WorldWideScience

Sample records for candicidin-producing streptomyces support

  1. Taxonomic evaluation of Streptomyces hirsutus and related species using multi-locus sequence analysis

    Science.gov (United States)

    Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...

  2. Reclassification of Streptomyces caeruleus as a Synonym of Actinoalloteichus cyanogriseus, and Reclassification of Streptomyces spheroides and Streptomyces laceyi as Later Synonyms of Streptomyces niveus

    Science.gov (United States)

    Lanoot et al. (2002) proposed that Streptomyces caeruleus was an earlier heterotypic synonym for both Streptomyces niveus and Streptomyces spheroides. Phylogenetic analysis of the almost complete 16S rRNA gene sequences of the Streptomyces caeruleus type strains NBRC 13344T, JCM 4014T and NRRL B-21...

  3. [Bacteriocidal activity of Streptomyces cultures].

    Science.gov (United States)

    Polishchuk, L V; Bambura, O I; Luk'ianchuk, V V

    2012-01-01

    Bacteriocidal activity of metabolites synthesized by 17 plasmid-containing cultures of Streptomyces has been studied. These cultures were isolated from soils of Ukraine with different anthropogenic contamination. The cultures, in their majority (85.3%), synthesized bioactive metabolites, which suppressed growth of microorganisms of different taxonomical groups, pathogenic for people, animals or plants. None of 17 Streptomyces cultures was able to suppress growth of yeasts or Escherichia coli. All 17 investigated cultures of Streptomyces were polyresistant to antibiotics, which were used in medicine and veterinary: makrolide, aminoglycoside, beta-lactam and other groups. Resistance of 8 cultures to the antibiotic thiostrepton, which was widely used in some branches of science, was found. PMID:23088099

  4. Streptomyces alfalfae sp. nov. and comparisons with its closest taxa Streptomyces silaceus, Streptomyces flavofungini and Streptomyces intermedius.

    Science.gov (United States)

    She, Wenqing; Sun, Zhongfeng; Yi, Lei; Zhao, Shumiao; Liang, Yunxiang

    2016-01-01

    A novel streptomycete strain, designated XY25T, was isolated from the rhizosphere soil in an alfalfa field in Jingyang, Shanxi, China. The isolate showed optimal growth at 37 °C, and was capable of growing at pH 6-10 and in the presence of 0-6 % (w/v) NaCl. Mycelia of strain XY25T appeared spiral and developed into white spore chains with long-rod spores and a smooth surface. The 16S rRNA gene sequence of XY25T was determined and was found to be highly similar to those of species of the genus Streptomyces including Streptomyces silaceus DSM 41861T (99.11 % 16S rRNA gene sequence similarity), Streptomyces flavofungini DSM 40366T (98.49 %) and Streptomyces intermedius DSM 40372T (98.43 %), all of which were used for further characterization. Each of the four streptomycetes showed distinctive patterns of carbon usage and fatty acids composition. Analysis of cellular components of strain XY25T revealed ll-diaminopimelic acid as diagnostic diamino acid and xylose as the major sugar, whereas polar lipids were determined as phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid, two unknown phosphatidylinositol mannosides and several unknown lipids. Menaquinones were dominated by MK-9(H6) and MK-9(H8), and the main fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. DNA-DNA hybridization studies indicated that strain XY25T showed relatedness values of 35.2-40.42 % with the closest related species. Based on these results, strain XY25T represents a novel species of the genus Streptomyces, for which the name Streptomyces alfalfae sp. nov. is proposed. The type strain is XY25T ( = KCTC 39571T = CCTCC AA2015019T). PMID:26449519

  5. New carbasugars from Streptomyces lincolnensis

    Czech Academy of Sciences Publication Activity Database

    Sedmera, Petr; Halada, Petr; Pospíšil, Stanislav

    2009-01-01

    Roč. 47, č. 5 (2009), s. 519-522. ISSN 0749-1581 Institutional research plan: CEZ:AV0Z50200510 Keywords : H-1 NMR * C-13 NMR * Streptomyces lincolnensis Subject RIV: EE - Microbiology, Virology Impact factor: 1.612, year: 2009

  6. Streptomyces development in colonies and soils

    DEFF Research Database (Denmark)

    Manteca, Angel; Sanchez, Jesus

    2009-01-01

    Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased.......Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased....

  7. Genome sequence and annotation of Streptomyces sp. W6 - putative natural producer of annimycin antibiotic

    Czech Academy of Sciences Publication Activity Database

    Chrudimský, Tomáš; Chroňáková, Alica; Petříčková, Kateřina; Petříček, Miroslav; Krištůfek, Václav

    Praha : Institute of Chemical Technology Prague, 2014. s. 102-103. ISBN 978-80-7080-887-0. [BioTech 2014 & 6 th Czech-Swiss Symposium with Exhibition. 11.06.2014-14.06.2014, Praha] Institutional support: RVO:60077344 ; RVO:61388971 Keywords : genome sequence * annotation * Streptomyces sp. W6 * annimycin antibiotic Subject RIV: EE - Microbiology, Virology

  8. Streptomyces bacteria as potential probiotics in aquaculture

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2016-02-01

    Full Text Available In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  9. Streptomyces andamanensis sp. nov., isolated from soil.

    Science.gov (United States)

    Sripreechasak, Paranee; Tamura, Tomohiko; Shibata, Chiyo; Suwanborirux, Khanit; Tanasupawat, Somboon

    2016-05-01

    A novel actinomycete, strain KC-112T, was isolated from soil collected from Similan Islands, Phang-Nga Province, Thailand. The strain exhibited morphological and chemotaxonomic characteristics consistent with those of members of the genus Streptomyces. The formation of smooth spiral spore chains was observed on aerial mycelia. ll-Diaminopimelic acid was detected in whole-cell hydrolysates, but no diagnostic sugars were detected and the strain lacked mycolic acids. The N-acyl type of muramic acid was acetyl. The major menaquinones were MK-9(H8), MK-9(H6) and MK-9(H2). The predominant cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unknown phospholipid, an unknown aminolipid, unknown lipids and an unknown glycolipid. The DNA G+C content was 73 mol%. On the basis of 16S rRNA gene sequence analysis, strain KC-112T was closely related to Streptomyces fumanus NBRC 13042T (98.8 % 16S rRNA gene sequence similarity), Streptomyces anandii NBRC 13438T (98.8 %) and Streptomyces capillispiralis NBRC 14222T (98.8 %). DNA-DNA relatedness values among strain KC-112T and type strains of closely related species were lower than 70 %. On the basis of evidence from this taxonomic study using a polyphasic approach, strain KC-112T represents a novel species of the genus Streptomyces, namely Streptomyces andamanensis sp. nov. The type strain is KC-112T ( = KCTC 29502T = NBRC 110085T = PCU 347T = TISTR 2401T). PMID:26908169

  10. A new virginae butanolide from Streptomyces sp.

    Institute of Scientific and Technical Information of China (English)

    Xiang LI; Yi Nan ZHENG; Wen Han LIN; Isabel SATTLER

    2006-01-01

    A novel butanolide, named virginaebutanolide F (1), was isolated from the lyophilized culture broth of Streptomyces sp., along with a known compound virginaebutanolide C (2). Their structures including the stereochemistry were elucidated on the basis of extensive 1D and 2D NMR as well as HRESI-MS and CD spectroscopic analysis.

  11. The small laccase from Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Skálová, Tereza; Ostergaard, L. H.; Ostergaard, P. R.; Hašek, Jindřich

    2009-01-01

    Roč. 16, 1a (2009), b4-b5. ISSN 1211-5894. [Discussions in Structural Molecular Biology /7./. 12.03.2009-14.03.2009, Nové Hrady] R&D Projects: GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : laccase * Streptomyces coelicolor * enzymer Subject RIV: CD - Macromolecular Chemistry

  12. Plasmid deoxyribonucleic acid replication in Streptomyces griseus.

    OpenAIRE

    Xue, Y.; Zhuang, Z.; Zhu, Y.; Xu, Y.; Dong, K.

    1981-01-01

    A series of electron micrographs showing the presence of different molecular forms representing various replication stages of plasmid deoxyribonucleic acid from Streptomyces griseus was obtained. Based upon an analysis of these electron micrographs, a tentative model for plasmid deoxyribonucleic acid replication in S. griseus is proposed.

  13. Taxonomic and functional diversity of Streptomyces in a forest soil.

    Science.gov (United States)

    Bontemps, Cyril; Toussaint, Maxime; Revol, Pierre-Vincent; Hotel, Laurence; Jeanbille, Mathilde; Uroz, Stéphane; Turpault, Marie-Pierre; Blaudez, Damien; Leblond, Pierre

    2013-05-01

    In this work we report the isolation and the characterization of 79 Streptomyces isolates from a French forest soil. The 16S rRNA gene phylogeny indicated that a great diversity of Streptomyces was present in this soil, with at least nine different and potentially new species. Growth plate assays showed that most Streptomyces lineages exhibit cellulolytic and hemicellulolytic capacities and potentially participate in wood decomposition. Molecular screening for a specific hydrogenase also indicated a widespread potential for atmospheric H2 uptake. Co-culture experiments with representative strains showed antagonistic effects between Streptomyces of the same population and between Streptomyces and various fungi. Interestingly, in certain conditions, growth promotion of some fungi also occurred. We conclude that in forest soil, Streptomyces populations exhibit many important functions involved in different biogeochemical cycles and also influence the structure of soil microbial communities. PMID:23489323

  14. Antimicrobial Activity and Morphological Changes of Streptomyces Ascendable and Streptomyces Eighty-three's as Affected by Environmental Conditions and Gamma Radiation

    International Nuclear Information System (INIS)

    Fourteen actinomycetes out of thirty isolates were recovered from different Egyptian soils and exhibited antimicrobial activities. Streptomyces ascendable and Streptomyces eighty-three's used in the present work showed the most active antimicrobial potentialities against bacteria, moulds and yeasts. The optimum temperature and acidity for their growth and production of microbial activity were 50 degree and ph 7.0, while the maximum biomass yield and the highest antimicrobial activity were attained 10 days of incubation. Among carbon sources starch at 30 gm/L highly supported the growth and antimicrobial activity by the two species, while sodium nitrate (3 gm/L) and dipotassium hydrogen phosphate (0.75 gm/L) were the most favorable for both isolates. The presence of microelements such as manganese chloride, zinc sulphate, ferrous sulphate and copper sulphate in the growth medium at a concentration of 1 mg/L for each had a good stimulatory effect on the growth and antimicrobial activity for both Streptomyces species. As different irradiation doses were used (up to 5.0 kGy), the high levels clearly affected the morphological characteristics of both tested isolates either in the first or second generation

  15. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  16. Alkaline tolerant dextranase from streptomyces anulatus

    Science.gov (United States)

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  17. Genetics of Streptomyces rimosus, the Oxytetracycline Producer

    OpenAIRE

    Petković, Hrvoje; Cullum, John; Hranueli, Daslav; Hunter, Iain S.; Perić-Concha, Nataša; Pigac, Jasenka; Thamchaipenet, Arinthip; Vujaklija, Dušica; Long, Paul F.

    2006-01-01

    From a genetic standpoint, Streptomyces rimosus is arguably the best-characterized industrial streptomycete as the producer of oxytetracycline and other tetracycline antibiotics. Although resistance to these antibiotics has reduced their clinical use in recent years, tetracyclines have an increasing role in the treatment of emerging infections and noninfective diseases. Procedures for in vivo and in vitro genetic manipulations in S. rimosus have been developed since the 1950s and applied to s...

  18. Bioremediation of Carbendazim by Streptomyces albogriseolus

    Directory of Open Access Journals (Sweden)

    Ridhima Arya

    2014-08-01

    Full Text Available Carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC is a benzimidazole fungicide which is used to protect crops against the attack of fungi. MBC has a half-life of about 3-12 months and remain persistent in the environment which may lead to many harmful consequences. Besides chemical and photo-catalytic degradation of pesticides, microbial degradation has now been evolved as a much effective and safer way to eliminate these harmful compounds from the environment. However, in the literature very few reports are available where microbial community is involved in degrading MBC. Hence, the present study was planned to investigate the role of microbes isolated from the field soils for the bioremediation of MBC. Soil samples were collected from wheat fields of northern regions of India. Enrichment culture technique was employed to isolate the bacterium which was found to be growing at higher concentrations of MBC up to 500µg/ml. After biochemical and morphological analysis, the bacterium was identified as Streptomyces albogriseolus. Streptomyces albogriseolus was found to degrade MBC in a time-dependent manner from the initial concentration of 29 ppm to 285.67ppb and 62.73ppb in 24hrs and 48hrs respectively. LCMS-MS analysis was carried out to detect 2-aminobenzimidazole, a metabolite formed after degradation in 10 hrs of growth which eventually disappeared after 24hrs of growth. The strain Streptomyces albogriseolus holds a promising potential to be an efficient MBC bioremediation agent.

  19. High-Throughput Screening for Streptomyces Antibiotic Biosynthesis Activators

    OpenAIRE

    Li CHEN; Wang, Yemin; Guo, Hang; Xu, Min; Deng, Zixin; Tao, Meifeng

    2012-01-01

    A genomic cosmid library of Streptomyces clavuligerus was constructed and transferred efficiently by conjugation to Streptomyces lividans, and 12 distinct groups of overlapping cosmid clones that activated the silent actinorhodin biosynthesis gene cluster were identified. This generally applicable high-throughput screening procedure greatly facilitates the identification of antibiotic biosynthesis activators.

  20. Streptomyces mangrovi sp. nov., isolated from mangrove forest sediment.

    Science.gov (United States)

    Yousif, Ghada; Busarakam, Kanungnid; Kim, Byung-Yong; Goodfellow, Michael

    2015-09-01

    A Streptomyces strain isolated from a mangrove sediment was classified using a polyphasic approach. The organism, isolate GY1(T), was found to have chemical and morphological properties typical of members of the genus Streptomyces. The isolate was shown to form a distinct phyletic line within the Streptomyces radiopugnans 16S rRNA gene subclade and to be closely related to the type strain of Streptomyces fenhuangensis (98.7 % similarity). It is also closely related to the type strain of Streptomyces bakulensis which was also closely related to members of the Streptomyces glaucosporus 16S rRNA gene subclade. Isolate GY1(T) was distinguished readily from the S. barkulensis type strain and from species classified in the S. radiopugnans clade using a combination of morphological and physiological properties, including a requirement for seawater for growth. Based on the genotypic and phenotypic data, it is proposed that isolate GY1(T) (=NCIMB 14980(T), NRRL B-69296(T)) be classified in the genus Streptomyces as Streptomyces mangrovi sp. nov. PMID:26187116

  1. Craniocervical mycetoma caused bu Streptomyces somaliensis

    International Nuclear Information System (INIS)

    Magnetic resonance (MR) imaging, computerized tomography (CT) and clinical-pathological findings are described in a case of craniocervical mycetoma caused by the actinomycete Streptomyces somaliensis. Clinical features includes epilepsy, visual and hearing disturbance, quadriplegia and incontinence. CT revealed a hyperdense, diffusely enhancing intra-extracranial mass, further defined by MR to involve the oropharyngeal region, skull base, cranial-cervical peridural spaces and brain. On treatment with Dapsone, the lesion decreased in size, with recovery of spinal cord function. The combined plain film, CT and MR images are considered to be diagnostic of this form of mycetoma. (author). 10 refs.; 4 figs

  2. A temperate phage of Streptomyces azureus.

    OpenAIRE

    Ogata, S; Suenaga, H; Hayashida, S.

    1985-01-01

    A new phage, SAt1, was isolated from soil on Streptomyces azureus ATCC 14921. This phage was able to lysogenize S. azureus. The percentage of lysogenic responses was ca. 10%. Electron microscopic observation showed that this phage belonged to group B of Bradley's morphological classification. The molecular mass of SAt1 DNA was ca. 24 megadaltons. The guanine-plus-cytosine content and the density of SAt1 DNA were ca. 71% and 1.724 g/cm3, respectively. A cleavage map of SAt1 DNA was constructed...

  3. Enrichment of Auxotrophic Mutants in Streptomyces griseus

    OpenAIRE

    Werner, Rolf G.; Demain, Arnold L.

    1980-01-01

    A method for the isolation and enrichment of tryptophan auxotrophic mutants of the indolmycin-producing strain Streptomyces griseus ATCC 12648 was developed, using penicillin selection. With UV irradiation of 2.2 × 104 μW cm−2, a mutation rate to tryptophan auxotrophy of 5.6 × 10−4 was achieved. With 300 μg ml−1 of penicillin G, an enrichment of tryptophan auxotrophs of about 1,000-fold was attained. Approximately 40% of all survivors were tryptophan auxotrophs.

  4. Biocomputational prediction of small non-coding RNAs in Streptomyces

    Directory of Open Access Journals (Sweden)

    Basler Marek

    2008-05-01

    Full Text Available Abstract Background The first systematic study of small non-coding RNAs (sRNA, ncRNA in Streptomyces is presented. Except for a few exceptions, the Streptomyces sRNAs, as well as the sRNAs in other genera of the Actinomyces group, have remained unstudied. This study was based on sequence conservation in intergenic regions of Streptomyces, localization of transcription termination factors, and genomic arrangement of genes flanking the predicted sRNAs. Results Thirty-two potential sRNAs in Streptomyces were predicted. Of these, expression of 20 was detected by microarrays and RT-PCR. The prediction was validated by a structure based computational approach. Two predicted sRNAs were found to be terminated by transcription termination factors different from the Rho-independent terminators. One predicted sRNA was identified computationally with high probability as a Streptomyces 6S RNA. Out of the 32 predicted sRNAs, 24 were found to be structurally dissimilar from known sRNAs. Conclusion Streptomyces is the largest genus of Actinomyces, whose sRNAs have not been studied. The Actinomyces is a group of bacterial species with unique genomes and phenotypes. Therefore, in Actinomyces, new unique bacterial sRNAs may be identified. The sequence and structural dissimilarity of the predicted Streptomyces sRNAs demonstrated by this study serve as the first evidence of the uniqueness of Actinomyces sRNAs.

  5. A novel Streptomyces gene, samR, with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor.

    Science.gov (United States)

    Tan, Huarong; Tian, Yuqing; Yang, Haihua; Liu, Gang; Nie, Liping

    2002-03-01

    A 1.4-kb DNA fragment from Streptomyces ansochromogenes accelerated mycelium formation of S. ansochromogenes when present on a multicopy plasmid. The DNA fragment contains one complete open reading frame, designated samR, encoding a protein with 213 amino acids that contains a likely DNA-binding helix-turn-helix motif close to its N-terminus. The deduced SamR protein resembles the product of the hppR gene, which is involved in the regulation of catabolism of 3-(3-hydroxyphenyl) propionate in Rhodococcus globerulus. A samR disruption mutant was constructed that presented a bald phenotype and failed to form aerial hyphae and spores. We suggest that samR plays an important role in the emergence of aerial hyphae from substrate mycelium. An almost identical gene of Streptomyces coelicolor was also subjected to gene disruption. Surprisingly, the mutant was able to develop an aerial mycelium, but it remained white and deficient in sporulation instead of forming gray spores. PMID:11907684

  6. Occurrence of Streptomyces aurantiacus in Mangroves of Bhitarkanika

    Directory of Open Access Journals (Sweden)

    Gupta, N.

    2007-01-01

    Full Text Available Thirteen strains of Streptomyces were isolated from phyllosphere of nine mangrove tree species found in Bhitarkanika mangrove ecosystem of Orissa. According to physiological, biochemical data, all 13 of the isolates were taxonomically identified to the genus Streptomyces as aurantiacus species. All strains are grayish, spirals and forming amorphous colony. Almost all utilized araginose, produced H2S, resistant towards rifampicin and penicillin, urea except few strains. However, they exhibited different extracellular activity like phosphate solubilization, lipase and L asparaginase production. This is a unique report from this mangrove ecosystem as far as Streptomyces occurrence is concerned.

  7. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  8. Enzymology of lignocellulose bioconversion by Streptomyces viridosporus

    International Nuclear Information System (INIS)

    Significant progress has been made in lignin biodegradation research since 1983, when lignin peroxidases were discovered in fungi. A similar breakthrough in bacterial lignin biodegradation research is anticipated. Several laboratories have successfully demonstrated the ability of bacteria to mineralize [14C]-lignin lignocelluloses as well as 14C-labelled synthetic lignins. Attempts are being made to identify the key enzymes involved. In this dissertation, two studies are presented which address the enzymology of lignin biodegradation by Streptomyces viridosporus. The first study compares selected extracellular enzyme of wild-type and genetically manipulated strains with enhanced abilities to produced a water soluble lignin degradation intermediate, designated acid-precipitable polymeric lignin (APPL). UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10 had higher and longer persisting peroxidase, esterase, and endoglucanase activity than did the wild type strain T7A. An extracellular lignocellulose-induced peroxidase with some similarities to fungal ligninases was described for the first time in Streptomyces. The second study describes purification and characterization of an extracellular lignin peroxidase produced by S. viridosporus T7A. This is the first report of a lignin peroxidase in any bacterium

  9. Expression by Streptomyces lividans of the Rat α Integrin CD11b A-Domain as a Secreted and Soluble Recombinant Protein

    Directory of Open Access Journals (Sweden)

    Dorra Zouari Ayadi

    2007-01-01

    Full Text Available We already reported the use of a long synthetic signal peptide (LSSP to secrete the Streptomyces sp. TO1 amylase by Streptomyces lividans strain. We herein report the expression and secretion of the rat CD11b A-domain using the same LSSP and S. lividans as host strain. We have used the Escherichia coli/Streptomyces shuttle vector pIJ699 for the cloning of the A-domain DNA sequence downstream of LSSP and under the control of the constitutive ermE-up promoter of Streptomyces erythraeus. Using this construct and S. lividans as a host strain, we achieved the expression of 8 mg/L of soluble secreted recombinant form of the A-domain of the rat leukocyte β2 integrin CD11/CD18 alpha M subunit (CD11b. This secreted recombinant CD11b A-domain reacted with a function blocking antibody showing that this protein is properly folded and probably functional. These data support the capability of Streptomyces to produce heterologous recombinant proteins as soluble secreted form using the “LSSP” synthetic signal peptide.

  10. Four New Derivatives of Trihomononactic Acids from Streptomyces globisporus

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Spížek, Jaroslav; Přikrylová, Věra; Dembitski, V. M.

    -, - (2004), s. 4239-4244. ISSN 1434-193X Institutional research plan: CEZ:AV0Z5020903 Keywords : streptomyces globisporus * nonactic * trihomononactic Subject RIV: EE - Microbiology, Virology Impact factor: 2.426, year: 2004

  11. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.

    Science.gov (United States)

    El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A

    2008-07-01

    In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time. PMID:18551256

  12. Snail-Killing Effects of Streptomyces 218 Powder

    OpenAIRE

    V.O. Aina; A.A.J. Adewumi; C.O. Yao; M.Z. Shi; Hu, D. Y.; W.H. Chai

    2012-01-01

    This study is aimed at finding out the snail-killing effects of Streptomyces 218 powder on Oncomelania hupensis snails which are the vectors or intermediate host of Schiltosoma Japonicum (intestinal schistosomiasis) in china the tests were carried out in the laboratory and on the field. The snail-killing effects of Streptomyces218 powder, isolated from snail habitat at Anchang Village of Anxiang country in China was tested using the immersion and spraying methods. The tests on the Oncomelania...

  13. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    OpenAIRE

    Bonaldi, Maria; Chen, Xiaoyulong; Kunova, Andrea; Pizzatti, Cristina; Saracchi, Marco; Cortesi, Paolo

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plas...

  14. Characterisitics of Streptomyces griseus biofilms in continuous flow tubular reactors

    OpenAIRE

    Winn, Michael; Habimana, Olivier; Casey, Eoin; Murphy, Cormac D.

    2014-01-01

    The purpose of this study was to investigate the feasibility of cultivating the biotechnologically important bacterium Streptomyces griseus in single-species and mixed- species biofilms using a Tubular Biofilm Reactor (TBR). Streptomyces griseus biofilm development was found to be cyclical, starting with the initial adhesion and subsequent development of a visible biofilm after 24 hours growth, followed by the complete detachment of the biofilm as a single mass, and ending with the re-coloni...

  15. Sekvence a anotace genomu půdní bakterie .i.Streptomyces./i. sp. W6 indikuje potenciál produkce annimycinu

    Czech Academy of Sciences Publication Activity Database

    Chrudimský, Tomáš; Chroňáková, Alica; Petříčková, Kateřina; Petříček, Miroslav; Krištůfek, Václav

    Praha : Vysoká škola chemicko-technologická v Praze, 2014. s. 74. [ENBIK2014. 09.06.2014-11.06.2014, Kouty na Vysočině] Institutional support: RVO:60077344 ; RVO:61388971 Keywords : genome sequence * annotation * Streptomyces sp. W6 * annimycin antibiotic Subject RIV: EE - Microbiology, Virology

  16. Taxonomic evaluation of species in the Streptomyces hirsutus clade using multi-locus sequence analysis and proposals to reclassify several species in this clade

    Science.gov (United States)

    Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...

  17. Molecular cloning and characterization of the aklavinone 11-hydroxylase gene of Streptomyces peucetius subsp. caesius ATCC 27952.

    OpenAIRE

    Hong, Y S; Hwang, C K; Hong, S. K.; Kim, Y.H.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea); Lee, J. J.

    1994-01-01

    The gene encoding aklavinone 11-hydroxylase of Streptomyces peucetius subsp. caesius ATCC 27952 was cloned and sequenced. The deduced amino acid sequence of the gene contains at least two common motifs of well-conserved amino acid sequences of several flavin-type bacterial hydroxylases. The hydroxylase gene is apparently transcribed from a single transcriptional start point. The phenotype of a dnrF mutant generated by gene disruption supports the idea that the dnrF gene encodes aklavinone 11-...

  18. Streptomyces noursei var saccharicus: An Antibiotic Producer from Soils

    Directory of Open Access Journals (Sweden)

    P Ellaiah

    2014-08-01

    Full Text Available During our continuous search for antibiotic producing actinomycetes, a variant of Streptomyces species was isolated from soils of Andhra Pradesh in India. The morphological, cultural, physiological and biochemical characters were studied, compared to known species and identified as a new variant of Streptomyces noursei and designated as Streptomyces noursei var saccharicus. The antibiotic activity of the strain was tested against both Gram-positive and Gram-negative bacteria as well as fungi and yeasts. INTRODUCTION Since the isolation of actinomycin in 1940 and streptomycin in 1944 by Waksman, the actinomycetes have received tremendous attention of the scientists. Soils, composts and fodders are common sources of actinomycetes. Waksman [1] recognized a few natural substrates as ideal sources for the isolation of actinomycetes and other streptomycetes. The nature of a Streptomyces colony is an important property in characterizing a culture. Krainsky [2] used the structure, size, shape and texture of the colony as one of the major diagnostic criteria. According to Pridham and Lyons [3] and International Subcommittee [4], the best way to handle streptomycete classification nomenclature and identification is through application of the genus-species-subspecies concept. The majority of antibiotic producing actinomycetes found in these species led to growing economic importance of these organisms which resulted in the isolation and description of numerous new species. It is reported that the only genus Streptomyces, the member of Actinomycetales accounts for approximately 93% producing secondary metabolites [5]. The present communication deals with the isolation and characterization of an antibiotic producer from soils.

  19. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya.

    Science.gov (United States)

    Braña, Alfredo F; Rodríguez, Miriam; Pahari, Pallab; Rohr, Jurgen; García, Luis A; Blanco, Gloria

    2014-05-01

    Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography-mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery. PMID:24633227

  20. [Purification and physico-chemical properties of Streptomyces sp. 1349 collagenase and Streptomyces sp. 1382 keratinase].

    Science.gov (United States)

    Ivanko, O V; Varbanets', L D

    2004-01-01

    The schemes of isolation and purification of collagenolytic enzymes of Streptomyces sp. 1349 and keratinolyte enzymes of Streptomyces sp. 1382, which include fractionation by ammonium sulphate separation on TSK-gels: ion-exchange chromatography on Toyopearl DEAE-650(M) and gel-filtration on Toyopearl HW-50, as well as highly efficient liquid chromatography. The purified enzyme preparations proved to be proteases of serine type (collagenase 2 and keratinases) as well as metalloproteases (collagenases 1 and 3). It has seen established that collagenases are enzymes of broad specificity, which are active in respect of proteins of both globular and fibrillar nature. And vice versa, keratinases are proteolytic enzymes of narrow specificity which hydrolyze native keratin. Molecular masses of purified enzyme preparations, from the data of SDS-PAAG are approximately 30-40 kDa (collagenases 1-3) and about 15-20 kDa (keratinases 1 and 2). It is shown that the charged aminoacid residues (about 85%) prevail in enzyme molecules. The enzymes are distinguished by pH- and thermooptima. PMID:15208850

  1. Natural Product Discovery through Improved Functional Metagenomics in Streptomyces.

    Science.gov (United States)

    Iqbal, Hala A; Low-Beinart, Lila; Obiajulu, Joseph U; Brady, Sean F

    2016-08-01

    Because the majority of environmental bacteria are not easily culturable, access to many bacterially encoded secondary metabolites will be dependent on the development of improved functional metagenomic screening methods. In this study, we examined a collection of diverse Streptomyces species for the best innate ability to heterologously express biosynthetic gene clusters. We then optimized methods for constructing high quality metagenomic cosmid libraries in the best Streptomyces host. An initial screen of a 1.5 million-membered metagenomic library constructed in Streptomyces albus, the species that exhibited the highest propensity for heterologous expression of gene clusters, led to the identification of the novel natural product metatricycloene (1). Metatricycloene is a tricyclic polyene encoded by a reductive, iterative polyketide-like gene cluster. Related gene clusters found in sequenced genomes appear to encode a largely unexplored collection of structurally diverse, polyene-based metabolites. PMID:27447056

  2. Streptomyces thermoautotrophicus does not fix nitrogen.

    Science.gov (United States)

    MacKellar, Drew; Lieber, Lucas; Norman, Jeffrey S; Bolger, Anthony; Tobin, Cory; Murray, James W; Oksaksin, Mehtap; Chang, Roger L; Ford, Tyler J; Nguyen, Peter Q; Woodward, Jimmy; Permingeat, Hugo R; Joshi, Neel S; Silver, Pamela A; Usadel, Björn; Rutherford, Alfred W; Friesen, Maren L; Prell, Jürgen

    2016-01-01

    Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely. PMID:26833023

  3. Molecular regulation of devel- opment and differentiation in Streptomyces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@\tDevelopment and differentiation is an important and leading research field in modern biology. Streptomyces has a complicated life cycle of morphological differentia-tion including the spore germination, aerial mycelium and spore formation. Each developmental stage has a distin-guished morphological feature which greatly facilitates the identification of developmental mutants, the comple-mentary cloning and the spatial and temporal expression of the genes involved in differentiation. This characteristic of Streptomyces is comparatively superior to other pro-karyotic bacteria such as Escherichia coli, Bacillus sub-tilis and Myxococcus xanthus. Moreover, Streptomyces also possesses a complicated physiological differentiation in which it produces a wide variety of secondary metabo-lites (more than half of the 12 000 or so known antibiot-ics), including many important antibiotics used in medi-cine, agriculture and industry. Studies on the molecular mechanism of antibiotic biosynthesis will be helpful in improving the antibiotic producer and developing some new medicines. In comparison with eukaryotic microor-ganism such as Asperillus nidulans, the structure of ge-netic material in Streptomyces is simple, and it is benefi-cial to studying gene expression and regulation. Remarka-bly, the genome of Streptomyces has some unusual char-acteristics in bacteria; for example, it is linear and con-tains more genes than other prokaryotes, even than eukaryotes such as saccharomyces cerevisiae. The large number of genes are the molecular basis of Streptomyces differentiation, suggesting that the regulation mechanism of gene expression in differentiation and development may be complex[1].

  4. ISOLATION AND PURIFICATION OF STREPTOMYCES SPP. PRODUCING VANCOMYCIN

    International Nuclear Information System (INIS)

    Soil samples obtained from different governments in Egypt were analyzed to determine the presence of types of antibiotic producing actinomycetes using starch-nitrite agar, starch-casein nitrate agar and Czapek's Dox agar as culture media. Different Streptomyces spp. were isolated. The Streptomyces (S.) isolates encountered were S. violochromogens, S. violaceus-nigar and S. orientalis and known as standard Vancomycin producers. The optimum conditions of S. orientalis; incubation period, initial pH and incubation temperature, were determined. In addition, physical properties; appearance, melting point, solubility, mass spectrophotometer of ultra violet (UV) and the effect of gamma rays, were also determined

  5. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt.

    Science.gov (United States)

    Rashad, Ferial M; Fathy, Hayam M; El-Zayat, Ayatollah S; Elghonaimy, Ahlam M

    2015-06-01

    Different strategies have been employed for selective isolation of Streptomycetes from 20 marine samples varied in their biological nature. The recovery of Streptomycetes isolates (112) was influenced preferentially by different strategies; sediment samples were the best source of potential candidate Streptomycetes. All isolates exhibited antimicrobial activities with variable spectrum; the most promising isolates (31) were phenotypically characterized and identified as Streptomyces sp.; these isolates exhibited variable capacity for secretion of numerous hydrolytic enzymes such as catalase, protease, amylase, lipase, lecithinase, asparaginase, chitinase and pectinase. All the strains resisted both penicillin and streptomycin, 29 were sensitive to neomycin; the majority of strains (25) showed multiple antibiotic resistance index greater than 0.2; 23, 22 and 13 degraded the shrimp shell, chicken feather and corn cob, respectively, producing bioactive substance(s) which indicates their diversity and their ecological role in the marine ecosystem. At least 28 strains exhibited nematicidal activity in vitro and in vivo against root-knot nematode and supported plant growth. In vitro, the assessed Streptomyces species exhibited the ability to produce gibberellic acid, indole acetic acid, abscisic acid, kinetin and benzyladenine. Except for indole acetic acid, this is the first report concerning the ability of marine Streptomyces to produce such phytohormones and the use of shrimp shell waste as a mono component medium for production of phytohormones. The study is efficacious in selecting effective biodiverse strains of marine Streptomyces that may work under diverse agro-ecological conditions as a useful element in plant nutrition and as biocontrol agents involved in integrated management programs. PMID:25805507

  6. Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species.

    Science.gov (United States)

    El-Bondkly, Ahmed M A; El-Gendy, Mervat M A; Bassyouni, Rasha H

    2012-11-01

    Thirty-four endophytic marine Actinomycetes isolates were recovered from the Egyptian marine sponge Latrunculia corticata, out of them 5 isolates (14.7 %) showed red single colonies on yeast-CzAPEK plates. Isolates under the isolation code NRC50 and NRC51 were observed with the strongest red biomass. After application of protoplast fusion between NRC50 and NRC51 isolates, 26 fusants were selected and produced widely different amounts of prodigiosin-like pigments (PLPs) on different fermentation media. Among them fusant NRCF69 produced 79 and 160.4 % PLPs more than parental strains NRC50 and NRC51, respectively. According to the analysis of 16S rDNA sequence (amplified, sequenced, and submitted to GenBank under Accession no. JN232405 and JN232406, respectively), together with their morphological and biochemical characteristics, parental strains NRC50 (P1) and NRC51 (P2) were identified as Streptomyces sp. and designated as Streptomyces sp. NRC50 and Streptomyces sp. NRC51. This study describes a low cost, effective production media by using peanut seed broth, sunflower oil broth or dairy processing wastewater broth alone, or supplemented with 0.5 % mannitol that supports the production of PLPs by the Streptomyces fusant NRCF69 under study (42.03, 40.11, 36.7 and 47 g L(-1), respectively). PLPs compounds exhibited significant cytotoxic activities against three human cancer cell lines: colon cancer cell line (HCT-116), liver cancer cell line (HEPG-2) and breast cancer cell line (MCF-7) and antimycotic activity against clinical dermatophyte isolates of Trichophyton, Microsporum and Epidermophyton. PMID:22777253

  7. Glutathione S-Transferase Isoenzymes from Streptomyces griseus

    OpenAIRE

    Dhar, Kajari; Dhar, Alok; Rosazza, John P. N.

    2003-01-01

    An inducible, cytosolic glutathione S-transferase (GST) was purified from Streptomyces griseus. GST isoenzymes with pI values of 6.8 and 7.9 used standard GST substrates including 1-chloro-2,4-dinitrobenzene. GST had subunit and native Mrs of 24 and 48, respectively, and the N-terminal sequence SMILXYWDIIRGLPAH.

  8. 75 FR 44251 - Wood Oils and Gums, and Streptomyces

    Science.gov (United States)

    2010-07-28

    .... In the United States, cedarwood oil is mainly extracted from Juniperus virginiana (Eastern red cedar or Virginia cedar), Juniperus ashei or mexicana (Texas cedar), and Thuja plicata (Western red cedar... AGENCY EPA-HQ-OPP-2010-0441; FRL-8829-8 Wood Oils and Gums, and Streptomyces Strain K61;...

  9. Genetic instability and strain degeneration in Streptomyces rimosus.

    OpenAIRE

    Gravius, B; Bezmalinović, T; Hranueli, D.; Cullum, J

    1993-01-01

    During a strain selection program to improve oxytetracycline production in Streptomyces rimosus R6, isolates that showed extreme morphological instability appeared. Propagation via spores gave much higher instability than did propagation via mycelial fragments. Five phenotypic traits were affected: sporulation, pigmentation, colony morphology, oxytetracycline production, and oxytetracycline resistance. The variants were classified on the basis of oxytetracycline resistance into three classes....

  10. Metabolomic Characterization of the Salt Stress Response in Streptomyces coelicolor

    NARCIS (Netherlands)

    Kol, Stefan; Merlo, M. Elena; Scheltema, Richard A.; de Vries, Marcel; Vonk, Roel J.; Kikkert, Niels A.; Dijkhuizen, Lubbert; Breitling, Rainer; Takano, Eriko

    2010-01-01

    The humicolous actinomycete Streptomyces coelicolor routinely adapts to a wide variety of habitats and rapidly changing environments. Upon salt stress, the organism is also known to increase the levels of various compatible solutes. Here we report the results of the first high-resolution metabolomic

  11. Case report of Streptomyces endocarditis of a prosthetic aortic valve.

    Science.gov (United States)

    Mossad, S B; Tomford, J W; Stewart, R; Ratliff, N B; Hall, G S

    1995-01-01

    We describe the first case of prosthetic valve endocarditis due to a Streptomyces sp. The patient presented with fever, cutaneous embolic lesions, and bacteremia 3 months after aortic valve replacement. Treatment required valve replacement and a long course of parenteral imipenem. PMID:8586732

  12. Case report of Streptomyces endocarditis of a prosthetic aortic valve.

    OpenAIRE

    Mossad, S B; Tomford, J W; Stewart, R; Ratliff, N B; Hall, G. S.

    1995-01-01

    We describe the first case of prosthetic valve endocarditis due to a Streptomyces sp. The patient presented with fever, cutaneous embolic lesions, and bacteremia 3 months after aortic valve replacement. Treatment required valve replacement and a long course of parenteral imipenem.

  13. Cryptic secondary metabolite biosynthetic clusters in Streptomyces ambofaciens

    Czech Academy of Sciences Publication Activity Database

    Nezbedová, Šárka; Karray, F.; Juguet, M.; Aigle, B.; Pernodet, J. L.; Weiser, Jaroslav

    Praha : Verlag, 2006, s. 26-27. [International Symposium on the Genetics of Industrial Microorganisms /10./. Praha (CZ), 24.06.2006-28.06.2006] Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces ambofaciens * metabolism Subject RIV: EE - Microbiology, Virology

  14. A New Degraded Sesquiterpene from Marine Actinomycete Streptomyces sp. 0616208

    Institute of Scientific and Technical Information of China (English)

    Xiu Chao XIE; Wen Li MEI; You Xing ZHAO; Kui HONG; Hao Fu DAI

    2006-01-01

    A new degraded sesquiterpene was isolated from the marine actinomycete Streptomyces sp. 0616208. Its structure was elucidated as (1α, 4aα, 5α, 7β, 8aβ)-5, 8a-dimethyl-decahydrona-phthalene-1, 4a, 7-triol on the basis of spectroscopic data.

  15. Draft Genome Sequence of Streptomyces hygroscopicus subsp. hygroscopicus NBRC 16556.

    Science.gov (United States)

    Komaki, Hisayuki; Ichikawa, Natsuko; Oguchi, Akio; Hamada, Moriyuki; Tamura, Tomohiko; Suzuki, Ken-Ichiro; Fujita, Nobuyuki

    2016-01-01

    Here, we report the draft genome sequence of strain NBRC 16556, deposited as Streptomyces hygroscopicus subsp. hygroscopicus into the NBRC culture collection. An average nucleotide identity analysis confirmed that the taxonomic identification is correct. The genome sequence will serve as a valuable reference for genome mining to search new secondary metabolites. PMID:27198007

  16. DETERMINATION O F TOTAL CELL PROTEIN PROFILES OF Streptomyces SPECIES

    Directory of Open Access Journals (Sweden)

    Özdemir K

    2013-07-01

    Full Text Available Present study has been conducted for finding out the total protein profile of bacterial strain Streptomyces sps by sodium dodecyl sulphate polyacrylamide gelelectrophoresis. Total 139 isolates of Streptomyces have been isolated from the soil. Amongst all isolated strain, total 20 isolates were used for getting protein profile by SDS PAGE. Amongst all isolates, 20 isolates were selected for protein profiling and these were divided in two groups. Two strains of Streptomyces i.e. S. violaceus and S. albidoflavus were selected as a reference strain for both groups. Band profile were analyzed and assessed by computer added program BioRad Quantity with the use of Unweighted Pair Group Method of Analysis (UPGMA. As a result o f this computer assisted numeric analysis study, approximately 40 different types of protein bands were reported between 10 or 100 kD molecular weight. Analysis of acquired dendogram on the basis of similarities ratios, all 40 proteins can be divid ed in to 7 groups. In addition, the isolates A4B3G, D145B, S5036.6 and reference isolate S. violaceus were available in the same group, while 805A, C804B, F1705 isolates and reference sample S.albidoflavus were detected in the same group. The test organisms which were similar to each other in terms of morphological and biochemical characters delivered the same protein bands. SDS-PAGE method is an effective method interms of determining taxonomical relations between the various species of genus Streptomyces.

  17. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species.

    OpenAIRE

    Pometto, A L; Lee, B T; Johnson, K. E.

    1992-01-01

    Extracellular culture concentrates were prepared from Streptomyces viridosporus T7A, Streptomyces badius 252, and Streptomyces setonii 75Vi2 shake flask cultures. Ten-day-heat-treated (70 degrees C) starch-polyethylene degradable plastic films were incubated with shaking with active or inactive enzyme for 3 weeks (37 degrees C). Active enzyme illustrated changes in the films' Fourier transform infrared spectra, mechanical properties, and polyethylene molecular weight distributions.

  18. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil

    Science.gov (United States)

    Hassan, Ramadan; Shaaban, Mona I.; Abdel Bar, Fatma M.; El-Mahdy, Areej M.; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1–V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  19. Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505.

    Science.gov (United States)

    Keller, Simone; Schneider, Kathrin; Süssmuth, Roderich D

    2006-12-01

    Mycorrhiza helper bacterium Streptomyces strain AcH 505 stimulates ectomycorrhiza formation between spruce and fly agaric by supporting fungal growth whereas growth of pathogenic fungi is suppressed. A fungal growth promoting substance was isolated and the chemical structure elucidated by mass spectrometry and NMR spectroscopy. The absolute configuration of the novel fungal growth promoting compound auxofuran (1) was deduced from NMR data with the help of Mosher esters. PMID:17323648

  20. Xylanase production by Streptomyces viridosporus T7A in submerged and solid-state fermentation using agro-industrial residues

    OpenAIRE

    Luiz Romulo Alberton; Luciana Porto de Souza Vandenberghe; Ricardo Assmann; Ricardo Cancio Fendrich; José Rodriguéz-León; Carlos Ricardo Soccol

    2009-01-01

    The study of xylanase production was conducted by Streptomyces viridosporus T7A in submerged (SmF) and solid-state fermentation (SSF), using agro-industrial residues and sub-products. Napier grass, sugarcane bagasse and soybean bran were used as carbon source, substrate/support, and nitrogen source, respectively. In SmF, Napier grass (1% v/w) supplemented with soybean bran, hydroxyethylcellulose and B complex vitamins were used. Soybean bran (1.5 % w/v), B complex vitamins (0.1%), and hydroxy...

  1. Efficient production of nonactin by Streptomyces griseus subsp. griseus.

    Science.gov (United States)

    Zhan, Yulian; Zheng, Shaolun

    2016-08-01

    Here we report the production of the cyclic macrotetrolide nonactin from the fermentation culture of Streptomyces griseus subsp. griseus. Nonactin is a member of a family of naturally occurring cyclic ionophores known as the macrotetrolide antibiotics. Our fermentation procedure of Streptomyces griseus was performed at 30 °C and 200 rev·min(-1) for 5 days on a rotary shaker. Diaion HP-20 and Amberlite XAD-16 were added to the fermentation medium. Isolated yield of nonactin was up to 80 mg·L(-1) using our methodology. Nonactin is commonly known as an ammonium ionophore and also exhibits antibacterial, antiviral, and antitumor activities. It is also widely used for the preparation of ion-selective electrodes and sensors. Chemical synthesis of nonactin has been achieved by some groups; however, overall yields are very low, making efficient biosynthesis an attractive means of production. PMID:27405846

  2. Determination of optimal conditions of oxytetracyclin production from streptomyces rimosus

    International Nuclear Information System (INIS)

    Streptomyces rimosus is an oxytetracycline (OTC) antibiotic producing bacteria that exhibited activities against gram positive and negative bacteria. OTC is used widely not only in medicine but also in production industry. The antibiotic production of streptomyces covers a very wide range of condition. However, antibiotic producers are particularly fastidious cultivated by proper selection of media such as carbon source. In present study we have optimised conditions of OTC production (Composition of production media, p H, shaking and temperature). The results have been shown that bran barley is the optimal media for OTC production at 28C pH5.8 at 150rpm for 5 days. For antibiotic determination, OTC was extracted with different organic solvent. Thin-layer chromatography system was used for separation and identification of OTC antibiotic. High performance liquid chromatographic (HPLC) method with ultraviolet detection for the analysis of OTC is applied to the determination of OTC purification. (Author). 24 refs

  3. Antagonistic Effect of Streptomyces sp. BS062 against Botrytis Diseases.

    Science.gov (United States)

    Kim, Young-Sook; Lee, In-Kyoung; Yun, Bong-Sik

    2015-09-01

    The use of microorganisms and their secreted molecules to prevent plant diseases is considered an attractive alternative and way to supplement synthetic fungicides for the management of plant diseases. Strain BS062 was selected based on its ability to inhibit the mycelial growth of Botrytis cinerea, a major causal fungus of postharvest root rot of ginseng and strawberry gray mold disease. Strain BS062 was found to be closely related to Streptomyces hygroscopicus (99% similarity) on the basis of 16S ribosomal DNA sequence analysis. Postharvest root rot of ginseng and strawberry gray mold disease caused by B. cinerea were controlled up to 73.9% and 58%, respectively, upon treatment with culture broth of Streptomyces sp. BS062. These results suggest that strain BS062 may be a potential agent for controlling ginseng postharvest root rot and strawberry gray mold disease. PMID:26539052

  4. BIOCHEMICAL, NUTRIENT AND INHIBITORY CHARACTERISTICS OF STREPTOMYCES CULTURED FROM A HYPERSALINE ESTUARY, THE LAGUNA MADRE (TEXAS

    Directory of Open Access Journals (Sweden)

    Luis E. Espinoza

    2013-01-01

    Full Text Available Streptomyces are common soil bacteria that produce secondary metabolites, including several antibiotics; however, the characteristics of marine Streptomyces are largely unknown. Sediment samples were taken from 3 sites in the Laguna Madre to isolate marine Streptomyces. Sediment was diluted, spread onto synthetic seawater media to estimate the total bacterial density of the samples and spread onto starch casein agar to isolate Streptomyces. Isolated Streptomyces were tested for salinity tolerance and optimal growth pH. Isolates were assayed using API 20E® test strips and BIOLOG™ plates to construct biochemical profiles and assess nutrient utilization abilities of the bacteria, respectively. Individual Streptomyces were tested for the ability to inhibit the growth of other isolated Streptomyces (i.e., interference competition and putatively identified by DNA sequencing. Results showed that there was no significant difference in microbial density in sediments from the 3 sampling sites. Eleven (11 Streptomyces pure cultures were obtained in total; most tolerated salinity up to 60 ppt and grew optimally at pH 7.5. Biochemical profile comparisons showed that the Streptomyces were only at least 74% similar; most (8/11 were >90% similar. Isolates could use between 87-95 carbon sources. Three (3 isolates displayed interference toward other isolates. Ten (10 isolates were identified as Streptomyces griseus by DNA sequencing. Laguna Madre Streptomyces organisms display some diverse characteristics with regards to their halotolerance, biochemical profiles, carbon source utilization and inhibition toward other organisms. Further investigations may yield greater understanding of these organisms in this and other marine environments and may be a reservoir of novel microorganisms and secondary metabolites.

  5. Snail-Killing Effects of Streptomyces 218 Powder

    Directory of Open Access Journals (Sweden)

    V.O. Aina

    2012-12-01

    Full Text Available This study is aimed at finding out the snail-killing effects of Streptomyces 218 powder on Oncomelania hupensis snails which are the vectors or intermediate host of Schiltosoma Japonicum (intestinal schistosomiasis in china the tests were carried out in the laboratory and on the field. The snail-killing effects of Streptomyces218 powder, isolated from snail habitat at Anchang Village of Anxiang country in China was tested using the immersion and spraying methods. The tests on the Oncomelania hupensis snails which are intermediate host of Streptomyces japonicum infection were carried out in the laboratory and in the field. The mean corrected snail mortalities of the immersion technique in the laboratory were 81.70 and 98.63% in 10 ppm of 218 solutions after 24 and 48 h, respectively. The mean corrected snail mortalities of the spraying tests in the laboratory were 82.90 and 87.90% at 3 and 5 days, respectively with 10 g/m2 218 powders. The snail-killing ability of 218 powders on the field determines by immersion and spraying methods were comparable to that of the chemical molluscicide-Niclosamide. The corrected snail mortality at 150 ppm of 218 powder (g/m2 and at 2 ppm of Niclosamide by immersion was 100% at the second time test after 24, 48 and 72 h. In the field spraying test, the mean corrected snail mortality at 100 ppm of 218 powders were 61.96 and 70.00% after 3 and 7 days of spraying respectively. At 2 ppm niclosamide, this was found to be 65.58 and 63.81%, respectively. The effective ingredients for the snail-killing are found to be located in the spore chains. Streptomyces 218 powder, although at higher concentrations, seems to be a promising mollusciciding biological agent. If developed further, this could compliment existing mollusciciding agents.

  6. Recombination between short direct repeats in Streptomyces lavendulae plasmid DNA.

    OpenAIRE

    Nakano, M M; Ogawara, H; Sekiya, T

    1984-01-01

    Streptomyces lavendulae S985 carried two plasmids, pSL1 and pSL2. pSL2 contained all of the pSL1 sequences plus a tandem duplication of 900 base pairs from a region of pSL1. Sequence analysis of the duplication junction suggested that the duplication occurred by recombination between short direct repeats of as little as 5 base pairs.

  7. Kinetics of rapamycin production by Streptomyces hygroscopicus MTCC 4003

    OpenAIRE

    Dutta, Subhasish; Bikram BASAK; Bhunia, Biswanath; Chakraborty, Samayita; Dey, Apurba

    2013-01-01

    Research work was carried out to describe the kinetics of cell growth, substrate consumption and product formation in batch fermentation of rapamycin using shake flask as well as laboratory-scale fermentor. Fructose was used as the sole carbon source in the fermentation media. Optimization of fermentation parameters and reliable mathematical models were used for the maximum production of rapamycin from Streptomyces hygroscopicus MTCC 4003. The experimental data for microbial production of rap...

  8. Fermenter studies on the production of pimaricin by streptomyces natalensis

    OpenAIRE

    Mahon, David

    1990-01-01

    The production of the polyene antibiotic, pimaricin by the organism Streptomyces natalensis CBS 700.57 was studied using an apparatus comprising a 10 litre fermentation vessel, and facilities for temperature, pH, dissolved oxygen, vessel pressure and gas composition measurement. The apparatus was connected via a Texas Instruments PM550 programmable logic controller to an IBM-compatible computer in order to record data from the fermentation and to control certain parameters. Adju...

  9. Geranylphenazinediol, an Acetylcholinesterase Inhibitor Produced by aStreptomycesSpecies

    OpenAIRE

    Ohlendorf, Birgit; Schulz, Dirk; Erhard, Arlette; Nagel, Kerstin; Imhoff, Johannes F.

    2012-01-01

    Geranylphenazinediol (1), a new phenazine natural product, was produced by the Streptomyces sp. strain LB173, which was isolated from a marine sediment sample. The structure was established by analysis of NMR and MS data. 1 inhibited the enzyme acetylcholinesterase in the low micromolar range and showed weak antibacterial activity. In order to get a more detailed picture of the activity profile of 1, its inhibitory potential was compared to that of related structures

  10. Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species.

    Science.gov (United States)

    Ohlendorf, Birgit; Schulz, Dirk; Erhard, Arlette; Nagel, Kerstin; Imhoff, Johannes F

    2012-07-27

    Geranylphenazinediol (1), a new phenazine natural product, was produced by the Streptomyces sp. strain LB173, which was isolated from a marine sediment sample. The structure was established by analysis of NMR and MS data. 1 inhibited the enzyme acetylcholinesterase in the low micromolar range and showed weak antibacterial activity. In order to get a more detailed picture of the activity profile of 1, its inhibitory potential was compared to that of related structures. PMID:22775474

  11. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    OpenAIRE

    М. P. Teplitskaya; I. E. Sokolova

    2005-01-01

    These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of ini...

  12. CobB1 deacetylase activity in Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Mikulík, Karel; Felsberg, Jürgen; Kudrnáčová, E.; Bezoušková, Silvia; Šetinová, Dita; Stodůlková, Eva; Zídková, J.; Zídek, Václav

    2012-01-01

    Roč. 90, č. 2 (2012), s. 179-187. ISSN 0829-8211 R&D Projects: GA AV ČR(CZ) IAA500110805; GA ČR GA303/09/0475 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : sirtuin * NAD(+)dependent deacetylation activity CobB1 * Streptomyces coeliocolor Subject RIV: EE - Microbiology, Virology Impact factor: 2.915, year: 2012

  13. Polyethylene glycol-assisted transfection of Streptomyces protoplasts.

    OpenAIRE

    Suarez, J E; Chater, K F

    1980-01-01

    In the presence of polyethylene glycol (concentration optimum 20%), protoplasts of appropriate Streptomyces strains could be transfected by deoxyribonucleic acid (DNA) of five temperate phages (phi C31, VP5, R4, phi 448, and S14) belonging to four different immunity groups. Quantitation of transfection was made possible by plating the transfection mixture with excess uninfected protoplasts in soft agar overlays on protoplast regeneration medium so that plaques were easily detected. Optimum fr...

  14. 5-ketoreductase from Streptomyces bingchengensis: overexpression and preliminary characterization.

    Science.gov (United States)

    Wang, Xiang-Jing; Wang, Cheng-Qin; Sun, Xiao-Lin; Xiang, Wen-Sheng

    2010-10-01

    To elucidate the biotransformation from 5-oxomilbemycins A(3) and A(4) to milbemycins A(3) and A(4) in Streptomyces bingchengensis, the C5-ketoreductase gene (milF) was cloned using PCR with the specific primer designed from homologous nucleotide sequences. The C5-ketoreductase (MilF) was heterologously expressed in E. coli BL21 (DE3) as a His-tagged fusion protein. The characterization and biotransformation function of purified MilF was verified by in vitro enzyme assay. MilF is an NADPH-dependent reductase. The biotransformation products, analyzed by LC-APCI/MS, were identified as milbemycin A(3) and milbemycin A(4). MilF is thus present in Streptomyces bingchengensis and can transform 5-oxomilbemycins A(3) and A(4) to milbemycins A(3) and A(4). These findings are significant for understanding the biosynthetic pathway of milbemycins in Streptomyces bingchengensis and pave the way to obtain a producer strain of 5-oxomilbemycins directly by targeted milF disruption. PMID:20563624

  15. Development of nitrilase promoter-derived inducible vectors for Streptomyces.

    Science.gov (United States)

    Matsumoto, Masako; Hashimoto, Yoshiteru; Saitoh, Yuki; Kumano, Takuto; Kobayashi, Michihiko

    2016-06-01

    An inducible expression vector, pSH19, which harbors regulatory expression system PnitA-NitR, for streptomycetes was constructed previously. Here, we have modified pSH19 to obtain shuttle vectors for Streptomyces-E. coli by introducing the replication origin of a plasmid for E. coli (ColE1) and an antibiotic-resistant gene. Six inducible shuttle vectors, pESH19cF, pESH19cR, pESH19kF, pESH19kR, pESH19aF, and pESH19aR, for Streptomyces-E. coli, were successfully developed. The stability of these vectors was examined in five different E. coli strains and Streptomyces lividans TK24. The stability test showed that the pSH19-derived shuttle vectors were stable in E. coli Stbl2 and S. lividans TK24. Heterologous expression experiments involving each of the catechol 2,3-dioxygenase, nitrilase, and N-substituted formamide deformylase genes as a reporter gene showed that pESH19cF, pESH19kF, and pESH19aF possess inducible expression ability in S. lividans TK24. Thus, these vectors were found to be useful expression tools for experiments on both Gram-negative and Gram-positive bacterial genes. PMID:26923287

  16. Langkocyclines: novel angucycline antibiotics from Streptomyces sp. Acta 3034(*).

    Science.gov (United States)

    Kalyon, Bahar; Tan, Geok-Yuan A; Pinto, John M; Foo, Cheau-Yee; Wiese, Jutta; Imhoff, Johannes F; Süssmuth, Roderich D; Sabaratnam, Vikineswary; Fiedler, Hans-Peter

    2013-10-01

    Langkocyclines A1-A3 and B1 and B2, five new angucycline antibiotics produced by Streptomyces sp. Acta 3034, were detected in the course of our HPLC-diode array screening. The producing strain was isolated from the rhizospheric soil of a Clitorea sp. collected from Burau Bay, Langkawi, Malaysia, and was characterized by morphological, physiological and chemotaxonomic features in addition to 16S ribosomal RNA gene sequence information. Strain Acta 3034 is closely related to Streptomyces psammoticus NBRC 13971(T) and Streptomyces lanatus NBRC 12787(T). Langkocyclines consist of an angular tetracyclic benz[a]anthracene skeleton and hydrolyzable O-glycosidic sugar moieties. The yellow-colored A-type langkocyclines differ in their aglycon from the blue-lilac-colored B-type langkocyclines. The A-type langkocycline aglycon is identical to that of aquayamycin and urdamycin A. The chemical structures of the langkocyclines were elucidated by HR-MS, 1D and 2D NMR experiments. They are biologically active against Gram-positive bacteria and exhibit a moderate antiproliferative activity against various human tumor cell lines. PMID:23820614

  17. Streptomyces strains producing mitochondriotoxic antimycin A found in cereal grains.

    Science.gov (United States)

    Rasimus-Sahari, Stiina; Mikkola, Raimo; Andersson, Maria A; Jestoi, Marika; Salkinoja-Salonen, Mirja

    2016-02-01

    Reasons for mammalian cell toxicity observed in barley and spring wheat grains were sought. Streptomyces sp. isolates from wheat and barley produced heat-stable methanol-soluble substances which inhibited the motility of exposed porcine spermatozoa used as a toxicity indicator. Several barley isolates produced antimycin A (2 to 5 ng/mg wet wt of biomass), a macrolide antibiotic known to block oxygen utilization in mitochondria. The antimycin-producing isolates were members of the Streptomyces albidoflavus group. In in vitro assays with porcine kidney tubular epithelial cells, the specific toxicity of antimycin A towards mitochondria was higher than that of the mycotoxin enniatin B but lower than that of the mitochondriotoxins cereulide and paenilide, produced by food-related Bacillus cereus and Paenibacillus tundrae, respectively. The toxic wheat isolates, related to Streptomyces sedi, did not produce antimycin A and or any other known toxin. Our results suggest that the presence of toxin-producing streptomycetes in stored cereal grains may pose a thus far unrecognized threat for food and feed safety. PMID:26619316

  18. The Cytotoxic Constituents from Marine-derived Streptomyces 3320#

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The present work studies the chemical constituents from marine-derived streptomyces 3320# and their antitumor activities. The n-BuOH extract of the ferment broth of 3320# was chromatographed on silica gel, Sephadex LH-20, ODS columns and HPLC to separate the compounds with antitoumor activities. Their structures were identified using IR, UV, NMR, MS spectroscopic techniques and compared with published data. The antitumor activities of the isolates were assayed using SRB method and flow cytometry assay, accompanied with the morphological observation of the cells under light microscope against mammalian tsFT210 cells. Ten compounds, cyclo-(Ala-Leu) 1, cyclo-(Ala-Ile) 2, cyclo-(Ala-Val) 3, cyclo-(Phe- Pro) 4, cyclo-(Phe-Gly) 5, cyclo-(Leu-Pro) 6, 1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid 7, N-(4-hydroxyphenethyl) acetamide 8, 4-methyoxy-1-(2-hydroxy) ethylbenzene 9 and uridine 10, were isolated from the ferment broth of streptomyces 3320#. Among them, compounds 6, 7, 8 and 10 showed potent cytotoxicity against the tsFT210 cell with the IC50 values of 3 . 6, 7 . 2, 5 . 2 and 1 . 6 mmol L - 1, respectively. Compounds 8, 10 also exhibited apoptosis inducing activity under 2 . 0 mmol L - 1. Compounds 6, 7, 8 and 10 are the principle bioactive constituents responsible for the antitumor activities of marine streptomyces 3320# . Compound 7 was isolated from this species for the first time.

  19. Characterisation of esterase genes in the genomes of Streptomyces coelicolor A3(2) and Streptomyces avermitilis

    OpenAIRE

    Soror, Sameh

    2007-01-01

    Esterases and lipases are widely used as industrial enzymes and for the synthesis of chiral drugs. Because of their rich secondary metabolism, Streptomyces species offer a relatively untapped source of interesting esterases and lipases. S. coelicolor and S. avermitilis contain 51 genes annotated as esterases and/or lipases. In this study I have cloned 14 different genes encoding for lipolytic enzymes from S. coelicolor (11 genes) and S. avermitilis (four genes). Some of these genes were over-...

  20. Principles of microbial alchemy: insights from the Streptomyces coelicolor genome sequence

    OpenAIRE

    Thompson, Charles J.; Fink, Doris; Nguyen, Liem D.

    2002-01-01

    The world's most creative producers of natural pharmaceutical compounds are soil-dwelling bacteria classified as Streptomyces. The availability of the recently completed Streptomyces coelicolor genome sequence provides a link between the folklore of antibiotics and other bioactive compounds to underlying biochemical, molecular genetic and evolutionary principles.

  1. Rapid and Specific Method for Evaluating Streptomyces Competitive Dynamics in Complex Soil Communities▿ †

    OpenAIRE

    Schlatter, Daniel C; Samac, Deborah A.; Tesfaye, Mesfin; Kinkel, Linda L

    2010-01-01

    Quantifying target microbial populations in complex communities remains a barrier to studying species interactions in soil environments. Quantitative PCR (qPCR) assays were developed for quantifying pathogenic Streptomyces scabiei and antibiotic-producing Streptomyces lavendulae strains in complex soil communities. This assay will be useful for evaluating the competitive dynamics of streptomycetes in soil.

  2. New Method for Monitoring Programmed Cell Death and Differentiation in Submerged Streptomyces Cultures▿ †

    OpenAIRE

    Yagüe, Paula; Manteca, Angel; Simon, Alejandro; Diaz-Garcia, Marta Elena; Sanchez, Jesus

    2010-01-01

    Vital stains were used in combination with fluorimetry for the elaboration of a new method to quantify Streptomyces programmed cell death, one of the key events in Streptomyces differentiation. The experimental approach described opens the possibility of designing online protocols for automatic monitoring of industrial fermentations.

  3. Biosynthesis of gold nanoparticles using streptomyces fulvissimus isolate

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-04-01

    Full Text Available Objective(s: In recent years, the biosynthesis of gold nanoparticles has been the focus of interest because of their emerging application in a number of areas such as biomedicine. In the present study we report the extracellular biosynthesis of gold nanoparticles (AuNPs by using a positive bacterium named Streptomyces fulvissimus isolate U from rice fields of Guilan Province, Iran. Materials and Methods: From over 20 Streptomyces isolates collected, isolate U showed high AuNPs biosynthesis activity. To determine its taxonomical identity, its morphology was characterized by scanning electron microscope and partial molecular analysis performed by PCR. In this regard, 16S rDNA of isolate U was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI BLAST method. In biosynthesis of AuNPs by this bacterium, the biomass of bacterium exposed to the HAuCl4 solution. Results: The nanoparticles obtained were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM and Energy dispersive X-ray (EDX spectroscopy and X-ray diffraction spectroscopy (XRD analyses. Our results indicated that Streptomyces fulvissimus isolateU bio-synthesizes extracellular AuNPs in the range of 20-50 nm. Conclusions: This technique of green synthesis of AuNPs by a microbial source may become a promising method because of its environmental safety. Its optimization may make it a potential procedure for industrial production of gold nanoparticles.

  4. Production of gold nanoparticles by Streptomyces djakartensis isolate B-5

    Directory of Open Access Journals (Sweden)

    Sara Biglari

    2014-09-01

    Full Text Available  Objective(s: Biosynthesis of gold nanoparticles (NGPs is environmentally safer than chemical and physical procedures. This method requires no use of toxic solvents and synthesis of dangerous products and is environmentally safe. In this study, we report the biosynthesis of NGPs using Streptomyces djakartensis isolate B-5. Materials and Methods: NGPs were biosynthesized by reducing aqueous gold chloride solution via a Streptomyces isolate without the need for any additive for protecting nanoparticles from aggregation. We characterized the responsible Streptomycete; its genome DNA was isolated, purified and 16S rRNA was amplified by PCR. The amplified isolate was sequenced; using the BLAST search tool from NCBI, the microorganism was identified to species level. Results: Treating chloroauric acid solutions with this bacterium resulted in reduction of gold ions and formation of stable NGPs. TEM and SEM electro micrographs of NGPs indicated size range from 2- 25 nm with average of 9.09 nm produced intracellular by the bacterium. SEM electro micrographs revealed morphology of spores and mycelia. The amplified PCR fragment of 16S rRNA gene was cloned and sequenced from both sides; it consisted of 741 nucleotides. According to NCBI GenBank, the bacterium had 97.1% homology with Streptomyces djakartensis strain RT-49. The GenBank accession number for partial 16S rRNA gene was recorded as JX162550. Conclusion: Optimized application of such findings may create applications of Streptomycetes for use as bio-factories in eco-friendly production of NGPs to serve in demanding industries and related biomedical areas. Research in this area should also focus on the unlocking the full mechanism of NGPs biosynthesis by Streptomycetes.

  5. Morphological differentiation of Streptomyces viridochromogenes E-219 on solid culture

    International Nuclear Information System (INIS)

    The Streptomyces viridochromogenes E-219 was derived from Streptomyces viridochromogenes CGMCC4.1119 treated with 60Co γ-rays irradiation and protoplast fusion. With the help of fluorescent probes, fluorescence microscope and electron microscopy, the morphology and development of E-219 on solid surface culture were investigated in this study. The effect of agarslant culture time on the production of Avilamycin was also studied to provide theoretical basis for industrial fermentation of selecting the appropriate seed to culture on the agarslant culture medium. The results implied that the development of colonies of Streptomyces viridochromogenes accompanied the intermittent hyhae apoptosis, and the production of spores was from the active mycelium. The colonial morphology of strain E-219 was significantly different from the original strain CGMCC4h1119. There were variegated hyphae formation in the stage of spore germination and initial hyphae development (10 h) with the live and dead segments alternated in a highly regular fashion within the same hypha. After the early single colony formation, the third phase was followed by profuse growth of the live segments derived from the variegated hypha, then the second apoptosis of the mycelia (48 h) was occurred with another quick growth, and sporulation was occurred at 96 h. Strain CGMCC4.1119 had spiral sporotrichial and round conidiophores with spike, whereas strain E-219 had linear sporotrichial, smooth and dylindrical conidiophore. The results of shake flask experiments indicated that the spores of E-219 had that highest activity when cultured on agarslant culture medium and incubated for 106 h with the production of avilamycin up to 1200 mg/L. (authors)

  6. Characterization of regulatory pathways controlling morphological differentiation in "Streptomyces coelicolor"

    OpenAIRE

    San Paolo, Salvatore

    2007-01-01

    The filamentous eubacterium, Streptomyces coelicolor, undergoes a complex cycle of growth and development in which morphological differentiation coincides with the activation of the orphan response regulator RamR and the biosynthesis of a morphogenic peptide called SapB. SapB is a lantibiotic-like molecule derived from the product of the ramS gene that promotes aerial hyphae formation (AHF) by breaking the aqueous tension on the surface of the substrate mycelium. A ramR-disrupted mutant is de...

  7. Membrane Topology of the Streptomyces lividans Type I Signal Peptidases

    OpenAIRE

    Geukens, Nick; Lammertyn, Elke; Van Mellaert, Lieve; Schacht, Sabine; Schaerlaekens, Kristien; Parro, Victor; Bron, Sierd; Engelborghs, Yves; Mellado, Rafael P.; Anné, Jozef

    2001-01-01

    Most bacterial membranes contain one or two type I signal peptidases (SPases) for the removal of signal peptides from export proteins. For Streptomyces lividans, four different type I SPases (denoted SipW, SipX, SipY, and SipZ) were previously described. In this communication, we report the experimental determination of the membrane topology of these SPases. A protease protection assay of SPase tendamistat fusions confirmed the presence of the N- as well as the C-terminal transmembrane anchor...

  8. Three new amides from streptomyces sp. H7372

    International Nuclear Information System (INIS)

    Three new amides, methyl phenatate A (1), actiphenamide (2) and actiphenol 1-beta-D-glucopyranoside (3), along with thirteen known compounds, were isolated from the organic extract of a fermentation culture of Streptomyces sp. H7372. The structures were elucidated by spectroscopic methods including 1D- and 2D-NMR techniques, and MS analyses. Cycloheximide (6) and cyclo(ΔAla-L-Val) (8) gave a clear zone of inhibition of Ras-Raf-1 interaction in the yeast two hybrid assay which showed high potency with 10 and 25 mm clear ZOIs on SD His- and inactive on SD His+ at 2.5 mug per disk, respectively. (author)

  9. A New Peptide Isolated from a Marine Derived Streptomyces bacillaris

    OpenAIRE

    Hu, Youcai; MacMillan, John B

    2012-01-01

    A new peptide, l-O-Lac-l-Val-d-O-Hiv-d-Val (1), consisting of d-valine, l-valine, l-lactic acid, and 3-d-hydroxyisovaleric acid, was isolated from the culture of the marine sediment derived Streptomyces bacillaris. The planar structure of compound 1 was assigned by 1D, 2D NMR and mass spectroscopic analyses. Following acid and base hydrolysis, the absolute configuration of the valine residues in 1 were determined by application of the advanced Marfey’s method and the absolute configurations o...

  10. Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.

    Science.gov (United States)

    Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun

    2016-10-01

    A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)). PMID:27209413

  11. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr.

    Science.gov (United States)

    Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)). PMID:26608172

  12. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin.

    Science.gov (United States)

    Xu, Min-Juan; Wang, Jia-Hua; Bu, Xu-Liang; Yu, He-Lin; Li, Peng; Ou, Hong-Yu; He, Ying; Xu, Fang-Di; Hu, Xiao-Yan; Zhu, Xiao-Mei; Ao, Ping; Xu, Jun

    2016-01-01

    Streptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyces. Based on the antiSMASH pipeline, a total of 21 gene clusters were predicted to be involved in secondary metabolism. The gene cluster responsible for the biosynthesis of xiamenmycin resides in a strain-specific 61,387-bp genomic island belonging to the left-arm region. A core metabolic network consisting of 104 reactions that supports xiamenmycin biosynthesis was constructed to illustrate the necessary precursors derived from the central metabolic pathway. In accordance with the finding of a putative ikarugamycin gene cluster in the genome, the targeted chemical profiling of polycyclic tetramate macrolactams (PTMs) resulted in the identification of ikarugamycin. A successful genome mining for bioactive molecules with different skeletons suggests that the naturally minimized genome of S. xiamenensis 318 could be used as a blueprint for constructing a chassis cell with versatile biosynthetic capabilities for the production of secondary metabolites. PMID:26744183

  13. SarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145

    Institute of Scientific and Technical Information of China (English)

    Xijun Ou; Bo Zhang; Lin Zhang; Kai Dong; Chun Liu; Guoping Zhao; Xiaoming Ding

    2008-01-01

    The filamentous bacteria Streptomyces exhibit a complex life cycle involving morphological differentiation and secondary metabolism. A putative membrane protein gene sarA (sco4069), sporulation and antibiotic production related gene A, was partially characterized in Streptomyces coelicolor M145. The gene product had no characterized functional domains and was highly conserved in Streptomyces. Compared with the wild-type M145, the sarA mutant accelerated sporulation and dramatically decreased the production of actinorhodin and undecylprodigiosin.Reverse transcription-polymerase chain reaction analysis showed that SarA influenced antibiotic production by controlling the abundance of actll-orf4 and redZ messenger RNA.

  14. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

    DEFF Research Database (Denmark)

    Seghezzi, Nicolas; Amar, Patrick; Købmann, Brian;

    2011-01-01

    Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so...... cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different...

  15. Discoloration of Ancient Egyptian Mural Paintings by Streptomyces Strains and Methods of Its Removal

    Directory of Open Access Journals (Sweden)

    Akmal Ali SAKR

    2012-12-01

    Full Text Available Streptomyces isolated from mural paintings at Tell Basta and Tanis tombs were identified using 16S rDNA sequencing method. These Streptomyces strains caused discoloration of mural paintings with irreversible red stains of carotenoid pigment. A mixture of n-hexan and acetone (92:8 v/v was the best solvent for extracting and purification of red pigment from biomass of Streptomyces. Dimethyl sulfoxide (DMSO and N,N-dimethylformamide (DMF were the most effective in treatment of these red stains without changing the paintings or stone surfaces.

  16. Streptomyces: A Screening Tool for Bacterial Cell Division Inhibitors

    Science.gov (United States)

    Jani, Charul; Tocheva, Elitza I.; McAuley, Scott; Craney, Arryn; Jensen, Grant J.; Nodwell, Justin

    2016-01-01

    Cell division is essential for spore formation but not for viability in the filamentous streptomycetes bacteria. Failure to complete cell division instead blocks spore formation, a phenotype that can be visualized by the absence of gray (in Streptomyces coelicolor) and green (in Streptomyces venezuelae) spore-associated pigmentation. Despite the lack of essentiality, the streptomycetes divisome is similar to that of other prokaryotes. Therefore, the chemical inhibitors of sporulation in model streptomycetes may interfere with the cell division in rod-shaped bacteria as well. To test this, we investigated 196 compounds that inhibit sporulation in S. coelicolor. We show that 19 of these compounds cause filamentous growth in Bacillus subtilis, consistent with impaired cell division. One of the compounds is a DNA-damaging agent and inhibits cell division by activating the SOS response. The remaining 18 act independently of known stress responses and may therefore act on the divisome or on divisome positioning and stability. Three of the compounds (Fil-1, Fil-2, and Fil-3) confer distinct cell division defects on B. subtilis. They also block B. subtilis sporulation, which is mechanistically unrelated to the sporulation pathway of streptomycetes but is also dependent on the divisome. We discuss ways in which these differing phenotypes can be used in screens for cell division inhibitors. PMID:25256667

  17. Comparison between Pathogenic Streptomyces scabies Isolates of Common Scab Disease

    Directory of Open Access Journals (Sweden)

    Mohamed HOSNY

    2016-06-01

    Full Text Available Streptomyces scabies (Thaxter causes destructive and serious damages to many vegetable field crops, including potato. Fourteen pure isolates were obtained from naturally diseased potato tubers showing symptoms of common scab disease, collected from different localities of Sohag governorate, Egypt. All tested isolates were identified as S. scabies (Stc according to morphological and biochemical tests. Isolate Stc 10 exhibited the highest activity of polyphenoloxidase enzyme, followed by isolate Stc 11, while isolate Stc 2 produced the lowest activity of this enzyme. Concerning the peroxidase activity, the isolates varied in their production; Stc 11 exhibited the highest activity enzyme, followed by isolate Stc 2, whereas isolate Stc 10 produced the lowest activity of enzyme. In regard with Tyrosine Amonnia Lyase (TAL activity, isolate Stc 2 exhibited the highest activity, followed by isolate Stc 10, whereas isolate Stc 11 exhibited the lowest activity. Agarose gel electrophoresis of the PCR amplification products revealed a band representing the expected 279 bp DNA fragment in each DNA extracted from the highly pathogenic isolates Stc 10 and 11. The results demonstrated that PCR amplification of the nec1 gene could be used as a reliable marker for detecting pathogenic Streptomyces isolates on potato tubers.

  18. Streptomyces infection in Cushing syndrome: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Masoud Ataiekhorasgani

    2014-01-01

    Full Text Available Streptomyces are saprophytic soil organisms rarely known to cause invasive infections. Streptomyces is the largest genus, producing antibacterial, antifungal and antiparasitic drugs. The case was a 24-year-old man, admitted for sudden dyspnea, fever and sputum and decreased sound in the left lung. The chest X-ray showed hydropneumothorax. After chest tube insertion, lung expansion did not happen. Pleural effusion was exudative with gram-positive bacillus and Streptomyces in culture. Owing to symptoms of Cushing in history, examination and laboratory work-up for Cushing was done and finally he underwent bilateral adrenalectomy. The patient was on antibiotic broad spectrum antibiotic and then was changed to antibiotic as organism was sensitive to and discharged with clarithromycin for 6 months. Streptomyces happens in immunodeficient patient. Diagnosis is based on culture and contamination was ruled out. Treatment period is longer for patients owing to slow growing nature.

  19. Decontamination of waters polluted by copper ions using streptomyces noursei and candida utilis biomass

    Czech Academy of Sciences Publication Activity Database

    Prell, Aleš; Kujan, Petr; Sobotka, Miroslav; Páca, J.

    Santiago, 2004, s. 159. [International Biotechnology Symposium and Exhibition /12./. Santiago (CL), 17.10.2004-22.10.2004] Institutional research plan: CEZ:AV0Z5020903 Keywords : candida utilis * streptomyces noursei Subject RIV: EE - Microbiology, Virology

  20. Preliminary X-ray crystallographic analysis of the glycosyltransferase from a marine Streptomyces species

    OpenAIRE

    Gong, Liping; Xiao, Yi; Liu, Qiang; Li, Sumei; Zhang, Changsheng; Liu, Jinsong

    2010-01-01

    The recombinant glycosyltransferase ElaGT from the elaiophylin-producing marine Streptomyces sp. SCSIO 01934 has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.9 Å resolution.

  1. γ-Butyrolactones : Streptomyces signalling molecules regulating antibiotic production and differentiation

    NARCIS (Netherlands)

    Takano, Eriko

    2006-01-01

    Small signalling molecules called γ-butyrolactones are mainly produced by Streptomyces species in which they regulate antibiotic production and morphological differentiation. Their molecular mechanism of action has recently been unravelled in several streptomycetes, revealing a diverse and complex s

  2. Biosurfactant and Heavy Metal Resistance Activity of Streptomyces spp. Isolated from Saltpan Soil

    Directory of Open Access Journals (Sweden)

    Lakshmipathy Deepika

    2010-06-01

    Full Text Available Actinomycetes were isolated from the marine soil samples collected at the Ennore saltpan and were screened for biosurfactant and heavy metal resistance activity. Biosurfactant activity was evaluated by haemolysis, drop collapsing test and lipase production. Similarly heavy metal resistance was determined by tube method and agar diffusion method. Among them, two actinomycetes isolates VITDDK1 and VITDDK2 exhibited significant biosurfactant and heavy metal resistance activity. Based on the Hideo Nonomura’s key for classification of actinomycetes, the isolate VITDDK1 was similar to Streptomyces orientalis and VITDDK2 to Streptomyces aureomonopodiales. However molecular phylogeny based on neighbour-joining method showed 99% similarity of VITDDK1 with Streptomyces sp. A403Ydz-QZ and 93% similarity of VITDDK2 with Streptomyces sp. strain 346.

  3. Possible involvement of a plasmid in arginine auxotrophic mutation of Streptomyces kasugaensis.

    OpenAIRE

    Nakano, M M; Ozawa, K; Ogawara, H

    1980-01-01

    Streptomyces kasugaensis gave arginine auxotrophic mutants at high frequency, The coupled loss and reappearance of plasmid deoxyribonucleic acid with arginine auxotrophy suggested that the insertion of the plasmid into chromosomal deoxyribonucleic acid caused the arginine auxotrophy.

  4. Proteome analysis of gene expression in ser/THR protein kinase multiple mutant of streptomyces granatiocolor

    Czech Academy of Sciences Publication Activity Database

    Nováková, Linda; Nádvorník, Richard; Bobek, Jan; Vohradský, Jiří; Lněnička, Petr; Janeček, Jiří; Branny, Pavel

    Banff, 2004, s. 47. [Cell-Cell Communication in Bacteria /2./. Banff (CA), 23.07.2004-27.07.2004] Institutional research plan: CEZ:AV0Z5020903 Keywords : stpk * streptomyces * myxococcus Subject RIV: EE - Microbiology, Virology

  5. Effect of PCL/PEG-Based Membranes on Actinorhodin Production in Streptomyces coelicolor Cultivations.

    Science.gov (United States)

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Puglia, Anna Maria; Gallo, Giuseppe

    2016-05-01

    The actinomycetes, Gram-positive filamentous bacteria, are the most prolific source of natural occurring antibiotics. At an industrial level, antibiotics from actinomycete strains are produced by means of submerged fermentations, where one of the major factors negatively affecting bioproductivity is the pellet-shaped biomass growth. The immobilization of microorganisms on properly chosen supports prevents cell-cell aggregation resulting in improving the biosynthetic capability. Thus, novel porous biopolymer-based devices are developed by combining melt mixing and particulate leaching. In particular, polycaprolactone (PCL), polyethylene glycol (PEG), and sodium chloride (NaCl) with different grain sizes are used to prepare PCL/PEG/NaCl blends in the melt. These blends are then leached to obtain PCL-based porous membranes that are used as solid support for the growth of Streptomyces coelicolor, a model streptomycete used to produce various antibiotics including the blue colored actinorhodin (ACT). Thereafter, the effect of the devices' characteristics on the bacterial growth and on the production ACT is evaluated. The results showed that ACT production is strongly dependent on the pore size distribution of the device. Moreover, membranes with pores ranging from 90 to 110 μm are able to offer a potential improvement in volumetric productivity of ACT if compared to conventional submerged liquid culture. PMID:26762618

  6. Capability of Streptomyces spp. in Controlling Bacterial Leaf Blight Disease in Rice Plants

    OpenAIRE

    Ratih D. Hastuti; Yulin Lestari2); Rasti Saraswati; Antonius Suwanto; Chaerani

    2012-01-01

    Problem statement: Bacterial Leaf Blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most damaging disease in lowland rice growing areas in Indonesia. Streptomyces spp. have been known as a producer of antimicrobial compounds that can be used as biocontrol agents. This study examined the ability of three promising indigenous Streptomyces isolates which were previously selected from in vitro agar media and greenhouse test to suppress natural infection of Xoo during dry and wet s...

  7. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae

    DEFF Research Database (Denmark)

    Yagüe, Paula; Willemse, Joost; Koning, Roman I;

    2016-01-01

    Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae......, but cross-membrane formation does not depend on FtsZ. Thus, a new level of hyphal organization is presented involving unprecedented high-frequency compartmentalization, which changes the old dogma that Streptomyces vegetative hyphae have scarce compartmentalization....

  8. Structure and evolution of Streptomyces interaction networks in soil and in silico.

    OpenAIRE

    Kalin Vetsigian; Rishi Jajoo; Roy Kishony

    2011-01-01

    Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated fr...

  9. Structure and Evolution of Streptomyces Interaction Networks in Soil and In Silico

    OpenAIRE

    Vetsigian, Kalin; Jajoo, Rishi; Kishony, Roy

    2011-01-01

    Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated fr...

  10. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence

    OpenAIRE

    Clark, Laura C.; Seipke, Ryan F; Pilar Prieto; Joost Willemse; van Wezel, Gilles P; Hutchings, Matthew I; Hoskisson, Paul A.

    2013-01-01

    Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction...

  11. Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis

    OpenAIRE

    Capstick, David S.; Jomaa, Ahmad; Hanke, Chistopher; Ortega, Joaquin; Elliot, Marie A.

    2011-01-01

    The chaplin proteins are functional amyloids found in the filamentous Streptomyces bacteria. These secreted proteins are required for the aerial development of Streptomyces coelicolor, and contribute to an intricate rodlet ultrastructure that decorates the surfaces of aerial hyphae and spores. S. coelicolor encodes eight chaplin proteins. Previous studies have revealed that only three of these proteins (ChpC, ChpE, and ChpH) are necessary for promoting aerial development, and of these three, ...

  12. THE ANTAGONISTIC ACTIVITY OF ACTINOMYCETES OF STREPTOMYCES GENUS IN RELATION TO TRICHODERMA KONINGII

    OpenAIRE

    Barbara Breza-Boruta; Zbigniew Paluszak

    2016-01-01

    The aim of the study was to estimate the effect of actinomycetes of genus Streptomyces on the growth of the antagonistic fungus Trichoderma koningii. 150 strains of Streptomyces spp. isolated from two potato cropping systems were used to the tests. Analyses were conducted experimentally in vitro on PDA medium with pH 6 and 7. The results obtained clearly indicate the inhibitory effect of actinomycetes on the fungus T. koningii. Of the tested population of actinomycetes only two strains did no...

  13. Isolation and Molecular Identification of Streptomyces spp. with Antibacterial Activity from Northwest of Iran

    OpenAIRE

    Hadi Maleki; Alireza Dehnad; Shahram Hanifian; Sajjad Khani

    2013-01-01

    Introduction: Streptomyces are a group of prokaryotes that are usually found in all types of ecosystems including water and soil. This group of bacteria is noteworthy as antibiotic producers; so the isolation and characterization of new species seemed to be crucial in introduction of markedly favorable antibiotics. Therefore, in this study we aim to isolate and characterize novel strains of Streptomyces with high antibiotic production capability. Methods: To achieve this goal, from 1...

  14. Cyclo (Tyrosyl-Prolyl) Produced by Streptomyces sp.: Bioactivity and Molecular Structure Elucidation

    OpenAIRE

    ROFIQ SUNARYANTO; BAMBANG MARWOTO; LIESBETINI HARTOTO; ZAINAL ALIM MAS'UD; TUN TEDJA IRAWADI

    2011-01-01

    Determination of bioactivity by minimum inhibitory concentration (MIC) methods and molecular structure identification of antibiotic produced by Streptomyces sp. have been carried out. The antibiotic was produced by liquid culture using Streptomyces sp. isolate. Purification of antibiotic was carried out by silica gel column chromatography and preparative HPLC. Molecular structure identification was carried out using ESI-MS, 1H NMR, 13C NMR, and 13C DEPT NMR. Pure antibiotic showed inhibition ...

  15. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    Directory of Open Access Journals (Sweden)

    Viviane eCordovez

    2015-10-01

    Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  16. Production and Cytotoxicity of Extracellular Insoluble and Droplets of Soluble Melanin by Streptomyces lusitanus DMZ-3

    OpenAIRE

    Madhusudhan, D. N.; Bi Bi Zainab Mazhari; Dastager, Syed G.; Dayanand Agsar

    2014-01-01

    A Streptomyces lusitanus DMZ-3 strain with potential to synthesize both insoluble and soluble melanins was detected. Melanins are quite distinguished based on their solubility for varied biotechnological applications. The present investigation reveals the enhanced production of insoluble and soluble melanins in tyrosine medium by a single culture. Streptomyces lusitanus DMZ-3 was characterized by 16S rRNA gene analysis. An enhanced production of 5.29 g/L insoluble melanin was achieved in a su...

  17. Biosynthesis of Hexahydroxyperylenequinone Melanin via Oxidative Aryl Coupling by Cytochrome P-450 in Streptomyces griseus

    OpenAIRE

    Funa, Nobutaka; Funabashi, Masanori; OHNISHI, Yasuo; Horinouchi, Sueharu

    2005-01-01

    Dihydroxyphenylalanine (DOPA) melanins formed from tyrosine by tyrosinases are found in microorganisms, plants, and animals. Most species in the soil-dwelling, gram-positive bacterial genus Streptomyces produce DOPA melanins and melanogenesis is one of the characteristics used for taxonomy. Here we report a novel melanin biosynthetic pathway involving a type III polyketide synthase (PKS), RppA, and a cytochrome P-450 enzyme, P-450mel, in Streptomyces griseus. In vitro reconstitution of the P-...

  18. Production, Purification, and Characterization of β-(1-4)-Endoxylanase of Streptomyces roseiscleroticus

    OpenAIRE

    Grabski, Anthony C.; Jeffries, Thomas W.

    1991-01-01

    Twelve species of Streptomyces that formerly belonged to the genus Chainia were screened for the production of xylanase and cellulase. One species, Streptomyces roseiscleroticus (Chainia rosea) NRRL B-11019, produced up to 16.2 IU of xylanase per ml in 48 h. A xylanase from S. roseiscleroticus was purified and characterized. The enzyme was a debranching β-(1-4)-endoxylanase showing high activity on xylan but essentially no activity against acid-swollen (Walseth) cellulose. It had a very low a...

  19. Expression von DNA aus Bodenproben in Streptomyces für den Nachweis neuer Enzymaktivitäten

    OpenAIRE

    Bonacker, Eckart

    2002-01-01

    Im Rahmen dieser Arbeit wurden Genbanken aus Boden DNA in Streptomyces erstellt und auf Enzymaktivität gescreent. In diesem Zusammenhang wurden anfänglich mehrere Reportergene in Streptomyces exprimiert und verschiedene Methoden zur Transformation von Streptomyces im Hinblick auf ihre Anwendbarkeit und Effizienz getestet und optimiert. Als geeignetste Transformationsmethode erwies sich die Protoplastentransformation. Mit dieser Methode konnten Transformationseffizienzen von 10 exp 6 cfu/ µg D...

  20. Identification and Biotechnological Application of Novel Regulatory Genes Involved in Streptomyces Polyketide Overproduction through Reverse Engineering Strategy

    OpenAIRE

    Ji-Hye Nah; Hye-Jin Kim; Han-Na Lee; Mi-Jin Lee; Si-Sun Choi; Eung-Soo Kim

    2013-01-01

    Polyketide belongs to a family of abundant natural products typically produced by the filamentous soil bacteria Streptomyces. Similar to the biosynthesis of most secondary metabolites produced in the Streptomyces species, polyketide compounds are synthesized through tight regulatory networks in the cell, and thus extremely low levels of polyketides are typically observed in wild-type strains. Although many Streptomyces polyketides and their derivatives have potential to be used as clinically ...

  1. Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity

    Directory of Open Access Journals (Sweden)

    Prakasham Reddy Shetty

    2014-01-01

    Full Text Available A highly potent secondary metabolite producing actinomycetes strain is isolated from marine soil sediments of Visakhapatnam sea coast, Bay of Bengal. Over all ten strains are isolated from the collected soil sediments. Among the ten actinomycetes strains the broad spectrum strain RSPSN2 was selected for molecular characterization, antibiotic production and its purification. The nucleotide sequence of the 1 rRNA gene (1261 base pairs of the most potent strain evidenced a 96% similarity with Streptomyces parvulus 1044 strain, Streptomyces parvulus NBRC 13193 and Streptomyces parvulus BY-F. From the taxonomic features, the actinomycetes isolate RSPSN2 matches with Streptomyces parvulus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces parvulus RSPSN2. The active metabolite was extracted using ethyl acetate (1:3, v/v at pH 7.0. The separation of active ingredient and its purification was performed by using both thin layer chromatography (TLC and column chromatography (CC techniques. Spectrometric studies such as UV-visible, FTIR, and NMR and mass were performed. The antibacterial activity of pure compound was performed by cup plate method against some pathogenic bacteria including of streptomycin resistant bacteria like (Pseudomonas mirabilis. Pseudomonas putida and Bacillus cereus. In conclusion, the collected data emphasized the fact that a polypeptide antibiotic (Actinomycin D was produced by Streptomyces parvulus RSPSN2.

  2. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    Directory of Open Access Journals (Sweden)

    М. P. Teplitskaya

    2005-12-01

    Full Text Available These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of initiation and expression of antibiotics biosynthesis genes also were found. In this connection А-factor role in the mechanism of cascade-organized process of streptomycin biosynthesis control, some other antibiotics and spore determinations is discussed in detail.

  3. Three new amides from streptomyces sp. H7372

    Energy Technology Data Exchange (ETDEWEB)

    Cheenpracha, Sarot; Borris, Robert P.; Tran, Tammy T.; Chang, Leng Chee, E-mail: lengchee@hawaii.ed [University of Hawaii Hilo, HI (United States). College of Pharmacy. Dept. of Pharmaceutical Sciences; Jee, Jap Meng; Seow, Heng Fong; Cheah, Hwen-Yee [Universiti Putra Malaysia, Selangor (Malaysia). Faculty of Medicine and Health Sciences. Department of Pathology. bImmunology Unit; Hoc, Coy Choke [University Malaysia Sabah (Malaysia). School of Science and Technology. Biotechnology Program

    2011-07-01

    Three new amides, methyl phenatate A (1), actiphenamide (2) and actiphenol 1-beta-D-glucopyranoside (3), along with thirteen known compounds, were isolated from the organic extract of a fermentation culture of Streptomyces sp. H7372. The structures were elucidated by spectroscopic methods including 1D- and 2D-NMR techniques, and MS analyses. Cycloheximide (6) and cyclo({Delta}Ala-L-Val) (8) gave a clear zone of inhibition of Ras-Raf-1 interaction in the yeast two hybrid assay which showed high potency with 10 and 25 mm clear ZOIs on SD His{sup -} and inactive on SD His{sup +} at 2.5 mug per disk, respectively. (author)

  4. Permeation study of the potassium channel from streptomyces Lividans

    Institute of Scientific and Technical Information of China (English)

    XU Xiuzhi; ZHAN Yong; ZHAO Tongjun

    2004-01-01

    A three-state hopping model is established according to experiments to study permeation of an open-state potassium channel from Streptomyces Lividans (KcsA potassium channel). The master equations are used to characterize the dynamics of the system. In this model, ion conduction involves transitions of three states, with one three-ion state and two two-ion states in the selectivity filter respectively. In equilibrium, the well-known Nernst equation is deduced. It is further shown that the current follows Michaelis-Menten kinetics in steady state. According to the parameters provided by Nelson, the current-voltage relationship is proved to be ohmic and the current-concentration relationship is also obtained reasonably. Additional validation of the model in the characteristic time to reach the steady state for the potassium channel is also discussed. This model lays a possible physical basis for the permeation of ion channel, and opens an avenue for further research.

  5. Nucleotide sequence of Streptomyces griseus initiator tRNA.

    OpenAIRE

    Kuchino, Y; Yamamoto, I.; Nishimura, S.

    1982-01-01

    The primary structure of initiator tRNA from Streptomyces griseus was determined by post-labeling procedures. The nucleotide sequence is pC-G-C-G-G-G-G-U-G-G-A-G-C-A-G-C-U-C-G-G-D-A-G-C-U-C-G-C-U-G-G-G-C-U-C-A-U-A-A-C-C- C-A-G-A-G-G-U-C-G-C-A-G-G-U-psi-C-A-m1A-A-U-C-C-U-G-U-C-C-C-C-G-C-U-A-C-C-A0H. The unique feature of the sequence of this tRNA is that residue 54 is occupied by unmodified U, while ribothymidine is located in that position in most initiator tRNAs from eubacteria.

  6. biosynthesis of extracellular cholesterol oxidase by irradiated streptomyces species

    International Nuclear Information System (INIS)

    streptomyces sp.culture produced extracellular cholesterol oxidase (COD)at favorable conditions (o.5 g/L cholesterol. 200 Gy, 300 C, ph 7 and 100 r.p.m) at the end of 6 days incubation period. an extracellular enzyme activity (cholesterol degradation %) of 95.36 was achieved during the stationary phase, a specific activity of 1.34 e.u was possible by (NH4)2SO4 precipitation, 1.7 by ultrafiltration and 4.1 E.U/mg protein by sephadex G100 column . COD was stable over a ph range of 6-9 for 1 h .at 300C, the enzyme was also stable up 400C it retained 95.4% of the original activity but when heated up to 500C for 1 h it retained only 65% of the original activity

  7. Bioactive isocoumarins from a terrestrial Streptomyces sp. ANK302.

    Science.gov (United States)

    Zinad, Dhafer Saber; Shaaban, Khaled A; Abdalla, Muna Ali; Islam, Md Tofazzal; Schüffler, Anja; Laatsch, Hartmut

    2011-01-01

    Four isocoumarins have been isolated from the terrestrial Streptomyces sp. ANK302, namely 6,8-dimethoxy-3-methylisocoumarin (1), 6,8-dihydroxy-3-methylisocoumarin (2), 6,8-dihydroxy-7-methoxy-3-methylisocoumarin (3), and 6,7,8-trimethoxy-3-methylisocoumarin (4). Compound 1 is a new naturally-occurring isocoumarin, and 2 was isolated as a new bacterial product. The structures 1-4 were deduced from high resolution mass, 1D and 2D NMR spectra and by comparison with related compounds from the literature. Compound 2 showed a strong zoosporicidal activity at a concentration of 5 microg/mL against a phytopathogenic oomycete, Plasmopara viticola, and 1 was active against PMID:21366043

  8. Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae.

    OpenAIRE

    Tang, L; Zhang, Y X; Hutchinson, C R

    1994-01-01

    Targeted inactivation of the valine (branched-chain amino acid) dehydrogenase gene (vdh) was used to study the role of valine catabolism in the production of tylosin in Streptomyces fradiae and spiramycin in Streptomyces ambofaciens. The deduced products of the vdh genes, cloned and sequenced from S. fradiae C373.1 and S. ambofaciens ATCC 15154, are approximately 80% identical over all 363 amino acids and 96% identical over a span of the first N-terminal 107 amino acids, respectively, to the ...

  9. Optimization of medium for antimycotic production by Streptomyces spp.

    Directory of Open Access Journals (Sweden)

    Bajić Bojana Ž.

    2013-01-01

    Full Text Available Numerous species of the genus Streptomyces, on the appropriate cultivation medium in the process of submerged biosynthesis, as a product of the secondary metabolism, and under aerobic conditions synthesize pharmacologically active compounds. The aim of presented study was optimization of different nitrogen sources in the cultivation medium for the production of antimycotics using a strain of Streptomyces spp. isolated from the environment. Experiments were carried out in accordance with Box-Behnken design with three factors at three levels (peptone: 3.0 g/l, 7.0 g/l and 11.0 g/l; yeast extract: 1.0 g/l, 3.0 g/l and 5.0 g/l; soybean meal: 5.0 g/l, 15.0 g/l and 25.0 g/l and three repetitions in the central point. Cultivation mediums were analyzed for determination of residual sugar, residual nitrogen, pellet diameter and RNA. Also, antimycotic activity of the obtained culti­vation mediums was determined using diffusion disc method on the Aspergillus spp. as the test microorganism. For the optimization of selected parameters, a Response Surface Methodology was used and the obtained data were analyzed using the software package DESIGN EXPERT 8.1. Achieved model with a coefficient of determination (R of 0.952 predicted that the maximum inhibition zone diameter (24.0 mm against microorganism Aspergillus spp. and the minimum amount of residual sugar (0.551528 g/l under applied experimental conditions was produced when the contents of varied nitrogen sources were: peptone 11.0 g/l, yeast extract 4.32 g/l and soybean meal 25.00 g/l.

  10. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Directory of Open Access Journals (Sweden)

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  11. Quantitative proteome analysis of Streptomyces coelicolor Nonsporulating liquid cultures demonstrates a complex differentiation process comparable to that occurring in sporulating solid cultures

    DEFF Research Database (Denmark)

    Manteca, Angel; Jung, Hye R; Schwämmle, Veit;

    2010-01-01

    Streptomyces species produce many clinically important secondary metabolites and present a complex developmental cycle that includes programmed cell death (PCD) phenomena and sporulation. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains g...

  12. Champacyclin, a New Cyclic Octapeptide from Streptomyces Strain C42 Isolated from the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alexander Pesic

    2013-12-01

    Full Text Available New isolates of Streptomyces champavatii were isolated from marine sediments of the Gotland Deep (Baltic Sea, from the Urania Basin (Eastern Mediterranean, and from the Kiel Bight (Baltic Sea. The isolates produced several oligopeptidic secondary metabolites, including the new octapeptide champacyclin (1a present in all three strains. Herein, we report on the isolation, structure elucidation and determination of the absolute stereochemistry of this isoleucine/leucine (Ile/Leu = Xle rich cyclic octapeptide champacyclin (1a. As 2D nuclear magnetic resonance (NMR spectroscopy could not fully resolve the structure of (1a, additional information on sequence and configuration of stereocenters were obtained by a combination of multi stage mass spectrometry (MSn studies, amino acid analysis, partial hydrolysis and subsequent enantiomer analytics with gas chromatography positive chmical ionization/electron impact mass spectrometry (GC-PCI/EI-MS supported by comparison to reference dipeptides. Proof of the head-to-tail cyclization of (1a was accomplished by solid phase peptide synthesis (SPPS compared to an alternatively side chain cyclized derivative (2. Champacyclin (1a is likely synthesized by a non-ribosomal peptide synthetase (NRPS, because of its high content of (d-amino acids. The compound (1a showed antimicrobial activity against the phytopathogen Erwinia amylovora causing the fire blight disease of certain plants.

  13. Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus.

    Science.gov (United States)

    Lu, Chenyang; Zhang, Xiaojie; Jiang, Ming; Bai, Linquan

    2016-05-01

    The anticoccidial salinomycin is a polyketide produced by Streptomyces albus and requires malonyl-CoAs, methylmalonyl-CoAs, and ethylmalonyl-CoAs for the backbone assembly. Genome sequencing of S. albus DSM 41398 revealed a high percentage of genes involved in lipid metabolism, supporting the high salinomycin yield in oil-rich media. Seven PKS/PKS-NRPS gene clusters in the genome were found to be actively transcribed and had been individually deleted, which resulted in significantly improved salinomycin production. However, a combined deletion of PKS-NRPS-2 and PKS-6 showed no further improvement. Whereas the concentrations of malonyl-CoA and methylmalonyl-CoA were increased, the concentration of ethylmalonyl-CoA remained low in the mutants. An endogenous crotonyl-CoA reductase gene (ccr) was overexpressed in the ΔPKS-NRPS-2/ΔPKS-6 mutant, resulting in improved production. Combination of cluster deletions and over-expression of ccr gene led to an overall titer improvement of salinomycin from 0.60 to 6.60g/L. This engineering strategy can be implemented for various natural polyketides production. PMID:26969249

  14. Champacyclin, a new cyclic octapeptide from Streptomyces strain C42 isolated from the Baltic Sea.

    Science.gov (United States)

    Pesic, Alexander; Baumann, Heike I; Kleinschmidt, Katrin; Ensle, Paul; Wiese, Jutta; Süssmuth, Roderich D; Imhoff, Johannes F

    2013-12-01

    New isolates of Streptomyces champavatii were isolated from marine sediments of the Gotland Deep (Baltic Sea), from the Urania Basin (Eastern Mediterranean), and from the Kiel Bight (Baltic Sea). The isolates produced several oligopeptidic secondary metabolites, including the new octapeptide champacyclin (1a) present in all three strains. Herein, we report on the isolation, structure elucidation and determination of the absolute stereochemistry of this isoleucine/leucine (Ile/Leu = Xle) rich cyclic octapeptide champacyclin (1a). As 2D nuclear magnetic resonance (NMR) spectroscopy could not fully resolve the structure of (1a), additional information on sequence and configuration of stereocenters were obtained by a combination of multi stage mass spectrometry (MSn) studies, amino acid analysis, partial hydrolysis and subsequent enantiomer analytics with gas chromatography positive chmical ionization/electron impact mass spectrometry (GC-PCI/EI-MS) supported by comparison to reference dipeptides. Proof of the head-to-tail cyclization of (1a) was accomplished by solid phase peptide synthesis (SPPS) compared to an alternatively side chain cyclized derivative (2). Champacyclin (1a) is likely synthesized by a non-ribosomal peptide synthetase (NRPS), because of its high content of (D)-amino acids. The compound (1a) showed antimicrobial activity against the phytopathogen Erwinia amylovora causing the fire blight disease of certain plants. PMID:24317473

  15. Streptomyces sp. Sebagai Biofungisida Patogen Fusarium oxysporum (Schlecht.) f.sp. lycopersici (Sacc.) Snyd. et Hans. Penyebab Penyakit Layu Pada Tanaman Tomat (Solanum lycopersicum L.)

    OpenAIRE

    NURI MANDAN SARI; RETNO KAWURI; KHAMDAN KHALIMI

    2014-01-01

    A research was conducted to isolate Streptomyces sp. of soil Udayana University campus in theBukit-Jimbaran, to obtain the most effective Streptomyces sp. which is effective in inhibit the growth ofFusarium oxysporum f.sp. lycopersici, and to test response of tomato plants with Streptomyces sp.culture against Fusarium wilt desease. Implementation phases of the research consisted of isolation andidentification of Streptomyces sp, test the inhibition against F. oxysporum f.sp. lycopersici, and ...

  16. A Morphological, Biochemical and Biological Studies of Halophilic Streptomyces sp. Isolated from Saltpan Environment

    Directory of Open Access Journals (Sweden)

    Deepika T. Lakshmipathy

    2009-01-01

    Full Text Available Problem statement: Dermatophytes have developed resistance to the existing antifungal antibiotics. As a part of our continuous search we had isolated, identified and characterized actinomycetes from the halophilic environment having antagonistic activity against the dermatophytes namely Trichophyton, Microsporum and Epidermophyton. Approach: Actinomycetes were isolated from the soil sample collected from the Ennore saltpan region, Chennai, India and screened for antidermatophytic secondary metabolite production by well diffusion method. Four dermatophytes Trichophyton rubrum [MTCC 3272], Trichophyton mentagrophytes [MTCC 7687], Microsporum gypseum [MTCC 2819] and Epidermophyton floccosum [MTCC 7880] were used to study its susceptibility to the isolated actinomycetes. Actinomycetes which showed antidermatophytic activity were subjected to cultural characterization with respect to aerial and substrate mycelia color, diffusible and melanin pigment production and the growth of the organisms on different media. Further the micro morphological characteristics such as spore surface ornamentation and spore chain morphology determined by Scanning Electron Microscopic (SEM analysis also suggested that the isolates belonged to the genus Streptomyces. The isolates were also tested for utilization of various carbon and nitrogen sources, degradation of complex compounds, sensitivity to antibiotics and inhibitory compounds. Results: All the 3 isolates exhibited different cultural and morphological characteristics. Based on the cultural characters and morphology they were assigned to the genus Streptomyces. The three isolates produced an inhibition zone of 30-31 mm on an average, utilized a wide range of carbon and nitrogen sources, degraded almost all the complex compounds and exhibited a broad spectrum of antibiotic resistance. They were designated as Streptomyces sp. DKDVIT1, Streptomyces sp. DKDVIT2 and

  17. Systematics of Plant-Pathogenic and Related Streptomyces Species Based on Phylogenetic Analyses of Multiple Gene Loci

    Science.gov (United States)

    The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...

  18. Complete Genome Sequence of Streptomyces albus SM254, a Potent Antagonist of Bat White-Nose Syndrome Pathogen Pseudogymnoascus destructans

    Science.gov (United States)

    Badalamenti, Jonathan P.; Erickson, Joshua D.

    2016-01-01

    We sequenced and annotated the complete 7,170,504-bp genome of a novel secondary metabolite-producing Streptomyces strain, Streptomyces albus SM254, isolated from copper-rich subsurface fluids at ~220-m depth within the Soudan Iron Mine (Soudan, MN, USA). PMID:27081146

  19. The multiple personalities of Streptomyces spp. from the rhizosphere of apple cultivated in brassica seed meal ameded soils

    Science.gov (United States)

    Brassicaceae seed meal soil amendments proved control of Rhizoctonia root rot, in part, through the proliferation of indigenous rhizosphere colonizing Streptomyces spp. Studies were conducted to assess the relative role of antibiosis and nitric oxide (NO) production in the capacity of Streptomyces ...

  20. Draft Genome of Streptomyces zinciresistens K42, a Novel Metal-Resistant Species Isolated from Copper-Zinc Mine Tailings

    Science.gov (United States)

    Lin, Yanbing; Hao, Xiuli; Johnstone, Laurel; Miller, Susan J.; Baltrus, David A.; Rensing, Christopher; Wei, Gehong

    2011-01-01

    A draft genome sequence of Streptomyces zinciresistens K42, a novel Streptomyces species displaying a high level of resistance to zinc and cadmium, is presented here. The genome contains a large number of genes encoding proteins predicted to be involved in conferring metal resistance. Many of these genes appear to have been acquired through horizontal gene transfer. PMID:22038968

  1. Streptomyces actinomycinicus sp. nov., isolated from soil of a peat swamp forest.

    Science.gov (United States)

    Tanasupawat, Somboon; Phongsopitanun, Wongsakorn; Suwanborirux, Khanit; Ohkuma, Moriya; Kudo, Takuji

    2016-01-01

    A novel actinomycete, strain RCU-197T, was isolated from soil of a peat swamp forest in Rayong Province, Thailand. Using a polyphasic approach, the strain was classified in the genus Streptomyces. It contained ll-diaminopimelic acid in the cell-wall peptidoglycan. No diagnostic sugars were detected in whole-cell hydrolysates and there was a lack of mycolic acids. The major menaquinones were MK-9(H6) and MK-9(H8). The predominant cellular fatty acids were iso-C14 : 0, iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. The polar lipids profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannoside, an unknown aminolipid and two unknown phospholipids. Phylogenetic analysis of 16S rRNA gene sequences showed the strain formed distinct clade within the genus Streptomyces and was closely related to Streptomyces echinatus NBRC 12763T (98.78 % 16S rRNA gene sequence similarity). According to the polyphasic approach as well as DNA-DNA relatedness, the strain could be clearly differentiated from closely related species and represents a novel species of the genus Streptomyces, for which the name Streptomyces actinomycinicus sp. nov. is proposed. The type strain is RCU-197T ( = JCM 30864T = TISTR 2208T = PCU 342T). PMID:26510888

  2. Characterization and Optimization of Biosynthesis of Bioactive Secondary Metabolites Produced by Streptomyces sp. 8812.

    Science.gov (United States)

    Rajnisz, Aleksandra; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Laskowska, Anna; Rabczenko, Daniel; Solecka, Jolanta

    2016-01-01

    The nutritional requirements and environmental conditions for a submerged culture of Streptomyces sp. 8812 were determined. Batch and fed-batch Streptomyces sp. 8812 fermentations were conducted to obtain high activity of secondary metabolites. In the study several factors were examined for their influence on the biosynthesis of the active metabolites-7-hydroxy-6-oxo-2,3,4,6-tetrahydroisoquinoline-3-carboxy acid (C10H9NO4) and N-acetyl-3,4-dihydroxy-L-phenylalanine (C11H13NO5): changes in medium composition, pH of production medium, various growth phases of seed culture, amino acid supplementation and addition of anion exchange resin to the submerged culture. Biological activities of secondary metabolites were examined with the use of DD-carboxypeptidase 64-575 and horseradish peroxidase. Streptomyces sp. 8812 mycelium was evaluated under fluorescent microscopy and respiratory activity of the strain was analyzed. Moreover, the enzymatic profiles of the strain with the use of Api ZYM test were analyzed and genetic analysis made. Phylogenetic analysis of Streptomyces sp. 8812 revealed that its closest relative is Streptomyces capoamus JCM 4734 (98%), whereas sequence analysis for 16S rRNA gene using NCBI BLAST algorithm showed 100% homology between these two strains. Biosynthetic processes, mycelium growth and enzyme inhibitory activities of these two strains were also compared. PMID:27281994

  3. The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.

    Science.gov (United States)

    Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.

    2016-01-01

    Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423

  4. Screening of wild type Streptomyces isolates able to overproduce clavulanic acid

    Directory of Open Access Journals (Sweden)

    Daniela A. Viana Marques

    2014-09-01

    Full Text Available The selection of new microorganisms able to produce antimicrobial compounds is hoped for to reduce their production costs and the side effects caused by synthetic drugs. Clavulanic acid is a β-lactam antibiotic produced by submerged culture, which is widely used in medicine as a powerful inhibitor of β-lactamases, enzymes produced by bacteria resistant to antibiotics such penicillin and cephalosporin. The purpose of this work was to select the best clavulanic acid producer among strains of Streptomyces belonging to the Microorganism Collection of the Department of Antibiotics of the Federal University of Pernambuco (DAUFPE. Initially, the strains were studied for their capacity to inhibit the action of β-lactamases produced by Klebsiella aerogenes ATCC 15380. From these results, five strains were selected to investigate the batch kinetics of growth and clavulanic acid production in submerged culture carried out in flasks. The results were compared with the ones obtained by Streptomyces clavuligerus ATCC 27064 selected as a control strain. The best clavulanic acid producer was Streptomyces DAUFPE 3060, molecularly identified as Streptomyces variabilis, which increased the clavulanic acid production by 28% compared to the control strain. This work contributes to the enlargement of knowledge on new Streptomyces wild strains able to produce clavulanic acid by submerged culture.

  5. Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic.

    Science.gov (United States)

    Rakotoniriana, Erick Francisco; Chataigné, Gabrielle; Raoelison, Guy; Rabemanantsoa, Christian; Munaut, Françoise; El Jaziri, Mondher; Urveg-Ratsimamanga, Suzanne; Marchand-Brynaert, Jacqueline; Corbisier, Anne-Marie; Declerck, Stéphane; Quetin-Leclercq, Joëlle

    2012-05-01

    An endophytic whorl-forming Streptomyces sp. designated as TS3RO having antifungal activity against a large number of fungal pathogens, including Sclerotinia sclerotiorum, Rhizoctonia solani, Colletotrichum gloeosporioides, Cryphonectria parasitica, Fusarium oxysporum, Pyrenophora tritici-repentis, Epidermophyton floccosum, and Trichophyton rubrum, was isolated from surface-sterilized Catharanthus roseus stems. Preliminary identification showed that Streptomyces cinnamoneus subsp. sparsus was its closest related species. However, strain TS3RO could readily be distinguished from this species using a combination of phenotypic properties, 16S rDNA sequence similarity, and phylogenetic analyses. Thus, the whorl-forming Streptomyces sp. strain TS3RO is likely a new subspecies within the Streptomyces cinnamoneus group. Direct bioautography on a thin-layer chromatography plate with Cladosporium cucumerinum was conducted throughout the purification steps for bioassay-guided isolation of the active antifungal compounds from the crude extract. Structural elucidation of the isolated bioactive compound was obtained via LC-MS spectrometry, UV-visible spectra, and nuclear magnetic resonance data. It revealed that fungichromin, a known methylpentaene macrolide antibiotic, was the main antifungal component of TS3RO strain, as shown by thin-layer chromatography bioautography. This is the first report of an endophytic whorl-forming Streptomyces isolated from the medically important plant Catharanthus roseus. PMID:22524528

  6. EFEKTIFITAS DAYA HAMBAT BAKTERI Streptomyces sp TERHADAP Erwinia sp PENYEBAB PENYAKIT BUSUK REBAH PADA TANAMAN LIDAH BUAYA (Aloe barbadensis Mill

    Directory of Open Access Journals (Sweden)

    SARMILA TASNIM

    2013-05-01

    Full Text Available Streptomyces sp was conducted from December 2010 - June 2011 at the Laboratoryof Microbiology, Biology Department, Math and Science Faculty, UdayanaUniversity Bukit Jimbaran-Bali. Implementation stages of the research consisted ofisolation and testing of the antibiotic activity Streptomyces sp to inhibit growthbacterial pathogens Erwinia sp as a cause of disease in plants fallen foul (Soft rot ofAloe barbadensis Mill.The results of this study have eight isolates of Streptomyces spwith macroscopic and microscopic characters are varied. Furthermore, all isolateswere obtained and then tested against antibiotic activity to inhibit growth the bacteriaErwinia sp. Test results obtained by Streptomyces sp that has the most effective ininhibiting the ability of the bacteria Erwinia sp isolates are Streptomyces sp2for (45%.

  7. Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8.

    Directory of Open Access Journals (Sweden)

    Jose C Huguet-Tapia

    Full Text Available PAISt is a large genomic island located in the chromosome of the plant pathogen Streptomyces turgidiscabies Car8. The island carries clustered virulence genes, transfers to other Streptomyces species, and integrates by site-specific recombination at the 8 bp palindrome TTCATGAA. The palindrome is located at the 3' end of the bacitracin resistance gene (bacA. We demonstrate that PAISt is able to excise in modules by recombination of one internal and two flanking palindromic direct repeats. The gene intSt located at the 3( end of PAISt encodes a tyrosine recombinase. Site-specific recombination activity of intSt was tested and confirmed by heterologous expression in Streptomyces coelicolor. Comparative analysis of PAISt homologues in Streptomyces scabies 87-22 and Streptomyces acidiscabies 84-104 indicates that these islands have been fixed by sequence erosion of intSt and the recombination sites.

  8. Antibiotic Properties of the endophytic Streptomyces Spp. Isolated from the Leaves of Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Three medicinal plants of Myanmar are selected in the study of endophytic microorganisms and are taxonomically classified and identified to be Sa-ba-lin (Cymbopogon citratus Stapf.), Shazaungtinga- neah (Euphorbia splendens Bojer. ex Hooker) and Ma-shaw (Sauropus grandifolius Pax. and Hoffm.). The screening of endophytic microorganisms is performed according to the ISP method (International Streptomyces Projects 1993). The morphological and physicochemical properties of isolated strains are studied and identified to be the Genus Streptomyces. The test of apparent antimicrobial activity of isolated Streptomyces is done on 18 strains of pathogenic bacteria. It is found that the isolated endophytic Sireptomyces showed the significant antibacterial activity on most of the test organisms. (author)

  9. Continuous culture of immobilized streptomyces cells for kasugamycin production.

    Science.gov (United States)

    Kim, C J; Chang, Y K; Chun, G T; Jeong, Y H; Lee, S J

    2001-01-01

    Continuous cultures of immobilized Streptomyces kasugaensis, a kasugamycin producer, were carried out on Celite beads. When using a prototype separator for immobilized-cell separation and recycling, the continuous operation could not be sustained for an extended period as a result of an excessive loss of immobilized cells caused by the poor performance of the separator. Accordingly, the immobilized-cell separator was revised to provide better immobilized-cell settling and thus recycling into the reactor. In a subsequent culture using the revised separator, a stable operation was maintained for over 820 h with a high kasugamycin productivity. The kasugamycin productivity ranged from 9.8 to 16.1 mg/L/h, which was about 14- to 23-fold higher than that in a batch suspended-cell culture. When the original feeding medium concentration was doubled at the end of the continuous culture, the productivity became severely impaired for several reasons, which will be discussed. An excessive formation of free cells and loss of immobilized cells through the separator were also observed. PMID:11386865

  10. Optimization of electroporation conditions for toyocamycin producer Streptomyces diastatochromogenes 1628.

    Science.gov (United States)

    Ma, Zheng; Liu, Jinxiu; Shentu, Xuping; Bian, Yalin; Yu, Xiaoping

    2014-04-01

    Because of its structural similarity to nucleoside, toyocamycin exhibits potential of wide application and various biological activities. Streptomyces diastatochromogenes 1628, capable of producing toyocamycin, has exhibited a potential biocontrol effect in inhibiting the development of phytopathogens in the agriculture field. An efficient transformation system is a prerequisite for genetic and molecular study of S. diastatochromogenes 1628. In this study, we optimized experimental factors involved in the electroporation transformation process. Key features of this procedure, including collection of cells at the mid-log phase stage and the treatment of cells with lysozyme and penicillin G prior to the electroporation and recovery medium and time, produced the greatest increase in the efficiency and consistency of results. The transformation efficiency also depends on field strength, cell concentration, and plasmid DNA quantity. Under the optimal conditions, a maximal efficiency of (3 ± 0.4) × 10(4)  µg(-1) DNA was obtained. The development of transformation method for S. diastatochromogenes 1628 will foster genetic manipulation of this important strain. PMID:23775805

  11. Release of Streptomyces albus propagules from contaminated surfaces

    International Nuclear Information System (INIS)

    The release of Streptomyces albus propagules from contaminated agar an ceiling tile surfaces was studied under controlled environmental condition in a newly developed aerosolization chamber. The experiments revealed tha both spores and cell fragments can be simultaneously released from the colonized surface by relatively gentle air currents of 0.3 m s-1. A 100x increase of the air velocity can result in a 50-fold increase in the number of released propagules. The aerosolization rate depends strongly on the typ and roughness of the contaminated surface. Up to 90% of available actinomycete propagules can become airborne during the first 10 min of th release process. Application of vibration to the surface did not reveal an influence on the aerosolization process of S. albus propagules under th tested conditions. This study has shown that propagules in the fine particle size range can be released in large amounts from contaminated surfaces Measurement of the number of S. albus fragments in the vicinity of contaminated area, as an alternative to conventional air or surface sampling appears to be a promising approach for quantitative exposure assessment

  12. Studies on biological reduction of chromate by Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Poopal, Ashwini C. [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India); Laxman, R. Seeta, E-mail: rseetalaxman@yahoo.co.in [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India)

    2009-09-30

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  13. Studies on biological reduction of chromate by Streptomyces griseus

    International Nuclear Information System (INIS)

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  14. The Chitinolytic Activities of Streptomyces sp. TH-11

    Directory of Open Access Journals (Sweden)

    Chun-Yi Liau

    2010-12-01

    Full Text Available Chitin is an abundant biopolymer composed of units of N-acetyl-D-glucosamine linked by b-1,4 glycosidic bonds. Chitin is the main component of the shells of mollusks, the cell wall of fungi and yeast and of the exoskeleton of crustaceans and insects. The degradation of chitin is catalyzed by chitinases that occur in a wide range of organisms. Among them, the chitinases from microorganisms are extremely important for the degradation and recycling of the carbon and nitrogen trapped in the large amount of insoluble chitin in nature. Streptomyces sp. TH-11 was isolated from the sediment of the Tou-Chien River, Taiwan. The chitinolytic enzyme activities were detected using a rapid in-gel detection method from the cell-free preparation of the culture medium of TH-11. The chitinolytic enzyme activity during prolonged liquid culturing was also analyzed by direct measurement of the chitin consumption. Decomposition of the exoskeleton of shrimps was demonstrated using electron microscopy and atomic force microscopy.

  15. Biological treatment of colored wastewater by Streptomyces fulvissimus CKS 7.

    Science.gov (United States)

    Buntić, A V; Pavlović, M D; Šiler-Marinković, S S; Dimitrijević-Branković, S I

    2016-01-01

    This study aims to investigate the biological processes related to the biodegradable potential of growing microbial cells for contaminated water treatment. Thus, the use of the Streptomyces fulvissimus CKS 7 (CKS7) has been evaluated for decolorizing efficiency of a solution containing a cationic triphenylmethane dye, crystal violet. The color reduction was monitored by UV-Vis spectroscopic analysis, through changes in their absorption spectrum and comparing the results with those of the respective controls. It was found that the CKS7 performed well and reached up to 100% effectiveness. The required process parameters have been apparently mild and include the reaction temperature of 27-30 °C, 10% inoculum size, under shaking conditions, whereas the time course of decolorization had been concentration dependent. A possible mechanism for removing dye from the working medium was accomplished in two steps: the binding of the dye on the bacterial cell surface, in addition to the dye biodegradation by the bacterial intracellular enzymes. After one cycle of the complete dye removal, the adapted culture was successfully reused for the same purpose. The phytotoxicity analysis revealed that non-toxic compounds were present in decolorized medium, indicating that the CKS7 bacteria seem to be a promising application for contaminated water treatment. PMID:27148725

  16. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Christina Viegelmann

    2014-06-01

    Full Text Available Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8 isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1, 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2, and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3 that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.

  17. Purification and characterization of the IM-2-binding protein from Streptomyces sp. strain FRI-5.

    OpenAIRE

    Ruengjitchatchawalya, M; Nihira, T; Yamada, Y

    1995-01-01

    IM-2 [(2R,3R,1'R)-2-(1'-hydroxybutyl)-3-(hydroxymethyl)butanolide] of Streptomyces sp. strain FRI-5 is one of the butyrolactone autoregulators of Streptomyces species and triggers production of blue pigment as well as the nucleoside antibiotics showdomycin and minimycin. A tritium-labeled IM-2 analogue, 2,3-trans-2(1'-beta-hydroxy-[4',5'-3H]pentyl)-3-(hydroxymethyl)butano lide ([3H]IM-2-C5; 40 Ci/mmol), was synthesized for a competitive binding assay, and an IM-2-specific binding protein was ...

  18. Capability of Streptomyces spp. in Controlling Bacterial Leaf Blight Disease in Rice Plants

    Directory of Open Access Journals (Sweden)

    Ratih D. Hastuti

    2012-01-01

    Full Text Available Problem statement: Bacterial Leaf Blight (BLB caused by Xanthomonas oryzae pv. oryzae (Xoo is the most damaging disease in lowland rice growing areas in Indonesia. Streptomyces spp. have been known as a producer of antimicrobial compounds that can be used as biocontrol agents. This study examined the ability of three promising indigenous Streptomyces isolates which were previously selected from in vitro agar media and greenhouse test to suppress natural infection of Xoo during dry and wet season trials in 2009/2010 at the Muara Experimental Research Station, Bogor West Java, Indonesia. Approach: Streptomyces isolates (PS4-16, LBR-02 and LSW-05 were applied through seed coating in a peat-based carrier followed by seedling soaking, spray treatment, or combination of both methods, either singly or in combination of two or three isolates. The number of Streptomyces population in the peat carrier at the time of inoculation was above 107 cell g-1. The efficacy of Streptomyces was compared to that chemical spray using NORDOX 56 WP (a.i., zinc oxide 56% and non-treatment. Treated and untreated seeds were grown in plots (5×5 m2 and set in a randomized complete block design with four replications. Results: In the dry season experiment, application of Streptomyces spp. reduced BLB severity when compared to that of untreated plots, although did not reduce BLB incidence. PS4-16, applied singly through seed coating followed by seedling soaking, reduced the Area Under Disease Progress Curve (AUDPC at 70 Days After Planting (DAP to 1458, which was equally effective to the chemical spray (AUDPC value 1434 and simultaneously promoted plant height and gave the highest rice yield. In the wet season trial PS4-16 and LBR-02, applied singly or in dual combination through seed coating followed by seedling soaking, suppressed BLB severity, PS4-16 was confirmed as the most effective isolate by reducing the AUDPC to 1923, which was not significantly different to the

  19. Complete genome sequence of Streptomyces reticuli, an efficient degrader of crystalline cellulose.

    Science.gov (United States)

    Wibberg, Daniel; Al-Dilaimi, Arwa; Busche, Tobias; Wedderhoff, Ina; Schrempf, Hildgund; Kalinowski, Jörn; Ortiz de Orué Lucana, Darío

    2016-03-20

    We report the complete, GC-rich genome sequence of the melanin producer Streptomyces reticuli Tü 45 (S. reticuli) that targets and degrades highly crystalline cellulose by the concerted action of a range of biochemically characterized proteins. It consists of a linear 8.3 Mb chromosome, a linear 0.8 Mb megaplasmid, a linear 94 kb plasmid and a circular 76 kb plasmid. Noteworthy, the megaplasmid is the second largest known Streptomyces plasmid. Preliminary analysis reveals, among others, 43 predicted gene clusters for the synthesis of secondary metabolites and 456 predicted genes for binding and degradation of cellulose, other polysaccharides and carbohydrate-containing compounds. PMID:26851387

  20. A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2)

    OpenAIRE

    Pawlik, Krzysztof; Kotowska, Magdalena; Chater, Keith F.; Kuczek, Katarzyna; Takano, Eriko

    2007-01-01

    The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca. 54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal domain instead of a typical thioesterase. All acyltransf...

  1. relA Is Required for Actinomycin Production in Streptomyces antibioticus

    OpenAIRE

    Hoyt, Shannan; Jones, George H.

    1999-01-01

    The relA gene from Streptomyces antibioticus has been cloned and sequenced. The gene encodes a protein with an Mr of 93,653, which is 91% identical to the corresponding protein from Streptomyces coelicolor. Disruption of S. antibioticus relA produces a strain which grows significantly more slowly on actinomycin production medium than the wild type or a disruptant to which the intact relA gene was restored. Moreover, the disruptant was unable to accumulate ppGpp to the ...

  2. Mutants of Streptomyces coeruleorubidus impaired in the biosynthesis of daunomycinone glycosides and related metabolites

    International Nuclear Information System (INIS)

    Mutants of Streptomyces coeruleorubidus, blocked in the biosynthesis of anthracycline antibiotics of the daunomycine complex, were isolated from the production strains after treatment with UV light, γ-radiation, nitrous acid, and after natural selection; according to their different biosynthetic activity the mutants were divided into five phenotypic groups. Mutants of two of these groups produced compounds that had not yet been described in Streptomyces coeruleorubidus (aklavinone, 7-deoxyaklavinone, zeta-rhodomycinone and glycosides of epsilon-rhodomycinone). The mutants differed from the parent strains and also mutually in morphological characteristics but no direct correlation between these changes and the biosynthetic activity could be observed in most cases. (author)

  3. [Preliminary study on autoregulation of samR involved in development and differentiation of Streptomyces ansochromogenes].

    Science.gov (United States)

    Yang, Yan-ling; Yang, Hai-hua; Tan, Hua-rong

    2005-02-01

    The previous result showed that samR plays an important role in the development progress of Streptomyces ansochromogenes. It was reported that the differentiation progress of S. ansochromogenes was accelerated by a recombinant plasmid containing an extra copy of samR gene. However, the differentiation progress of S. ansochromogenes was not further accelerated by a multicopy plasmid containing samR gene. Electrophoresis mobility shift assay (EMSA) demonstrated that SamR binds to its own promoter region specifically. All these results hint that samR is an autoregulatory gene in Streptomyces ansochromogenes. PMID:15847153

  4. Solid-state fermentation for the production of meroparamycin by streptomyces sp. strain MAR01.

    Science.gov (United States)

    El-Naggar, Moustafa Y; El-Assar, Samy A; Abdul-Gawad, Sahar M

    2009-05-01

    The antibiotic meroparamycin was produced in the free culture system of Streptomyces sp. strain MAR01. Five solid substrates (rice, wheat bran, Quaker, bread, and ground corn) were screened for their ability to support meroparamycin production in solid-state fermentation. In batch culture, wheat bran recorded the highest antibacterial activity with the lowest residual substrate values. The highest residual substrate values were recorded for both ground corn and Quaker. On the other hand, no antibacterial activity was detected for rice as a solid substrate. The use of the original strength of starch-nitrate medium in the solid-state fermentation gave a lower antibacterial activity compared with the free culture system. Doubling the strength of this medium resulted in the increase in the activity to be equivalent to the free culture. The initial pH (7.0) of the culture medium and 2 ml of spore suspension (1 ml contains 5x10(9) spores/ml) were the optima for antibiotic production. The water was the best eluent for the extraction of the antibiotic from the solid-state culture. Ten min was enough time to extract the antibiotic using a mixer, whereas, 60 min was required when shaking was applied. Semicontinuous production of meroparamycin using a percolation method demonstrated a more or less constant antibacterial activity over 4 runs (450-480 microg/ml). The semicontinuous production of the antibiotic was monitored in a fixed-bed bioreactor and the maximum activity was attained after the fourth run (510 microg/ml) and the overall process continued for 85 days. PMID:19494694

  5. Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor.

    Science.gov (United States)

    Nodwell, J R; Yang, M; Kuo, D; Losick, R

    1999-02-01

    Morphogenesis in the bacterium Streptomyces coelicolor involves the formation of a lawn of hair-like aerial hyphae on the colony surface that stands up in the air and differentiates into chains of spores. bld mutants are defective in the formation of this aerial mycelium and grow as smooth, hairless colonies. When certain pairs of bld mutants are grown close to one another on rich sporulation medium, they exhibit extracellular complementation such that one mutant restores aerial mycelium formation to the other. The extracellular complementation relationships of most of the previously isolated bld mutants placed them in a hierarchy of extracellular complementation groups. We have screened for further bld mutants with precautions intended to maximize the discovery of additional genes. Most of the 50 newly isolated mutant strains occupy one of three of the previously described positions in the hierarchy, behaving like bldK, bldC, or bldD mutants. We show that the mutations in some of the strains that behave like bldK are bldK alleles but that others fall in a cluster at a position on the chromosome distinct from that of any known bld gene. We name this locus bldL. By introducing cloned genes into the strains that exhibit bldC or bldD-like extracellular complementation phenotypes, we show that most of these strains are likely to contain mutations in genes other than bldC or bldD. These results indicate that the genetic control of aerial mycelium formation is more complex than previously recognized and support the idea that a high proportion of bld genes are directly or indirectly involved in the production of substances that are exchanged between cells during morphological differentiation. PMID:9927452

  6. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D. [Scripps Research Inst., Jupiter, FL (United States); Bigelow, Lance [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Changsoo [Argonne National Lab. (ANL), Argonne, IL (United States); Cuff, Marianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Lohman, Jeremy R. [Scripps Research Inst., Jupiter, FL (United States); Chang, Chin-Yuan [Scripps Research Inst., Jupiter, FL (United States); Ma, Ming [Scripps Research Inst., Jupiter, FL (United States); Yang, Dong [Scripps Research Inst., Jupiter, FL (United States); Clancy, Shonda [Argonne National Lab. (ANL), Argonne, IL (United States); Babnigg, Gyorgy [Argonne National Lab. (ANL), Argonne, IL (United States); Joachimiak, Andrzej [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, George N. [Rice Univ., Houston, TX (United States); Shen, Ben [Scripps Research Inst., Jupiter, FL (United States)

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  7. Streptomyces somaliensis mediated green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-07-01

    Full Text Available Objective(s: The development of reliable and ecofriendly process for the synthesis of nano-metals is an important aspect in the field of nanotechnology. Nano-metals are a special group of materials with broad area of applications. Materials and Methods: In this study, extracellular synthesis of silver nanoparticles (SNPs performed by use of the gram positive soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran (5 isolates. Initial characterization of SNPs was performed by visual change color. To determine the bacterium taxonomical identity, its colonies characterized morphologically by use of scanning electron microscope. The PCR molecular analysis of active isolate represented its identity partially. In this regard, 16S rDNA of isolate G was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI GenBank database using BLAST. Also SNPs were characterized by, transmission electron microscopy (TEM and X-ray diffraction spectroscopy (XRD. Results: From all 5 collected Streptomyces somaliensis isolates, isolate G showed highest extracellular synthesis of SNPs via in vitro. SNPs were formed immediately by the addition of (AgNO3 solution (1 mM. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 450 nm, which confirmed the presence of SNPs. TEM revealed the extracellular formation of spherical silver nanoparticles in the size range of 5-35 nm. Conclusions: The biological approach for the synthesis of metal nanoparticles offers an environmentally benign alternative to the traditional chemical and physical synthesis methods. So, a simple, environmentally friendly and cost-effective method has been developed to synthesize AgNPs using Streptomycetes.

  8. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata

    OpenAIRE

    de Oliveira, Luciana G; Tormet Gonzalez, Gabriela D.; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L.; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.

  9. Major proteins related to chlortetracycline biosynthesis in a Streptomyces aureofaciens production strain studied by quantitative proteomics

    Czech Academy of Sciences Publication Activity Database

    Li, X.; Novotná, Jana; Vohradský, Jiří; Weiser, Jaroslav

    2001-01-01

    Roč. 55, - (2001), s. -. ISSN 0175-7598 R&D Projects: GA ČR GA204/98/0443 Institutional research plan: CEZ:AV0Z5020903 Keywords : Streptomyces aureofaciens * chlortetracycline biosynthesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.754, year: 2001

  10. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Kim, Ki Hyun; Ramadhar, Timothy R.; Beemelmanns, Christine;

    2014-01-01

    We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based on...

  11. EFFECTS OF BACTERIAL LIGNIN PEROXIDASE ON ORGANIC CARBON MINERALIZATION IN SOIL, USING RECOMBINANT STREPTOMYCES STRAINS

    Science.gov (United States)

    Purified lignin peroxidase was added to sterile and nonsterile silt loam soil to study the effects of bacterial lignin peroxidase ALip-P3 of Streptomyces viridosporus T7A on the rate of organic carbon turnover in soil. ignin peroxidase ALip-P3 appears to affect the short-term tur...

  12. Detection and properties of A-factor-binding protein from Streptomyces griseus

    International Nuclear Information System (INIS)

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein

  13. Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae.

    OpenAIRE

    August, P. R.; Flickinger, M. C.; Sherman, D H

    1994-01-01

    Two genes (mcrA and mcrB) from Streptomyces lavendulae that together confer resistance to mitomycin C were identified. This DNA appears to comprise a polycistronic operon with a drug-inducible leaderless mRNA. The deduced amino acid sequence of mcrA shows similarity to sequences of a special class of bacterial, plant, and animal oxygen oxidoreductases.

  14. Glucosylglycerate Is an Osmotic Solute and an Extracellular Metabolite Produced by Streptomyces caelestis

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Halada, Petr; Petříček, Miroslav; Sedmera, Petr

    2007-01-01

    Roč. 52, č. 5 (2007), s. 451-456. ISSN 0015-5632 R&D Projects: GA AV ČR IAA600660607 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces caelestis * mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  15. Draft Genome Sequence of an Anthracimycin Producer, Streptomyces sp. TP-A0875

    OpenAIRE

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Fujita, Nobuyuki; Harunari, Enjuro; Igarashi, Yasuhiro

    2015-01-01

    Here, we report the draft genome sequence of an anthracimycin producer, Streptomyces sp. TP-A0875. The genome contains at least two type I polyketide synthase (PKS) gene clusters, two type II PKS gene clusters, and three nonribosomal peptide synthetase gene clusters. The gene cluster for anthracimycin biosynthesis was identified based on the PKS domain organization.

  16. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae.

    Science.gov (United States)

    Yagüe, Paula; Willemse, Joost; Koning, Roman I; Rioseras, Beatriz; López-García, María T; Gonzalez-Quiñonez, Nathaly; Lopez-Iglesias, Carmen; Shliaha, Pavel V; Rogowska-Wrzesinska, Adelina; Koster, Abraham J; Jensen, Ole N; van Wezel, Gilles P; Manteca, Ángel

    2016-01-01

    Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young vegetative hyphae of Streptomyces coelicolor, whereby 1 μm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth, but cross-membrane formation does not depend on FtsZ. Thus, a new level of hyphal organization is presented involving unprecedented high-frequency compartmentalization, which changes the old dogma that Streptomyces vegetative hyphae have scarce compartmentalization. PMID:27514833

  17. Martinomycin, a new polyether antibiotic produced by Streptomyces salvialis. I. Taxonomy, fermentation and biological activity.

    Science.gov (United States)

    Bernan, V S; Montenegro, D A; Goodman, J J; Alluri, M R; Carter, G T; Abbanat, D R; Pearce, C J; Maiese, W M; Greenstein, M

    1994-12-01

    Actinomycete culture LL-D37187 has been found to produce the new polyether antibiotic martinomycin. Taxonomic studies, including morphological, physiological, and cell wall chemistry analyses, revealed that culture LL-D37187 is a novel streptomycete species, and the proposed name is Streptomyces salvialis. Martinomycin exhibits activity against the Southern Army Worm (Spodoptera eridania) and Gram-positive bacteria. PMID:7844037

  18. 77 FR 35291 - Killed, Nonviable Streptomyces acidiscabies Strain RL-110T

    Science.gov (United States)

    2012-06-13

    ... isolated from common scab lesions on potato-tubers. Canadian Journal of Plant Pathology 14:197-202. ] 6. Loria R, Kers J, Joshi M. 2006. Evolution of plant pathology in Streptomyces. Annual Review of... the Federal Register of March 10, 2010 (75 FR 11171) (FRL-8810- 8), EPA issued a notice pursuant...

  19. Genome Sequence of Streptomyces sp. Strain RTd22, an Endophyte of the Mexican Sunflower

    Science.gov (United States)

    Chagas, Fernanda O.; Bacha, Larissa V.; Samborskyy, Markyian; Conti, Raphael; Pessotti, Rita C.; Clardy, Jon

    2016-01-01

    We report here the complete genome sequence of Streptomyces sp. strain RTd22, an endophytic actinobacterium that was isolated from the roots of the Mexican sunflower Tithonia diversifolia. The bacterium’s 11.1-Mb linear chromosome is predicted to encode a large number of unknown natural products. PMID:27445382

  20. Draft Genome Sequence of Streptomyces silvensis ATCC 53525, a Producer of Novel Hormone Antagonists.

    Science.gov (United States)

    Johnston, Chad W; Li, Yongchang; Magarvey, Nathan A

    2016-01-01

    Streptomyces silvensis produces nonribosomal peptides that act as antagonists of the human oxytocin and vasopressin receptors. Here, we present the genome sequence of S. silvensis ATCC 53525 and demonstrate that this organism possesses a number of additional biosynthetic gene clusters and might be a promising source for genome-guided drug discovery efforts. PMID:26893408

  1. Isolation and Structure Elucidation of Autolytimycin, A New Compound Produced by Streptomyces Autolyticus JX-47

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Autolytimycin 1 was isolated from the culture filtrate ofStreptomyces autolyticus JX-47,together with two known compounds, lebstatin 2 and 17-O-demethyl-geldanamycin 3. These compounds showed the activities of anti-HSV-I. The structure of 1 was determined by spectral analysis.

  2. Functional Expression of the Ectoine Hydroxylase Gene (thpD) from Streptomyces chrysomallus in Halomonas elongata

    OpenAIRE

    Prabhu, Julia; Schauwecker, Florian; Grammel, Nicolas; Keller, Ullrich; Bernhard, Michael

    2004-01-01

    The formation of hydroxyectoine in the industrial ectoine producer Halomonas elongata was improved by the heterologous expression of the ectoine hydroxylase gene, thpD, from Streptomyces chrysomallus. The efficient conversion of ectoine to hydroxyectoine was achieved by the concerted regulation of thpD by the H. elongata ectA promoter.

  3. Detection of early proteins during germination of aerial spores of Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Bobek, Jan; Vohradský, Jiří; Pánek, Josef; Palečková, Petra; Mikulík, Karel

    New Castle: ISBA, 2007, s. 141-141. [International Symposium on the Biology of Actinomycetes /14./. The Sage Gateshead (GB), 26.08.2007-30.08.2007] Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces coelicolor * detection Subject RIV: EE - Microbiology, Virology

  4. Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum

    DEFF Research Database (Denmark)

    Huttunen, K.; Pelkonen, J.; Nielsen, Kristian Fog; Nuutinen, U.; Jussila, J.; Hirvonen, M.M.

    2004-01-01

    chartarum, Bacillus cereus, Mycobacterium terrae, and Pseudomonas fluorescens) alone and together with the actinomycete Streptomyces californicus. The production of nitric oxide, levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6), and cytotoxicity were...

  5. Possible role of EF-Tu in cell signalling in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Holub, Martin; Kalachová, Ladislava; Bezoušková, Silvia; Weiser, Jaroslav

    Munster, 2003, s. 9. [Biology off streptomycetes and related actinomycetes . Munster (DE), 27.02.2003-03.03.2003] R&D Projects: GA ČR GA204/03/1014 Institutional research plan: CEZ:AV0Z5020903 Keywords : ef-tu * streptomyces Subject RIV: EE - Microbiology, Virology

  6. Common scab of potato in relation to Streptomyces sp. activity influenced by tuber periderm tissue state

    Czech Academy of Sciences Publication Activity Database

    Krištůfek, Václav; Diviš, J.; Zou, P.; Trefil, L.; Dostálková, I.; Schrempf, H.

    Münster: University of Münster, 2003. s. 40. [Biology of streptomycetes and related actinomycetes . 27.02.2003-03.03.2003, Münster] Institutional research plan: CEZ:AV0Z6066911 Keywords : common scab * potato * Streptomyces Subject RIV: EH - Ecology, Behaviour

  7. Potato suberin induces differentiation and secondary metabolism in the genus Streptomyces.

    Science.gov (United States)

    Lerat, Sylvain; Forest, Martin; Lauzier, Annie; Grondin, Gilles; Lacelle, Serge; Beaulieu, Carole

    2012-01-01

    Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces. PMID:22129602

  8. Antagonistic activity of antibiotic producing Streptomyces sp. against fish and human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nazmul Hossain

    2014-04-01

    Full Text Available In this study, attempts were made to isolate Streptomyces sp. from soil samples of two different regions of Bangladesh and evaluate their antagonistic activity against fish and human pathogenic bacteria. A total of 10 isolates were identified as Streptomyces sp. based on several morphological, physiological and biochemical tests. Cross streak method was used to observe the antagonistic activity of the Streptomyces sp. isolates against different fish pathogens belonging to the genus Aeromonas, Pseudomonas and Edwardsiella and human clinical isolates belonging to the genus Klebsiella, Salmonella and Streptococcus. Seven Streptomyces sp. isolates showed antagonism against both fish and human pathogenic bacteria. Four isolates viz., N24, N26, N28 and N47 showed broad spectrum of antagonistic activity (80-100% against all genera of fish and human pathogenic bacteria. The isolate N49 exhibited highest spectrum of antagonism against all fish pathogens (90-100% but comparatively lower degree of antagonism against human pathogens (50-60%. Rest of the two isolates (N21 and N23 showed variability in their antagonism. Results showed that broad spectrum antibiotic(s could be developed from the isolates N24, N26, N28 and N47against several human and fish pathogens. The isolate N49 could be a potential source of antibiotic, especially for fish pathogenic bacteria.

  9. Draft Genome Sequence of Streptomyces mutabilis TRM45540, Isolated from a Hypersaline Soil Sample

    OpenAIRE

    Luo, Xiaoxia; Wan, Chuanxing; Zhang, LiLi

    2015-01-01

    We report here the draft genome sequence of Streptomyces mutabilis TRM45540, a strain isolated from a soil sample from Xinjiang, China. Analysis of the genome using the bioinformatics tool antiSMASH showed the presence of many unique natural-product biosynthetic pathways.

  10. New insights on the development of Streptomyces and their relationships with secondary metabolite production

    OpenAIRE

    Yagüe, P.; Lopez-Garcia, M. T.; Rioseras, B.; Sanchez, J.; Manteca, A

    2012-01-01

    Streptomycetes are very important industrial bacteria, which produce two thirds of all clinically relevant secondary metabolites. Furthermore, they produce large numbers of eukaryotic cell differentiation and apoptosis inducers. Streptomyces is a mycelial soil bacterium characterized by a complex developmental cycle that includes programmed cell death (PCD) phenomena and sporulation in solid cultures. Industrial fermentations are usually performed in liquid cultures, conditions in which Strep...

  11. Identification of Low-Molecular-Weight Nucleic Acid-Related Substances Secreted by Streptomyces aureofaciens

    OpenAIRE

    De Carvalho, Alírio; Molinari, Rubens

    1983-01-01

    Streptomyces aureofaciens growth in chemically defined medium is actively associated with the secretion of low-molecular-weight nucleic acid-related substances and is linked to low availability of phosphate. Thirteen pure compounds were isolated, of which seven were identified.

  12. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon

    DEFF Research Database (Denmark)

    van Wezel, G P; Krab, I M; Douthwaite, S; Bibb, M J; Vijgenboom, E; Bosch, L

    1994-01-01

    Transcription start sites and processing sites of the Streptomyces coelicolor A3(2) rrnA operon have been investigated by a combination of in vivo and in vitro transcription analyses. The data from these approaches are consistent with the existence of four in vivo transcription sites, correspondi...

  13. Genome Sequence of Streptomyces sp. Strain TOR3209, a Rhizosphere Microecology Regulator Isolated from Tomato Rhizosphere

    OpenAIRE

    Hu, Dong; Li, Xiaozhi; Chang, Yueli; He, Huan; Zhang, Cuimian; Jia, Nan; Li, Hongtao; Wang, Zhanwu

    2012-01-01

    Streptomyces sp. strain TOR3209, isolated from tomato rhizosphere, can regulate the rhizosphere microecology of a variety of crops. Strain TOR3209 could improve plant systemic resistance and promote plant growth. Here, the genome sequence of strain TOR3209 is reported, providing the molecular biological basis of the regulation mechanism of rhizosphere microecology.

  14. Streptomyces abietis sp. nov., a cellulolytic bacterium isolated from soil of a pine forest.

    Science.gov (United States)

    Fujii, Katsuhiko; Satomi, Masataka; Fukui, Youhei; Matsunobu, Shun; Morifuku, Youji; Enokida, Yuya

    2013-12-01

    Cellulolytic bacteria A191(T), A192 and A193 isolated from the soil of Sakhalin fir forest in Hokkaido, Japan were studied phenotypically, genotypically and phylogenetically. Analysis of their 16S rRNA gene and gyrB sequences and DNA base composition suggested that these isolates were conspecific and members of the genus Streptomyces. However, levels of 16S rRNA gene and gyrB sequence similarity between the isolates and the type strains of their closest relatives in the genus Streptomyces were no higher than 97.9 and 95.0 %, respectively, implying that these isolates were distinctive. Moreover, the results of DNA-DNA hybridization experiments and physiological characterization clearly differentiated these isolates from their closest neighbours. It is therefore concluded that these isolates represent a novel species of the genus Streptomyces, for which the name Streptomyces abietis is proposed. The type strain is A191(T) ( = NBRC 109094(T) = DSM 42080(T)). PMID:23990653

  15. Complete Genome Sequence of Thiostrepton-Producing Streptomyces laurentii ATCC 31255

    Science.gov (United States)

    Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya

    2016-01-01

    Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%. PMID:27257211

  16. Complete Genome Sequence of Streptomyces ambofaciens DSM 40697, a Paradigm for Genome Plasticity Studies

    Science.gov (United States)

    Thibessard, Annabelle

    2016-01-01

    The sequence of Streptomyces ambofaciens DSM 40697 was completely determined. The genome consists of an 8.1-Mbp linear chromosome with terminal inverted repeats of 210 kb. Genomic islands were identified, one of which corresponds to a new putative integrative and conjugative element (ICE) called pSAM3. PMID:27257195

  17. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    NARCIS (Netherlands)

    Alam, Mohammad Tauqeer; Takano, Eriko; Breitling, Rainer

    2011-01-01

    Background: Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown funct

  18. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor.

    NARCIS (Netherlands)

    Alam, M.T.; Takano, E.; Breitling, R.

    2011-01-01

    ABSTRACT: BACKGROUND: Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unk

  19. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites

    DEFF Research Database (Denmark)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep;

    2014-01-01

    Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters...

  20. Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous

    NARCIS (Netherlands)

    Melillo, Elena; Muntendam, Remco; Quax, Wim J.; Kayser, Oliver

    2012-01-01

    For the first time, the pentalenene synthase (PSS) gene from Streptomyces UC5319 was expressed in Xanthophyllomyces dendrorhous, a native producer of astaxanthin. For the expression of the gene and the concurrent knock out of the native crtE or crtYB genes, two new vectors were engineered and used f

  1. Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007.

    Science.gov (United States)

    Zhang, Hongyu; Wang, Hongbo; Wang, Yipeng; Cui, Hongli; Xie, Zeping; Pu, Yang; Pei, Shiqian; Li, Fuchao; Qin, Song

    2012-07-01

    A large number of novel bioactive compounds were discovered from microbial secondary metabolites based on the traditional bioactivity screenings. Recent fermentation studies indicated that the crude extract of marine Streptomyces sp. W007 possessed great potential in agricultural fungal disease control against Phomopsis asparagi, Polystigma deformans, Cladosporium cucumerinum, Monilinia fructicola, and Colletotrichum lagenarium. To further evaluate the biosynthetic potential of secondary metabolites, we sequenced the genome of Streptomyces sp. W007 and analyzed the identifiable secondary metabolite gene clusters. Moreover, one gene cluster with type II PKS implied the possibility of Streptomyces sp. W007 to produce aromatic polyketide of angucyclinone antibiotics. Therefore, two novel compounds, 3-hydroxy-1-keto-3-methyl-8-methoxy-1,2,3,4-tetrahydro-benz[α]anthracene and kiamycin with potent cytotoxicities against human cancer cell lines, were isolated from the culture broth of Streptomyces sp. W007. In addition, other four known angucyclinone antibiotics were obtained. The gene cluster for these angucyclinone antibiotics could be assigned to 20 genes. This work provides powerful evidence for the interplay between genomic analysis and traditional natural product isolation research. PMID:22536997

  2. Variable antibiotic susceptibility patterns among Streptomyces species causing actinomycetoma in man and animals

    Directory of Open Access Journals (Sweden)

    Hamid Mohamed E

    2011-06-01

    Full Text Available Abstract Background Drug therapy is recommended in conjunction with surgery in treatment of actinomycetoma. The specific prescription depends on the type of bacteria (actinomycetoma or fungi (eumycetoma causing the disease and their in vitro antimicrobial susceptibility. Objectives To investigate the antimicrobial susceptibility among isolates of Streptomyces spp. isolated from cases of actinomycetoma in man and animals in Sudan. Methods Streptomyces strains (n = 18 isolated from cases of actinomycetoma were tested in vitro against 15 commonly prescribed antibacterial agents using MIC agar dilution method as per standard guidelines. Results Streptomyces strains isolated from actinomycetoma fall into various phenotypic groups. All of the strains were inhibited by novobiocin (8 μg/mL, gentamycin (8, 32 μg/mL and doxycycline (32 μg/mL. Fusidic acid (64 μg/mL inhibited 94.4% of the strains; bacitracin, streptomycin, cephaloridine, clindamycin, ampicillin, rifampicin and tetracycline (64 μg/mL inhibited between 61.1 and 77.8% of the strains. All strains were found resistant to amphotericin B (64 μg/mL, penicillin (20 μg/mL and sulphamethoxazole (64 μg/mL. Conclusions Saprophytic Streptomyces spp. cause actinomycetoma in man and animal belong to separate phenotypes and have a wide range of susceptibility patterns to antimicrobial agents, which pose a lot of difficulties in selecting effective in vivo treatment for actinomycetoma.

  3. Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor.

    Science.gov (United States)

    Zhi, Yan; Wu, Qun; Du, Hai; Xu, Yan

    2016-08-16

    Streptomyces spp. producing geosmin have been regarded as the most frequent and serious microbial contamination causing earthy off-flavor in Chinese liquor. It is therefore necessary to control the Streptomyces community during liquor fermentation. Biological control, using the native microbiota present in liquor making, appears to be a better solution than chemical methods. The objective of this study was to isolate native microbiota antagonistic toward Streptomyces spp. and then to evaluate the possible action mode of the antagonists. Fourteen Bacillus strains isolated from different Daqu (the fermentation starter) showed antagonistic activity against Streptomyces sampsonii, which is one of the dominant geosmin producers. Bacillus subtilis 2-16 and Bacillus amyloliquefaciens 1-45 from Maotai Daqu significantly inhibited the growth of S. sampsonii by 57.8% and 84.3% respectively, and effectively prevented the geosmin production in the simulated fermentation experiments (inoculation ratio 1:1). To probe the biocontrol mode, the ability of strain 2-16 and 1-45 to produce antimicrobial metabolites and to reduce geosmin in the fermentation system was investigated. Antimicrobial substances were identified as lipopeptides by ultra-performance liquid chromatography tandem electrospray ionization/quadrupole-time-of-flight mass spectrometry (UPLC-ESI/Q-TOF MS) and in vitro antibiotic assay. In addition, strains 2-16 and 1-45 were able to remove 45% and 15% of the geosmin respectively in the simulated solid-state fermentation. This study highlighted the potential of biocontrol, and how the use of native Bacillus species in Daqu could provide an eco-friendly method to prevent growth of Streptomyces spp. and geosmin contamination in Chinese liquor fermentation. PMID:27161758

  4. Protoplasting impact on polyketide activity and characterization of the interspecific fusants from Streptomyces spp

    International Nuclear Information System (INIS)

    Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and antitumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the production of bioactives compounds. The protoplast formation and regeneration are important processes, and they are a major step following genetic manipulations such as fusion and DNA-mediated transformation, which can improve antibiotic production. The protoplast fusion, transformation and improved fermentation features can be used to regenerate strains with increased antibiotic activity. Local Streptomyces spp. CN207 produce a broad range of secondary metabolites which is active against bacteria and fungi. This strain was used as a donor and S. coelicolor strain M145 was used as a recipient host for protoplast fusion. The protoplast fusion resulted in increased isolation of variants with higher antibiotic activity. Recombinant Streptomyces coelicolor PF04 was increased 10 times more than the wild strain. The antimicrobial activity from PF04 strain was studied using the disc method agar. TLC analysis confirmed that the Rf of cell extract for PF04 strain is identical to antimicrobial compound of Streptomyces CN207. Our results confirm the possibility of transferring antibiotics cluster genes by fusion. In fact, many of the selective markers such as Ticarcillin, Cefalotin, Oxacillin and Cefotaxim were transferred during the protoplast fusion. PFGE analysis and DNA-hybridization confirmed the presence of homologous fragments between a wild-type Streptomyces CN207 and a recombinant S. coelicolor PF04

  5. A Novel and Effective Streptomyces sp. N2 Against Various Phytopathogenic Fungi.

    Science.gov (United States)

    Xu, Bo; Chen, Wei; Wu, Zhi-ming; Long, Yue; Li, Kun-tai

    2015-11-01

    Phytopathogenic fungi would induce a variety of plant diseases, resulting in a severe reduction of agricultural output. However, the current plant disease control is mainly dependent on the environmentally and healthily hazardous chemical fungicides. Thus, the present work aimed to isolate an effective antagonistic microorganism against various soilborne phytopathogenic fungi. By dual culture with Rhizoctonia solani, a novel Streptomyces specie, Streptomyces sp. N2, was screened out from a total of 167 isolated actinomycetes, which displayed a strong inhibitory effect on R. solani (26.85 ± 1.35 mm of inhibition zone diameter). By means of macroporous resin and silica gel column chromatography coupled with preparative HPLC, an antifungal metabolite (3-methyl-3,5-amino-4-vinyl-2-pyrone, C6H7O2N) was isolated and purified from Streptomyces sp. N2. The bioassay results showed that the purified antifungal metabolite could not only possess a broad-spectrum inhibitory effect on a range of plant pathogenic fungi in vitro (e.g., R. solani, Pyricularia grisea, Fusarium oxysporum f. sp. niveum, F. oxysporum f. sp. vasinfectum, Penicillium italicum, and Colletotrichum gloeosporioides), but also had a significantly effective in vivo biocontrol efficacy on grape fruits anthracnose caused by C. gloeosporioides. Microscopic observation indicated that the antifungal metabolite from Streptomyces sp. N2 would exert its antimicrobial activity by disorganizing the cytoplasmic organelles of phytopathogenic fungi. The above results suggested that Streptomyces sp. N2 was one of promising fungicide for biocontrol of fungal plant diseases, especially due to its broad-spectrum and effective antagonist on various plant pathogens. PMID:26306529

  6. Streptomyces humi sp. nov., an actinobacterium isolated from soil of a mangrove forest.

    Science.gov (United States)

    Zainal, Nurullhudda; Ser, Hooi-Leng; Yin, Wai-Fong; Tee, Kok-Keng; Lee, Learn-Han; Chan, Kok-Gan

    2016-03-01

    A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol  %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)). PMID:26786500

  7. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  8. Continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus: Growth yields and morphological characterization

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Lettier, G.; Mcintyre, Mhairi;

    2003-01-01

    The growth stoichiometry of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus was determined in glucose-limited chemostat cultivations using a chemically defined medium. This strain produces adipoyl-7-aminocleacetoxycephalosporanic acid (ad-7-ADCA) when...

  9. 76 FR 20666 - Streptomyces Strain K61, and Wood Oils and Gums; Registration Review Final Decisions; Notice of...

    Science.gov (United States)

    2011-04-13

    ... Rhizoctonia in greenhouse plants and is used as a seed treatment for seed or soil borne damping off and early...). Streptomyces Strain K61 is a naturally occurring soil bacterium registered for control of seed, root and...

  10. Bioprocess intensification of antibiotic production by Streptomyces coelicolor A3(2) in micro-porous culture

    International Nuclear Information System (INIS)

    A novel functionalized micro-porous matrix was developed with well-controlled physicochemical proprieties such as pore size and surface chemistry. The matrix was used as a solid support in the growth of “Streptomyces coelicolor” A3(2) to enhance the production of antibiotics. The results shown support a higher production of prodigiosin and actinorhodin with overall production increase of 2–5 and 6–17, respectively, compared to conventional submerged liquid culture, offering a potential improvement in volumetric productivity. Scanning Electron Microscopy was used to evaluate pore size as well as bacterial adhesion, penetration, proliferation and migration within the micro-porous matrix. - Highlights: • Preparation of novel micro-porous matrix with different physiochemical proprieties • S. coelicolor A3(2) was cultured in those micro-porous and antibiotics was enhanced. • Matrix pore sizes and surface chemistry influenced bacterial signalling. • Bacterial signalling has a profound effect in the overproduction of Prodigiosin and actinorhodin. • Prodigiosin and actinorhodin production within micro-porous was 5–17 times higher compared with liquid growth

  11. Bioprocess intensification of antibiotic production by Streptomyces coelicolor A3(2) in micro-porous culture

    Energy Technology Data Exchange (ETDEWEB)

    Ndlovu, T.M., E-mail: tm.ndlovu@nutriss.com [NUTRISS Limited, INEX, Herschel Annex, Kings Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Ward, A.C. [School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, Republic of Korea 156-756 (Korea, Republic of); Glassey, J. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Eskildsen, J. [NUTRISS Limited, INEX, Herschel Annex, Kings Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Akay, G. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-04-01

    A novel functionalized micro-porous matrix was developed with well-controlled physicochemical proprieties such as pore size and surface chemistry. The matrix was used as a solid support in the growth of “Streptomyces coelicolor” A3(2) to enhance the production of antibiotics. The results shown support a higher production of prodigiosin and actinorhodin with overall production increase of 2–5 and 6–17, respectively, compared to conventional submerged liquid culture, offering a potential improvement in volumetric productivity. Scanning Electron Microscopy was used to evaluate pore size as well as bacterial adhesion, penetration, proliferation and migration within the micro-porous matrix. - Highlights: • Preparation of novel micro-porous matrix with different physiochemical proprieties • S. coelicolor A3(2) was cultured in those micro-porous and antibiotics was enhanced. • Matrix pore sizes and surface chemistry influenced bacterial signalling. • Bacterial signalling has a profound effect in the overproduction of Prodigiosin and actinorhodin. • Prodigiosin and actinorhodin production within micro-porous was 5–17 times higher compared with liquid growth.

  12. Formulation and Statistical Optimization of Culture Medium for Improved Production of Antimicrobial Compound by Streptomyces sp. JAJ06

    OpenAIRE

    Polpass Arul Jose; Kunjukrishnan Kamalakshi Sivakala; Solomon Robinson David Jebakumar

    2013-01-01

    Streptomyces sp. JAJ06 is a seawater-dependent antibiotic producer, previously isolated and characterised from an Indian coastal solar saltern. This paper reports replacement of seawater with a defined salt formulation in production medium and subsequent statistical media optimization to ensure consistent as well as improved antibiotic production by Streptomyces sp. JAJ06. This strain was observed to be proficient to produce antibiotic compound with incorporation of chemically defined sodium-...

  13. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin

    OpenAIRE

    Min-Juan XU; WANG, Jia-Hua; Xu-Liang BU; YU, He-Lin; Li, Peng; Ou, Hong-Yu; He, Ying; Fang-Di XU; Hu, Xiao-Yan; Xiao-Mei Zhu; Ao, Ping; Jun Xu

    2016-01-01

    Streptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyce...

  14. Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture.

    Science.gov (United States)

    Briceño, G; Schalchli, H; Rubilar, O; Tortella, G R; Mutis, A; Benimeli, C S; Palma, G; Diez, M C

    2016-08-01

    Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices. PMID:27176942

  15. Hyper secretion of Thermobifida fusca β-glucosidase via a Tat-dependent signal peptide using Streptomyces lividans

    OpenAIRE

    Miyazaki, Takaya; Noda, Shuhei; Tanaka, Tsutomu; Kondo, Akihiko

    2013-01-01

    Background Protein production as secretory-form is a powerful tool in industrial enzyme production due to the simple purification procedure. Streptomyces lividans is a versatile host for secretory production of useful proteins. In order to expand the amount of secreted protein, signal peptide sequences, which encourage protein secretion from inside cell to extracellular environment, are one of the most significant factors. In this study, we focused on Streptomyces lividans as a host strain to...

  16. Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea

    OpenAIRE

    Molina-Guijarro, Jos?? M.; P??rez Torres, Juana; Mu??oz-Dorado, Jos??; Guill??n Carretero, Francisco; Moya Lobo, Raquel; Hern??ndez Cutuli, Manuel; Arias Fern??ndez, Mar??a Enriqueta

    2009-01-01

    A newly identified extracellular laccase produced by Streptomyces ipomoea CECT 3341 (SilA) was cloned and overexpressed, and its physicochemical characteristics assessed together with its capability to decolorize and detoxify an azotype dye. Molecular analysis of the deduced sequence revealed that SilA contains a TAT-type signal peptide at the N-terminus and only two cupredoxine domains; this is consistent with reports describing two other Streptomyces laccases but contrasts with ...

  17. Xylanase production by Streptomyces viridosporus T7A in submerged and solid-state fermentation using agro-industrial residues

    Directory of Open Access Journals (Sweden)

    Luiz Romulo Alberton

    2009-11-01

    Full Text Available The study of xylanase production was conducted by Streptomyces viridosporus T7A in submerged (SmF and solid-state fermentation (SSF, using agro-industrial residues and sub-products. Napier grass, sugarcane bagasse and soybean bran were used as carbon source, substrate/support, and nitrogen source, respectively. In SmF, Napier grass (1% v/w supplemented with soybean bran, hydroxyethylcellulose and B complex vitamins were used. Soybean bran (1.5 % w/v, B complex vitamins (0.1%, and hydroxyethilcellulose (0.15% led to an increase in xylanase production (23.41 U/mL. In SSF, the effects of the following parameters were studied: substrate composition (sugarcane bagasse, Napier grass and soybean bran, initial moisture, and inoculum rate. In SSF, the highest xylanase activity (423.9 U/g was reached with: 70 % sugarcane bagasse, 20% Napier grass and 10% soybean meal, 90% of moisture, and 10(7/g substrate.A produção de xilanase por Streptomyces viridosporus T7A foi realizada em fermentação submersa (FSm e fermentação no estado sólido (FES utilizando resíduos e sub-produtos agroindustriais. Capim Napier, bagaço de cana e farelo de soja foram empregados como fonte de carbono, suporte/substrato e fonte nitrogênio, respectivamente. Em FSm, o capim Napier (1 % p/v foi suplementado com farelo de soja (1,5 % p/v, hidroxietilcelulose (0,15 % e vitaminas do complexo B (1,5 % sendo que a produção de xilanase atingiu 23.41 U/mL. Em FES, o efeito dos seguintes parâmetros foi estudado: composição do substrato (bagaço de cana, Capim Napier e farelo de soja, umidade inicial, aeração e taxa de inoculação. A mais elevada produção de xilanase (423,9 U/g foi atingida com 70% bagaço de cana, 20% de capim Napier e 10 % farelo de soja, 90 % de umidade inicial e 10(7 células/g substrato.

  18. Hydrogen peroxide-mediated dealkylation of 7-ethoxycoumarin by cytochrome P450 (CYP107AJ1) from Streptomyces peucetius ATCC27952.

    Science.gov (United States)

    Niraula, Narayan Prasad; Kanth, Bashistha Kumar; Sohng, Jae Kyung; Oh, Tae-Jin

    2011-02-01

    Cytochrome P450 CYP107AJ1, which was isolated from Streptomyces peucetius and showed high homology with peroxygenases, catalyzed a dealkylation reaction with hydrogen peroxide to provide electrons, protons and oxygen, evading the requirement for a supporting redox protein. Preliminary investigation of its transcriptional level in S. peucetius showed significant expression. Homology modeling and subsequent docking with 7-ethoxycoumarin yielded a reasonable docked structure. cyp107AJ1 cloned into pET28a(+) was expressed in Escherichia coli, and soluble protein was subjected to column-chromatographic purification in order to carry out enzyme assays with 7-ethoxycoumarin. HPLC analysis of the extracted product, corresponding to its LC/MS analysis, showed the dealkylated 7-ethoxycoumarin, which was further established by subsequent GC/MS spectral analysis. We suggest that CYP107AJ1 bypassed the requirement for NAD(P)H and redox partners for generating novel analogues. PMID:22112829

  19. Development of Fed-Batch Cultivation Strategy for Efficient Oxytetracycline Production by Streptomyces rimosus at Semi-Industrial Scale

    Directory of Open Access Journals (Sweden)

    Elsayed Ahmed Elsayed

    2015-10-01

    Full Text Available ABSTRACTOxytetracycline (OTC production byStreptomyces rimosus was studied in batch and fed-batch cultures in shake flask and bioreactor levels using semi-defined medium. First, the effect of glucose concentration on OTC production and growth kinetics was studied intensively. The optimal glucose concentration in the medium was 15 g/L. Higher glucose concentrations supported higher biomass production by less volumetric and specific antibiotic production. Based on these data, cultivations were carried out at semi-industrial scale 15 L bioreactor in batch culture. At bioreactor level, cell growth and OTC production were higher compared to the shake flask culture by about 18 and 38%, respectively. During the bioreactor cultivation, glucose was totally consumed after only 48 h. Thus, the fed-batch experiment was designed for mono-glucose feeding and complete medium feeding to increase the OTC production by overcoming carbon limitations. The results showed that the fed-batch culture using constant glucose feeding strategy with rate of 0.33 g/L/h produced 1072 mg/L. On the other hand, feeding with complete medium resulted in 45% higher biomass but less OTC production by about 26% compared to mono-glucose fed culture. A further improvement in this process was achieved in by keeping the dissolved oxygen (DO value at 60% saturation by cascading the glucose feeding pump with the DO controller. The later feeding strategy resulted in higher antibiotic production, reaching 1414 mg/L after 108 h.

  20. Biological Control of Rice Blast (Magnaporthe oryzae by use of Streptomyces sindeneusis isolate 263 in Greenhouse

    Directory of Open Access Journals (Sweden)

    M. E. Zarandi

    2009-01-01

    Full Text Available Soil Actinomycetes particularly Streptomyces spp. have antagonistic activity against wide range of plant pathogens. In the recent decades they have attracted high interests as biocontrol agents. In search for finding such principles, in vitro suppression of Magnaporthe oryzae the causal agent of rice blast disease was studied by use of Streptomyces sindeneusis isolate 263 in greenhouse. Spray of rice seedling-leaves with of mixed spore suspension of the pathogen and S. sindeneusis isolate 263 resulted in strong inhibition of the pathogen and suppression of leaf symptoms. Propagation of the antagonist crude sap was performed in aqueous cultures and bioactivity was monitored in shaked cultures. Ongoing goals of this research include isolation, characterization and identification of the active metabolites and future goals include identification of active genes for use in development of recombinant DNAs in transgenic rice varieties bearing elevated resistance to infections by M. oryzae.

  1. Crystallization and preliminary crystallographic analysis of β-l-arabinopyranosidase from Streptomyces avermitilis NBRC14893

    International Nuclear Information System (INIS)

    β-l-Arabinopyranosidase from S. avermitilis NBRC14893 was crystallized by the sitting-drop vapour-diffusion method. The crystals diffracted to 1.6 Å resolution and belonged to space group P212121. β-l-Arabinopyranosidase from Streptomyces avermitilis NBRC14893 is a monomeric protein consisting of a catalytic domain belonging to glycosyl hydrolase family 27, an unknown domain and a substrate-binding domain belonging to carbohydrate-binding module family 13. The complete enzyme (residues 45–658) has successfully been cloned and homologously expressed in the Streptomyces expression system. β-l-Arabinopyranosidase was crystallized by the sitting-drop vapour-diffusion method. The crystals diffracted to 1.6 Å resolution and belonged to space group P212121, with unit-cell parameters a = 68.2, b = 98.9, c = 181.3 Å. The Matthews coefficient was calculated to be 2.38 Å3 Da−1

  2. Fermentation kinetics makeover in poly-ε-lysine biosynthesis by Streptomyces noursei NRRL 5126

    Directory of Open Access Journals (Sweden)

    Sandip Balasaheb Bankar

    2012-04-01

    Full Text Available An unstructured model has been used to predict microbial growth based on glycerol consumption and poly-ε-lysine (ε-PL biosynthesis by Streptomyces noursei NRRL 5126. The logistic and Luedeking-Piret equations have been proposed to describe the time course of ε-PL formation, substrate consumption and cell growth. The shake flask level data from kinetic studies was illustrated and compared with fermenter studies. In all cases, the model simulation matched well with the experimental observations, which made it possible to elucidate the fermentation characteristics of Streptomyces noursei during efficient ε-PL production from glycerol. Optimized oxygen supply into the fermenter shifted mixed growth associated biosynthesis of ε-PL from shake flask level to growth associated biosynthesis. 

  3. Construction of the glucose isomerase deficient strain of Streptomyces M1033 by homologous recombination

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    After the establishment of the transformation conditions of Streptomyces diastaticus No.7 Strain M1033,the integration plasmid pXW for homologous recombination,which contains a 600 bp fragment of incomplete GI (G138P.G247D) gene,has been constructed in order to realize the stable overexpression of the GI (G138P.G247D) which is valuable for large-scale industrial production.The Gigene's disruption has been realized by pXW's integration into M1033 chromosomes via homologous recombination and GI deficient strain of Streptomyces M1033 has been obtained.The reliability of introduction of mutation has been proved by analysis of recombinant fragment and affirmance of existence of the mutation,as well as detection of the stability of the deficient strain.

  4. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    Science.gov (United States)

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi. PMID:24310522

  5. Preliminary X-ray crystallographic analysis of the glycosyltransferase from a marine Streptomyces species

    International Nuclear Information System (INIS)

    The recombinant glycosyltransferase ElaGT from the elaiophylin-producing marine Streptomyces sp. SCSIO 01934 has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.9 Å resolution. ElaGT is a glycosyltransferase from a marine Streptomyces species that is involved in the biosynthesis of elaiophylin. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of ElaGT are reported. The rod-shaped crystals belonged to space group P2122, with unit-cell parameters a = 66.7, b = 131.7, c = 224.6 Å, α = 90, β = 90, γ = 90°. Data were collected to 2.9 Å resolution. A preliminary molecular-replacement solution implied the presence of two ElaGT molecules in the asymmetric unit

  6. OPTIMIZATION OF ALKALINE PROTEASE PRODUCTION BY STREPTOMYCES AMBOFACIENS IN FREE AND IMMOBILIZED FORM

    Directory of Open Access Journals (Sweden)

    Nayera A.M. Abdelwahed

    2014-01-01

    Full Text Available Optimization of alkaline protease production by Streptomyces ambofaciens NRRL 2420 in free and immobilized form was investigated using submerged fermentation technique. The optimum conditions for maximum alkaline protease production 342 unit mL-1 were 30°C at pH 8.5 and incubation time 96 h in free cell cultures using starch 20 g L-1 as carbon source and yeast extract 5 g L-1 as nitrogen source. The incubation time for the best yield of 344 unit mL-1 was reduced to 72 h under the optimized fermentation conditions by immobilized cells adsorbed on synthetic cotton fibers. Data obtained during 5 reusable cycles showed higher levels of enzyme in shorter time duration. Immobilization of Streptomyces ambofaciens NRRL 2420 on synthetic cotton fiber permit repeated reuse of the cells under the optimized fermentation conditions.

  7. Langkolide, a 32-membered macrolactone antibiotic produced by Streptomyces sp. Acta 3062.

    Science.gov (United States)

    Helaly, Soleiman E; Kulik, Andreas; Zinecker, Heidi; Ramachandaran, Kamalanathan; Tan, Geok Yuan Annie; Imhoff, Johannes F; Süssmuth, Roderich D; Fiedler, Hans-Peter; Sabaratnam, Vikineswary

    2012-06-22

    A new 32-membered macrolactone antibiotic, named langkolide, was isolated from the mycelium of Streptomyces sp. Acta 3062. The langkolide structure was determined by HR-MS and 1D and 2D NMR as a 32-membered macrolactone connected from an overhanging polyketide tail to a naphthoquinone unit mediated by two carbohydrate moieties. The producing strain was isolated from a rhizosphere soil of Clitorea sp. collected at Burau Bay, Langkawi, Malaysia, and was characterized by its morphological and chemotaxonomic features in addition to its 16S rRNA gene sequence. It was identified as a member of the Streptomyces galbus clade. Langkolide exhibited various bioactivities including antimicrobial and antiproliferative activities. Furthermore, langkolide inhibited human recombinant phosphodiesterase 4 with an IC(50) value of 0.48 μM. PMID:22642587

  8. A glyoxalase I inhibitor of a new structural type produced by Streptomyces.

    Science.gov (United States)

    Takeuchi, T; Chimura, H; Hamada, M; Umezawa, H; Yoshioka, O

    1975-10-01

    Many streptomyces strains produced an inhibitor of crude glyoxalase prepared from rat liver which did not inhibit glyoxalase I prepared from yeast. Another inhibitor, C11H14O6, which inhibited glyoxalases prepared from both rat liver and yeast was obtained from a cultured broth of Streptomyces griseosproeus and crystallized. Preincubation of this inhibitor with reuduced glutathione increased its inhibitory activity, which suggested its reaction with reduced glutathione. It showed a strong inhibition of growth of HeLa cells and inhibition of Ehrlich ascites carcinoma by daily injection. It also showed weak inhibition of the solid type of Ehrlich carcinoma and prolonged the survival period of mice inoculated with L-1210 cells. PMID:1102510

  9. Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency.

    Science.gov (United States)

    Bernat, Przemysław; Długoński, Jerzy

    2009-11-15

    Dibutyltin (DBT), a widely used plastic stabilizer, has been detected in the environment as well as in human tissues. DBT is considered to be highly neurotoxic and immunotoxic. Hence, DBT needs to be considered as a potential toxic chemical. Degradation of butyltin compounds by Streptomyces sp. isolated from plant waste composting heaps was studied. Glucose grown cells degraded organotin from 10 to 40 mg l(-1). After 1 day of incubation 90% of DBT (added at 20 mg l(-1)) was converted to less toxic derivative--monobutyltin (MBT). DBT metabolism was inhibited by metyrapone addition, a known cytochrome P-450 inhibitor. It could provide evidence that cytochrome P-450 system is involved in DBT metabolism in Streptomyces sp. IM P102. Moreover, according to our knowledge, the degradation of DBT by actinobacterium has not been previously described. PMID:19592163

  10. An adpA homologue in Streptomyces avermitilis is involved in regulation of morphogenesis and melanogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHAO JinLei; WEN Ying; CHEN Zhi; SONG Yuan; LI JiLun

    2007-01-01

    In Streptomyces griseus, AdpA, the key transcriptional activator in the A-factor regulatory cascade, switches on the transcription of multiple genes required for secondary metabolism and morphological differentiation. Streptomyces avermitilis also contains an ortholog of adpA, which is named adpA-a. To clarify the in vivo function of adpA-a, an adpA-a-disrupted strain was constructed by double crossover recombination. No difference in avermectin production was found between the adpA-a-disruptant and the wild-type strain. However, this disruptant neither formed spores nor produced melanin and its phenotype was restored to the original wild-type by a single copy of the adpA-a gene integrated into the chromosome. This report shows that adpA-a is involved in regulation of morphological differentiation and melanin production in S. avermitilis.

  11. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2011-09-01

    Full Text Available Abstract Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function. However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein. Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function.

  12. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    Science.gov (United States)

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants. PMID:26467569

  13. Isolasi dan karakterisasi senyawa metabolit sekunder dari bakteri laut Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Muhammad bahi

    2012-12-01

    Full Text Available Streptomyces is one of bacterial genus which has been considered as a potential source of many novel antibiotics from both terrestrial and marinemicroorganism. In this paper, four secondary metabolites have been isolated and characterized from a marine Streptomyces sp. B5798, namely phydroxyphenylaceticacid (2, indole-3-carboxylic acid (3, indole-3-acetic acid (4, and Macrolactin A (5, respectively. Two of them are commoncompounds, namely indole-3-carboxylic acid (3 and indole-3-acetic acid (4. The 3,4-dihydroxybenzaldehyde is a degradation product of phydroxyphenylacetic(2 in microorganism. Macrolactin A (5 showed cytotoxicity against brine shrimps test (A. salina. All structures of the isolatedcompounds were elucidated based on spectroscopic and mass spectrometry data.

  14. Identification and Heterologous Expression of the Chaxamycin Biosynthesis Gene Cluster from Streptomyces leeuwenhoekii.

    Science.gov (United States)

    Castro, Jean Franco; Razmilic, Valeria; Gomez-Escribano, Juan Pablo; Andrews, Barbara; Asenjo, Juan A; Bibb, Mervyn J

    2015-09-01

    Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ΔcxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives. PMID:26092459

  15. Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans.

    OpenAIRE

    Rowland, S S; Speedie, M K; Pogell, B M

    1991-01-01

    A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate sp...

  16. A Two-Step Mechanism for the Activation of Actinorhodin Export and Resistance in Streptomyces coelicolor

    OpenAIRE

    Xu, Ye; Willems, Andrew; Au-yeung, Catherine; Tahlan, Kapil; Justin R Nodwell

    2012-01-01

    ABSTRACT Many microorganisms produce secondary metabolites that have antibiotic activity. To avoid self-inhibition, the producing cells often encode cognate export and/or resistance mechanisms in the biosynthetic gene clusters for these molecules. Actinorhodin is a blue-pigmented antibiotic produced by Streptomyces coelicolor. The actAB operon, carried in the actinorhodin biosynthetic gene cluster, encodes two putative export pumps and is regulated by the transcriptional repressor protein Act...

  17. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    OpenAIRE

    Wenwen Yang; Hongzhi Tang; Jun Ni; Qiulin Wu; Dongliang Hua; Fei Tao; Ping Xu

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previou...

  18. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus.

    OpenAIRE

    Pometto, A L; Crawford, D L

    1983-01-01

    A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth ...

  19. RNA-Seq Analysis Reveals a Six-Gene SoxR Regulon in Streptomyces coelicolor

    OpenAIRE

    Nawar Naseer; Shapiro, Joshua A.; Monica Chander

    2014-01-01

    The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving > 100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transpo...

  20. Fermentation kinetics makeover in poly-ε-lysine biosynthesis by Streptomyces noursei NRRL 5126

    OpenAIRE

    Sandip Balasaheb Bankar; Singhal, Rekha S.

    2012-01-01

    An unstructured model has been used to predict microbial growth based on glycerol consumption and poly-ε-lysine (ε-PL) biosynthesis by Streptomyces noursei NRRL 5126. The logistic and Luedeking-Piret equations have been proposed to describe the time course of ε-PL formation, substrate consumption and cell growth. The shake flask level data from kinetic studies was illustrated and compared with fermenter studies. In all cases, the model simulation matched well with the ...

  1. Detection and properties of A-factor-binding protein from Streptomyces griseus.

    OpenAIRE

    Miyake, K; Horinouchi, S; Yoshida, M; Chiba, N; Mori, K; Nogawa, N; Morikawa, N; Beppu, T

    1989-01-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel f...

  2. The impact of isatin derivatives on antibiotic production by Streptomyces hygroscopicus CH-7

    OpenAIRE

    Ćirić Jovan T.; Konstantinović Sandra S.; Ilić Slavica B.; Gojgić-Cvijović Gordana; Savić Dragiša S.; Veljković Vlada B.

    2016-01-01

    The effect of isatin derivatives as a nitrogen source on antibiotic (Hexaene H-85 and Azalomycine B) production by Streptomyces hygroscopicus CH-7 was studied. Isatin-3-hydrazone, 5-chloroisatin-3-hydrazone, isatin-3-tosylhydrazone, 5-chloroisatin-3-tosylhydrazone, isatin-3-(4`-hidroxy)benzoilhydrazone and 5-chloroisatin-3-(4`-hidroxy)benzoilhydrazone were synthesized in a crude glycerol, obtained during the biodiesel production from edible sunflower oil. ...

  3. Post-PKS Tailoring Steps of the Spiramycin Macrolactone Ring in Streptomyces ambofaciens

    OpenAIRE

    Nguyen, Hoang-Chuong; Darbon, Emmanuelle; Thai, Robert; Pernodet, Jean-Luc; Lautru, Sylvie

    2013-01-01

    Spiramycins are clinically important 16-member macrolide antibiotics produced by Streptomyces ambofaciens. Biosynthetic studies have established that the earliest lactonic intermediate in spiramycin biosynthesis, the macrolactone platenolide I, is synthesized by a type I modular polyketide synthase (PKS). Platenolide I then undergoes a series of post-PKS tailoring reactions yielding the final products, spiramycins I, II, and III. We recently characterized the post-PKS glycosylation steps of s...

  4. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    OpenAIRE

    Hwang, Jae Yoon; Kim, Hyo Sun; Kim, Soo Hee; Oh, Hye Ryeung; Nam, Doo Hyun

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showe...

  5. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis

    OpenAIRE

    Ikeda, Haruo; Nonomiya, Tomoko; Usami, Masayo; Ohta, Toshio; Ōmura, Satoshi

    1999-01-01

    Analysis of the gene cluster from Streptomyces avermitilis that governs the biosynthesis of the polyketide anthelmintic avermectin revealed that it contains four large ORFs encoding giant multifunctional polypeptides of the avermectin polyketide synthase (AVES 1, AVES 2, AVES 3, and AVES 4). These clustered polyketide synthase genes responsible for avermectin biosynthesis together encode 12 homologous sets of enzyme activities (modules), each catalyzing a specific round of polyketide chain el...

  6. Molekularbiologische und biochemische Untersuchungen der Phenazin- und Furanonaphthochinon I-Biosynthese in Streptomyces cinnamonensis DSM 1042

    OpenAIRE

    Haagen, Yvonne

    2007-01-01

    Streptomyces cinnamonensis DSM 1042 produziert zwei Arten von prenylierten Sekundärstoffen: Furanonaphthochinon I (FNQ I) und prenylierte Phenazine, insbesondere Endophenazin A. FNQ I ist ein Naphthochinon aus dem Polyketidstoffwechsel mit einem zyklisierten Geranylrest. Endophenazin A ist ein Phenazin-1-carbonsäurederivat mit einem Dimethylallylrest an Position 9. Zu Beginn dieser Arbeit waren einige Phenazin-Biosynthesegencluster aus verschiedenen Organismen, vor allem aus Pseudomonas-Stämm...

  7. Molecular and biochemical investigation of the biosynthesis of clorobiocin in Streptomyces roseochromogenes DS 12.976

    OpenAIRE

    Pojer, Florence

    2003-01-01

    Aminocoumarin antibiotics, such as novobiocin, clorobiocin and coumermycin A1, are produced by various Streptomyces strains and are very potent against gram-positive pathogenic bacteria including methicillin-resistant Staphylococcus strains. Bacterial DNA gyrase is the target of the aminocoumarin antibiotics. Until recently, novobiocin (Albamycin®, Pharmacia-Upjohn) was licensed in the United States for the treatment of infections with gram-positive bacteria and has been shown to enhance the ...

  8. Molekularbiologische und biochemische Untersuchungen zur Biosynthese von Novobiocin in Streptomyces spheroides NCIMB 11891

    OpenAIRE

    Steffensky, Marion

    2000-01-01

    Das Aminocumarin-Antibiotikum Novobiocin gehört zur Gruppe der DNA-Gyrase-Inhibitoren und wird durch Streptomyces spheroides produziert. In den Vereinigten Staaten ist Novobiocin (Albamycin®, Pharmacia & Upjohn) als Antibiotikum zur Behandlung von Infektionen mit multiresistenten, Gram-positiven Bakterien zugelassen. Die Erforschung der Novobiocin-Biosynthese auf molekularbiologischer Ebene und die Charakterisierung der beteiligten Enzyme könnte ein nützliches Mittel zur Entwicklung neuer ant...

  9. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    Directory of Open Access Journals (Sweden)

    Wen Ying

    2010-07-01

    Full Text Available Abstract Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs, and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously

  10. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata.

    Science.gov (United States)

    de Oliveira, Luciana G; Tormet Gonzalez, Gabriela D; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content. PMID:24994795

  11. Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans

    OpenAIRE

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I.; Trivedi, Drupad K.; Rattray, Nicholas J. W.; Bernaerts, Kristel; Goodacre, Royston

    2015-01-01

    Background Whilst undergoing differentiation, Streptomyces produce a large quantity of hydrolytic enzymes and secondary metabolites, and it is this very ability that has focussed increasing interest on the use of these bacteria as hosts for the production of various heterologous proteins. However, within this genus, the exploration and understanding of the metabolic burden associated with such bio-products has only just begun. In this study our overall aim was to apply metabolomics approaches...

  12. Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis.

    OpenAIRE

    Gormley, E P; Davies, J.

    1991-01-01

    The plasmid RSF1010 belongs to a class of plasmids (IncQ) that replicate in a range of bacterial hosts. Although non-self-transmissible, it can be mobilized at high frequency between different gram-negative bacterial species if transfer functions are supplied in trans. We report the transfer of RSF1010 by conjugation from Escherichia coli to the gram-positive actinomycetes Streptomyces lividans and Mycobacterium smegmatis. In its new hosts, the plasmid was stable with respect to structure and...

  13. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives

    OpenAIRE

    Yagüe, Paula; López-García, Maria T.; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Ángel

    2013-01-01

    Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we ...

  14. Controlling growth and morphogenesis of the industrial enzyme producer Streptomyces lividans

    OpenAIRE

    Mangiameli, Giulia

    2014-01-01

    Streptomyces are Gram-positive, soil dwelling bacteria that raised interest in the last 50 years for their high potential in antibiotic and protein production. Thanks to their saprophytic nature, streptomycetes secrete a massive amount of industrial enzymes. They have a relatively low level of endogenous extracellular proteolytic activity when compared to other expression hosts (e.g. Bacillus), they are generally more suited to produce proteins encoded by high G+C actinomycete genes in their ...

  15. Preliminary Crystallographic Study of Streptomyces coelicolor Single-stranded DNA-binding Protein

    OpenAIRE

    Štefanić, Zoran; Vujaklija, Dušica; Andrišić, Luka; Mikleušević, Goran; Andrejašič, Miha; Turk, Dušan; Luić, Marija

    2007-01-01

    Single-stranded DNA-binding proteins (SSBs) play a crucial role in DNA processing such as replication, repair and recombination in all organisms, from bacteria to human. Streptomyces coelicolor ssb gene was overexpressed in a heterologous host, Escherichia coli NM522. 15 mg of purified protein from 1 dm(3) of culture was obtained in one-step procedure applying Ni2+ chelating chromatography. Among bacterial SSBs with the solved crystal structure, the S. coelicolor SSB displayed significant seq...

  16. Efficacy of Streptomyces spp. strains against different strains of Botrytis cinerea

    OpenAIRE

    Boukaew, Sawai; Prasertsan, Poonsuk; Troulet, Claire; Bardin, Marc

    2014-01-01

    Grey mould caused by the fungus Botrytis cinerea is an economically important disease in numerous crops. Biocontrol is a promising method to control the disease. Species of Streptomyces are potential biological control agents since they are ubiquitous in the environment and many of them produce various secondary metabolites with diverse biological activities including the ability to inhibit this plant pathogenic fungus. Strains RM-1-138 and RL-1-178 of S. philanthi and SS-2-243 of S. mycarofa...

  17. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  18. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.

    OpenAIRE

    Ezra, D; Castillo, UF; Strobel, GA; Hess, WM; Porter, H; Jensen, JB; Condron, MAM; Teplow, DB; J. Sears; Maranta, M; Hunter, M; Weber, B.; Yaver, D

    2004-01-01

    Coronamycin is a complex of novel peptide antibiotics with activity against pythiaceous fungi and the human fungal pathogen Cryptococcus neoformans. It is also active against the malarial parasite, Plasmodium falciparum, with an IC50 of 9.0 ng ml-1. Coronamycin is produced by a verticillate Streptomyces sp. isolated as an endophyte from an epiphytic vine, Monstera sp., found in the Manu region of the upper Amazon of Peru. Bioassay-guided fractionation of the fermentation broths of this endoph...

  19. Gombapyrones E and F, New α-Pyrone Polyenes Produced by Streptomyces sp. KMC-002

    OpenAIRE

    Kang Ro Lee; Hak Cheol Kwon; Hyun Ok Yang; Hyun Bong Park

    2011-01-01

    Microorganism-derived polyene polyketides have been shown to display a variety of biological activities and have attracted great interest due to their structurally intriguing chemical diversity. Two new polyenes were isolated from a culture broth of Streptomyces sp. KMC-002 obtained from a soil sample in an abandoned mine. The structures of these compounds were determined to be α-pyrone-containing polyene analogues through analyses of HRFABMS, UV and NMR data, and were named Gombapyrones E (1...

  20. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R;

    2011-01-01

    A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis. Sceliphrol....... Sceliphrolactam displays antifungal activity against amphotericin B-resistant Candida albicans (MIC = 4 µg/mL, 8.3 µM)....

  1. Strain improvement in Streptomyces galilaeus, a producer of anthracycline antibiotics galirubins

    International Nuclear Information System (INIS)

    The production of epsilon-pyrromycinone glycosides in Streptomyces galilaeus increased 12-fold, with respect to the wild strain, as a result of a sequential procedure including both natural selection and treatment with mutagens (nitrous acid, UV light and γ irradiation). Nitrous acid exhibited the highest mutagenic effect, both in increasing the productivity and in inducing blocked mutants. A mutant strain blocked in the biosynthesis of glycosides and accumulating free epsilon-pyrromycinone as the principal metabolite was obtained. (author)

  2. [2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus

    OpenAIRE

    Christian A. Citron; Dickschat, Jeroen S.

    2013-01-01

    During growth on fully deuterated medium the volatile terpene [2H26]-1-epi-cubenol was released by the actinomycete Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known to slow down all metabolic processes in living organisms. Potential app...

  3. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host

    OpenAIRE

    YAMADA, YUUKI; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin’ya, Kazuo; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match any known compounds in the spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowe...

  4. Enzymatic Conversion of Glucose to UDP-4-Keto-6-Deoxyglucose in Streptomyces spp.

    OpenAIRE

    Liu, Song Yu; Rosazza, John P. N.

    1998-01-01

    All of the 2,6-dideoxy sugars contained within the structure of chromomycin A3 are derived from d-glucose. Enzyme assays were used to confirm the presence of hexokinase, phosphoglucomutase, UDPG pyrophosphorylase (UDPGP), and UDPG oxidoreductase (UDPGO), all of which are involved in the pathway of glucose activation and conversion into 2,6-dideoxyhexoses during chromomycin biosynthesis. Levels of the four enzymes in Streptomyces spp. cell extracts were correlated with the production of chromo...

  5. Applicability of adsorbent resins for the recovery of geldanamycin from streptomyces hygroscopicus var; geldanus fermentation broths

    OpenAIRE

    Casey, John

    2006-01-01

    Adsorbent resins are gaining increased application in recovery bioprocesses, thus it was decided to assess their applicability for the recovery of geldanamycin, an antibiotic produced Streptomyces hygroscopicus var. geldanus, in both a Downstream Processing (DSP) and In-Situ Product Recovery (ISPR) context. Antibiotic production was initially assessed using the conventional disk diffusion assay. This was inefficient for large sample sets, therefore a microtiter plate-based bioassay was de...

  6. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    Directory of Open Access Journals (Sweden)

    Houssam M. Atta

    2015-01-01

    Full Text Available Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9111; Escherichia coli, NCTC 10416; Pseudomonas aeruginosa, ATCC 10145; Saccharomyces cerevisiae ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023; Aspergillus niger IMI 31276; Aspergillus fumigatus ATCC 16424; Fusarium oxysporum; Rhizoctonia solani; Alternaria alternata; Botrytis fabae and Penicillium chrysogenium. The production media were optimized for maximum yield of secondary metabolites. The metabolites were extracted using n-butanol (1:1, v/v at pH 7.0. The chemical structural analysis with UV, IR, and MS spectral analyses confirmed that the compound produced by Streptomyces torulosus, T-4 is tunicamycin antibiotic.

  7. A versatile PCR-based tandem epitope tagging system for Streptomyces coelicolor genome.

    Science.gov (United States)

    Kim, Ji-Nu; Yi, Jeong Sang; Lee, Bo-Rahm; Kim, Eun-Jung; Kim, Min Woo; Song, Yoseb; Cho, Byung-Kwan; Kim, Byung-Gee

    2012-07-20

    Epitope tagging approaches have been widely used for the analysis of functions, interactions and subcellular distributions of proteins. However, incorporating epitope sequence into protein loci in Streptomyces is time-consuming procedure due to the absence of the versatile tagging methods. Here, we developed a versatile PCR-based tandem epitope tagging tool for the Streptomyces genome engineering. We constructed a series of template plasmids that carry repeated sequence of c-myc epitope, Flp recombinase target (FRT) sites, and apramycin resistance marker to insert epitope tags into any desired spot of the chromosomal loci. A DNA module which includes the tandem epitope-encoding sequence and a selectable marker was amplified by PCR with primers that carry homologous extensions to the last portion and downstream region of the targeted gene. We fused the epitope tags at the 3' region of global transcription factors of Streptomyces coelicolor to test the validity of this system. The proper insertion of the epitope tag was confirmed by PCR and western blot analysis. The recombinants showed the identical phenotype to the wild-type that proved the conservation of in vivo function of the tagged proteins. Finally, the direct binding targets were successfully detected by chromatin immunoprecipitation with the increase in the signal-to-noise ratio. The epitope tagging system describes here would provide wide applications to study the protein functions in S. coelicolor. PMID:22704935

  8. Bioremediation of Carbendazim, a Benzimidazole Fungicide Using Brevibacillus borstelensis and Streptomyces albogriseolus Together.

    Science.gov (United States)

    Arya, Ridhima; Sharma, Anil K

    2015-01-01

    Excessive use of pesticides in agriculture has resulted in contamination of water resources, air, soil and disruption of biogeochemical cycles. These compounds adversely affect humans and animal health, helpful soil microbes and crop production as well. Biodegradation of pesticides by microbes exists in a number of habitats like soil, sediments, surface, ground water, and sludge, etc. In the present study, efforts were made to develop a microbial consortium comprising of Streptomyces albogriseolus and Brevibacillus borstelensis strains isolated earlier which are capable of degrading carbendazim, a benzimidazole fungicide and making it harmless. Both the strains Brevibacillus borstelensis and Streptomyces albogriseolus displayed growth even at higher concentrations (500μg mL(-1)) of carbendazim. The consortium containing Brevibacillus borstelensis and Streptomyces albogriseolus reduced carbendazim concentration from 30 µg mL(-1) to 0.86 µg mL(-1) (nearly 97%) in 12hrs to 0.60 µg mL(-1) (~98%) in 20 hrs as determined by LCMS analysis. There was a significant reduction observed in carbendazim concentration than reduction obtained when individual strain was used. This study paves a way for further exploration of degradation mechanism at the genetic level to enhance the capability of microorganisms in consortia. PMID:26420048

  9. Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing.

    Science.gov (United States)

    Kramar, Ana; Ilic-Tomic, Tatjana; Petkovic, Milos; Radulović, Niko; Kostic, Mirjana; Jocic, Dragan; Nikodinovic-Runic, Jasmina

    2014-08-01

    Renewed demand for incorporation of natural dyes (bio-colorants) in textile industry could be met through biotechnological production of bacterial pigments. Two new Streptomyces strains (NP2 and NP4) were isolated for the remarkable ability to produce diffusible deep blue and deep red pigment into fermentation medium. Crude mycelial extracts of both strains were used as bio-colorants in conventional textile dyeing procedures avoiding downstream purification procedures. The yields of bio-colorants obtained in this way were 62 and 84 mg per g of mycelia for Streptomyces sp. NP2 and Streptomyces sp. NP4, respectively. Through nuclear magnetic resonance analysis of crude extracts before and after dyeing procedures, it was shown that both extracts contained prodigiosin-like family of compounds that exhibited different dyeing capabilities towards different textile fibers. Polyamide and acrylic fibers were colored to the deepest shade, polyester and triacetate fibers to a noticeable, but much lower shade depth, while cotton and cellulosic fibers stained weakly. These results confirmed that crude bacterial extracts had the characteristics similar to those of ionic and disperse dyes, which was consistent with the identified polypyrrolic prodigiosin-like structures. PMID:24671299

  10. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4

    Institute of Scientific and Technical Information of China (English)

    Valliappan Karuppiah; Chandramohan Aarthi; Kannan Sivakumar; Lakshmanan Kannan

    2013-01-01

    Objective: To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Methods:Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Results: Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. Conclusions:The study revealed that the maximum amount of pigment could be produced to treat cancer.

  11. Contributions of ancestral inter-species recombination to the genetic diversity of extant Streptomyces lineages.

    Science.gov (United States)

    Andam, Cheryl P; Choudoir, Mallory J; Vinh Nguyen, Anh; Sol Park, Han; Buckley, Daniel H

    2016-07-01

    Streptomyces species produce many important antibiotics and have a crucial role in soil nutrient cycling. However, their evolutionary history remains poorly characterized. We have evaluated the impact of homologous recombination on the evolution of Streptomyces using multi-locus sequence analysis of 234 strains that represent at least 11 species clusters. Evidence of inter-species recombination is widespread but not uniform within the genus and levels of mosaicism vary between species clusters. Most phylogenetically incongruent loci are monophyletic at the scale of species clusters and their subclades, suggesting that these recombination events occurred in shared ancestral lineages. Further investigation of two mosaic species clusters suggests that genes acquired by inter-species recombination may have become fixed in these lineages during periods of demographic expansion; implicating a role for phylogeography in determining contemporary patterns of genetic diversity. Only by examining the phylogeny at the scale of the genus is apparent that widespread phylogenetically incongruent loci in Streptomyces are derived from a far smaller number of ancestral inter-species recombination events. PMID:26849310

  12. Chitinase production and antifungal potential of endophytic Streptomyces strain P4

    Directory of Open Access Journals (Sweden)

    Hataichanoke Niamsup

    2012-02-01

    Full Text Available The endophytic actinomycete P4 strain, previously isolated from sweet pea root, wasidentified as Streptomyces sp. by full 16S rRNA sequencing. It is mostly related to Streptomycesgriseoflavus with a 99.7% identity score. The Streptomyces sp. P4 was tested for its hydrolyticactivities by plate method. The result showed the presence of chitinase. The extent of chitinase activitywas assessed by spectrophotometric method along with growth monitoring. Chitinase production wasgrowth-associated and showed the highest activity on the fifth day. The dual culture method revealedthat the strain was effective in restricting the radial growth of Fusarium oxysporum f.sp. lycopersici, animportant phytopathogen of tomato. Scanning electronic microscopic analysis showed that the ruptureof the F. oxysporum mycelial cell wall occurred at the area of interaction between F. oxysporum andStreptomyces sp. P4. This was possibly due to the chitinolytic activity of the P4. Thus, thisactinomycete has the potential for being used as a biocontrol agent, thereby reducing the use ofchemical fungicides.

  13. Optimization of Cultural Conditions for Production of Antibacterial Metabolites from Streptomyces coelicoflavus BC 01

    Directory of Open Access Journals (Sweden)

    Kothagorla Venkata RAGHAVA RAO

    2015-06-01

    Full Text Available The aim of the present study was to optimize various cultural conditions for the production of antibacterial metabolites by Streptomyces coelicoflavus BC 01 isolated from mangrove soil, Visakhapatnam, Andhra Pradesh, India. The effect of various factors such as carbon and nitrogen sources, different concentrations of NaCl and K2HPO4, different temperature, pH, incubation time and agitation on antibacterial metabolites production were studied. The production of antibacterial metabolites by the isolate Streptomyces coelicoflavus BC 01 was greatly influenced by the cultural conditions. Glucose (1.2% and soya bean meal (1% seemed to be the best carbon and nitrogen source respectively, followed by NaCl (1% and K2HPO4 (0.25%. Maximum production of antibacterial metabolites was observed at a temperature of 30 °C, with pH 7.2, at 160 rpm for 96 hrs. These optimized parameters can be further useful to design a fermentation medium to achieve maximum yield of antibacterial metabolites from Streptomyces coelicoflavus BC 01.

  14. Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations.

    Science.gov (United States)

    Arias, Anthony Argüelles; Lambert, Stéphany; Martinet, Loïc; Adam, Delphine; Tenconi, Elodie; Hayette, Marie-Pierre; Ongena, Marc; Rigali, Sébastien

    2015-07-01

    Due to the necessity of iron for housekeeping functions, nutrition, morphogenesis and secondary metabolite production, siderophore piracy could be a key strategy in soil and substrate colonization by microorganisms. Here we report that mutants of bacterium Streptomyces coelicolor unable to produce desferrioxamine siderophores could recover growth when the plates were contaminated by indoor air spores of a Penicillium species and Engyodontium album. UPLC-ESI-MS analysis revealed that the HPLC fractions with the extracellular 'resuscitation' factors of the Penicillium isolate were only those that contained siderophores, i.e. Fe-dimerum acid, ferrichrome, fusarinine C and coprogen. The restored growth of the Streptomyces mutants devoid of desferrioxamine is most likely mediated through xenosiderophore uptake as the cultivability depends on the gene encoding the ABC-transporter-associated DesE siderophore-binding protein. That a filamentous fungus allows the growth of desferrioxamine non-producing Streptomyces in cocultures confirms that xenosiderophore piracy plays a vital role in nutritional interactions between these taxonomically unrelated filamentous microorganisms. PMID:26183915

  15. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    Directory of Open Access Journals (Sweden)

    Mihaela Cotârleţ

    2011-09-01

    Full Text Available The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20ºC, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20ºC. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures.

  16. Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36.

    Science.gov (United States)

    Manivasagan, Panchanathan; Sivasankar, Palaniappan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-05-01

    A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett-Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment. PMID:24061563

  17. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  18. Antioxidant activity and free radical scavenging activities of Streptomyces sp.strain MJM 10778

    Institute of Scientific and Technical Information of China (English)

    Dong-Ryung; Lee; Sung-Kwon; Lee; Bong-Keun; Choi; Jinhua; Cheng; Young-Sil; Lee; Seung; Hwan; Yang; Joo-Won; Suh

    2014-01-01

    Objective:To investigate the antioxidant activity of soil-borne aetinobacteria.Methods:The total phenolic contents,the level of antioxidant potential by DPPH radical scavenging activity,MO scavenging activity,and ABTS radical scavenging activity in ethyl acelale extract were determined.Results:The 16 S rDNA sequencing analysis revealed that Streptomyces sp.strain MJM 10778.which was isolated from Hambak Mountain.Korea,has 99.9% similarity to Streptomyces misionensis(S.misionenis) NBRC 13063.The physiological and the morphological test revealed that the strain MJM 10778 has different characteristics from the strain NBRC.13063.The entire antioxidant assay with the ethyl acelale extract displayed good radical scavenging activity.The IC50 values of the strain MJM 10778 extract on DPPH,.NO.and ABTS radicals were identified to he 92.8 μg/mL,0.02 μg/ml,and 134.9 μg/mL,respectively.The ethyl acetate extract of the strain MJM 10778 showed an 81.500% of cell viability at 100 μg/mL in Raw264.7cell viability assay.Conclusions:The results obtained suggesl that the ethyl acetate extract of Streptomyces sp.strain MJM 10778 could be considered as a potential source of drug for the diseases that is caused by free radicals with its anti-oxidant activities and low cytotoxicity.

  19. CYANIDE HYDRATASE PRODUCTION USING ACCLIMATIZED STRAIN OF STREPTOMYCES PHAEOVIRIDAE AND ITS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Shete HG* and Kapdnis BP

    2013-07-01

    Full Text Available Cyanide and cyanide compounds are produced on the industrial scale to use in the metal extraction, electroplating, polymer, steel, carbonization, organic chemicals, pharmaceuticals and agricultural product industries. Cyanide is a respiratory inhibitor and it affects the living cell by binding with the enzyme cytochrome C oxidase. Cyanide released in the stream cause poisoning to animals and fishes in the water bodies. As cyanide is highly toxic, it must be detoxified before discharging into the sewers.  Potential cyanide degrader Actinomycete was isolated and acclimatized in the minimal medium containing 1000 ppm cyanide. It was then identified as Streptomyces phaeoviridae by using International Streptomyces Project Standard Tests. Cyanide degradation by this organism was studied. The mechanism of cyanide degradation was found to be enzymatic and the detection of formamide in the culture broth confirmed the cyanide hydratase [E.C. 4.2.1.66] activity. Parameters for cyanide hydratase production using Streptomyces pheoviridea were optimized. The enzyme was extracted and optimum conditions for its activity with respect to pH, temperature and substrate concentration were determined. The kinetics studied revealed the Km value as 33 mM and Vmax 35 mM/ml/min.  

  20. Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9.

    Science.gov (United States)

    Rekik, Hatem; Nadia, Zaraî Jaouadi; Bejar, Wacim; Kourdali, Sidali; Belhoul, Mouna; Hmidi, Maher; Benkiar, Amina; Badis, Abdelmalek; Sallem, Naim; Bejar, Samir; Jaouadi, Bassem

    2015-02-01

    A novel extracellular lignin peroxidase (called LiP-SN) was produced and purified from a newly isolated Streptomyces griseosporeus strain SN9. The findings revealed that the pure enzyme was a monomeric protein with an estimated molecular mass of 43 kDa and a Reinheitzahl value of 1.63. The 19 N-terminal residue sequence of LiP-SN showed high homology with those of Streptomyces peroxidases. Its optimum pH and temperature were pH 8.5 and 65 °C, respectively. The enzyme was inhibited by sodium azide and potassium cyanide, suggesting the presence of heme components in its tertiary structure. Its catalytic efficiency was higher than that of the peroxidase from Streptomyces albidoflavus strain TN644. Interestingly, LiP-SN showed marked dye-decolorization efficiency and stability toward denaturing, oxidizing, and bleaching agents, and compatibility with EcoVax and Dipex as laundry detergents for 48 h at 40 °C. These properties make LiP-SN a potential candidate for future applications in distaining synthetic dyes and detergent formulations. PMID:25478960

  1. Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil.

    Science.gov (United States)

    Ser, Hooi-Leng; Zainal, Nurullhudda; Palanisamy, Uma Devi; Goh, Bey-Hing; Yin, Wai-Fong; Chan, Kok-Gan; Lee, Learn-Han

    2015-06-01

    A novel Streptomyces, strain MUSC 26(T), was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The bacterium was observed to be Gram-positive and to form grayish yellow aerial and substrate mycelium on ISP 7 agar. A polyphasic approach was used to study the taxonomy of strain MUSC 26(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9 (H8) and MK-9(H6). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine and hydroxyphosphatidylmethylethanolamine. The predominant cellular fatty acids (>10.0 %) were identified as anteiso-C15:0 (31.4 %), iso-C16:0 (16.3 %), iso-C15:0 (13.9 %) and anteiso-C17:0 (12.6 %). The cell wall sugars were found to be galactose, glucose, mannose, ribose and rhamnose. These results suggest that MUSC 26(T) should be placed within the genus Streptomyces. Phylogenetic analysis indicated that closely related strains include Streptomyces qinglanensis 172205(T) (96.5 % sequence similarity), S. sodiiphilus YIM 80305(T) (96.5 %) and S. rimosus subsp. rimosus ATCC 10970(T) (96.4 %). DNA-DNA relatedness values between MUSC 26(T) and closely related type strains ranged from 17.0 ± 2.2 to 33.2 ± 5.3 %. Comparison of BOX-PCR fingerprints indicated MUSC 26(T) presents a unique DNA profile. The DNA G+C content was determined to be 74.6 mol%. Based on this polyphasic study of MUSC 26(T), it is concluded that this strain represents a novel species, for which the name Streptomyces gilvigriseus sp. nov. is proposed. The type strain is MUSC 26(T) (=DSMZ 42173(T) = MCCC 1K00504(T)). PMID:25863667

  2. Isolation and molecular identification chitinase-producing Streptomyces strains and examination of their in-vitro antagonistic effects

    Directory of Open Access Journals (Sweden)

    Alireza Dehnad

    2015-12-01

    Full Text Available Introduction: The chemical fungicides are used widely in the world. To reduce the application of synthetic fungicides in treating plant diseases, biological methods are considered as an alternative way to control plant diseases. Many actinomycetes, particularly Streptomyces species are biological agents against a broad spectrum of fungal plant pathogens. The purpose of this study was using the kitinolitik actinomycetes isolated from soil of Eastern Azerbaijan province In order to produce biological pesticides. Materials and methods: Soil samples were taken from different areas of Eastern Azerbaijan province. According to Streptomyces morphological features, single colonies were isolated. To identify the bacteria by molecular characteristic, the genomic DNA was extracted and then the sequences of 16S rDNA were replicated. By using specific primers the bacterial isolates containing chitinase gene were screened. The isolates consisted Chitinase enzyme and were antagonistically cultured with Alternaria genus which is a fungal plant pathogen. Results: Out of 60 soil collected samples, 31 Streptomyces bacterial isolates were separated. Four isolates showed positive results to selectivity action of the chitinase enzyme. Treatment of 3 bacterial isolates with 2 pathogenic fungi showed that AE09 is the most effective anti-fungal isolates. Discussion and conclusion: Soils in Eastern Azerbaijan province are rich of Streptomyces bacteria which generate antifungal compounds. Obtaining the Streptomyces bacteria which have chitinase gene, can lead to identification of very effective strains as anti-fungal.

  3. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  4. Isolation and Characterization of Plant-Pathogenic Streptomyces Species Associated with Common Scab-Infected Potato Tubers in Newfoundland.

    Science.gov (United States)

    Fyans, Joanna K; Bown, Luke; Bignell, Dawn R D

    2016-02-01

    Potato common scab (CS) is an economically important crop disease that is caused by several members of the genus Streptomyces. In this study, we characterized the plant-pathogenic Streptomyces spp. associated with CS-infected potato tubers harvested in Newfoundland, Canada. A total of 17 pathogenic Streptomyces isolates were recovered from potato scab lesions, of which eight were determined to be most similar to the known CS pathogen S. europaeiscabiei. All eight S. europaeiscabiei isolates were found to produce the thaxtomin A phytotoxin and to harbor the nec1 virulence gene, and most also carry the putative virulence gene tomA. The remaining isolates appear to be novel pathogenic species that do not produce thaxtomin A, and only two of these isolates were determined to harbor the nec1 or tomA genes. Of the non-thaxtomin-producing isolates, strain 11-1-2 was shown to exhibit a severe pathogenic phenotype against different plant hosts and to produce a novel, secreted phytotoxic substance. This is the first report documenting the plant-pathogenic Streptomyces spp. associated with CS disease in Newfoundland. Furthermore, our findings provide further evidence that phytotoxins other than thaxtomin A may also contribute to the development of CS by Streptomyces spp. PMID:26524546

  5. A flexible mathematical model platform for studying branching networks: experimentally validated using the model actinomycete, Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Leena Nieminen

    Full Text Available Branching networks are ubiquitous in nature and their growth often responds to environmental cues dynamically. Using the antibiotic-producing soil bacterium Streptomyces as a model we have developed a flexible mathematical model platform for the study of branched biological networks. Streptomyces form large aggregates in liquid culture that can impair industrial antibiotic fermentations. Understanding the features of these could aid improvement of such processes. The model requires relatively few experimental values for parameterisation, yet delivers realistic simulations of Streptomyces pellet and is able to predict features, such as the density of hyphae, the number of growing tips and the location of antibiotic production within a pellet in response to pellet size and external nutrient supply. The model is scalable and will find utility in a range of branched biological networks such as angiogenesis, plant root growth and fungal hyphal networks.

  6. Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection.

    Science.gov (United States)

    Liu, Long; Yang, Haiquan; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-11-01

    Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces. PMID:24068337

  7. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.

    Science.gov (United States)

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B; Melançon, Charles E

    2016-02-19

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development. PMID:26562751

  8. Structure and evolution of Streptomyces interaction networks in soil and in silico.

    Directory of Open Access Journals (Sweden)

    Kalin Vetsigian

    2011-10-01

    Full Text Available Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated from several individual grains of soil. We acquired more than 10,000 time-lapse movies of colony development of each isolate on media containing compounds produced by each of the other isolates. We observed a rich set of such sender-receiver interactions, including inhibition and promotion of growth and aerial mycelium formation. The probability that two random isolates interact is balanced; it is neither close to zero nor one. The interactions are not random: the distribution of the number of interactions per sender is bimodal and there is enrichment for reciprocity--if strain A inhibits or promotes B, it is likely that B also inhibits or promotes A. Such reciprocity is further enriched in strains derived from the same soil grain, suggesting that it may be a property of coexisting communities. Interactions appear to evolve rapidly: isolates with identical 16S rRNA sequences can have very different interaction patterns. A simple eco-evolutionary model of bacteria interacting through antibiotic production shows how fast evolution of production and resistance can lead to the observed statistical properties of the network. In the model, communities are evolutionarily unstable--they are constantly being invaded by strains with new sets of interactions. This combination of experimental and theoretical observations suggests that diverse Streptomyces communities do not represent a stable ecological state but an intrinsically dynamic eco-evolutionary phenomenon.

  9. Structure and Evolution of Streptomyces Interaction Networks in Soil and In Silico

    Science.gov (United States)

    Vetsigian, Kalin; Jajoo, Rishi; Kishony, Roy

    2011-01-01

    Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated from several individual grains of soil. We acquired more than 10,000 time-lapse movies of colony development of each isolate on media containing compounds produced by each of the other isolates. We observed a rich set of such sender-receiver interactions, including inhibition and promotion of growth and aerial mycelium formation. The probability that two random isolates interact is balanced; it is neither close to zero nor one. The interactions are not random: the distribution of the number of interactions per sender is bimodal and there is enrichment for reciprocity—if strain A inhibits or promotes B, it is likely that B also inhibits or promotes A. Such reciprocity is further enriched in strains derived from the same soil grain, suggesting that it may be a property of coexisting communities. Interactions appear to evolve rapidly: isolates with identical 16S rRNA sequences can have very different interaction patterns. A simple eco-evolutionary model of bacteria interacting through antibiotic production shows how fast evolution of production and resistance can lead to the observed statistical properties of the network. In the model, communities are evolutionarily unstable—they are constantly being invaded by strains with new sets of interactions. This combination of experimental and theoretical observations suggests that diverse Streptomyces communities do not represent a stable ecological state but an intrinsically dynamic eco-evolutionary phenomenon. PMID:22039352

  10. Structure and function of sawB, a gene involved in differentiation of Streptomyces ansochromogenes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A partial DNA library of Streptomyces ansochromogenes 7100 was constructed by using plasmid pIJ702 as vector and white mutant W19 as recipient. About 3 000 clones were obtained, two of which gave rise to the grey phenotype as wild type 7100. The plasmids were isolated from two transformants. The result indicated that the 5.2 kb and 5.8 kb DNA fragments were inserted into pIJ702. The resulting recombinant plasmids were designated as pNL-1 and pNL-2 respectively. The 1.25 kb PstI I-Apa I DNA fragment from pNL-1 was recognized as its complementarity to W19 strain. The nucleotide sequence of the 3.0 kb Pst I DNA fragment including 1.25 kb was determined and analyzed. The result indicated that this DNA fragment contains one complete open reading frame (ORF1) which encodes a protein with 295 amino acid residues, and this gene was designated as sawB. The deduced protein has 81% amino acid identities in comparison with that encoded by whiH in Streptomyces coelicolor. The function of sawB gene was studied by using strategy of gene disruption, and the resulting sawB mutant failed to form spores and produced loosely coiled aerial hyphal. The result showed that sawB is closely related to hyphal coiling and sporulation in S. ansochromogenes, and also indicated that the sawB can complement whiH mutant (C119) to restore the grey phenotype of Streptomyces coelicolor J1501(wild type).

  11. ANTI-OXIDANT AND ENZYME-INHIBITORY POTENTIAL OF MARINE STREPTOMYCES

    Directory of Open Access Journals (Sweden)

    K. Suthindhiran

    2013-01-01

    Full Text Available Marine actinomycetes are potential source for the discovery of novel compounds and enzymes. Though extensive research on marine actinomycetes is underway globally, the actinomycetes research from Indian marine ecosystem is unexplored and understudied. Hence, the present research is focussed on the screening of bioactive compounds from marine actinomycetes isolated from Indian coastal region. This study is designed to determine the antioxidant and enzyme inhibitory potential of Streptomyces sp. VITMSS05 strain, isolated from Marakkanam, southern coast of India. An actinomycetes strain designated as VITMSS05 was isolated. This strain was cultivated in Starch Caesin Agar medium (SCA supplemented with sea water. The cultural, morphological and molecular characterization was determined for the isolate. The crude extract of the isolate was extracted with ethyl acetate. Antioxidant activity of the crude extract was determined by DPPH radical scavenging assay. Alpha amylase and alpha glucosidase inhibitory potential of the extract was determined. Based on the phenotypic and phylogenetic analysis the strain was identified as Streptomyces sp. Significant antioxidant activity of the extract was observed with an IC50 value of 92.49 μg mL-1. The extract shows 64.1% inhibition on α-amylase and 91.5% inhibition on α-glucosidase at 100 μg mL-1 with an IC50 value of 385.97 and 42.89 μg mL-1. From the results it is evident that the ethyl acetate extract of Streptomyces sp. VITMSS05 has potent antioxidant and enzyme inhibitory activity in vitro. The combined effect of free radical scavenging and enzyme inhibition makes it a potent anti diabetic drug.

  12. Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202

    International Nuclear Information System (INIS)

    A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs+ was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs+ was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs+ was taken up into the mycelia competitively with K+, because K+ uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs+ in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, 133Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs+ trapped by intercellular materials such as polyphosphate and Cs+ present in a cytoplasmic pool. - Research highlights: → Cs was taken up into the cells of Streptomyces sp. K202 via 2 steps. → The existence states of Cs accumulated in strain K202 were at least 2 types. → The localized Cs in the cells would be trapped by granules such as polyphosphate. → The localized Cs in the cells might involve in Cs detoxification of strain K202.

  13. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663

    Directory of Open Access Journals (Sweden)

    Orwah Saleh

    2012-04-01

    Full Text Available The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid and L-glutamine (L-Gln, with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces.

  14. Pyramidamycins A-D and 3-hydroxyquinoline-2-carboxamide; cytotoxic benzamides from Streptomyces sp. DGC1.

    Science.gov (United States)

    Shaaban, Khaled A; Shepherd, Micah D; Ahmed, Tamer A; Nybo, S Eric; Leggas, Markos; Rohr, Jürgen

    2012-12-01

    Four new benzamides, pyramidamycins A-D (2-5) along with the new natural 3-hydroxyquinoline-2-carboxamide (6) were isolated from the crude extract of Streptomyces sp. DGC1. Additionally, five other known compounds, namely 2-aminobenzamide (anthranilamide) (1), 4',7-dihydroxyisoflavanone (7), 2'-deoxy-thymidine, 2'-deoxy-uridine and adenosine were also isolated and identified. The structures of the new compounds 2-6 were elucidated by 1D and 2D NMR studies along with HR MS analyses. The isolated compounds 1-6 contained the same amide side chain. The isolated compounds 1-7 were biologically evaluated in comparison with landomycin A against a prostate cancer cell line (PC3) and non-small cell lung cancer cell line (H460) for 48 h and against several bacterial strains. Pyramidamycin C (4) was the most active compound against both PC3 and H460 cell lines (GI(50)=2.473 and 7.339 μM, respectively). Benzamides (1-3) demonstrated inhibitory activity against Kocuria rosea B-1106 (a diameter halo of 13±2 mm for 1; 10±2 mm for 2 and 3). Compound 6 was slightly active against both Escherichia coli DH5α and Micrococcus luteus NRRL B-2618 (diameter halos 8±2 and 9±2 mm, respectively). Taxonomically, the amplified 500-bp 16 S rRNA fragment of the Streptomyces sp. DGC1 had 99% identity (BLAST search) to the 16S rRNA gene of Streptomyces atrovirens strain NRRL B-16357. PMID:23047245

  15. Recombinant Streptomyces clavuligerus strain including cas2 gene production and analysis its antibiotic overproduction by bioassay

    Directory of Open Access Journals (Sweden)

    Zohreh Hojati

    2014-03-01

    Full Text Available Background: Streptomyces clavuligerus is one of the most important strain that produce clavulanic acid that wildly used in combination of strong but sensitive to β-lactamase antibiotics in clinics. The cas2 is one of the important genes in the biosynthesis pathway of clavulanic acid. Materials and Methods: The recombinant construct pMTcas2 which contain cas2 gene is obtained from Isfahan University. Recombinant plasmid extracts from streptomyces lividans and confirm by enzyme digestion. The streptomyces clavuligerus protoplast was prepared and transformation was done by using polyethylene glycol. Transformation was confirmed by plasmid extraction and PCR using cas2 specific primers. Finally, bioassay method was used to survey the effect of extra copy of cas2 on clavulanic acid production. Result: Plasmid extraction was initially carried out and the structure of plasmid was confirmed by digestion. The typical white colony was seen on protoplast recovery culture containing thiostrepton antibiotic and gray spores were detected after one week. Plasmid extraction was done from transformed strain and transformation was confirmed by PCR. The results of the bioassay show that amplification of the cas2 gene in multicopy plasmids resulted in a 4.1 fold increase in clavulanic acid production. Conclusion: The bioassay was done and the diameters of zone of inhibition in control and sample were compared. The results of the bioassay show that amplification of the cas2 gene in multicopy plasmids resulted in a 4.1 fold increase in clavulanic acid production. Overproduction of clavulanic acid decreases the cost of its dependent drug production.

  16. Preparation of silybin phase II metabolites: Streptomyces catalyzed glucuronidation

    Czech Academy of Sciences Publication Activity Database

    Charrier, C.; Azerad, R.; Marhol, Petr; Purchartová, K.; Kuzma, Marek; Křen, Vladimír

    2014-01-01

    Roč. 102, APR 2014 (2014), s. 167-173. ISSN 1381-1177 R&D Projects: GA MŠk(CZ) LD13041; GA ČR(CZ) GAP301/11/0662 Institutional support: RVO:61388971 Keywords : Silybin diastereomers * Silibinin * Silymarin Subject RIV: CE - Biochemistry Impact factor: 2.128, year: 2014

  17. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    OpenAIRE

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire; Thibessard, Annabelle; Leblond, Pierre

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only pu...

  18. Sannastatin, a novel toxic macrolactam polyketide glycoside produced by actinomycete Streptomyces sannanensis.

    Science.gov (United States)

    Yang, Sheng-Xiang; Gao, Jin-Ming; Zhang, An-Ling; Laatsch, Hartmut

    2011-07-01

    A new rare 20-membered macrocyclic lactam incorporating a diene conjugated olefin, designated sannastatin (1), together with the known structurally related vicenistatin (2), has been isolated from the cultures of Streptomyces sannanensis, a bacteria found in the feces of Ailuropoda melanoleuca. The structure of the new compound was established on the basis of extensive spectroscopic analyses including 1D- and 2D-NMR ((1)H-(1)H COSY, TOCSY, HSQC, HMBC, and NOESY) experiments. Compounds 1 and 2 displayed significant growth inhibitory activity against the brine shrimp (Artemia salina) larvae. PMID:21640585

  19. CDA is a new chromosomally-determined antibiotic from Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Hopwood, D A; Wright, H M

    1983-12-01

    Mutations (cda) leading to non-production of the new calcium-dependent antibiotic (CDA) of Streptomyces coelicolor A3(2) were closely linked on the chromosome. One representative mutation (cda-1) was mapped precisely between nicA and adeC. No cosynthesis of CDA was found in any pairwise combinations of 14 cda mutants. Mutations lacking aerial mycelium (bald mutations), mapping to the four previously described loci (bldA-D), were pleiotropically defective in production of CDA. PMID:6668466

  20. Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces sp.

    OpenAIRE

    Enjuro Harunari; Chiaki Imada; Yasuhiro Igarashi; Takao Fukuda; Takeshi Terahara; Takeshi Kobayashi

    2014-01-01

    Hyaluromycin (1), a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate. The compound’s absolute configuration was determined by the comparison of its circular dichroi...

  1. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India.

    Science.gov (United States)

    Sharma, Trupti K; Mawlankar, Rahul; Sonalkar, Vidya V; Shinde, Vidhya K; Zhan, Jing; Li, Wen-Jun; Rele, Meenakshi V; Dastager, Syed G; Kumar, Lalitha Sunil

    2016-02-01

    A novel alkaliphilic actinomycete, strain NCL716(T), was isolated from a soil sample collected from the vicinity of Lonar Lake, an alkaline salt water meteorite lake in Buldhana district of Maharashtra State in India. The strain was characterised using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth was observed over a pH range of 7-11 at 28 °C. The cell wall was found to contain LL-diaminopimelic acid and traces of meso-diaminopimelic acid. The major fatty acid components were identified as iso-C16:0 (46.8 %), C17:1 (12.4 %), anteiso-C15:0 (5.1 %) and anteiso-C17:1 (4.8 %). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The major menaquinones were determined to be MK-9 (H6) (70.3 %), MK-9 (H4) (15.5 %) and MK-9 (H8) (7.2 %). The G+C content of the DNA of the type strain was determined to be 71.4 mol  %. The 16S rRNA gene sequence has been deposited in GenBank with accession number FJ919811. Although the 16S rRNA gene sequence analysis revealed that strain NCL716(T) shares >99 % similarity with that of Streptomyces bohaiensis strain 11A07(T), DNA-DNA hybridization revealed only 33.2 ± 3.0 % relatedness between them. Moreover, these two strains can be readily distinguished by some distinct phenotypic characteristics. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NCL716(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces lonarensis sp. nov., is proposed. The type strain is NCL 716(T) (=DSM 42084(T) = MTCC 11708(T) = KCTC 39684(T)). PMID:26597560

  2. Utjecaj postupka uzgoja na proizvodnju poligalakturonaze s pomoću novog soja Streptomyces lydicus

    OpenAIRE

    Jacob, Nicemol; Prema, Parukuttyamma

    2006-01-01

    Pokušalo se proizvesti različite pektinolitičke enzime submerznim uzgojem s pomoću aktinomicete Streptomyces lydicus. Određena je aktivnost poligalakturonaze i pektin-liaze u supernatantu, ali je utvrđeno da soj nije uspio proizvesti pektin-esterazu. Istražena je proizvodnja poligalakturonaze submerznim uzgojem, uzgojem u polučvrstoj i na čvrstoj podlozi. Svi su pokusi provedeni u statičnoj kulturi i na tresilici. Uzgoj na statičnoj čvrstoj podlozi dao je najbolje rezultate. Kao čvrsta podlog...

  3. Producción de antibióticos en Streptomyces asociados a organismos marinos

    OpenAIRE

    González Iglesias, Verónica

    2013-01-01

    El género Streptomyces, dentro del grupo de los actinomicetos, se considera la “farmacia” de la naturaleza, ya que de este grupo se extraen la mayor parte de compuestos utilizados en la medicina actual, como antibióticos, antifúngicos, antitumorales, etc. Tradicionalmente han sido consideradas bacterias del suelo, pero en los últimos años se ha puesto de manifiesto la presencia de estreptomicetos en ecosistemas marinos asociados a muchos grupos de organismos, sobre todo a algas, corales y esp...

  4. Characterization of Streptomyces albus 18-kilodalton heat shock-responsive protein.

    OpenAIRE

    Servant, P; Mazodier, P

    1995-01-01

    In Streptomyces albus during the heat shock response, a small heat shock protein of 18 kDa is dramatically induced. This protein was purified, and internal sequences revealed that S. albus HSP18 showed a marked homology with proteins belonging to the family of small heat shock proteins. The corresponding gene was isolated and sequenced. DNA sequence analysis confirmed that the hsp18 gene product is an analog of the 18-kDa antigen of Mycobacterium leprae. No hsp18 mRNA could be detected at 30 ...

  5. Four new antibacterial xanthones from the marine-derived actinomycetes Streptomyces caelestis

    KAUST Repository

    Liu, Ling-Li

    2012-11-20

    Four new polycyclic antibiotics, citreamicin ? A (1), citreamicin ? B (2), citreaglycon A (3), and dehydrocitreaglycon A (4), were isolated from marine-derived Streptomyces caelestis. The structures of these compounds were elucidated by 1D and 2D NMR spectra. All four compounds displayed antibacterial activity against Staphylococcus haemolyticus, Staphylococcus aureus, and Bacillus subtillis. Citreamicin ? A (1), citreamicin ? B (2) and citreaglycon A (3) also exhibited low MIC values of 0.25, 0.25, and 8.0 ?g/mL, respectively, against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. 2012 by the authors; licensee MDPI.

  6. Abenquines A-D: aminoquinone derivatives produced by Streptomyces sp. strain DB634.

    Science.gov (United States)

    Schulz, Dirk; Beese, Pascal; Ohlendorf, Birgit; Erhard, Arlette; Zinecker, Heidi; Dorador, Cristina; Imhoff, Johannes F

    2011-12-01

    New bioactive secondary metabolites, called abenquines, were found in the fermentation broth of Streptomyces sp. strain DB634, which was isolated from the soils of the Chilean highland of the Atacama Desert. They are composed of an amino acid linked to an N-acetyl-aminobenzoquinone. Isolation of the abenquines (1-4), their structure elucidation by NMR analysis and MS, as well as the kinetics of their production are presented. The abenquines show inhibitory activity against bacteria, dermatophytic fungi and phosphodiesterase type 4b. The amino acid attached to the quinone is relevant to the enzyme inhibitory activity. PMID:21952099

  7. Salinazinones A and B: Pyrrolidinyl-Oxazinones from Solar Saltern-Derived Streptomyces sp. KMF-004.

    Science.gov (United States)

    Kim, Min Cheol; Lee, Jung Hwan; Shin, Bora; Subedi, Lalita; Cha, Jin Wook; Park, Jin-Soo; Oh, Dong-Chan; Kim, Sun Yeou; Kwon, Hak Cheol

    2015-10-16

    Salinazinones A (1) and B (2), two unprecedented pyrrolidinyl-oxazinones, were isolated from the culture broth of Streptomyces sp. KMF-004 from a solar saltern at Aphae Island, Korea. The structures of these salinazinones, which are unusual and consist of 2-methylpropenyl-1,3-oxazin-6-one bearing 1-oxopyrrolidinyl substituents, were assigned by spectral and chemical analyses using Mosher's method, circular dichroism (CD), and calculated ECD. Salinazinones are the first examples of a natural alkaloid class composed of an oxazinone-pyrrolidone conjugate. PMID:26446186

  8. Two Antimycin A Analogues from Marine-Derived Actinomycete Streptomyces lusitanus

    Directory of Open Access Journals (Sweden)

    Peiyuan Qian

    2012-03-01

    Full Text Available Two new antimycin A analogues, antimycin B1 and B2 (1–2, were isolated from a spent broth of a marine-derived bacterium, Streptomyces lusitanus. The structures of 1 and 2 were established on the basis of spectroscopic analyses and chemical methods. The isolated compounds were tested for their anti-bacterial potency. Compound 1 was found to be inactive against the bacteria Bacillus subtilis, Staphyloccocus aureus, and Loktanella hongkongensis. Compound 2 showed antibacterial activities against S. aureus and L. hongkongensis with MIC values of 32.0 and 8.0 μg/mL, respectively.

  9. Über die Funktion und Struktur der Tyrosinase aus Streptomyces antibioticus

    OpenAIRE

    Salzbrunn, Kai Uwe

    2007-01-01

    Für die Aufklärung der chemisch anspruchsvollen Monophenolase-Reaktion von Tyrosinasen wurde ein System entwickelt, um das Zielprotein aus dem Bakterium Streptomyces antibioticus in großen Mengen und mit hoher Reinheit zu isolieren. Zudem konnte ein hypothetischer Reaktionsmechanismus für die Monophenolase- und die Diphenolase-Aktivität der Tyrosinase formuliert werden. Die beiden Reaktionen der S. antibioticus-Tyrosinase wurden kinetisch analysiert und auf diesem Weg die Aktivität des Enzyms...

  10. Streptomyces sÀdebakteerien kilpailusuhteet ja vaikutus perunaruven taudinaiheuttajiin

    OpenAIRE

    OjanperÀ, Taru

    2008-01-01

    Kasvipatologia TiivistelmÀ: Perunaruven aiheuttajat S. scabies, S. turgidiscabies ja S. aureofaciens aiheuttavat lÀhinnÀ laadullisia tappioita muodostaen perunan mukuloihin rupea. Pahimmillaan taudinaiheuttajat hidastavat perunan taimettumista, lisÀÀvÀt pienten mukuloiden mÀÀrÀÀ sekÀ vÀhentÀvÀt satoa. Viljelytekniset keinot eivÀt ole aina tehokkaita eivÀtkÀ kemialliset keinot ole Suomessa sallittuja. TyössÀ selvitettiin Streptomyces-kantojen omin...

  11. Streptomyces zhihengii sp. nov., isolated from rhizospheric soil of Psammosilene tunicoides.

    Science.gov (United States)

    Huang, Mei-Juan; Fei, Jing-Jing; Salam, Nimaichand; Kim, Chang-Jin; Hozzein, Wael N; Xiao, Min; Huang, Hai-Quan; Li, Wen-Jun

    2016-10-01

    An actinomycete strain, designated YIM T102(T), was isolated from the rhizospheric soil of Psammosilene tunicoides W. C. Wu et C. Y. Wu collected from Lijiang, Yunnan Province, China. The taxonomic position of the new isolate was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YIM T102(T) belongs to the genus Streptomyces. Strain YIM T102(T) was most closely related to Streptomyces eurocidicus NRRL B-1676(T) with a pairwise 16S rRNA gene sequence similarity of 98.9 %. However, DNA-DNA relatedness value between strain YIM T102(T) and S. eurocidicus NBRC 13491(T) was found to be 37.8 ± 1.8 %. The menaquinone composition detected for strain YIM T102(T) was MK-9 (H6) and MK-9 (H8), while the major fatty acids were summed feature 4 (38.0 %), anteiso-C15:0 (13.1 %), iso-C16:0 (10.1 %), summed feature 3 (9.8 %) and C16:0 (9.0 %) and iso-C15:0 (5.2 %). The whole-cell hydrolysates contained galactose, glucose, ribose and mannose, along with LL-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan. The DNA G+C content was 70.7 mol%. Strain YIM T102(T) also exhibited antagonistic activity against Alternaria alternata, Alternaria brassicae and Colletotrichum nicotianae Averna, based on the findings from the comparative analyses of phenotypic and genotypic characteristics; it is proposed that strain YIM T102 represents a novel species of the genus Streptomyces, for which the name Streptomyces zhihengii sp. nov. is proposed. The type strain is YIM T102(T) (=KCTC 39115(T) = DSM 42176(T) = CGMCC 4.7248(T)). PMID:27169711

  12. Characterization and Purification a Specific Xylanase Showing Arabinofuranosidase Activity from Streptomyces spp. 234P-16

    OpenAIRE

    ALINA AKHDIYA; FAHRRUROZI; TRIO HENDARWIN; ANJA MERYANDINI; DEDEN SAPRUDIN; YULIN LESTARI

    2009-01-01

    Streptomyces spp 234P-16 producing xylanase was isolated from soil sample from Padang, West Sumatra, Indonesia. Crude enzyme (produced by centrifuging the culture at 14000 rpm for about 5 minutes) and purified xylanase have an optimum condition at pH 5 and 90oC. Crude xylanase have half life time of 4 hours, whereas purified xylanase have half life time of 2 ½ hours at 90oC. The molecular mass of purified xylanase was determined to be 42.4 kDa. The Arabinofuranosidase have a Km and Vmax value...

  13. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    OpenAIRE

    Mihaela Cotârleţ; Teodor Gh Negoiţă; Bahrim, Gabriela E.; Peter Stougaard

    2011-01-01

    The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islan...

  14. Gombapyrones E and F, New α-Pyrone Polyenes Produced by Streptomyces sp. KMC-002

    Directory of Open Access Journals (Sweden)

    Kang Ro Lee

    2011-04-01

    Full Text Available Microorganism-derived polyene polyketides have been shown to display a variety of biological activities and have attracted great interest due to their structurally intriguing chemical diversity. Two new polyenes were isolated from a culture broth of Streptomyces sp. KMC-002 obtained from a soil sample in an abandoned mine. The structures of these compounds were determined to be α-pyrone-containing polyene analogues through analyses of HRFABMS, UV and NMR data, and were named Gombapyrones E (1 and F (2. Gombapyrone E (1 showed antibacterial activity against Micrococcus luteus, Enterococcus hirae, Staphylococcus aureus and MRSA.

  15. Impact of lead ions on biosynthetic capacity of Streptomyces recifensis var. lyticus 2p-15 strain

    Directory of Open Access Journals (Sweden)

    Т. P. Kilochok

    2006-01-01

    Full Text Available The influence of different concentrations of Pb ions on biosynthetical ability of Streptomyces recifensis var. lyticus 2P-15, which is the producer of compound complex of extracellular enzymes and growth stimulators, was studied. It has been showed, that Pb ions introduced in agar medium have had a stimulative effect on production of surface and depth mycelia. The Pb ions, which have been inoculated into liquid fermentative medium in concentration of 1,0–2,0 mg/l realized directed synthesis of bacterio- and proteolytic enzymes, had an influence on qualitative and quantitative composition of produced enzymes.

  16. Isolation and characterization of stable mutants of Streptomyces peucetius defective in daunorubicin biosynthesis

    Indian Academy of Sciences (India)

    K. S. Vetrivel; K. Dharmalingam

    2001-04-01

    Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced by Streptomyces peucetius. In this study we report isolation of stable mutants of S. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer strains are distinctively coloured on agar plates. Different mutants showed accumulation of aklaviketone, -rhodomycinone, maggiemycin or 13-dihydrocarminomycin in their culture filtrates. These results indicate that the mutations in these isolates affect steps catalysed by dnrE (mutants SPAK and SPMAG), dnrS (SPFS and SPRHO) and doxA (SPDHC) gene products.

  17. [2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus

    Directory of Open Access Journals (Sweden)

    Christian A. Citron

    2013-12-01

    Full Text Available During growth on fully deuterated medium the volatile terpene [2H26]-1-epi-cubenol was released by the actinomycete Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known to slow down all metabolic processes in living organisms. Potential applications of completely labelled compounds from natural sources in structure elucidation, biosynthetic or pharmacokinetic investigations are discussed.

  18. cvhA Gene of Streptomyces hygroscopicus 10-22 Encodes a Negative Regulator for Mycelia Development

    Institute of Scientific and Technical Information of China (English)

    Heng-An WANG; Lei QIN; Ping LU; Zhi-Xuan PANG; Zi-Xin DENG; Guo-Ping ZHAO

    2006-01-01

    A five-gene cluster cvhABCDE was identified from Streptomyces hygroscopicus 10-22. As the first gene of this cluster, cvhA encoded a putative sensor histidine kinase with a predicted sensor domain consisting of two trans-membrane segments at the N-terminus and a conserved HATPase_c domain at the Cterminus. The C-terminus polypeptide of CvhA expressed in Escherichia coli was purified and shown to be autophosphorylated with [γ-32p]ATP in vitro. The phosphoryl group was acid-labile and basic-stable, which supported histidine as the phosphorylation residue. No obvious difference of mycelia development was observed between the null mutant of cvhA generated by targeted gene replacement and the wild-type parental strain 10-22 grown on solid soya flour medium with 2%-8% glucose or sucrose, but the cvhA mutant could form much more abundant aerial mycelia and spores than the wild-type strain on solid soya flour medium supplemented with 6%-8% mannitol, 6%-8% sorbitol, 4%-6% mannose, or 4%-6% fructose. This phenotype was complemented by the cloned wild-type cvhA gene, and no difference was observed for growth curves of the cvhA mutant and the wild strain in liquid minimal medium with the tested sugars at a concentration of 4%, 6% and 8%. We thus propose that CvhA is likely a sensor histidine kinase and negatively regulates the morphological differentiation in a sugar-dependent manner in S. hygroscopicus 10-22.

  19. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10.

    Science.gov (United States)

    Liu, Shui-Ping; Yuan, Peng-Hui; Wang, Yue-Yue; Liu, Xiao-Fang; Zhou, Zhen-Xing; Bu, Qing-ting; Yu, Pin; Jiang, Hui; Li, Yong-Quan

    2015-04-01

    The polyene antibiotic natamycin is widely used as an antifungal agent in both human therapy and the food industry. Here we obtained four natamycin analogs with high titers, including two new compounds, by engineering of six post-polyketide synthase (PKS) tailoring enzyme encoding genes in a natamycin industrial producing strain, Streptomyces chattanoogensis L10. Precise analysis of S. chattanoogensis L10 culture identified natamycin and two natamycin analogs, 4,5-deepoxy-natamycin and 4,5-deepoxy-natamycinolide. The scnD deletion mutant of S. chattanoogensis L10 did not produce natamycin but increased the titer of 4,5-deepoxy-natamycin. Inactivation of each of scnK, scnC, and scnJ in S. chattanoogensis L10 abolished natamycin production and accumulated 4,5-deepoxy-natamycinolide. Deletion of scnG in S. chattanoogensis L10 resulted in production of two new compounds, 4,5-deepoxy-12-decarboxyl-12-methyl-natamycin and its dehydration product without natamycin production. Inactivation of the ScnG-associated ferredoxin ScnF resulted in impaired production of natamycin. Bioassay of these natamycin analogs showed that three natamycin analogs remained antifungal activities. We found that homologous glycosyltransferases genes including amphDI and nysDI can partly complement the ΔscnK mutant. Our results here also support that ScnG, ScnK, and ScnD catalyze carboxylation, glycosylation, and epoxidation in turn in the natamycin biosynthetic pathway. Thus this paper provided a method to generate natamycin analogs and shed light on the natamycin biosynthetic pathway. PMID:25801968

  20. A potent fish pathogenic bacterial killer Streptomyces sp. isolated from the soils of east coast region, South India

    Institute of Scientific and Technical Information of China (English)

    Durairaj Thirumurugan; Ramasamy Vijayakumar

    2013-01-01

    Objective: To investigate the potentiality of the marine actinobacteria isolated from marine soil against fish pathogenic bacteria.Methods:east coast region (ECR) of Tamilnadu, South India. Then they were used for the isolation of actinobacteria by using conventional serial dilution technique on starch casein agar medium. The antibacterial activities of the actinobacteria were screened primarily by using cross streak plate method against fish pathogenic bacteria namely Vibrio alginolyticus, Vibrio parahaemolyticus,Vibrio cholera, Aeromonas sp. and Pseudomonas sp. The antimicrobial efficacy of the selected isolates was carried out with various organic solvents, and finally the active compound was subjected to chromatographic techniques including TLC and GC-MS.Results:In the present study, a total of 33 soil samples were collected from the Bay of Bengal, against fish pathogenic bacteria. Out of 21 antibacterial isolates, the isolate ECR77 was selected for further study based on its potential activity against fish pathogenic bacteria. Of the various solvents tested, the ethyl acetate extract had good antibacterial activity against the tested bacterial pathogens. The isolate ECR77 grew well on oat meal agar medium with 2% salt level at 35 °C. GC-MS study found that the presence of bioactive compounds namely tetradecanoic acid,n-hexadecanoic acid and octadecanoic acid. The morphological, physiological, biochemical and cultural characteristics of the potential isolate were supported the identity up to generic level asStreptomyces sp. ECR77. Conclusions: The results obtained from this study concludes that the ECR soils of South India is a hot spot of novel bioactive compound producing marine actinobacteria with great pharmaceutical values. Of the 82 actinobacteria isolated, 21 (26%) isolates were possessed antibacterial activity.

  1. Systems Insight into the Spore Germination of Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Straková, Eva; Bobek, Jan; Ziková, Alice; Řehulka, P.; Benada, Oldřich; Řehulková, H.; Kofroňová, Olga; Vohradský, Jiří

    2013-01-01

    Roč. 12, č. 1 (2013), s. 517-528. ISSN 1535-3893 R&D Projects: GA ČR GAP302/11/0229; GA ČR GAP302/10/0468; GA ČR GA310/07/1009 Institutional support: RVO:61388971 Keywords : germination * differentiation * protein expression Subject RIV: EE - Microbiology, Virology Impact factor: 5.001, year: 2013

  2. Purification and Properties of a Prokaryote Type Glutamine Synthetase from the Bialaphos Producer Streptomyces hygroscopicus SF1293

    NARCIS (Netherlands)

    Kumada, Yoichi; Takano, Eriko; Nagaoka, Kozo

    1990-01-01

    A prokaryote type glutamine synthetase (GS) was purified from a bialaphos (BA)-producing organism, Streptomyces hygroscopicus SF1293 (SF1293). The GS (GS I) consisted of a 55,000 dalton subunit, and its N-terminal amino acid sequence was similar to that of S. coelicolor GS. GS I was highly sensitive

  3. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7.

    Science.gov (United States)

    Sineli, P E; Tortella, G; Dávila Costa, J S; Benimeli, C S; Cuozzo, S A

    2016-05-01

    The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and β-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and β-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and β-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and β-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers. PMID:27038951

  4. Draft Genome Sequence of Insecticidal Streptomyces sp. Strain PCS3-D2, Isolated from Mangrove Soil in Philippines

    OpenAIRE

    Bayot-Custodio, Aileen N.; Alcantara, Edwin P.; Zulaybar, Teofila O.

    2014-01-01

    A draft genome sequence of a Streptomyces sp. isolated from mangrove soil in Cebu, Philippines, is described here. This isolate produced compounds with contact insecticidal activity against important corn pests. The genome contains 7,479,793 bp (in 27 scaffolds), 6,297 predicted genes, and 29 secondary metabolite biosynthetic gene clusters.

  5. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin

    DEFF Research Database (Denmark)

    Carr, Gavin; Poulsen, Michael; Klassen, Jonathan L.;

    2012-01-01

    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the...

  6. Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet.

    Science.gov (United States)

    Castillo, Benjamín Moreno; Dunn, Michael F; Navarro, Karina Guillén; Meléndez, Francisco Holguín; Ortiz, Magdalena Hernández; Guevara, Sergio Encarnación; Palacios, Graciela Huerta

    2016-03-01

    The tropical and mycoparasite strain Streptomyces galilaeus CFFSUR-B12 was evaluated as an antagonist of Mycosphaerella fijiensis Morelet, causal agent of the Black Sigatoka Disease (BSD) of banana. On zymograms of CFFSUR-B12 culture supernatants, we detected four chitinases of approximately 32 kDa (Chi32), 20 kDa (Chi20), and two with masses well over 170 kDa (ChiU) that showed little migration during denaturing electrophoresis at different concentrations of polyacrylamide. The thymol-sulphuric acid assay showed that the ChiU were glycosylated chitinases. Moreover, matrix assisted laser desorption ionization time-of-flight MS analysis revealed that the ChiU are the same protein and identical to a family 18 chitinase from Streptomyces sp. S4 (gi|498328075). Chi32 was similar to an extracellular protein from Streptomyces albus J1074 (gi|478687481) and Chi20 was non-significantly similar to chitinases from five different strains of Streptomyces (P > 0.05). Subsequently, Chi32 and Chi20 were partially purified by anion exchange and hydrophobic interaction chromatography and tested against M. fijiensis. Chitinases failed to inhibit ascospore germination, but inhibited up to 35 and 62 % of germ tube elongation and mycelial growth, respectively. We found that crude culture supernatant and living cells of S. galilaeus CFFSUR-B12 were the most effective in inhibiting M. fijiensis and are potential biocontrol agents of BSD. PMID:26873555

  7. Draft Genome Sequence of Streptomyces sp. Strain Wigar10, Isolated from a Surface-Sterilized Garlic Bulb

    OpenAIRE

    Klassen, Jonathan L.; Adams, Sandye M; Bramhacharya, Shanti; Giles, Steven S.; Goodwin, Lynne A.; Woyke, Tanja; Currie, Cameron R

    2011-01-01

    Streptomyces sp. strain Wigar10 was isolated from a surface-sterilized garlic bulb (Allium sativum var. Purple Stripe). Its genome encodes several novel secondary metabolite biosynthetic gene clusters and provides a genetic basis for further investigation of this strain's chemical biology and potential for interaction with its garlic host.

  8. Complete Genome Sequence of Streptomyces albus SM254, a Potent Antagonist of Bat White-Nose Syndrome Pathogen Pseudogymnoascus destructans.

    Science.gov (United States)

    Badalamenti, Jonathan P; Erickson, Joshua D; Salomon, Christine E

    2016-01-01

    We sequenced and annotated the complete 7,170,504-bp genome of a novel secondary metabolite-producingStreptomycesstrain,Streptomyces albusSM254, isolated from copper-rich subsurface fluids at ~220-m depth within the Soudan Iron Mine (Soudan, MN, USA). PMID:27081146

  9. Genome Sequences of the Oxytetracycline Production Strain Streptomyces rimosus R6-500 and Two Mutants with Chromosomal Rearrangements

    OpenAIRE

    Baranasic, Damir; Zucko, Jurica; Nair, Mridul; Pain, Arnab; Long, Paul F.; Hranueli, Daslav; Cullum, John; Starcevic, Antonio

    2014-01-01

    The genome sequence of Streptomyces rimosus R6-500, an industrially improved strain which produces high titers of the important antibiotic oxytetracycline, is reported, as well as the genome sequences of two derivatives arising due to the genetic instability of the strain.

  10. Azalomycin F4a 2-ethylpentyl ester, a new macrocyclic lactone, from mangrove actinomycete Streptomyces sp.211726

    Institute of Scientific and Technical Information of China (English)

    Gan Jun Yuan; Kui Hong; Hai Peng Lin; Jia Li

    2010-01-01

    Azalomycin F4a 2-ethylpentyl ester,a new 36-membered macrocyclic lactone antibiotic,was isolated from mangrove actinomycete Streptomyces sp.211726.Its structure was elucidated on the basis of spectroscopic data.The compound showed broad-spectrum antifungal activity and moderate cytotoxicity against human colon tumor cell HCT-116.

  11. Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS (NRRL) Culture Collection using multi-locus sequence analysis

    Science.gov (United States)

    Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 str...

  12. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature.

    OpenAIRE

    Suutari, M; Laakso, S

    1992-01-01

    Streptomyces griseus showed three different modes of changing fatty acids in response to temperature change. In Brevibacterium fermentans, two such responses were found. The responses involved changes in fatty acid branching, unsaturation, or chain length, depending on growth temperature range. Changes in unsaturation of branched-chain acids were characteristic at low growth temperatures.

  13. Influence of heavy metals on biosynthesis, activity of lytic enzymes and growthstimulating factor of Streptomyces recifensis var. lyticus P-29

    Directory of Open Access Journals (Sweden)

    Т. P. Kilochok

    2005-02-01

    Full Text Available Influence of heavy metals on growth, biosynthesis, lytic action and growthstimulating activity enzymes complex of Streptomyces recifensis var. lyticus was studied. It was showed that salt of plumbum' has positive influence as on biosynthesis hydrolases (lytic endopeptidases, proteinases, amylases as well increase growthstimulating activity of preparation relatively the yeast

  14. Influence of heavy metals on biosynthesis, activity of lytic enzymes and growthstimulating factor of Streptomyces recifensis var. lyticus P-29

    OpenAIRE

    Т. P. Kilochok; I. E. Sokolova; N. P. Chernogor; А. А. Tymchuk; I. V. Zhernosekova

    2005-01-01

    Influence of heavy metals on growth, biosynthesis, lytic action and growthstimulating activity enzymes complex of Streptomyces recifensis var. lyticus was studied. It was showed that salt of plumbum' has positive influence as on biosynthesis hydrolases (lytic endopeptidases, proteinases, amylases) as well increase growthstimulating activity of preparation relatively the yeast

  15. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. PMID:27034020

  16. Novel extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Streptomyces exfoliatus K10 DSMZ 41693

    DEFF Research Database (Denmark)

    Martinez, Virginia; de Santos, Patricia Gómez; García-Hidalgo, Javier;

    2015-01-01

    Cloning and biochemical characterization of a novel extracellular medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase from Streptomyces exfoliatus K10 DSMZ 41693 are described. The primary structure of the depolymerase (PhaZSex2) includes the lipase consensus sequence (serine-histidin...

  17. Genome Sequences of the Oxytetracycline Production Strain Streptomyces rimosus R6-500 and Two Mutants with Chromosomal Rearrangements

    KAUST Repository

    Baranasic, Damir

    2014-07-17

    The genome sequence of Streptomyces rimosus R6-500, an industrially improved strain which produces high titers of the important antibiotic oxytetracycline, is reported, as well as the genome sequences of two derivatives arising due to the genetic instability of the strain.

  18. Purification of an antifungal endochitinase from a potential biocontrol Agent Streptomyces griseus.

    Science.gov (United States)

    Rabeeth, M; Anitha, A; Srikanth, Geetha

    2011-08-15

    Streptomyces griseus (MTCC 9723) is a chitinolytic bacterium isolated from prawn cultivated pond soil of Peddapuram Village; East Godavari District was studied in detailed. Chitinase (EC 3.2.1.14) was extracted from the culture filtrate of Streptomyces griseus and purified by ammonium sulfate precipitation, DEAE-cellulose ionexchange chromatography, Sephadex G-100 and Sephadex G-200 gel filtration chromatography. The molecular mass of the purified chitinase was estimated to be 34, 32 kDa by SDS gel electrophoresis and confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 6.0 and at 40 degrees C. The enzyme was stable from pH 5-9 and up to 20-50 degrees C. The chitinase exhibited Km and Vmax values of 400 mg and 180 IU mL(-1) for colloidal chitin. Among the metals and inhibitors that were tested, the Hg+, Hg2+ and P-chloromercuribenzoic acid completely inhibited the chitinase activity at 1 mM concentration. The purified chitinase showed high activity on colloidal chitin, chitobiose, and chitooligosaccharide. An in vitro assay proved that the crude chitinase, actively growing cells of S. griseus having antifungal activity against all studied fungal pathogen. This result implies that characteristics of S. griseus producing endochitinase made them suitable for biotechnological purpose such as for degradation of chitin containing waste and it might be a promising biocontrol agent for plant pathogens. PMID:22545353

  19. In vitro Antimicrobial Activity of Extracts From Marine Streptomyces Isolated From Mangrove Sediments of Tanzania

    Directory of Open Access Journals (Sweden)

    Eva Mathias Sosovele

    2012-04-01

    Full Text Available This study was undertaken to isolate Actinomycetes from mangrove sediments of Tanzania and evaluate their potential for production of bioactive metabolites. Starch cacein agar medium was used to isolate the actinomycetes. Extraction of Actinomycetes using ethyl acetate (1:1, afforded dry extracts. The extracts were tested for antimicrobial activity and brine shrimp toxicity test. A total of three isolates (ACTN 1, ACTN 2 and ACTN 3 were obtained by using culture medium selective for Actinomycetes. Actinomycetes specific primers; S-C-Act-235-S-20 and S-C-Act-878-A-19 were used to identify two isolates as Streptomyces sp and one as actinomycetes sp. The strongest activity against bacterium (Bacillus subtillis and fungus (Candida albicans was exhibited by crude extracts of Streptomyces sp (ACTN 2 and ACTN 3. Crude extracts of all three isolates exhibited non- cytotoxic activity against brine shrimp larvae with LC50 values ranging from 250 - 446 μg/ml respectively. These results provide evidence that the mangrove sediments streptomycetes could be promising sources for antimicrobial bioactive agents.

  20. Ultrastructural studies on variants of Streptomyces SP-765 obtained after gamma irradiation

    International Nuclear Information System (INIS)

    The study has been carried out with two variants of Streptomyces SP-765, gray and olygosporous, obtained after 1000 Gy gamma irradiation of spore suspension from the initial strain. The gray variant has chains of spores which are oval or oblong with rounded-off edges. Sporulation is highly inhibited in the olygosporous variant. Eleven electron-microscopic pictures of ultrathin sections from colonies of the two variants are presented. The gray variant reveals the presence of a large number of lyzed cells, spores, and scarce vegetative cells; typical of the lyzed cells are the spherical and highly osmiophilic formations on the outer and inner surface of their cytoplasmic membrane. The oligosporous variant shows lyzed cells of various sizes, cells void of content with thick walls, relativelly small number of vegetative cells and individual wall-less cells, shperoplast and protoplast formation, lamellar membrane structure of nearly all cells. Both lyzed and vegetable cells have individual anomalous form containing daughter cells. The conclusion is made that gray and oligosporous variants of Streptomyces SP-765, obtained after irradiation of its spores, possess different ultrastructural organization

  1. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-03-01

    Full Text Available Fusarium head blight (FHB caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

  2. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2015-11-01

    Full Text Available A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3, 2.0 and 1.8 folds higher inhibitory effect against HCT116, HT29 and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic towards colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.

  3. A strategy for seamless cloning of large DNA fragments from Streptomyces.

    Science.gov (United States)

    Huang, Jun; Yu, Zhen; Li, Mei-Hong; Li, Na; Zhou, Jun; Zheng, Yu-Guo

    2015-10-01

    We report a novel method for the seamless cloning of large DNA fragments (SCLF) of up to 44 kb or larger from Streptomyces chromosomal DNA. SCLF is based on homologous recombination in Streptomyces and is easy to perform. The strategy of SCLF is to flank the target sequence in the chromosomal DNA with two identical restriction sites by the insertion of plasmids containing that site at either end of the fragment, which is then isolated by plasmid rescue through the self-ligation of restriction digested genomic DNA. The method involves three steps: (i) placing a certain restriction site (CRS) at the 3'-end of the target sequence by insertion through homologous recombination of a plasmid containing the CRS; (ii) inserting through homologous recombination at the 5'-end of the target sequence a linearized self-suicide vector with the identical CRS; (iii) digesting the genomic DNA with the certain restriction enzyme followed by self-ligation in order to plasmid rescue the target fragment. SCLF can be applied to other Actinomycetales, and further optimizations may reduce the amount of time required to perform this technique. PMID:26458547

  4. Comparison of growth methods and biological activities of brazilian marine Streptomyces

    Directory of Open Access Journals (Sweden)

    A. C. Granato

    2013-03-01

    Full Text Available The present work describes the study of the growth and the cytotoxic and antitumor activities of the extracts of the marine microorganisms Streptomyces acrymicini and Streptomyces cebimarensis, the latter a new strain. Both microorganisms were collected from coastal marine sediments of the north coast of São Paulo state. Growth was performed in a shaker and in a bioreactor using Gym medium and the broths of both microorganisms were extracted with ethyl acetate and n-butanol. Three extracts, two organic and one aqueous, from each microorganism were obtained and tested for cytotoxic and antitumor activity using the SF-295 (Central Nervous System, HCT-8 (Colon cell lines, and the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide method. The growth methods were compared and show that, although the shaker presented reasonable results, the bioreactor represents the best choice for growth of these microorganisms. The biological activity of the different extracts was evaluated and it was demonstrated that the growth methodology may influence the secondary metabolite production and the biological activity.

  5. Structure and function of sawB, a gene involved in differentiation of Streptomyces ansochromogenes

    Institute of Scientific and Technical Information of China (English)

    聂丽平; 王韫恂; 贾君永; 田宇清; 谭华荣

    2000-01-01

    A partial DNA library of Streptomyces ansochromogenes 7100 was constructed by using plasmid plJ702 as vector and white mutant W19 as recipient. About 3 000 clones were obtained, two of which gave rise to the grey phenotype as wild type 7100. The plasmids were isolated from two transformants. The result indicated that the 5.2 kb and 5.8 kb DNA fragments were inserted into plJ702. The resulting recombinant plasmids were designated as pNL-1 and pNL-2 respectively. The 1.25 kb Pstl l-Apa l DNA fragment from pNL-1 was recognized as its complementarity to W19 strain. The nucleotide sequence of the 3.0 kb Pst I DNA fragment including 1.25 kb was determined and analyzed. The result indicated that this DNA fragment contains one complete open reading frame (ORF1) which encodes a protein with 295 amino acid residues, and this gene was designated as sawB. The deduced protein has 81% amino acid identities in comparison with that encoded by whiH in Streptomyces coelicolor. The function of sawB gene was studied by usi

  6. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    Directory of Open Access Journals (Sweden)

    Eliton da Silva Vasconcelos

    2013-12-01

    Full Text Available Clavulanic acid (CA is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064. The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  7. Antagonistic properties of seagrass associated Streptomyces sp. RAUACT-1:A source for anthraquinone rich compound

    Institute of Scientific and Technical Information of China (English)

    S Ravikumar; M Gnanadesigan; A Saravanan; N Monisha; V Brindha; S Muthumari

    2012-01-01

    Objective:To identify the antibacterial potential of seagrass (Syringodium isoetifolium) associate microbes against bacterial pathogens. Methods: Eumeration of microbial associates were analyzed with leaf and root samples of Syringodium isoetifolium. MIC and MBC were calculated for bacterial pathogens with microbial associates. Phylogenetic and GC-MS analysis were calculated for Actinomycetes sp. (Act01) which was the most potent. Results: Of the isolated microbial associates phosphatase producing bacterial isolates were identified as maximum [(261.78±35.09) CFU×104/g] counts in root sample. Of the selected microbial isolates Actinomycete sp (Act01) showed broad spectrum of antibacterial activity against antibiotic resistant and fish bacterial pathogens. Phylogenetic analysis of Act01 showed maximum identities (99%) with the Streptomyces sp. (GU5500072). The 16s rDNA secondary structure of Act01 showed the free energy values as-366.3 kkal/mol. The GC-MS analysis Act01 showed maximum retention value with 23.742 RT and the corresponding chemical class was identified as 1, 4-dihydroxy-2-(3-hydroxybutyl)-9, 10-anthraquinone 9, 10-anthrac. Conclusions:In conclusion, Streptomyces sp. (GU045544.1) from Syringodium isoetifolium could be used as potential antibacterial agent.

  8. Production, Partial Purification and Characterization of Protease From Irradiated Streptomyces Spp

    International Nuclear Information System (INIS)

    Production and partial purification of protease by the irradiated Streptomyces spp. was the aim of this study. Streptomyces spp. was allowed to grow in culture broth of 4% shrimp shells for purpose of inducing protease enzymes. Optimal conditions for protease production were 30 degree C, 0.3 kGy, ph 7, 5x104/ml inoculum size and 7 days incubation period. Protease was purified by 80% ammonium sulphate saturation which exhibited 8.7 U/ml enzyme activity. Column chromatography using sephadex G-200 exerted 23.3 U/ml enzyme activity from pooled fraction (13-16). The molecular mass of protease was determined to be 39 kDa by SDS-PAGE. The enzyme was more stable over a wide range of ph 6-8 and temperature up to 40 degree C. The produced protease was activated by Ca, Mn and FeCl2 and completely inhibited by ethylene-diamin tetraacetic acid (EDTA) at concentration of 1000 μg/ml

  9. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.).

    Science.gov (United States)

    Supong, Khomsan; Thawai, Chitti; Choowong, Wilunda; Kittiwongwattana, Chokchai; Thanaboripat, Dusanee; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak; Pittayakhajonwut, Pattama

    2016-05-01

    An endophytic actinomycete strain BCC72023 was isolated from rice (Oryza sativa L.) and identified as the genus Streptomyces, based on phenotypic, chemotaxonomic and 16S rRNA gene sequence analyses. The strain showed 99.80% similarity compared with Streptomyces samsunensis M1463(T). Chemical investigation led to the isolation of three macrolides, efomycins M (1), G (2) and oxohygrolidin (3), along with two polyethers, abierixin (4) and 29-O-methylabierixin (5). To our knowledge, this is the first report of efomycin M being isolated from a natural source. The compounds were identified using spectroscopic techniques and comparison with previously published data. All compounds exhibited antimalarial activity against the Plasmodium falciparum, K-1 strain, a multidrug-resistant strain, with IC50 values in a range of 1.40-5.23 μg/ml. In addition, these compounds were evaluated for biological activity against Mycobacterium tuberculosis, Bacillus cereus, Colletotrichum gloeosporioides and Colletotrichum capsici, as well as cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. PMID:26809052

  10. An extremely alkaline mannanase from Streptomyces sp. CS428 hydrolyzes galactomannan producing series of mannooligosaccharides.

    Science.gov (United States)

    Pradeep G C; Cho, Seung Sik; Choi, Yun Hee; Choi, Yun Seok; Jee, Jun-Pil; Seong, Chi Nam; Yoo, Jin Cheol

    2016-05-01

    An alkaline-thermostable mannanase from Streptomyces sp. CS428 was produced, purified, and biochemically characterized. The extracellular mannanase (Mn428) was purified to homogeneity with 12.4 fold, specific activity of 2406.7 U/mg, and final recovery of 37.6 %. The purified β-mannanase was found to be a monomeric protein with a molecular mass of approximately 35 kDa as analyzed by SDS-PAGE and zymography. The first N-terminal amino acid sequences of mannanase enzyme were HIRNGNHQLPTG. The optimal temperature and pH for enzyme were 60 °C and 12.5, respectively. The mannanase activities were significantly affected by the presence of metal ions, modulators, and detergents. Km and Vmax values of Mn428 were 1.01 ± 3.4 mg/mL and 5029 ± 85 µmol/min mg, respectively when different concentrations (0.6-10 mg/mL) of locust bean gum galactomannan were used as substrate. The substrate specificity of enzyme showed its highest specificity towards galactomannan which was further hydrolyzed to produce mannose, mannobiose, mannotriose, and a series of mannooligosaccharides. Mannooligosaccharides can be further converted to ethanol production, thus the purified β-mannanase isolated from Streptomyces sp. CS428 was found to be attractive for biotechnological applications. PMID:27038954

  11. Complex intra-operonic dynamics mediated by a small RNA in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Hindra

    Full Text Available Streptomyces are predominantly soil-dwelling bacteria that are best known for their multicellular life cycle and their prodigious metabolic capabilities. They are also renowned for their regulatory capacity and flexibility, with each species encoding >60 sigma factors, a multitude of transcription factors, and an increasing number of small regulatory RNAs. Here, we describe our characterization of a conserved small RNA (sRNA, scr4677. In the model species Streptomyces coelicolor, this sRNA is located in the intergenic region separating SCO4677 (an anti-sigma factor-encoding gene and SCO4676 (a putative regulatory protein-encoding gene, close to the SCO4676 translation start site in an antisense orientation. There appears to be considerable genetic interplay between these different gene products, with wild type expression of scr4677 requiring function of the anti-sigma factor SCO4677, and scr4677 in turn influencing the abundance of SCO4676-associated transcripts. The scr4677-mediated effects were independent of RNase III (a double stranded RNA-specific nuclease, with RNase III having an unexpectedly positive influence on the level of SCO4676-associated transcripts. We have shown that both SCO4676 and SCO4677 affect the production of the blue-pigmented antibiotic actinorhodin under specific growth conditions, and that this activity appears to be independent of scr4677.

  12. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    Science.gov (United States)

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  13. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Science.gov (United States)

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  14. Continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus: Kinetics of adipoyl-7-aminodeacetoxycephalosporanic acid and byproduct formations

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bruheim, P.; Nielsen, M.L.;

    2003-01-01

    The production kinetics of a transformed strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was investigated in chemostat cultivations. The recombinant strain produces adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) as the major product; howeve...

  15. Degradation of Textile Dye Reactive Navy – Blue Rx (Reactive blue–59) by an Isolated Actinomycete Streptomyces krainskii SUK – 5

    OpenAIRE

    Mane, U. V.; Gurav, P. N.; Deshmukh, A.M.; Govindwar, S. P.

    2008-01-01

    The isolated Actinomycete, Streptomyces krainskii, SUK -5 was found to decolorize and degrade textile dye Reactive blue–59.This azo dye was decolorized and degraded completely by Streptomyces krainskii SUK–5 at 24 h in shaking condition in the nutrient medium at pH 8. Induction in the activity of Lignin Peroxidase,and NADH-DCIP Reductase and MR reductase represents their role in degradation .The biodegradation was monitored by TLC, UV vis spectroscopy, FTIR. and GCMS analysis. Microbial and p...

  16. Streptomyces olivicoloratus sp. nov., an antibiotic-producing bacterium isolated from soil.

    Science.gov (United States)

    Nguyen, Tuan Manh; Kim, Jaisoo

    2015-10-01

    Strain T13T, isolated from forest soil in Jeollabuk-do, South Korea, exhibited antibiotic production on yeast extract-malt extract-glucose (YMG) medium containing magnesium chloride as a trace mineral, and inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Paenibacillus larvae, Escherichia coli, Candida albicans and Aspergillus niger. Growth occurred at 15-45 °C, pH 4-11 and in the presence of up to 2 % (w/v) NaCl. Biochemical analyses indicated that the predominant menaquinones produced by this strain were MK-9(H6) and MK-9(H8); small amounts of MK-10(H2) and MK-10(H4) were also detected. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, and the cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained glucose, galactose, ribose and rhamnose. The fatty-acid profile of strain T13T was made up predominantly of iso- and anteiso-branched fatty acids. Genetic analyses demonstrated that strain T13T is closely related to Streptomyces gramineus JR-43T (98.29 % 16S rRNA gene sequence similarity), S. graminisoli JR-19T (97.99 %), S. rhizophilus JR-41T (97.86 %), S. longwoodensis LMG 20096T (97.84 %), S. graminifolii JL-22T (97.79 %) and S. yaanensis Z4T (97.56 %), and DNA-DNA hybridization yielded relatedness values of 35.27-43.42 % when T13T was compared to related strains. The results of morphological, chemotaxonomic, phylogenetic and phenotypic analyses confirm that this strain represents a novel species of the genus Streptomyces, for which the name Streptomyces olivicoloratus sp. nov. is proposed. The type strain is T13T ( = KEMB 9005-210T = KACC 18227T = NBRC 110901T). PMID:26296874

  17. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1.

    Science.gov (United States)

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Liang, Jinfeng; Li, Sha; Feng, Xiaohai

    2014-07-01

    Poly(ε-L-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP) co-production by Streptomyces albulus PD-1 from cane molasses and hydrolysate of strepyomyces cells (HSC) was investigated for the first time in this study. The optimal initial total sugar concentration of the cane molasses pretreated with sulfuric acid was determined to be 20 g L(-1), and HSC could substitute for yeast extract for ε-PL and PDAP co-production. When fed-batch fermentation was performed in 1t fermentor with pretreated cane molasses and HSC, 20.6 ± 0.5 g L(-1) of ε-PL and 5.2 ± 0.6 g L(-1) of PDAP were obtained. The amount of strepyomyces cells obtained in one fed-batch fermentation is sufficient to prepare the HSC to satisfy the demand of subsequent fermentations, thus the self-cycling of organic nitrogen source becomes available. These results suggest that the low-cost cane molasses and HSC can be used for the economical production of ε-PL and PDAP by S. albulus PD-1. PMID:24861999

  18. Catabolic fate of Streptomyces viridosporus T7A-Produced, acid precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Degradation of ground and hot-water-extracted corn stover (Zea mays) lignocellulose by Streptomyces viridosporus T7A generates a water-soluble lignin degradation intermediate termed acid-precipitable polymeric lignin (APPL). The further catabolism of T7A-APPL by S. viridosporus T7A, S. badius 252, and S. setonii75Vi2 was followed for 3 weeks. APPL catabolism by Phanerochaete chrysosporium was followed in stationary cultures in a low-nitrogen medium containing 1% (wt/vol) glucose and 0.05% (wt/vol) T7A-APPL. Metabolism of the APPL was followed by turbidometric assay (600 nm) and by direct measurement of APPL recoverable from the medium. Accumulation and disappearance of soluble low-molecular-weight products of APPL catabolism were followed by gas-liquid chromatography and by high-pressure liquid chromatography, utilizing a diode array detector. Mineralization of a [14C-lignin]APPL was also followed. The percent 14C recovered as 14CO2, 14C-APPL, 14C-labeled water-soluble products, and cell mass-associated radioactivity, were determined for each microorganism after 1 and 3 weeks of incubation in bubbler tube cultures at 370C. P. chrysosporium evolved the most 14CO2, and S. viridosporus gave the greatest decrease in recoverable 14C-APPL. The results show that S. badius was not able to significantly degrade the APPL, while the other microorganisms demonstrated various APPL-degrading abilities

  19. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2002-12-01

    Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indolocarbazole aglycone biosynthesis, two genes, staG and staN, for the bond formation between the aglycone and deoxysugar, eight genes, staA, staB, staE, staJ, staI, staK, staMA, and staMB, for the deoxysugar biosynthesis and one gene, staR is a transcriptional regulator. Heterologous gene expression of a 38-kb fragment containing a complete set of the biosynthetic genes for staurosporine cloned into pTOYAMAcos confirmed its role in staurosporine biosynthesis. Moreover, the distribution of the gene for chromopyrrolic acid synthase, the key enzyme for the biosynthesis of indolocarbazole aglycone, in actinomycetes was investigated, and rebD homologs were shown to exist only in the strains producing indolocarbazole antibiotics. PMID:12617516

  20. Induction of an altered metabolite profile in streptomyces avermitilis in coculture with pseudomonas fluorescens; Induktion von veraenderten Metabolitenprofilen in Streptomyceten durch Umweltfaktoren. Kokultivierung von Streptomyces avermitilis und Pseudomonas fluorescens und von Streptomyces coelicolor unter Schwermetallionenstress

    Energy Technology Data Exchange (ETDEWEB)

    Behrend, Anne

    2010-10-04

    The cultivation with non kind microorganisms induces the production of antibacterial secondary metabolites in microbes. In S. avermitilis such reaction could be monitored by analyzing the frequently observed guttation droplets, which might serve as reservoir for secondary metabolites in streptomycetes and fungi. Analyses showed that S. avermitilis formed guttation droplets mainly contained sucrose. S. avermitilis produced the sucrose from the nutrients of the medium. As reaction coculture with P. fluorescens the reduction of available sucrose amount was detected. This suggests that the sucrose could serve as energy storage, which is mobilized under the competitive pressure in the mixed culture. As well as non kind microorganisms have certain metal ions a stimulating effect on the secondary metabolism of streptomycetes. Therefore, the effects of cobalt ion stress Streptomyces coelicolor were characterized systematically. Relatively high concentration of cobalt ion in the medium induced the differentiation of a red and a blue colored phenotype of S. coelicolor. GC-MS analysis indicates that the two pigmented phenotypes produce a volatile profile different from the wild type. The volatile emission of S. coelicolor was characterized by the reduction of terpene release under cobalt ion stress. Specifically the red phenotype produced 2-tridecanone and undecylpyrrole, whereas the blue phenotype intensified its isozizaene emission. The formation of undecylprodigiosin as well as butylcycloheptylprodigiosin in the red colonies, and {gamma}-actinorhodin, in the blue colonies was detected. These polyketides considerably contributed to pigmentation of the colored colonies. The gene expression of the colored phenotypes under cobalt ion stress was differentially regulated compared to the wild type. It can be concluded, that the development of an altered metabolite profile in S. coelicolor under cobalt ion stress is based on characteristic patterns in gene expression.

  1. [Determination of Streptomyces coelicolor A3(2) resistance to erythromycin].

    Science.gov (United States)

    Puzynina, G G; Danilenko, V N; Vasil'chenko, L G; Mkrtumian, N M; Lomovskaia, N D

    1979-01-01

    Resistance to erythromycin is genetically unstable in strains of Streptomyces coelicolor A3(2). The frequent loss of resistance as well as reversion of sensitive variants to the original unstable resistance phenotype excluded the possibility that plasmid elimination is involved. The spontaneous frequency of occurrence of sensitive clones was 0.14 to 1.5%, the rate of reversion ranging from 1.10(-6) to 1.10(-8). Resistance to erythromycin has been mapped on the chromosomes of two S. coelicolor A3(2) derivatives in different sites: between markers adeC (v 10) and ArgA1 in the strain A617, between pheA1 and SCP1 in the strain S18. It is suggested that genetic instability of erythromycin resistance determinants having chromosomal location is due to transposition of genetic material. PMID:291565

  2. Complete genome sequence of Streptomyces globisporus C-1027, the producer of an enediyne antibiotic lidamycin.

    Science.gov (United States)

    Li, Xingxing; Lei, Xuan; Zhang, Cong; Jiang, Zhibo; Shi, Yuanyuan; Wang, Songmei; Wang, Lifei; Hong, Bin

    2016-03-20

    Streptomyces globisporus C-1027 produces a nine-membered enediyne antitumor antibiotic lidamycin. Here we report the complete genome sequence of S. globisporus C-1027, which consists of a 7,608,611bp linear chromosome, a 167,754bp linear plasmid SGLP1 and a 7,234bp circular plasmid pSGL1. The biosynthetic gene cluster for lidamycin was located in the linear plasmid SGLP1. Genome analysis also revealed a number of genes related to biosynthesis of diverse secondary metabolites. The genome sequence of C-1027 will enable us to disclose biosynthetic pathways of these secondary metabolites and discover new natural products with potential applications notably in human health. PMID:26853480

  3. Phenomenological model of the clavulanic acid production process utilizing Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    A. Baptista-Neto

    2000-12-01

    Full Text Available The kinetics of clavulanic acid production process by Streptomyces clavuligerus NRRL 3585 was studied. Experiments were carried out in a 4 liters bioreactor, utilizing 2 complex media containing glycerol as the carbon and energy source, and peptone or Samprosoy 90NB (soybean protein as nitrogen source. Temperature was kept at 28°C and the dissolved oxygen was controlled automatically at 40 % saturation value. Samples were withdrawn for determination of cell mass (only peptone medium, glycerol and product concentrations. Gas analyzers allowed on line determination of CO2 and O2 contents in the exit gas. With Samprosoy, cell mass was evaluated by determining glycerol consumption and considering the cell yield, Y X/S, as being the same for both cases. Oxygen uptake and CO2 production rates were strongly related to growth and substrate consumption, allowing determination of stoichiometric constants in relation to growth, substrate, oxygen, product and carbon dioxide.

  4. Selection of Streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms.

    Science.gov (United States)

    Yücel, Semra; Yamaç, Mustafa

    2010-01-01

    In this work, actinomycetes isolates were isolated from rock wall and speleothem surfaces and soil samples of 19 karstic caves in Turkey. Out of 290 isolates isolated, 180 isolates (62%) exhibited antimicrobial activity against a panel of four bacteria, two yeasts and four filamentous fungi in the screening program. One of them, Streptomyces sp. 1492, was examined for antibiotic production in batch culture. The maximum of antimicrobial activity was shown at 5th day. Antimicrobial activity of the extracted active compound was recorded as dose dependent bacteriostatic or bactericidal against antibiotic resistant clinical bacteria strains; methicillin-resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterobacter faecium (VRE), and Acinetobacter baumanii. Minimum inhibitor concentration and minimum bactericidal concentrations were determined as lower than standard antibiotic streptomycin; 125 microg/ml and 250-1000 microg/ml, respectively. Active component was found as heat-stable. PMID:20067859

  5. Crystal structure and site-directed mutagenesis of a nitroalkane oxidase from Streptomyces ansochromogenes.

    Science.gov (United States)

    Li, Yanhua; Gao, Zengqiang; Hou, Haifeng; Li, Lei; Zhang, Jihui; Yang, Haihua; Dong, Yuhui; Tan, Huarong

    2011-02-18

    Nitroalkane oxidase (NAO) catalyzes neutral nitroalkanes to their corresponding aldehydes or ketones, hydrogen peroxide and nitrite. The crystal structure of NAO from Streptomyces ansochromogenes was determined; it consists of two domains, a TIM barrel domain bound to FMN and C-terminal domain with a novel folding pattern. Site-directed mutagenesis of His179, which is spatially adjacent to FMN, resulted in the loss of enzyme activity, demonstrating that this amino acid residue is important for catalysis. The crystal structure of mutant H179D-nitroethane was also analyzed. Interestingly, Sa-NAO shows the typical function as nitroalkane oxidase but its structure is similar to that of 2-nitropropane dioxygenase. Overall, these results suggest that Sa-NAO is a novel nitroalkane oxidase with TIM barrel structure. PMID:21147069

  6. The impact of isatin derivatives on antibiotic production by Streptomyces hygroscopicus CH-7

    Directory of Open Access Journals (Sweden)

    Ćirić Jovan T.

    2016-01-01

    Full Text Available The effect of isatin derivatives as a nitrogen source on antibiotic (Hexaene H-85 and Azalomycine B production by Streptomyces hygroscopicus CH-7 was studied. Isatin-3-hydrazone, 5-chloroisatin-3-hydrazone, isatin-3-tosylhydrazone, 5-chloroisatin-3-tosylhydrazone, isatin-3-(4`-hidroxybenzoilhydrazone and 5-chloroisatin-3-(4`-hidroxybenzoilhydrazone were synthesized in a crude glycerol, obtained during the biodiesel production from edible sunflower oil. The highest concentration of Hexaene H-85 is achieved with 5-chloroisatin-3-hydrazone (197 mg/cm3 in medium, while isatin-3-hydrazone has a greatest impact on Azalomycine B production (72 μg/cm3. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  7. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01.

    Science.gov (United States)

    Zhang, Guoqiang; Feng, Juntao; Han, Lirong; Zhang, Xing

    2016-07-01

    Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture. PMID:27091231

  8. Kinetic properties of Streptomyces canarius L- Glutaminase and its anticancer efficiency

    OpenAIRE

    Reda, Fifi M.

    2015-01-01

    Abstract L-glutaminase was produced by Streptomyces canarius FR (KC460654) with an apparent molecular mass of 44 kDa. It has 17.9 purification fold with a final specific activity 132.2 U/mg proteins and 28% yield recovery. The purified L-glutaminase showed a maximal activity against L-glutamine when incubated at pH 8.0 at 40 °C for 30 min. It maintained its stability at wide range of pH from 5.0 11.0 and thermal stable up to 60 °C with Tm value 57.5 °C. It has high affinity and catalytic acti...

  9. Halogenated volatiles from the fungus Geniculosporium and the actinomycete Streptomyces chartreusis

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2013-12-01

    Full Text Available Two unidentified chlorinated volatiles X and Y were detected in headspace extracts of the fungus Geniculosporium. Their mass spectra pointed to the structures of a chlorodimethoxybenzene for X and a dichlorodimethoxybenzene for Y. The mass spectra of some constitutional isomers for X and Y were included in our databases and proved to be very similar, thus preventing a full structural assignment. For unambiguous structure elucidation all possible constitutional isomers for X and Y were obtained by synthesis or from commercial suppliers. Comparison of mass spectra and GC retention times rigorously established the structures of the two chlorinated volatiles. Chlorinated volatiles are not very widespread, but brominated or even iodinated volatiles are even more rare. Surprisingly, headspace extracts from Streptomyces chartreusis contained methyl 2-iodobenzoate, a new natural product that adds to the small family of iodinated natural products.

  10. Chaxapeptin, a Lasso Peptide from Extremotolerant Streptomyces leeuwenhoekii Strain C58 from the Hyperarid Atacama Desert.

    Science.gov (United States)

    Elsayed, Somayah S; Trusch, Franziska; Deng, Hai; Raab, Andrea; Prokes, Ivan; Busarakam, Kanungnid; Asenjo, Juan A; Andrews, Barbara A; van West, Pieter; Bull, Alan T; Goodfellow, Michael; Yi, Yu; Ebel, Rainer; Jaspars, Marcel; Rateb, Mostafa E

    2015-10-16

    Lasso peptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that possess a unique "lariat knot" structural motif. Genome mining-targeted discovery of new natural products from microbes obtained from extreme environments has led to the identification of a gene cluster directing the biosynthesis of a new lasso peptide, designated as chaxapeptin 1, in the genome of Streptomyces leeuwenhoekii strain C58 isolated from the Atacama Desert. Subsequently, 1 was isolated and characterized using high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance methods. The lasso nature of 1 was confirmed by calculating its nuclear Overhauser effect restraint-based solution structure. Chaxapeptin 1 displayed a significant inhibitory activity in a cell invasion assay with human lung cancer cell line A549. PMID:26402731

  11. Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis

    International Nuclear Information System (INIS)

    For the first time in Georgia a novel actinomycete strain Streptomyces glaucus 71 MD isolated from a soy rhizosphere has been used for microbial synthesis of silver nanoparticles. The Transmission Electron Microscopy (TEM) images revealed that most of the particles produced by these microorganisms from AgNO3 are spherical-like in shape with an average size of 13 nm. The Scanning Electron Microscope (SEM) allowed one to observe extracellular synthesis of nanoparticles, which has many advantages from the point of view of applications. Production of silver nanoparticles proceeds extracellularly with the participation of another microorganism, blue-green microalgae Spirulina platensis. It is shown that the production rate of the nanoparticles depends not only on the initial concentration of AgNO3 but also varies with time in a no monotonic way

  12. Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi.

    Science.gov (United States)

    Van Minh, Nguyen; Woo, E-Eum; Kim, Ji-Yul; Kim, Dae-Won; Hwang, Byung Soon; Lee, Yoon-Ju; Lee, In-Kyoung; Yun, Bong-Sik

    2015-09-01

    In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria. PMID:26539051

  13. PURIFICATION AND CHARACTERIZATION OF KERATINASE FROM HAIR-DEGRADING STREPTOMYCES ALBUS

    Directory of Open Access Journals (Sweden)

    Sreenivasa Nayaka, Gireesh Babu K and GM Vidyasagar*

    2013-03-01

    Full Text Available The keratinase waste produced in large quantities all over the world from animals and birds including human beings. As the physiological and chemical methods of keratin degradation are not easy possible, the biological method has gained importance. The present study investigated purified keratinase from Keratinolytic Streptomyces albus. The cell-bound keratinolytic enzyme was purified 32.72-fold by gel filtration chromatography. The enzyme was characterized as a serine protease with a molecular mass of 29-35kD. Optimal activity pH and Temperature was measured at 7.0 and 400C furthermore, the various inhibitors had different effect on enzyme activity. PMSF and heavy metal ion HgCl2 were the most potent inhibitors and EDTA induced the activity by more than 135%, 2-mercaptoethanol did not show any impact on the enzyme, where pCMB, KCN, 8-hydroxyquinoline and cystine inhibited activity moderately.

  14. Identification and characterization of antifungal active substances of Streptomyces hygroscopicus BS-112.

    Science.gov (United States)

    Zhang, Nan; Song, Zhen; Xie, Yuhua; Cui, Ping; Jiang, Hongxia; Yang, Tao; Ju, Ruicheng; Zhao, Yuhua; Li, Jinyu; Liu, Xunli

    2013-08-01

    An antifungal Actinomyces BS-112 strain, with Aspergillus flavus as the target pathogen, was isolated from soil in the forest land of Mountain Tai. This strain showed a strong antagonistic activity against various mold fungi in food and feed. Strain BS-112 was identified as Streptomyces hygroscopicus based on its morphologic, cultural, physiological, biochemical characteristics, cell wall components and 16S rDNA sequence. Four active components were separated and purified from strain BS-112. These four antifungal components were identified as tetrins A and B and tetramycins A and B using spectroscopic analysis including mass spectrometry and nuclear magnetic resonance spectroscopy. Tetrins A and B and tetramycins A and B strongly inhibited the growth of A. flavus, A. alutaceus, A. niger, and A. fumigatus in vitro. PMID:23468248

  15. Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    E. R. Gouveia

    2000-12-01

    Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.

  16. Effect of protein kinase inhibitors on protein phosphorylation and germination of aerial spores from Streptomyces coelicolor.

    Science.gov (United States)

    Palecková, P; Kontrová, F; Kofronová, O; Bobek, J; Benada, O; Mikulík, K

    2007-01-01

    In vitro phosphorylation reaction using extracts prepared from cells in the exponential phase of growth and aerial spores of Streptomyces coelicolor displayed the presence of multiply phosphorylated proteins. Effect of protein kinase inhibitors (PKIs) (geldanamycin, wortmannin, apigenin, genistein, roscovitine, methyl 2,5-dihydroxycinnamate, rapamycin, staurosporine) was determined on protein phosphorylation and on germination of spores. The in vitro experiments showed differences in phosphoprotein pattern due to the presence of PKIs. Cultivation of aerial spores with PKIs led to a significant delay in germ tube emergence and filament formation. However, none of the tested PKIs completely blocked the germination process. These results indicate that protein kinases of spores form complex networks sharing common modulating site that plays an important role in proper timing of early developmental events. PMID:17702458

  17. Effect of gamma radiation on the physiological properties and geneticmaterials of Streptomyces albaduncus and S. erythogresius

    International Nuclear Information System (INIS)

    Out of 14 isolates of actinomycetes, isolated from Egyptian soils, the two thermophilic isolates identified as Streptomyces albaduncus and S.erythogresius showed the highest antimicrobial activities against bacteria, moulds and yeasts among them. Both isolates were exposed to increasing doses of gamma radiation up to 5 kGy. All radiation doses used did not affect the physiological properties, but relativity higher doses enhanced the utilization of carbon sources and increased their sodium, chloride tolerance from 8 to 10%. Dose level 2 kGy enhanced the antimicrobial activity of both isolates either at first or second generation. All radiation doses used increased the amount of RNA, while higher radiation dose levels (2-5 kGy) decreased the amount of DNA

  18. Isolation of 57Co-cobalamin coenzymes at high specific activity from Streptomyces griseus

    International Nuclear Information System (INIS)

    The distribution of radio-labelled cobalamins in Streptomyces griseus grown in medium containing 57Co-cobalt chloride has been estimated by two-dimensional thin-layer chromatography and bioautography. 57Co-Methylcobalamin (Me[57Co]Cb1) was the major form in the mycelium together with smaller amounts of 57Co-adenosylcobalamin (Ado[57Co]Cb1) and 57Co-hydroxocobalamin (OH[57Co]Cb1). The OH[57Co]Cb1 was detected in three forms having, respectively, anionic, cationic and neutral properties. A simple technique has been developed to isolate and purify Me[57CO]Cb1 and Ado[57Co]Cb1 from the mycelium using column chromatography on ion-exchange celluloses. Small quantities of each cobalamin coenzyme have been obtained at 90-96% purity and specific activities of 190-230 μCi/μg. (Auth.)

  19. Characterization and Purification a Specific Xylanase Showing Arabinofuranosidase Activity from Streptomyces spp. 234P-16

    Directory of Open Access Journals (Sweden)

    ALINA AKHDIYA

    2009-07-01

    Full Text Available Streptomyces spp 234P-16 producing xylanase was isolated from soil sample from Padang, West Sumatra, Indonesia. Crude enzyme (produced by centrifuging the culture at 14000 rpm for about 5 minutes and purified xylanase have an optimum condition at pH 5 and 90oC. Crude xylanase have half life time of 4 hours, whereas purified xylanase have half life time of 2 ½ hours at 90oC. The molecular mass of purified xylanase was determined to be 42.4 kDa. The Arabinofuranosidase have a Km and Vmax value of 1,98 mg/mL and 523 µmol/minute/mg, respectively.

  20. Three new 2,5-diketopiperazines from the fish intestinal Streptomyces sp. MNU FJ-36.

    Science.gov (United States)

    Ou, Yi-Xin; Huang, Jia-Fu; Li, Xiu-Min; Kang, Qian-Jin; Pan, Yu-Tian

    2016-08-01

    The gut actinobacteria of marine-inhabited fish is one of the most important reservoirs of novel natural products. Currently, the Streptomyces sp. MNU FJ-36 was isolated from the intestinal fabric of Katsuwonus sp. and determined by 16S rRNA analysis. From the cultures of the S. sp. MNU FJ-36, three new 2,5-diketopiperazines (2,5-DKPs) were discovered and identified as 3-(3-hydroxy-4-methoxybenzyl)-6-isobutyl-2,5-diketopiperazine (1), 3-(1,3-benzodioxol-5-ylmethyl)-6-isobutyl-2,5-diketopiperazine (2) and 3-(1,3-benzodioxol-5-ylmethyl)-6-isopropyl-2,5-diketopiperazine (3). Their structures were elucidated on the basis of spectroscopic data analysis. All the compounds were also evaluated for their inhibitory activity against P388, A-549 and HCT-116 cell lines with the MTT assay. PMID:26828674

  1. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp.

    Indian Academy of Sciences (India)

    V K Nigam; A K Khandelwal; R K Gothwal; M K Mohan; B Choudhury; A S Vidyarthi; P Ghosh

    2009-03-01

    The biotransformation of acrylonitrile was investigated using thermophilic nitrilase produced from a new isolate Streptomyces sp. MTCC 7546 in both the free and immobilized state. Under optimal conditions, the enzyme converts nitriles to acids without the formation of amides. The whole cells of the isolate were immobilized in agar-agar and the beads so formed were evaluated for 25 cycles at 50°C. The enzyme showed a little loss of activity during reuse. Seventy-one per cent of 0.5 M acrylonitrile was converted to acid at 6 h of incubation at a very low density of immobilized cells, while 100% conversion was observed at 3 h by free cells.

  2. Chemically Defined Medium for the Accumulation of Intracellular Malate Dehydrogenase by Streptomyces aureofaciens

    OpenAIRE

    Laluce, Cecília; Ernandes, José Roberto; Molinari, Rubens

    1987-01-01

    A chemically defined medium was developed for the production of intracellular malate dehydrogenases by Streptomyces aureofaciens NRRL-B 1286. The composition of the medium (per liter) was as follows: 50 g of starch, 4 g of ammonium sulfate, 7.32 g of l-aspartic acid, 13.8 g of MgSO4 · 7H2O, 1.7 g of K2HPO4, 0.01 g of ZnSO4 · 7H2O, 0.01 g of FeSO4 · 7H2O, 0.01 g of MnSO4 · H2O, and 0.005 g of CoSO4 · 7H2O. The pH of the medium was adjusted to 6.7 to 7.0 after sterilization. The activity of the...

  3. Improvement of Daptomycin Production in Streptomyces roseosporus through the Acquisition of Pleuromutilin Resistance

    Directory of Open Access Journals (Sweden)

    Linli Li

    2013-01-01

    Full Text Available Daptomycin, a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, displays potent activity against a variety of gram-positive pathogens. There is a demand for generating high-producing strains for industrial production of this valuable antibiotic. Ribosome engineering is a powerful strategy to enhance the yield of secondary metabolites. In this study, the effect of a diterpenoid antibiotic pleuromutilin resistance mutation on daptomycin production was assessed. Spontaneous pleuromutilin-resistant derivatives of S. roseosporus were isolated. Sequencing of rplC locus (encoding the ribosomal protein L3 showed a point mutation at nt 455, resulting in the substitution of glycine with valine. G152V mutants showed increased production of daptomycin by approximately 30% in comparison with the wild-type strain. Its effect on daptomycin production was due to enhanced gene transcription of the daptomycin biosynthetic genes. In conclusion, pleuromutilin could be used as a novel ribosome engineering agent to improve the production of desired secondary metabolites.

  4. New Azalomycin F Analogs from Mangrove Streptomyces sp. 211726 with Activity against Microbes and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haipeng Lin

    2013-03-01

    Full Text Available Seven new azalomycin F analogs (1–7 were isolated from the broth of mangrove Streptomyces sp. 211726, and respectively identified as 25-malonyl demalonylazalomycin F5a monoester (1, 23-valine demalonylazalomycin F5a ester (2, 23-(6-methylheptanoic acid demalonylazalomycins F3a ester (3, F4a ester (4 and F5a ester (5, 23-(9-methyldecanoic acid demalonylazalomycin F4a ester (6 and 23-(10-methylundecanoic acid demalony lazalomycin F4a ester (7. Their structures were established by their spectroscopic data and by comparing with those of azalomycins F3a, F4a and F5a. Biological assays exhibited that 1–7 showed broad-spectrum antimicrobial and anti HCT-116 activities.

  5. Optimization of Inulinase Production from Garlic by Streptomyces sp. in Solid State Fermentation Using Statistical Designs

    Directory of Open Access Journals (Sweden)

    M. Dilipkumar

    2011-01-01

    Full Text Available Plackett-Burman design was employed for screening 18 nutrient components for the production of inulinase using Garlic as substrate by Streptomyces sp. in solid-state fermentation (SSF. From the experiments, 4 nutrients, namely, NH4NO3, MnSO4⋅7H2O, Soya bean cake, and K2HPO4 were found to be most significant nutrient components. Hence, these 4 components are selected. The selected components were optimized using response surface methodology (RSM. The optimum conditions are NH4NO3—6.63 mg/gds, MnSO4⋅7H2O—26.16 mg/gds, Soya bean cake—60.6 mg/gds, and K2HPO4—5.24 mg/gds. Under these conditions, the production of inulinase was found to be 76 U/gds.

  6. Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets

    DEFF Research Database (Denmark)

    Rønnest, Nanna Petersen; Stocks, Stuart M; Eliasson Lantz, Anna;

    2012-01-01

    Morphology is important in industrial processes involving filamentous organisms because it affects the mixing and mass transfer and can be linked to productivity. Image analysis provides detailed information about the morphology but, in practice, it is often laborious including both collection of...... high quality images and image processing. Laser diffraction is rapid and fully automatic and provides a volume-weighted distribution of the particle sizes. However, it is based on a number of assumptions that do not always apply to samples. We have evaluated laser diffraction to measure cell clumps and...... pellets of Streptomyces coelicolor compare to image analysis. Samples, taken five times during fed-batch cultivation, were analyzed by image analysis and laser diffraction. The volume-weighted size distribution was calculated for each sample. Laser diffraction and image analysis yielded similar size...

  7. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin.

    Science.gov (United States)

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen; Chen, Shawn

    2016-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  8. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  9. Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues.

    Science.gov (United States)

    Chanitnun, Kankiya; Pinphanichakarn, Pairoh

    2012-07-01

    Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K m values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V max values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae. PMID:24031932

  10. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    Science.gov (United States)

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  11. Lethal effect ofStreptomyces citreofluorescens against larvae of malaria, filaria and dengue vectors

    Institute of Scientific and Technical Information of China (English)

    Gavendra Singh; Soam Prakash

    2012-01-01

    Objective:To investigate lethal effect of culture filtrates ofStreptomyces citreofluorescens (S. citreofluorescens)againstAnopheles stephensi (An. stephensi), Culex quinquefasciatus (Cx. quinquefasciatus), andAedes aegypti (Ae. aegypti) larvae vectors for malaria, filarial and dengue. Methods:The culture filtrates obtained fromS. citreofluorescens2528 was grown inPotato DextroseBroth(PDB), filtrated and used for the bioassay after a growth of15 days.Results:The results demonstrated that theAn. stephensi shows mortalities withLC50,LC90 values of first instar 46.8 μL/mL,79.5 μL/mL, second instar79.0μL/mL,95.6μL/mL, third instar79.0 μL/mL,136.9 μL/mL, and fourth instar122.6 μL/mL,174.5 μL/mL.Whereas,TheCx. quinquefasciatus were found effective on first instar40.0 μL/mL,138.03 μL/mL, second instar80.0 μL/mL,181.97 μL/mL, third instar100.0 μL/mL,309.2 μL/mL, and fourth instar60.0 μL/mL,169.82 μL/mL.The Ae. aegypti were successfully achieved susceptible with higher concentrations in comparisons ofAn. stephensi andCx. quinquefasciatus larvae.These outcomes of the investigations have compared with theChitinase of Streptomyces griseus (S. griseus)C6137 that shows90%-95% mortality.Conclusions:These new findings significantly permitted that the culture filtrates ofS. citreofluorescens can be used as bacterial larvicides.This is an environmentally safe approach to control the vectors of malaria, dengue and filariasis of tropical areas.

  12. Crystallization and preliminary characterization of a novel haem-binding protein of Streptomyces reticuli

    International Nuclear Information System (INIS)

    The haem-binding protein HbpS from Streptomyces reticuli was crystallized and diffraction data were collected to a maximal resolution of 2.25 Å. Streptomyces reticuli is a soil-growing Gram-positive bacteria that has been shown to secrete a novel haem-binding protein known as HbpS. Sequence analysis reveals that homologues of HbpS are found in a wide variety of bacteria, including different Actinobacteria and the Gram-negative Vibrio cholera and Klebsiella pneumoniae. The in vivo production of HbpS is greatly increased when S. reticuli is cultured in the presence of the natural antibiotic haemin (Fe3+ oxidized form of haem). Mutational analysis demonstrated that HbpS significantly increases the resistance of S. reticuli to toxic concentrations of haemin. Previous data show that the presence of the newly identified two-component sensor system SenS–SenR also considerably enhances the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting a role in the sensing of redox changes. Specific interaction between HbpS and SenS–SenR, which regulates the expression of the catalase–peroxidase CpeB, as well as HbpS, has been demonstrated in vitro. HbpS has been recombinantly overexpressed, purified and crystallized in space group P213, with a cell edge of 152.5 Å. Diffraction data were recorded to a maximal resolution of 2.25 Å and phases were obtained using the SAD method from crystals briefly soaked in high concentrations of sodium bromide

  13. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    Science.gov (United States)

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  14. Antifungal and antibacterial activities of Streptomyces polymachus sp. nov. isolated from soil.

    Science.gov (United States)

    Nguyen, Tuan Manh; Kim, Jaisoo

    2015-08-01

    Strain T258T was isolated from forest soil at Bongnae Falls, South Korea. The strain exhibited antimicrobial and antifungal activity against the following strains: Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Paenibacillus larvae, Escherichia coli, Candida albicans and Aspergillus niger. Growth occurred on all ISP media tested (2, 3, 4, 5, 6 and 7), Czapek-Dox agar, potato dextrose agar, trypticase soy agar, Bennett's modified agar and nutrient agar at 28 °C. Aerial spores were produced solely on ISP Medium 4; the colour of the aerial mycelium was white and the substrate mycelium was ivory. Melanin production was negative on peptone-yeast extract iron agar (ISP Medium 6). The cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained glucose, ribose and galactose. The predominant menaquinones were MK-9(H6) and MK-9(H8) while the minor menaquinone was MK-10(H2). The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids (>10%) were C16 : 0 (29.8%), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (15.1%), anteiso-C15 : 0 (13.5%) and iso-C15 : 0 (10.3%). DNA-DNA similarity with other strains ranged between 37.84 ± 1.15% and 50.25 ± 1.91 %. On the basis of these data, we suggest that strain T258T represents a novel species that belong to the genus Streptomyces, for which we propose a name Streptomyces polymachus sp. nov. The type strain is T258T ( = KACC 18247T = KEMB 9005-212T = NBRC 110905T). PMID:25899502

  15. Crystallization and preliminary characterization of a novel haem-binding protein of Streptomyces reticuli

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Peijian [EMBL Outstation Hamburg, c/o DESY, Notkestrasse 85, 22607 Hamburg (Germany); Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Groves, Matthew R. [EMBL Outstation Hamburg, c/o DESY, Notkestrasse 85, 22607 Hamburg (Germany); Viale-Bouroncle, Sandra D.; Ortiz de Orué Lucana, Darío, E-mail: ortiz@biologie.uni-osnabrueck.de [Universität Osnabrück, FB Biologie/Chemie, Angewandte Genetik der Mikroorganismen, Barbarastrasse 13, 49069 Osnabrück (Germany); EMBL Outstation Hamburg, c/o DESY, Notkestrasse 85, 22607 Hamburg (Germany)

    2008-05-01

    The haem-binding protein HbpS from Streptomyces reticuli was crystallized and diffraction data were collected to a maximal resolution of 2.25 Å. Streptomyces reticuli is a soil-growing Gram-positive bacteria that has been shown to secrete a novel haem-binding protein known as HbpS. Sequence analysis reveals that homologues of HbpS are found in a wide variety of bacteria, including different Actinobacteria and the Gram-negative Vibrio cholera and Klebsiella pneumoniae. The in vivo production of HbpS is greatly increased when S. reticuli is cultured in the presence of the natural antibiotic haemin (Fe{sup 3+} oxidized form of haem). Mutational analysis demonstrated that HbpS significantly increases the resistance of S. reticuli to toxic concentrations of haemin. Previous data show that the presence of the newly identified two-component sensor system SenS–SenR also considerably enhances the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting a role in the sensing of redox changes. Specific interaction between HbpS and SenS–SenR, which regulates the expression of the catalase–peroxidase CpeB, as well as HbpS, has been demonstrated in vitro. HbpS has been recombinantly overexpressed, purified and crystallized in space group P2{sub 1}3, with a cell edge of 152.5 Å. Diffraction data were recorded to a maximal resolution of 2.25 Å and phases were obtained using the SAD method from crystals briefly soaked in high concentrations of sodium bromide.

  16. Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction.

    Science.gov (United States)

    Fong, Ryan; Vroom, Jonathan A; Hu, Zhihao; Hutchinson, C Richard; Huang, Jianqiang; Cohen, Stanley N; Cohen, Stanley; Kao, Camilla M; Kao, Camilla

    2007-02-01

    A major limitation to improving small-molecule pharmaceutical production in streptomycetes is the inability of high-copy-number plasmids to tolerate large biosynthetic gene cluster inserts. A recent finding has overcome this barrier. In 2003, Hu et al. discovered a stable, high-copy-number, 81-kb plasmid that significantly elevated production of the polyketide precursor to the antibiotic erythromycin in a heterologous Streptomyces host (J. Ind. Microbiol. Biotechnol. 30:516-522, 2003). Here, we have identified mechanisms by which this SCP2*-derived plasmid achieves increased levels of metabolite production and examined how the 45-bp deletion mutation in the plasmid replication origin increased plasmid copy number. A plasmid intramycelial transfer gene, spd, and a partition gene, parAB, enhance metabolite production by increasing the stable inheritance of large plasmids containing biosynthetic genes. Additionally, high product titers required both activator (actII-ORF4) and biosynthetic genes (eryA) at high copy numbers. DNA gel shift experiments revealed that the 45-bp deletion abolished replication protein (RepI) binding to a plasmid site which, in part, supports an iteron model for plasmid replication and copy number control. Using the new information, we constructed a large high-copy-number plasmid capable of overproducing the polyketide 6-deoxyerythronolide B. However, this plasmid was unstable over multiple culture generations, suggesting that other SCP2* genes may be required for long-term, stable plasmid inheritance. PMID:17142363

  17. Induced production of cytochalasans in co-culture of marine fungus Aspergillus flavipes and actinomycete Streptomyces sp.

    Science.gov (United States)

    Yu, Liyan; Ding, Wanjing; Ma, Zhongjun

    2016-08-01

    Abstarct Secondary metabolites profiles of co-culture of Aspergillus flavipes and Streptomyces sp. that isolated from the same habitat showed an induced production of a series of cytochalasans (five aspochalasins and rosellichalasin, determined by MS and NMR analysis). These cytochalasans were found to be produced by A. flavipes in LC-MS comparison analysis, and biological activity assays revealed that they were able to cause cytotoxic effects against Streptomyces sp. within a wide range of concentrations without causing any effect to the producer A. flavipes, which favoured the producer in competition. Further induction mechanism study applying membrane-separated culture and morphology study with scanning electron microscopy (SEM) suggested that the successful induction of active secondary metabolites required microbial physical contact. PMID:26783945

  18. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Jeong, Yujin; Kim, Ji-Nu; Kim, Min Woo; Bucca, Giselda; Cho, Suhyung; Yoon, Yeo Joon; Kim, Byung-Gee; Roe, Jung-Hye; Kim, Sun Chang; Smith, Colin P; Cho, Byung-Kwan

    2016-01-01

    Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor, the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development. PMID:27251447

  19. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Science.gov (United States)

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. PMID:23692633

  20. Antimicrobial Activity and Phylogenetic Analysis of Streptomyces Parvulus Dosmb-D105 Isolated from the Mangrove Sediments of Andaman Islands.

    Science.gov (United States)

    Baskaran, R; Mohan, P M; Sivakumar, K; Kumar, Ashok

    2016-03-01

    Actinomycetes, especially species of Streptomyces are prolific producers of pharmacologically significant compounds accounting for about 70% of the naturally derived antibiotics that are presently in clinical use. In this study, we used five solvents to extract the secondary metabolites from marine Streptomyces parvulus DOSMB-D105, which was isolated from the mangrove sediments of the South Andaman Islands. Among them, ethyl acetate crude extract showed maximum activity against 11 pathogenic bacteria and six fungi. Presence of bioactive compounds in the ethyl acetate extract was determined using GC-MS and the compounds detected in the ethyl acetate extract were matched with the National Institute of Standards and Technology (NIST) library. Totally eight compounds were identified and the prevalent compounds were 2 steroids, 2 alkaloids, 2 plasticizers, 1 phenolic and 1 alkane. Present study revealed that S. parvulus DOSMB-D105 is a promising species for the isolation of valuable bioactive compounds to combat pathogenic microbes. PMID:27020867

  1. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    OpenAIRE

    Zindel, S.; Kaman, W.E.; Frols, S.; Pfeifer, F; Peters, A.; Hays, J.P.; Fuchsbauer, H.-L.

    2013-01-01

    A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacte...

  2. Determination of Phosphorylation Sites in the DivIVA Cytoskeletal Protein of Streptomyces coelicolor by Targeted LC–MS/MS

    OpenAIRE

    Saalbach, Gerhard; Hempel, Antje M.; Vigouroux, Marielle; Flärdh, Klas; Buttner, Mark J.; Naldrett, Michael J.

    2013-01-01

    The filamentous bacterium Streptomyces coelicolor modulates polar growth and branching by phosphorylating the cytoskeletal protein DivIVA. Previous MALDI-TOF analysis of DivIVA showed that a large 7.2 kDa tryptic peptide was multiply phosphorylated. To aid localization of the phosphorylation sites, we introduced additional tryptic cleavage sites into DivIVA, and the resulting phosphopeptides were analyzed by LC–MS/MS. Phosphopeptide isomers could be separated chromatographically, but because ...

  3. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus.

    OpenAIRE

    Goszczynski, S; Paszczynski, A; Pasti-Grigsby, M B; Crawford, R L; Crawford, D. L.

    1994-01-01

    Pathways for the degradation of 3,5-dimethyl-4-hydroxy-azobenzene-4'-sulfonic acid (I) and 3-methoxy-4-hydroxyazobenzene-4'-sulfonamide (II) by the manganese peroxidase and ligninase of Phanerochaete chrysosporium and by the peroxidase of Streptomyces chromofuscus have been proposed. Twelve metabolic products were found, and their mechanisms of formation were explained. Preliminary oxidative activation of the dyes resulted in the formation of cationic species, making the molecules vulnerable ...

  4. Mechanism and regulation of the Two-component FMN-dependent monooxygenase ActVA-ActVB from Streptomyces coelicolor.

    OpenAIRE

    Valton, Julien; Mathevon, Carole; Fontecave, Marc; Nivière, Vincent; Ballou, David P.

    2008-01-01

    International audience The ActVA-ActVB system from Streptomyces coelicolor is a two-component flavin-dependent monooxygenase involved in the antibiotic actinorhodin biosynthesis. ActVB is a NADH:flavin oxidoreductase that provides a reduced FMN to ActVA, the monooxygenase that catalyzes the hydroxylation of dihydrokalafungin, the precursor of actinorhodin. In this work, using stopped-flow spectrophotometry, we investigated the mechanism of hydroxylation of dihydrokalafungin catalyzed by Ac...

  5. Bio Prospecting of Marine-derived Streptomyces spectabilis VITJS10 and Exploring its Cytotoxicity Against Human Liver Cancer Cell Lines

    OpenAIRE

    Selvakumar, Jemimah Naine; Chandrasekaran, Subathra Devi; Vaithilingam, Mohanasrinivasan

    2015-01-01

    Background: Recently, numerous pathogens have developed resistance due to the indiscriminate use of commercial therapeutic drugs. Objective: The main aim of the study was to evaluate the bioactive potential of the Streptomyces spectabilis VITJS10 crude extract. Materials and Methods: The S. spectabilis VITJS10 ethyl acetate extract was tested for antibacterial, antioxidant, and cytotoxic properties. Genotypic characterization was done using 16S r-DNA partial gene amplification and sequencing....

  6. Isolation and In Vivo and In Vitro Antifungal Activity of Phenylacetic Acid and Sodium Phenylacetate from Streptomyces humidus

    OpenAIRE

    Hwang, Byung Kook; Lim, Song Won; Kim, Beom Seok; Lee, Jung Yeop; Moon, Surk Sik

    2001-01-01

    The antifungal substances SH-1 and SH-2 were isolated from Streptomyces humidus strain S5-55 cultures by various purification procedures and identified as phenylacetic acid and sodium phenylacetate, respectively, based on the nuclear magnetic resonance, electron ionization mass spectral, and inductively coupled plasma mass spectral data. SH-1 and SH-2 completely inhibited the growth of Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, Saccharomyces cerevisiae, and Pseudomonas syringa...

  7. Coenzyme B12 Controls Transcription of the Streptomyces Class Ia Ribonucleotide Reductase nrdABS Operon via a Riboswitch Mechanism†

    OpenAIRE

    Borovok, Ilya; Gorovitz, Batia; Schreiber, Rachel; Aharonowitz, Yair; Cohen, Gerald

    2006-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides and are essential for de novo DNA synthesis and repair. Streptomycetes contain genes coding for two RNRs. The class Ia RNR is oxygen dependent, and the class II RNR is oxygen independent and requires coenzyme B12. Either RNR is sufficient for vegetative growth. We show here that the Streptomyces coelicolor M145 nrdABS genes encoding the class Ia RNR are regulated by coenzyme B12. The 5′-untrans...

  8. Cloning, Characterization and Heterologous Expression of the Indolocarbazole Biosynthetic Gene Cluster from Marine-Derived Streptomyces sanyensis FMA

    OpenAIRE

    Wenli Li; Kui Hong; Weiming Zhu; Jingtao Zhang; Qiu Cui; Yuanyuan Du; Tong Li

    2013-01-01

    The indolocarbazole (ICZ) alkaloids have attracted much attention due to their unique structures and potential therapeutic applications. A series of ICZs were recently isolated and identified from a marine-derived actinomycete strain, Streptomyces sanyensis FMA. To elucidate the biosynthetic machinery associated with ICZs production in S. sanyensis FMA, PCR using degenerate primers was carried out to clone the FAD-dependent monooxygenase gene fragment for ICZ ring formation, which was used as...

  9. SipY Is the Streptomyces lividans Type I Signal Peptidase Exerting a Major Effect on Protein Secretion

    OpenAIRE

    Palacín, Arantxa; Parro, Víctor; Geukens, Nick; Anné, Jozef; Mellado, Rafael P.

    2002-01-01

    Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual s...

  10. Detection of Oxytetracycline Production by Streptomyces rimosus in Soil Microcosms by Combining Whole-Cell Biosensors and Flow Cytometry

    OpenAIRE

    Hansen, Lars Hestbjerg; Ferrari, Belinda; Sørensen, Anders Hay; Veal, Duncan; Sørensen, Søren Johannes

    2001-01-01

    Combining the high specificity of bacterial biosensors and the resolution power of fluorescence-activated cell sorting (FACS) provided qualitative detection of oxytetracycline production by Streptomyces rimosus in soil microcosms. A plasmid containing a transcriptional fusion between the tetR-regulated Ptet promoter from Tn10 and a FACS-optimized gfp gene was constructed. When harbored by Escherichia coli, this plasmid produces large amounts of green fluorescent protein (GFP) in the presence ...

  11. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas;

    2016-01-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynth...... of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products....

  12. An Efficient Intergeneric Conjugation of DNA from Escherichia coli to Mycelia of the Lincomycin-Producer Streptomyces lincolnensis

    OpenAIRE

    2012-01-01

    Streptomyces lincolnensis is a producer of lincomycin, which is a lincosamide antibiotic for the treatment of infective diseases caused by Gram-positive bacteria. S. lincolnensis is refractory to introducing plasmid DNA into cells because of resistance of foreign DNAs and poor sporulation. In this study, a simple and efficient method of transferring plasmids into S. lincolnensis through the intergeneric Escherichia coli-mycelia conjugation was established and optimized for the first time. The...

  13. The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases

    Czech Academy of Sciences Publication Activity Database

    Skálová, Tereza; Dohnálek, Jan; Ostergaard, L. H.; Ostergaard, P. R.; Kolenko, Petr; Dušková, Jarmila; Štěpánková, Andrea; Hašek, Jindřich

    2009-01-01

    Roč. 385, č. 4 (2009), s. 1165-1178. ISSN 0022-2836 R&D Projects: GA MŠk 1K05008; GA ČR GA305/07/1073; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40500505 Keywords : laccase * oxidoreductase * multicopper blue protein * Streptomyces coelicolor * crystal structure Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.871, year: 2009

  14. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces

    OpenAIRE

    Bai, Chaoxian; Zhang, Yang; Zhao, Xuejin; Hu, Yiling; Xiang, Sihai; Miao, Jin; Lou, Chunbo; Zhang, Lixin

    2015-01-01

    To meet the increasing demands of drug discovery and biosynthetic studies, we established a precise quantitative method based on flow cytometry at single-cell (protoplast) resolution in Streptomyces for the identification of regulatory elements. A series of native or synthetic promoters and ribosomal binding sites has been characterized. Moreover, an insulator was demonstrated to eliminate element–element interference. As a proof of concept, a native silent gene cluster was activated by the s...

  15. Overproduction and identification of butyrolactones SCB1-8 in the antibiotic production superhost Streptomyces M1152.

    Science.gov (United States)

    Sidda, John D; Poon, Vincent; Song, Lijiang; Wang, Weishan; Yang, Keqian; Corre, Christophe

    2016-07-01

    Gamma-butyrolactones (GBLs) are signalling molecules that control antibiotic production in Streptomyces bacteria. The genetically engineered strain S. coelicolor M1152 was found to overproduce GBLs SCB1-3 as well as five novel GBLs named SCB4-8. Incorporation experiments using isotopically-labelled precursors confirmed the chemical structures of SCB1-3 and established those of SCB4-8. PMID:27180870

  16. Structural and Phylogenetic Analysis of a Conserved Actinobacteria-Specific Protein (ASP1; SCO1997) from Streptomyces Coelicolor

    Energy Technology Data Exchange (ETDEWEB)

    Gao, B.; Sugiman-Marangos, S; Junop, M; Gupta, R

    2009-01-01

    The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.

  17. The Tat pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies

    OpenAIRE

    JOSHI, MADHUMITA V.; Mann, Stefan G; Antelmann, Haike; Widdick, David; Fyans, Joanna K; Chandra, Govind; Hutchings, Matthew I.; Toth, Ian; Hecker, Michael; Loria, Rosemary; Palmer, Tracy

    2010-01-01

    Abstract Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathw...

  18. Radamycin, a novel thiopeptide produced by streptomyces sp. RSP9. I. Taxonomy, fermentation, isolation and biological activities

    OpenAIRE

    González Holgado Gloria; Castro Rodríguez, Julian; Díaz, Margarita; Fernández-Ábalos, José M.; Santamaría, Ramón I

    2002-01-01

    The newly isolated strain Streptomyces sp. RSP9 produces two thiopeptides; one of them is methylsulfomycin I, which shows potent antibiotic activity against several gram-positive bacteria such as Micrococcus luteus and Staphylococcus aureus. The other is a new thiopeptide named radamycin. In the present work, this compound was purified and tested against several microorganisms and no antibiotic activity was detected in the assays. However, it does have a very strong capacity as an inducer of ...

  19. Magnetic Field Is the Dominant Factor to Induce the Response of Streptomyces avermitilis in Altered Gravity Simulated by Diamagnetic Levitation

    OpenAIRE

    Mei Liu; Hong Gao; Peng Shang; Xianlong Zhou; Elizabeth Ashforth; Ying Zhuo; Difei Chen; Biao Ren; Zhiheng Liu; Lixin Zhang

    2011-01-01

    BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production ...

  20. Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor.

    OpenAIRE

    Zhang, Y. X.; Tang, L.; Hutchinson, C R

    1996-01-01

    A homolog of the mmsA gene of Pseudomonas aeruginosa, which encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is involved in valine catabolism in pseudomonads and mammals, was cloned and sequenced from Streptomyces coelicolor. Of the two open reading frames (ORFs) found, which are convergently transcribed and separated by a 62-nucleotide noncoding region, the deduced amino acid sequence of the msdA ORF (homologous to mmsA) is similar to a variety of prokaryotic and eukaryotic a...

  1. Identification of antibacterial secondary metabolite from marine Streptomyces sp. VITBRK4 and its activity against drug resistant Gram positive bacteria

    Directory of Open Access Journals (Sweden)

    Benita Mercy R

    2013-12-01

    Full Text Available Drug resistance by bacterial pathogens becomes a major health problem worldwide. Hence, it is important to search for broad spectrum of antibiotic from natural sources. Marine actinomycetes isolated from marine sediments collected at different sampling sites along the southeast coast of Bay of Bengal, India were investigated for antagonistic activity against selected drug resistant Gram positivebacterial pathogens. All actinomycetes isolates were screened for antibacterial activity against standard drug resistant ATCC strains. The potential isolate which showed higher inhibitory activity against drug resistant pathogens was mass cultured and the ethyl acetate (EA extract of the cell free culture broth was tested for antibacterial activity. The biochemical, morphological and physiological characterisation of the isolate revealed that it was Gram-positive rod, sporulating and produced grey aerial mycelium. The spore chain morphology, and smooth surface morphology showed that it belongs to the genus Streptomyces.Based on Nonomura’s key for classification of Streptomycesand Bergey’s Manual of Determinative Bacteriology, the isolatewas identified as Streptomyces species and designated as Streptomyces sp. VITBRK4.Purification and characterization of EA extract of the isolate by thin layer chromatography (TLC and HPLC-DAD analysis showed the presence of indolo compound along with few other unidentified metabolites. The result of this study showed that the antibacterial activity of the EA extract against drug resistant strains may be due to indolo compound present in the extract.

  2. Khatmiamycin, a motility inhibitor and zoosporicide against the grapevine downy mildew pathogen Plasmopara viticola from Streptomyces sp. ANK313.

    Science.gov (United States)

    Abdalla, Muna Ali; Win, Hnin Yu; Islam, Md Tofazzal; von Tiedemann, Andreas; Schüffler, Anja; Laatsch, Hartmut

    2011-10-01

    In the course of our screening for anti-peronosporomycetal agents, we isolated a new compound khatmiamycin (1), together with five known metabolites, GTRI-02 (3), 4-ethyl-5-methyl-heptanamide (4), aloesaponarin II (5), LL-C10037α (6) and LL-C10037β (7) from the culture broth of a terrestrial Streptomyces sp. ANK313. The structures of these metabolites were assigned on the basis of their spectroscopic data. Khatmiamycin (1) exhibited potent motility inhibitory (100%) and lytic (83±7%) activities against zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 10 μg ml(-1), followed by compounds 5 (MIC 25 μg ml(-1)), 7, 6, 3 in the order of decreasing activity. Khatmiamycin (1) also showed potent antibacterial activity against Staphylococcus aureus and Streptomyces viridochromogenes (Tü57) by causing inhibition zones of 11 and 14 mm diameter, respectively, at the dose of 40 μg per disk. This is the first report on motility inhibitory and lytic activities of metabolites from a terrestrial Streptomyces species against the zoospores of downy mildew pathogen P. viticola. PMID:21811263

  3. Isolation and structural elucidation of secondary metabolites from marine Streptomyces sp.SCSIO 1934%海洋放线菌Streptomyces sp.SCSIO1934中次生代谢产物的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    牛四文; 李苏; 田新朋; 胡涛; 鞠建华; 杨晓红; 张偲; 张长生

    2011-01-01

    目的:从1株来源于中国南海沉积环境的海洋链霉菌SCSIO 1934的发酵产物中分离鉴定次生代谢产物.方法:对海洋链霉菌SCSIO 1934的发酵液进行有机溶剂萃取,利用硅胶、凝胶柱色谱等方法分离次生代谢产物,通过核磁数据和理化性质对各单体化合物进行结构鉴定.结果:从菌株Streptomyces sp.SCSIO 1934中分离纯化得到17-脱甲基格尔德霉素(17-O-demethylgeldanamycin,1),lebstatin(2),17-O-demethyllebstatin(3),尼日利亚菌素(nigericin,4),尼日利亚菌素钠盐(nigericin sodium salt,5),abierixin(6).结论:本研究发现了1株能够产生多种抗生素的海洋放线菌Streptomyces sp.SCSIO 1934.%Marine Actinobacteria are emerging as new resources for bioactive natural products with promise in novel drug discovery. In recent years, the richness and diversity of marine Actinobacteria from the South China Sea and their ability in producing bioactive products have been investigated. The objective of this work is to isolate and identify bioactive secondary metabolites from a marine actinobacterium SCSIO 1934 derived from sediments of South China Sea. The strain was identified as a Streptomyces spieces by analyzing its 16S rDNA sequence. Streptomyces sp. SCSIO 1934 was fermented under optimized conditions and seven bioactive secondary metabolites were isolated and purified by chromatographic methods including colum chromatography over silica gel and Sephadex LH-20. Their structures were elucidated as 17-0-demethylgeldanamycin (1) , lebstatin (2) , 17-O-demethyllebstatin (3), nigericin (4) , nigericin sodium salt (5), abierixin (6), respectively, by detailed NMR spectroscopic data ('H.^C, COSY, HSQC and HMBC). This work provided a new marine actinobacterium Streptomyces sp. SCSIO 1934, capable of producing diverse bioactive natural products.

  4. Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2012-11-01

    Full Text Available Abstract Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC and one DC2 (CCCGCCC and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii identifies the replication and conjugation loci of pWTY27 and; (iii characterizes the binding sequences of the RepA and TraA proteins.

  5. Transcriptomic analysis of Streptomyces coelicolor differentiation in solid sporulating cultures: first compartmentalized and second multinucleated mycelia have different and distinctive transcriptomes.

    Science.gov (United States)

    Yagüe, Paula; Rodríguez-García, Antonio; López-García, María T; Martín, Juan F; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Angel

    2013-01-01

    Streptomycetes are very important industrial bacteria, which produce two thirds of all clinically relevant secondary metabolites. They have a complex developmental-cycle in which an early compartmentalized mycelium (MI) differentiates to a multinucleated mycelium (MII) that grows inside the culture medium (substrate mycelium) until it starts to growth into the air (aerial mycelium) and ends up forming spores. Streptomyces developmental studies have focused mainly on the later stages of MII differentiation (aerial mycelium and sporulation), with regulation of pre-sporulation stages (MI/MII transition) essentially unknown. This work represents the first study of the Streptomyces MI transcriptome, analyzing how it differs from the MII transcriptome. We have used a very conservative experimental approach to fractionate MI from MII and quantify gene expressions. The expression of well characterized key developmental/metabolic genes involved in bioactive compound production (actinorhodin, undecylprodigiosin, calcium-dependent antibiotic, cpk, geosmin) or hydrophobic cover formation-sporulation (bld, whi, wbl, rdl, chp, ram) was correlated with MII differentiation. Additionally, 122 genes conserved in the Streptomyces genus, whose biological function had not been previously characterized, were found to be differentially expressed (more than 4-fold) in MI or MII. These genes encoded for putative regulatory proteins (transcriptional regulators, kinases), as well as hypothetical proteins. Knowledge about differences between the MI (vegetative) and MII (reproductive) transcriptomes represents a huge advance in Streptomyces biology that will make future experiments possible aimed at characterizing the biochemical pathways controlling pre-sporulation developmental stages and activation of secondary metabolism in Streptomyces. PMID:23555999

  6. FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis

    Directory of Open Access Journals (Sweden)

    Goranovič Dušan

    2012-10-01

    Full Text Available Abstract Background FK506 (Tacrolimus is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. Results Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. Conclusions Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We

  7. Crude fatty acid extracts of Streptomyces sps inhibits the biofilm forming Streptococcus pyogenes ATCC 19615

    Directory of Open Access Journals (Sweden)

    Rajalakshm Manickam

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Crude fatty acid extract of soil Streptomyces sps on the biofilm formation by Streptococcus pyogenes ATCC 19615 was investigated. Totally, 25 Streptomyces sps were isolated identified from the soil samples collected from Nilgiris hill station. All the isolates were subjected to hydrogen peroxide assay, fatty acid extraction and antibiofilm assay. The fatty acid extracts of S8, S9, and S15 inhibited S. pyogenes at MIC 10 µg/ml. The BIC was observed as 84.6% , 96.41%, 80.5% at 50 µg/ml concentration. Streptolysin S assay showed that the crude lipid extracts have the capability of inhibiting the Streptolysin S activity. There were changes in extracellular protein of the pathogen exposed to the S8, S9 and S15 crude fatty acid extracts (50 µg/ml at the range of 100-120 kDa which elucidates that the fatty acid extracts have a significant role in altering the extracellular protein which might be responsible for virulence of the pathogen. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  8. TmcN is involved in ATP regulation of tautomycetin biosynthesis in Streptomyces griseochromogenes.

    Science.gov (United States)

    Li, Ming; Chen, Yang; Wu, Sijin; Tang, Yan; Deng, Ying; Yuan, Jieli; Dong, Jianyi; Li, Huajun; Tang, Li

    2016-09-01

    The regulatory mechanism of tautomycetin (TMC) biosynthesis remains largely unknown, although it has been of great interest to the pharmaceutical industry. Our previous study showed that intracellular adenosine triphosphate (inATP) level is negatively correlated with secondary metabolite biosynthesis in various Streptomyces spp. In this study, by exogenous treatment of ATP, we also found a negative correlation between TMC biosynthesis and inATP level in Streptomyces griseochromogenes (S. griseochromogenes). However, the underlying mechanism remains unclear. TmcN, a pathway-specific transcriptional regulator of TMC biosynthetic genes, was previously revealed as a large ATP-binding LuxR (LAL) family protein. The predicted amino acid sequence of TmcN shows highly conserved Walker A and B binding motifs, which suggest an ATPase function of TmcN. We therefore hypothesized that the ATPase domain of TmcN may play a role in sensing endogenous pool of ATP, and is thus involved in the ATP regulation of TMC biosynthesis. To test the hypothesis, we first explored the key residue that affects the ATPase activity of TmcN by amino acid sequence alignment and structural simulation. After that, we disrupted tmcN gene in S. griseochromogenes, and the tmcN or site-direct-mutated tmcN were re-introduced to get the complementary and ATPase domain disrupted strains. The transcription level of tmcN, TMC yield, and inATP, as well as the effect of ATP on TMC production of different mutants were evaluated. Deletion of tmcN or site-direct mutation of ATPase domain of TmcN in S. griseochromogenes significantly reduced the TMC production, and it was not affected by exogenous ATP treatment. In addition, a relatively high level of inATP was detected in tmcN deletion and site-direct mutation strains. Our results here suggested that TmcN, especially its ATPase domain, is involved in consuming of endogenous ATP pool and thus plays pivotal role in connecting the primary and secondary metabolite

  9. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Harrison Marcus

    2010-12-01

    Full Text Available Abstract Background Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2, S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145. Results The high coverage and specificity (detection of three nucleotide differences of the new microarrays used has highlighted the macroscopic genomic differences between two S. lividans strains and S. coelicolor. In a series of case studies we have validated the microarray and have identified subtle changes in genomic structure which occur in the Asp-activating adenylation domains of CDA non-ribosomal peptide synthetase genes which provides evidence of gene shuffling between these domains. We also identify single nucleotide sequence inter-species differences which exist in the actinorhodin biosynthetic gene cluster. As the glyoxylate bypass is non-functional in both S. lividans strains due to the absence of the gene encoding isocitrate lyase it is likely that the ethylmalonyl-CoA pathway functions as the alternative mechanism for the assimilation of C2 compounds. Conclusions This study provides evidence for widespread genetic recombination, rather than it being focussed at 'hotspots', suggesting that the previously proposed 'archipelago model' of genomic differences between S. coelicolor and S. lividans is unduly simplistic. The two S. lividans strains investigated differ considerably in genetic complement, with TK24 lacking 175 more genes than its wild-type parent when compared to S. coelicolor. Additionally, we confirm the presence of bldB in S. lividans and

  10. Properties and characterization of Au3+-adsorption by mycelial waste of Streptomyces aureofaciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mycelial waste of Streptomyces aureofaciences procured from the aureomycin fermentation industry is used as biosorbent for Au3+. The properties of Au3+ adsorption by the mycelial waste are studied. The results indicate that the optimum pH value of Au3+ adsorption is 3.5. The biosorption is a rapid and non-temperature-dependent process. The biosorptive capacity with 45.6 mg/g and efficiency with 91.2% are achieved under the conditions of pH 3.5 and 30℃ for 45 min, in which the ratio is 50 mg/g dry weight for the concentrations of initial Au3+ and the myceliai waste. The Au3+ ions adsorbed on the mycelial waste can be eluted. The observation in a transmission electron microscope shows that the Au3+ ions can be reduced to Au particles by the mycelial waste and the Au0 can become gold crystals with different forms and sizes. X-ray photoelectron spectroscopy analysis further proves that the Au3+ can be reduced to Au0 by the mycelial waste.

  11. Identification of a new antifungal oligoacetal derivative produced by Streptomyces toxytricini against Candida albicans.

    Science.gov (United States)

    Abdel Azeiz, Ahmed Z; Hanafi, Donia K; Hasanein, Sameh E

    2016-08-01

    Thirty actinomycete isolates were isolated from soil and tested against Candida albicans in vitro. The active isolate was identified by 16s-rRNA gene sequencing method as Streptomyces toxytricini. The antifungal compound was extracted with ethyl acetate followed by diethyl ether. Both HPLC and GC-MS analysis confirmed presence of one pure compound in the diethyl ether extract. The compound is a yellow liquid has a maximum absorbance at 240 nm in methanol. The chemical structure was elucidated by 1D and 2D-NMR and IR analyses. The elucidated molecular formula was C36H54O14. The compound is a polyacetal tricyclononane derivative, composed of a tricyclononane ring attached from the carbon atom number four with an oligo-acetal chain (six acetal groups in chain) and from the carbon atom number seven with a methoxy carbonyl benzene-1,3-dicarboxylic acid. The purposed name is: 4- {[tricycle(3.2.1.1(1,3))non-8-yl] methoxy carbonyl benzene-1,3-dicarboxylic acid} (2,4,5,6,7,8,9 heptaoxa, 3-ethoxy, 5,6,7,9-tetramethyl unidecane). PMID:26336904

  12. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3.

    Science.gov (United States)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning

    2016-03-01

    The biosorption mechanisms of uranium on an aerobic bacterial strain Streptomyces sporoverrucosus dwc-3, isolated from a potential disposal site for (ultra-)low uraniferous radioactive waste in Southwest China, were evaluated by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Approximately 60% of total uranium at an initial concentration of 10mg/L uranium nitrate solution could be absorbed on 100mg S. sporoverrucosus dwc-3 with an adsorption capacity of more than 3.0mg/g (wet weight) after 12hr at room temperature at pH3.0. The dynamic biosorption process of S. sporoverrucosus dwc-3 for uranyl ions was well described by a pseudo second-order model. S. sporoverrucosus dwc-3 could accumulate uranium on cell walls and within the cell, as revealed by SEM and TEM analysis as well as EDX spectra. XPS and FT-IR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of the cells. Additionally, PIXE and EPBS results confirmed that ion exchange also contributed to the adsorption process of uranium. PMID:26969062

  13. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  14. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli.

    Science.gov (United States)

    Kieser, T

    1984-07-01

    Based on the results of a systematic study of factors affecting plasmid yield and purity, a procedure suitable for the rapid screening for and isolation of covalently closed circular DNA from Streptomyces lividans and Escherichia coli was developed. The method consists of lysis of lysozyme-treated bacteria combined with alkaline denaturation of DNA at high temperature. Renaturation of CCC DNA and precipitation of single-stranded DNA together with protein is achieved by the addition of a minimal amount of phenol/chloroform. The screening procedure uses only a single tube and the samples can be analyzed by agarose gel electrophoresis about 30 min after lysis. Removal of phenol and further purification of the plasmid preparation is achieved by consecutive precipitations with isopropanol and spermine, followed by extraction with ethanol, producing samples suitable for restriction endonuclease digestion, ligation, and transformation of S. lividans protoplasts or competent E. coli cells in about 2 h. All steps of the procedure are explained in detail with information about the effects of changing parameters. This should help the experimenter to obtain reproducible results and may be useful if the method has to be adapted to new strains or plasmids. PMID:6387733

  15. Antifungal activity of borrelidin produced by a Streptomyces strain isolated from soybean.

    Science.gov (United States)

    Liu, Chong-Xi; Zhang, Ji; Wang, Xiang-Jing; Qian, Ping-Ting; Wang, Ji-Dong; Gao, Ya-Mei; Yan, Yi-Jun; Zhang, Shu-Zhen; Xu, Peng-Fei; Li, Wen-Bin; Xiang, Wen-Sheng

    2012-02-01

    In this study, an endophytic Streptomyces sp. neau-D50 with strong antifungal activity against Phytophthora sojae was isolated from healthy soybean root, using an in vitro screening technique. A bioactivity-guided approach was then employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from strain neau-D50. The structure of the antifungal metabolite was elucidated as borrelidin on the basis of spectral analysis. To our knowledge, this is the first report that borrelidin has strong antifungal activity against dominant race 1 of P. sojae with EC(50) and EC(95) of 0.0056 and 0.026 mg/L, respectively. The values were respectively 62.5- and 262.3-fold lower than those of the commercial fungicide metalaxyl, which has been used to treat soybean seed for the control of P. sojae . The in situ bioassays demonstrated that borrelidin at 10 mg/L reduced P. sojae race 1 lesions on soybean seedlings by 94.72% without affecting root growth. Thus, borrelidin might be a promising candidate for new antifungal agents against P. sojae. PMID:22242825

  16. Separation of avermectin components from Streptomyces avemitilis extraction using high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Su Weike

    2013-01-01

    Full Text Available Three compounds of antibiotics-avermectins from fertilizing product of Streptomyces avemitilis are achieved by high-speed counter-current chromatography (HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (6:4:5:5, v/v on a preparative scale. The separation condition was: 1.5 mL/min (0 to 200 min and 2.0 mL/min (200 to the end, 900 rpm and 20°C based on the peak resolution. About 11.9 mg of avermectin B1a, 1.0 mg of avermectin B1b and 9.6 mg of avermectin B2a from 50 mg of crude extract were obtained by one-step separation. The purities of the three compounds determined by HPLC were 99.7%, 96.2% and 97.6%, respectively. Their chemical structures were identified by electron spray ionization mass spectroscopy (ESI-MS, 1H, 13C nuclear magnetic resonance (NMR.

  17. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments.

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; González, Verónica; Nava, Herminio; Molina, Axayacatl; Llera, Eva; Fiedler, Hans-Peter; Rico, José M; García-Flórez, Lucía; Acuña, José L; García, Luis A; Blanco, Gloria

    2016-02-01

    Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments. PMID:26224165

  18. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Bentley, S D; Chater, K F; Cerdeño-Tárraga, A-M; Challis, G L; Thomson, N R; James, K D; Harris, D E; Quail, M A; Kieser, H; Harper, D; Bateman, A; Brown, S; Chandra, G; Chen, C W; Collins, M; Cronin, A; Fraser, A; Goble, A; Hidalgo, J; Hornsby, T; Howarth, S; Huang, C-H; Kieser, T; Larke, L; Murphy, L; Oliver, K; O'Neil, S; Rabbinowitsch, E; Rajandream, M-A; Rutherford, K; Rutter, S; Seeger, K; Saunders, D; Sharp, S; Squares, R; Squares, S; Taylor, K; Warren, T; Wietzorrek, A; Woodward, J; Barrell, B G; Parkhill, J; Hopwood, D A

    2002-05-01

    Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering. PMID:12000953

  19. An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis.

    Directory of Open Access Journals (Sweden)

    Yi Qiu

    Full Text Available CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5'-AAG-3' was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis.

  20. Crystallization and X-ray diffraction studies of a two-domain laccase from Streptomyces griseoflavus.

    Science.gov (United States)

    Tishchenko, Svetlana; Gabdulkhakov, Azat; Trubitsina, Liubov; Lisov, Alexander; Zakharova, Marina; Leontievsky, Alexey

    2015-09-01

    Laccase (EC 1.10.3.2) is one of the most common copper-containing oxidases; it is found in many organisms and catalyzes the oxidation of primarily phenolic compounds by oxygen. Two-domain laccases have unusual thermostability, resistance to inhibitors and an alkaline optimum of activity. The causes of these properties in two-domain laccases are poorly understood. A recombinant two-domain laccase (SgfSL) was cloned from the genome of Streptomyces griseoflavus Ac-993, expressed in Escherichia coli and purified to homogeneity. The crystals of SgfSL belonged to the monoclinic space group P21, with unit-cell parameters a = 74.64, b = 94.72, c = 117.40 Å, β = 90.672°, and diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source. Two functional trimers per asymmetric unit correspond to a Matthews coefficient of 1.99 Å(3) Da(-1) according to the monomer molecular weight of 35.6 kDa. PMID:26323308

  1. Genetic Stability of Streptomyces Lividans pIJ702 in Response to Spaceflight

    Science.gov (United States)

    Lim, K. S.; Goins, T. L.; Voeikova, T. A.; Pyle, B. H.

    2008-06-01

    Streptomyces lividans carrying plasmid pIJ702 encoding genes for thiostrepton resistance (tsr-) and melanin production (mel+) was plated on agar and flown on the Russian satellite Foton-M3 for 16 days. The percentage loss of plasmid expression in flight samples was lower than that in ground samples when both samples were grown in enriched (ISP) media. Differences in media content also affect plasmid expression rate; ISP media have a higher loss of plasmid expression than samples in minimum media when both were grown on ground conditions. Results suggest that stress resulted in the increased expression of plasmid pIJ702 by S. lividans. Screening of thiostrepton resistant white (tsr+ mel-) mutants showed similar proportions of variants in ground samples and flight samples. To determine if there are mutations in the mel gene, DNA extracted from flight and control white mutants was amplified and gel electrophoresis of amplified products show no major mutation in the products. Sequencing of amplified products is required to identify mutations resulting in loss of pigmentation.

  2. An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis

    Science.gov (United States)

    Qiu, Yi; Wang, Shiwei; Chen, Zhi; Guo, Yajie; Song, Yuan

    2016-01-01

    CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5’-AAG-3’ was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis. PMID:26901661

  3. Optimization and purification of L-asparaginase produced by Streptomyces tendae TK-VL_333.

    Science.gov (United States)

    Kavitha, Alapati; Vijayalakshmi, Muvva

    2010-01-01

    Cultural factors affecting the production of L-asparaginase by Streptomyces tendae isolated from laterite soil samples of Guntur region were investigated on glycerol-asparagine-salts (modified ISP-5) broth. Optimal yields of L-asparaginase were recorded in the culture medium with the initial pH 7.0 incubated at 30 degrees C for 72 h. The strain utilized sucrose (2%) and yeast (2%) extract as carbon and nitrogen sources for L-asparaginase production. The productivity of L-asparaginase was slightly enhanced when the strain was treated with cell-disrupting agents like EDTA. The crude enzyme was purified to homogeneity by ammonium sulfate precipitation, Sephadex G-100 and CM-Sephadex G-50 gel filtration. By employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the enzyme was recorded as 97.4 kDa. This is the first report on production and purification of L-asparaginase from S. tendae. PMID:20737924

  4. Antibacterial Activity of Iranian Streptomyces coralus Strain 63 Against Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    G.H. Shahidi Bonjar

    2006-01-01

    Full Text Available Ralstonia solanacearum has worldwide economical importance because of its destructive and soil-borne nature. Clearly chemical measures have lost their attractiveness because of development of resistant strains and undesirable effects on our environment. Consequently, biological control of pathogens is gaining great importance worldwide. To investigate for proper biocontrol agents and to obtain antibacterial antagonists from Iranian soil Actinomycetes, a vast survey was performed. Over 170 isolates of soil Actinomycetes were isolated and screened among which one isolate showed high level of activity in Agar disk and Well diffusion methods against R. solanacearum. It was identified as Streptomyces coralus strain 63. High concentration of antibacterial agent was detected at 8-11th day in shake cultures. Longevity in vitro of the active crude in soluble state determined about 40 days at room temperature. In thermal inactivation point studies, active crude retained activity up to 93°C. Antibacterial activity of the antagonists found in this study highlights their importance as candidates for further investigation in biological control of tested pathogenic bacteria.

  5. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation.

    Science.gov (United States)

    Wu, Changsheng; Zacchetti, Boris; Ram, Arthur F J; van Wezel, Gilles P; Claessen, Dennis; Hae Choi, Young

    2015-01-01

    Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products. PMID:26040782

  6. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    Science.gov (United States)

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides. PMID:16339937

  7. Development of an Intergeneric Conjugal Transfer System for Xinaomycins-Producing Streptomyces noursei Xinao-4

    Directory of Open Access Journals (Sweden)

    Feng-Hui Sun

    2014-07-01

    Full Text Available To introduce DNA into Streptomyces noursei xinao-4, which produces xinaomycins, we explored an intergeneric conjugal transfer system. High efficiency of conjugation (8 × 10−3 exconjugants per recipient was obtained when spores of S. noursei xinao-4 were heat-shocked at 50 °C for 10 min, mixed with Escherichia coli ET12567 (pUZ8002/pSET152 in the ratio of 1:100, plated on 2CMY medium containing 40 mmol/L MgCl2, and incubated at 30 °C for 22 h. With this protocol, the plasmids pKC1139 and pSET152 were successfully transferred from E. coli ET12567 (pUZ8002 with different frequencies. Among all parameters, the ratio of donor to recipient cell number had the strongest effect on the transformation efficiency. In order to validate the above intergeneric conjugal transfer system, a glycosyltransferase gene was cloned and efficiently knocked out in S. noursei xinao-4 using pSG5-based plasmid pKC1139.

  8. Purification and characterization of chitinase from Streptomyces violascens NRRL B2700.

    Science.gov (United States)

    Gangwar, Mamta; Singh, Vineeta; Pandey, Asheesh Kumar; Tripathi, C K M; Mishra, B N

    2016-01-01

    Chitinase is one of the important enzymes as it is directly linked to Chitin that has wide applications in industrial, medical and commercial fields for its biocompatibility and biodegradability. Here, we report extracellular chitinase production by Streptomyces violascens NRRL B2700 under submerged fermentation condition. Chitinase production started after 10 h of incubation and reached to maximum level at 72 h of cultivation. Studies on the influence of additional carbon and nitrogen sources on chitinase production revealed that maltose, xylose, fructose, lactose, soybean meal and ammonium nitrate served as good carbon and nitrogen sources to enhance chitinase yield by 1.6 to 6 fold. Medium supplemented with 1% colloidal chitin produced high chitinase concentration (0.1714 U/mg). The enzyme chitinase was purified from the culture broth by 75% ammonium sulphate precipitation, DEAE-cellulose ion-exchange and sephadex G-100 gel filtration. The molecular mass of the purified chitinase was 65 kDa as estimated by SDS-PAGE. The apparent Michaelis constant (K(m)) and the maximum rate (V(max)) of the enzyme for colloidal chitin were 1.556 mg/mL and 2.680 μM/min/mg, respectively suggested high affinity towards-chitin. Possibly, it is the first report on production of chitinase from S. violascens NRRL B2700. The findings were encouraging, especially for cost effective production, and further warrants media and purification optimization studies for enhanced yield. PMID:26891554

  9. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity.

    Science.gov (United States)

    Taechowisan, Thongchai; Lu, Chunhua; Shen, Yuemao; Lumyong, Saisamorn

    2005-05-01

    Streptomyces aureofaciens CMUAc130 was isolated from the root tissue of Zingiber officinale Rosc. (Zingiberaceae). It was an antagonist of Colletotrichum musae and Fusarium oxysporum, the causative agents of anthracnose of banana and wilt of wheat, respectively. Evidence for the in vitro antibiosis of S. aureofaciens CMUAc130 was demonstrated by the zone of fungal-growth inhibition. Microscopic observations showed thickness and bulbous structures at the edges of the inhibited fungal hyphae. The culture filtrate and crude extract from this strain were all inhibitory to tested phytopathogenic fungi. The major active ingredients from the culture filtrate of S. aureofaciens CMUAc130 were purified by silica gel-column chromatography and identified to be (i) 5,7-dimethoxy-4-p-methoxylphenylcoumarin and (ii) 5,7-dimethoxy-4-phenylcoumarin by NMR and mass-spectral data, respectively. Bioassay studies showed that compounds (i) and (ii) had antifungal activities against tested fungi, and their MICs were found to be 120 and 150 microg ml(-1), respectively. This is the first report of compounds (i) and (ii) from micro-organisms as active ingredients for the control of phytopathogenic fungi. PMID:15870476

  10. Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Benjaphorn Prapagdee, Chutima Kuekulvong, Skorn Mongkolsuk

    2008-01-01

    Full Text Available Indigenous actinomycetes isolated from rhizosphere soils were assessed for in vitro antagonism against Colletotrichum gloeosporioides and Sclerotium rolfsii. A potent antagonist against both plant pathogenic fungi, designated SRA14, was selected and identified as Streptomyces hygroscopicus. The strain SRA14 highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. Culture filtrates collected from the exponential and stationary phases inhibited the growth of both the fungi tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrates. The percentage of growth inhibition by the stationary culture filtrate was significantly higher than that of exponential culture filtrate. Morphological changes such as hyphal swelling and abnormal shapes were observed in fungi grown on potato dextrose agar that contained the culture filtrates. However, the antifungal activity of exponential culture filtrates against both the experimental fungi was significantly reduced after boiling or treatment with proteinase K. There was no significant decrease in the percentage of fungal growth inhibition by the stationary culture filtrate that was treated as above. These data indicated that the antifungal potential of the exponential culture filtrate was mainly due to the presence of extracellular chitinase enzyme, whereas the antifungal activity of the stationary culture filtrate involved the action of unknown thermostable antifungal compound(s.

  11. Identification and biocontrol efficacy of Streptomyces miharaensis producing filipin III against Fusarium wilt.

    Science.gov (United States)

    Kim, Jeong Do; Han, Jae Woo; Hwang, In Cheon; Lee, Dongho; Kim, Beom Seok

    2012-04-01

    A number of bacterial strains were isolated from the internal tissue of Trapa japonica. Of these, strain KPE62302H, which had a 16S rDNA sequence identical to that of Streptomyces miharaensis showed antifungal activity against several plant pathogens. Treatment of seeds with strain KPE62302H induced a significant reduction in the incidence of Fusarium wilt in tomato plants compared with untreated controls. An antifungal substance (FP-1) was purified from the culture extract of strain KPE62302H using C18 flash and Sephadex LH-20 column chromatography and reverse phase HPLC. Extensive spectrometric analysis using MS and NMR identified this as filipin III. FP-1 inhibited the mycelial growth of plant pathogenic fungi such as Alternaria mali, Aspergillus niger, Colletotrichum gloeosporioides, C. orbiculare, Cylindrocarpon destructans, Diaporthe citiri, Fusarium oxysporum at 1-10 μg ml(-1) and also markedly inhibited the development of Fusarium wilt caused by F. oxysporum f.sp. lycopersici in tomato plants by treatment with 10 μg ml(-1) under greenhouse conditions. The efficacy of FP-1 against Fusarium wilt was comparable to that of the synthetic fungicide benomyl. An egfp -tagged strain of KPE62302H confirmed its ability to colonize tomato plants. PMID:22460913

  12. A novel cold-adapted lipase, LP28, from a mesophilic Streptomyces strain.

    Science.gov (United States)

    Simkhada, Jaya Ram; Yoo, Hah Young; Cho, Seung Sik; Choi, Yun Hee; Kim, Seung Wook; Park, Don Hee; Yoo, Jin Cheol

    2012-01-01

    Fossil fuel is limited but its usage has been growing rapidly, thus the fuel is predicted to be completely running out and causing an unbearable global energy crisis in the near future. To solve this potential crisis, incorporating with increasing environmental concerns, significant attentions have been given to biofuel production in the recent years. With the aim of isolating a microbial biocatalyst with potential application in the field of biofuel, a lipase from Streptomyces sp. CS628, LP28, was purified using hydroxyapatite column chromatography followed by a gel filtration. Molecular weight of LP28 was estimated to be 32,400 Da by SDS-PAGE. The activity was the highest at 30 °C and pH 8.0 and was stable at pH 6.0-8.0 and below 25 °C. The enzyme preferentially hydrolyzed p-nitrophenyl decanoate (C10), a medium chain substrate. Furthermore, LP28 non-specifically hydrolyzed triolein releasing both 1,2- and 1,3-diolein. More importantly, LP28 manifestly catalyzed biodiesel production using palm oil and methanol; therefore, it can be a potential candidate in the field of biofuel. PMID:21909676

  13. Utilization of A New Microbial Transglutaminase from Streptomyces for The Formation of Edible Soybean Protein Films

    Institute of Scientific and Technical Information of China (English)

    Wang Zhang

    2002-01-01

    Soybean protein isolate (SPI) wasused to investigate the formation of edibleprotein films through an enzymatic cross-linkingmethod with a purified microbial transglutaminse(MTG) produced and purified from a neweffective strain Streptomyces sp. WZFF.L-M1preserved in my laboratory, followed by theaddition of glycerol and suitable heating anddrying treatments. Cheaper partially-purifiedskimmed soybean protein powder (SSP) andwhey protein isolates (WPI) were used as thesubstitutes partially replacing the expensive SPIproducts, and purified β-lactoglobulin was takenas the positive control of WPI. The effects ofthe concentrations of the three substitutes andtheir relative ratios have been compared withSPI as a control, and the methodologies ofMTG treatment were examined. Attempts havealso been approached for the films formation-enhancing substances such as glycerol. As theresults, the three alternatives could also formhigh efficient edible films in the optimaloperation conditions experimented. Those filmsmade with SPI alternatives, thin around 50 μm,had the microscopic homogenous networkstructures, without any holes by naked eye. Thetests for the properties of these films showedthat they had high water-keeping capacity andstrong elasticity, that the ultimate tensile strength(TS) and the elongation at break (Eb) had beenremarkably increased (TS>5 MPa, Eb>50%,respectively), and that the prevention ratesagainst the permeability of water vapor andoxygen in air were also upgraded more than85% and 70%, respectively.

  14. Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fimicarius strain.

    Science.gov (United States)

    Wang, Xing-Hong; Ou, Lingcheng; Fu, Liang-Liang; Zheng, Shui; Lou, Ji-Dong; Gomes-Laranjo, José; Li, Jiao; Zhang, Changhe

    2013-09-15

    A huge amount of kernel cake, which contains a variety of toxins including phorbol esters (tumor promoters), is projected to be generated yearly in the near future by the Jatropha biodiesel industry. We showed that the kernel cake strongly inhibited plant seed germination and root growth and was highly toxic to carp fingerlings, even though phorbol esters were undetectable by HPLC. Therefore it must be detoxified before disposal to the environment. A mathematic model was established to estimate the general toxicity of the kernel cake by determining the survival time of carp fingerling. A new strain (Streptomyces fimicarius YUCM 310038) capable of degrading the total toxicity by more than 97% in a 9-day solid state fermentation was screened out from 578 strains including 198 known strains and 380 strains isolated from air and soil. The kernel cake fermented by YUCM 310038 was nontoxic to plants and carp fingerlings and significantly promoted tobacco plant growth, indicating its potential to transform the toxic kernel cake to bio-safe animal feed or organic fertilizer to remove the environmental concern and to reduce the cost of the Jatropha biodiesel industry. Microbial strain profile essential for the kernel cake detoxification was discussed. PMID:23792974

  15. Reduction of foaming and enhancement of ascomycin production in rational Streptomyces hygroscopicus fermentation

    Institute of Scientific and Technical Information of China (English)

    Xing Xin; Haishan Qi; Jianping Wen; Xiaoqiang Jia; Yunlin Chen

    2015-01-01

    Foaming reduces the working volume and limits the biosynthesis of macrolide immunosuppressant ascomycin (FK520) in the batch fermentation process of Streptomyces hygroscopicus FS-35 in a 7.5 L bioreactor. To find the relation between FK520 production and foaming, effects of 10 fermentation parameters including organic acids and membrane permeability were investigated. The results suggest that acetate accumulation caused by short period oxygen deficiency and fast consumption of glucose is the reason for increased foaming and declined FK520 production. Therefore, a fed-batch fermentation strategy was developed to reduce the accumulation of ac-etate. After optimization, the maximum acetate concentration dropped from 320 mg·L−1 to 157 mg·L−1, de-creased by 50.8%, and the maximum foam height reduced from 5.32 cm to 3.74 cm, decreased by 29.7%, while the maximum FK520 production increased from 375 mg·L−1 to 421 mg·L−1, improved by 12%.

  16. Characterization of Streptomyces spp. Isolated from the Sea Surface Microlayer in the Trondheim Fjord, Norway

    Directory of Open Access Journals (Sweden)

    Sigrid Hakvåg

    2008-12-01

    Full Text Available The water surface microlayer is still poorly explored, although it has been shown to contain a high density of metabolically active bacteria, often called bacterioneuston. Actinomycetes from the surface microlayer in the Trondheim fjord, Norway, have been isolated and characterized. A total of 217 isolates from two separate samples morphologically resembling the genus Streptomyces have been further investigated in this study. Antimicrobial assays showed that about 80% of the isolates exhibited antagonistic activity against nonfilamentous fungus, Gram-negative, and Gram-positive bacteria. Based on the macroscopic analyses and inhibition patterns from the antimicrobial assays, the sub-grouping of isolates was performed. Partial 16S rDNAs from the candidates from each subgroup were sequenced and phylogenetic analysis performed. 7 isolates with identical 16S rDNA sequences were further studied for the presence of PKS type I genes. Sequencing and phylogenetic analysis of the PKS gene fragments revealed that horizontal gene transfer between closely related species might have taken place. Identification of unique PKS genes in these isolates implies that dereplication can not be performed based solely on the 16S rDNA sequences. The results obtained in this study suggest that streptomycetes from the neuston population may be an interesting source for discovery of new antimicrobial agents.

  17. Strain Improvement of Streptomyces xanthochromogenes RIA 1098 for Enhanced Pravastatin Production at High Compactin Concentrations.

    Science.gov (United States)

    Dzhavakhiya, Vakhtang V; Voinova, Tatiana M; Glagoleva, Elena V; Petukhov, Dmitry V; Ovchinnikov, Alexander I; Kartashov, Maksim I; Kuznetsov, Boris B; Skryabin, Konstantin G

    2015-12-01

    Pravastatin is one of the most popular cholesterol-lowering drugs. Its industrial production represents a two-stage process including the microbial production of compactin and its further biocatalytic conversion to pravastatin. To increase a conversion rate, a higher compactin content in fermentation medium should be used; however, high compactin concentrations inhibit microbial growth. Therefore, the improvement of the compactin resistance of a producer still remains a relevant problem. A multi-step random UV mutagenesis of a Streptomyces xanthochromogenes strain RIA 1098 and the further selection of high-yield compactin-resistant mutants have resulted in a highly productive compactin-resistant strain S 33-1. After the fermentation medium improvement, the maximum bioconversion rate of this strain has reached 91 % at the daily compactin dose equal to 1 g/L and still remained high (83 %) even at the doubled dose (2 g/L). A 1-year study of the mutant strain stability has proved a stable inheritance of its characteristics that provides this strain to be very promising for the pravastatin-producing industry. PMID:26543270

  18. In vitro Anticancer Property of Yellow Pigment fromStreptomyces griseoaurantiacus JUACT 01

    Directory of Open Access Journals (Sweden)

    Kuruvalli Prashanthi

    2015-12-01

    Full Text Available ABSTRACT Despite the complications in isolation of pigments, microbial pigments are increasingly gaining the attention of researchers because of their broad range therapeutic potentials, especially against cancer. In this study the cytotoxic and anti proliferative potentials of yellow pigment from Streptomyces griseoaurantiacus JUACT 01 isolated from soil are investigated. The effect of pigment treatment on the growth and proliferation of in vitro cervical cancer cells (HeLa and liver cancer cells (Hep G2 was tested by various methods. Significant cytotoxicity was observed with IC 50 values as low as 1.5 and 1.8 µg /mL with HeLa and Hep G2 cells respectively. The pigment exhibited non toxic effects on human lymphocytes. Decrease in the number of viable cells, presence of apoptotic bodies, nuclear condensation and sheared DNA were distinctly observed in pigment treated cancer cells. The biochemical test and the infrared (IR spectra indicated the probable carotenoid presence in the TLC purified pigment fraction. High Performance Liquid Chromatography (HPLC analysis of the TLC purified yellow pigment showed a single large peak with a retention time of 9.90 min and m/z value corresponding to the peak was found to be 413.22 showing 100% relative abundance.

  19. A Freshwater Streptomyces, Isolated from Tyume River, Produces a Predominantly Extracellular Glycoprotein Bioflocculant

    Directory of Open Access Journals (Sweden)

    Anthony I. Okoh

    2012-07-01

    Full Text Available We evaluated bioflocculant production by a freshwater actinobacteria whose 16S rDNA nucleotide sequence was deposited in GenBank as Streptomyces sp. Gansen (accession number HQ537129. Optimum culture conditions for bioflocculant production were an initial medium pH of 6.8, incubation temperature of 30 °C, agitation speed of 160 rpm and an inoculum size of 2% (v/v of cell density 1.5 × 108 cfu/mL. The carbon, nitrogen and cation sources for optimum bioflocculant production were glucose (89% flocculating activity, ammonium sulfate (76% flocculating activity and MgCl2. Bioflocculant pyrolysis showed three step decomposition indicative of three components while chemical analyses showed 78% carbohydrate and 22% protein (wt/wt. The mass ratio of neutral sugar, amino sugar and uronic acids was 4.6:2.4:3. FTIR spectrometry indicated the presence of carboxyl, hydroxyl and amino groups, typical for heteropolysaccharide. The bioflocculant showed a lattice structure as seen by SEM imaging. Its high flocculation activity suggests its suitability for industrial applicability.

  20. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23

    Indian Academy of Sciences (India)

    S K Augustine; S P Bhavsar; B P Kapadnis

    2005-03-01

    In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic.

  1. Initiating a crystallographic analysis of recombinant (S)-2-hydroxypropylphosphonic acid epoxidase from Streptomyces wedmorensis

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Scott; McLuskey, Karen; Chamberlayne, Rachel; Hallyburton, Irene; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH,Scotland (United Kingdom)

    2005-05-01

    The gene encoding the unusual metal-ion-dependent epoxidase involved in fosfomycin biosynthesis, S. wedmorensis (S)-2-hydroxypropylphosphonic acid epoxidase, has been cloned and the protein expressed, purified and crystallized. Two crystal forms have been obtained, one of which diffracts to high resolution. The oxirane (1R,2S)-1,2-epoxypropylphosphonic acid (fosfomycin) is a natural product antibiotic produced in Streptomyces wedmorensis by the metal-ion-dependent (S)-2-hydroxypropylphosphonic acid epoxidase. This epoxidase is highly unusual since it has no requirement for a haem prosthetic group. The gene encoding the enzyme, fom4, has been cloned and a highly efficient recombinant source of the enzyme established. Two different crystal forms, tetragonal and hexagonal, have been obtained. The hexagonal form displays symmetry consistent with space group P6{sub 1/5}22 and unit-cell parameters a = 86.44, c = 221.56 Å, γ = 120°. The Matthews coefficient, V{sub M}, of 2.7 Å{sup 3} Da{sup −1} corresponds to two subunits, each of approximate weight 21.4 kDa, in the asymmetric unit with 55% solvent content. These crystals diffract to high resolution and experimental phases are being sought to determine the structure.

  2. Systematic unravelling of the biosynthesis of poly (L-diaminopropionic acid) in Streptomyces albulus PD-1.

    Science.gov (United States)

    Xu, Zhaoxian; Sun, Zhuzhen; Li, Sha; Xu, Zheng; Cao, Changhong; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2015-01-01

    Poly(L-diaminopropionic acid) (PDAP) is one of the four homopoly(amino acid)s that have been discovered in nature. However, the molecular mechanism of PDAP biosynthesis has yet to be described. In this work, the general layout of the PDAP biosynthetic pathway is characterised in Streptomyces albulus PD-1 by genome mining, gene disruption, heterologous expression and in vitro feeding experiments. As a result, L-diaminopropionic acid (L-DAP), which is the monomer of PDAP, is shown to be jointly synthesised by two protein homologues of cysteine synthetase and ornithine cyclodeaminase. Then, L-DAP is assembled into PDAP by a novel nonribosomal peptide synthetase (NRPS) with classical adenylation and peptidyl carrier protein domains. However, instead of the traditional condensation or thioesterase domain of NRPSs, this NRPS has seven transmembrane domains surrounding three tandem soluble domains at the C-terminus. As far as we know, this novel single-module NRPS structure has only been reported in poly(ε-L-lysine) synthetase. The similar NRPS structure of PDAP synthetase and poly(ε-L-lysine) synthetase may be a common characteristic of homopoly(amino acid)s synthetases. In this case, we may discover and/or design more homopoly(amino acid)s by mining this kind of novel NRPS structure in the future. PMID:26632244

  3. In vitro Cellulose Rich Organic Material Degradation by Cellulolytic Streptomyces albospinus (MTCC 8768

    Directory of Open Access Journals (Sweden)

    Pinky Prasad

    2012-09-01

    Full Text Available Aims: Cellulosic biomass is the only foreseeable sustainable source of fuels and is also one of the dominating waste materials in nature resulting from human activities. Keeping in view the environmental problems like disposal of large volumes of cellulosic wastes and shortage of fossil fuel in the world, the main aim of the present investigation was to characterize and study the cellulolytic activity of Streptomyces albospinus (MTCC 8768, isolated from municipal wastes, on natural cellulosic substrates viz. straw powder, wood powder and finely grated vegetable peels.Methodology and Result: Stanier’s Basal broth with 100 mg of each of the substrates was inoculated separately with S. albospinus (MTCC No. 8768 and incubated at 37 °C for 8 days. The cellulosic substrates were re-weighed at an interval of 2 days and the difference between the initial weight and the final weight gave the amount of substratesdegraded by the isolate. It was observed that maximum degradation was observed in the grated vegetable peels (64 mg followed by straw powder (38 mg and wood powder (28 mg over a period of 8 days.Conclusion, significance and impact of study: By the selection of efficient cellulolytic microorganisms and cost-effective operational techniques, the production of useful end products from the biodegradation of the low cost enormous stock of cellulose in nature can be very beneficial.

  4. Frenolicins C–G, Pyranonaphthoquinones from Streptomyces sp. RM-4-15

    Science.gov (United States)

    Wang, Xiachang; Shaaban, Khaled A.; Elshahawi, Sherif I.; Ponomareva, Larissa V.; Sunkara, Manjula; Zhang, Yinan; Copley, Gregory C.; Hower, James C.; Morris, Andrew J.; Kharel, Madan K.; Thorson, Jon S.

    2013-01-01

    Appalachian active coal fire sites were selected for the isolation of bacterial strains belonging to the class actinobacteria. A comparison of high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles from isolate extracts to natural product databases suggested Streptomyces sp. RM-4-15 to produce unique metabolites. Four new pyranonaphthoquinones, frenolicins C–F (1–4), along with three known analogues, frenolicin (6), frenolicin B (7), and UCF76-A (8), were isolated from the fermentation of this strain. An additional new analogue frenolicin G (5) along with two known compounds, deoxyfrenolicin (9) and UCF 13 (10), were isolated from the fermentation supplied with 18 mg/L of scandium chloride - the first example, to the best of our knowledge, wherein scandium chloride supplementation led to the confirmed production of new bacterial secondary metabolites. Structures 1–5 were elucidated on the basis of spectral analysis and chemical modification. While frenolicins are best known for their anticoccidial activity, the current study revealed compounds 6–9 to exhibit moderate cytotoxicity against the human lung carcinoma cell line (A549) and thereby extends the anticancer SAR for this privileged scaffold. PMID:23944931

  5. p-Aminoacetophenonic Acids Produced by a Mangrove Endophyte Streptomyces sp. (strain HK10552

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    2010-04-01

    Full Text Available Four new p-aminoacetophenonic acids, named (2E-11-(4′-aminophenyl-5,9-dihydroxy-4,6,8-trimethyl-11-oxo-undec-2-enoic acid (1, 9-(4′-aminophenyl-3,7-dihydroxy-2,4,6-trimethyl-9-oxo-nonoic acid(2, (2E-11-(4′-aminophenyl-5,9-O-cyclo-4,6,8-trimethyl-11-oxo-undec-2-enoic acid (3 and 9-(4′-aminophenyl-3,7-O-cyclo-2,4,6-trimethyl-9-oxo-nonoic acid(4, were isolated from an endophyte Streptomyces sp. (strain HK10552 of the mangrove plant Aegiceras corniculatum. The structures of 1–4 were elucidated by using spectroscopic analyses. The relative stereoconfigurations of compounds 3 and 4 were determined by NOESY experiments. In the bioassay test, 1–4 showed no cytotoxicity against the Hela cell lines. Compound 4 also showed no inhibitory bioactivity on HCV protease and SecA ATPase and wasn’t active against VSVG/HIV-luc pseudotyping virus.

  6. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    Science.gov (United States)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  7. Streptomyces araujoniae Produces a Multiantibiotic Complex with Ionophoric Properties to Control Botrytis cinerea.

    Science.gov (United States)

    Silva, Leonardo José; Crevelin, Eduardo José; Souza, Wallace Rafael; Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares; Zucchi, Tiago Domingues

    2014-12-01

    A recently described actinomycete species (Streptomyces araujoniae ASBV-1(T)) is effective against many phytopathogenic fungi. In this study, we evaluated the capacity of this species to inhibit Botrytis cinerea development in strawberry pseudofruit, and we identified the chemical structures of its bioactive compounds. An ethyl acetate crude extract (0.1 mg ml(-1)) of ASBV-1(T) fermentation broth completely inhibited fungus growth in strawberry pseudofruit under storage conditions. The crude extract was fractionated by preparative high-performance liquid chromatography; the active fraction was further evaluated by tandem mass spectrometry. ASBV-1(T) produced a multiantibiotic complex with ionophoric properties. This complex contained members of the macrotetralides class (including monactin, dinactin, trinactin, and tetranactin) and the cyclodepsipeptide valinomycin, all of which were active against B. cinerea. Furthermore, the addition of 2 mM MgSO4 and 1 mM ZnSO4 enhanced macrotetralide and valinomycin production, respectively, in the culture broth. These compounds are considered to be the main active molecules that S. araujoniae produces to control B. cinerea. Their low to moderate toxicity to humans and the environment justifies the application of ASBV-1(T) in biological control programs that aim to mitigate the damage caused by this phytopathogen. PMID:24983843

  8. Influence of glycerol and ornithine feeding on clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    J. C. Teodoro

    2010-12-01

    Full Text Available The influence of glycerol and ornithine feeding on clavulanic acid (CA production by Streptomyces clavuligerus was investigated. In batch experiments, CA maximum concentration (Cp max ranged randomly from 430 to 560 mg.L-1, with a maximum increase of 10% in relation to the control run, without ornithine. However, the maximum volumetric productivity of CA (Pp max of 13.7 mg.L-1.h-1 was obtained with 0.66 g.L-1 of ornithine, 44.2% higher than the Pp max in the control run. In fed-batch experiments, Cp max varied within the narrow range from 1.254 to 1.405 g.L-1, 2.5 times higher than that obtained in the control run. The presence of ornithine increased the Pp max, although it influenced only slightly the Cp max. Concerning glycerol, the highest CA production of 1.6 g.L-1 was obtained in the fed-batch with glycerol and ornithine (180 and 3.7 g.L−1 in a 10-L bioreactor, showing a positive effect of ornithine and glycerol, in the proper proportion (48.6:1, on CA biosynthesis.

  9. Production of clavulanic acid and cephamycin C by Streptomyces clavuligerus under different fed-batch conditions

    Directory of Open Access Journals (Sweden)

    C. Bellão

    2013-06-01

    Full Text Available The effect of carbon source and feeding conditions on the production of clavulanic acid (CA and cephamycin C (CephC by Streptomyces clavuligerus was investigated. In fed-batch experiments performed with glycerol feeding, production of CA exceeded that of CephC, and reached 1022 mg.L-1. Highest CephC production (566.5 mg.L-1 was obtained in fed-batch cultivation with glycerol feeding. In fed-batch experiments performed with starch feeding, the production of CephC was in general higher than that of CA. A dissociation index (DI was used to identify feeding conditions that favored production of CephC relative to CA. In all cultures with glycerol, DI values were less than unity, indicating higher production of CA compared to CephC. Conversely, in cultures fed with starch, the DI values obtained were greater than unity. However, no carbon source or feeding condition was able to completely dissociate the production of CA from that of CephC.

  10. An improved HPLC-DAD method for clavulanic acid quantification in fermentation broths of Streptomyces clavuligerus.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; López, Carlos; Zapata, Julian; Sáez, Alex; Neubauer, Peter; Rios-Estepa, Rigoberto

    2016-02-20

    Clavulanic acid (CA) is an important secondary metabolite commercially produced by cultivation of Streptomyces clavuligerus (Sc). It is a potent inhibitor of bacterial β-lactamases. In this work, a specific and improved high performance liquid chromatography (HPLC) method, using a C-18 reversed phase column, diode array detector and gradient elution for CA quantification in fermentation broths of Sc, was developed and successfully validated. Samples were imidazole-derivatized for the purpose of creating a stable chromophore (clavulanate-imidazole). The calibration curve was linear over a typical range of CA concentration between 0.2 and 400mg/L. The detection and quantification limits were 0.01 and 0.02mg/L, respectively. The precision of the method was evaluated for CA spiked into production media and a recovery of 103.8%, on average, was obtained. The clavulanate-imidazole complex was not stable when the samples were not cooled during the analysis. The recovery rate was 39.3% on average. This assay was successfully tested for CA quantification in samples from Sc fermentation, using both, a chemically defined and a complex medium. PMID:26760242

  11. Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in Streptomyces clavuligerus.

    Science.gov (United States)

    Leite, Carla A; Cavallieri, André P; Baptista, Amanda S; Araujo, Maria L G C

    2016-01-01

    Streptomyces clavuligerus produces simultaneously cephamycin C (CephC) and clavulanic acid (CA). Adding 1,3-diaminopropane to culture medium stimulates production of beta-lactam antibiotics. However, there are no studies on the influence of this diamine on coordinated production of CephC and CA. This study indicates that 1,3-diaminopropane can dissociate CephC and CA productions. Results indicated that low diamine concentrations (below 1.25 g l(-1)) in culture medium increased CA production by 200%, but not that of CephC. Conversely, CephC production increased by 300% when 10 g l(-1) 1,3-diaminopropane was added to culture medium. Addition of just L-lysine (18.3 g l(-1)) to culture medium increased both biocompounds. On the other hand, while L-lysine plus 7.5 g l(-1) 1,3-diaminopropane increased volumetric production of CephC by 1100%, its impact on CA production was insignificant. The combined results suggest that extracellular concentration of 1,3-diaminopropane may trigger the dissociation of CephC and CA biosynthesis in S. clavuligerus. PMID:26564965

  12. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    2013-01-01

    Full Text Available Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  13. Antifungal Effect of Streptomyces 702 Antifungal Monomer Component DZP8 on Rhizoctonia solani and Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The aim of this study was to investigate the in vitro antifungal effects of antifungal monomer component DZP8 isolated from Streptomyces 702 on the mycelium growth, sclerotium formation and germination of Rhizoctonia solani and on the mycelium growth, conidial formation, germination, appressorium formation of Magnaporthe grisea. The results showed that the antifungal monomer component DZP8 has strong antifungal effect on both the R. solani and M. grisea. The EC50 and EC90 of DZP8 were 1.81 and 3.35 μg/ml on Ft. solani respectively, and 37.01 and 136.21 μg/ml on M. grisea respectively. Under the treatment of 48.01 μg/ml DZP8, the sclerotium formation rate of R. solani was just 39.21%, the formation time delayed by 216 h and the dry weight decreased by 81.37% in comparison the con- trol; and 33.51 μg/ml DZP8 significantly inhibited the sclerotium germination. In the presence of 160.08 μg/ml DZP8, the sporulation of M. grisea was just 9.29% of control sample; 20.14 μg/ml DZP8 inhibited the conidial germination suppression rate by 95.16%, and the appressorium formation by 100%.

  14. EVALUATION OF A NEW LACCASE PRODUCED BY STREPTOMYCES IPOMOEA ON BIOBLEACHING AND AGEING OF KRAFT PULPS

    Directory of Open Access Journals (Sweden)

    M. Enriqueta Arias

    2011-06-01

    Full Text Available The aim of this work is to prove the suitability of a new alkaline and halo-tolerant bacterial laccase (SilA produced by Streptomyces ipomoea CECT 3341 to enhance the conventional chemical bleaching process of an industrial eucalyptus kraft pulp. The laccase used for this study was a recombinant laccase obtained from cultures of E. coli BL21 (DE3 grown in LB liquid medium. The biobleaching experiment was carried out on Eucalyptus globulus kraft pulps using the above mentioned laccase and acetosyringone as natural mediator. Then, an alkaline extraction and further hydrogen peroxide steps were applied to evaluate the efficiency of the laccase-mediator system as a pretreatment in the bleaching sequences. Biobleached pulps showed a kappa number decrease and a brightness increase without decreasing the viscosity values significantly. Also, a reduction in the consumption of hydrogen peroxide was observed when the enzymatic treatment was applied to the pulp. CIE L*a*b* and CIE L*C* color coordinates measured in pulps demonstrated that among all treatments applied to pulps, the laccase-acetosyringone system presented the best optical properties even after an accelerated ageing process. Finally, it is also remarkable that during this treatment 64% of the laccase activity remained unaltered.

  15. Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59.

    Science.gov (United States)

    Zhang, Yang-Mei; Li, Hong-Yu; Hu, Chen; Sheng, Hui-Fan; Zhang, Ying; Lin, Bi-Run; Zhou, Guang-Xiong

    2016-01-01

    An actinomycete strain, H41-59, isolated from sea sediment in a mangrove district, was identified as Streptomyces anandii on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological and biochemical characteristics. Three new ergosterols, ananstreps A-C (1-3), along with ten known ones (4-13), were isolated from the culture broth of this strain. The gross structures of these new compounds were elucidated on the basis of extensive analysis of spectroscopic data, including HR-ESI-MS, and NMR. The cytotoxicities of these isolates against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268, and human lung cancer cell line NCI-H460 and their antibacterial activities in inhibiting the growth of Candida albicans and some other pathogenic microorganisms were tested. Compounds 3-8, 10 and 11 displayed cytotoxicity with IC50 values in a range from 13.0 to 27.8 μg/mL. However, all the tested compounds showed no activity on C. albicans and other bacteria at the test concentration of 1 mg/mL with the paper disc diffusion method. PMID:27153073

  16. Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59

    Directory of Open Access Journals (Sweden)

    Yang-Mei Zhang

    2016-05-01

    Full Text Available An actinomycete strain, H41-59, isolated from sea sediment in a mangrove district, was identified as Streptomyces anandii on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological and biochemical characteristics. Three new ergosterols, ananstreps A–C (1–3, along with ten known ones (4–13, were isolated from the culture broth of this strain. The gross structures of these new compounds were elucidated on the basis of extensive analysis of spectroscopic data, including HR-ESI-MS, and NMR. The cytotoxicities of these isolates against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268, and human lung cancer cell line NCI-H460 and their antibacterial activities in inhibiting the growth of Candida albicans and some other pathogenic microorganisms were tested. Compounds 3–8, 10 and 11 displayed cytotoxicity with IC50 values in a range from 13.0 to 27.8 μg/mL. However, all the tested compounds showed no activity on C. albicans and other bacteria at the test concentration of 1 mg/mL with the paper disc diffusion method.

  17. Equilibrium heat-induced denaturation of chitinase 40 from Streptomyces thermoviolaceus.

    Science.gov (United States)

    Pyrpassopoulos, Serapion; Vlassi, Metaxia; Tsortos, Achilleas; Papanikolau, Yannis; Petratos, Kyriacos; Vorgias, Constantinos E; Nounesis, George

    2006-08-01

    High-precision differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to study the thermal unfolding of chitinase 40 (Chi40) from Streptomyces thermoviolaceus. Chi40 belongs to family 18 of glycosyl hydrolase superfamily bearing a catalytic domain with a "TIM barrel"-like fold, which exhibits deviations from the (beta/alpha)8 fold. The thermal unfolding is reversible at pH = 8.0 and 9.0. The denatured state is characterized by extensive structural changes with respect to the native. The process is characterized by slow relaxation kinetics. Even slower refolding rates are recorded upon cooling. It is shown that the denaturation calorimetric data obtained at slow heating rate (0.17 K/min) are in excellent agreement with equilibrium data obtained by extrapolation of the experimental results to zero scanning rate. Analysis of the DSC results reveals that the experimental data can be successfully fitted using either a non-two-state sequential model involving one equilibrium intermediate, or an independent transitions model involving the unfolding of two Chi40 energetic domains to intermediate states. The stability of the native state with respect to the final denatured state is estimated, deltaG = 24.0 kcal/mol at 25 degrees C. The thermal results are in agreement with previous findings from chemical denaturation studies of a wide variety of (beta/alpha)8 barrel proteins, that their unfolding is a non-two-state process, always involving at least one unfolding intermediate. PMID:16685709

  18. [Storage of Actinobacteria of the Genera Streptomyces and Nonomuraea by Low Temperature Preservation].

    Science.gov (United States)

    Sineva, O N; Kulikova, N G; Filippova, S N; Terekhova, L P

    2014-01-01

    The influence of storage of actinobacteria Streptomyces hygroscopicus RIA 1433T, Nonomuraea roseoviolacea subsp. carminata INA 4281 and Nonomuraea sp. INA 34-06 at extremely low temperatures (-70 degrees C) for 1.5 years was studied with respect to their viability and antibiotic activity. The spores of the actinobacteria preserved their high viability when freezed at a concentration of 10(5)-10(7) CFU/ml. As for the antibiotic activity against the test culture Micrococcus luteus ATCC 9341, the strains differed: the S. hygroscopicus RIA 1433T colonies preserved their antibiotic activity against the test culture, the antibiotic activity of Nonomuraea roseoviolacea subsp. carminata lowered by 5% and that of N. sp. INA 34-06 lowered by 44%. Differences in the resistance of the strains to the storage at the extremely low temperatures were observed when the suspensions contained low concentrations of the spores (10(2) CFU/ml): S. hygroscopicus RIA 1433T preserved its viability and antibiotic activity during 1.5 years, while N. roseoviolacea subsp. carminata INA 4281 and N. sp. INA 34-06 lost the viability by the 8th month of the storage. The study showed that 10% glycerol solution used as a cryoprotector during the storage had no effect on viability and antibiotic activity of the actinobacteria. PMID:26448987

  19. A newly isolated Streptomyces sp. CS392 producing three antimicrobial compounds.

    Science.gov (United States)

    Cho, Seung Sik; Choi, Yun Hee; Simkhada, Jaya Ram; Mander, Poonam; Park, Da Jeong; Yoo, Jin Cheol

    2012-01-01

    With the aim of isolating new microbes capable of producing strong antimicrobial substances, strain CS392 was screened from 700 soil isolates preserved in our laboratory. The strain was related to genus Streptomyces based on various characteristics. Three highly active antimicrobial compounds, C1, C2 and C3, produced by the strain were purified by solvent extraction followed by silica gel column chromatography. These compounds were highly active against various Gram-positive resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and vancomycin-resistant Enterococcus (VRE). Among three, C3 was the most active against MRSA and VRSA with minimal inhibitory concentration (MIC) of 2 μg/ml while C2 and C3 had MIC values of 4 μg/ml for the strains. In case of Bacillus subtilis ATCC6633, C1 and C3 were more effective with MIC values of 0.5 μg/ml than C2 with MIC of 2 μg/ml. Those antibiotics were variably active (MIC of 4-32 μg/ml) against Micrococcus luteus ATCC 9341, Enterococcus faecalis ATCC 29212, Mycobacterium smegmatis ATCC 9341 and VRE. PMID:21909674

  20. The study of variability and strain selection in Streptomyces atroolivaceus. III

    International Nuclear Information System (INIS)

    Mutants of Streptomyces atroolivaceus blocked in the biosynthesis of mithramycin were isolated both by natural selection and after treatment with mutagenic factors (UV and gamma rays, nitrous acid). Both physical factors were more effective than nitrous acid. The selection was complicated by the high instability of isolates, out of which 20 to 80%=. (depending on their origin) reversed spontaneously to the parent type. Primary screening (selection of morphological variants and determination of their activity using the method of agar blocks) made it possible to detect only potentially non-productive strains; however, the final selection always had to be made under submerged conditions. Fifty-four stable non-productive mutants were divided, according to results of the chromatographic analysis, into five groups differing in the production of the six biologically inactive metabolites. The mutants did not accumulate chromomycinone, chromocyclomycin and chromocyclin. On mixed cultivation none of the pairs of mutants was capable of the cosynthesis of mithramycin or of new compounds differing from standard metabolites. Possible causes of the above results are discussed. (author)

  1. Enhancement and selective production of avermectin B by recombinants of Streptomyces avermitilis via intraspecific protoplast fusion

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; WEN Jia; SONG Yuan; WEN Ying; LI JiLun

    2007-01-01

    Among eight components of avermectin, B1 fractions have the most effective antiparasitic activities and the lowest level of toxic side-effects and are used widely in veterinary and agricultural fields. Intraspecific protoplast fusion between two strains of Streptomyces avermitilis, one an avermectin high producer (strain 76-05) and the other a genetically engineered strain containing the mutations aveD- and olmA- (strain 73-12) was performed for enhancement and selective production of avermectin B in the absence of oligomycin. Two recombinant strains (F23 and F29) were isolated and characterized with regards to the parental merits. F23 and F29 produced only the four avermectin B components with high yield and produced no oligomycin. The avermectin production of F23 and F29 was about 84.20% and 103.45% of the parental strain 76-05, respectively, and increased about 2.66-fold and 3.50-fold, respectively, compared to that of parental strain 73-12. F23 and F29 were genetically stable prototrophic recombinants and F29 was quite tolerant of fermentation conditions compared to avermectin high producer parental strain 76-05. The ability to produce avermectin B with high yield without the production of other avermectin components and oligomycin will make F23 and F29 useful strains for avermectin production. Strain F29's tolerance of fermentation conditions will also make it suitable for industrial applications.

  2. Biocontrol of Botrytis allii Munn the Causal Agent of Neck Rot, the Post Harvest Disease in Onion, by use of a New Iranian Isolate of Streptomyces

    Directory of Open Access Journals (Sweden)

    M. Jorjandi

    2009-01-01

    Full Text Available Problem statement: Soil actinomycetes particularly Streptomyces spp. showed antagonistic activity against wide range of plant pathogens. In the recent decades they have attracted high interests as biocontrol agents. Onion neck rot or gray mold caused by Botrytis allii have imposed economic post harvest damages to onion bulbs and decreased its storage durability and market value. Approach: To investigate for biocontrol means against the pathogen, antagonistic activity of 50 isolates of soil Actinomycetes were assayed through agar disk method and dual culture bioassays. Active isolates were exposed to chloroform for detection of antibiotic. Minimum Inhibitory Concentration (MIC value and solubility of active crude extract in organic solvents were determined for Streptomyces isolate No. 347 which showed a unique and stable property of inhibiting Botrytis allii. To investigate the antagonistic effect of Streptomyces isolate No. 347 on control of onion gray mold, 4 different treatments were tested by means of Tukey HSD test. Results: From the tested isolates, 13 showed anti gray mold activities. Exposure of active isolates to chloroform revealed that Streptomyces isolates No. 347, 263 and 350 retained their antifungal activities. The active metabolite(s of Streptomyces isolate No. 347 was polar, soluble in H2O but insoluble in chloroform and methanol. MIC of the crude was determined as 0.05 mg mL-1 against B. allii. Stability of the active crude in distilled water at room temperature (12-30°C was about 6 months. Statistical studies indicated that Streptomyces isolates No. 347 can decrease losses of neck rot with significant level (pConclusion: The future goals include investigation of the antifungal genes in active isolates as candidates for genetic engineering of onion for increased tolerance against B. allii.

  3. A rare case of silicone mammary implant infection by Streptomyces spp. in a patient with breast reconstruction after mastectomy: taxonomic characterization using molecular techniques

    DEFF Research Database (Denmark)

    Manteca, Angel; Pelaez, Ana Isabel; del Mar Garcia-Suarez, Maria;

    2009-01-01

    A Streptomyces sp. isolated from a patient who had had breast reconstruction after a mastectomy was identified at the species level by comparative sequence analysis of 16S ribosomal DNA (rDNA) and the hypervariable alpha-region of the 16S rDNA.......A Streptomyces sp. isolated from a patient who had had breast reconstruction after a mastectomy was identified at the species level by comparative sequence analysis of 16S ribosomal DNA (rDNA) and the hypervariable alpha-region of the 16S rDNA....

  4. Generación de una cepa mutante de Streptomyces coelicolor para su uso como hospedador en la producción de compuestos bioactivos

    OpenAIRE

    Álvarez Alonso, Raquel

    2013-01-01

    Los actinomicetos son bacterias Gram-positivas, y dentro de ellos se encuentra el género Streptomyces, que es su género más extenso. Muchas de las especies de este género producen antibióticos y otros metabolitos secundarios como por ejemplo, antitumorales, antibióticos o inmunosupresores. Streptomyces coelicolor, la especie más conocida y que destaca como modelo genético, muestra en su genoma un agrupamiento génico para la síntesis de hopanoides e isoprenoides. Estos hopanoides bacterianos t...

  5. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea

    OpenAIRE

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Alekhya, Gottumukkala; Prakash, Bandikinda; Kudapa, Himabindu; Rathore, Abhishek; Varshney, Rajeev Kumar

    2015-01-01

    The physiological and molecular responses of five strains of Streptomyces sp. (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), with their proven potential for charcoal rot disease control in sorghum and plant growth-promotion (PGP) in sorghum and rice, were studied to understand the mechanisms causing the beneficial effects. In this investigation, those five strains were evaluated for their PGP capabilities in chickpea in the 2012–13 and 2013–14 post-rainy seasons. All of the Streptomyces sp. str...

  6. Caracterización mediante Biología de Sistemas del ciclo de desarrollo de Streptomyces y sus aplicaciones biotecnológicass

    OpenAIRE

    Yagüe Menéndez, Paula

    2012-01-01

    A pesar del hecho de que la mayoría de los procesos industriales para la producción de metabolitos secundarios se realizan en cultivos líquidos, no existe un modelo fiable de desarrollo para Streptomyces bajo estas condiciones. Con la excepción de unas pocas especies que esporulan en líquido, se supuso que ningún proceso de diferenciación morfológica tiene lugar en estas condiciones. En esta tesis, se describen las nuevas características en el desarrollo de Streptomyces en cultivos líquidos ...

  7. Degradation of Textile Dye Reactive Navy – Blue Rx (Reactive blue–59 by an Isolated Actinomycete Streptomyces krainskii SUK – 5

    Directory of Open Access Journals (Sweden)

    Mane, U. V.

    2008-01-01

    Full Text Available The isolated Actinomycete, Streptomyces krainskii, SUK -5 was found to decolorize and degrade textile dye Reactive blue–59.This azo dye was decolorized and degraded completely by Streptomyces krainskii SUK–5 at 24 h in shaking condition in the nutrient medium at pH 8. Induction in the activity of Lignin Peroxidase,and NADH-DCIP Reductase and MR reductase represents their role in degradation .The biodegradation was monitored by TLC, UV vis spectroscopy, FTIR. and GCMS analysis. Microbial and phytotoxicity studies of the product were carried out.

  8. Cloning, characterization, and heterologous expression of the Saccharopolyspora erythraea (Streptomyces erythraeus) gene encoding an EF-hand calcium-binding protein.

    OpenAIRE

    Swan, D G; Cortes, J; Hale, R S; Leadlay, P F

    1989-01-01

    The regulatory effects of Ca2+ in eucaryotic cells are mostly mediated by a superfamily of Ca2+-binding proteins (CABs) that contain one or more characteristic Ca2+-binding structural motifs, referred to as EF hands. We have cloned and sequenced the structural gene for an authentic EF-hand CAB from the spore-forming gram-positive bacterium Saccharopolyspora erythraea (formerly Streptomyces erythraeus). When the gene was introduced into Streptomyces lividans on the high-copy plasmid vector pIJ...

  9. Secretion of an alkaline protease from a salt- tolerant and alkaliphilic, Streptomyces clavuligerus strain Mit-1 Secreção de uma protease alcalina por uma cepa halotolerante e alcalifílica de Streptomyces clavuligerus, Mit-1

    OpenAIRE

    Jignasha T. Thumar; Singh, Satya P.

    2007-01-01

    An alkaliphilic and salt- tolerant actinomycete, Streptomyces clavuligerus strain Mit-1, was isolated from Mithapur, the western coast of India. The organism was Gram-positive, having filamentous, long thread like structure. The sporulation started after two days of growth and the optimum level of alkaline protease (130 U/ml) was produced during the early stationary phase. The strain could grow and produce protease with 0-10% NaCl (w/v), the optimum being 5% NaCl (w/v). Growth and protease pr...

  10. Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties.

    Science.gov (United States)

    Stankovic, Nada; Radulovic, Vanja; Petkovic, Milos; Vuckovic, Ivan; Jadranin, Milka; Vasiljevic, Branka; Nikodinovic-Runic, Jasmina

    2012-12-01

    A Gram-positive, red-pigment-producing bacterial strain, designated JS520 was isolated from the pristine sediment from the cave on mountain Miroc in Serbia. Strain was confirmed to belong to Streptomyces genus based on phenotypic and genetic analysis. Streptomyces sp. JS520 has the ability to produce exceptionally high amounts of deep red pigment into both solid and liquid media. Liquid chromatography and mass spectroscopy of the purified pigments revealed the major component to be undecylprodigiosin (93 %) with minor component being oxidatively cyclized derivative. The pigment production was affected by medium composition, temperature, pH, and the aeration rate. By medium optimization, yields of undecylprodigiosin of 138 mg l(-1) were achieved, what is the highest level of undecylprodigiosin production reported for the members of Gram-positive Streptomyces genus. Purified pigment had antimicrobial properties against bacterial Bacillus and Micrococcus species (50 μg ml(-1)) and against Candida albicans species (100-200 μg ml(-1) range). The ability to affect auto-oxidation of the linoleic acid was demonstrated for the purified undecylprodigiosin, suggesting antioxidative properties of this pigment. Multiple ecophysiological roles of the pigment were revealed by comparing cultures grown under pigment-producing and pigment-nonproducing conditions. Cells grown under undecylprodigiosin-producing conditions could tolerate presence of hydrogen peroxide exhibiting three times smaller zones of inhibition at 100 mM H(2)O(2). Undecylprodigiosin-producing cells were also less susceptible to tetracycline, kanamycin, chloramphenicol, and 8-hydroxyquinoline. While the growth of the cells not producing pigment was completely inhibited by 15 min of exposure to ultraviolet light (254 nm), cells producing undecylprodigiosin and cells supplied with purified pigment in vitro showed survival rates at 22 and 8 %, respectively. PMID:22767180

  11. Colonization of Streptomyces felleus YJ1 and Its Effects on Disease Resistant-Related Enzymes of Oilseed Rape

    OpenAIRE

    Guanglong Cheng; Fan Liu; Yun Huang; Hui Yang; Jia Yao; Huirong Shen; Jie Xu

    2014-01-01

    Streptomyces felleus YJ1 has strong antagonism against Sclerotinia sclerotiorum, and it can be used for preventing this fungal disease in oilseed rape in the greenhouse. Under greenhouse conditions, we determined the colonization dynamic variation of YJ1 in soil and rape; and the changes of defensive enzymes of rape induced by YJ1 were measured. The results showed that, YJ1 could colonize chronically in soil; and it could also colonize in roots of rape and conduct to the stem and leaves, sugg...

  12. CebR as a Master Regulator for Cellulose/Cellooligosaccharide Catabolism Affects Morphological Development in Streptomyces griseus▿ †

    OpenAIRE

    Marushima, Kazuya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2009-01-01

    Streptomyces griseus mutants exhibiting deficient glucose repression of β-galactosidase activity on lactose-containing minimal medium supplemented with a high concentration of glucose were isolated. One of these mutants had a 12-bp deletion in cebR, which encodes a LacI/GalR family regulator. Disruption of cebR in the wild-type strain caused the same phenotype as the mutant, indicating that CebR is required for glucose repression of β-galactosidase activity. Recombinant CebR protein bound to ...

  13. Deciphering the regulon of the Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production.

    OpenAIRE

    Rico, Sergio; Santamaría, Ramón I; Yepes, Ana; Rodríguez, Héctor; Laing, Emma; Bucca, Giselda; Smith, Colin P; Díaz, Margarita

    2014-01-01

    The atypical two-component system (TCS) AbrC1/C2/C3 (encoded by SCO4598, SCO4597, and SCO4596), comprising two histidine kinases (HKs) and a response regulator (RR), is crucial for antibiotic production in Streptomyces coelicolor and for morphological differentiation under certain nutritional conditions. In this study, we demonstrate that deletion of the RR-encoding gene, abrC3 (SCO4596), results in a dramatic decrease in actinorhodin (ACT) and undecylprodiginine (RED) production and delays m...

  14. Crp of Streptomyces Coelicolor Is the Third Transcription Factor of the Large Crp-Fnr Superfamily Able to Bind Camp

    OpenAIRE

    Derouaux, Adeline; Dehareng, Dominique; Lecocq, Elke; Halici, Serkan; Nothaft, Harald; Giannotta, Fabrizio; Moutzourelis, Georgios; Dusart, Jean; Devreese, Bart; Titgemeyer, Fritz; Van Beeumen, Jozef; Rigali, Sébastien

    2004-01-01

    The chromosomal inactivation of the unique transcription factor of Streptomyces coelicolor that displays a cyclic-nucleotide-binding domain, Crp(Sco), led to a germination-defective phenotype similar to the mutant of the adenylate cyclase gene (cya) unable to produce cAMP. By means of cAMP affinity chromatography we demonstrate the specific cAMP-binding ability of Crp(Sco), which definitely demonstrate that a Cya/cAMP/Crp system is used to trigger germination in S. coelicolor. However, electr...

  15. SAXS-WAXS studies of the low-resolution structure in solution of xylose/glucose isomerase from Streptomyces rubiginosus

    International Nuclear Information System (INIS)

    The structure and conformation of molecule of xylose/glucose isomerase from Streptomyces rubiginosus in solution (at pH 6 and 7.6; with and without the substrate) has been studied by small- and wide-angle scattering of synchrotron radiation (SAXS-WAXS). On the basis of the SAXS-WAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods. A comparison of the models of glucose isomerase shows only small differences between the model in solution and the crystal structure.

  16. Brewer's spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires do Nascimento

    2011-12-01

    Full Text Available Brewer's spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates.

  17. Function and Redundancy of the Chaplin Cell Surface Proteins in Aerial Hypha Formation, Rodlet Assembly, and Viability in Streptomyces coelicolor▿

    OpenAIRE

    Di Berardo, Christina; Capstick, David S.; Bibb, Maureen J.; Findlay, Kim C.; Buttner, Mark J.; Elliot, Marie A.

    2008-01-01

    The chaplins are a family of eight secreted proteins that are critical for raising aerial hyphae in Streptomyces coelicolor. These eight chaplins can be separated into two main groups: the long chaplins (ChpA to -C) and the short chaplins (ChpD to -H). The short chaplins can be further subdivided on the basis of their abilities to form intramolecular disulfide bonds: ChpD, -F, -G, and -H contain two Cys residues, while ChpE has none. A “minimal chaplin strain” containing only chpC, chpE, and ...

  18. Purification and Characterization of 2,6-β-d-Fructan 6-Levanbiohydrolase from Streptomyces exfoliatus F3-2

    OpenAIRE

    Saito, Katsuichi; Kondo, Kazuya; Kojima, Ichiro; Yokota, Atsushi; Tomita, Fusao

    2000-01-01

    Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH an...

  19. Structure and Antibacterial Activity of Ambobactin, a New Telomycin-Like Cyclic Depsipeptide Antibiotic Produced by Streptomyces ambofaciens F3

    Directory of Open Access Journals (Sweden)

    Shaopeng Wei

    2015-09-01

    Full Text Available A new telomycin-like cyclic depsipeptide, ambobactin (1, was isolated from the metabolites of Streptomyces ambofaciens F3, an endophyte of Platycladus orientalis. Its structure was elucidated on the basis of extensive spectroscopic analysis and advanced Marfey’s method. Ambobactin is structurally related with telomycin, except that the configuration of the 3-methyltryptophanes in their structures is different. It exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria. Furthermore, this investigation revealed that S. ambofaciens F3 is a new producer of telomycin-like antibiotics.

  20. Maniwamycins: new quorum-sensing inhibitors against Chromobacterium violaceum CV026 were isolated from Streptomyces sp. TOHO-M025.

    Science.gov (United States)

    Fukumoto, Atsushi; Murakami, Chikana; Anzai, Yojiro; Kato, Fumio

    2016-05-01

    Quorum sensing is an important microbial signaling system that controls the expression of many virulence genes. Maniwamycins C-F, new compounds and quorum-sensing inhibitors, were isolated from the culture broth of Streptomyces sp. TOHO-M025 using a silica gel column and preparative HPLC. The structures of maniwamycins were elucidated by spectroscopic analyses, including NMR. The compounds each have an azoxy moiety. All maniwamycins inhibited violacein synthesis, which is controlled by quorum sensing, in Chromobacterium violaceum CV026. PMID:26648117