantidade de camundongos com fluxo salivar normal receberam uma única inoculação de suspensão de C. albicans. Outro grupo, com o mesmo número de camundongos, recebeu 4 inoculações. O grupo controle consistiu de 6 camundongos sialoadenectomizados e 6 com fluxo salivar normal que não foram inoculados com C. albicans. O desenvolvimento de candidose foi estudado histologicamente na língua dos animais em períodos de 1, 2, 3, 5 e 8 dias após a inoculação e em intervalos de 15 dias até 165 dias. De acordo com os resultados obtidos, conclui-se que a sialoadenectomia e uma maior freqüência de inoculação influenciaram na presença e extensão das lesões de candidose.

  15. Comparison of duplex PCR and phenotypic analysis in differentiating Candida dubliniensis from Candida albicans from oral samples.

    Science.gov (United States)

    Sampath, Asanga; Weerasekera, Manjula; Dilhari, Ayomi; Gunasekara, Chinthika; Bulugahapitiya, Uditha; Fernando, Neluka; Samaranayake, Lakshman

    2017-12-01

    Candida dubliniensis shares a wide range of phenotypic characteristics with Candida albicans including a common trait called germ tube positivity. Hence, laboratory differentiation of these two species is cumbersome. Duplex PCR analyses for C. albicans and C. dubliniensis was performed directly on DNA extracted from a total of 122 germ tube positive isolates derived from 100 concentrated oral rinse samples from a random cohort of diabetics attending a clinic in Sri Lanka. These results were confirmed by DNA sequencing of internal transcribed spacer (ITS) region of rDNA of the yeasts. Performance efficacy of duplex PCR was then compared with phenotypic identification using a standard battery of phenotypic tests. Of the 122 germ tube positive isolates three were identified by duplex PCR as C. dubliniensis and the remainder as C. albicans. On the contrary, when the standard phenotypic tests, sugar assimilation and chlamydospore formation, were used to differentiate the two species 13 germ tube positive isolates were erroneously identified as C. dubliniensis. Duplex PCR was found to be rapid, sensitive and more specific than phenotypic identification methods in discriminating C. dubliniensis from C. albicans. This is also the first report on the oral carriage of C. dubliniensis in a Sri Lankan population.

  16. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates.

    Science.gov (United States)

    Baumgartner, C; Freydiere, A M; Gille, Y

    1996-02-01

    Two chromogenic media, Albicans ID and CHROMagar Candida agar plates, were compared with a reference medium, Sabouraud-chloramphenicol agar, and standard methods for the identification of yeast species. This study involved 951 clinical specimens. The detection rates for the two chromogenic media for polymicrobial specimens were 20% higher than that for the Sabouraud-chloramphenicol agar plates. The rates of identification of Candida albicans for Albicans ID and CHROMagar Candida agar plates were, respectively, 37.0 and 6.0% after 24 h of incubation and 93.6 and 92.2% after 72 h of incubation, with specificities of 99.8 and 100%. Furthermore, CHROMagar Candida plates identified 13 of 14 Candida tropicalis and 9 of 12 Candida krusei strains after 48 h of incubation.

  17. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment.

    Directory of Open Access Journals (Sweden)

    Robert T Wheeler

    2008-12-01

    Full Text Available Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall beta-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 beta-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype in beta-glucan masking during infection and treatment has not been addressed. Here, we show that during infection of mice, the C. albicans beta-glucan is masked initially but becomes exposed later in several organs. At all measured stages of infection, there is no difference in beta-glucan exposure between yeast-form and hyphal cells. We have previously shown that sub-inhibitory doses of the anti-fungal drug caspofungin can expose beta-glucan in vitro, suggesting that the drug may enhance immune activity during therapy. This report shows that caspofungin also mediates beta-glucan unmasking in vivo. Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro. The fungicidal activity of caspofungin in vitro is also filament-biased, as corroborated using yeast-locked and hyphal-locked mutants. The uncloaking of filaments is not a general effect of anti-fungal drugs, as another anti-fungal agent does not have this effect. These results highlight the advantage of studying host-pathogen interaction in vivo and suggest new avenues for drug development.

  18. New milk medium for germ tube and chlamydoconidia production by Candida albicans.

    Science.gov (United States)

    Jitsurong, S; Kiamsiri, S; Pattararangrong, N

    1993-08-01

    A new medium consisting of UHT milk, tween 80 and agar is described for the development of both germ tube and chlamydoconidia by Candida albicans. In total 172 isolates from clinical specimens, including C. albicans (112), C. guilliermondii (4), C. krusei (3), C. parasilopsis (16). C. tropicalis (28), Torulopsis glabrata (6) and Trichosporon beigellii (3), were examined in this medium by using the standard method. A higher percentage (98.2%) of germ tube production by C. albicans was found in this medium than in undiluted serum (90.2%). In addition, only C. albicans was found to be able to produce a high percentage of chlamydoconidia (95.5%) after 48 hours' incubation. In comparison with the conventional medium, corn meal tween 80 agar (21.4%), this new medium gives a significantly higher percentage and abundance of chlamydoconidia production. Being simple, cheap and easy to prepare, the new milk medium is proposed as very practical in the clinical mycology laboratory.

  19. Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene.

    Science.gov (United States)

    San Millán, R; Elguezabal, N; Regúlez, P; Moragues, M D; Quindós, G; Pontón, J

    2000-09-01

    Attachment of Candida albicans to plastic materials of dental prostheses or to salivary macromolecules adsorbed on their surface is believed to be a critical event in the development of denture stomatitis. In an earlier study, it was shown that adhesion of C. albicans to polystyrene, a model system to study the adhesion of C. albicans to plastic materials, can be partially inhibited with an mAb directed against cell wall polysaccharides of C. albicans. In the present study, the role of whole saliva in the adhesion of C. albicans to polystyrene has been investigated, and three mAbs directed against epitopes of cell wall mannoproteins have been used to mimic the inhibitory effect observed with salivary secretory IgA (sIgA) on the adhesion of C. albicans to polystyrene. In the absence of whole saliva, adherence of C. albicans 3153 increased with germination. However, the presence of whole saliva enhanced the adhesion to polystyrene of C. albicans 3153 yeast cells but decreased the adhesion of germinated cells. The enhancement of adhesion of yeast cells to polystyrene mediated by saliva was confirmed with an agerminative mutant of C. albicans 3153. The inhibition of the adhesion of C. albicans 3153 germ tubes to polystyrene was due to the salivary sIgA since sIgA-depleted saliva enhanced the adhesion of C. albicans 3153 to polystyrene. The inhibitory effect mediated by sIgA was not related to the inhibition of germination but to the blockage of adhesins expressed on the cell wall surface of the germ tubes. The three mAbs studied reduced the adhesion of C. albicans 3153 to polystyrene at levels equivalent to those for purified sIgA. The highest reduction in the adhesion was obtained with the IgA mAb N3B. The best results were obtained when the three mAbs were combined. The results suggest that whole saliva plays a different role in the adhesion of C. albicans to polystyrene depending on the morphological phase of C. albicans. These results may give new insights into the

  20. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    Science.gov (United States)

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  1. Diminished Antimicrobial Peptide and Antifungal Antibiotic Activities against Candida albicans in Denture Adhesive

    Directory of Open Access Journals (Sweden)

    Amber M. Bates

    2017-02-01

    Full Text Available The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show this, nine antimicrobial peptides and five antifungal antibiotics with and without 1.0% denture adhesive were incubated with Candida albicans strains ATCC 64124 and HMV4C in radial diffusion assays. In gels with 1.0% adhesive, HNP-1, HBD2, HBD3, IP-10, LL37 (only one strain, histatin 5 (only one strain, lactoferricin B, and SMAP28 showed diminished activity against C. albicans. In gels with 1.0% adhesive, amphotericin B and chlorhexidine dihydrochloride were active against both strains of C. albicans. These results suggest that denture adhesive may inactivate innate immune mediators in the oral cavity increasing the risk of C. albicans infections, but inclusion of antifungal antibiotics to denture adhesive may aid in prevention or treatment of Candida infections and denture stomatitis.

  2. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  3. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation.

    Science.gov (United States)

    Jarosz, Lucja M; Deng, Dong Mei; van der Mei, Henny C; Crielaard, Wim; Krom, Bastiaan P

    2009-11-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the human oral cavity, where it interacts with S. mutans. C. albicans is a polymorphic fungus, and the yeast-to-hypha transition is involved in virulence and biofilm formation. The aim of this study was to investigate interkingdom communication between C. albicans and S. mutans based on the production of secreted molecules. S. mutans UA159 inhibited C. albicans germ tube (GT) formation in cocultures even when physically separated from C. albicans. Only S. mutans spent medium collected in the early exponential phase (4-h-old cultures) inhibited the GT formation of C. albicans. During this phase, S. mutans UA159 produces a quorum-sensing molecule, competence-stimulating peptide (CSP). The role of CSP in inhibiting GT formation was confirmed by using synthetic CSP and a comC deletion strain of S. mutans UA159, which lacks the ability to produce CSP. Other S. mutans strains and other Streptococcus spp. also inhibited GT formation but to different extents, possibly reflecting differences in CSP amino acid sequences among Streptococcus spp. or differences in CSP accumulation in the media. In conclusion, CSP, an S. mutans quorum-sensing molecule secreted during the early stages of growth, inhibits the C. albicans morphological switch.

  4. The effect of squalene on inflammation factors induced by candida albicans in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Haeng [Dept. of Radiology, Nambu University, Gwangju (Korea, Republic of)

    2016-09-15

    In the present study, whether squalene treatment relives inflammatory reactions induced by Candida albicans was checked. The experiment was conducted in vivo using seven experimental animals (ICR mice) per experimental group. Among C. albicans-induced inflammatory factors, TNF-α, IL-6, and NO were observed using the ELISA kits method. Through the experiment, the following conclusions were obtained. 1. In the group infected with C. albicans, it could be identified that squalene treatment was inducing NO generation in renal tissues both on the 1st and 3rd days (p < 0.05). 2. In the group pre-treated(intraperitoneal administration) with SQ (80ml/kg) once per day for seven days and infected with C. albicans, it could be identified that squalene treatment was inducing TNF-α generation in renal tissues only on the 3rd day(p < 0.05). 3. In the group pre-treated(intraperitoneal administration) with SQ (80ml/kg) once per day for seven days and infected with C. albicans, it could be identified that squalene treatment was inducing IL-6 generation in renal tissues only on the 3rd day(p < 0.05). In conclusion, it could be seen that for squalene to suppress C. albicans-induced inflammatory factors, preemptively supplying SQ should be effective. Therefore, effects for recovery from C. albicans-induced immunodepression can be expected from SQ treatment.

  5. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Cannon, Richard D; Villas-Bôas, Silas G

    2012-12-01

    Farnesol is a quorum-sensing molecule (QSM) produced, and sensed, by the polymorphic fungus, Candida albicans. This cell-to-cell communication molecule is known to suppress the hyphal formation of C. albicans at high cell density. Despite many studies investigating the signalling mechanisms by which QSMs influence the morphogenesis of C. albicans, the downstream metabolic effect of these signalling pathways in response to farnesol-mediated morphogenesis remains obscure. Here, we have used metabolomics to investigate the metabolic response of C. albicans upon exposure to farnesol under hyphae-inducing conditions. We have found a general up-regulation of central carbon metabolic pathways when hyphal formation was suppressed by farnesol evidenced by a considerably larger number of central carbon metabolic intermediates detected under this condition at an overall lower intracellular level. By combining the metabolic profiles from farnesol-exposed cells with previous metabolomics data for C. albicans undergoing morphogenesis, we have identified several metabolic pathways that are likely to be associated with the morphogenetic process of C. albicans, as well as metabolic pathways such as those involved in lipid metabolism that appeared to be specifically affected by farnesol. Therefore, our results provide important new insights into the metabolic role of farnesol in C. albicans metabolism. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (pbiofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  7. Comparing antifungal effects of Zatariamultiflora and Punicagranatum extract with Nystatin on Candida Albicans

    Directory of Open Access Journals (Sweden)

    F. Nouri

    2016-12-01

    Full Text Available Background: Despite all the progress that has been made in the manufacture of synthetic drugs, herbal drugs are increasingly taken into account. This is due to the growing belief that they have fewer side effects compared to synthetic ones. Objective: To compare the antifungal effects of extracts of Zatariamultiflora and Punicagranatum with Nystatin on Candida Albicans. Methods: This inviro trial accomplished in the school of dentistry of Tehran University in 2012. From the mouths of 25 patients with denture stomatitis were sampled using sterile swabs. Candida Albicans strains were isolated from samples and standard Candida Albicans PTCC 5027 were cultured too. Then extract of Zatariamultiflora and Punicagranatum to be obtained and antifungal of extract studied with disk diffusion method. Antifungal power of each of the extracts on the inhibition zone diameter was created in the medium. Data were analyzed by ANOVA and Friedman statistical tests. Findings: Results showed extracts of Zataria and pomegranate flowers have antifungal significant effects (P<0.001. Diameter of inhabitation zone was 17.66±./75 mm in Nystatin group and in the Zataria and pomegranate flowers extracts groups was lower (P<0.001. None of the negative control disc did inhibition zone in the medium. Conclusion: With due attention of Zataria and pomegranate flowers extracts exhibited antifungal effects on Candida Albincans.

  8. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans.

    Science.gov (United States)

    Leito, Jelani T D; Ligtenberg, Antoon J M; Nazmi, Kamran; Veerman, Enno C I

    2009-10-01

    Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 degrees C under aerobic conditions with 5% CO(2). Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.

  9. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  10. Adhesion of Candida albicans to Vanillin Incorporated Self-Curing Orthodontic PMMA Resin.

    Science.gov (United States)

    Zam, K.; Sawaengkit, P.; Thaweboon, S.; Thaweboon, B.

    2018-02-01

    It has been observed that there is an increase in Candida carriers during the treatment with orthodontic removable appliance. Vanillin is flavouring agent, which is known to have antioxidant and antimicrobial properties. The aim of this study was to evaluate the effect of vanillin incorporated PMMA on adhesion of Candida albicans. A total of 36 orthodontic self-curing PMMA resin samples were fabricated. The samples were divided into 3 groups depending on percentage of vanillin incorporated (0.1%, 0.5% and PMMA without vanillin as control). PMMA samples were coated with saliva. The adhesion assay was performed with C. albicans (ATCC 10231). The adherent yeast cells were stained with crystal violet and counted under microscope by random selection of 3 fields at 10X magnification. The statistical analyses performed by Kruskal Wallis and Mann Whitney non-parametric test. It was found that the PMMA resin samples with vanillin incorporation significantly reduced the adhesion of C. albicans as compared to the control group. This study indicates that vanillin incorporated resin can impede the adhesion of C. albicans to about 45 - 56 %. With further testing and development, vanillin can be employed as an antifungal agent to prevent adhesion of C. albicans to orthodontic self-curing PMMA resin.

  11. Candida species isolated from different body sites and their antifungal susceptibility pattern: Cross-analysis of Candida albicans and Candida glabrata biofilms.

    Science.gov (United States)

    Cataldi, Valentina; Di Campli, Emanuela; Fazii, Paolo; Traini, Tonino; Cellini, Luigina; Di Giulio, Mara

    2017-08-01

    Candida species are regular commensal in humans, but-especially in immunocompromised patients-they represent opportunistic pathogens giving rise to systemic infection. The aim of the present work was to isolate and characterize for their antifungal profile Candida species from different body sites and to analyze the biofilms produced by C. albicans and C. glabrata isolates. Eighty-one strains of Candida species from 77 patients were identified. Epidemiological study showed that the most isolated species were C. albicans (44), C. glabrata (13) and C. parapsilosis (13) mainly from Hematology, Infectious Diseases, Medicine, Neonatology and Oncology Divisions, the majority of the biological samples were swabs (44) and blood cultures (16). The analysis of the biofilm formation was performed at 24 and 48-hours comparing resistant and susceptible strains of C. albicans to resistant and susceptible strains of C. glabrata. Candida albicans has a greater ability to form biofilm compared to C. glabrata, both in the susceptible and resistant strains reaching maturity after 24 hours with a complex structure composed of blastospores, pseudohyphae, and hyphae embedded in a matrix. On the contrary, C. glabrata biofilm was composed exclusively of blastospores that in the resistant strain, after 24 hours, were organized in a compact multilayer different to the discontinuous structure observed in the susceptible analyzed strains. In conclusion, the increasing of the incidence of Candida species infection together with their emerging drug resistance also related to the biofilm forming capability underline the need to monitor their distribution and susceptibility patterns for improving the surveillance and for a correct management of the infection. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Reales-Calderón, Jose Antonio; Sylvester, Marc; Strijbis, Karin

    2013-01-01

    Macrophages play a pivotal role in the prevention of Candida albicans infections. Yeast recognition and phagocytosis by macrophages is mediated by Pattern Recognition Receptors (PRRs) that initiate downstream signal transduction cascades by protein phosphorylation and dephosphorylation. We exposed...

  13. In vitro synergistic activity of lidocaine and miconazole against Candida albicans

    Directory of Open Access Journals (Sweden)

    Maria da Conceição dos Santos Oliveira Cunha

    2017-08-01

    Full Text Available Candida albicans is the main yeast isolated from vulvovaginal candidiasis(VVC and a major antifungal used to treat VVC is miconazole (MZ, it shows local toxic effects, such as irritation and burns. The lidocaine (LD is a local anesthetic. The aim of this study was to evaluate the synergistic activity of LD/MZ against 19 strains of C. albicans isolated from vaginal secretion. 78.9% of the strains were susceptible to the combination LD/MZ, demonstrating synergism of drugs. These drugs can be used to produce vaginal creams to treat VVC, especially drug resistant.

  14. Surface control of blastospore attachment and ligand-mediated hyphae adhesion of Candida albicans.

    Science.gov (United States)

    Varghese, Nisha; Yang, Sijie; Sejwal, Preeti; Luk, Yan-Yeung

    2013-11-14

    Adhesion on a surface via nonspecific attachment or multiple ligand-receptor interactions is a critical event for fungal infection by Candida albicans. Here, we find that the tri(ethylene glycol)- and d-mannitol-terminated monolayers do not resist the blastospore attachment, but prevent the hyphae adhesion of C. albicans. The hyphae adhesion can be facilitated by tripeptide sequences of arginine-glycine-aspartic acid (RGD) covalently decorated on a background of tri(ethylene glycol)-terminated monolayers. This adhesion mediated by selected ligands is sensitive to the scrambling of peptide sequences, and is inhibited by the presence of cyclic RGD peptides in the solution.

  15. Terapia fotodinâmica mediada por ZnPc Lipossomal sobre Candida albicans

    OpenAIRE

    CARLOS, Selma Maria Camuri Firmino

    2015-01-01

    No presente trabalho foram construídos lipossomas estáveis vazios e contendo o zinco ftalocianina para a realização da Terapia Fotodinâmica em Candida albicans. Os procedimentos experimentais compreenderam a obtenção de uma suspensão padrão de C. albicans contendo 106 células viáveis por mL, a preparação das células para os ensaios e o delineamento experimental realizado em cinco grupos experimentais: GC; GTFD; GLUZ; GDROGA e GLIPO em quadruplicata. As análises abrangeram a det...

  16. Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression.

    LENUS (Irish Health Repository)

    O'Connor, Leanne

    2010-09-01

    Candida dubliniensis is closely related to Candida albicans; however, it is responsible for fewer infections in humans and is less virulent in animal models of infection. C. dubliniensis forms fewer hyphae in vivo, and this may contribute to its reduced virulence. In this study we show that, unlike C. albicans, C. dubliniensis fails to form hyphae in yeast extract-peptone-dextrose (YPD) medium supplemented with 10% (vol\\/vol) fetal calf serum (YPDS medium). However, C. dubliniensis filaments in water plus 10% (vol\\/vol) fetal calf serum (WS), and this filamentation is inhibited by the addition of peptone and glucose. Repression of filamentation in YPDS medium could be partly overcome by preculture in synthetic Lee\\'s medium. Unlike C. albicans, inoculation of C. dubliniensis in YPDS medium did not result in increased UME6 transcription. However, >100-fold induction of UME6 was observed when C. dubliniensis was inoculated in nutrient-poor WS medium. The addition of increasing concentrations of peptone to WS medium had a dose-dependent effect on reducing UME6 expression. Transcript profiling of C. dubliniensis hyphae in WS medium identified a starvation response involving expression of genes in the glyoxylate cycle and fatty acid oxidation. In addition, a core, shared transcriptional response with C. albicans could be identified, including expression of virulence-associated genes including SAP456, SAP7, HWP1, and SOD5. Preculture in nutrient-limiting medium enhanced adherence of C. dubliniensis, epithelial invasion, and survival following coculture with murine macrophages. In conclusion, C. albicans, unlike C. dubliniensis, appears to form hyphae in liquid medium regardless of nutrient availability, which may account for its increased capacity to cause disease in humans.

  17. Dissecting Candida albicans Infection from the Perspective of C. albicans Virulence and Omics Approaches on Host–Pathogen Interaction: A Review

    Directory of Open Access Journals (Sweden)

    Voon Kin Chin

    2016-10-01

    Full Text Available Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida–host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future.

  18. New Clox Systems for rapid and efficient gene disruption in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shahida Shahana

    Full Text Available Precise genome modification is essential for the molecular dissection of Candida albicans, and is yielding invaluable information about the roles of specific gene functions in this major fungal pathogen of humans. C. albicans is naturally diploid, unable to undergo meiosis, and utilizes a non-canonical genetic code. Hence, specialized tools have had to be developed for gene disruption in C. albicans that permit the deletion of both target alleles, and in some cases, the recycling of the Candida-specific selectable markers. Previously, we developed a tool based on the Cre recombinase, which recycles markers in C. albicans with 90-100% efficiency via site-specific recombination between loxP sites. Ironically, the utility of this system was hampered by the extreme efficiency of Cre, which prevented the construction in Escherichia coli of stable disruption cassettes carrying a methionine-regulatable CaMET3p-cre gene flanked by loxP sites. Therefore, we have significantly enhanced this system by engineering new Clox cassettes that carry a synthetic, intron-containing cre gene. The Clox kit facilitates efficient transformation and marker recycling, thereby simplifying and accelerating the process of gene disruption in C. albicans. Indeed, homozygous mutants can be generated and their markers resolved within two weeks. The Clox kit facilitates strategies involving single marker recycling or multi-marker gene disruption. Furthermore, it includes the dominant NAT1 marker, as well as URA3, HIS1 and ARG4 cassettes, thereby permitting the manipulation of clinical isolates as well as genetically marked strains of C. albicans. The accelerated gene disruption strategies afforded by this new Clox system are likely to have a profound impact on the speed with which C. albicans pathobiology can be dissected.

  19. Hexosomes with Undecylenic Acid Efficient against Candida albicans

    OpenAIRE

    Marijana Mionić Ebersold; Milica Petrović; Wye-Khay Fong; Debora Bonvin; Heinrich Hofmann; Irena Milošević

    2018-01-01

    Due to the growing issues with fungal infections, especially with Candida, there is still a need to develop novel anti-Candida materials. One of the known antifungal agents is undecylenic acid (UA), which still cannot be efficiently used due to its oily nature, and thus limited solubility. By taking advantage of the properties of UA, we developed an emulsion with hexagonal phase, i.e., hexosomes, whose structure and morphology was studied by small-angle X-ray scattering and cryo-electron micr...

  20. Effects of Low-Level Laser Irradiation on the Pathogenicity of Candida albicans: In Vitro and in Vivo Study

    NARCIS (Netherlands)

    Seyedmousavi Tasieh, S.; Hashemi, S.J.; Rezaie, S.; Fateh, M.; Djavid, G.E.; Zibafar, E.; Morsali, F.; Zand, N.; Alinaghizadeh, M.; Ataie-Fashtami, L.

    2014-01-01

    Abstract Objective: The purpose of this study was to evaluate the effects of low-level laser irradiation (LLLI) on the in vitro growth characteristics and in vivo pathogenicity of Candida albicans in a murine model in the absence of a photosensitizer. Background data: C. albicans is an opportunistic

  1. The Mkk2 MAPKK Regulates Cell Wall Biogenesis in Cooperation with the Cek1-Pathway in Candida albicans

    NARCIS (Netherlands)

    Román, Elvira; Alonso-Monge, Rebeca; Miranda Bedate, A.; Pla, Jesús

    2015-01-01

    The cell wall integrity pathway (CWI) plays an important role in the biogenesis of the cell wall in Candida albicans and other fungi. In the present work, the C. albicans MKK2 gene that encodes the putative MAPKK of this pathway was deleted in different backgrounds and the phenotypes of the

  2. The effect of submersion denture base acrylic resin in a betel leaf ekstract solution against growth Candida albicans

    Directory of Open Access Journals (Sweden)

    Andi Izham

    2016-06-01

    Full Text Available Denture base is a protesa which replace some or all of the lost original teeth and surrounding tissues. The Pupose of making protesa is for restore the function, appearance, comfort and impaired health result lost teeth. One part of the denture base is base plate. Microorganisms are often found in the oral cavity is Candida albicans (C.albicans approximately 40% in the oral cavity.C.albicans can penetrate the acrylic resin that can infect the soft tissue and is the cause of denture stomatitis therefore the disinfection of denture base is a important factor that must be done. In general betel leaves contant up to 4.2% essential oil compounds and phenyl propanoid and tannin. These compounds is a antimicroba and antifungal which can inhibit the growth of several type of bacteria among others Escherichia coli, Salmonella sp, Staphylococcus aurens, Klebstella, Pasteurella and can turn off the C.albicans. The purpose of the research is to determine how the effect of submersion denture base acrylic resin in a betel leaf ekstract solution against growth C.albicans.Type of research is an experimental laboratory with a longitudinal design (follow-up study. The sampling method used is total sampling. The results showed that the number of C.albicans colonies n denture base acrylic resin which soaked betel leaf extract solution that the dilution 10-1  with consentration 2.5% total colony count is 2 and the results 2.0 x 101 CFU/ml, on a control solution that the dilution 10-2 total colony 355 and the result 3.55 x 104 CFU/ml, that the dilution  10-3 total colony 62 and the result 6.2 x 104 CFU/ml.

  3. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Science.gov (United States)

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  4. Hyphal formation of Candida albicans is controlled by electron transfer system

    International Nuclear Information System (INIS)

    Watanabe, Toshihiko; Ogasawara, Ayako; Mikami, Takeshi; Matsumoto, Tatsuji

    2006-01-01

    Most Candida albicans cells cultured in RPMI1640 medium at 37 deg. C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growth of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition

  5. Rac1 dynamics in the human opportunistic fungal pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Romain Vauchelles

    Full Text Available The small Rho G-protein Rac1 is highly conserved from fungi to humans, with approximately 65% overall sequence identity in Candida albicans. As observed with human Rac1, we show that C. albicans Rac1 can accumulate in the nucleus, and fluorescence recovery after photobleaching (FRAP together with fluorescence loss in photobleaching (FLIP studies indicate that this Rho G-protein undergoes nucleo-cytoplasmic shuttling. Analyses of different chimeras revealed that nuclear accumulation of C. albicans Rac1 requires the NLS-motifs at its carboxyl-terminus, which are blocked by prenylation of the adjacent cysteine residue. Furthermore, we show that C. albicans Rac1 dynamics, both at the plasma membrane and in the nucleus, are dependent on its activation state and in particular that the inactive form accumulates faster in the nucleus. Heterologous expression of human Rac1 in C. albicans also results in nuclear accumulation, yet accumulation is more rapid than that of C. albicans Rac1. Taken together our results indicate that Rac1 nuclear accumulation is an inherent property of this G-protein and suggest that the requirements for its nucleo-cytoplasmic shuttling are conserved from fungi to humans.

  6. Streptococcus agalactiae Inhibits Candida albicans Hyphal Development and Diminishes Host Vaginal Mucosal TH17 Response

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Yu

    2018-02-01

    Full Text Available Streptococcus agalactiae and Candida albicans often co-colonize the female genital tract, and under certain conditions induce mucosal inflammation. The role of the interaction between the two organisms in candidal vaginitis is not known. In this study, we found that co-infection with S. agalactiae significantly attenuated the hyphal development of C. albicans, and that EFG1-Hwp1 signal pathway of C. albicans was involved in this process. In a mouse model of vulvovaginal candidiasis (VVC, the fungal burden and the levels of pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α showed a increase on co-infection with S. agalactiae, while the level of TH17 T cells and IL-17 in the cervicovaginal lavage fluid were significantly decreased. Our results indicate that S. agalactiae inhibits C. albicans hyphal development by downregulating the expression of EFG1-Hwp1. The interaction between S. agalactiae and C. albicans may attenuate host vaginal mucosal TH17 immunity and contribute to mucosal colonization by C. albicans.

  7. Streptococcus agalactiae Inhibits Candida albicans Hyphal Development and Diminishes Host Vaginal Mucosal TH17 Response.

    Science.gov (United States)

    Yu, Xiao-Yu; Fu, Fei; Kong, Wen-Na; Xuan, Qian-Kun; Wen, Dong-Hua; Chen, Xiao-Qing; He, Yong-Ming; He, Li-Hua; Guo, Jian; Zhou, Ai-Ping; Xi, Yang-Hong; Ni, Li-Jun; Yao, Yu-Feng; Wu, Wen-Juan

    2018-01-01

    Streptococcus agalactiae and Candida albicans often co-colonize the female genital tract, and under certain conditions induce mucosal inflammation. The role of the interaction between the two organisms in candidal vaginitis is not known. In this study, we found that co-infection with S. agalactiae significantly attenuated the hyphal development of C. albicans , and that EFG1 -Hwp1 signal pathway of C. albicans was involved in this process. In a mouse model of vulvovaginal candidiasis (VVC), the fungal burden and the levels of pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α showed a increase on co-infection with S. agalactiae , while the level of TH17 T cells and IL-17 in the cervicovaginal lavage fluid were significantly decreased. Our results indicate that S. agalactiae inhibits C. albicans hyphal development by downregulating the expression of EFG1 -Hwp1. The interaction between S. agalactiae and C. albicans may attenuate host vaginal mucosal TH17 immunity and contribute to mucosal colonization by C. albicans .

  8. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  10. Antibiofilm and Antihyphal Activities of Cedar Leaf Essential Oil, Camphor, and Fenchone Derivatives against Candida albicans

    Directory of Open Access Journals (Sweden)

    Ranjith Kumar Manoharan

    2017-08-01

    Full Text Available Candida albicans can form biofilms composed of yeast, hyphal, and pseudohyphal elements, and C. albicans cells in the hyphal stage could be a virulence factor. The present study describes the chemical composition, antibiofilm, and antihyphal activities of cedar leaf essential oil (CLEO, which was found to possess remarkable antibiofilm activity against C. albicans but not to affect its planktonic cell growth. Nineteen components were identified in CLEO by gas chromatography/mass spectrometry, and phenolics were the main constituents. Of these, camphor, fenchone, fenchyl alcohol, α-thujone, and borneol significantly reduced C. albicans biofilm formation. Notably, treatments with CLEO, camphor, or fenchyl alcohol at 0.01% clearly inhibited hyphal formation, and this inhibition appeared to be largely responsible for their antibiofilm effects. Transcriptomic analyses indicated that camphor and fenchyl alcohol downregulated some hypha-specific and biofilm related genes (ECE1, ECE2, RBT1, and EED1. Furthermore, camphor and fenchyl alcohol reduced C. albicans virulence in a Caenorhabditis elegans nematode model. These results demonstrate CLEO, camphor, and fenchyl alcohol might be useful for controlling C. albicans infections.

  11. Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysis.

    Science.gov (United States)

    Kong, W J; Wang, J B; Jin, C; Zhao, Y L; Dai, C M; Xiao, X H; Li, Z L

    2009-07-01

    Using the 3114/3115 thermal activity monitor (TAM) air isothermal microcalorimeter, ampoule mode, the heat output of Candida albicans growth at 37 degrees C was measured, and the effect of emodin on C. albicans growth was evaluated by microcalorimetry coupled with chemometric methods. The similarities between the heat flow power (HFP)-time curves of C. albicans growth affected by different concentrations of emodin were calculated by similarity analysis (SA). In the correspondence analysis (CA) diagram of eight quantitative parameters taken from the HFP-time curves, it could be deduced that emodin had definite dose-effect relationship as the distance between different concentrations of it increased along with the dosage and the effect. From the principal component analysis (PCA) on eight quantitative parameters, the action of emodin on C. albicans growth could be easily evaluated by analyzing the change of values of the main two parameters, growth rate constant k (2) and maximum power output P(2)(m). The coherent results of SA, CA, and PCA showed that emodin at different concentrations had different effects on C. albicans growth metabolism: A low concentration (0-10 microg ml(-1)) poorly inhibited the growth of C. albicans, and a high concentration (15-35 microg ml(-1)) could notably inhibit growth of this fungus. This work provided a useful idea of the combination of microcalorimetry and chemometric analysis for investigating the effect of drug and other compounds on microbes.

  12. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    Science.gov (United States)

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions

  13. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  14. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay.

    Science.gov (United States)

    Heintz-Buschart, Anna; Eickhoff, Holger; Hohn, Erwin; Bilitewski, Ursula

    2013-03-10

    Candida albicans is one of the most common opportunistic fungal pathogens, causing life-threatening disease in immunocompromised patients. As it is not primarily a pathogen, but can exist in a commensal state, we aimed at the identification of new anti-infective compounds which do not eradicate the fungus, but primarily disable a virulence determinant. The yeast–hyphae-dimorphism of C. albicans is considered a major contributor to fungal disease, as mutants locked into either yeast or hyphal state have been shown to be less virulent in the mouse-model. We devised a high-throughput screening procedure which allows us to find inhibitors of the induction of hyphae. Hyphae-formation was induced by nitrogen starvation at 37 °C and neutral pH in a reporter strain, which couples promoter activity of the hyphae-specific HWP1 to β-galactosidase expression. In a pilot screening of 720 novel synthetic compounds, we identified substances which inhibited the outgrowth of germ tubes. They belonged to chemical classes not yet known for antimycotic properties, namely methyl aryl-oxazoline carboxylates, dihydrobenzo[d]isoxazolones and thiazolo[4,5-e]benzoisoxazoles. In conclusion we developed a novel screening assay, which addresses the morphological switch from the yeast form of C. albicans to its hyphal form and identified novel chemical structures with activity against C. albicans. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of Different Disinfectants on Staphylococcus aureus and Candida albicans Transferred to Alginate and Polyvinylsiloxane Impression Materials

    Directory of Open Access Journals (Sweden)

    Fereydoun Parnia

    2009-12-01

    Full Text Available Background and aims. Several products have been marketed for disinfecting impression materials. The present study evaluated the effect of Deconex, Micro 10, Alprocid and Unisepta Plus sprays on Staphylococcus aureus and Candida albicans transferred to alginate and polyvinylsiloxane impression materials. Materials and methods. A total of 180 impressions of a maxillary model (90 alginate and 90 polyvinylsiloxane impressions were taken for the purpose of this in vitro study. Half of the impressions were infected with Staphylococcus aureus and the other half were infected with Candida albicans. Then the microorganisms were cultured and their counts were determined. Subsequently, the impressions were divided into groups of 15 impressions each. Each group was disinfected with Deconex, Micro10, Alprocid and Unisepta Plus according to manufacturers' instructions except for the control group. The culturing procedure was repeated after disinfection and microbial counts were determined again. Data was analyzed by ANOVA and paired-sample t-test. Results. There were statistically significant differences in the means of S. aureus and C. albicans counts before and after the use of disinfectants (P < 0.05. The use of the four disinfectants reduced S. aureus counts to zero in 80% of the cases. There were no statistically significant differences in S. aureus count reductions between the four disinfectants evaluated (P = 0.31. Micro 10 was more effective on alginate; Deconex was more efficient for polyvinylsiloxane and Alprocid had a better efficacy in both impression materials in eliminating C. albicans (P < 0.05. Conclusion. All the disinfectants evaluated have high disinfecting postentials.

  16. Influence of artificial saliva in biofilm formation of Candida albicans in vitro

    Directory of Open Access Journals (Sweden)

    Michelle Peneluppi Silva

    2012-02-01

    Full Text Available Due to the increase in life expectancy, new treatments have emerged which, although palliative, provide individuals with a better quality of life. Artificial saliva is a solution that contains substances that moisten a dry mouth, thus mimicking the role of saliva in lubricating the oral cavity and controlling the existing normal oral microbiota. This study aimed to assess the influence of commercially available artificial saliva on biofilm formation by Candida albicans. Artificial saliva I consists of carboxymethylcellulose, while artificial saliva II is composed of glucose oxidase, lactoferrin, lysozyme and lactoperoxidase. A control group used sterile distilled water. Microorganisms from the oral cavity were transferred to Sabouraud Dextrose Agar and incubated at 37°C for 24 hours. Colonies of Candida albicans were suspended in a sterile solution of NaCl 0.9%, and standardisation of the suspension to 106 cells/mL was achieved. The acrylic discs, immersed in artificial saliva and sterile distilled water, were placed in a 24-well plate containing 2 mL of Sabouraud Dextrose Broth plus 5% sucrose and 0.1 mL aliquot of the Candida albicans suspension. The plates were incubated at 37°C for 5 days, the discs were washed in 2 mL of 0.9% NaCl and placed into a tube containing 10 mL of 0.9% NaCl. After decimal dilutions, aliquots of 0.1 mL were seeded on Sabouraud Dextrose Agar and incubated at 37°C for 48 hours. Counts were reported as CFU/mL (Log10. A statistically significant reduction of 29.89% (1.45 CFU/mL of Candida albicans was observed in saliva I when compared to saliva II (p = 0.002, considering p≤0.05.

  17. DAYA ANTIMIKROBA EKSTRAK COLEUS AMBOINICUS, LOUR TERHADAP CANDIDA ALBICANS PADA RESIN AKRILIK

    OpenAIRE

    Devi Rianti; Titien Hary Agustantina

    2015-01-01

    A laboratory experimental study conducted on antimicrobial effects of Coleus amboinicus, Lour concentrate towards Candida albicans on acrylic resin. Samples of this study are 10x10x1 mm heat cured acrylic plates immersed in 15%, 12.5%, 10%, 7.5% of Coleus amboinicus, Lour concentrate solution. Sterilized aquadest was used as control. 16 samples were used for each exercise. Statistical analyses used are One-way Anova and LSD with 5% significance degree. The result showed that increasing Coleus...

  18. Zona Hambat Ekstrak Daun Sirih Merah Terhadap Staphylococcus Aureus Dan Candida Albicans Diisolasi Dari Denture Stomatitis

    OpenAIRE

    Veronika, lara

    2017-01-01

    Zona Hambat Ekstrak Daun Sirih Merah terhadap Staphylococcus aureus dan Candida albicans diisolasi dari denture stomatitis xi + 43 halaman Ekstrak daun sirih merah merupakan salah satu obat tradisional yang saat ini banyak digunakan masyarakat Indonesia. Ekstrak daun sirih merah ini dapat menghambat pertumbuhan bakteri dan jamur disebabkan karena adanya senyawa alkaloid, flavonoid, polifenol, tanin dan minyak atsiri. Salah satu bakteri dan jamur yang dapat dihambat oleh ekstrak daun sir...

  19. Interference with effects of amphotericin B on Candida albicans cells by 2-chloroethyl-1-nitrosoureas.

    OpenAIRE

    Brajtburg, J; Elberg, S; Kobayashi, G S; Medoff, G

    1988-01-01

    Two nitrosoureas, 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), with strong carbamoylating and weak alkylating activities, interfered with the induction of potassium leakage and lethal action of amphotericin B (AmB) on Candida albicans. 2-Cyclohexyl isocyanate, the product of decomposition of CCNU, and 2-chloroethyl isocyanate, the product of decomposition of BCNU, also interfered with the anticandidal actions of AmB. In contrast, two ni...

  20. Antibiofilm activity of Streptomyces toxytricini Fz94 against Candida albicans ATCC 10231

    Directory of Open Access Journals (Sweden)

    Sheir DH

    2017-06-01

    Full Text Available Candida albicans is a significant cause of morbidity and mortality in immunocompromised patients worldwide. Biofilm formation by Candida species is a significant virulence factor for disease pathogenesis. Keeping in view the importance of Streptomyces' metabolites, the present study was initiated during the bioprospecting programme of Egyptian Streptomyces carried by the authors since 2013. Native Streptomyces isolates were recovered from soil samples collected from different governorates. Antifungal activity of forty isolates of Streptomyces were performed against planktonic (free cells of C. albicans ATCC 10231 and resistant clinical Candida isolates. Streptomyces isolates showed high inhibition activity against free cells of Candida were further assayed against biofilm of C. albicans reference strain. The most active Streptomyces sp. (no.6 was identified phenotypically, biochemically and by using 16S rRNA. The 16S rRNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KM052378 as S. toxytricini Fz94. Screening of S. toxytricini Fz94 extract capability in prevention and destruction of C. albicans reference strain biolfilm was assessed by resazurin dye adopted technique. In the pre-exposure scheme, the lowest concentration of 5 gL-1 showed biofilm viability inhibition of 92% after 120 min, while Ketoconazole® gave 90 % inhibition at concentration of 2 gL-1. In post exposure, the concentration of S. toxytricini Fz94 extract 7gL-1 caused 82 % inhibition of biofilms viability after 120 min, while Ketoconazole did not show any destruction capability. The cytotoxicity of S. toxytricini Fz94 crude extract results showed that it was nontoxic at 10 gL-1. S. toxytricini Fz94 is maintained in the Fungarium of Arab Society for Fungal Conservation (ASFC with accession number FSCU-2017-1110.

  1. The use of flow cytometry to monitor chitin synthesis in regenerating protoplasts of Candida albicans.

    Science.gov (United States)

    Hector, R F; Braun, P C; Hart, J T; Kamarck, M E

    1990-01-01

    Flow cytometry was used to monitor chitin synthesis in regenerating protoplasts of the yeast Candida albicans. Comparisons of cells stained with Calcofluor White, a fluorochrome with known affinity for chitin, and cells incubated in the presence of N-[3H]-acetylglucosamine, the precursor substrate for chitin, showed a linear relationship between fluorescence and incorporation of label over time. Changes in both the fluorescence and light scatter of regenerating protoplasts treated with inhibitors of fungal chitin synthase were also quantitated by flow cytometry.

  2. Transcriptional Activation Domains of the Candida albicans Gcn4p and Gal4p Homologs▿ †

    OpenAIRE

    Martchenko, Mikhail; Levitin, Anastasia; Whiteway, Malcolm

    2006-01-01

    Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C6 zinc cluster (Gal4p) families; C. albi...

  3. Perbandingan Daya Hambat Larutan Antiseptik Povidone iodine dengan Ekstrak Daun Sirih terhadap Candida albicans secara In Vitro

    Directory of Open Access Journals (Sweden)

    Septriana Putri

    2015-09-01

    Full Text Available Abstrak Candida albicansb (C. albicans adalah salah satu mikroorganisme penyebab masalah kesehatan reproduksi wanita, yaitu keputihan (fluor albus. Penggunaan larutan povidone iodine dan bahan alam seperti ekstrak daun sirih menjadi pilihan masyarakat sebagai pembersih alat kewanitaan. Tujuan penelitian ini adalah untuk membandingkandaya hambat larutan antiseptik povidone iodine dan ekstrak daun sirih terhadap jamur C. albicans secara in vitro. Penelitian dilakukan terhadap lima isolat jamur C. albicans dengan larutan kontrol akuades.Perlakuan terdiri dari povidone iodine, ekstrak daun sirih dengan konsentrasi 5%, 10%, dan 20%.Hasil penelitian menunjukkan bahwa povidone iodine memiliki daya hambat terhadap C. albicans. Ekstrak daun sirih dengan konsentrasi 5% dan 10% tidak memiliki daya hambat terhadap C. albicans, namun ekstrak daun sirih konsentrasi 20% memiliki daya hambat terhadap C. albicans. Analisis statistik dengan uji ANOVA yang dilanjutkan dengan uji Post-hoc menunjukkan perbedaan bermakna antara daya hambat larutan povidone iodine dan ekstrak daun sirih 20% terhadap kontrol(p < 0.05.Larutan povidone iodine memiliki daya hambat dua kali lebih besar terhadap pertumbuhan C. albicans dibandingkan ekstrak daun sirih 20%. Dari penelitian ini dapat disimpulkan bahwa larutan povidone iodine dan ekstrak daun sirih 20% dapat menghambat pertumbuhan jamur C. albicans secara in vitro. Kata kunci: povidone iodine, ekstrak daun sirih, Candida albicansAbstract Candida albicans (C. albicans is one of the frequent causes of  reproductive health problems in women, namely vaginal discharge (fluor albus. The antiseptic solution, povidone iodine, is still an option to overcome vaginal discharge. The use of natural materials such as betel (Piper betle L. leaves extract also become a popular choice as adouche for women. The objective of this study was to compare the inhibitory activity of povidone iodine solution and betel leaf extract against the growth of

  4. AFM force spectroscopy reveals how subtle structural differences affect the interaction strength between Candida albicans and DC-SIGN

    NARCIS (Netherlands)

    Riet, J. te; Reinieren-Beeren, I.M.J.; Figdor, C.G.; Cambi, A.

    2015-01-01

    The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C-type lectin dendritic cell-specific intracellular cell adhesion molecule-3 (ICAM-3)-grabbing

  5. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans.

    Science.gov (United States)

    Shibasaki, Seiji; Karasaki, Miki; Tafuku, Senji; Aoki, Wataru; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Candidiasis is a common fungal infection that is prevalent in immunocompromised individuals. In this study, an oral vaccine against Candida albicans was developed by using the molecular display approach. Enolase 1 protein (Eno1p) of C. albicans was expressed on the Lactobacillus casei cell surface by using poly-gamma-glutamic acid synthetase complex A from Bacillus subtilis as an anchoring protein. The Eno1p-displaying L. casei cells were used to immunize mice, which were later challenged with a lethal dose of C. albicans. The data indicated that the vaccine elicited a strong IgG response and increased the survival rate of the vaccinated mice. Furthermore, L. casei acted as a potent adjuvant and induced high antibody titers that were comparable to those induced by strong adjuvants such as the cholera toxin. Overall, the molecular display method can be used to rapidly develop vaccines that can be conveniently administered and require minimal processing.

  6. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans.

    Science.gov (United States)

    Yonashiro Marcelino, Mônica; Azevedo Borges, Felipe; Martins Costa, Ana Flávia; de Lacorte Singulani, Junya; Ribeiro, Nathan Vinícius; Barcelos Costa-Orlandi, Caroline; Garms, Bruna Cambraia; Soares Mendes-Giannini, Maria José; Herculano, Rondinelli Donizetti; Fusco-Almeida, Ana Marisa

    2018-03-01

    This work aimed to produce a membrane based on fluconazole-loaded natural rubber latex (NRL), and study their interaction, drug release and antifungal susceptibility against Candida albicans. Fluconazole-loaded NRL membrane was obtained by casting method. The Fourier Transform Infrared Spectroscopy showed no modifications either in NRL or fluconazole after the incorporation. Mechanical test presented low Young's modulus and high strain, indicating the membranes have sufficient elasticity for biomedical application. The bio-membrane was able to release the drug and inhibit the growth of C. albicans as demonstrated by disk diffusion and macrodilution assays. The biomembrane was able to release fluconazole and inhibit the growth of C. albicans, representing a promising biomaterial for skin application.

  7. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis.

    Science.gov (United States)

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D

    2013-08-13

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.

  8. Cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies.

    Science.gov (United States)

    Faria, Daniella Renata; Sakita, Karina Mayumi; Akimoto-Gunther, Luciene Setsuko; Kioshima, Érika Seki; Svidzinski, Terezinha Inez Estivalet; Bonfim-Mendonça, Patrícia de Souza

    2017-08-01

    The present study aimed to characterize cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies. It was evaluated 12 clinical isolates of C. albicans from vaginal samples: 4 from asymptomatic women (AS), 4 from women with a single episode of vulvovaginal candidiasis (VVC) and 4 from women with recurrent vulvovaginal candidiasis (RVVC). We evaluated the ability of C. albicans to adhere to human cervical cancer cells (SiHa), the yeast-SiHa cell interactions and cell damage. All of the clinical isolates presented a high adhesion capacity on SiHa cells. However, clinical isolates from symptomatic women (VVC and RVVC) had higher filamentation after contact (24 h) with SiHa cells and a greater capacity to cause cell damage (>80 %). Clinical isolates from symptomatic women had greater potential to invade SiHa cells, suggesting that they are more pathogenic than AS isolates.

  9. Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation.

    Science.gov (United States)

    Lippert, Rainer; Vojnovic, Sandra; Mitrovic, Aleksandra; Jux, Norbert; Ivanović-Burmazović, Ivana; Vasiljevic, Branka; Stankovic, Nada

    2014-08-01

    Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Treatment with some anti-inflammatory drugs reduces germ tube formation in Candida albicans strains

    Directory of Open Access Journals (Sweden)

    Elena Rusu

    2014-12-01

    Full Text Available Candida albicans is an opportunistic dimorphic fungus that inhabits various host mucosal sites. It can cause both superficial and serious systemic disease. Conversion from the yeast to the hyphal form has been associated with increased virulence and mucosal invasiveness. The aim of this study was to investigate the effect of sodium diclofenac and aspirin on germs tube formation of different Candida albicans strains. Prostaglandins may play an important role in fungal colonization. Nonsteroidal anti-inflammatory drugs are inhibitors of the cyclooxygenase isoenzymes. These drugs specifically block the biosynthesis of mammalian prostaglandins by inhibiting one or both of cyclooxygenase isoenzymes. In tests for germ tube formation sodium diclofenac reduced the filamentation to the 12.5%- 5.1%. In the presence of aspirin the filamentation was reduced up to 85-45% depending on the tested strain. Our results suggest that cyclooxygenase-depending synthesis of fungal prostaglandins is important for morphogenesis and fungal virulence. Inhibitors of cyclooxygenase isoensymes (aspirin and diclofenac are effective in decreasing germ tube formation of Candida albicans.

  11. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    Science.gov (United States)

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inhibitory Effect of Curcumin on Candida-albicans compared with Nystatin: an in-vitro Study

    Directory of Open Access Journals (Sweden)

    Neda Babaii

    2016-10-01

    Full Text Available Introduction: Curcumin is the active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa. Curcumin has a surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. on basis of recent studies; it has antifungal and antibacterial effects. The aim of this study was in-vitro evaluation of antifungal effect of curcumin on candida albicans and comparing it with nystatin. Methods: after preparing curcumin powder, 3 laboratory methods were used to evaluate antifungal effect. The first method was cell count technique, used to evaluate the amount of candida albicans after time, in different concentrations of curcumin in Dimethyl sulfoxide (DMSO. The second was cup bioassay, in which inhibitory a zone of curcumin in DMSO was evaluated in sabouraud culture plates; and in third method, inhibitory zones of dried disks; which contained curcumin in DMSO were evaluated. Results: the result of all three methods showed that curcumin has antifungal effect and this effect increases in more concentrations. Conclusion: curcumin has apparent and dose dependent antifungal effect on candida albicans.

  13. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

    Directory of Open Access Journals (Sweden)

    Kerstin Hünniger

    2014-02-01

    Full Text Available Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment

  14. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans.

    Science.gov (United States)

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin.

  15. Frequency of Candidiasis and Colonization of Candida albicans in Relation to Oral Contraceptive Pills.

    Science.gov (United States)

    Aminzadeh, Atousa; Sabeti Sanat, Ali; Nik Akhtar, Saeed

    2016-10-01

    Candidiasis, the infection caused by Candida albicans , is one of the most common infections of the oral cavity in humans. Candidiasis causes irritation and is known for its carcinogenic effects. Thus, it is important to recognize the predisposing factors for this opportunistic infection. Several previous studies have demonstrated an increased frequency of vaginal candidiasis in relation to oral contraceptive consumption. Only a few studies on the relation between oral contraceptives and oral candidiasis have been previously conducted. This study aims to evaluate the possible relation between oral contraceptive pills and oral candidiasis. This analytic, case-control study included 40 non-pregnant women divided into two groups: 20 who used oral contraceptive pills and 20 who did not. The groups were matched according to age, oral health, and past and present medical history. Samples were collected from the tongue's dorsum using a cotton swab and inoculated on CHROMagar culture plates. The frequency of positive cultures and the number of Candida colonies were compared between the two groups using independent t-tests and Mann-Whitney statistical tests with SPSS18 software. The frequency of positive cultures of Candida albicans was higher (P value = 0.03) for the case group. Also, the number of C. albicans and C. krusei was significantly higher for the case group compared to the control group (P value = 0.04, P value = 0.03). The results of the present study demonstrate that oral contraceptives containing estradiol can lead to Candida colonization in the oral cavity. It is recommended that further studies comparing the influence of oral contraceptives on Candida's adherence to the epithelium is highly recommended.

  16. Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces.

    Science.gov (United States)

    Jackson, Sarah; Coulthwaite, Lisa; Loewy, Zvi; Scallan, Anthony; Verran, Joanna

    2014-10-01

    Candida albicans is a known etiologic agent of denture stomatitis. Candida hyphae exhibit the ability to respond directionally to environmental stimuli. This characteristic is thought to be important in the penetration of substrata such as resilient denture liners and host epithelium. It has been suggested that hyphal production also enhances adhesion and survival of Candida on host and denture surfaces. Surface roughness, in addition, can enhance adhesion where stronger interactions occur between cells and surface features of similar dimensions. The purpose of this study was to assess the development of hyphal and blastospore biofilms on abraded denture acrylic resin specimens and measure the ease of removal of these biofilms. Biofilms were grown for 48 hours on abraded 1-cm² denture acrylic resin specimens from adhered hyphal phase C albicans or from adhered blastospores. Subsequently, all specimens were stained with Calcofluor White and examined with confocal scanning laser microscopy. Biofilms were removed by vortex mixing in sterile phosphate buffered saline solution. Removed cells were filtered (0.2-μm pore size). Filters were dried at 37°C for 24 hours for dry weight measurements. Any cells that remained on the acrylic resin specimens were stained with 0.03% acridine orange and examined with epifluorescence microscopy. Biofilms grown from both cell types contained all morphologic forms of C albicans. Although the underlying surface topography did not affect the amount of biofilm produced, biofilms grown from hyphal phase Candida were visibly thicker and had greater biomass (Phyphae in early Candida biofilms increased biofilm mass and resistance to removal. Increased surface roughness enhances retention of hyphae and yeast cells, and, therefore, will facilitate plaque regrowth. Therefore, minimization of denture abrasion during cleaning is desirable. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  17. An in vivo evaluation of antimicrobial effects of Persica herbal mouthwash on Candida albicans and Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Leila Shafiei Bafti

    2013-11-01

    Full Text Available BACKGROUND AND AIM: Due to their antimicrobial and dental plaque control activity, mouthwashes lead to an improvement in oral health. Although chemical mouthwashes have demonstrated the greatest antimicrobial and anti-inflammatory effects, their usage has been limited because of their numerous side effects. This study was conducted in vivo to determine the antibacterial and antifungal effects of Persica herbal mouthwash containing Salvadore persica, mint, and yarrow in comparison with a placebo. METHODS: In this experimental, single-blind study, 80 dentistry students, who were eager to participate in the study, were randomly allocated into two groups of forty. One group was given Persica while the other group received a placebo. They were asked to apply the mouthwash twice a day for four weeks. The participants were unaware of the mouthwash type. Saliva sampling was conducted in all cases before and after mouthwash application and the samples were dispatched to a laboratory for microbial culture (Sabouraud and Clark-Kenner media culture. After two weeks, the washout times in groups were swapped with each other and the sampling was conducted just like before. Finally, the data were analyzed using independent and paired t-test. P values of less than 0.05 were considered significant. RESULTS: The mean age of participants was 23.20 ± 4.14. Persica mouthwash significantly decreased the count of Candida albicans (1.43 ± 0.15 to 0.8 ± 0.35 (P < 0.001 and Enterococcus faecalis (0.93 ± 1.76 to 0.71 ± 2.10 (P = 0.008. CONCLUSION: The statistical tests revealed that applying Persica mouthwash would result in a significant decrease in the Candida albicans and Enterococcus faecalis count. Regarding the significant and desirable effect of Persica on Candida albicans and Enterococcus faecalis, and its herbal origin, its application could be suggested to reduce oral microbes and infections from fungi and enterococci.

  18. Betamethasone augments the antifungal effect of menadione--towards a novel anti-Candida albicans combination therapy.

    Science.gov (United States)

    Jakab, Ágnes; Emri, Tamás; Sipos, Lilla; Kiss, Ágnes; Kovács, Renátó; Dombrádi, Viktor; Kemény-Beke, Ádám; Balla, József; Majoros, László; Pócsi, István

    2015-08-01

    The fluorinated glucocorticoid betamethasone stimulated both the extracellular phospholipase production and hypha formation of the opportunistic human pathogen Candida albicans and also decreased the efficiency of the polyene antimycotics amphotericin B and nystatin against C. albicans in a dose-dependent manner. Importantly, betamethasone increased synergistically the anti-Candida activity of the oxidative stress generating agent menadione, which may be exploited in future combination therapies to prevent or cure C. albicans infections, in the field of dermatology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fluconazole induces rapid high-frequency MTL homozygosis with microbiological polymorphism in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tsong-Yih Ou

    2017-12-01

    Full Text Available Background: Candida albicans, a common fungal pathogen that can cause opportunistic infections, is regarded as an apparently asexual, diploid fungus. A parasexual cycle was previously found between homozygotes with opposite mating type-like loci (MTLa/α. Fluconazole-resistant strains had a higher proportion of MTL homozygotes, whereas MTL homozygous C. albicans was found in only about 3.2% of clinical strains. MTL heterozygotes had a low frequency (1.4 × 10−4 of white–opaque switching to MTL homozygotes in nature. Methods: Here, a reference C. albicans strain (SC5314 was used in a fluconazole-induced assay to obtain standard opaque MTL homozygous strains and first-generation daughter strains from the fluconazole inhibition zone. Further separation methods were employed to produce second- and third-generation daughter strains. Polymerase chain reaction analysis based on MTL genes was used to define MTL genotypes, and microscopic observations, a flow-cytometric assay, and an antifungal E-test were used to compare microbiological characteristics. Results: MTL homozygotes were found at a high frequency (17 of 35; 48.6% in fluconazole-induced first-generation daughter strains, as were morphological polymorphisms, decreased DNA content, and modified antifungal drug susceptibility. High-frequency MTL homozygosity was identified inside the fluconazole inhibition zone within 24 hours. The DNA content of fluconazole-induced daughter strains was reduced compared with their progenitor SC5314 and standard MTL homozygous strains. Conclusion: Treatment with fluconazole, commonly used to treat invasive candidiasis, inhibited the growth of C. albicans and altered its microbiological characteristics. Our results suggest that fluconazole treatment induces the high frequency of loss of heterozygosity and microbiological polymorphism in C. albicans. Keywords: Candida albicans, fluconazole, loss of heterozygosity, mating type-like gene

  20. Assessing the advantage of morphological changes in Candida albicans: a game theoretical study

    Directory of Open Access Journals (Sweden)

    Katarzyna M Tyc

    2014-02-01

    Full Text Available A range of attributes determines the virulence of human pathogens. During interactions with their hosts, pathogenic microbes often undergo transitions between distinct stages, and the ability to switch between these can be directly related to the disease process. Understanding the mechanisms and dynamics of these transitions is a key factor in understanding and combating infectious diseases. The human fungal pathogen Candida albicans exhibits different morphotypes at different stages during the course of infection (candidiasis. For example, hyphae are considered to be the invasive form, which causes tissue damage, while yeast cells are predominant in the commensal stage. Here, we described interactions of C. albicans with its human host in a game theoretic model. In the game, players are fungal cells. Each fungal cell can adopt one of the two strategies: to exist as a yeast or hyphal cell. We characterized the ranges of model parameters in which the coexistence of both yeast and hyphal forms is plausible. Stability analysis of the system showed that, in theory, a reduced ability of the host to specifically recognize yeast and hyphal cells can result in bi-stability of the microbial populations’ profile. Inspired by the model analysis we reasoned that the types of microbial interactions can change during invasive candidiasis. We found that positive cooperation among fungal cells occurs in mild infections and an enhanced tendency to invade the host is associated with negative cooperation. The model can easily be extended to multi-player systems with direct application to identifying individuals that enhance either positive or negative cooperation. Results of the modelling approach have potential application in developing treatment strategies.

  1. Assessing the advantage of morphological changes in Candida albicans: a game theoretical study

    Science.gov (United States)

    Tyc, Katarzyna M.; Kühn, Clemens; Wilson, Duncan; Klipp, Edda

    2014-01-01

    A range of attributes determines the virulence of human pathogens. During interactions with their hosts, pathogenic microbes often undergo transitions between distinct stages, and the ability to switch between these can be directly related to the disease process. Understanding the mechanisms and dynamics of these transitions is a key factor in understanding and combating infectious diseases. The human fungal pathogen Candida albicans exhibits different morphotypes at different stages during the course of infection (candidiasis). For example, hyphae are considered to be the invasive form, which causes tissue damage, while yeast cells are predominant in the commensal stage. Here, we described interactions of C. albicans with its human host in a game theoretic model. In the game, players are fungal cells. Each fungal cell can adopt one of the two strategies: to exist as a yeast or hyphal cell. We characterized the ranges of model parameters in which the coexistence of both yeast and hyphal forms is plausible. Stability analysis of the system showed that, in theory, a reduced ability of the host to specifically recognize yeast and hyphal cells can result in bi-stability of the microbial populations' profile. Inspired by the model analysis we reasoned that the types of microbial interactions can change during invasive candidiasis. We found that positive cooperation among fungal cells occurs in mild infections and an enhanced tendency to invade the host is associated with negative cooperation. The model can easily be extended to multi-player systems with direct application to identifying individuals that enhance either positive or negative cooperation. Results of the modeling approach have potential application in developing treatment strategies. PMID:24567730

  2. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  3. Possible mechanisms of the antifungal activity of fluconazole in combination with terbinafine against Candida albicans.

    Science.gov (United States)

    Khodavandi, Alireza; Alizadeh, Fahimeh; Vanda, Nasim Aghai; Karimi, Golgis; Chong, Pei Pei

    2014-12-01

    Candidiasis is a term describing infections by yeasts from the genus Candida, the majority Candida albicans. Treatment of such infections often requires antifungals such as the azoles, but increased use of these drugs has led to selection of yeasts with increased resistance to these drugs. Combination therapy would be one of the best strategies for the treatment of candidiasis due to increased resistance to azoles. The antifungal activities of fluconazole and terbinafine were evaluated in vitro alone and in combination using broth microdilution test and time kill study. Eventually the expression level of selected genes involved in ergosterol biosynthesis of Candida was evaluated using semi-quantitative RT-PCR. The obtained results showed the significant MICs ranging from 0.25 to 8 µg/mL followed by FICs ranged from 0.37 to 1 in combination with fluconazole/terbinafine. Our findings have demonstrated that the combination of fluconazole and terbinafine could also significantly reduce the expression of ERG1, 3, and 11 in the cell membrane of Candida in all concentrations tested ranging from 1.73- to 6.99-fold. This study was undertaken with the ultimate goal of finding the probable targets of fluconazole/terbinafine in C. albicans by looking at its effects on cell membrane synthesis.

  4. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    Science.gov (United States)

    Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima

    2012-07-01

    To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7-23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09-93.48)% and (4.90-99.70)% v/v, respectively. This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans.

  5. Mechanism of iron uptake by the pathogenic yeast, Candida albicans

    International Nuclear Information System (INIS)

    Ismail, A.

    1986-01-01

    C. albicans requires iron for growth and phenotypic development. When deprived of iron, mycelium and bud formation was suppressed. Survival of the organism was also reduced under iron-limiting conditions. The combination of elevated temperature and iron-deprivation further reduced phenotypic development and survival of the yeast. The combination of elevated temperature and iron starvation resulted in a decrease in both the growth rate and siderophore production. However, with time, the cells were able to show partial recovery in the growth rate which occurred concomitantly with an increase in siderophore production. In order for siderophores to be utilized, ferri-siderophore receptors must be produced. The receptor was shown to be located in the plasma membrane of the yeast. Scatchard analysis of the binding of ferri-siderophores to plasma membrane receptors showed an increase in receptor affinity and number of binding sites in iron-starved cells when compared to control cells. Autoradiograms of the 58 Fe-siderophore-protein complex following SDS-PAGE separation of candidal proteins revealed the presence of a ferri-siderophore receptor of approximately 10,000 daltons. C. albicans strains which lacked the ability to synthesize phenolate siderophore maintained a phenolate receptor and bound candidal phenolate siderophore better than non-candidal phenolate siderophores

  6. The Role of Isocitrate Lyase (ICL1) in the Metabolic Adaptation of Candida albicans Biofilms

    Science.gov (United States)

    Ishola, Oluwaseun Ayodeji; Ting, Seng Yeat; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Yunus, Muhammad Amir; Mohamed, Rafeezul; Lung Than, Leslie Thian; Sandai, Doblin

    2016-01-01

    Background A major characteristic of Candida biofilm cells that differentiates them from free-floating cells is their high tolerance to antifungal drugs. This high resistance is attributed to particular biofilm properties, including the accumulation of extrapolymeric substances, morphogenetic switching, and metabolic flexibility. Objectives This study evaluated the roles of metabolic processes (in particular the glyoxylate cycle) on biofilm formation, antifungal drug resistance, morphology, and cell wall components. Methods Growth, adhesion, biofilm formation, and cell wall carbohydrate composition were quantified for isogenic Candida albicans ICL1/ICL1, ICL1/icl1, and icl1/icl1 strains. The morphology and topography of these strains were compared by light microscopy and scanning electron microscopy. FKS1 (glucan synthase), ERG11 (14-α-demethylase), and CDR2 (efflux pump) mRNA levels were quantified using qRT-PCR. Results The ICL1/icl1 and icl1/icl1 strains formed similar biofilms and exhibited analogous drug-tolerance levels to the control ICL1/ICL1 strains. Furthermore, the drug sequestration ability of β-1, 3-glucan, a major carbohydrate component of the extracellular matrix, was not impaired. However, the inactivation of ICL1 did impair morphogenesis. ICL1 deletion also had a considerable effect on the expression of the FKS1, ERG11, and CDR2 genes. FKS1 and ERG11 were upregulated in ICL1/icl1 and icl1/icl1 cells throughout the biofilm developmental stages, and CDR2 was upregulated at the early phase. However, their expression was downregulated compared to the control ICL1/ICL1 strain. Conclusions We conclude that the glyoxylate cycle is not a specific determinant of biofilm drug resistance. PMID:27800147

  7. The Antifungal Inhibitory Concentration Effectiveness Test From Ethanol Seed Arabica Coffee (Coffea arabica) Extract Against The Growth Of Candida albicans Patient Isolate With In Vitro Method

    Science.gov (United States)

    Satria Rakatama, Adam; Pramono, Andri; Yulianti, Retno

    2018-03-01

    Candida albicans are the most frequent cause of Vulvovaginalis Candidiasis infection. Its treatment using antifungal drugs, are oftenly caused side effects. The reduction of C.albicans growth and the reduction of antifungal drugs side effect, were our main purposed. Our study objective is determine the effectiveness of inhibitory power of arabica coffee seed ethanol extract on the growth of C.albicans patient isolates. The type of this research is experimental research. Kirby-bauer method with the Saboraud Dextrose Agar (SDA) media was used in this experiment. Inhibitory zone was observed around the disc, to determine the inhibitory power. The results showed that the inhibitory zone was formed on arabica coffee seed ethanol extract on 10%, 20%, 40%, and 80% concentration. Kruskal-Wallis test results (pthe concentration groups tested against the treatment group. The inhibitory zone was formed because of biochemical compound in arabica coffee seed such as caffeine, phenol, alkaloids, flavonoids, and saponins. Inhibitory zone in C.albicans patient isolates were smaller compared with C.albicans ATCC 90028 as gold standard. This showed that the virulence of C.albicans from patients isolates were higher. We concluded that arabica coffee seed ethanol extract could inhibiting the growth of C.albicans patient isolates. Optimization of coffee seed ethanol extract to obtain maximum active ingredients still needs to be done. This knowledge is expected to be used for the beginning manufacturer antifungal drug from natural product.

  8. Candida albicans Germ-Tube Antibody: Evaluation of a New Automatic Assay for Diagnosing Invasive Candidiasis in ICU Patients.

    Science.gov (United States)

    Parra-Sánchez, Manuel; Zakariya-Yousef Breval, Ismail; Castro Méndez, Carmen; García-Rey, Silvia; Loza Vazquez, Ana; Úbeda Iglesias, Alejandro; Macías Guerrero, Desiree; Romero Mejías, Ana; León Gil, Cristobal; Martín-Mazuelos, Estrella

    2017-08-01

    Testing for Candida albicans germ-tube antibody IFA IgG assay (CAGTA) is used to detect invasive candidiasis infection. However, most suitable assays lack automation and rapid single-sample testing. The CAGTA assay was adapted in an automatic monotest system (invasive candidiasis [CAGTA] VirClia ® IgG monotest (VirClia ® ), a chemiluminescence assay with ready-to-use reagents that provides a rapid objective result. CAGTA assay was compared with the monotest automatic VirClia ® assay in order to establish the diagnostic reliability, accuracy, and usefulness of this method. A prospective study with 361 samples from 179 non-neutropenic critically ill adults patients was conducted, including 21 patients with candidemia, 18 with intra-abdominal candidiasis, 84 with Candida spp. colonization, and 56 with culture-negative samples, as well as samples from ten healthy subjects. Overall agreement between the two assays (CAGTA and VirCLIA) was 85.3%. These assays were compared with the gold-standard method to determine the sensitivity, specificity as well as positive and negative predictive values. In patients with candidemia, values for CAGTA and VirCLIA assays were 76.2 versus 85.7%, 80.3 versus 75.8%, 55.2 versus 52.9%, and 91.4 versus 94.3%, respectively. The corresponding values in patients with intra-abdominal candidiasis were 61.1 versus 66.7%, 80.3 versus 75.8%, 45.8 versus 42.9%, and 88.3 versus 89.3%, respectively. No differences were found according to the species of Candida isolated in culture, except for Candida albicans and C. parapsilosis, for which VirClia ® was better than CAGTA. According to these results, the automated VirClia ® assay was a reliable, rapid, and very easy to perform technique as tool for the diagnosis invasive candidiasis.

  9. Lasioglossins LLIII affect the morphogenesis of Candida albicans and reduces the duration of experimental vaginal candidiasis in mice.

    Science.gov (United States)

    Vrablikova, Alena; Czernekova, Lydie; Cahlikova, Romana; Novy, Zbynek; Petrik, Milos; Imran, Saima; Novak, Zdenek; Krupka, Michal; Cerovsky, Vaclav; Turanek, Jaroslav; Raska, Milan

    2017-11-01

    Lasioglossins are a group of peptides with identified antimicrobial activity. The inhibitory effects of two synthetic lasioglossin derivatives, LLIII and D-isomeric variant LLIII-D, on morphological changes in Candida albicans in vitro and the effect of local administration of LLIII during experimental murine candidiasis were investigated. C. albicans blastoconidia were grown in the presence of lasioglossin LLIII or LLIII-D at concentrations of 11.5 μM and 21 μM, respectively, for 1, 2 and 3 days and their viability determined by flow cytometry using eosin Y staining. Morphological changes were examined by light and fluorescent microscopy. The Candida-inhibitory effect of daily intravaginal administration of 0.7 or 1.4 μg of LLIII was assessed in mice with experimentally-induced vaginal candidiasis. LLIII and LLIII-D lasioglossins exhibited candidacidal activity in vitro (>76% after 24 hr and >84% after 48 hr of incubation). After 72 hr incubation of Candida with low concentration of lasioglossins, an increase in viability was detected, probably due to a Candida antimicrobial peptides evasion strategy. Furthermore, lasioglossins inhibited temperature-induced morphotype changes toward hyphae and pseudohyphae with sporadic occurrence of atypical cells with two or enlarged nuclei, suggesting interference with mitosis or cytokinesis. Local application of LLIII reduced the duration of experimental candidiasis with no evidence of adverse effects. Lasioglossin LLIII is a promising candidate for development as an antimicrobial drug for treating the vaginal candidiasis. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  10. The role of Candida albicans homologous recombination factors Rad54 and Rdh54 in DNA damage sensitivity

    Directory of Open Access Journals (Sweden)

    White Theodore C

    2011-09-01

    Full Text Available Abstract Background The fungal pathogen Candida albicans is frequently seen in immune suppressed patients, and resistance to one of the most widely used antifungals, fluconazole (FLC, can evolve rapidly. In recent years it has become clear that plasticity of the Candida albicans genome contributes to drug resistance through loss of heterozygosity (LOH at resistance genes and gross chromosomal rearrangements that amplify gene copy number of resistance associated genes. This study addresses the role of the homologous recombination factors Rad54 and Rdh54 in cell growth, DNA damage and FLC resistance in Candida albicans. Results The data presented here support a role for homologous recombination in cell growth and DNA damage sensitivity, as Candida albicans rad54Δ/rad54Δ mutants were hypersensitive to MMS and menadione, and had an aberrant cell and nuclear morphology. The Candida albicans rad54Δ/rad54Δ mutant was defective in invasion of Spider agar, presumably due to the altered cellular morphology. In contrast, mutation of the related gene RDH54 did not contribute significantly to DNA damage resistance and cell growth, and deletion of either Candida albicans RAD54 or Candida albicans RDH54 did not alter FLC susceptibility. Conclusions Together, these results support a role for homologous recombination in genome stability under nondamaging conditions. The nuclear morphology defects in the rad54Δ/rad54Δ mutants show that Rad54 performs an essential role during mitotic growth and that in its absence, cells arrest in G2. The viability of the single mutant rad54Δ/rad54Δ and the inability to construct the double mutant rad54Δ/rad54Δ rdh54Δ/rdh54Δ suggests that Rdh54 can partially compensate for Rad54 during mitotic growth.

  11. Susceptibility of Candida albicans Isolated from Blood to Wickerhamomyces anomalous Mycocins.

    Science.gov (United States)

    Paris, Ana Paula; Persel, Cristiane; Serafin, Cleber Fernando; de Cássia Garcia Simão, Rita; Gandra, Rinaldo Ferreira

    2016-12-01

    The occurrence of infections caused by Candida albicans in developed and developing countries and their resistance to some available antifungal drugs have been viewed as causing a great problem to human health worldwide. In order to find new researched molecules, there are some mycoses secreted by yeasts, especially mycocins produced by Wickerhamomyces anomalus with a broad antimicrobial spectrum of activity. Thus, this trial aimed at evaluating mycocins' activity obtained from environmental W. anomalus cell wall compared to thirty C. albicans strains isolated from blood. Mycocins were extracted from cell walls of three W. anomalus strains (WA40, WA45, and WA92). The 400 μg mL -1 concentration of WA40M1, WA45M2, and WA92M3 mycocin extracts showed the following respective activity results: 96.6, 96.6, and 90.0 % C. albicans strains. WA45M2 and WA92M3 mycocin extracts showed some activity in 3.3 % of C. albicans strains at 50 μg mL -1 concentration. Mycocins extracted from cell walls of three W. anomalus strains named as WA40, WA45, and WA92 showed antifungal activity compared to C. albicans and low degree of hemolysis.

  12. Genetic structure of typical and atypical populations of Candida albicans from Africa.

    Science.gov (United States)

    Forche, A; Schönian, G; Gräser, Y; Vilgalys, R; Mitchell, T G

    1999-11-01

    Atypical isolates of the pathogenic yeast Candida albicans have been reported with increasing frequency. To investigate the origin of a set of atypical isolates and their relationship to typical isolates, we employed a combination of molecular phylogenetic and population genetic analyses using rDNA sequencing, PCR fingerprinting, and analysis of co-dominant DNA nucleotide polymorphisms to characterize the population structure of one typical and two atypical populations of C. albicans from Angola and Madagascar. The extent of clonality and recombination was assessed in each population. The analyses revealed that the structure of all three populations of C. albicans was predominantly clonal but, as in previous studies, there was also evidence for recombination. Allele frequencies differed significantly between the typical and the atypical populations, suggesting very low levels of gene flow between them. However, allele frequencies were quite similar in the two atypical C. albicans populations, suggesting that they are closely related. Phylogenetic analysis of partial sequences encoding the nuclear 26S rDNA demonstrated that all three populations belong to a single monophyletic group, which includes the type strain of C. albicans. Copyright 1999 Academic Press.

  13. Campuran kitosan dengan resin akrilik sebagai bahan gigi tiruan penghambat Candida albicans

    Directory of Open Access Journals (Sweden)

    Titik Ismiyati

    2018-04-01

    Full Text Available The mixture of acrylic resin and chitosan as denture material to inhibit Candida albicans. The inhibition of Candida albicans in denture resin has an important role to prevent the development of denture stomatitis. Chitosan is a natural polymer compound derived from shrimp waste which can function as an antifungal Acrylik resin cannot be mixed with chitosan. To obtain a homogeneous mixture, the mixture was added a coupling agen acrylic acid and acetone. The research objective was to study the mixture of acrylic resin and chitosan with solvent acrylic acid and acetone as a denture that can inhibit the growth of Candida albicans. Methods: The samples used discs in 10 mm diameter and 2 mm thickness, made from heat cured acrylic resin mixed with chitosan dissolved in acrylat acid and acetone. They were divided into 4 groups. Group 1 was acrylic resin without chitosan as a control, group 2, 3 and 4 were the mixture of acrylic resin and 5 ml chitosan in 0.5%, 1%, and 2% concentration respectively. The fourier transform irfrared spectroscopy (FTIR and the digital optical microscope were used to synthesize and analyze. The Kruskal Wallis was used to analyze the data. The results showed that the mixture of acrylic resin with chitosan significantly inhibited the growth of Candida albicans. Conclusion: a mixture of acrylic resins and chitosan can be fungistatic, so it can be developed as an antifungal denture material.   ABSTRAK Penghambatan Candida albicans pada gigi tiruan resin akrilik dapat memainkan peran penting dalam mencegah perkembangan denture stomatitis. Kitosan adalah senyawa polimer alam yang berasal dari limbah udang yang dapat berfungsi sebagai antijamur. Resin akrilik tidak dapat bercampur dengan kitosan. Untuk mendapatkan campuran yang homogen, campuran tersebut ditambah coupling agent asam akrilat dan aseton. Penelitian ini bertujuan untuk mengkaji campuran resin akrilik dan kitosan dan asam akrilat pelarut aseton sebagai bahan gigi

  14. Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms.

    Science.gov (United States)

    Yu, Haining; Liu, Xuelian; Wang, Chen; Qiao, Xue; Wu, Sijin; Wang, Hui; Feng, Lan; Wang, Yipeng

    2016-02-01

    As the most common fungal pathogen of humans, severe drug resistance has emerged in the clinically isolated Candida albicans, which lead to the urgency to develop novel antifungal agents. Here, four our previously characterized cathelicidins (cathelicidin-BF, Pc-CATH1, Cc-CATH2, Cc-CATH3) were selected and their antifungal activities against C. albicans were evaluated in vitro and in vivo using amphotericin B and LL-37 as control. Results showed that all four cathelicidins could eradicate standard and clinically isolated C. albicans strains with most MIC values ranging from 1 to 16 μg/ml, in less than 0.5 h revealed by time-kill kinetic assay. Four peptides only exhibited slight hemolytic activity with most HC50 > 200 μg/ml, and retained potent anti-C. albicans activity at salt concentrations below and beyond physiological level. In animal experiment, 50 mg/kg administration of the four cathelicidins could significantly reduce the fungal counts in a murine oral candidiasis model induced by clinically isolated C. albicans. The antibiofilm activity of cathelicidin-BF, the most potent among the five peptides was evaluated, and result showed that cathelicidin-BF strongly inhibited C. albicans biofilm formation at 20 μg/ml. Furthermore, cathelicidin-BF also exhibited potent anti-C. albicans activity in established biofilms as measured by metabolic and fluorescent viability assays. Structure-function analyses suggest that they mainly adopt an α-helical conformations, which enable them to act as a membrane-active molecule. Altogether, the four cathelicidins display great potential for antifungal agent development against candidiasis. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Effect of Streptococcus salivarius K12 on the in vitro growth of Candida albicans and its protective effect in an oral candidiasis model.

    Science.gov (United States)

    Ishijima, Sanae A; Hayama, Kazumi; Burton, Jeremy P; Reid, Gregor; Okada, Masashi; Matsushita, Yuji; Abe, Shigeru

    2012-04-01

    Oral candidiasis is often accompanied by severe inflammation, resulting in a decline in the quality of life of immunosuppressed individuals and elderly people. To develop a new oral therapeutic option for candidiasis, a nonpathogenic commensal oral probiotic microorganism, Streptococcus salivarius K12, was evaluated for its ability to modulate Candida albicans growth in vitro, and its therapeutic activity in an experimental oral candidiasis model was tested. In vitro inhibition of mycelial growth of C. albicans was determined by plate assay and fluorescence microscopy. Addition of S. salivarius K12 to modified RPMI 1640 culture medium inhibited the adherence of C. albicans to the plastic petri dish in a dose-dependent manner. Preculture of S. salivarius K12 potentiated its inhibitory activity for adherence of C. albicans. Interestingly, S. salivarius K12 was not directly fungicidal but appeared to inhibit Candida adhesion to the substratum by preferentially binding to hyphae rather than yeast. To determine the potentially anti-infective attributes of S. salivarius K12 in oral candidiasis, the probiotic was administered to mice with orally induced candidiasis. Oral treatment with S. salivarius K12 significantly protected the mice from severe candidiasis. These findings suggest that S. salivarius K12 may inhibit the process of invasion of C. albicans into mucous surfaces or its adhesion to denture acrylic resins by mechanisms not associated with the antimicrobial activity of the bacteriocin. S. salivarius K12 may be useful as a probiotic as a protective tool for oral care, especially with regard to candidiasis.

  16. Effect of oral antiseptic agents on phospholipase and proteinase enzymes of Candida albicans.

    Science.gov (United States)

    Uygun-Can, Banu; Kadir, Tanju; Gumru, Birsay

    2016-02-01

    Candida-associated denture stomatitis is the most prevalent form of oral candida infections among the denture wearers. Generally, antiseptic oral rinses used in the treatment of these infections are considered as an adjunct or alternative antifungal treatment. Studies have suggested that the intraoral concentrations of antiseptics decrease substantially to the sub-therapeutic levels on account of the dynamics of the oral cavity. This condition yields the question about the minimum antiseptic concentration that effect the character or pathogenesis of Candida during treatment. The extracellular phospholipase and proteinase enzymes of Candida albicans are regarded to have a crucial role in the pathogenesis of human fungal infections. Therefore, the aim of this study was to investigate the effect of different sub-therapeutic concentrations of chlorhexidine gluconate, hexetidine and triclosan on the production of these enzymes by C. albicans strains isolated from 20 patients with denture stomatitis. Phospholipase test was done by using Sabouraud dextrose agar with egg yolk, proteinase test was done by using bovine serum albumin agar. Phospholipase test was done by using Sabouraud dextrose agar with egg yolk, proteinase test was done by using bovine serum albumin agar. Exoenzyme production of 20 strains which were brief exposured to sub-therapeutic concentrations of three antiseptic agents decreased significantly compared with the strains that were not exposured with antiseptic values (pantiseptics (pantiseptic was compared, there were no significant differences between enzymatic activities (p>0.05). The results of this study show that sub-therapeutic levels of each antiseptic may modulate candidal exoenzyme production, consequently suppressing pathogenicity of C. albicans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections.

    Directory of Open Access Journals (Sweden)

    Ilse D Jacobsen

    Full Text Available Alternative models of microbial infections are increasingly used to screen virulence determinants of pathogens. In this study, we investigated the pathogenesis of Candida albicans and C. glabrata infections in chicken embryos infected via the chorio-allantoic membrane (CAM and analyzed the virulence of deletion mutants. The developing immune system of the host significantly influenced susceptibility: With increasing age, embryos became more resistant and mounted a more balanced immune response, characterized by lower induction of proinflammatory cytokines and increased transcription of regulatory cytokines, suggesting that immunopathology contributes to pathogenesis. While many aspects of the chicken embryo response resembled murine infections, we also observed significant differences: In contrast to systemic infections in mice, IL-10 had a beneficial effect in chicken embryos. IL-22 and IL-17A were only upregulated after the peak mortality in the chicken embryo model occurred; thus, the role of the Th17 response in this model remains unclear. Abscess formation occurs frequently in murine models, whereas the avian response was dominated by granuloma formation. Pathogenicity of the majority of 15 tested C. albicans deletion strains was comparable to the virulence in mouse models and reduced virulence was associated with significantly lower transcription of proinflammatory cytokines. However, fungal burden did not correlate with virulence and for few mutants like bcr1Δ and tec1Δ different outcomes in survival compared to murine infections were observed. C. albicans strains locked in the yeast stage disseminated significantly more often from the CAM into the embryo, supporting the hypothesis that the yeast morphology is responsible for dissemination in systemic infections. These data suggest that the pathogenesis of C. albicans infections in the chicken embryo model resembles systemic murine infections but also differs in some aspects. Despite

  18. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans.

    Science.gov (United States)

    Barbieri, Dicler S V; Tonial, Fabiana; Lopez, Patricia V A; Sales Maia, Beatriz H L N; Santos, Germana D; Ribas, Marina O; Glienke, Chirlei; Vicente, Vania A

    2014-09-01

    To evaluate the antiadherent property of crude, methanol and acetate methanol extract fractions from Schinus terebinthifolius and Croton urucurana in hydroalcoholic (HA) and dimethylsulfoxide (DMSO) solvents on in vitro biofilms formed by Streptococcus mutans and Candida albicans strains. The minimal concentration of adherence (MICA) was determined to evaluate the antiadherent potential of extracts on the in vitro biofilm formation. The extracts of plants were subjected to thin layer chromatography (TLC) in order to detect what class of compounds was responsible for the antiadherent activity. Data were estimated by analysis of variance (ANOVA) complemented by Tukey test level of significance set at 5%. Both plants demonstrated inhibition of S. mutans and C. albicans on in vitro biofilm formation. The biofilms of C. albicans were more efficiently inhibited by the S. terebinthifolius fraction of acetate-methanol and methanol in hydroalcoholic solvents (p<0.05). The S. mutans biofilms adherence was best inhibited by the S. terebinthifolius crude extract and its methanolic fraction, both in hydroalcoholic solvent (p<0.05). TLC of crude extracts and fractions of S. terebinthifolius detected the presence of several active compounds, including phenolic compounds, anthraquinones, terpenoids, and alkaloids. C. urucurana extracts confirmed activity for both microorganisms (p<0.05). However, higher concentrations were needed to achieve antiadherent activity, mainly to inhibit in vitro biofilm formation of C. albicans. The antiadherent potential of both plants on in vitro biofilms formed by C. albicans and S. mutans were confirmed, suggesting the importance of studies about these extracts for therapeutic prevention of oral diseases associated with oral biofilms. Copyright © 2014. Published by Elsevier Ltd.

  19. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection.

    Directory of Open Access Journals (Sweden)

    Priya Uppuluri

    2018-05-01

    Full Text Available Different pathogens share similar medical settings and rely on similar virulence strategies to cause infections. We have previously applied 3-D computational modeling and bioinformatics to discover novel antigens that target more than one human pathogen. Active and passive immunization with the recombinant N-terminus of Candida albicans Hyr1 (rHyr1p-N protect mice against lethal candidemia. Here we determine that Hyr1p shares homology with cell surface proteins of the multidrug resistant Gram negative bacterium, Acinetobacter baumannii including hemagglutinin (FhaB and outer membrane protein A (OmpA. The A. baumannii OmpA binds to C. albicans Hyr1p, leading to a mixed species biofilm. Deletion of HYR1, or blocking of Hyr1p using polyclonal antibodies, significantly reduce A. baumannii binding to C. albicans hyphae. Furthermore, active vaccination with rHyr1p-N or passive immunization with polyclonal antibodies raised against specific peptide motifs of rHyr1p-N markedly improve survival of diabetic or neutropenic mice infected with A. baumannii bacteremia or pneumonia. Antibody raised against one particular peptide of the rHyr1p-N sequence (peptide 5 confers majority of the protection through blocking A. baumannii invasion of host cells and inducing death of the bacterium by a putative iron starvation mechanism. Anti-Hyr1 peptide 5 antibodies also mitigate A. baumannii /C. albicans mixed biofilm formation in vitro. Consistent with our bioinformatic analysis and structural modeling of Hyr1p, anti-Hyr1p peptide 5 antibodies bound to A. baumannii FhaB, OmpA, and an outer membrane siderophore binding protein. Our studies highlight the concept of cross-kingdom vaccine protection against high priority human pathogens such as A. baumannii and C. albicans that share similar ecological niches in immunocompromised patients.

  20. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    Directory of Open Access Journals (Sweden)

    Louis de Repentigny

    2015-06-01

    Full Text Available IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC. Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.

  1. Codon-triplet context unveils unique features of the Candida albicans protein coding genome

    Directory of Open Access Journals (Sweden)

    Oliveira José L

    2007-11-01

    Full Text Available Abstract Background The evolutionary forces that determine the arrangement of synonymous codons within open reading frames and fine tune mRNA translation efficiency are not yet understood. In order to tackle this question we have carried out a large scale study of codon-triplet contexts in 11 fungal species to unravel associations or relationships between codons present at the ribosome A-, P- and E-sites during each decoding cycle. Results Our analysis unveiled high bias within the context of codon-triplets, in particular strong preference for triplets of identical codons. We have also identified a surprisingly large number of codon-triplet combinations that vanished from fungal ORFeomes. Candida albicans exacerbated these features, showed an unbalanced tRNA population for decoding its pool of codons and used near-cognate decoding for a large set of codons, suggesting that unique evolutionary forces shaped the evolution of its ORFeome. Conclusion We have developed bioinformatics tools for large-scale analysis of codon-triplet contexts. These algorithms identified codon-triplets context biases, allowed for large scale comparative codon-triplet analysis, and identified rules governing codon-triplet context. They could also detect alterations to the standard genetic code.

  2. Humoral response to blastospores and mycelium in mice injected with different doses of Candida albicans.

    Science.gov (United States)

    Mesón, O E; Valdez, J C; de Alderete, N G; Sirena, A; Perdigón, G

    1992-01-01

    An indirect immunofluorescence assay was carry out to determine the IgM and IgG antibody responses to yeast and mycelial forms of Candida albicans in mice injected with a 5 x 5(5) and 5 x 10(7) live cells suspensions. Prior adsorption of the serum samples with heat-killed blastospores enabled us to follow the specific antimycelial response which were detected considerably later than expected. Slow level of antibodies were obtained within an infection of 5 x 10(5) cell for both antibody classes and for yeast and mycelial forms. When a 5 x 10(7) cell dose was used for inoculation, maximum titers of antibodies to blastospores and mycelium in non-adsorbed sera appeared almost simultaneously (days 15 and 13, respectively). When serum samples from mice infected with the same dose were previously adsorbed with blastospores, the antimycelium antibodies for both types of Igs, were detected delayed during the infection course. In this case the higher titer for IgG appeared on day 33 and on day 23 for IgM. We suggest that the high titer obtained with the blastospore forms for the 5 x 10(7) cell dose may be due to a major immunogenicity of this forms, for to induce an immune response in the host, or that the delay in the antimycelium antibodies detection could be due to that a blastospore form is the predominant in the infection early stages. Implications of this fact for pathogenesis are discussed.

  3. [Pulsatilla decoction inhibits vulvovaginal Candida albicans proliferation and reduces inflammatory cytokine levels in vulvovaginal candidiasis mice].

    Science.gov (United States)

    Xia, Dan; Zhang, Mengxiang; Shi, Gaoxiang; Xu, Zhiqing; Wu, Daqiang; Shao, Jing; Wang, Tianming; Wang, Changzhong

    2016-02-01

    To explore the possible regulatory effect of Pulsatilla decoction on Th17 cells and inflammatory cytokines of vulvovaginal candidiasis (VVC) mice. Seventy-two female Kunming mice were randomly assigned into six groups: a blank control group, a VVC model group, a fluconazole group and three Pulsatilla decoction groups (dose levels: 22.5, 15.0 and 7.5 g/kg, respectively). The VVC mouse models were established by vaginal inoculation with Candida albicans (C. albicans) in female mice in pseudoestrus state caused by estradiol injection. After 7-day treatment on VVC mice, the vaginal C. albicans burden was assessed using dilution spread plate method; the vaginal C. albicans morphology was observed by Gram staining method; the levels of interleukin 6 (IL-6), IL-17, IL-21 and tumor necrosis factor α (TNF-α) in sera were detected by ELISA. The content of the transcription factor retinoid related orphan receptor gamma t (RORγt) in vaginal tissues was detected by immunohistochemistry. The VVC mouse models were successfully developed. After treatment, the vaginal C. albicans burden of the fluconazole group and 22.5 g/kg Pulsatilla decoction group dropped significantly compared with that of the VVC model group. Gram staining showed that the VVC mice had lots of C. albicans hyphae in vaginal discharge, that 7.5 g/kg Pulsatilla decoction group remained the mycelia-phase C. albicans, and that 15.0 g/kg Pulsatilla decoction group had the majority of yeast-phase C. albicans and a few of mycelia-phase, while no hyphae and only very few of yeast-phase C. albicans were observed in 22.5 g/kg Pulsatilla decoction group and fluconazole group. After 7-day treatment, compared with the model group, the levels of IL-6, IL- 17, IL-21 and TNF-α in the sera of the fluconazole group, 15.0 and 22.5 g/kg Pulsatilla decoction groups were reduced significantly and the levels of RORγt in the vaginal tissues of the fluconazole group, 15.0 and 22.5 g/kg Pulsatilla decoction groups also decreased

  4. Evaluation of the Effects of Incubation Temperature and Ph On the Susceptibility of Candida Albicans Isolates to Ketoconazole Invitro

    Directory of Open Access Journals (Sweden)

    F Katiraee

    2006-10-01

    Full Text Available Introduction: Candidiasis, as an opportunistic infection, is caused by the Candida species. Although Candida albicans is classified in the body as an endogenic flora, it plays an important role in creating Candida related diseases. Candida vulvovaginitis in pregnant women, diabetes mellitus patients and those using multiple antibiotics and contraceptive drugs demonstrates the high resistance of the organism against conventional medication. On the other hand, recurrent vaginitis disintegrates the long-term process of treatment in majority of the patients. The present research was done with the aim of determining the optimum conditions for susceptibility testing before retreatment of patients. Methods: 10 isolates of Candida albicans obtained from 31 suspected patients suffering from recurrent Candida vaginitis were incubated with ketoconazole at two pH of 7.2 and 5.5 and two temperatures of 35ºC and 27ºC. The Microdilution broth test technique was used. The RPMI 1640 medium within the 96 well microplates with range of 12 tests was used to determine the MIC50 , MIC90 and MFC of the drug. Results: The obtained MIC50, MIC90 and MFC for ketoconazole at these conditions (T=35ºC and pH=7.2 were 0.25 to 1 µg/ml, 1 to 4 µg/ml and 64 to ≥ 512 µg/ml respectively, while these values at 27ºC, pH 5.5 were 1 to 8 µg/ml, 8 to 64 µg/ml and 512 to ≥ 512 µg/ml, at 35ºC and pH 5.5 the values were 1 to 8 µg/ml, 4 to 32 µg/ml, 256 to ≥ 512 µg/ml, while at 27ºC and pH 7.2 the values were 1 to 2 µg/ml, 8 to 32 µg/ml, 128 to ≥ 512 µg/ml, respectively. Conclusion: The obtained results confirmed that conditions with temperature of 35ºC and pH 7.2 resulted in better treatment outcomes than other conditions.

  5. Modelling the host-pathogen interactions of macrophages and Candida albicans using Game Theory and dynamic optimization.

    Science.gov (United States)

    Dühring, Sybille; Ewald, Jan; Germerodt, Sebastian; Kaleta, Christoph; Dandekar, Thomas; Schuster, Stefan

    2017-07-01

    The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage- Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host-pathogen interaction of macrophages and C. albicans For this, we study the population dynamics of the macrophage- C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells. © 2017 The Author(s).

  6. Genetic relatedness among vaginal and anal isolates of Candida albicans from women with vulvovaginal candidiasis in north-east Brazil.

    Science.gov (United States)

    Araújo Paulo de Medeiros, Mariana; Vieira de Melo, Ana Patrícia; Gonçalves, Sarah Santos; Milan, Eveline Pipolo; Chaves, Guilherme Maranhão

    2014-11-01

    Vulvovaginal candidiasis (VVC) is one of the most common causes of vaginitis and affects about 75% of women of reproductive age. In order to better understand the epidemiology and pathogenesis of this disease, we evaluated genetic relatedness among 62 clinical isolates of Candida albicans sequentially obtained from the anus and vagina of patients with sporadic and recurrent VVC. Evaluation of patients' demographic and clinical data, direct examination, and colony forming units (c.f.u.) counts of vaginal and anal samples were also performed. The genotypes of strains were determined with ABC genotyping and Randomly Amplified Polymorphic DNA (RAPD). Genotype A was the most prevalent (93.6%), followed by genotype C (6.4%), whereas genotype B was not found. We found the maintenance of the same ABC genotype, regardless of the body site of each patient. Most of the vaginal strains suffered microevolution, whereas most of the anal strains were replaced during the period of study. Vaginal and anal isolates of C. albicans obtained simultaneously from the same patient showed the same ABC genotype and high genetic similarity as determined by RAPD. Genotype A seemed to be dominant in both vaginal and anal isolates of patients with VVC. Our results corroborate the hypothesis that there are 'substrains' of the C. albicans vaginal clone successfully established, which dominate in an apparently random manner over the course of time. It is suggested that the anal reservoir constitutes a possible source for vaginal infection in most of the cases. © 2014 The Authors.

  7. Oral ulcers in children under chemotherapy: clinical characteristics and their relation with Herpes Simplex Virus type 1 and Candida albicans.

    Science.gov (United States)

    Sepúlveda, Ester; Brethauer, Ursula; Rojas, Jaime; Fernández, Eduardo; Le Fort, Patricia

    2005-04-01

    The objective of this study was to determine the clinical characteristics of oral ulcers in pediatric oncology patients undergoing chemotherapy and their relation with the presence of Herpes Simplex Virus (HSV) type 1 and Candida albicans. The sample consisted of 20 ulcerative lesions from 15 children treated with chemotherapy in the Pediatric Service of the Regional Hospital of Concepción, Chile. Two calibrated clinicians performed clinical diagnosis of the ulcers and registered general data from the patients (age, general diagnosis, absolute neutrophil count, and number of days after chemotherapy) and clinical characteristic of the ulcers: number, size, location, presence or absence of pain and inflammatory halo, edge characteristics, and exudate type. Additional to clinical diagnosis, culture for Candida albicans (C) and polymerase chain reaction (PCR) for Herpes Simplex Virus type 1 was performed. Ten ulcers occurred in patients with acute lymphoblastic leukemia, five in patients with acute myeloblastic leukemia and five in patients with other neoplastic diseases. Eight ulcers were HSV (+) / C (-), 6 HSV (-) / C (-), 4 HSV (+) / C (+) and 2 HSV (-) / C (+). Preferential location was the hard palate. Most lesions were multiple, painful, with inflammatory halo, irregular edges and fibrinous exudate. The average size was 6,5 millimeters, and the mean number of days after chemotherapy was 7.5 days. Oral ulcers in children with oncological diseases did not present a specific clinical pattern. They were strongly associated with HSV.

  8. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections.

    Science.gov (United States)

    Alshami, Issam; Alharbi, Ahmed E

    2014-02-01

    To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  9. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas; Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter

    2010-01-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log 10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  10. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  11. Diferenciação de cepas de Candida albicans pelo sistema killer

    Directory of Open Access Journals (Sweden)

    Regina Celia Cândido

    1995-12-01

    Full Text Available Foi estudado o efeito killer de 9 cepas padrão de leveduras sobre 146 amostras de Candida albicans isoladas dos seguintes espécimes clínicos: mucosa bucal, fezes, lavado brônquico, escarro, secreção vaginal, urina, lesão de pele, lesão de unha e sangue. Usando este sistema foi possível diferenciar 23 biotipos de C. albicans. Os biotipos 211, 111 e 811 foram os mais freqüentemente isolados. A maioria das amostras de C. albicans (98,6% foi sensível a pelo menos uma ou mais das 9 cepas killer. Empregando- se este sistema foi possível demonstrar que 2 pacientes albergavam mesmo biotipo killer, respectivamente, 111 e 211, em diferentes espécimes clínicos, e em outro paciente, o mesmo biotipo (211 foi isolado de hemoculturas realizadas em ocasiões distintas. O uso do sistema killer para diferenciar os tipos entre as espécies de leveduras patogênicas, pode ser um método útil para estabelecer a eventual fonte de infecção, constituindo uma ajuda valiosa para o controle e vigilância de infecções nosocomiais causadas por leveduras.The authors studied the killer effect of nine standard strains of yeasts on 146 samples of Candida albicans isolated from the following clinical specimens: oral mucosa, feces, bronchial wash, sputum, vaginal secretion, urine, skin lesion, nail lesion and blood. Using this system it was possible to differentiate 23 biotypes of Candida albicans. The biotypes 211, 111 and 811 were most frequently isolated. Most of the samples of C. albicans (98.6% were sensitive to at least one or more of the nine killer strains. Using the killer system it was possible to show that two patients harbored the same killer biotypes, 111 and 211, respectively, in different clinical specimens and another patient harbored the same biotype (211 in blood cultures effected in different ocasions. The utilization of the killer system to differentiate types among species of pathogenic yeasts can be a useful method to stablish the eventual

  12. Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing

    Science.gov (United States)

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-01-01

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  13. Saponins of Trifolium spp. Aerial Parts as Modulators of Candida Albicans Virulence Attributes

    Directory of Open Access Journals (Sweden)

    Aleksandra Budzyńska

    2014-07-01

    Full Text Available The aim was to provide the insight into the biology of C. albicans influenced by undescribed yet properties of saponin-rich (80%–98% fractions (SAPFs, isolated from extracts of Trifolium alexandrinum, T. incarnatum, T. resupinatum var. resupinatum aerial parts. Their concentrations below 0.5 mg/mL were arbitrarily considered as subMICs for C. albicans ATCC 10231 and were further used. SAPFs affected yeast enzymatic activity, lowered tolerance to the oxidative stress, to the osmotic stress and to the action of the cell wall disrupting agent. In their presence, germ tubes formation was significantly and irreversibly inhibited, as well as Candida invasive capacity. The evaluation of SAPFs interactions with anti-mycotics showed synergistic activity, mainly with azoles. Fluconazole MIC was lowered—susceptible C. albicans ATCC 10231 was more susceptible, and resistant C. glabrata (clinical strain become more susceptible (eightfold. Moreover, the tested samples showed no hemolytic activity and at the concentrations up to 0.5 mg/mL did not reduce viability of fibroblasts L929. This study provided the original evidence that SAPFs of Trifolium spp. aerial part exhibit significant antimicrobial activity, by reduce the expression/quantity of important Candida virulence factors and have good potential for the development of novel antifungal products supporting classic drugs.

  14. Horizontal transmission of Candida albicans and evidence of a vaccine response in mice colonized with the fungus.

    Science.gov (United States)

    Cutler, Jim E; Corti, Miriam; Lambert, Patrick; Ferris, Michael; Xin, Hong

    2011-01-01

    Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines

  15. Horizontal transmission of Candida albicans and evidence of a vaccine response in mice colonized with the fungus.

    Directory of Open Access Journals (Sweden)

    Jim E Cutler

    Full Text Available Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the

  16. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Rocha, Guilherme Roncari; Florez Salamanca, Elkin Jahir; de Barros, Ana Letícia; Lobo, Carmélia Isabel Vitorino; Klein, Marlise Inêz

    2018-02-14

    Dental caries is considered a multifactorial disease, in which microorganisms play an important role. The diet is decisive in the biofilm formation because it provides the necessary resources for cellular growth and exopolysaccharides synthesis. Exopolysaccharides are the main components of the extracellular matrix (ECM). The ECM provides a 3D structure, support for the microorganisms and form diffusion-limited environments (acidic niches) that cause demineralization of the dental enamel. Streptococcus mutans is the main producer of exopolysaccharides. Candida albicans is detected together with S. mutans in biofilms associated with severe caries lesions. Thus, this study aimed to determine the effect of tt-farnesol and myricetin topical treatments on cariogenic biofilms formed by Streptococcus mutans and Candida albicans. In vitro dual-species biofilms were grown on saliva-coated hydroxyapatite discs, using tryptone-yeast extract broth with 1% sucrose (37 °C, 5% CO 2 ). Twice-daily topical treatments were performed with: vehicle (ethanol 15%, negative control), 2 mM myricetin, 4 mM tt-farnesol, myricetin + tt-farnesol, myricetin + tt-farnesol + fluoride (250 ppm), fluoride, and chlorhexidine digluconate (0.12%; positive control). After 67 h, biofilms were evaluated to determine biofilm biomass, microbial population, and water-soluble and -insoluble exopolysaccharides in the ECM. Only the positive control yielded a reduced quantity of biomass and microbial population, while tt-farnesol treatment was the least efficient in reducing C. albicans population. The combination therapy myricetin + farnesol + fluoride significantly reduced water-soluble exopolysaccharides in the ECM (vs. negative control; p < 0.05; ANOVA one-way, followed by Tukey's test), similarly to the positive control. Therefore, the combination therapy negatively influenced an important virulence trait of cariogenic biofilms. However, the concentrations of both myricetin and tt

  17. Saccharomyces boulardii and Candida albicans experimental colonization of the murine gut.

    Science.gov (United States)

    Samonis, G; Falagas, M E; Lionakis, S; Ntaoukakis, M; Kofteridis, D P; Ntalas, I; Maraki, S

    2011-05-01

    Saccharomyces boulardii has been and continues to be extensively used as a probiotic, with only rare associations with fungemia. This study evaluated the virulence of this yeast when given as a probiotic, and its role in preventing gastrointestinal (GI) colonization by Candida. Adult male Crl:CD1 (ICR) BR mice were given S. boulardii orally in three different doses or normal saline for 14 days. Stool cultures were performed at the time of discontinuation of yeast administration, as well as 1 and 2 weeks later. Gut colonization was proportional to the given dose but lasted only 1 week and no dissemination of the yeast was detected. S. boulardii was also given for 2 and 4 weeks to mice fed chow containing Candida albicans. S. boulardii in the gut did not affect Candida GI colonization. These findings suggest that oral administration of S. boulardii induces a substantial but short term increase of this yeast in the intestinal lumen and administration of the probiotic does not prevent subsequent GI colonization by C. albicans.

  18. Candida albicans gastrointestinal colonization and invasion in the mouse: effect of antibacterial dosing, antifungal therapy and immunosuppression.

    Science.gov (United States)

    Kinsman, O S; Pitblado, K

    1989-12-01

    Infant mice infected with Candida albicans by the oral-intragastric route became colonized in the gut and were persistently colonized into adulthood. Faecal levels of Candida were correlated with total gastrointestinal Candida and provided a useful means of detecting yeast overgrowth or elimination. Antibacterial agents promoting Candida overgrowth when given by the oral or parenteral route included ceftriaxone, augmentin and cefoperazone. Ceftizoxime had less effect. Ceftazidime and latamoxef produced raised levels only by the oral route. Gentamicin, vancomycin and metronidazole did not affect the Candida levels. Dosing with some antibacterials promoted an increase in gastrointestinal Candida and invasion to a greater extent than immunosuppression. Antifungal therapy to reduce gastrointestinal colonization was investigated using amphotericin B, nystatin, ketoconazole, intraconazole and fluconazole. Fluconazole was most effective at reducing faecal Candida.

  19. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents.

    Directory of Open Access Journals (Sweden)

    Hong-Leong Cheah

    Full Text Available Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1, are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF, rosmarinic acid (ROS, and apigenin (API were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.

  20. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.

    Directory of Open Access Journals (Sweden)

    Sheena D Singh

    2009-07-01

    Full Text Available Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90's role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90's role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely

  1. Genetic Control of Conventional and Pheromone-Stimulated Biofilm Formation in Candida albicans

    Science.gov (United States)

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P.; Nobile, Clarissa J.; Johnson, Alexander D.; Bennett, Richard J.

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced – under a specialized set of conditions – to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such “pheromone-stimulated” biofilms with that of “conventional” C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former. PMID:23637598

  2. Melanocytes and melanin represent a first line of innate immunity against Candida albicans.

    Science.gov (United States)

    Tapia, Cecilia V; Falconer, Maryanne; Tempio, Fabián; Falcón, Felipe; López, Mercedes; Fuentes, Marisol; Alburquenque, Claudio; Amaro, José; Bucarey, Sergio A; Di Nardo, Anna

    2014-07-01

    Melanocytes are dendritic cells located in the skin and mucosae that synthesize melanin. Some infections induce hypo- or hyperpigmentation, which is associated with the activation of Toll-like receptors (TLRs), especially TLR4. Candida albicans is an opportunist pathogen that can switch between blastoconidia and hyphae forms; the latter is associated with invasion. Our objectives in this study were to ascertain whether C. albicans induces pigmentation in melanocytes and whether this process is dependent on TLR activation, as well as relating this with the antifungal activity of melanin as a first line of innate immunity against fungal infections. Normal human melanocytes were stimulated with C. albicans supernatants or with crude extracts of the blastoconidia or hyphae forms, and pigmentation and TLR2/TLR4 expression were measured. Expression of the melanosomal antigens Melan-A and gp100 was examined for any correlation with increased melanin levels or antifungal activity in melanocyte lysates. Melanosomal antigens were induced earlier than cell pigmentation, and hyphae induced stronger melanization than blastoconidia. Notably, when melanocytes were stimulated with crude extracts of C. albicans, the cell surface expression of TLR2/TLR4 began at 48 h post-stimulation and peaked at 72 h. At this time, blastoconidia induced both TLR2 and TLR4 expression, whereas hyphae only induced TLR4 expression. Taken together, these results suggest that melanocytes play a key role in innate immune responses against C. albicans infections by recognizing pathogenic forms of C. albicans via TLR4, resulting in increased melanin content and inhibition of infection. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Small molecule inhibitors of the Candida albicans budded-to-hyphal transition act through multiple signaling pathways.

    Directory of Open Access Journals (Sweden)

    John Midkiff

    Full Text Available The ability of the pathogenic yeast Candida albicans to interconvert between budded and hyphal growth states, herein termed the budded-to-hyphal transition (BHT, is important for C. albicans development and virulence. The BHT is under the control of multiple cell signaling pathways that respond to external stimuli, including nutrient availability, high temperature, and pH. Previous studies identified 21 small molecules that could inhibit the C. albicans BHT in response to carbon limitation in Spider media. However, the studies herein show that the BHT inhibitors had varying efficacies in other hyphal-inducing media, reflecting their varying abilities to block signaling pathways associated with the different media. Chemical epistasis analyses suggest that most, but not all, of the BHT inhibitors were acting through either the Efg1 or Cph1 signaling pathways. Notably, the BHT inhibitor clozapine, a FDA-approved drug used to treat atypical schizophrenia by inhibiting G-protein-coupled dopamine receptors in the brain, and several of its functional analogs were shown to act at the level of the Gpr1 G-protein-coupled receptor. These studies are the first step in determining the target and mechanism of action of these BHT inhibitors, which may have therapeutic anti-fungal utility in the future.

  4. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    Science.gov (United States)

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    International Nuclear Information System (INIS)

    Gil, C.; Pomes, R.; Nombela, C.

    1990-01-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branching zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species

  6. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p.

    Science.gov (United States)

    Peters, Brian M; Ovchinnikova, Ekaterina S; Krom, Bastiaan P; Schlecht, Lisa Marie; Zhou, Han; Hoyer, Lois L; Busscher, Henk J; van der Mei, Henny C; Jabra-Rizk, Mary Ann; Shirtliff, Mark E

    2012-12-01

    The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive

  7. Determination of Drug Susceptibility of Candida Strains Isolated From Patients With Recurrent Candida Vulvovaginitis and Investigation of Predisposing Factors of the Disease

    Directory of Open Access Journals (Sweden)

    Minooeianhaghighi MH

    2017-03-01

    Full Text Available Introduction: Recurrent Vulvovaginal Candidiasis RVVC(, which is mostly caused by Candida albicans C. albicans(, is the second common cause of genital tract infection in females. Th purpose of this research was to identify Candida isolates from RVVC, identify predisposing factors and determine antifungal effct of flconazole against Candida strains isolated from the patients. Methods: In this descriptive-laboratory study, 20 patients with confimed diagnosis of RVVC were selected. Yeast isolates were characterized using mycological standard methods, including culture on Sabouraud dextrose agar medium and CHROM agar, germ tube test and polymerase chain reaction-restriction fragment length polymorphism PCR-RFLP( technique. Th susceptibility of Candida isolates against flconazole was determined by microdilution broth method. Results: Th average age of the patients was 29.43 ± 4.63 years. Candida albicans was obtained from 100% of the samples. Th most common clinical sign was vaginal discharge 60%( in females with positive culture. Statistical correlations were observed between parturition frequency and low RVVC occurrence as well as between the previous antifungal therapy and RVVC occurrence. Th mean minimum inhibitory concentration MIC( and minimum fungicidal concentration MFC( of flconazole against diffrent C. albicans strains was determined as 45.3863 µg/mL and 63 µg/mL, respectively. Conclusion: Due to the uncertainty of diagnosis of this disease according to clinical symptoms and also, due to the resistance of Candida species, using culture and molecular methods are recommended as standard methods of diagnosis.

  8. A novel small molecule methyltransferase is important for virulence in Candida albicans.

    Science.gov (United States)

    Lissina, Elena; Weiss, David; Young, Brian; Rella, Antonella; Cheung-Ong, Kahlin; Del Poeta, Maurizio; Clarke, Steven G; Giaever, Guri; Nislow, Corey

    2013-12-20

    Candida albicans is an opportunistic pathogen capable of causing life-threatening infections in immunocompromised individuals. Despite its significant health impact, our understanding of C. albicans pathogenicity is limited, particularly at the molecular level. One of the largely understudied enzyme families in C. albicans are small molecule AdoMet-dependent methyltransferases (smMTases), which are important for maintenance of cellular homeostasis by clearing toxic chemicals, generating novel cellular intermediates, and regulating intra- and interspecies interactions. In this study, we demonstrated that C. albicans Crg1 (CaCrg1) is a bona fide smMTase that interacts with the toxin in vitro and in vivo. We report that CaCrg1 is important for virulence-related processes such as adhesion, hyphal elongation, and membrane trafficking. Biochemical and genetic analyses showed that CaCrg1 plays a role in the complex sphingolipid pathway: it binds to exogenous short-chain ceramides in vitro and interacts genetically with genes of glucosylceramide pathway, and the deletion of CaCRG1 leads to significant changes in the abundance of phytoceramides. Finally we found that this novel lipid-related smMTase is required for virulence in the waxmoth Galleria mellonella, a model of infection.

  9. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    Science.gov (United States)

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  10. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans.

    Science.gov (United States)

    Shi, Dongmei; Zhao, Yaxin; Yan, Hongxia; Fu, Hongjun; Shen, Yongnian; Lu, Guixia; Mei, Huan; Qiu, Ying; Li, Dongmei; Liu, Weida

    2016-05-01

    Undecylenic acid can effectively control skin fungal infection, but the mechanism of its fungal inhibition is unclear. Hyphal growth of Candida albicans (C. albicans) and biofilm formation have been well recognized as important virulence factors for the initiation of skin infection and late development of disseminated infection. In this study, we seek to investigate antifungal mechanisms of undecylenic acid by evaluating the virulence factors of C. albicans during biofilm formation. We found that undecylenic acid inhibits biofilm formation of C. albicans effectively with optimal concentration above 3 mM. In the presence of this compound, the morphological transition from yeast to filamentous phase is abolished ultimately when the concentration of undecylenic acid is above 4 mM. Meanwhile, the cell surface is crumpled, and cells display an atrophic appearance under scanning electron microscopy even with low concentration of drug treatment. On the other hand, the drug treatment decreases the transcriptions of hydrolytic enzymes such as secreted aspartic protease, lipase, and phospholipase. Hyphal formation related genes, like HWP1, are significantly reduced in transcriptional level in drug-treated biofilm condition as well. The down-regulated profile of these genes leads to a poorly organized biofilm in undecylenic acid treated environment.

  11. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Helene Tournu

    Full Text Available The fungal vacuole is a large acidified organelle that performs a variety of cellular functions. At least a sub-set of these functions are crucial for pathogenic species of fungi, such as Candida albicans, to survive within and invade mammalian tissue as mutants with severe defects in vacuolar biogenesis are avirulent. We therefore sought to identify chemical probes that disrupt the normal function and/or integrity of the fungal vacuole to provide tools for the functional analysis of this organelle as well as potential experimental therapeutics. A convenient indicator of vacuolar integrity based upon the intracellular accumulation of an endogenously produced pigment was adapted to identify Vacuole Disrupting chemical Agents (VDAs. Several chemical libraries were screened and a set of 29 compounds demonstrated to reproducibly cause loss of pigmentation, including 9 azole antifungals, a statin and 3 NSAIDs. Quantitative analysis of vacuolar morphology revealed that (excluding the azoles a sub-set of 14 VDAs significantly alter vacuolar number, size and/or shape. Many C. albicans mutants with impaired vacuolar function are deficient in the formation of hyphal elements, a process essential for its pathogenicity. Accordingly, all 14 VDAs negatively impact C. albicans hyphal morphogenesis. Fungal selectivity was observed for approximately half of the VDA compounds identified, since they did not alter the morphology of the equivalent mammalian organelle, the lysosome. Collectively, these compounds comprise of a new collection of chemical probes that directly or indirectly perturb normal vacuolar function in C. albicans.

  12. Mechanistic aspects of the photodynamic inactivation of Candida albicans induced by cationic porphyrin derivatives.

    Science.gov (United States)

    Quiroga, Ezequiel D; Cormick, M Paula; Pons, Patricia; Alvarez, M Gabriela; Durantini, Edgardo N

    2012-12-01

    Photodynamic inactivation of Candida albicans produced by 5-(4-trifluorophenyl)-10,15,20-tris(4-N,N,N-trimethylammoniumphenyl)porphyrin (TFAP(3+)), 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP(4+)) was investigated to obtain insight about the mechanism of cellular damage. In solution, absorption spectroscopic studies showed that these cationic porphyrins interact strongly with calf thymus DNA. The electrophoretic analysis indicated that photocleavage of DNA induced by TFAP(3+) took place after long irradiation periods (>5 h). In contrast, TMAP(4+) produced a marked reduction in DNA band after 1 h irradiation. In C. albicans, these cationic porphyrins produced a ∼3.5 log decrease in survival when the cell suspensions (10(7) cells/mL) were incubated with 5 μM photosensitizer and irradiated for 30 min with visible light (fluence 162 J/cm(2)). After this treatment, modifications of genomic DNA isolated from C. albicans cells were not found by electrophoresis. Furthermore, transmission electron microscopy showed structural changes with appearance of low density areas into the cells and irregularities in cell barriers. However, the photodamage to the cell envelope was insufficient to cause the release of intracellular biopolymers. Therefore, modifications in the cytoplasmic biomolecules and alteration in the cell barriers could be mainly involved in C. albicans photoinactivation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Central Role for Dermal Fibroblasts in Skin Model Protection against Candida albicans.

    Science.gov (United States)

    Kühbacher, Andreas; Henkel, Helena; Stevens, Philip; Grumaz, Christian; Finkelmeier, Doris; Burger-Kentischer, Anke; Sohn, Kai; Rupp, Steffen

    2017-06-01

    The fungal pathogen Candida albicans colonizes basically all human epithelial surfaces, including the skin. Under certain conditions, such as immunosuppression, invasion of the epithelia occurs. Not much is known about defense mechanisms against C. albicans in subepithelial layers such as the dermis. Using immune cell-supplemented 3D skin models we defined a new role for fibroblasts in the dermis and identified a minimal set of cell types for skin protection against C. albicans invasion. Dual RNA sequencing of individual host cell populations and C. albicans revealed that dermal invasion is directly impeded by dermal fibroblasts. They are able to integrate signals from the pathogen and CD4+ T cells and shift toward an antimicrobial phenotype with broad specificity that is dependent on Toll-like receptor 2 and interleukin 1β. These results highlight a central function of dermal fibroblasts for skin protection, opening new possibilities for treatment of infectious diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    Science.gov (United States)

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  15. Intrathecal spinal abscesses due to Candida albicans in an immunocompetent man.

    Science.gov (United States)

    Crane, John K

    2018-03-27

    Infections of the central nervous system due to Candida albicans are uncommon and are usually only observed in special circumstances, such as following neurosurgery or penetrating head trauma, in immunosuppressed patients, premature infants or in patients with ventriculoperitoneal shunts. The author reports a case of an immunocompetent man who presented with a thoracic intraspinal abscess due to C. albicans Despite surgical drainage and 6 weeks of high-dose fluconazole therapy, the abscess extended and recurred in the cervical spine, requiring a second operation to arrest the infection. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Chlamydospore production and germ-tube formation by auxotrophs of Candida albicans.

    Science.gov (United States)

    Balish, E

    1973-04-01

    A prototrophic strain and 21 auxotrophic strains of Candida albicans were assessed for their capacity to produce chlamydospores and germ tubes. All of the mutants were able to produce germ-tubes in human serum but only two mutants produced them in defined medium with L-alpha-amino-n-butyric acid as the sole source of nitrogen. Most auxotrophs were not able to produce chlamydospores on corn meal agar with 1% Tween 80, but they could be induced to do so if the medium was supplemented with their growth requirement(s). Although L-cysteine was able to support the growth of two methionine mutants, it did not support chlamydospore formation when added to corn meal agar with 1% Tween 80. Mutants of C. albicans that do not form chlamydospores could be incorrectly identified in laboratories that rely on chlamydospore formation for identification.

  17. Characteristics of DTH suppressor cells in mice infected with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, O E; Sirena, A; de Alderete, N G

    1987-05-01

    Inoculation of 10(8) C. albicans intraperitoneally into Balb/c mice at given dosage was reported to induce suppression of antigen-specific delayed-type hypersensitivity. Adoptive transfer of spleen cells into normal syngeneic mice pre-treated with Cyclophosphamide confirmed the existence of suppressor cells in mice. Such cells were sensitive to treatment with anti-theta serum and complement, non-adherent to Sephadex G-10. A pretreatment of the mice with Cyclophosphamide eliminated DTH suppression. Treatment with antimacrophage agents via intraperitoneal abrogated suppression only if being effected before inoculation of alive 10(8) Candida albicans. It is concluded that the spleen suppressor cell is a T-lymphocyte whose precursor is Cyclophosphamide-sensitive, requiring the macrophage to be induced.

  18. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Konopka, James B

    2016-03-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.

  19. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.

    Science.gov (United States)

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S Mohan

    2013-12-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation.

  20. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans

    Science.gov (United States)

    Douglas, Lois M.; Konopka, James. B.

    2017-01-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  1. Bioactivity of a Family of Chiral Nonracemic Aminobenzylnaphthols towards Candida albicans

    Directory of Open Access Journals (Sweden)

    Maria Annunziata M. Capozzi

    2014-04-01

    Full Text Available Chiral nonracemic aminobenzylnaphthols were obtained by a Betti multi-component reaction between 2-naphthol, aryl aldehydes and enantiopure arylethylamine. Moreover, some new aminobenzylnaphthols were synthesized by a similar reaction between 2-naphthol, aryl aldehydes and prolinol. These aminobenzylnaphthols, synthesized from different components and thus having different structural features, were tested as anti-yeast agents inhibiting Candida albicans. The effect towards the test strain was studied with a microdilution approach and three different concentrations (150, 300 and 450 µg/mL were tested. The best results were found for the aminobenzylnaphthols obtained from 1-naphthylethylamine and from natural prolinol. The use of the two-way ANOVA highlighted the better performances of the prolinol derivative among the differently structured aminobenzylnaphthols that were screened. The activity towards C. albicans of this prolinol derivative resulted to be interesting and could represent a promising alternative to overcome the problem of the strains resistant to the traditional antifungals.

  2. Rad51-Rad52 mediated maintenance of centromeric chromatin in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Sreyoshi Mitra

    2014-04-01

    Full Text Available Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI proximal to an early replicating centromere (CEN7 in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4 in vivo. Thus, the HR proteins Rad51 and Rad52

  3. Clinical strains of Lactobacillus reduce the filamentation of Candida albicans and protect Galleria mellonella against experimental candidiasis.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Dos Santos Velloso, Marisol; Figueiredo, Lívia Mara Alves; Martins, Carolina Pistille; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2018-05-01

    Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.

  4. Toxicity of nalidixic acid on candida albicans, Saccharomyces cerevisiae, and Kluyveromyces lactis.

    Science.gov (United States)

    Sobieski, R J; Brewer, A R

    1976-03-01

    The antibacterial drug nalidixic acid (Nal) can suppress the growth of Candida albicans at levels of the drug normally found in urine. Growth suppression increases as drug levels are increased, and Nal also causes a similar proportional inhibition of the synthesis of all cellular macromolecules. However, growth temperature (25 versus 37 C) and the divalent cations Mg(2+) and Mn(2+) can increase C. albicans resistance to Nal. Also, nitrogen depletion of Candida shows that Nal-treated and untreated cells exhibit no difference in leucine uptake during readaptation to nitrogen. In Nal-treated, nitrogen-starved cells, ribonucleic acid and deoxyribonucleic acid (DNA) biosynthesis are less affected than in unstarved Nal-treated cells, but of the two nucleic acids DNA synthesis is the most affected. Nal-resistant strains of C. albicans exhibit a slight toxicity for macromolecular synthesis. Nal treatment of a synchronized population of Saccharomyces cerevisiae results in an increase in the culture mean doubling time of, at most, 20%, but Nal causes the loss of synchronous cell division. With a synchronized population of Kluyveromyces lactis, Nal causes an increase in the mean doubling time of upwards of 300%, with synchrony of cell division being maintained. It is known that S. cerevisiae asynchronously synthesizes mitochondrial DNA during the cell cycle, whereas with K. lactis it is synchronous. Thus, with C. albicans Nal toxicity is dependent both on the dose and the physiological state of the cell. Furthermore, Nal inhibits growth of yeast with synchronous mitochondrial DNA synthesis more adversely than yeast with asynchronous mitochondrial DNA synthesis.

  5. The Tlo Proteins Are Stoichiometric Components of Candida albicans Mediator Anchored via the Med3 Subunit

    Science.gov (United States)

    Zhang, Anda; Petrov, Kostadin O.; Hyun, Emily R.; Liu, Zhongle; Gerber, Scott A.

    2012-01-01

    The amplification of the TLO (for telomere-associated) genes in Candida albicans, compared to its less pathogenic, close relative Candida dubliniensis, suggests a role in virulence. Little, however, is known about the function of the Tlo proteins. We have purified the Mediator coactivator complex from C. albicans (caMediator) and found that Tlo proteins are a stoichiometric component of caMediator. Many members of the Tlo family are expressed, and each is a unique member of caMediator. Protein expression analysis of individual Tlo proteins, as well as the purification of tagged Tlo proteins, demonstrate that there is a large free population of Tlo proteins in addition to the Mediator-associated population. Coexpression and copurification of Tloα12 and caMed3 in Escherichia coli established a direct physical interaction between the two proteins. We have also made a C. albicans med3Δ/Δ strain and purified an intact Mediator from this strain. The analysis of the composition of the med3Δ Mediator shows that it lacks a Tlo subunit. Regarding Mediator function, the med3Δ/Δ strain serves as a substitute for the difficult-to-make tloΔ/Δ C. albicans strain. A potential role of the TLO and MED3 genes in virulence is supported by the inability of the med3Δ/Δ strain to form normal germ tubes. This study of caMediator structure provides initial clues to the mechanism of action of the Tlo genes and a platform for further mechanistic studies of caMediator's involvement in gene regulatory patterns that underlie pathogenesis. PMID:22562472

  6. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  7. The role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance

    OpenAIRE

    Rodríguez-Leguizamón, Giovanni

    2016-01-01

    Candida albicans es el hongo patógeno que con mayor frecuencia compromete a los pacientes en el ambiente hospitalario, su versatilidad para adaptarse al huésped le ha permitido jugar el rol de comensal colonizador de tracto digestivo, tracto genito urinario y la piel entre otras localizaciones anatómicas. Las infecciones causadas por este hongo representan un reto diagnóstico para los médicos frente a sus pacientes y para los sistemas de salud representa un alto costo. El armamentario ...

  8. Actividad antifúngica del extracto de etanol Schinus molle y el fluconazol sobre Candida albicans

    OpenAIRE

    Saravia León, Natalia; Guillinta Vallejos, Guido

    2012-01-01

    Objetivo. Determinar la actividad antifúngica del extracto de etanol Schinus molle y fluconazol sobre Candida albicans. Material y métodos. El estudio es experimental y transversal. La planta se recolectó en el departamento de Huancavelica provincia de Junín, se utilizó las hojas para preparar el extracto etanolico de Schinus molle. Los discos de extracto de etanol Schinus molle se obtuvieron en la Facultad de Farmacia y Bioquímica de la Universidad Nacional Mayor de San Marcos. El f...

  9. Solitary Candida albicans Infection Causing Fournier Gangrene and Review of Fungal Etiologies.

    Science.gov (United States)

    Perkins, Tiffany A; Bieniek, Jared M; Sumfest, Joel M

    2014-01-01

    Polymicrobial bacterial infections are commonly found in cases of Fournier gangrene (FG), although fungal growth may occur occasionally. Solitary fungal organisms causing FG have rarely been reported. The authors describe a case of an elderly man with a history of diabetes who presented with a necrotizing scrotal and perineal soft tissue infection. He underwent emergent surgical debridement with findings of diffuse urethral stricture disease and urinary extravasation requiring suprapubic tube placement. Candida albicans was found to be the single causative organism on culture, and the patient recovered well following antifungal treatment. Fungal infections should be considered as rare causes of necrotizing fasciitis and antifungal treatment considered in at-risk immunodeficient individuals.

  10. Analysis of a solid-phase radioimmunoassay for antibodies to cytoplasmic antigen fractions of Candida albicans

    International Nuclear Information System (INIS)

    Mauch, H.; Bromback, J.

    1981-01-01

    An indirect solid-phase radioimmunoassay (SPRIA) in individual polystyrene microtiter cups has been adapted for measurement of antibody to various cytoplasmic and carbohydrate antigen fractions of Candida albicans. The assay was optimized for sensitivity, precision and linearization of serum dilution curves. The optimized procedure allows computerized measurement of anti-Candida antibodies and can be used for measurement of antibody over a wide concentration range. The procedure obviates variation due to changes in day-to-day counts as a result of isotope decay and end-point antibody dilutions. The assay has been used to demonstrate a Poisson-like distribution of antibody levels in the sera of persons showing no symptoms of candidiasis. The minimum antibody level detectable by the assay is about two orders of magnitude lower than the lowest level found in human serum and 4 orders of magnitude lower than the most sensitive test used hitherto, the hemagglutination test. (Auth.)

  11. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy.

    Science.gov (United States)

    Mason, Katie L; Erb Downward, John R; Mason, Kelly D; Falkowski, Nicole R; Eaton, Kathryn A; Kao, John Y; Young, Vincent B; Huffnagle, Gary B

    2012-10-01

    Candida albicans is a normal member of the gastrointestinal (GI) tract microbiota of healthy humans, but during host immunosuppression or alterations in the bacterial microbiota, C. albicans can disseminate and cause life-threatening illness. The bacterial microbiome of the GI tract, including lactic acid bacteria (LAB), plays a vital role in preventing fungal invasion. However, little is known about the role of C. albicans in shaping the bacterial microbiota during antibiotic recovery. We investigated the fungal burdens in the GI tracts of germfree mice and mice with a disturbed microbiome to demonstrate the role of the microbiota in preventing C. albicans colonization. Histological analysis demonstrated that colonization with C. albicans during antibiotic treatment does not trigger overt inflammation in the murine cecum. Bacterial diversity is reduced long term following cefoperazone treatment, but the presence of C. albicans during antibiotic recovery promoted the recovery of bacterial diversity. Cefoperazone diminishes Bacteroidetes populations long term in the ceca of mice, but the presence of C. albicans during cefoperazone recovery promoted Bacteroidetes population recovery. However, the presence of C. albicans resulted in a long-term reduction in Lactobacillus spp. and promoted Enterococcus faecalis populations. Previous studies have focused on the ability of bacteria to alter C. albicans; this study addresses the ability of C. albicans to alter the bacterial microbiota during nonpathogenic colonization.

  12. In vitro post-antifungal effect (PAFE) elicited by chlorhexidine gluconate on oral isolates of Candida albicans

    OpenAIRE

    Ellepola, Arjuna N.B.; Samaranayake, Lakshman P.

    2011-01-01

    The post-antifungal effect (PAFE) is defined as the suppression of growth that persists following brief exposure of yeasts and other fungi to antimycotics and subsequent removal of the drug. There is no data available on the PAFE of chlorhexidine gluconate on oral isolates of Candida albicans. As chlorhexidine gluconate is by far the commonest antiseptic mouth wash prescribed in dentistry, the main aim of this investigation was to measure the PAFE of 10 oral isolates of C. albicans following ...

  13. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    OpenAIRE

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam; Konopka, James B.

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenes...

  14. Determination of antifungal susceptibility patterns among the clinical isolates of Candida species

    Directory of Open Access Journals (Sweden)

    Kamiar Zomorodian

    2011-01-01

    Full Text Available Context: Candida species are opportunistic yeasts that cause infections ranging from simple dermatosis to potentially life-threatening fungemia. The emergence of resistance to antifungal drugs has been increased in the past two decades. Aim: the present study we determined to find out the susceptibility profiles of clinical isolates of Candida species against four antifungal drugs, including amphotericin B, ketoconazole, fluconazole and itraconazole. Materials and Methods: Antifungal susceptibility testing of the yeasts was done in accordance with the proposed guidelines for antifungal disk diffusion susceptibility testing of yeasts based on the CLSI document M44-A. Results: A total of 206 yeast isolates were assessed. Among the evaluated Candida species, the highest rates of resistance to ketoconazole were seen in Candida glabrata (16.6% and Candida albicans (3.2%. Susceptibility and intermediate response to fluconazole were seen in 96.6% and 3.4% of the Candida isolates, respectively. A total of 19 (9.2% yeast isolates showed petite phenomenon including 11 C. glabrata, 3 C. albicans, 2 Candida dubliniensis and one isolate of each Candida krusei and Candida parapsilosis. Conclusion: The high number of petite mutation in the isolated yeasts should be seriously considered since it may be one of the reasons of antifungal treatment failure.

  15. Bilateral endogenous Candida albicans subretinal abscess with suspected mixed bacterial infection

    Directory of Open Access Journals (Sweden)

    Arai Y

    2014-10-01

    Full Text Available Yusuke Arai,1 Yukihiro Sato,1 Atsushi Yoshida,1 Hidetoshi Kawashima,1 Toshikatsu Kaburaki,2 Harumi Gomi3 1Department of Ophthalmology, Jichi Medical University, Tochigi, Japan; 2Department of Ophthalmology, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan; 3Center for Clinical Infectious Diseases, Jichi Medical University, Tochigi, Japan Purpose: Candida albicans subretinal abscess is extremely rare. To our knowledge, only one unilateral case has been reported. Herein, we report one bilateral case. Mixed bacterial infection was also suspected based on broad-range real-time polymerase chain reaction.Methods: A 64-year-old man being treated with oral corticosteroids for interstitial pneumonia visited us for visual loss in the left eye. Best corrected visual acuity (BCVA was 20/20 in the right eye and 8/200 in the left eye. Funduscopy revealed round yellowish-white subretinal lesions with retinal hemorrhage in both eyes.Results: Broad-range polymerase chain reaction of the vitreous fluid from the left eye showed a high copy count of bacterial 16s ribosome RNA. Despite large doses of antibiotics, the abscess expanded and vision decreased to light perception in the left eye. Exenteration of the left eye was performed followed by microscopic examination showing Gram-negative bacilli, and C. albicans was also cultured. Antibiotics and the maximum doses of antifungal drugs were administered. However, the abscess in the right eye expanded, and BCVA decreased to 2/200. Vitrectomy and silicone oil tamponade were performed. Vitreous fluid culture revealed C. albicans. At 16 months follow-up, BCVA was stable at 4/200 with healing of the subretinal abscess under silicone oil.Conclusion: Since C. albicans subretinal abscess is extremely rare and there was a concurrent mixed bacterial infection, diagnostic procedures in our bilateral case were more complicated than usual. C. albicans infection should be included in the differential diagnosis

  16. Aislamiento de Candida albicans de hisopado nasal y faríngeo en alumnos de secundaria

    Directory of Open Access Journals (Sweden)

    Ana M Huamán Reyes

    2014-04-01

    Full Text Available Introducción: Candida sp puede encontrarse como comensal en equilibrio en la cavidad bucal humana; pero, en la población pediátrica y adolescente con un sistema inmune inmaduro las condiciones de la levadura se tornarían favorables para su patogenia. Objetivo: Determinar la presencia de Candida albicans en secreción faríngea y nasal en alumnos de educación secundaria. Diseño: Estudio descriptivo transversal. Lugar: Instituto de Medicina Tropical, Universidad Nacional Mayor de San Marcos, Lima, Perú. Participantes: Alumnos del 4° (52 y 5° (50 años de secundaria. Intervenciones: En octubre del 2007, las muestras nasales y faríngeas de 102 estudiantes de 14 a 17 años fueron colectadas en medios de transporte y luego cultivadas en los laboratorios del Instituto de Medicina Tropical, en agar sabouraud y CHROMOagar Candida. Se identificó las colonias sospechosas de Candida sp mediante el estudio de clamiodoconidias, tubo germinativo y pruebas metabólicas. Principales medidas de resultados: Identificación de levaduras de Candida sp. Resultados: Se aisló levaduras del género Candida en 11 de los escolares (10,8%. El 36,4% de las levaduras presentó resistencia moderada al antimicótico fluconazol. Conclusiones: Es recomendable continuar con estudios de vigilancia epidemiológica sobre las levaduras de importancia médica en portadores nasofaríngeos, con el fin estar preparados ante eventuales cuadros infecciosos.

  17. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    2011-04-01

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  18. Evaluation of Antimicrobial and Antifungal efficacy of Chitosan as endodontic irrigant against Enterococcus Faecalis and Candida Albicans Biofilm formed on tooth substrate.

    Science.gov (United States)

    Yadav, Pankaj; Chaudhary, Sarika; Saxena, Rajendra K; Talwar, Sangeeta; Yadav, Sudha

    2017-03-01

    Bacterial biofilms formed on the root canal wall are often difficult to remove. This study aimed to evaluate the cytotoxic effect and antibacterial efficacy of chitosan when used as root canal irrigant against E. Faecalis and Candida albicans biofilm formed on tooth substrate. The present study evaluated antibacterial effect of 0.25% Chitosan, 0.5% Chitosan, 2% chlorhexidine and 3% sodium hypochlorite against Enterococcus faecalis and Candida Albicans . Agar-well diffusion methods, minimal inhibitory concentration tests and biofilm susceptibility assays were used to determine antibacterial activity. Teeth specimens were sectioned to obtain a standardized tooth length of 12mm. Specimens were inoculated with 10 mL of the freshly prepared E. Faecalis suspension and Candida albicans for 4 weeks. The specimens were then instrumented with ProTaper rotary files F3 size. After irrigation with test solution, three sterile paper points were placed into one canal, left for 60 s and transferred to a test tube containing 1 mL of reduced transport fluid. The number of CFU in 1 mL was determined. 3-week biofilm qualitative assay showed complete inhibition of bacterial growth with 3% Sodium hypochlorite, 2% Chlorhexidine and Chitosan except saline, which showed presence of bacterial growth. Significant reduction of colony forming units (CFU)/mL was observed for the chitosan groups and the antibacterial activity of the chitosan groups was at par with 3% NaOCl and 2% Chlorhexidine. It was observed that the chitosan showed no cytotoxicity at 3mg/ml and 10% cytotoxicity at 6mg/ml. The use of chitosan as a root canal irrigant might be an alternative considering the various undesirable properties of NaOCl and chlorhexidine. Key words: Biofilm, Candida albicans, Chitosan, Cytotoxicity, Enterococcus faecalis.

  19. Antifungal effects of Lavandula binaludensis and Cuminum cyminum essential oils against Candida albicans strains isolated from patients with recurrent vulvovaginal candidiasis.

    Science.gov (United States)

    Minooeianhaghighi, M H; Sepehrian, L; Shokri, H

    2017-03-01

    Recurrent vulvovaginal candidiasis (RVVC), which affects approximately 5% of women of reproductive age, is defined as 4 or more episodes of symptomatic Candida vaginitis within a year. The purposes of this study were to determine the chemical compositions and antifungal susceptibility of Cuminum cyminum (C. cyminum) and Lavandula binaludensis (L. binaludensis) essential oils and their combination against Candida albicans (C. albicans) strains isolated from patients with RVVC. C. albicans isolates were identified via germ tube test, CHROMagar and RapID Yeast Plus System. The essential oils were obtained by hydrodistillation in a Clevenger apparatus and analyzed by gas chromatography-mass spectroscopy (GC-MS). The broth microdilution method was used as antifungal susceptibility test (CLSI-M27-A3). The GC-MS analysis allowed 13 components to be determined; the main components of C. cyminum and L. binaludensis essential oils were γ-terpinene (21.07%) and 1,8-cineole (71.56%), respectively. L. binaludensis and C. cyminum oils were effective in inhibiting C. albicans growth at mean concentrations of 7.91±1.61μg/mL and 8.00±1.89μg/mL, respectively. In addition, the combination of C. cyminum with L. binaludensis oils were more active causing inhibition in all C. albicans isolates, with concentrations varying from 3.90 to 11.71μg/mL (mean value: 7.22±1.69μg/mL). The results suggested the potential substitution of the antifungal chemicals by C. cyminum and L. binaludensis essential oils as natural inhibitors to control the growth of the most important pathogenic Candida species and alternative therapies for RVVC. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Effects of nanosecond pulsed electric fields (nsPEFs) on the human fungal pathogen Candida albicans: an in vitro study

    Science.gov (United States)

    Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing

    2018-05-01

    Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.

  1. Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella.

    Science.gov (United States)

    Ribeiro, F C; de Barros, P P; Rossoni, R D; Junqueira, J C; Jorge, A O C

    2017-01-01

    The aim of this study was to evaluate the potential anti-Candida effects of Lactobacillus rhamnosus ATCC 9595 on Candida albicans ATCC 18804 using in vitro and in vivo models. The in vitro analysis evaluated the effects of L. rhamnosus on C. albicans's biofilm formation by CFU count and metabolic activity, filamentation capacity, and adhesion (ALS3 and HWP1) and transcriptional regulatory gene (BCR1 and CPH1) expression. The in vitro results showed that both the L. rhamnosus cells and supernatant reduced C. albicans biofilm formation, filamentation and gene expression. In the in vivo study, the treatment with L. rhamnosus supernatant increased 80% the survival of Galleria mellonella larvae infected with C. albicans. Furthermore, the supernatant of L. rhamnosus recruited haemocytes into the haemolymph (2·1-fold increase). Lactobacillus rhamnosus reduced the biofilm formation and filamentation of C. albicans in vitro by negatively regulating all studied C. albicans genes. Lactobacillus rhamnosus protected G. mellonella against experimental candidiasis in vivo. This study is the first study to report the anti-Candida properties of L. rhamnosus ATCC 9595. The supernatant of this strain has immunomodulatory effects on the G. mellonella model and protects the larvae against pathogens. © 2016 The Society for Applied Microbiology.

  2. White-opaque Switching in Different Mating Type-like Locus Gene Types of Clinical Candida albicans Isolates

    Science.gov (United States)

    Li, Hou-Min; Shimizu-Imanishi, Yumi; Tanaka, Reiko; Li, Ruo-Yu; Yaguchi, Takashi

    2016-01-01

    Background: Candida albicans (C. albicans) can become a pathogen causing superficial as well as life-threatening systemic infections, especially in immunocompromised patients. Many phenotypic attributes contribute to its capacity to colonize human organs. In our study, 93 C. albicans isolates from patients of various candidiasis in a hospital of China were surveyed. We aimed to investigate the white-opaque (WO) switching competence, drug sensitivity, and virulence of mating type-like (MTL) a/α isolates. Methods: Internal transcribed spacer (ITS) gene and the MTL configuration were detected in all the isolates by reverse transcription-polymerase chain reaction. White/opaque phenotype and doubling time of cell growth were determined. The minimum inhibitory concentrations of antifungal agent were measured using broth microdilution method. Results: Sixty-four isolates (69.6%) were classified to serotype A, 19 (20.6%) to serotype B, and 9 (9.8%) to serotype C. Moreover, phylogenetic analysis showed that these isolates were divided into four different subgroups of ITS genotypes. Most of our clinical isolates were MTLa/α type, while 6.8% remained MTLa or MTLα type. The frequency of opaque phenotype was 71.0% (66 isolates). Following the guidelines of Clinical and Laboratory Standards Institute M27-A3, all isolates were susceptible to caspofungin and a few (0.6–3.2%) of them showed resistance against amphotericin B, flucytosine, fluconazole, itraconazole, and voriconazole. Conclusions: From these analyses, there were comparatively more C. albicans strains classified into serotype B, and the frequency of opaque phase strains was significant in the clinical isolates from China. Genetic, phenotypic, or drug susceptibility patterns were not significantly different from previous studies. MTLa/α isolates could also undergo WO switching which facilitates their survival. PMID:27824006

  3. Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans

    Science.gov (United States)

    Staab, Janet F.; Datta, Kausik; Rhee, Peter

    2013-01-01

    Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa. PMID:24260489

  4. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  5. Phenotypic aspects of oral strains of Candida albicans in children with down's syndrome

    Directory of Open Access Journals (Sweden)

    E. L. Ribeiro

    Full Text Available The aim of this article is to characterize the biological aspects of oral strains of C. albicans in children with Down's syndrome. These yeasts were analyzed as to their macromorphological and enzymatic aspects and were tested as to their in vitro susceptibility to antifungal drugs using broth microdilution to determine the minimum inhibitory concentration (MIC. The morphotyping revealed that all oral C. albicans isolates from children with Down's syndrome promoted the formation of fringes regardless of size, while the control group presented smaller fringes. All oral C. albicans strains produced proteinase, but those with phospholipolytic activity showed greater enzyme capacity in the test group. In vitro susceptibility showed that all oral C. albicans isolates were sensitive to the drugs used.

  6. Aberrant lipogenesis is a metabolic marker for azole-resistant candida albicans (Conference Presentation)

    Science.gov (United States)

    Karanja, Caroline; Hong, Weili; Younis, Waleed; Cheng, Ji-Xin; Seleem, Mohamed

    2017-02-01

    Candida is the single most important cause of fungal bloodstream infections worldwide causing significant mortality as high as 50%. This high mortality rate is, in part, due to the inability to rapidly diagnose and simultaneously initiate an effective antifungal therapy early in the disease process. Current culture-based diagnostics are often slow, requiring several days to complete, and are only 50% sensitive in diagnosing candidemia (Candida bloodstream infection). For every 12 hours of delay in starting correct antifungal therapy, the risk of death for a given patient with candidemia increases by 200%. To address this unmet need, we explored the potential of employing stimulated Raman Scattering (SRS) imaging to diagnose candidemia and probe metabolic differences between resistant and susceptible strain at a single cell level. Metabolism is integral to pathogenicity; microorganism have very short life cycles, and therefore only a few hours are needed to observe a full metabolic cycle. SRS imaging at C-H vibration frequency at 2850 cm-1 revealed a substantial difference in lipogenesis between the susceptible and resistant C. albicans. Treating the C. albicans with fluconazole, an antimicrobial drug that targets ergosterol biosynthesis only affected the lipogenesis in the susceptible strain. Our results show that single-cell metabolic imaging under a SRS microscope can be used for diagnose candidemia and early detection of antimicrobial susceptibility.

  7. PCR melting profile (PCR MP - a new tool for differentiation of Candida albicans strains

    Directory of Open Access Journals (Sweden)

    Nowak Magdalena

    2009-11-01

    Full Text Available Abstract Background We have previously reported the use of PCR Melting Profile (PCR MP technique based on using low denaturation temperatures during ligation mediated PCR (LM PCR for bacterial strain differentiation. The aim of the current study was to evaluate this method for intra-species differentiation of Candida albicans strains. Methods In total 123 Candida albicans strains (including 7 reference, 11 clinical unrelated, and 105 isolates from patients of two hospitals in Poland were examined using three genotyping methods: PCR MP, macrorestriction analysis of the chromosomal DNA by pulsed-field gel electrophoresis (REA-PFGE and RAPD techniques. Results The genotyping results of the PCR MP were compared with results from REA-PFGE and RAPD techniques giving 27, 26 and 25 unique types, respectively. The results showed that the PCR MP technique has at least the same discriminatory power as REA-PFGE and RAPD. Conclusion Data presented here show for the first time the evaluation of PCR MP technique for candidial strains differentiation and we propose that this can be used as a relatively simple and cheap technique for epidemiological studies in short period of time in hospital.

  8. Irreversible electropermeabilization of the human pathogen Candida albicans: an in-vitro experimental study.

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Svediene, Jurgita; Markovskaja, Svetlana; Paskevicius, Algimantas; Novickij, Jurij

    2015-02-01

    Pathogenic fungi cause many life-threatening infections, especially among individuals with immune system dysfunction. The antifungal drugs commonly used to suppress fungal pathogens can result in long-lasting and toxic therapy. In this work, irreversible electropermeabilization was used to investigate the dynamics of the decrease in Candida albicans colony vitality after application of a pulsed electric field (PEF) and use of antifungal drugs. The fungi were subjected to single 250-µs to 2-ms (0.5-2.5 kV/cm) pulses or repeated short 5-µs pulses, and efficacy was compared. It was shown that electropermeabilization combined with antifungal agents results in rapid and more effective treatment, eliminating more than 90% of C. albicans colony-forming units in a single procedure, which is advantageous in biomedicine. It was also observed that, because of application of PEF and use of the antifungal agents, the Candida cells form cell aggregates and average live cell size is reduced by as much as 53%.

  9. [Trichophyton tonsurans associated with non-albicans Candida species in hands onychomycosis about a Moroccan case].

    Science.gov (United States)

    Kouara, S; Ait Hlilou, B; Abbadi, A; Khalki, H; Benbella, I; Lahmadi, K; Er-Rami, M

    2017-03-01

    Trichophyton tonsurans is an anthropophilic dermatophyte, frequent in the USA and in Asia where it is responsible for causing tinea capitis. At present, we attend an emergence of this species in certain regions where it was not or little met. Here, we report a case of onychomycosis of the hand due to T. tonsurans associated with non-albicans Candida species at an adult woman. The patient is a 62-year-old woman, with hypertension and diabetes. She reports the rather frequent use of chemical cleaners for the housework. She presented one year previously a distal onycholysis of the last four fingers of the left hand. The clinical examination objectified a presence of intertrigo in the second interdigital space. The mycological examination showed at the direct examination mycelial elements and the culture allowed the isolation of T. tonsurans associated with non-albicans Candida species. Our observation highlights especially the identification of a species, which has been described only once in Morocco about a case with onychomycosis of the feet. A possible emergence of this species in our country is not far from being possible. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. The Role of IL-33 in Host Response to Candida albicans

    Directory of Open Access Journals (Sweden)

    C. Rodríguez-Cerdeira

    2014-01-01

    Full Text Available Background. Interleukin (IL 33 is a recently identified pleiotropic cytokine that influences the activity of multiple cell types and orchestrates complex innate and adaptive immune responses. Methods. We performed an extensive review of the literature published between 2005 and 2013 on IL-33 and related cytokines, their functions, and their regulation of the immune system following Candida albicans colonization. Our literature review included cross-references from retrieved articles and specific data from our own studies. Results. IL-33 (IL-1F11 is a recently identified member of the IL-1 family of cytokines. Accumulating evidence suggests a pivotal role of the IL-33/ST2 axis in host immune defense against fungal pathogens, including C. albicans. IL-33 induces a Th2-type inflammatory response and activates both innate and adaptive immunity. Studies in animal models have shown that Th2 inflammatory responses have a beneficial role in immunity against gastrointestinal and systemic infections by Candida spp. Conclusions. This review summarizes the most important clinical studies and case reports describing the beneficial role of IL-33 in immunity and host defense mechanisms against pathogenic fungi. The finding that the IL-33/ST2 axis is involved in therapeutic target has implications for the prevention and treatment of inflammatory diseases, including acute or chronic candidiasis.

  11. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  12. Flow cytometric quantitation of phagocytosis in heparinized complete blood with latex particles and Candida albicans

    Directory of Open Access Journals (Sweden)

    Jesús M. Egido

    1997-12-01

    Full Text Available We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripherial blood (HCPB, using commercially available phycoerythrin-conjugated latex particles of 1µm diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984 standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripherial blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.Se da cuenta de un método rápido para la cuantización del flujo citométrico de la fagocitosis en sangre periférica completamente heparinizada (HCPB, mediante la utilización de partículas de látex phycoerythrin-conjugadas de 1µm de diámetro disponibles comercialmente. El método es más rápido y presenta mayor reproducibilidad que la técnica estandar de Bjerknes' (1984 utilizando propidium iodide-teñida Candida albicans, aplicada convencionalmente a la capa leucocitica de sangre periférica pero modificada por HCPB. Tambien damos cuenta de una modificación de Bjerknes' Intracellular Killing Test para permitir su aplicación a HCPB.

  13. Identification, Typing, Antifungal Resistance Profile, and Biofilm Formation of Candida albicans Isolates from Lebanese Hospital Patients

    Directory of Open Access Journals (Sweden)

    Ibrahim Bitar

    2014-01-01

    Full Text Available As leading opportunistic fungal pathogens identification and subtyping of Candida species are crucial in recognizing outbreaks of infection, recognizing particularly virulent strains, and detecting the emergence of drug resistant strains. In this study our objective was to compare identification of Candida albicans by the hospitals through the use of conventional versus identification based on the ITS (Internal Transcribed Spacer and to assess biofilm forming capabilities, drug resistance patterns and correlate these with MLST typing. ITS typing revealed a 21.2% hospital misidentification rate. Multidrug resistance to three drugs out of four tested was detected within 25% of the isolates raising concerns about the followed treatment regimens. Drug resistant strains as well as biofilm formers were phylogenetically related, with some isolates with significant biofilm forming capabilities being correlated to those that were multidrug resistant. Such isolates were grouped closely together in a neighbor-joining tree generated by MLST typing indicating phylogenetic relatedness, microevolution, or recurrent infection. In conclusion, this pilot study gives much needed insight concerning C. albicans isolates circulating in Lebanese hospitals and is the first study of its kind correlating biofilm formation, antifungal resistance, and evolutionary relatedness.

  14. Immune response in mice infected with Candida albicans in the mycelial form.

    Science.gov (United States)

    Bibas Bonet de Jorrat, M E; de Valdez, G A; de Petrino, S F; Sirena, A; Perdigón, G

    1989-05-01

    The effect of the infection with the mycelial form of a Candida albicans strain (Mycology Dept.) upon the immune system in mice was studied. BALB/c mice were infected intraperitoneally in a single dose of a 3 x 10(6), 6 x 10(6) and 12 x 10(6) cell suspension of the strain. Macrophages's activity was studied the days 7, 14, 21, 28, 35, and 42 after inoculation, by the following assays: phagocytosis in vitro, mononucleated phagocytic system by the colloidal carbon clearance technique, the lymphocyte's activity by the direct plaque forming cells technique (PFC) and delayed hypersensitivity (DTH). Infection with the mycelial form did not affect the peritoneal macrophage's phagocytic ability, neither modified the delayed hypersensitivity to sheep red blood cells (SRBC). However, a slight and transient depression of the lymphocyte stimulation was found. Suppression of PFC to SRBC was high when a 12 x 10(6) cell suspension was used in contrast to the infection with blastospores. These results suggest that systemic infection by Candida albicans in its mycelial form do not induce a non specific immunosuppression.

  15. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response.

    Science.gov (United States)

    de Carvalho Dias, Kassia; Barbugli, Paula Aboud; de Patto, Fernanda; Lordello, Virginia Barreto; de Aquino Penteado, Letícia; Medeiros, Alexandra Ivo; Vergani, Carlos Eduardo

    2017-06-30

    The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and

  16. Expression, crystallization and preliminary X-ray data analysis of NT-Als9-2, a fungal adhesin from Candida albicans

    International Nuclear Information System (INIS)

    Salgado, Paula S.; Yan, Robert; Rowan, Fiona; Cota, Ernesto

    2011-01-01

    Details of the expression and crystallization of the N-terminal fragment of Als9-2, an adhesin from the human commensal/pathogenic fungus C. albicans, are reported. Preliminary analysis of the collected X-ray data is also discussed. Candida albicans is a common human fungal commensal that can also cause a range of infections from skin/mucosal ‘thrush’ to severe systemic candidiasis. Adherence to host cells is one of the key determinants of Candida pathogenesis. The Als family of surface proteins has been implicated in adhesion of C. albicans, yet limited information has been published on the structure and mechanism of these fungal adhesins. The N-terminal region of these proteins has been shown to possess adhesive properties, making it a possible target for new therapeutic strategies. Recombinant NT-Als9-2 from C. albicans (residues 18–329) was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.0 Å resolution. The crystals belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 34.73, b = 68.71, c = 120.03 Å, α = β = γ = 90° and one molecule in the asymmetric unit. Platinum-derivatized crystals belonged to the same space group, with similar unit-cell parameters, although they were not completely isomorphous

  17. The Effect of Aqueous and Ethanolic Extracts of Teucrium polium on Candida Albicans and Two Species of Malassezia

    Directory of Open Access Journals (Sweden)

    Maryam Nadimi

    2013-08-01

    Full Text Available Background: Teucrium polium L. is a medicinal plant, which due to its antimicrobial, antispasmodic and anti-tumor properties has been used in traditional medicine for over 2000 years. The aim of this research was to study the effect of aqueous and ethanolic extracts of Teucrium polium L. against three strains of Candida albicans (ATCC 62061, ATCC 1677, and NCPF 3153, Malassezia furfur and Malassezia globosa using pour plate method. Materials and Methods: Teucrium polium L. was collected from Broojen area during the spring. The plant was dried and powdered. The aqueous and ethanolic extracts were prepared from the fine powder. Different concentrations of extracts (1, 2, 4, and 8 mg/ml were made in Sabouraud Dextrose Agar (SDA and modified Leeming-Notman Agar (MLNA medium for Candida albicans, Malassezia furfur and Malassezia globosa. 1.5×106 cfu/ml of yeasts, were cultured on media and incubated at 37ºC and 32ºC respectively. Pour plate method was used to assess the antifungal activity of these extracts.Results: The inhibitory effect of ethanolic extract of Teucrium polium L. on the three strains of Candida albicans was depended on concentration level of extracts in media. Aqueous extract had inhibitory effect on Candida albicans (NCPF 3153 only, and with increasing of the extract concentration, the number of colonies was decreased, so that in concentration of 8 mg/ml, no growth was seen. Aqueous and ethanolic extracts had no inhibitory effect on Malassezia species. Conclusion: Teucrium polium L. extracts have considerable inhibitory effect on different strains of Candida albicans. Further investigations are needed to detect the effectiveness of this plant in treatment of Candida infections.

  18. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.

    LENUS (Irish Health Repository)

    Martin, Ronny

    2011-04-01

    The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.

  19. Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence

    Science.gov (United States)

    McCourt, Paula; Liu, Hsing-Yin; Parker, Josie E.; Gallo-Ebert, Christina; Donigan, Melissa; Bata, Adam; Giordano, Caroline; Kelly, Steven L.; Nickels, Joseph T.

    2016-01-01

    Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD) that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to be virulent, whereas the zinc-binding domain was essential, as Caarv1/Caarv1 cells expressing the full-length zinc-binding domain mutants, Caarv1C3S and Caarv1C28S, were avirulent. Phenotypically, we found a direct correlation between the avirulence of Caarv1/Caarv1, Caarrv1AHD, Caarv1C3S, and Caarv1C28S cells and defects in bud site selection, septa formation and localization, and hyphal formation and elongation. Importantly, all avirulent mutant strains lacked the ability to maintain proper sterol distribution. Overall, our results have established the importance of the AHD and zinc-binding domain in fungal invasion, and have correlated an avirulent phenotype with the inability to maintain proper sterol distribution. PMID:27587298

  20. Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence

    Directory of Open Access Journals (Sweden)

    Paula McCourt

    2016-11-01

    Full Text Available Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to be virulent, whereas the zinc-binding domain was essential, as Caarv1/Caarv1 cells expressing the full-length zinc-binding domain mutants, Caarv1C3S and Caarv1C28S, were avirulent. Phenotypically, we found a direct correlation between the avirulence of Caarv1/Caarv1, Caarrv1AHD, Caarv1C3S, and Caarv1C28S cells and defects in bud site selection, septa formation and localization, and hyphal formation and elongation. Importantly, all avirulent mutant strains lacked the ability to maintain proper sterol distribution. Overall, our results have established the importance of the AHD and zinc-binding domain in fungal invasion, and have correlated an avirulent phenotype with the inability to maintain proper sterol distribution.

  1. Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices.

    Science.gov (United States)

    Cochis, Andrea; Fracchia, Letizia; Martinotti, Maria Giovanna; Rimondini, Lia

    2012-06-01

    The aim of this study was to evaluate in vitro the preventive antiadhesion activity of biosurfactants against Candida albicans biofilm. Disks of silicon and acrylic resin for denture prostheses were precoated with increasing concentrations of biosurfactants obtained from endophyte biofilms selected from Robinia pseudoacacia and from Nerium oleander, and afterward infected with C. albicans cells. The number of biofilm cells were detected by colony-forming unit (CFU) counting, cell viability was established by the 2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenyl amino)carbonyl]-2H-tetrazolium hydroxide (XTT) assay, and biosurfactant cytotoxicity was evaluated by the [3-(4,5-dimethyliazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium] (MTT) assay. Chlorhexidine was used as control. Precoating with biosurfactants caused a greater reduction (P biosurfactants was observed at low concentrations (78.12 μg/mL and 156.12 μg/mL) which were noncytotoxic. This study demonstrated the preventive antiadhesion activity of biosurfactants against C. albicans biofilm. These agents are amphiphilic, interfere with microbial adhesion, and demonstrate cycompatibility with epithelial cells and fibroblasts. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Candida albicans PROTEIN PROFILE CHANGES IN RESPONSE TO THE BUTANOLIC EXTRACT OF Sapindus saponariaL.

    Directory of Open Access Journals (Sweden)

    Adriana FIORINI

    2016-01-01

    Full Text Available Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC and sub-minimal inhibitory concentration (sub-MIC of the butanolic extract (BUTE of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1, amino acid metabolism (ILV5, PDC11 and protein synthesis (ASC1 pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides, it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds.

  3. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    Full Text Available Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.

  4. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  5. UV-induced mitotic co-segregation of genetic markers in Candida albicans: Evidence for linkage

    International Nuclear Information System (INIS)

    Crandall, M.

    1983-01-01

    Parasexual genetic studies of the medically important yeast Candida albicans were performed using the method of UV-induced mitotic segregation. UV-irradiation of the Hoffmann-La Roche type culture of C. albicans yielded a limited spectrum of mutants at a relatively high fequency. This observation suggested natural heterozygosity. Canavanine-sensitive (CanS) segregants were induced at a frequency of 7.6 . 10 -3 . Double mutants that were both CanS and methionine (Met - ) auxotrophs were induced at a frequency of 7.4 . 10 -3 . The single Met - segregant class was missing indicating linkage. UV-induced CanS or Met - CanS segregants occurred occasionally in twin-sectored colonies. Analyses of the sectors as well as the observed and missing classes of segregants indicated that genes met and can are linked in the cis configuration. The proposed gene order is: centromere - met - can. Thus, it is concluded that the Hoffmann-La Roche strain of C. albicans is naturally heterozygous at two linked loci. These findings are consistent with diploidy. (orig.)

  6. Propolis Is an Efficient Fungicide and Inhibitor of Biofilm Production by Vaginal Candida albicans

    Directory of Open Access Journals (Sweden)

    Isis Regina Grenier Capoci

    2015-01-01

    Full Text Available Vulvovaginal candidiasis (VVC is one of the most common genital infections in women. The therapeutic arsenal remains restricted, and some alternatives to VVC treatment are being studied. The present study evaluated the influence of a propolis extractive solution (PES on biofilm production by Candida albicans isolated from patients with VVC. Susceptibility testing was used to verify the minimum inhibitory concentration (MIC of PES, with fluconazole and nystatin as controls. The biofilm formation of 29 vaginal isolates of C. albicans and a reference strain that were exposed to PES was evaluated using crystal violet staining. Colony-forming units were evaluated, proteins and carbohydrates of the matrix biofilm were quantified, and scanning electron microscopy was performed. The MIC of PES ranged from 68.35 to 546.87 μg/mL of total phenol content in gallic acid. A concentration of 546.87 μg/mL was able to cause the death of 75.8% of the isolates. PES inhibited biofilm formation by C. albicans from VVC. Besides antifungal activity, PES appears to present important antibiofilm activity on abiotic surfaces, indicating that it may have an additional beneficial effect in the treatment of VVC.

  7. pH-Dependant Antifungal Activity of Valproic Acid against the Human Fungal Pathogen Candida albicans

    Directory of Open Access Journals (Sweden)

    Julien Chaillot

    2017-10-01

    Full Text Available Current antifungal drugs suffer from limitations including toxicity, the emergence of resistance and decreased efficacy at low pH that are typical of human vaginal surfaces. Here, we have shown that the antipsychotic drug valproic acid (VPA exhibited a strong antifungal activity against both sensitive and resistant Candida albicans in pH condition similar to that encountered in vagina. VPA exerted a strong anti-biofilm activity and attenuated damage of vaginal epithelial cells caused by C. albicans. We also showed that VPA synergizes with the allylamine antifungal, Terbinafine. We undertook a chemogenetic screen to delineate biological processes that underlies VPA-sensitivity in C. albicans and found that vacuole-related genes were required to tolerate VPA. Confocal fluorescence live-cell imaging revealed that VPA alters vacuole integrity and support a model where alteration of vacuoles contributes to the antifungal activity. Taken together, this study suggests that VPA could be used as an effective antifungal against vulvovaginal candidiasis.

  8. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis.

    Directory of Open Access Journals (Sweden)

    Sigrid E M Heinsbroek

    2008-11-01

    Full Text Available Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-alpha and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.

  10. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  11. [Inhibitory effects of ethyl acetate extract of Huanglian Jiedu decoction on hyphae development of Candida albicans].

    Science.gov (United States)

    Wang, Tian-ming; Yan, Yuan-yuan; Shi, Gao-xiang; Xia, Dan; Shao, Jing; Wang, Chang-zhong

    2014-12-01

    To investigate the effects of ethyl acetate extract of Huanglian Jiedu decoction (EAHD) on hyphae development of Candida albicans. Inverted microscope, fluorescence microscope, SEM were applied to inspect the Morphological change of C. albicans treated by EAHD at different concentrations. Solid agar plate was utilized to evaluate the colony morphology. Quantitative Real-ime PCR(qRT-PCR) was adopted to observe the expression of hyphae-specific genes such as HWP1, ALS3, UME6, CSH1, SUN41, CaPDE2. EAHD with concentration of 312 and 1 250 mg . L-1 could inhibit formation of hyphae and colony morphology. The expression of HWP1, ALS3, UME6, CSH1 were downregulated 4. 13, 3. 64, 2. 46, 2. 75 folds ,while the expression of SUN41 were upregulated 7. 26 folds, CaPDE2 keep unchanged. EAHD could inhibit formation of hyphae and colony morphologies of C. albicans through downregulating HWP1, ALS3, UME6 and CSH1.

  12. Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae.

    Science.gov (United States)

    Thomson, Darren D; Wehmeier, Silvia; Byfield, FitzRoy J; Janmey, Paul A; Caballero-Lima, David; Crossley, Alison; Brand, Alexandra C

    2015-03-01

    Filamentous hyphae of the human pathogen, Candida albicans, invade mucosal layers and medical silicones. In vitro, hyphal tips reorient thigmotropically on contact with small obstacles. It is not known how surface topography is sensed but hyphae lacking the cortical marker, Rsr1/Bud1, are unresponsive. We show that, on surfaces, the morphology of hyphal tips and the position of internal polarity protein complexes are asymmetrically skewed towards the substratum and biased towards the softer of two surfaces. In nano-fabricated chambers, the Spitzenkörper (Spk) responded to touch by translocating across the apex towards the point of contact, where its stable maintenance correlated with contour-following growth. In the rsr1Δ mutant, the position of the Spk meandered and these responses were attenuated. Perpendicular collision caused lateral Spk oscillation within the tip until after establishment of a new growth axis, suggesting Spk position does not predict the direction of growth in C. albicans. Acute tip reorientation occurred only in cells where forward growth was countered by hyphal friction sufficient to generate a tip force of ∼ 8.7 μN (1.2 MPa), more than that required to penetrate host cell membranes. These findings suggest mechanisms through which the organization of hyphal tip growth in C. albicans facilitates the probing, penetration and invasion of host tissue. © 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.

  13. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans.

    Science.gov (United States)

    Chowdhury, Tahmeena; Köhler, Julia R

    2015-10-01

    TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant. © 2015 John Wiley & Sons Ltd.

  14. BAY 41-2272 activates host defence against local and disseminated Candida albicans infections

    Directory of Open Access Journals (Sweden)

    Paulo Vítor Soeiro-Pereira

    2015-02-01

    Full Text Available In our previous study, we have found that 5-cyclopropyl-2-[1-(2-fluoro-benzyl-1H-pyrazolo[3,4-b]pyridine-3-yl]-pyrimidin-4-ylamine (BAY 41-2272, a guanylate cyclase agonist, activates human monocytes and the THP-1 cell line to produce the superoxide anion, increasing in vitro microbicidal activity, suggesting that this drug can be used to modulate immune functioning in primary immunodeficiency patients. In the present work, we investigated the potential of the in vivo administration of BAY 41-2272 for the treatment of Candida albicans and Staphylococcus aureus infections introduced via intraperitoneal and subcutaneous inoculation. We found that intraperitoneal treatment with BAY 41-2272 markedly increased macrophage-dependent cell influx to the peritoneum in addition to macrophage functions, such as spreading, zymosan particle phagocytosis and nitric oxide and phorbol myristate acetate-stimulated hydrogen peroxide production. Treatment with BAY 41-2272 was highly effective in reducing the death rate due to intraperitoneal inoculation of C. albicans, but not S. aureus. However, we found that in vitro stimulation of peritoneal macrophages with BAY 41-2272 markedly increased microbicidal activities against both pathogens. Our results show that the prevention of death by the treatment of C. albicans-infected mice with BAY 41-2272 might occur primarily by the modulation of the host immune response through macrophage activation.

  15. Immunotherapy with intralesional Candida albicans antigen in resistant or recurrent warts: A study

    Directory of Open Access Journals (Sweden)

    Imran Majid

    2013-01-01

    Full Text Available Background: Warts are sometimes resistant or they tend to recur after every possible destructive therapy. Immunotherapy with skin-test antigens has been used as a viable therapeutic option in such recalcitrant cases. Aim: The aim of the study was to evaluate the response of resistant or recurrent warts to intralesional Candida albicans antigen immunotherapy. Materials and Methods: A total of 40 patients with resistant or recurrent warts who showed a positive test reaction to C. albicans antigen were given intralesional injections of purified C. albicans antigen solution in a single wart at 3-weekly intervals for a total of three doses. The patients were monitored for resolution of the injected wart as well as other untreated warts. The patients who responded positively were then followed up for any relapses over the next 6 months. Adverse events, if any, were also documented. Results: Of the 40 patients enrolled in the study, 34 completed the total treatment protocol of three injections and 6 months of follow-up. In these 34 patients, 19 (56% showed a complete resolution of warts at all places on the body. In addition, two patients (6% showed a partial or complete resolution of the treated wart, but there was no effect on the untreated warts. Thirteenpatients (38% failed to show any response to the treatment regimen. In all patients showing resolution of all the warts, there were no relapses at any site over the next 6 months of follow-up. The most common adverse effect seen was pain during the intralesional injection. Conclusions: Intralesional Candida immunotherapy seems to be an effective treatment option in more than half of the patients who fail to show a positive response to destructive modes of treatment or in whom there are multiple recurrences. Limitations: The small sample size and lack of control group are the main limitations of the study.

  16. Symbiotic Relationship between Streptococcus mutans and Candida albicans Synergizes Virulence of Plaque Biofilms In Vivo

    Science.gov (United States)

    Falsetta, Megan L.; Klein, Marlise I.; Colonne, Punsiri M.; Scott-Anne, Kathleen; Gregoire, Stacy; Pai, Chia-Hua; Gonzalez-Begne, Mireya; Watson, Gene; Krysan, Damian J.; Bowen, William H.

    2014-01-01

    Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease. PMID:24566629

  17. Comparison of VITEK 2 YST Card and API 20C AUX system in identification of non- albicans Candida species

    Directory of Open Access Journals (Sweden)

    Süleyman Durmaz

    2012-03-01

    Full Text Available Objectives: In the present study, it was aimed to compare results obtained by using VITEK 2 YST Card (bioMérieux, France with those obtained by using API 20C AUX (bioMérieux, France for identification of non- albicans Candida species, which was isolated from various clinical samples, at level of species.Materials and methods: Forty-one non-albicans Candida isolates, which were isolated from 28 urine, 10 blood and 3 vaginal swab specimens, and found to be negative by germ tube test, were identified by using VITEK 2 YST Card (bioMérieux, France. In addition, microscopic morphology was assessed in corn-meal Tween 80 agar, while carbohydrate assimilation was assessed by using commercially available API 20C AUX kit (bioMérieux, France.Results: Thirty-four isolates (82.9% were identified as identical species by these 2 systems, while different results were obtained in 7 isolates (17.1%. 5 isolates, identified as Candida glabrata by API 20C AUX system, were identified as Candida tropicalis (n=2, Candida krusei, Candida lipolitica and Candida kefyr by VITEK 2 YST Card. One other isolate, identified as C.tropicalis, was identified as Candida parapsilosis; and additional one isolate, identified as C.parapsilosis, was identified as C.tropicalis.Conclusion: It was concluded that one should be cautious in the identification of C.glabrata, in particular, C.tropicalis and C.parapsilosis, although between VITEK 2 YST Card and API 20C AUX system results was found largely similarity in identification of non-albicans Candida spp.

  18. Endoftalmite por Candida albicans após transplante penetrante de córnea: relato de caso Candida albicans endophthalmitis following penetrating corneal graft: case report

    Directory of Open Access Journals (Sweden)

    Glaucio de Godoy

    2004-04-01

    Full Text Available Os autores relatam o caso de uma paciente submetida a transplante penetrante de córnea por ceratocone que evoluiu com resposta inflamatória exacerbada durante o período pós-operatório, suspeitando-se, inicialmente, de rejeição atípica e intensa ao botão doador. Houve períodos de melhora, seguidos por períodos de piora a cada tentativa de se reduzir o corticóide tópico. Iniciou-se terapia imunossupressora com ciclosporina via oral e altas doses de corticóide tópico, porém, a paciente desenvolveu endoftalmite por Candida albicans com acometimento do segmento anterior do olho e do corpo vítreo, mas sem surgimento de lesões coriorretinianas. Evoluiu de forma satisfatória após três injeções de anfotericina B 5µg intravítrea, cetoconazol 400 mg/dia via oral e clotrimazol tópico de 4/4 horas. Os autores discutem também as principais possibilidades de contaminação da paciente, sendo o quadro infeccioso provavelmente relacionado ao procedimento cirúrgico.The authors report a case of a patient submitted to penetrating corneal graft for keratoconus with an exaggerated inflammatory response during the postoperative period. The patient was suspected of having an atypical rejection to the donor button. There were periods of improvement, followed by periods of worsening of the inflammation at each attempt of reducing the topical corticosteroid. After initiating immunosuppressive therapy with cyclosporin and high doses of topical corticosteroid, the patient developed Candida albicans endophthalmitis affecting the anterior segment of the eye and the vitreous body, but sparing the chorioretina. The patient improved after three injections of 5 µg intravitreal amphotericin B, 400 mg oral ketoconazole daily and topical clotrimazole every four hours. The authors also discuss the main possibilities of contamination of the patient, the infectious picture probably being related to the surgical procedure.

  19. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Sanjiveeni Dhamgaye

    Full Text Available Candida albicans causes superficial to systemic infections in immuno-compromised individuals. The concomitant use of fungistatic drugs and the lack of cidal drugs frequently result in strains that could withstand commonly used antifungals, and display multidrug resistance (MDR. In search of novel fungicidals, in this study, we have explored a plant alkaloid berberine (BER for its antifungal potential. For this, we screened an in-house transcription factor (TF mutant library of C. albicans strains towards their susceptibility to BER. Our screen of TF mutant strains identified a heat shock factor (HSF1, which has a central role in thermal adaptation, to be most responsive to BER treatment. Interestingly, HSF1 mutant was not only highly susceptible to BER but also displayed collateral susceptibility towards drugs targeting cell wall (CW and ergosterol biosynthesis. Notably, BER treatment alone could affect the CW integrity as was evident from the growth retardation of MAP kinase and calcineurin pathway null mutant strains and transmission electron microscopy. However, unlike BER, HSF1 effect on CW appeared to be independent of MAP kinase and Calcineurin pathway genes. Additionally, unlike hsf1 null strain, BER treatment of Candida cells resulted in dysfunctional mitochondria, which was evident from its slow growth in non-fermentative carbon source and poor labeling with mitochondrial membrane potential sensitive probe. This phenotype was reinforced with an enhanced ROS levels coinciding with the up-regulated oxidative stress genes in BER-treated cells. Together, our study not only describes the molecular mechanism of BER fungicidal activity but also unravels a new role of evolutionary conserved HSF1, in MDR of Candida.

  20. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis

    Science.gov (United States)

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A.

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  1. Lasioglossins LLIII affect the morphogenesis of Candida albicans and reduces the duration of experimental vaginal candidiasis in mice

    Czech Academy of Sciences Publication Activity Database

    Vráblíková, A.; Czerneková, L.; Cahlíková, R.; Nový, Z.; Petřík, M.; Imran, S.; Novák, Z.; Křupka, M.; Čeřovský, Václav; Turánek, J.; Raška, M.

    2017-01-01

    Roč. 61, č. 11 (2017), s. 474-481 ISSN 0385-5600 R&D Projects: GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : antimicrobial peptides * Candida albicans * lasioglossins * vaginal candidiasis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.706, year: 2016

  2. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans

    NARCIS (Netherlands)

    Tillmann, Anna T.; Strijbis, Karin; Cameron, Gary; Radmaneshfar, Elahe; Thiel, Marco; Munro, Carol A.; Maccallum, Donna M.; Distel, Ben; Gow, Neil A. R.; Brown, Alistair J. P.

    2015-01-01

    The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species

  3. Subinhibitory concentrations of fluconazole increase the intracellular sodium content in both fluconazole-resistant and -sensitive Candida albicans strains

    Czech Academy of Sciences Publication Activity Database

    Kolecká, A.; Krauke, Yannick; Bujdáková, H.; Sychrová, Hana

    2009-01-01

    Roč. 55, č. 5 (2009), s. 605-610 ISSN 0008-4166 R&D Projects: GA MŠk(CZ) LC531 Grant - others:EC(XE) MRTN-CT-2004-512481 Institutional research plan: CEZ:AV0Z50110509 Keywords : Candida albicans * fluconazol * salt tolerance Subject RIV: EE - Microbiology, Virology Impact factor: 1.262, year: 2009

  4. Investigation of the Effect of Gold Nanoparticles on Vital Factors of Isolated Candida albicans in Patients with Vulvovaginal Candidiasis In Vitro

    Directory of Open Access Journals (Sweden)

    J Alipoor

    2015-06-01

    Full Text Available Background & objectives: In recent decades, nanotechnology has been developing in medical field, and most of the nanoparticles are highly valuable in hygienic care. Vulvovaginitis is an infectious disease giving rise to problem in genital tract and Candida albicans is the main cause of Vulvovaginitis.   Methods: In this study, laboratory effect of gold nanoparticles has been investigated on Candida albicans isolates obtained from patients with Vulvovaginitis. Candida spp. isolates were obtained from 200 patients referring to medical diagnostic laboratory in Isfahan city during 2013, and identified using mycological methods including germ tube, clamydoconidia formation, and culturing on chrom agar media. Antifungal effect of gold nanoparticles was evaluated in concentration of 100, 50, 25, and 12.5 ppm on Candida isolates using well diffusion and microdilution methods. Fluconazole was used as a positive control and results were analyzed by SPSS15 software using Mann-Whitney, Kruskal-Wallis and average differences analysis tests.   Results: The most averages of clear zone diameter for gold nanoparticle were 18, 15, 12 millimeter, respectively. Minimum inhibitory and fungicidal concentration of gold nanoparticle was determined 6.25, 12.5 ppm and for fluconazole were 50.25±19.48 and 100.50±38.96, respectively. Based on obtained results antifungal activity of gold nanoparticle was dependent to concentration.   Conclusion: In current study, inhibitory effect of gold nanoparticles was evaluated against microorganism. Although the laboratories findings are promising, more investigation should be conducted for therapeutic standardization.

  5. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos.

    Science.gov (United States)

    Janeczko, Monika; Kubiński, Konrad; Martyna, Aleksandra; Muzyczka, Angelika; Boguszewska-Czubara, Anna; Czernik, Sławomir; Tokarska-Rodak, Małgorzata; Chwedczuk, Marta; Demchuk, Oleg M; Golczyk, Hieronim; Masłyk, Maciej

    2018-04-01

    In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l -1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l -1 ), it did not exert any evident toxic effects on zebrafish embryos. Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.

  6. Secreted aspartic proteases are not required for invasion o