WorldWideScience

Sample records for candicidin-producing streptomyces support

  1. Streptomyces zhaozhouensis sp. nov., an actinomycete isolated from candelabra aloe (Aloe arborescens Mill).

    Science.gov (United States)

    He, Hairong; Liu, Chongxi; Zhao, Junwei; Li, Wenjun; Pan, Tong; Yang, Lingyu; Wang, Xiangjing; Xiang, Wensheng

    2014-04-01

    A novel endophytic actinomycete, designated strain NEAU-LZS-5(T), was isolated from the leaf of candelabra aloe (Aloe arborescens Mill) and characterized using a polyphasic approach. Analysis of the 16S rRNA gene sequence showed that strain NEAU-LZS-5(T) belongs to the genus Streptomyces and exhibited 99.51 and 97.37 % similarity to Streptomyces sedi YIM 65188(T) and Streptomyces specialis GW41-1564(T), respectively, whereas low similarity values (<97 %) distinguished strain NEAU-LZS-5(T) from all other species of the genus Streptomyces with validly published names. Two tree-making algorithms also supported the position that strain NEAU-LZS-5(T) formed a distinct clade with Streptomyces sedi YIM 65188(T) and Streptomyces specialis GW41-1564(T). However, levels of DNA-DNA relatedness between strain NEAU-LZS-5(T) and Streptomyces sedi YIM 65188(T) and Streptomyces specialis GW41-1564(T) were 45.59 and 31.90 %, respectively. A comparative study between strain NEAU-LZS-5(T) and the type strains of closest related species of the genus Streptomyces revealed that it differed from them in morphological, physiological and biochemical characteristics. Therefore, strain NEAU-LZS-5(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces zhaozhouensis sp. nov. is proposed. The type strain is NEAU-LZS-5(T) ( = CGMCC 4.7095(T) = DSM 42101(T)). PMID:24368691

  2. [Bacteriocidal activity of Streptomyces cultures].

    Science.gov (United States)

    Polishchuk, L V; Bambura, O I; Luk'ianchuk, V V

    2012-01-01

    Bacteriocidal activity of metabolites synthesized by 17 plasmid-containing cultures of Streptomyces has been studied. These cultures were isolated from soils of Ukraine with different anthropogenic contamination. The cultures, in their majority (85.3%), synthesized bioactive metabolites, which suppressed growth of microorganisms of different taxonomical groups, pathogenic for people, animals or plants. None of 17 Streptomyces cultures was able to suppress growth of yeasts or Escherichia coli. All 17 investigated cultures of Streptomyces were polyresistant to antibiotics, which were used in medicine and veterinary: makrolide, aminoglycoside, beta-lactam and other groups. Resistance of 8 cultures to the antibiotic thiostrepton, which was widely used in some branches of science, was found. PMID:23088099

  3. Streptomyces alfalfae sp. nov. and comparisons with its closest taxa Streptomyces silaceus, Streptomyces flavofungini and Streptomyces intermedius.

    Science.gov (United States)

    She, Wenqing; Sun, Zhongfeng; Yi, Lei; Zhao, Shumiao; Liang, Yunxiang

    2016-01-01

    A novel streptomycete strain, designated XY25T, was isolated from the rhizosphere soil in an alfalfa field in Jingyang, Shanxi, China. The isolate showed optimal growth at 37 °C, and was capable of growing at pH 6-10 and in the presence of 0-6 % (w/v) NaCl. Mycelia of strain XY25T appeared spiral and developed into white spore chains with long-rod spores and a smooth surface. The 16S rRNA gene sequence of XY25T was determined and was found to be highly similar to those of species of the genus Streptomyces including Streptomyces silaceus DSM 41861T (99.11 % 16S rRNA gene sequence similarity), Streptomyces flavofungini DSM 40366T (98.49 %) and Streptomyces intermedius DSM 40372T (98.43 %), all of which were used for further characterization. Each of the four streptomycetes showed distinctive patterns of carbon usage and fatty acids composition. Analysis of cellular components of strain XY25T revealed ll-diaminopimelic acid as diagnostic diamino acid and xylose as the major sugar, whereas polar lipids were determined as phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid, two unknown phosphatidylinositol mannosides and several unknown lipids. Menaquinones were dominated by MK-9(H6) and MK-9(H8), and the main fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. DNA-DNA hybridization studies indicated that strain XY25T showed relatedness values of 35.2-40.42 % with the closest related species. Based on these results, strain XY25T represents a novel species of the genus Streptomyces, for which the name Streptomyces alfalfae sp. nov. is proposed. The type strain is XY25T ( = KCTC 39571T = CCTCC AA2015019T).

  4. Laboratory Course on "Streptomyces" Genetics and Secondary Metabolism

    Science.gov (United States)

    Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko

    2016-01-01

    The "'Streptomyces' genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria "Streptomyces" and their secondary metabolism. The course combines genetic modification of "Streptomyces"; growing of the strain and protoplast preparation, plasmid…

  5. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    Directory of Open Access Journals (Sweden)

    Cheryl P. Andam

    2016-04-01

    Full Text Available We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.

  6. Secondary peritonitis caused by Streptomyces viridis

    NARCIS (Netherlands)

    P. Datta (Priya); S. Arora (Shilpa); A. Jain (Ashok); J. Chander (Jagdish); W.W.J. van de Sande (Wendy)

    2012-01-01

    textabstractStreptomyces organisms are soil inhabitants rarely causing nonmycetomic infections. We describe a case of secondary peritonitis caused by Streptomyces viridis in a chronic alcoholic patient who presented with fever, abdominal distension, and pain in the abdomen. The most likely source of

  7. The search for synonyms among streptomycetes by using SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus.

    Science.gov (United States)

    Lanoot, B; Vancanneyt, M; Cleenwerck, I; Wang, L; Li, W; Liu, Z; Swings, J

    2002-05-01

    A collection of 93 Streptomyces reference strains were investigated using SDS-PAGE of whole-cell proteins. Computer-assisted numerical analysis revealed 24 clusters encompassing strains with very similar protein profiles. Five of them grouped several type strains with visually identical patterns. DNA-DNA hybridizations revealed homology values higher than 70% among these type strains. According to the current species concept, it is proposed that Streptomyces albosporeus subsp. albosporeus LMG 19403T is considered as a subjective synonym of Streptomyces aurantiacus LMG 19358T, that Streptomyces aminophilus LMG 19319T is considered as a subjective synonym of Streptomyces cacaoi subsp. cacaoi LMG 19320T, that Streptomyces niveus LMG 19395T and Streptomyces spheroides LMG 19392T are considered as subjective synonyms of Streptomyces caeruleus LMG 19399T, and that Streptomyces violatus LMG 19397T is considered as a subjective synonym of Streptomyces violaceus LMG 19360T. PMID:12054245

  8. Streptomyces development in colonies and soils

    DEFF Research Database (Denmark)

    Manteca, Angel; Sanchez, Jesus

    2009-01-01

    Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased.......Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased....

  9. Diversity among Streptomyces Strains Causing Potato Scab

    OpenAIRE

    Doering-Saad, Christiane; Kämpfer, Peter; Manulis, Shulamit; Kritzman, Giora; Schneider, Jörg; Zakrzewska-Czerwinska, Jolanta; Schrempf, Hildgund; Barash, Isaac

    1992-01-01

    Eighty Streptomyces isolates, including 35 potato scab-inducing strains and 12 reference strains of Streptomyces scabies, were physiologically characterized by a total of 329 miniaturized tests. Overall similarities of all strains were determined by numerical taxonomy, with the unweighted average linkage (UPGMA) algorithm and simple matching (Ssm) and Jaccard (Sj) coefficients used as measures for similarity. Three cluster groups (A to C) were defined at a similarity level of 80.1% (Ssm); the...

  10. Diversity among Streptomyces Strains Causing Potato Scab.

    Science.gov (United States)

    Doering-Saad, C; Kämpfer, P; Manulis, S; Kritzman, G; Schneider, J; Zakrzewska-Czerwinska, J; Schrempf, H; Barash, I

    1992-12-01

    Eighty Streptomyces isolates, including 35 potato scab-inducing strains and 12 reference strains of Streptomyces scabies, were physiologically characterized by a total of 329 miniaturized tests. Overall similarities of all strains were determined by numerical taxonomy, with the unweighted average linkage (UPGMA) algorithm and simple matching (S(sm)) and Jaccard (S(j)) coefficients used as measures for similarity. Three cluster groups (A to C) were defined at a similarity level of 80.1% (S(sm)); these groups contained 14 clusters and 24 unclustered strains defined at a similarity level of 86.5% (S(sm)). Cluster group A contained strains phenotypically related to S. griseus or S. exfoliatus, whereas cluster group B contained strains which were phenotypically related to S. violaceus or S. rochei. The majority of the pathogenic isolates and reference strains were assigned to S. violaceus (57%) and S. griseus (22%). A DNA probe derived from the rRNA operon of S. coelicolor IMET 40271 was used to detect restriction fragment length polymorphisms (RELPs) among 40 pathogenic and nonpathogenic Streptomyces isolates. Southern blots revealed a high degree of diversity among the pathogenic strains tested. No significant correlation between numerical classification and RFLP grouping of Streptomyces strains could be revealed. The results obtained suggest that RFLP data are of minor importance in classification of Streptomyces species and that genes for pathogenicity determinants are spread among different Streptomyces species by mobilizable elements. PMID:16348823

  11. Complete Genome Sequence of the Streptomyces Phage Nanodon

    Science.gov (United States)

    2016-01-01

    Streptomyces phage Nanodon is a temperate double-stranded DNA Siphoviridae belonging to cluster BD1. It was isolated from soil collected in Kilauea, HI, using Streptomyces griseus subsp. griseus as a host.

  12. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    Science.gov (United States)

    McHenney, M A; Baltz, R H

    1991-09-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  13. Streptomyces bacteria as potential probiotics in aquaculture

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2016-02-01

    Full Text Available In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  14. Streptomyces andamanensis sp. nov., isolated from soil.

    Science.gov (United States)

    Sripreechasak, Paranee; Tamura, Tomohiko; Shibata, Chiyo; Suwanborirux, Khanit; Tanasupawat, Somboon

    2016-05-01

    A novel actinomycete, strain KC-112T, was isolated from soil collected from Similan Islands, Phang-Nga Province, Thailand. The strain exhibited morphological and chemotaxonomic characteristics consistent with those of members of the genus Streptomyces. The formation of smooth spiral spore chains was observed on aerial mycelia. ll-Diaminopimelic acid was detected in whole-cell hydrolysates, but no diagnostic sugars were detected and the strain lacked mycolic acids. The N-acyl type of muramic acid was acetyl. The major menaquinones were MK-9(H8), MK-9(H6) and MK-9(H2). The predominant cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unknown phospholipid, an unknown aminolipid, unknown lipids and an unknown glycolipid. The DNA G+C content was 73 mol%. On the basis of 16S rRNA gene sequence analysis, strain KC-112T was closely related to Streptomyces fumanus NBRC 13042T (98.8 % 16S rRNA gene sequence similarity), Streptomyces anandii NBRC 13438T (98.8 %) and Streptomyces capillispiralis NBRC 14222T (98.8 %). DNA-DNA relatedness values among strain KC-112T and type strains of closely related species were lower than 70 %. On the basis of evidence from this taxonomic study using a polyphasic approach, strain KC-112T represents a novel species of the genus Streptomyces, namely Streptomyces andamanensis sp. nov. The type strain is KC-112T ( = KCTC 29502T = NBRC 110085T = PCU 347T = TISTR 2401T). PMID:26908169

  15. A new virginae butanolide from Streptomyces sp.

    Institute of Scientific and Technical Information of China (English)

    Xiang LI; Yi Nan ZHENG; Wen Han LIN; Isabel SATTLER

    2006-01-01

    A novel butanolide, named virginaebutanolide F (1), was isolated from the lyophilized culture broth of Streptomyces sp., along with a known compound virginaebutanolide C (2). Their structures including the stereochemistry were elucidated on the basis of extensive 1D and 2D NMR as well as HRESI-MS and CD spectroscopic analysis.

  16. Streptomyces hygroscopicus Has Two Glutamine Synthetase Genes

    NARCIS (Netherlands)

    Kumada, Y.; Takano, E.; Nagaoka, Kozo; Thompson, C.J.

    1990-01-01

    Streptomyces hygroscopicus, which produces the glutamine synthetase inhibitor phosphinothricin, possesses at least two genes (glnA and glnB) encoding distinct glutamine synthetase isoforms (GSI and GSII). The glnB gene was cloned from S. hygroscopicus DNA by complementation in an Escherichia coli gl

  17. Taxonomic and functional diversity of Streptomyces in a forest soil.

    Science.gov (United States)

    Bontemps, Cyril; Toussaint, Maxime; Revol, Pierre-Vincent; Hotel, Laurence; Jeanbille, Mathilde; Uroz, Stéphane; Turpault, Marie-Pierre; Blaudez, Damien; Leblond, Pierre

    2013-05-01

    In this work we report the isolation and the characterization of 79 Streptomyces isolates from a French forest soil. The 16S rRNA gene phylogeny indicated that a great diversity of Streptomyces was present in this soil, with at least nine different and potentially new species. Growth plate assays showed that most Streptomyces lineages exhibit cellulolytic and hemicellulolytic capacities and potentially participate in wood decomposition. Molecular screening for a specific hydrogenase also indicated a widespread potential for atmospheric H2 uptake. Co-culture experiments with representative strains showed antagonistic effects between Streptomyces of the same population and between Streptomyces and various fungi. Interestingly, in certain conditions, growth promotion of some fungi also occurred. We conclude that in forest soil, Streptomyces populations exhibit many important functions involved in different biogeochemical cycles and also influence the structure of soil microbial communities. PMID:23489323

  18. DETERMINATION O F TOTAL CELL PROTEIN PROFILES OF Streptomyces SPECIES

    OpenAIRE

    Özdemir K; Berber İ; Öğün E; Atalan M

    2013-01-01

    Present study has been conducted for finding out the total protein profile of bacterial strain Streptomyces sps by sodium dodecyl sulphate polyacrylamide gelelectrophoresis. Total 139 isolates of Streptomyces have been isolated from the soil. Amongst all isolated strain, total 20 isolates were used for getting protein profile by SDS PAGE. Amongst all isolates, 20 isolates were selected for protein profiling and these were divided in two groups. Two strains of Streptomyces i.e. S. violaceus...

  19. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  20. Genetics of Streptomyces rimosus, the Oxytetracycline Producer

    OpenAIRE

    Petković, Hrvoje; Cullum, John; Hranueli, Daslav; Hunter, Iain S.; Perić-Concha, Nataša; Pigac, Jasenka; Thamchaipenet, Arinthip; Vujaklija, Dušica; Long, Paul F.

    2006-01-01

    From a genetic standpoint, Streptomyces rimosus is arguably the best-characterized industrial streptomycete as the producer of oxytetracycline and other tetracycline antibiotics. Although resistance to these antibiotics has reduced their clinical use in recent years, tetracyclines have an increasing role in the treatment of emerging infections and noninfective diseases. Procedures for in vivo and in vitro genetic manipulations in S. rimosus have been developed since the 1950s and applied to s...

  1. Alkaline tolerant dextranase from streptomyces anulatus

    Science.gov (United States)

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  2. A gene cloning system for 'Streptomyces toyocaensis'.

    Science.gov (United States)

    Matsushima, P; Baltz, R H

    1996-02-01

    We explored different methods of introducing DNA into 'Streptomyces toyocaensis' and Streptomyces virginiae to construct stable recombinant strains. Plasmid pIJ702 isolated from Streptomyces lividans transformed protoplasts of 'S. toyocaensis' at a frequency of 7 x 10(3) transformants (mu g DNA)-1. pIJ702 prepared from 'S. toyocaensis' transformed 'S. toyocaensis' protoplasts at a frequency of 1 center dot 5 x 10(5) (mu g DNA)-1, suggesting that 'S. toyocaensis' expresses restriction and modification. Plasmid pRHB126 was transduced by bacteriophage FP43 into 'S. toyocaensis' at a frequency of 1.2 x 10(-6) (p.f.u)-1. Plasmids pOJ436 and pRHB304 were introduced into 'S. toyocaensis' by conjugation from Escherichia coli S17-1 at frequencies of about 2 x 10(-4) and 1 x 10(-4) per recipient, respectively. Analysis of several exconjugants indicated that pOJ436 and pRHB304 inserted into a unique phiC31 attB site and that some of the insertions had minimal deleterious effects on glycopeptide A47934 production. The results indicate that 'S. toyocaensis' is a suitable host for gene cloning, whereas S. virginiae does not appear to be.

  3. Bioremediation of Carbendazim by Streptomyces albogriseolus

    Directory of Open Access Journals (Sweden)

    Ridhima Arya

    2014-08-01

    Full Text Available Carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC is a benzimidazole fungicide which is used to protect crops against the attack of fungi. MBC has a half-life of about 3-12 months and remain persistent in the environment which may lead to many harmful consequences. Besides chemical and photo-catalytic degradation of pesticides, microbial degradation has now been evolved as a much effective and safer way to eliminate these harmful compounds from the environment. However, in the literature very few reports are available where microbial community is involved in degrading MBC. Hence, the present study was planned to investigate the role of microbes isolated from the field soils for the bioremediation of MBC. Soil samples were collected from wheat fields of northern regions of India. Enrichment culture technique was employed to isolate the bacterium which was found to be growing at higher concentrations of MBC up to 500µg/ml. After biochemical and morphological analysis, the bacterium was identified as Streptomyces albogriseolus. Streptomyces albogriseolus was found to degrade MBC in a time-dependent manner from the initial concentration of 29 ppm to 285.67ppb and 62.73ppb in 24hrs and 48hrs respectively. LCMS-MS analysis was carried out to detect 2-aminobenzimidazole, a metabolite formed after degradation in 10 hrs of growth which eventually disappeared after 24hrs of growth. The strain Streptomyces albogriseolus holds a promising potential to be an efficient MBC bioremediation agent.

  4. [Amylase inhibitors from Streptomyces lucensis VKPM Ac-1743 and Streptomyces violaceus VKPM Ac-1734].

    Science.gov (United States)

    Sharova, N Iu

    2015-01-01

    Inhibitors synthesized by the Streptomyces lucensis VKPM AS-1743 and Streptomyces violaceus VKPM AS-1734 strains were studied for their influence on amylases of different origin. The effect of the inhibitors was shown to be different on fungal amylase, pancreatic amylase, and amylase from human blood. It has been found that the studied inhibitors are substances of a pseudooligosaccharide nature and exhibit their activity and stability over a wide range of pH and temperature values. The physico-chemical and biochemical properties of isolated inhibitors were compared with those of known microbial inhibitors of α-glucosidases. PMID:25842903

  5. Molecular cloning and in vitro expression of a silent phenoxazinone synthase gene from Streptomyces lividans.

    Science.gov (United States)

    Madu, A C; Jones, G H

    1989-12-14

    Phenoxazinone synthase (PHS) catalyzes a step in actinomycin D biosynthesis in Streptomyces antibioticus. Two sequences from Streptomyces lividans that hybridize to the phs gene of S. antibioticus have been cloned in Escherichia coli K-12 using the plasmid pBR322. Although there was some similarity in the restriction maps of the two cloned fragments, neither insert appeared to be a direct subset of the other nor of the S. antibioticus phs gene. In vitro expression studies, in a streptomycete coupled transcription-translation system, showed that a 3.98-kb SphI fragment encoded a PHS-related protein. These observations provide additional support for the existence of silent genes for antibiotic production in streptomycetes.

  6. Streptomyces mangrovi sp. nov., isolated from mangrove forest sediment.

    Science.gov (United States)

    Yousif, Ghada; Busarakam, Kanungnid; Kim, Byung-Yong; Goodfellow, Michael

    2015-09-01

    A Streptomyces strain isolated from a mangrove sediment was classified using a polyphasic approach. The organism, isolate GY1(T), was found to have chemical and morphological properties typical of members of the genus Streptomyces. The isolate was shown to form a distinct phyletic line within the Streptomyces radiopugnans 16S rRNA gene subclade and to be closely related to the type strain of Streptomyces fenhuangensis (98.7 % similarity). It is also closely related to the type strain of Streptomyces bakulensis which was also closely related to members of the Streptomyces glaucosporus 16S rRNA gene subclade. Isolate GY1(T) was distinguished readily from the S. barkulensis type strain and from species classified in the S. radiopugnans clade using a combination of morphological and physiological properties, including a requirement for seawater for growth. Based on the genotypic and phenotypic data, it is proposed that isolate GY1(T) (=NCIMB 14980(T), NRRL B-69296(T)) be classified in the genus Streptomyces as Streptomyces mangrovi sp. nov. PMID:26187116

  7. High-Throughput Screening for Streptomyces Antibiotic Biosynthesis Activators

    OpenAIRE

    Li CHEN; Wang, Yemin; Guo, Hang; Xu, Min; Deng, Zixin; Tao, Meifeng

    2012-01-01

    A genomic cosmid library of Streptomyces clavuligerus was constructed and transferred efficiently by conjugation to Streptomyces lividans, and 12 distinct groups of overlapping cosmid clones that activated the silent actinorhodin biosynthesis gene cluster were identified. This generally applicable high-throughput screening procedure greatly facilitates the identification of antibiotic biosynthesis activators.

  8. Restriction of bacteriophage plaque formation in Streptomyces spp.

    Science.gov (United States)

    Cox, K L; Baltz, R H

    1984-08-01

    Several Streptomyces species that produce restriction endonucleases were characterized for their ability to propagate 10 different broad host range bacteriophages. Each species displayed a different pattern of plaque formation. A restrictionless mutant of S. albus G allowed plaque formation by all 10 phages, whereas the wild-type strain showed plaques with only 2 phages. DNA isolated from three of the phages was analyzed for the presence of restriction sites for Streptomyces species-encoded enzymes, and a very strong correlation was established between the failure to form plaques on Streptomyces species that produced particular restriction enzymes and the presence of the corresponding restriction sites in the phage DNA. Also, the phages that lacked restriction sites in their DNA generally formed plaques on the corresponding restriction endonuclease-producing hosts at high efficiency. The DNAs from the three phages analyzed also generally contained either many or no restriction sites for the Streptomyces species-produced enzymes, suggesting a strong evolutionary trend to either eliminate all or tolerate many restriction sites. The data indicate that restriction plays a major role in host range determination for Streptomyces phages. Analysis of bacteriophage host ranges of many other uncharacterized Streptomyces hosts has identified four relatively nonrestricting hosts, at least two of which may be suitable hosts for gene cloning. The data also suggest that several restriction systems remain to be identified in the genus Streptomyces.

  9. A novel Streptomyces gene, samR, with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor.

    Science.gov (United States)

    Tan, Huarong; Tian, Yuqing; Yang, Haihua; Liu, Gang; Nie, Liping

    2002-03-01

    A 1.4-kb DNA fragment from Streptomyces ansochromogenes accelerated mycelium formation of S. ansochromogenes when present on a multicopy plasmid. The DNA fragment contains one complete open reading frame, designated samR, encoding a protein with 213 amino acids that contains a likely DNA-binding helix-turn-helix motif close to its N-terminus. The deduced SamR protein resembles the product of the hppR gene, which is involved in the regulation of catabolism of 3-(3-hydroxyphenyl) propionate in Rhodococcus globerulus. A samR disruption mutant was constructed that presented a bald phenotype and failed to form aerial hyphae and spores. We suggest that samR plays an important role in the emergence of aerial hyphae from substrate mycelium. An almost identical gene of Streptomyces coelicolor was also subjected to gene disruption. Surprisingly, the mutant was able to develop an aerial mycelium, but it remained white and deficient in sporulation instead of forming gray spores. PMID:11907684

  10. Occurrence of Streptomyces aurantiacus in Mangroves of Bhitarkanika

    Directory of Open Access Journals (Sweden)

    Gupta, N.

    2007-01-01

    Full Text Available Thirteen strains of Streptomyces were isolated from phyllosphere of nine mangrove tree species found in Bhitarkanika mangrove ecosystem of Orissa. According to physiological, biochemical data, all 13 of the isolates were taxonomically identified to the genus Streptomyces as aurantiacus species. All strains are grayish, spirals and forming amorphous colony. Almost all utilized araginose, produced H2S, resistant towards rifampicin and penicillin, urea except few strains. However, they exhibited different extracellular activity like phosphate solubilization, lipase and L asparaginase production. This is a unique report from this mangrove ecosystem as far as Streptomyces occurrence is concerned.

  11. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  12. Expression by Streptomyces lividans of the Rat α Integrin CD11b A-Domain as a Secreted and Soluble Recombinant Protein

    Directory of Open Access Journals (Sweden)

    Dorra Zouari Ayadi

    2007-01-01

    Full Text Available We already reported the use of a long synthetic signal peptide (LSSP to secrete the Streptomyces sp. TO1 amylase by Streptomyces lividans strain. We herein report the expression and secretion of the rat CD11b A-domain using the same LSSP and S. lividans as host strain. We have used the Escherichia coli/Streptomyces shuttle vector pIJ699 for the cloning of the A-domain DNA sequence downstream of LSSP and under the control of the constitutive ermE-up promoter of Streptomyces erythraeus. Using this construct and S. lividans as a host strain, we achieved the expression of 8 mg/L of soluble secreted recombinant form of the A-domain of the rat leukocyte β2 integrin CD11/CD18 alpha M subunit (CD11b. This secreted recombinant CD11b A-domain reacted with a function blocking antibody showing that this protein is properly folded and probably functional. These data support the capability of Streptomyces to produce heterologous recombinant proteins as soluble secreted form using the “LSSP” synthetic signal peptide.

  13. [Studies on regulation of glutamine synthetase activity from Streptomyces lincolnensis].

    Science.gov (United States)

    Jin, Z; Jiao, R; Mao, Y

    2001-08-01

    Glutamine synthetase in crude extracts from Streptomyces lincolnensis growing under different nitrogen sources were studied. The results showed that NH4+ in high concentration repressed the biosynthesis of the enzyme. To determine whether Streptomyces lincolnensis has undergone covalent modification, a comparison of the glutamine synthetase isolated from cells grown on different nitrogen sources was made. No significant difference was observed in specific activity, pH optima, divalent cation response, and ultraviolet absorption spectra. Glutamine synthetase activity was not influenced by ammonia shock or snake venom phosphodiesterase treatment. Under these conditions, the activity of glutamine synthetase from K. aerogenes was markedly changed. There was therefore no evidence for enzymatic adenylylation of glutamine synthetase from Streptomyces lincolnensis. Glutamine synthetase was subject to feedback inhibition by end products of glutamine metabolism. Cumulative feedback inhibition of the Mn(2+)-dependent glutamine synthetase activity was demonstrated. These results suggest that glutamine synthetase from Streptomyces lincolnensis is an allosteric enzyme. PMID:12552916

  14. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.

    Science.gov (United States)

    El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A

    2008-07-01

    In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time. PMID:18551256

  15. Snail-Killing Effects of Streptomyces 218 Powder

    OpenAIRE

    V.O. Aina; A.A.J. Adewumi; C.O. Yao; M.Z. Shi; Hu, D. Y.; W.H. Chai

    2012-01-01

    This study is aimed at finding out the snail-killing effects of Streptomyces 218 powder on Oncomelania hupensis snails which are the vectors or intermediate host of Schiltosoma Japonicum (intestinal schistosomiasis) in china the tests were carried out in the laboratory and on the field. The snail-killing effects of Streptomyces218 powder, isolated from snail habitat at Anchang Village of Anxiang country in China was tested using the immersion and spraying methods. The tests on the Oncomelania...

  16. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    OpenAIRE

    Bonaldi, Maria; Chen, Xiaoyulong; Kunova, Andrea; Pizzatti, Cristina; Saracchi, Marco; Cortesi, Paolo

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plas...

  17. Molecular cloning and characterization of the aklavinone 11-hydroxylase gene of Streptomyces peucetius subsp. caesius ATCC 27952.

    OpenAIRE

    Hong, Y S; Hwang, C K; Hong, S. K.; Kim, Y.H.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea); Lee, J. J.

    1994-01-01

    The gene encoding aklavinone 11-hydroxylase of Streptomyces peucetius subsp. caesius ATCC 27952 was cloned and sequenced. The deduced amino acid sequence of the gene contains at least two common motifs of well-conserved amino acid sequences of several flavin-type bacterial hydroxylases. The hydroxylase gene is apparently transcribed from a single transcriptional start point. The phenotype of a dnrF mutant generated by gene disruption supports the idea that the dnrF gene encodes aklavinone 11-...

  18. [Progress in developing and applying Streptomyces chassis - A review].

    Science.gov (United States)

    Xiao, Liping; Deng, Zixin; Liu, Tiangang

    2016-03-01

    Natural products and their derivatives play an important role in modern healthcare. Their diversity in bioactivity and chemical structure inspires scientists to discover new drug entities for clinical use. However, chemical synthesis of natural compounds has insurmountable difficulties in technology and cost. Also, many original-producing bacteria have disadvantages of needing harsh cultivation conditions, having low productivity and other shortcomings. In addition, some gene clusters responsible for secondary metabolite biosynthesis are silence in the original strains. Therefore, it is of great significance to exploit strategy for the heterologous expression of natural products guided by synthetic biology. Recently, researchers pay more attention on using actinomycetes that are the main source of many secondary metabolites, such as antibiotics, anticancer agents, and immunosuppressive drugs. Especially, with huge development of genome sequencing, abundant resources of natural product biosynthesis in Streptomyces have been discovered, which highlight the special advantages on developing Streptomyces as the heterologous expression chassis cells. This review begins with the significance of the development of Streptomyces chassis, focusing on the strategies and the status in developing Streptomyces chassis cells, followed by examples to illustrate the practical applications of a variety of Streptomyces chassis.

  19. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya.

    Science.gov (United States)

    Braña, Alfredo F; Rodríguez, Miriam; Pahari, Pallab; Rohr, Jurgen; García, Luis A; Blanco, Gloria

    2014-05-01

    Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography-mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery. PMID:24633227

  20. DNA cloning in Streptomyces: a bifunctional replicon comprising pBR322 inserted into a Streptomyces phage.

    Science.gov (United States)

    Suarez, J E; Chater, K F

    1980-07-31

    The Gram-positive, mycelial, differentiating streptomycetes are responsible for the production of many important antibiotics. The availability of gene cloning systems in this microbial group would have many industrial applications besides allowing more penetrating study of the genetics of Streptomyces coelicolor A3(2) (which, as the best understood streptomycete genetically, serves as a model for much other Streptomyces genetics). Recent successes (see previous paper) in introducing Streptomyces DNA into S. coelicolor and Streptomyces lividans on plasmid vectors would be nicely complemented by the availability of Streptomyces bacteriophage vectors (discussed in ref. 5): for example, many phages have wide and easily defined host ranges; heat-inducible prophages might be used to give high copy number of cloned DNA; efficient phage promoters might be used to increase gene expression; there may be differential stabilities for particular DNA sequences cloned in plasmids vis-à-vis phages; selective insertion of DNA, utilizing packaging constraints, may be possible with phages; and in situ hybridization of radioactive probes to DNA in plaques is likely to be simple. We describe here the use of the moderately wide host range temperate phage, phi C31, for this purpose.

  1. Natural Product Discovery through Improved Functional Metagenomics in Streptomyces.

    Science.gov (United States)

    Iqbal, Hala A; Low-Beinart, Lila; Obiajulu, Joseph U; Brady, Sean F

    2016-08-01

    Because the majority of environmental bacteria are not easily culturable, access to many bacterially encoded secondary metabolites will be dependent on the development of improved functional metagenomic screening methods. In this study, we examined a collection of diverse Streptomyces species for the best innate ability to heterologously express biosynthetic gene clusters. We then optimized methods for constructing high quality metagenomic cosmid libraries in the best Streptomyces host. An initial screen of a 1.5 million-membered metagenomic library constructed in Streptomyces albus, the species that exhibited the highest propensity for heterologous expression of gene clusters, led to the identification of the novel natural product metatricycloene (1). Metatricycloene is a tricyclic polyene encoded by a reductive, iterative polyketide-like gene cluster. Related gene clusters found in sequenced genomes appear to encode a largely unexplored collection of structurally diverse, polyene-based metabolites. PMID:27447056

  2. Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.

    Science.gov (United States)

    Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F

    2015-01-01

    The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro. PMID:25632796

  3. Molecular regulation of devel- opment and differentiation in Streptomyces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@\tDevelopment and differentiation is an important and leading research field in modern biology. Streptomyces has a complicated life cycle of morphological differentia-tion including the spore germination, aerial mycelium and spore formation. Each developmental stage has a distin-guished morphological feature which greatly facilitates the identification of developmental mutants, the comple-mentary cloning and the spatial and temporal expression of the genes involved in differentiation. This characteristic of Streptomyces is comparatively superior to other pro-karyotic bacteria such as Escherichia coli, Bacillus sub-tilis and Myxococcus xanthus. Moreover, Streptomyces also possesses a complicated physiological differentiation in which it produces a wide variety of secondary metabo-lites (more than half of the 12 000 or so known antibiot-ics), including many important antibiotics used in medi-cine, agriculture and industry. Studies on the molecular mechanism of antibiotic biosynthesis will be helpful in improving the antibiotic producer and developing some new medicines. In comparison with eukaryotic microor-ganism such as Asperillus nidulans, the structure of ge-netic material in Streptomyces is simple, and it is benefi-cial to studying gene expression and regulation. Remarka-bly, the genome of Streptomyces has some unusual char-acteristics in bacteria; for example, it is linear and con-tains more genes than other prokaryotes, even than eukaryotes such as saccharomyces cerevisiae. The large number of genes are the molecular basis of Streptomyces differentiation, suggesting that the regulation mechanism of gene expression in differentiation and development may be complex[1].

  4. Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species.

    Science.gov (United States)

    El-Bondkly, Ahmed M A; El-Gendy, Mervat M A; Bassyouni, Rasha H

    2012-11-01

    Thirty-four endophytic marine Actinomycetes isolates were recovered from the Egyptian marine sponge Latrunculia corticata, out of them 5 isolates (14.7 %) showed red single colonies on yeast-CzAPEK plates. Isolates under the isolation code NRC50 and NRC51 were observed with the strongest red biomass. After application of protoplast fusion between NRC50 and NRC51 isolates, 26 fusants were selected and produced widely different amounts of prodigiosin-like pigments (PLPs) on different fermentation media. Among them fusant NRCF69 produced 79 and 160.4 % PLPs more than parental strains NRC50 and NRC51, respectively. According to the analysis of 16S rDNA sequence (amplified, sequenced, and submitted to GenBank under Accession no. JN232405 and JN232406, respectively), together with their morphological and biochemical characteristics, parental strains NRC50 (P1) and NRC51 (P2) were identified as Streptomyces sp. and designated as Streptomyces sp. NRC50 and Streptomyces sp. NRC51. This study describes a low cost, effective production media by using peanut seed broth, sunflower oil broth or dairy processing wastewater broth alone, or supplemented with 0.5 % mannitol that supports the production of PLPs by the Streptomyces fusant NRCF69 under study (42.03, 40.11, 36.7 and 47 g L(-1), respectively). PLPs compounds exhibited significant cytotoxic activities against three human cancer cell lines: colon cancer cell line (HCT-116), liver cancer cell line (HEPG-2) and breast cancer cell line (MCF-7) and antimycotic activity against clinical dermatophyte isolates of Trichophyton, Microsporum and Epidermophyton.

  5. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    Directory of Open Access Journals (Sweden)

    Qin Zhongjun

    2011-10-01

    Full Text Available Abstract Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus. Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor, moderately thermophilic (growing at both 30°C and 50°C Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2 and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed.

  6. 75 FR 44251 - Wood Oils and Gums, and Streptomyces

    Science.gov (United States)

    2010-07-28

    .... In the United States, cedarwood oil is mainly extracted from Juniperus virginiana (Eastern red cedar or Virginia cedar), Juniperus ashei or mexicana (Texas cedar), and Thuja plicata (Western red cedar... AGENCY EPA-HQ-OPP-2010-0441; FRL-8829-8 Wood Oils and Gums, and Streptomyces Strain K61;...

  7. Glutathione S-Transferase Isoenzymes from Streptomyces griseus

    OpenAIRE

    Dhar, Kajari; Dhar, Alok; Rosazza, John P. N.

    2003-01-01

    An inducible, cytosolic glutathione S-transferase (GST) was purified from Streptomyces griseus. GST isoenzymes with pI values of 6.8 and 7.9 used standard GST substrates including 1-chloro-2,4-dinitrobenzene. GST had subunit and native Mrs of 24 and 48, respectively, and the N-terminal sequence SMILXYWDIIRGLPAH.

  8. Genetic instability and strain degeneration in Streptomyces rimosus.

    OpenAIRE

    Gravius, B; Bezmalinović, T; Hranueli, D.; Cullum, J

    1993-01-01

    During a strain selection program to improve oxytetracycline production in Streptomyces rimosus R6, isolates that showed extreme morphological instability appeared. Propagation via spores gave much higher instability than did propagation via mycelial fragments. Five phenotypic traits were affected: sporulation, pigmentation, colony morphology, oxytetracycline production, and oxytetracycline resistance. The variants were classified on the basis of oxytetracycline resistance into three classes....

  9. Metabolomic Characterization of the Salt Stress Response in Streptomyces coelicolor

    NARCIS (Netherlands)

    Kol, Stefan; Merlo, M. Elena; Scheltema, Richard A.; de Vries, Marcel; Vonk, Roel J.; Kikkert, Niels A.; Dijkhuizen, Lubbert; Breitling, Rainer; Takano, Eriko

    2010-01-01

    The humicolous actinomycete Streptomyces coelicolor routinely adapts to a wide variety of habitats and rapidly changing environments. Upon salt stress, the organism is also known to increase the levels of various compatible solutes. Here we report the results of the first high-resolution metabolomic

  10. DETERMINATION O F TOTAL CELL PROTEIN PROFILES OF Streptomyces SPECIES

    Directory of Open Access Journals (Sweden)

    Özdemir K

    2013-07-01

    Full Text Available Present study has been conducted for finding out the total protein profile of bacterial strain Streptomyces sps by sodium dodecyl sulphate polyacrylamide gelelectrophoresis. Total 139 isolates of Streptomyces have been isolated from the soil. Amongst all isolated strain, total 20 isolates were used for getting protein profile by SDS PAGE. Amongst all isolates, 20 isolates were selected for protein profiling and these were divided in two groups. Two strains of Streptomyces i.e. S. violaceus and S. albidoflavus were selected as a reference strain for both groups. Band profile were analyzed and assessed by computer added program BioRad Quantity with the use of Unweighted Pair Group Method of Analysis (UPGMA. As a result o f this computer assisted numeric analysis study, approximately 40 different types of protein bands were reported between 10 or 100 kD molecular weight. Analysis of acquired dendogram on the basis of similarities ratios, all 40 proteins can be divid ed in to 7 groups. In addition, the isolates A4B3G, D145B, S5036.6 and reference isolate S. violaceus were available in the same group, while 805A, C804B, F1705 isolates and reference sample S.albidoflavus were detected in the same group. The test organisms which were similar to each other in terms of morphological and biochemical characters delivered the same protein bands. SDS-PAGE method is an effective method interms of determining taxonomical relations between the various species of genus Streptomyces.

  11. A New Degraded Sesquiterpene from Marine Actinomycete Streptomyces sp. 0616208

    Institute of Scientific and Technical Information of China (English)

    Xiu Chao XIE; Wen Li MEI; You Xing ZHAO; Kui HONG; Hao Fu DAI

    2006-01-01

    A new degraded sesquiterpene was isolated from the marine actinomycete Streptomyces sp. 0616208. Its structure was elucidated as (1α, 4aα, 5α, 7β, 8aβ)-5, 8a-dimethyl-decahydrona-phthalene-1, 4a, 7-triol on the basis of spectroscopic data.

  12. Case report of Streptomyces endocarditis of a prosthetic aortic valve.

    Science.gov (United States)

    Mossad, S B; Tomford, J W; Stewart, R; Ratliff, N B; Hall, G S

    1995-01-01

    We describe the first case of prosthetic valve endocarditis due to a Streptomyces sp. The patient presented with fever, cutaneous embolic lesions, and bacteremia 3 months after aortic valve replacement. Treatment required valve replacement and a long course of parenteral imipenem. PMID:8586732

  13. Case report of Streptomyces endocarditis of a prosthetic aortic valve.

    OpenAIRE

    Mossad, S B; Tomford, J W; Stewart, R; Ratliff, N B; Hall, G. S.

    1995-01-01

    We describe the first case of prosthetic valve endocarditis due to a Streptomyces sp. The patient presented with fever, cutaneous embolic lesions, and bacteremia 3 months after aortic valve replacement. Treatment required valve replacement and a long course of parenteral imipenem.

  14. The stringent response in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Strauch, E.; Takano, E.; Baylis, H.A.; Bibb, M.J.

    1991-01-01

    The stringent response was elicited in the antibiotic producer Streptomyces coelicolor A3(2) either by amino acid depletion (nutritional shiftdown) or by the addition of serine hydroxamate; both led to increased levels of ppGpp and to a reduction in transcription from the four promoters of the rrnD

  15. Semi-solid-state fermentation: a promising alternative for neomycin production by the actinomycete Streptomyces fradiae.

    Science.gov (United States)

    Machado, Isabel; Teixeira, José A; Rodríguez-Couto, Susana

    2013-06-10

    The production of neomycin by the actinomycete Streptomyces fradiae, under semi-solid-state fermentation conditions was the main subject of this study. Two supports (nylon sponge and orange peelings) were tested in order to determine the most suitable one for the production of neomycin by the above-mentioned microorganism. Nylon sponge led to the highest neomycin production, reaching a maximum value of 13,903 μg/mL on the 10th day of cultivation. As a control, the same experiment was performed under submerged fermentation (SmF) conditions, without solid support. Here the production of neomycin by S. fradiae was about 55-fold lower (i.e. 250 μg/mL) than that obtained for SSF.

  16. Recombinant production of Streptococcus equisimilis streptokinase by Streptomyces lividans

    Directory of Open Access Journals (Sweden)

    Vallín Carlos

    2007-07-01

    Full Text Available Abstract Background Streptokinase (SK is a potent plasminogen activator with widespread clinical use as a thrombolytic agent. It is naturally secreted by several strains of beta-haemolytic streptococci. The low yields obtained in SK production, lack of developed gene transfer methodology and the pathogenesis of its natural host have been the principal reasons to search for a recombinant source for this important therapeutic protein. We report here the expression and secretion of SK by the Gram-positive bacterium Streptomyces lividans. The structural gene encoding SK was fused to the Streptomyces venezuelae CBS762.70 subtilisin inhibitor (vsi signal sequence or to the Streptomyces lividans xylanase C (xlnC signal sequence. The native Vsi protein is translocated via the Sec pathway while the native XlnC protein uses the twin-arginine translocation (Tat pathway. Results SK yield in the spent culture medium of S. lividans was higher when the Sec-dependent signal peptide mediates the SK translocation. Using a 1.5 L fermentor, the secretory production of the Vsi-SK fusion protein reached up to 15 mg SK/l. SK was partially purified from the culture supernatant by DEAE-Sephacel chromatography. A 44-kDa degradation product co-eluted with the 47-kDa mature SK. The first amino acid residues of the S. lividans-produced SK were identical with those of the expected N-terminal sequence. The Vsi signal peptide was thus correctly cleaved off and the N-terminus of mature Vsi-SK fusion protein released by S. lividans remained intact. This result also implicates that the processing of the recombinant SK secreted by Streptomyces probably occurred at its C-terminal end, as in its native host Streptococcus equisimilis. The specific activity of the partially purified Streptomyces-derived SK was determined at 2661 IU/mg protein. Conclusion Heterologous expression of Streptococcus equisimilis ATCC9542 skc-2 in Streptomyces lividans was successfully achieved. SK can be

  17. Genome sequence of a new Streptomyces coelicolor generalized transducing bacteriophage, ΦCAM.

    Science.gov (United States)

    Monson, Rita; Salmond, George P C

    2012-12-01

    Streptomyces coelicolor is a model system for the study of Streptomyces, a genus of bacteria responsible for the production of many clinically important antibiotics. Here we report the genome sequence of ΦCAM, a new S. coelicolor generalized transducing bacteriophage, isolated from a soil sample originating from Lincolnshire, United Kingdom. Many open reading frames within ΦCAM shared high levels of similarity to a prophage from Salinispora tropica and a putative prophage in Streptomyces sp. strain C.

  18. Quorum Sensing Inhibiting Activity of Streptomyces coelicoflavus Isolated from Soil.

    Science.gov (United States)

    Hassan, Ramadan; Shaaban, Mona I; Abdel Bar, Fatma M; El-Mahdy, Areej M; Shokralla, Shadi

    2016-01-01

    Quorum sensing (QS) systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI) activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1-V6) of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR, and Mass spectrometry), as behenic acid (docosanoic acid), borrelidin, and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease, and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA, and pqsR). Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and anti

  19. Quorum sensing inhibiting activity of Streptomyces coelicoflavus isolated from soil

    Directory of Open Access Journals (Sweden)

    Hassan eRamadan

    2016-05-01

    Full Text Available Quorum sensing (QS systems communicate bacterial population and stimulate microbial pathogenesis through signaling molecules. Inhibition of QS signals potentially suppresses microbial infections. Antimicrobial properties of Streptomyces have been extensively studied, however, less is known about quorum sensing inhibitory (QSI activities of Streptomyces. This study explored the QSI potential of Streptomyces isolated from soil. Sixty-five bacterial isolates were purified from soil samples with morphological characteristics of Streptomyces. The three isolates: S6, S12, and S17, exhibited QSI effect by screening with the reporter, Chromobacterium violaceum. Isolate S17 was identified as Streptomyces coelicoflavus by sequencing of the hypervariable regions (V1-V6 of 16S rRNA and was assigned gene bank number KJ855087. The QSI effect of the cell-free supernatant of isolate S17 was not abolished by proteinase K indicating the non-enzymatic activity of QSI components of S17. Three major compounds were isolated and identified, using spectroscopic techniques (1D, 2D NMR and Mass spectrometry, as behenic acid (docosanoic acid, borrelidin and 1H-pyrrole-2-carboxylic acid. 1H-pyrrole-2-carboxylic acid inhibited QS and related virulence factors of Pseudomonas aeruginosa PAO1 including; elastase, protease and pyocyanin without affecting Pseudomonas viability. At the molecular level, 1H-pyrrole-2-carboxylic acid suppressed the expression of QS genes (lasI, lasR, lasA, lasB, rhlI, rhlR, pqsA and pqsR. Moreover, QSI activity of S17 was assessed under different growth conditions and ISP2 medium supplemented with glucose 0.4% w/v and adjusted at pH 7, showed the highest QSI action. In conclusion, 1H-pyrrole-2-carboxylic acid, one of the major metabolites of Streptomyces isolate S17, inhibited QS and virulence determinants of P. aeruginosa PAO1. The findings of the study open the scope to exploit the in vivo efficacy of this active molecule as anti-pathogenic and

  20. Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505.

    Science.gov (United States)

    Keller, Simone; Schneider, Kathrin; Süssmuth, Roderich D

    2006-12-01

    Mycorrhiza helper bacterium Streptomyces strain AcH 505 stimulates ectomycorrhiza formation between spruce and fly agaric by supporting fungal growth whereas growth of pathogenic fungi is suppressed. A fungal growth promoting substance was isolated and the chemical structure elucidated by mass spectrometry and NMR spectroscopy. The absolute configuration of the novel fungal growth promoting compound auxofuran (1) was deduced from NMR data with the help of Mosher esters. PMID:17323648

  1. Determination of optimal conditions of oxytetracyclin production from streptomyces rimosus

    International Nuclear Information System (INIS)

    Streptomyces rimosus is an oxytetracycline (OTC) antibiotic producing bacteria that exhibited activities against gram positive and negative bacteria. OTC is used widely not only in medicine but also in production industry. The antibiotic production of streptomyces covers a very wide range of condition. However, antibiotic producers are particularly fastidious cultivated by proper selection of media such as carbon source. In present study we have optimised conditions of OTC production (Composition of production media, p H, shaking and temperature). The results have been shown that bran barley is the optimal media for OTC production at 28C pH5.8 at 150rpm for 5 days. For antibiotic determination, OTC was extracted with different organic solvent. Thin-layer chromatography system was used for separation and identification of OTC antibiotic. High performance liquid chromatographic (HPLC) method with ultraviolet detection for the analysis of OTC is applied to the determination of OTC purification. (Author). 24 refs

  2. Efficient production of nonactin by Streptomyces griseus subsp. griseus.

    Science.gov (United States)

    Zhan, Yulian; Zheng, Shaolun

    2016-08-01

    Here we report the production of the cyclic macrotetrolide nonactin from the fermentation culture of Streptomyces griseus subsp. griseus. Nonactin is a member of a family of naturally occurring cyclic ionophores known as the macrotetrolide antibiotics. Our fermentation procedure of Streptomyces griseus was performed at 30 °C and 200 rev·min(-1) for 5 days on a rotary shaker. Diaion HP-20 and Amberlite XAD-16 were added to the fermentation medium. Isolated yield of nonactin was up to 80 mg·L(-1) using our methodology. Nonactin is commonly known as an ammonium ionophore and also exhibits antibacterial, antiviral, and antitumor activities. It is also widely used for the preparation of ion-selective electrodes and sensors. Chemical synthesis of nonactin has been achieved by some groups; however, overall yields are very low, making efficient biosynthesis an attractive means of production. PMID:27405846

  3. Snail-Killing Effects of Streptomyces 218 Powder

    Directory of Open Access Journals (Sweden)

    V.O. Aina

    2012-12-01

    Full Text Available This study is aimed at finding out the snail-killing effects of Streptomyces 218 powder on Oncomelania hupensis snails which are the vectors or intermediate host of Schiltosoma Japonicum (intestinal schistosomiasis in china the tests were carried out in the laboratory and on the field. The snail-killing effects of Streptomyces218 powder, isolated from snail habitat at Anchang Village of Anxiang country in China was tested using the immersion and spraying methods. The tests on the Oncomelania hupensis snails which are intermediate host of Streptomyces japonicum infection were carried out in the laboratory and in the field. The mean corrected snail mortalities of the immersion technique in the laboratory were 81.70 and 98.63% in 10 ppm of 218 solutions after 24 and 48 h, respectively. The mean corrected snail mortalities of the spraying tests in the laboratory were 82.90 and 87.90% at 3 and 5 days, respectively with 10 g/m2 218 powders. The snail-killing ability of 218 powders on the field determines by immersion and spraying methods were comparable to that of the chemical molluscicide-Niclosamide. The corrected snail mortality at 150 ppm of 218 powder (g/m2 and at 2 ppm of Niclosamide by immersion was 100% at the second time test after 24, 48 and 72 h. In the field spraying test, the mean corrected snail mortality at 100 ppm of 218 powders were 61.96 and 70.00% after 3 and 7 days of spraying respectively. At 2 ppm niclosamide, this was found to be 65.58 and 63.81%, respectively. The effective ingredients for the snail-killing are found to be located in the spore chains. Streptomyces 218 powder, although at higher concentrations, seems to be a promising mollusciciding biological agent. If developed further, this could compliment existing mollusciciding agents.

  4. Kinetics of rapamycin production by Streptomyces hygroscopicus MTCC 4003

    OpenAIRE

    Dutta, Subhasish; Bikram BASAK; Bhunia, Biswanath; Chakraborty, Samayita; Dey, Apurba

    2013-01-01

    Research work was carried out to describe the kinetics of cell growth, substrate consumption and product formation in batch fermentation of rapamycin using shake flask as well as laboratory-scale fermentor. Fructose was used as the sole carbon source in the fermentation media. Optimization of fermentation parameters and reliable mathematical models were used for the maximum production of rapamycin from Streptomyces hygroscopicus MTCC 4003. The experimental data for microbial production of rap...

  5. Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species.

    Science.gov (United States)

    Ohlendorf, Birgit; Schulz, Dirk; Erhard, Arlette; Nagel, Kerstin; Imhoff, Johannes F

    2012-07-27

    Geranylphenazinediol (1), a new phenazine natural product, was produced by the Streptomyces sp. strain LB173, which was isolated from a marine sediment sample. The structure was established by analysis of NMR and MS data. 1 inhibited the enzyme acetylcholinesterase in the low micromolar range and showed weak antibacterial activity. In order to get a more detailed picture of the activity profile of 1, its inhibitory potential was compared to that of related structures. PMID:22775474

  6. Screening and identification of antibiotic producing strains of Streptomyces.

    Science.gov (United States)

    Haque, S F; Sen, S K; Pal, S C

    1992-01-01

    About 450 actinomycetes were isolated from nearly 100 soil samples collected from different parts of West Bengal. The isolates were screened on the basis of their inhibitory effect against test organisms. Finally two potent antibiotic producers were chosen having maximum inhibitory effect on both gram positive and gram negative test bacteria. On the basis of morphological, structural, physiological and biochemical characters, the two potent antibiotic producers were identified as Streptomyces violaceus-niger and S. antibioticus. PMID:1289300

  7. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    OpenAIRE

    М. P. Teplitskaya; I. E. Sokolova

    2005-01-01

    These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of ini...

  8. Fermenter studies on the production of pimaricin by streptomyces natalensis

    OpenAIRE

    Mahon, David

    1990-01-01

    The production of the polyene antibiotic, pimaricin by the organism Streptomyces natalensis CBS 700.57 was studied using an apparatus comprising a 10 litre fermentation vessel, and facilities for temperature, pH, dissolved oxygen, vessel pressure and gas composition measurement. The apparatus was connected via a Texas Instruments PM550 programmable logic controller to an IBM-compatible computer in order to record data from the fermentation and to control certain parameters. Adju...

  9. BIOCHEMICAL, NUTRIENT AND INHIBITORY CHARACTERISTICS OF STREPTOMYCES CULTURED FROM A HYPERSALINE ESTUARY, THE LAGUNA MADRE (TEXAS

    Directory of Open Access Journals (Sweden)

    Luis E. Espinoza

    2013-01-01

    Full Text Available Streptomyces are common soil bacteria that produce secondary metabolites, including several antibiotics; however, the characteristics of marine Streptomyces are largely unknown. Sediment samples were taken from 3 sites in the Laguna Madre to isolate marine Streptomyces. Sediment was diluted, spread onto synthetic seawater media to estimate the total bacterial density of the samples and spread onto starch casein agar to isolate Streptomyces. Isolated Streptomyces were tested for salinity tolerance and optimal growth pH. Isolates were assayed using API 20E® test strips and BIOLOG™ plates to construct biochemical profiles and assess nutrient utilization abilities of the bacteria, respectively. Individual Streptomyces were tested for the ability to inhibit the growth of other isolated Streptomyces (i.e., interference competition and putatively identified by DNA sequencing. Results showed that there was no significant difference in microbial density in sediments from the 3 sampling sites. Eleven (11 Streptomyces pure cultures were obtained in total; most tolerated salinity up to 60 ppt and grew optimally at pH 7.5. Biochemical profile comparisons showed that the Streptomyces were only at least 74% similar; most (8/11 were >90% similar. Isolates could use between 87-95 carbon sources. Three (3 isolates displayed interference toward other isolates. Ten (10 isolates were identified as Streptomyces griseus by DNA sequencing. Laguna Madre Streptomyces organisms display some diverse characteristics with regards to their halotolerance, biochemical profiles, carbon source utilization and inhibition toward other organisms. Further investigations may yield greater understanding of these organisms in this and other marine environments and may be a reservoir of novel microorganisms and secondary metabolites.

  10. Genetics and chemistry of lignin degradation by Streptomyces

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-01-01

    Our research goal was to define the involvement of lignin peroxidases and other extracellular enzymes in lignin degradation by Streptomyces. We examined the biochemistry and genetics of lignin degrading enzyme production by several strains of Streptomyces. The lignin peroxidase ALiP-P3 of S. viridosporus was characterized kinetically and its activity optimized for oxidation of 2,4-dichlorophenol and vanillyl-acetone. Sensitive spectrophotometric assays were developed for monitoring oxidation of these substrates. ALiP-P3 reaction chemistry was examined using both spectrophotometric assays and gas chromatography/mass spectroscopy. Results showed that the enzyme oxidizes phenolic lignin substructure models in strong preference to nonphenolic ones. The peroxidase was also shown to depolymerize native lignin. We also cloned the ALip-P3 gene S. lividans in plasmid vector pIJ702. The cloned gene was partially sequenced, We also immunologically characterized the lignin peroxidase of S. viridosporus T7A and showed it to be structurally related to peroxidases produced by other lignin-solubilizing Streptomyces, but not the the H8 lignin peroxidase of P. chrysosporium. Studies with peroxidase deficient mutants of strain T7A showed that lignin peroxidases of S. viridosporus are directly involved in the solubilization of lignin. Additional research showed that other enzymes are also probably involved in lignin solubilization, possibly including extracellular esterases.

  11. The Cytotoxic Constituents from Marine-derived Streptomyces 3320#

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The present work studies the chemical constituents from marine-derived streptomyces 3320# and their antitumor activities. The n-BuOH extract of the ferment broth of 3320# was chromatographed on silica gel, Sephadex LH-20, ODS columns and HPLC to separate the compounds with antitoumor activities. Their structures were identified using IR, UV, NMR, MS spectroscopic techniques and compared with published data. The antitumor activities of the isolates were assayed using SRB method and flow cytometry assay, accompanied with the morphological observation of the cells under light microscope against mammalian tsFT210 cells. Ten compounds, cyclo-(Ala-Leu) 1, cyclo-(Ala-Ile) 2, cyclo-(Ala-Val) 3, cyclo-(Phe- Pro) 4, cyclo-(Phe-Gly) 5, cyclo-(Leu-Pro) 6, 1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid 7, N-(4-hydroxyphenethyl) acetamide 8, 4-methyoxy-1-(2-hydroxy) ethylbenzene 9 and uridine 10, were isolated from the ferment broth of streptomyces 3320#. Among them, compounds 6, 7, 8 and 10 showed potent cytotoxicity against the tsFT210 cell with the IC50 values of 3 . 6, 7 . 2, 5 . 2 and 1 . 6 mmol L - 1, respectively. Compounds 8, 10 also exhibited apoptosis inducing activity under 2 . 0 mmol L - 1. Compounds 6, 7, 8 and 10 are the principle bioactive constituents responsible for the antitumor activities of marine streptomyces 3320# . Compound 7 was isolated from this species for the first time.

  12. 5-ketoreductase from Streptomyces bingchengensis: overexpression and preliminary characterization.

    Science.gov (United States)

    Wang, Xiang-Jing; Wang, Cheng-Qin; Sun, Xiao-Lin; Xiang, Wen-Sheng

    2010-10-01

    To elucidate the biotransformation from 5-oxomilbemycins A(3) and A(4) to milbemycins A(3) and A(4) in Streptomyces bingchengensis, the C5-ketoreductase gene (milF) was cloned using PCR with the specific primer designed from homologous nucleotide sequences. The C5-ketoreductase (MilF) was heterologously expressed in E. coli BL21 (DE3) as a His-tagged fusion protein. The characterization and biotransformation function of purified MilF was verified by in vitro enzyme assay. MilF is an NADPH-dependent reductase. The biotransformation products, analyzed by LC-APCI/MS, were identified as milbemycin A(3) and milbemycin A(4). MilF is thus present in Streptomyces bingchengensis and can transform 5-oxomilbemycins A(3) and A(4) to milbemycins A(3) and A(4). These findings are significant for understanding the biosynthetic pathway of milbemycins in Streptomyces bingchengensis and pave the way to obtain a producer strain of 5-oxomilbemycins directly by targeted milF disruption. PMID:20563624

  13. Development of nitrilase promoter-derived inducible vectors for Streptomyces.

    Science.gov (United States)

    Matsumoto, Masako; Hashimoto, Yoshiteru; Saitoh, Yuki; Kumano, Takuto; Kobayashi, Michihiko

    2016-06-01

    An inducible expression vector, pSH19, which harbors regulatory expression system PnitA-NitR, for streptomycetes was constructed previously. Here, we have modified pSH19 to obtain shuttle vectors for Streptomyces-E. coli by introducing the replication origin of a plasmid for E. coli (ColE1) and an antibiotic-resistant gene. Six inducible shuttle vectors, pESH19cF, pESH19cR, pESH19kF, pESH19kR, pESH19aF, and pESH19aR, for Streptomyces-E. coli, were successfully developed. The stability of these vectors was examined in five different E. coli strains and Streptomyces lividans TK24. The stability test showed that the pSH19-derived shuttle vectors were stable in E. coli Stbl2 and S. lividans TK24. Heterologous expression experiments involving each of the catechol 2,3-dioxygenase, nitrilase, and N-substituted formamide deformylase genes as a reporter gene showed that pESH19cF, pESH19kF, and pESH19aF possess inducible expression ability in S. lividans TK24. Thus, these vectors were found to be useful expression tools for experiments on both Gram-negative and Gram-positive bacterial genes. PMID:26923287

  14. Characterisation of esterase genes in the genomes of Streptomyces coelicolor A3(2) and Streptomyces avermitilis

    OpenAIRE

    Soror, Sameh

    2007-01-01

    Esterases and lipases are widely used as industrial enzymes and for the synthesis of chiral drugs. Because of their rich secondary metabolism, Streptomyces species offer a relatively untapped source of interesting esterases and lipases. S. coelicolor and S. avermitilis contain 51 genes annotated as esterases and/or lipases. In this study I have cloned 14 different genes encoding for lipolytic enzymes from S. coelicolor (11 genes) and S. avermitilis (four genes). Some of these genes were over-...

  15. Principles of microbial alchemy: insights from the Streptomyces coelicolor genome sequence

    OpenAIRE

    Thompson, Charles J.; Fink, Doris; Nguyen, Liem D.

    2002-01-01

    The world's most creative producers of natural pharmaceutical compounds are soil-dwelling bacteria classified as Streptomyces. The availability of the recently completed Streptomyces coelicolor genome sequence provides a link between the folklore of antibiotics and other bioactive compounds to underlying biochemical, molecular genetic and evolutionary principles.

  16. Rapid and Specific Method for Evaluating Streptomyces Competitive Dynamics in Complex Soil Communities▿ †

    OpenAIRE

    Schlatter, Daniel C; Samac, Deborah A.; Tesfaye, Mesfin; Kinkel, Linda L

    2010-01-01

    Quantifying target microbial populations in complex communities remains a barrier to studying species interactions in soil environments. Quantitative PCR (qPCR) assays were developed for quantifying pathogenic Streptomyces scabiei and antibiotic-producing Streptomyces lavendulae strains in complex soil communities. This assay will be useful for evaluating the competitive dynamics of streptomycetes in soil.

  17. Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Sumby, Paul; Smith, Margaret C M

    2002-04-01

    The phage growth limitation (Pgl) system, encoded by Streptomyces coelicolor A3(2), confers protection against the temperate bacteriophage phiC31 and its homoimmune relatives. The Pgl phenotype is characterized by the ability of Pgl+ hosts to support a phage burst on initial infection but subsequent cycles are severely attenuated. Previously, two adjacent genes pglY and pglZ were shown to be required for Pgl. It had been shown by Southern blotting that Streptomyces lividans, a close relative of S. coelicolor and naturally Pgl-, does not contain homologues of pglYZ and that introduction of pglYZ into S. lividans is not sufficient to confer a Pgl+ phenotype. Moreover, the mechanism of the Pgl+ Pgl- phase variation associated with this phenotype is also not understood. Here we describe two novel genes, pglW and pglX, that were shown to be part of this system by complementation of Pgl- mutants and by insertional mutagenesis. pglW encodes a 169 kDa protein that includes putative motifs for both serine/threonine protein kinase activity and DNA binding. pglX encodes a 136 kDa protein with putative adenine-specific DNA methyltransferase activity. pglW and pglX have overlapping stop-start codons suggesting transcriptional and translational coupling. S1 mapping of transcripts initiating up-stream of pglW indicated that, like pglYZ, pglWX is expressed in uninfected cultures. A homologue of pglX with 76% amino acid identity was identified in S. coelicolor, and insertional mutagenesis indicated that this gene was not required for the Pgl+ phenotype. Southern blots indicated that S. lividans does not contain homologues of pglW or pglX. A plasmid encoding pglWXYZ was able to confer the Pgl+ phenotype to S. lividans implying that these four genes constitute the whole system.

  18. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    Science.gov (United States)

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture. PMID:16348434

  19. Biosynthesis of gold nanoparticles using streptomyces fulvissimus isolate

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-04-01

    Full Text Available Objective(s: In recent years, the biosynthesis of gold nanoparticles has been the focus of interest because of their emerging application in a number of areas such as biomedicine. In the present study we report the extracellular biosynthesis of gold nanoparticles (AuNPs by using a positive bacterium named Streptomyces fulvissimus isolate U from rice fields of Guilan Province, Iran. Materials and Methods: From over 20 Streptomyces isolates collected, isolate U showed high AuNPs biosynthesis activity. To determine its taxonomical identity, its morphology was characterized by scanning electron microscope and partial molecular analysis performed by PCR. In this regard, 16S rDNA of isolate U was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI BLAST method. In biosynthesis of AuNPs by this bacterium, the biomass of bacterium exposed to the HAuCl4 solution. Results: The nanoparticles obtained were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM and Energy dispersive X-ray (EDX spectroscopy and X-ray diffraction spectroscopy (XRD analyses. Our results indicated that Streptomyces fulvissimus isolateU bio-synthesizes extracellular AuNPs in the range of 20-50 nm. Conclusions: This technique of green synthesis of AuNPs by a microbial source may become a promising method because of its environmental safety. Its optimization may make it a potential procedure for industrial production of gold nanoparticles.

  20. A New Peptide Isolated from a Marine Derived Streptomyces bacillaris

    OpenAIRE

    Hu, Youcai; MacMillan, John B

    2012-01-01

    A new peptide, l-O-Lac-l-Val-d-O-Hiv-d-Val (1), consisting of d-valine, l-valine, l-lactic acid, and 3-d-hydroxyisovaleric acid, was isolated from the culture of the marine sediment derived Streptomyces bacillaris. The planar structure of compound 1 was assigned by 1D, 2D NMR and mass spectroscopic analyses. Following acid and base hydrolysis, the absolute configuration of the valine residues in 1 were determined by application of the advanced Marfey’s method and the absolute configurations o...

  1. Membrane Topology of the Streptomyces lividans Type I Signal Peptidases

    OpenAIRE

    Geukens, Nick; Lammertyn, Elke; Van Mellaert, Lieve; Schacht, Sabine; Schaerlaekens, Kristien; Parro, Victor; Bron, Sierd; Engelborghs, Yves; Mellado, Rafael P.; Anné, Jozef

    2001-01-01

    Most bacterial membranes contain one or two type I signal peptidases (SPases) for the removal of signal peptides from export proteins. For Streptomyces lividans, four different type I SPases (denoted SipW, SipX, SipY, and SipZ) were previously described. In this communication, we report the experimental determination of the membrane topology of these SPases. A protease protection assay of SPase tendamistat fusions confirmed the presence of the N- as well as the C-terminal transmembrane anchor...

  2. Characterization of regulatory pathways controlling morphological differentiation in "Streptomyces coelicolor"

    OpenAIRE

    San Paolo, Salvatore

    2007-01-01

    The filamentous eubacterium, Streptomyces coelicolor, undergoes a complex cycle of growth and development in which morphological differentiation coincides with the activation of the orphan response regulator RamR and the biosynthesis of a morphogenic peptide called SapB. SapB is a lantibiotic-like molecule derived from the product of the ramS gene that promotes aerial hyphae formation (AHF) by breaking the aqueous tension on the surface of the substrate mycelium. A ramR-disrupted mutant is de...

  3. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr.

    Science.gov (United States)

    Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)). PMID:26608172

  4. Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.

    Science.gov (United States)

    Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun

    2016-10-01

    A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)). PMID:27209413

  5. SarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145

    Institute of Scientific and Technical Information of China (English)

    Xijun Ou; Bo Zhang; Lin Zhang; Kai Dong; Chun Liu; Guoping Zhao; Xiaoming Ding

    2008-01-01

    The filamentous bacteria Streptomyces exhibit a complex life cycle involving morphological differentiation and secondary metabolism. A putative membrane protein gene sarA (sco4069), sporulation and antibiotic production related gene A, was partially characterized in Streptomyces coelicolor M145. The gene product had no characterized functional domains and was highly conserved in Streptomyces. Compared with the wild-type M145, the sarA mutant accelerated sporulation and dramatically decreased the production of actinorhodin and undecylprodigiosin.Reverse transcription-polymerase chain reaction analysis showed that SarA influenced antibiotic production by controlling the abundance of actll-orf4 and redZ messenger RNA.

  6. A putative transglycosylase encoded by SCO4132 influences morphological differentiation and actinorhodin production in Streptomyces coelicolor

    Institute of Scientific and Technical Information of China (English)

    Pengfei Xie; Ana Zeng; Xiaoting Lv; Qiuxiang Cheng; Zhongjun Qin

    2013-01-01

    Here we report that tgdA,a novel gene encoding a putative transglycosylase,affects both the morphological differentiation and the yield of blue-pigmented compound actinorhodin in Streptomyces coelicolor.The tgdA null mutant displays sparse aerial hyphae and irregular spore chains frequently lacking chromosomal DNA.Elevated actinorhodin production coincides with the overexpression of actⅡ-orf4 in mutant.tgdA expression is temporally and developmentally regulated.The tgdA orthologs in Streptomyces avermilitis and Streptomyces lividans also affect differentiation.

  7. Discoloration of Ancient Egyptian Mural Paintings by Streptomyces Strains and Methods of Its Removal

    Directory of Open Access Journals (Sweden)

    Akmal Ali SAKR

    2012-12-01

    Full Text Available Streptomyces isolated from mural paintings at Tell Basta and Tanis tombs were identified using 16S rDNA sequencing method. These Streptomyces strains caused discoloration of mural paintings with irreversible red stains of carotenoid pigment. A mixture of n-hexan and acetone (92:8 v/v was the best solvent for extracting and purification of red pigment from biomass of Streptomyces. Dimethyl sulfoxide (DMSO and N,N-dimethylformamide (DMF were the most effective in treatment of these red stains without changing the paintings or stone surfaces.

  8. Isolation and characterization of a temperate bacteriophage from Streptomyces galilaeus.

    Science.gov (United States)

    Kuhn, S P; Lampel, J S; Strohl, W R

    1987-12-01

    A new temperate actinophage from Streptomyces galilaeus ATCC 31133 was purified after that strain was crossed with S. peucetius ATCC 29050. Sensitive hosts became lysogenized and yielded turbid plaques of 2 to 3 mm in diameter. Host-range analysis indicated that 16 of 27 Streptomyces strains tested were sensitive to infection on solid medium. S. lividans and S. coelicolor A3(2) were among those not infected by this new actinophage. The new actinophage, designated phi SPK1, belongs to the Bradley group B morphological type, the pH optimum for infection is 6.75 to 7.0, it is not efficiently induced by mitomycin C or UV irradiation, it has a circular chromosome of 35.8 +/- 0.5 kilobase pairs in length containing overlapping (cohesive) ends, and the G+C content of its DNA was calculated from the buoyant density of 1.7240 to be 69 mol%. The DNA of phage phi SPK1 was cleaved by the restriction endonucleases ApaI, AluII, EcoRI, PvuII, and SalI, but, in all cases except that with EcoRI, treatment yielded greater than 20 restriction fragments. No sites were detected for BamHI, BclI, BglII, ClaI, HindIII, MluI, PstI, SmaI, SphI, SstI, XbaI, or XhoI.

  9. Comparison between Pathogenic Streptomyces scabies Isolates of Common Scab Disease

    Directory of Open Access Journals (Sweden)

    Mohamed HOSNY

    2016-06-01

    Full Text Available Streptomyces scabies (Thaxter causes destructive and serious damages to many vegetable field crops, including potato. Fourteen pure isolates were obtained from naturally diseased potato tubers showing symptoms of common scab disease, collected from different localities of Sohag governorate, Egypt. All tested isolates were identified as S. scabies (Stc according to morphological and biochemical tests. Isolate Stc 10 exhibited the highest activity of polyphenoloxidase enzyme, followed by isolate Stc 11, while isolate Stc 2 produced the lowest activity of this enzyme. Concerning the peroxidase activity, the isolates varied in their production; Stc 11 exhibited the highest activity enzyme, followed by isolate Stc 2, whereas isolate Stc 10 produced the lowest activity of enzyme. In regard with Tyrosine Amonnia Lyase (TAL activity, isolate Stc 2 exhibited the highest activity, followed by isolate Stc 10, whereas isolate Stc 11 exhibited the lowest activity. Agarose gel electrophoresis of the PCR amplification products revealed a band representing the expected 279 bp DNA fragment in each DNA extracted from the highly pathogenic isolates Stc 10 and 11. The results demonstrated that PCR amplification of the nec1 gene could be used as a reliable marker for detecting pathogenic Streptomyces isolates on potato tubers.

  10. Overproduction of Clavulanic Acid by UV Mutagenesis of Streptomyces clavuligerus

    Science.gov (United States)

    Korbekandi, Hassan; Darkhal, Parisa; Hojati, Zohreh; Abedi, Daryoush; Hamedi, Javad; Pourhosein, Meraj

    2010-01-01

    Clavulanic acid is produced industrially by fermentation of Streptomyces clavuligerus and researches have increased its production by strain improvement, recombinant DNA technology, and media composition and growth condition optimization. The main objective of this study was to increase the level of clavulanic acid production from Streptomyces clavuligerus (DSM 738), using UV irradiation. After incubation, the spores and aerial mycelia were scraped off the agar plate by a sterile loop. After passing through a cotton wool, the serially diluted spore suspension was spread on GYM- agar containing caffeine. The plates were irradiated with UV light, wrapped in aluminum foil and incubated. The colonies were sub-cultured again to express the mutations. An aliquot of the spore suspension prepared from the resulted culture was poured in GYM agar plates and incubated. The plates were overlaid with nutrient-agar containing penicillin G and Klebsiela pneumoniae, and incubated. The inhibition zone diameter was measured and compared with the wild type colony. Repeating this procedure, the overproducer mutants were selected. Concentration of clavulanic acid was determined by HPLC analysis. It was concluded that secondary metabolites, mainly antibiotics containing clavulanic acid, were produced about 6–7 days after the growth, and concentration of clavulanic acid was increased up to two-folds after UV mutagenesis. PMID:24363725

  11. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor.

    Science.gov (United States)

    Navone, Laura; Casati, Paula; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Rodriguez, Eduardo; Gramajo, Hugo

    2014-01-01

    Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.

  12. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence

    Science.gov (United States)

    Clark, Laura C.; Seipke, Ryan F.; Prieto, Pilar; Willemse, Joost; van Wezel, Gilles P.; Hutchings, Matthew I.; Hoskisson, Paul A.

    2013-01-01

    Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms. PMID:23346366

  13. Streptocollin, a type IV lanthipeptide produced by Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Jasyk, Martin; Kulik, Andreas;

    2015-01-01

    Lanthipeptides are ribosomally synthesized and posttranslationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of the class IV lanthipeptides. Insertion of the constitutive ermE* promoter...

  14. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp.

    Science.gov (United States)

    Manulis, S; Shafrir, H; Epstein, E; Lichter, A; Barash, I

    1994-05-01

    Various Streptomyces spp. including S. violaceus, S. scabies, S. griseus, S. exfoliatus, S. coelicolor and S. lividans secrete indole-3-acetic acid (IAA) when fed with L-tryptophan (Trp). Production of IAA was detected in Streptomyces strains causing potato scab as well as in non-pathogenic strains. The pathways for IAA synthesis from Trp were investigated in S. violaceus and S. exfoliatus. Indole-3-acetamide (IAM), indole-3-lactic acid (ILA), indole-3-ethanol (IEt) and IAA were identified by HPLC and GC-MS. Streptomyces cells were capable of catabolizing IAM, ILA, IEt and indole-3-acetaldehyde (IAAId) into IAA. Incorporation of radioactivity into IAM, IAA and ILA but not IEt was detected when cells were fed with L-[3-14C]tryptophan. Results indicate the presence of the IAM pathway (Trp-->IAM-->IAA) and the possible presence of additional pathways for IAA biosynthesis in Streptomyces. PMID:8025670

  15. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae

    DEFF Research Database (Denmark)

    Yagüe, Paula; Willemse, Joost; Koning, Roman I;

    2016-01-01

    Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae...

  16. γ-Butyrolactones : Streptomyces signalling molecules regulating antibiotic production and differentiation

    NARCIS (Netherlands)

    Takano, Eriko

    2006-01-01

    Small signalling molecules called γ-butyrolactones are mainly produced by Streptomyces species in which they regulate antibiotic production and morphological differentiation. Their molecular mechanism of action has recently been unravelled in several streptomycetes, revealing a diverse and complex s

  17. Structure and evolution of Streptomyces interaction networks in soil and in silico.

    OpenAIRE

    Kalin Vetsigian; Rishi Jajoo; Roy Kishony

    2011-01-01

    Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated fr...

  18. Structure and Evolution of Streptomyces Interaction Networks in Soil and In Silico

    OpenAIRE

    Vetsigian, Kalin; Jajoo, Rishi; Kishony, Roy

    2011-01-01

    Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated fr...

  19. Capability of Streptomyces spp. in Controlling Bacterial Leaf Blight Disease in Rice Plants

    OpenAIRE

    Ratih D. Hastuti; Yulin Lestari2); Rasti Saraswati; Antonius Suwanto; Chaerani

    2012-01-01

    Problem statement: Bacterial Leaf Blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most damaging disease in lowland rice growing areas in Indonesia. Streptomyces spp. have been known as a producer of antimicrobial compounds that can be used as biocontrol agents. This study examined the ability of three promising indigenous Streptomyces isolates which were previously selected from in vitro agar media and greenhouse test to suppress natural infection of Xoo during dry and wet s...

  20. Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis

    OpenAIRE

    Capstick, David S.; Jomaa, Ahmad; Hanke, Chistopher; Ortega, Joaquin; Elliot, Marie A.

    2011-01-01

    The chaplin proteins are functional amyloids found in the filamentous Streptomyces bacteria. These secreted proteins are required for the aerial development of Streptomyces coelicolor, and contribute to an intricate rodlet ultrastructure that decorates the surfaces of aerial hyphae and spores. S. coelicolor encodes eight chaplin proteins. Previous studies have revealed that only three of these proteins (ChpC, ChpE, and ChpH) are necessary for promoting aerial development, and of these three, ...

  1. Production and Cytotoxicity of Extracellular Insoluble and Droplets of Soluble Melanin by Streptomyces lusitanus DMZ-3

    OpenAIRE

    Madhusudhan, D. N.; Bi Bi Zainab Mazhari; Dastager, Syed G.; Dayanand Agsar

    2014-01-01

    A Streptomyces lusitanus DMZ-3 strain with potential to synthesize both insoluble and soluble melanins was detected. Melanins are quite distinguished based on their solubility for varied biotechnological applications. The present investigation reveals the enhanced production of insoluble and soluble melanins in tyrosine medium by a single culture. Streptomyces lusitanus DMZ-3 was characterized by 16S rRNA gene analysis. An enhanced production of 5.29 g/L insoluble melanin was achieved in a su...

  2. Biosynthesis of Hexahydroxyperylenequinone Melanin via Oxidative Aryl Coupling by Cytochrome P-450 in Streptomyces griseus

    OpenAIRE

    Funa, Nobutaka; Funabashi, Masanori; OHNISHI, Yasuo; Horinouchi, Sueharu

    2005-01-01

    Dihydroxyphenylalanine (DOPA) melanins formed from tyrosine by tyrosinases are found in microorganisms, plants, and animals. Most species in the soil-dwelling, gram-positive bacterial genus Streptomyces produce DOPA melanins and melanogenesis is one of the characteristics used for taxonomy. Here we report a novel melanin biosynthetic pathway involving a type III polyketide synthase (PKS), RppA, and a cytochrome P-450 enzyme, P-450mel, in Streptomyces griseus. In vitro reconstitution of the P-...

  3. Production, Purification, and Characterization of β-(1-4)-Endoxylanase of Streptomyces roseiscleroticus

    OpenAIRE

    Grabski, Anthony C.; Jeffries, Thomas W.

    1991-01-01

    Twelve species of Streptomyces that formerly belonged to the genus Chainia were screened for the production of xylanase and cellulase. One species, Streptomyces roseiscleroticus (Chainia rosea) NRRL B-11019, produced up to 16.2 IU of xylanase per ml in 48 h. A xylanase from S. roseiscleroticus was purified and characterized. The enzyme was a debranching β-(1-4)-endoxylanase showing high activity on xylan but essentially no activity against acid-swollen (Walseth) cellulose. It had a very low a...

  4. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    Directory of Open Access Journals (Sweden)

    Viviane eCordovez

    2015-10-01

    Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  5. Community of environmental streptomyces related to geosmin development in Chinese liquors.

    Science.gov (United States)

    Du, Hai; Lu, Hu; Xu, Yan; Du, Xiaowei

    2013-02-13

    Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process. In this paper, the ecology of these Streptomyces species was analyzed using denaturing gradient gel electrophoresis (DGGE) of amplified Actinobacteria -specified rDNA. The result showed that Streptomyces were widely distributed during Daqu incubation, and multiple processing, geographic, and climate factors can affect their distribution and diversity. The genes associated with geosmin production were characterized in four geosmin-producing Streptomyces strains, all of which were isolated from geosmin-contaminated Daqu. On the basis of this information, a real-time PCR method was developed, enabling the detection of traces of Streptomyces in complex solid-state matrices. The primer was targeted at the gene coding for geosmin synthase (geoA). The real-time PCR method was found to be specific for geosmin-producing Streptomyces and did not show any cross-reactivity with geosmin-negative isolates, which are frequently present in the Chinese liquor-brewing process. Quantification of geoA in the Chinese liquor-making process could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. Comparison of the qPCR results based on the gene encoding geosmin synthase and Actinobacteria-specified rDNA showed that about 1-10% of the Actinobacteria carry the geosmin synthesis gene.

  6. Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity

    Directory of Open Access Journals (Sweden)

    Prakasham Reddy Shetty

    2014-01-01

    Full Text Available A highly potent secondary metabolite producing actinomycetes strain is isolated from marine soil sediments of Visakhapatnam sea coast, Bay of Bengal. Over all ten strains are isolated from the collected soil sediments. Among the ten actinomycetes strains the broad spectrum strain RSPSN2 was selected for molecular characterization, antibiotic production and its purification. The nucleotide sequence of the 1 rRNA gene (1261 base pairs of the most potent strain evidenced a 96% similarity with Streptomyces parvulus 1044 strain, Streptomyces parvulus NBRC 13193 and Streptomyces parvulus BY-F. From the taxonomic features, the actinomycetes isolate RSPSN2 matches with Streptomyces parvulus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces parvulus RSPSN2. The active metabolite was extracted using ethyl acetate (1:3, v/v at pH 7.0. The separation of active ingredient and its purification was performed by using both thin layer chromatography (TLC and column chromatography (CC techniques. Spectrometric studies such as UV-visible, FTIR, and NMR and mass were performed. The antibacterial activity of pure compound was performed by cup plate method against some pathogenic bacteria including of streptomycin resistant bacteria like (Pseudomonas mirabilis. Pseudomonas putida and Bacillus cereus. In conclusion, the collected data emphasized the fact that a polypeptide antibiotic (Actinomycin D was produced by Streptomyces parvulus RSPSN2.

  7. Occurrence of a Lysogenic Streptomyces sp. on the Nodule Surface of Black Gram (Vigna mungo (L.) Hepper).

    Science.gov (United States)

    Rangarajan, M; Ravindran, A D; Hariharan, K

    1984-07-01

    A lysogenic Streptomyces sp., strain NS.A4, which was isolated from the nodule surface of black gram (Vigna mungo (L.) Hepper), was found to inhibit rhizobia of fast-and slow-growing strains of cowpeas and soybeans. It exhibited plaques when there was a change in cultural conditions. Repeated culturing of the organism in nutrient agar and broth confirmed the infection of Streptomyces sp. strain NS.A4 by an actinophage. Addition of the culture filtrate of Streptomyces sp. strain NS.A4 to shaken broth cultures of three other Streptomyces spp. resulted in phage infection.

  8. Nucleotide sequence of Streptomyces griseus initiator tRNA.

    OpenAIRE

    Kuchino, Y; Yamamoto, I.; Nishimura, S.

    1982-01-01

    The primary structure of initiator tRNA from Streptomyces griseus was determined by post-labeling procedures. The nucleotide sequence is pC-G-C-G-G-G-G-U-G-G-A-G-C-A-G-C-U-C-G-G-D-A-G-C-U-C-G-C-U-G-G-G-C-U-C-A-U-A-A-C-C- C-A-G-A-G-G-U-C-G-C-A-G-G-U-psi-C-A-m1A-A-U-C-C-U-G-U-C-C-C-C-G-C-U-A-C-C-A0H. The unique feature of the sequence of this tRNA is that residue 54 is occupied by unmodified U, while ribothymidine is located in that position in most initiator tRNAs from eubacteria.

  9. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    Directory of Open Access Journals (Sweden)

    М. P. Teplitskaya

    2005-12-01

    Full Text Available These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of initiation and expression of antibiotics biosynthesis genes also were found. In this connection А-factor role in the mechanism of cascade-organized process of streptomycin biosynthesis control, some other antibiotics and spore determinations is discussed in detail.

  10. Permeation study of the potassium channel from streptomyces Lividans

    Institute of Scientific and Technical Information of China (English)

    XU Xiuzhi; ZHAN Yong; ZHAO Tongjun

    2004-01-01

    A three-state hopping model is established according to experiments to study permeation of an open-state potassium channel from Streptomyces Lividans (KcsA potassium channel). The master equations are used to characterize the dynamics of the system. In this model, ion conduction involves transitions of three states, with one three-ion state and two two-ion states in the selectivity filter respectively. In equilibrium, the well-known Nernst equation is deduced. It is further shown that the current follows Michaelis-Menten kinetics in steady state. According to the parameters provided by Nelson, the current-voltage relationship is proved to be ohmic and the current-concentration relationship is also obtained reasonably. Additional validation of the model in the characteristic time to reach the steady state for the potassium channel is also discussed. This model lays a possible physical basis for the permeation of ion channel, and opens an avenue for further research.

  11. Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae.

    OpenAIRE

    Tang, L; Zhang, Y X; Hutchinson, C R

    1994-01-01

    Targeted inactivation of the valine (branched-chain amino acid) dehydrogenase gene (vdh) was used to study the role of valine catabolism in the production of tylosin in Streptomyces fradiae and spiramycin in Streptomyces ambofaciens. The deduced products of the vdh genes, cloned and sequenced from S. fradiae C373.1 and S. ambofaciens ATCC 15154, are approximately 80% identical over all 363 amino acids and 96% identical over a span of the first N-terminal 107 amino acids, respectively, to the ...

  12. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Directory of Open Access Journals (Sweden)

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  13. Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper.

    Science.gov (United States)

    Balaraju, Kotnala; Kim, Chang-Jin; Park, Dong-Jin; Nam, Ki-Woong; Zhang, Kecheng; Sang, Mee Kyung; Park, Kyungseok

    2016-09-28

    This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin. PMID:27291677

  14. Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus.

    Science.gov (United States)

    Lu, Chenyang; Zhang, Xiaojie; Jiang, Ming; Bai, Linquan

    2016-05-01

    The anticoccidial salinomycin is a polyketide produced by Streptomyces albus and requires malonyl-CoAs, methylmalonyl-CoAs, and ethylmalonyl-CoAs for the backbone assembly. Genome sequencing of S. albus DSM 41398 revealed a high percentage of genes involved in lipid metabolism, supporting the high salinomycin yield in oil-rich media. Seven PKS/PKS-NRPS gene clusters in the genome were found to be actively transcribed and had been individually deleted, which resulted in significantly improved salinomycin production. However, a combined deletion of PKS-NRPS-2 and PKS-6 showed no further improvement. Whereas the concentrations of malonyl-CoA and methylmalonyl-CoA were increased, the concentration of ethylmalonyl-CoA remained low in the mutants. An endogenous crotonyl-CoA reductase gene (ccr) was overexpressed in the ΔPKS-NRPS-2/ΔPKS-6 mutant, resulting in improved production. Combination of cluster deletions and over-expression of ccr gene led to an overall titer improvement of salinomycin from 0.60 to 6.60g/L. This engineering strategy can be implemented for various natural polyketides production.

  15. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin.

    Science.gov (United States)

    Jiang, Jiaoyang; He, Xiaofei; Cane, David E

    2006-06-28

    Geosmin is responsible for the characteristic odor of moist soil. Incubation of recombinant germacradienol synthase, encoded by the SCO6073 (SC9B1.20) gene of the Gram-positive soil bacterium Streptomyces coelicolor, with farnesyl diphosphate (2, FPP) in the presence of Mg2+ gave a mixture of (4S,7R)-germacra-1(10)E,5E-diene-11-ol (3) (74%), (-)-(7S)-germacrene D (4) (10%), geosmin (1) (13%), and a hydrocarbon, tentatively assigned the structure of octalin 5 (3%). Individual incubations of recombinant germacradienol synthase with [1,1-2H2]FPP (2a), (1R)-[1-2H]-FPP (2b), and (1S)-[1-2H]-FPP (2c), as well as with FPP (2) in D2O, and GC-MS analysis of the resulting deuterated products supported a mechanism of geosmin formation involving proton-initiated cyclization and retro-Prins fragmentation of the initially formed germacradienol to give intermediate 5, followed by protonation of 5, 1,2-hydride shift, and capture of water.

  16. Champacyclin, a New Cyclic Octapeptide from Streptomyces Strain C42 Isolated from the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alexander Pesic

    2013-12-01

    Full Text Available New isolates of Streptomyces champavatii were isolated from marine sediments of the Gotland Deep (Baltic Sea, from the Urania Basin (Eastern Mediterranean, and from the Kiel Bight (Baltic Sea. The isolates produced several oligopeptidic secondary metabolites, including the new octapeptide champacyclin (1a present in all three strains. Herein, we report on the isolation, structure elucidation and determination of the absolute stereochemistry of this isoleucine/leucine (Ile/Leu = Xle rich cyclic octapeptide champacyclin (1a. As 2D nuclear magnetic resonance (NMR spectroscopy could not fully resolve the structure of (1a, additional information on sequence and configuration of stereocenters were obtained by a combination of multi stage mass spectrometry (MSn studies, amino acid analysis, partial hydrolysis and subsequent enantiomer analytics with gas chromatography positive chmical ionization/electron impact mass spectrometry (GC-PCI/EI-MS supported by comparison to reference dipeptides. Proof of the head-to-tail cyclization of (1a was accomplished by solid phase peptide synthesis (SPPS compared to an alternatively side chain cyclized derivative (2. Champacyclin (1a is likely synthesized by a non-ribosomal peptide synthetase (NRPS, because of its high content of (d-amino acids. The compound (1a showed antimicrobial activity against the phytopathogen Erwinia amylovora causing the fire blight disease of certain plants.

  17. Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus.

    Science.gov (United States)

    Lu, Chenyang; Zhang, Xiaojie; Jiang, Ming; Bai, Linquan

    2016-05-01

    The anticoccidial salinomycin is a polyketide produced by Streptomyces albus and requires malonyl-CoAs, methylmalonyl-CoAs, and ethylmalonyl-CoAs for the backbone assembly. Genome sequencing of S. albus DSM 41398 revealed a high percentage of genes involved in lipid metabolism, supporting the high salinomycin yield in oil-rich media. Seven PKS/PKS-NRPS gene clusters in the genome were found to be actively transcribed and had been individually deleted, which resulted in significantly improved salinomycin production. However, a combined deletion of PKS-NRPS-2 and PKS-6 showed no further improvement. Whereas the concentrations of malonyl-CoA and methylmalonyl-CoA were increased, the concentration of ethylmalonyl-CoA remained low in the mutants. An endogenous crotonyl-CoA reductase gene (ccr) was overexpressed in the ΔPKS-NRPS-2/ΔPKS-6 mutant, resulting in improved production. Combination of cluster deletions and over-expression of ccr gene led to an overall titer improvement of salinomycin from 0.60 to 6.60g/L. This engineering strategy can be implemented for various natural polyketides production. PMID:26969249

  18. Anthracycline metabolites from Streptomyces violaceus A262. I. Isolation of antibiotic-blocked mutants from Streptomyces violaceus A262.

    Science.gov (United States)

    Johdo, O; Ishikura, T; Yoshimoto, A; Takeuchi, T

    1991-10-01

    Five mutant (or variant) strains producing new anthracycline antibiotics were derived from Streptomyces violaceus A262 by mutagenesis treatment. Strain SE1-625 showed a limited production of three known beta-rhodomycinone diglycosides while the parent strain produced numerous unidentified beta-rhodomycinone glycosides. Strain SU2-730 was an antibiotic-blocked mutant which produced only epsilon-rhodomycinone glycosides (named epelmycins). Strains SC-7 and SE2-2385 were variants which produced alpha-citromycinone glycosides (named yellamycins) and beta-isorhodomycinone glycosides (named obelmycins), respectively. Strain SE2-2385-A1 produced alpha 2-rhodomycinone glycosides (named alldimycins). Glycosidation-less mutants which accumulated only aglycone were also obtained. Isolation of these mutants or variants and preliminary identification of their anthracycline products are described. PMID:1955394

  19. Streptomyces sp. Sebagai Biofungisida Patogen Fusarium oxysporum (Schlecht.) f.sp. lycopersici (Sacc.) Snyd. et Hans. Penyebab Penyakit Layu Pada Tanaman Tomat (Solanum lycopersicum L.)

    OpenAIRE

    NURI MANDAN SARI; RETNO KAWURI; KHAMDAN KHALIMI

    2014-01-01

    A research was conducted to isolate Streptomyces sp. of soil Udayana University campus in theBukit-Jimbaran, to obtain the most effective Streptomyces sp. which is effective in inhibit the growth ofFusarium oxysporum f.sp. lycopersici, and to test response of tomato plants with Streptomyces sp.culture against Fusarium wilt desease. Implementation phases of the research consisted of isolation andidentification of Streptomyces sp, test the inhibition against F. oxysporum f.sp. lycopersici, and ...

  20. Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt

    Directory of Open Access Journals (Sweden)

    Amini Jahanshir

    2016-07-01

    Full Text Available In this study, about 112 isolates of Streptomyces were isolated from chickpea rhizospheric soils. Among the isolated strains, five showed strong inhibitory effects against chickpea Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris in vitro using plate assay and selected for further studies. The selected strains were identified as Streptomyces spp. based on morphological and biochemical characterization as well as 16S rDNA sequences analysis. Our results assigned them to strains related to genus of Streptomyces. In vitro, antagonistic effects of Streptomyces strains against the disease were evaluated through the dual-culture method, volatile and non-volatile metabolites, siderophore, protease and chitinase production. All bacterial strains inhibited mycelial growth of the pathogen ranging from 26 to 44.2% in dual culture assay. The non-volatile extract of five of the Streptomyces strains inhibited more than 50% growth of the pathogen, whereas volatile compounds were less effective on mycelial growth inhibition (20.2 to 33.4%. The ability of the biocontrol agents to produce siderophore and protease were varied, whereas, production of chitinase was detected for all strains. Results of the greenhouse assay indicated that all biocontrol agents reduced disease severity (ranging from 38.7 to 54.8%. Accordingly, strain KS62 showed higher control efficacy (54.8%. In addition, the biomass of chickpea plants (plant height and dry weight significantly increased in plants treated with Streptomyces strains compared to non-bacterized control. The results of this study showed that it may be possible to manage chickpea Fusarium wilt disease effectively by using Streptomyces species, as biocontrol agents. Therefore, evaluating their efficiency under field conditions is needed.

  1. Complete Genome Sequence of Streptomyces albus SM254, a Potent Antagonist of Bat White-Nose Syndrome Pathogen Pseudogymnoascus destructans

    Science.gov (United States)

    Badalamenti, Jonathan P.; Erickson, Joshua D.

    2016-01-01

    We sequenced and annotated the complete 7,170,504-bp genome of a novel secondary metabolite-producing Streptomyces strain, Streptomyces albus SM254, isolated from copper-rich subsurface fluids at ~220-m depth within the Soudan Iron Mine (Soudan, MN, USA). PMID:27081146

  2. Draft Genome Sequence of Streptomyces sp. Strain PTY087I2, Isolated from Styela canopus, a Panamanian Tunicate

    Science.gov (United States)

    Gromek, Samantha M.; Sung, Anne A.

    2016-01-01

    Streptomyces sp. PTY087I2 is a marine bacterium isolated from Styela canopus, a tunicate collected in Bocas del Toro, Panama. Here, we report a draft genome sequence for this bacterium, found to have 94.7% average nucleotide identity (ANI) with Streptomyces roseosporus NRRL 11379, and containing a diverse suite of secondary metabolite gene clusters. PMID:27634989

  3. Draft Genome Sequence of Streptomyces sp. Strain PTY087I2, Isolated from Styela canopus, a Panamanian Tunicate.

    Science.gov (United States)

    Gromek, Samantha M; Sung, Anne A; Klassen, Jonathan L; Balunas, Marcy J

    2016-01-01

    Streptomyces sp. PTY087I2 is a marine bacterium isolated from Styela canopus, a tunicate collected in Bocas del Toro, Panama. Here, we report a draft genome sequence for this bacterium, found to have 94.7% average nucleotide identity (ANI) with Streptomyces roseosporus NRRL 11379, and containing a diverse suite of secondary metabolite gene clusters. PMID:27634989

  4. The multiple personalities of Streptomyces spp. from the rhizosphere of apple cultivated in brassica seed meal ameded soils

    Science.gov (United States)

    Brassicaceae seed meal soil amendments proved control of Rhizoctonia root rot, in part, through the proliferation of indigenous rhizosphere colonizing Streptomyces spp. Studies were conducted to assess the relative role of antibiosis and nitric oxide (NO) production in the capacity of Streptomyces ...

  5. Draft Genome of Streptomyces zinciresistens K42, a Novel Metal-Resistant Species Isolated from Copper-Zinc Mine Tailings

    Science.gov (United States)

    Lin, Yanbing; Hao, Xiuli; Johnstone, Laurel; Miller, Susan J.; Baltrus, David A.; Rensing, Christopher; Wei, Gehong

    2011-01-01

    A draft genome sequence of Streptomyces zinciresistens K42, a novel Streptomyces species displaying a high level of resistance to zinc and cadmium, is presented here. The genome contains a large number of genes encoding proteins predicted to be involved in conferring metal resistance. Many of these genes appear to have been acquired through horizontal gene transfer. PMID:22038968

  6. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4

    Institute of Scientific and Technical Information of China (English)

    Sudha; S; Masilamani; Selvam; M

    2012-01-01

    Objective:To investigate the cytotoxic activity of actinomycete isolated from marine sediment.Methods:In the present study the DNA was isolated and the ITS region of 16s rRNA was amplified by polymerase chain reaction,using two universal bacterial primers,1492K(5’-GGTTACCTTG’TTAC GACTT-3’)and Eubac27F(5’-AGAGTTTGATCCTGGCTC AG-3’).The amplified products were purified using TIANgel mini purification kit,ligated to MD18-T simple vector(TaKaRa),and transformed into competent cells of Escherichia coli DH5α.16S rRNA gene fragment was sequenced using forward primer M13F(-47)and reverse primer M13R(-48).Blast search sequence similarity was found against the existing non-redundanl nucleotide sequence database thus,identified as Streptomyces sp SU,Streptomyces rubralavandulae strain SU1,Streptomyces cacaoi strain SU2,Streptomyces cavourensis strain SU3,Streptomyces avidinii strain SU4,Streptomyces globisporus strain SU5,Streptomyces variabilis strain SU6,Streptomyces coelicolor strain SU 7.Among the eight identified isolates,one actinomycete Streptomyces avidinii strain SU4 was selected for further study.Results:Crude extract of the actinomycete isolate exhibited IC50in 64.5μg against Hep-2 cell line,250μg in VERO cell line.This value is very close to the criteria of cytotoxicity activity for the crude extracts,as established by the American National Cancer Institute(NCI)is in IC50<30μg/mL.The CC MS analysis showed that the active principle might be 1,2-benzenedicarboxylic acid,bis(2-methylpropyl)ester(12.17%),isooctyl phthalate(15.29%)with the retention time 15.642 and 21.612,respectively.Conclusions:This study clearly proves that the marine sediment derived actinomycetes with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical and anticancer screening programs.These results help us to conclude that the potential of using metabolic engineering and post genomic

  7. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.

    Science.gov (United States)

    Bierman, M; Logan, R; O'Brien, K; Seno, E T; Rao, R N; Schoner, B E

    1992-07-01

    We have constructed cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. All vectors contain the 760-bp oriT fragment from the IncP plasmid, RK2. Transfer functions need to be supplied in trans by the E. coli donor strain. We have incorporated into these vectors selectable antibiotic-resistance markers (AmR, ThR, SpR) that function in Streptomyces spp. and other features that should allow for: (i) integration via homologous recombination between cloned DNA and the Streptomyces spp. chromosome, (ii) autonomous replication, or (iii) site-specific integration at the bacteriophage phi C31 attachment site. Shuttle cosmids for constructing genomic libraries and bacteriophage P1 cloning vector capable of accepting approx. 100-kb fragments are also described. A simple mating procedure has been developed for the conjugal transfer of these vectors from E. coli to Streptomyces spp. that involves plating of the donor strain and either germinated spores or mycelial fragments of the recipient strain. We have shown that several of these vectors can be introduced into Streptomyces fradiae, a strain that is notoriously difficult to transform by PEG-mediated protoplast transformation.

  8. Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic.

    Science.gov (United States)

    Rakotoniriana, Erick Francisco; Chataigné, Gabrielle; Raoelison, Guy; Rabemanantsoa, Christian; Munaut, Françoise; El Jaziri, Mondher; Urveg-Ratsimamanga, Suzanne; Marchand-Brynaert, Jacqueline; Corbisier, Anne-Marie; Declerck, Stéphane; Quetin-Leclercq, Joëlle

    2012-05-01

    An endophytic whorl-forming Streptomyces sp. designated as TS3RO having antifungal activity against a large number of fungal pathogens, including Sclerotinia sclerotiorum, Rhizoctonia solani, Colletotrichum gloeosporioides, Cryphonectria parasitica, Fusarium oxysporum, Pyrenophora tritici-repentis, Epidermophyton floccosum, and Trichophyton rubrum, was isolated from surface-sterilized Catharanthus roseus stems. Preliminary identification showed that Streptomyces cinnamoneus subsp. sparsus was its closest related species. However, strain TS3RO could readily be distinguished from this species using a combination of phenotypic properties, 16S rDNA sequence similarity, and phylogenetic analyses. Thus, the whorl-forming Streptomyces sp. strain TS3RO is likely a new subspecies within the Streptomyces cinnamoneus group. Direct bioautography on a thin-layer chromatography plate with Cladosporium cucumerinum was conducted throughout the purification steps for bioassay-guided isolation of the active antifungal compounds from the crude extract. Structural elucidation of the isolated bioactive compound was obtained via LC-MS spectrometry, UV-visible spectra, and nuclear magnetic resonance data. It revealed that fungichromin, a known methylpentaene macrolide antibiotic, was the main antifungal component of TS3RO strain, as shown by thin-layer chromatography bioautography. This is the first report of an endophytic whorl-forming Streptomyces isolated from the medically important plant Catharanthus roseus. PMID:22524528

  9. Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa L.

    Science.gov (United States)

    Bouizgarne, B; Lanoot, B; Loqman, S; Spröer, C; Klenk, H-P; Swings, J; Ouhdouch, Y

    2009-11-01

    The novel actinomycete strain Ap1(T) was isolated from rhizosphere soil of the argan tree (Argania spinosa L.) in the south of Morocco. Strain Ap1(T) has been reported as a novel producer of the pentaene polyene macrolide isochainin, which strongly inhibits the growth of pathogenic yeasts and phytopathogenic fungi. Strain Ap1(T) shows a greyish-white aerial mycelium with chains of smooth-surfaced spores of the Spiralis type and a cell wall containing ll-diaminopimelic acid. Based on chemotaxonomy and morphological features, strain Ap1(T) was identified as a member of the genus Streptomyces. 16S rRNA gene sequence similarities based on almost-complete 16S rRNA gene sequences showed that strain Ap1(T) is closely associated with members of the Streptomyces violaceoruber species group (S. violaceoruber, S. coelescens, S. violaceorubidus, 'S. caesius', 'S. lividans', S. violaceolatus and S. humiferus) and others (Streptomyces aurantiogriseus, S. lienomycini, S. chattanoogensis, S. rubrogriseus and S. tendae). However, protein profiling, DNA-DNA hybridization and BOX-PCR fingerprinting proved a relationship above the species level. In addition, the phenotype also allowed for the differentiation of strain Ap1(T) from its closest neighbours. As a result of this polyphasic approach, we conclude that strain Ap1(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces marokkonensis sp. nov. is proposed. The type strain is Ap1(T) (=R-22003(T) =LMG 23016(T) =DSM 41918(T)). PMID:19628602

  10. Characterization and Optimization of Biosynthesis of Bioactive Secondary Metabolites Produced by Streptomyces sp. 8812.

    Science.gov (United States)

    Rajnisz, Aleksandra; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Laskowska, Anna; Rabczenko, Daniel; Solecka, Jolanta

    2016-01-01

    The nutritional requirements and environmental conditions for a submerged culture of Streptomyces sp. 8812 were determined. Batch and fed-batch Streptomyces sp. 8812 fermentations were conducted to obtain high activity of secondary metabolites. In the study several factors were examined for their influence on the biosynthesis of the active metabolites-7-hydroxy-6-oxo-2,3,4,6-tetrahydroisoquinoline-3-carboxy acid (C10H9NO4) and N-acetyl-3,4-dihydroxy-L-phenylalanine (C11H13NO5): changes in medium composition, pH of production medium, various growth phases of seed culture, amino acid supplementation and addition of anion exchange resin to the submerged culture. Biological activities of secondary metabolites were examined with the use of DD-carboxypeptidase 64-575 and horseradish peroxidase. Streptomyces sp. 8812 mycelium was evaluated under fluorescent microscopy and respiratory activity of the strain was analyzed. Moreover, the enzymatic profiles of the strain with the use of Api ZYM test were analyzed and genetic analysis made. Phylogenetic analysis of Streptomyces sp. 8812 revealed that its closest relative is Streptomyces capoamus JCM 4734 (98%), whereas sequence analysis for 16S rRNA gene using NCBI BLAST algorithm showed 100% homology between these two strains. Biosynthetic processes, mycelium growth and enzyme inhibitory activities of these two strains were also compared. PMID:27281994

  11. Streptomyces actinomycinicus sp. nov., isolated from soil of a peat swamp forest.

    Science.gov (United States)

    Tanasupawat, Somboon; Phongsopitanun, Wongsakorn; Suwanborirux, Khanit; Ohkuma, Moriya; Kudo, Takuji

    2016-01-01

    A novel actinomycete, strain RCU-197T, was isolated from soil of a peat swamp forest in Rayong Province, Thailand. Using a polyphasic approach, the strain was classified in the genus Streptomyces. It contained ll-diaminopimelic acid in the cell-wall peptidoglycan. No diagnostic sugars were detected in whole-cell hydrolysates and there was a lack of mycolic acids. The major menaquinones were MK-9(H6) and MK-9(H8). The predominant cellular fatty acids were iso-C14 : 0, iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. The polar lipids profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannoside, an unknown aminolipid and two unknown phospholipids. Phylogenetic analysis of 16S rRNA gene sequences showed the strain formed distinct clade within the genus Streptomyces and was closely related to Streptomyces echinatus NBRC 12763T (98.78 % 16S rRNA gene sequence similarity). According to the polyphasic approach as well as DNA-DNA relatedness, the strain could be clearly differentiated from closely related species and represents a novel species of the genus Streptomyces, for which the name Streptomyces actinomycinicus sp. nov. is proposed. The type strain is RCU-197T ( = JCM 30864T = TISTR 2208T = PCU 342T). PMID:26510888

  12. Screening of wild type Streptomyces isolates able to overproduce clavulanic acid.

    Science.gov (United States)

    Viana Marques, Daniela A; Santos-Ebinuma, Valéria de Carvalho; de Oliveira, Patrícia Maria Sobral; Lima, Gláucia Manoella de Souza; Araújo, Janete M; Lima-Filho, José L; Converti, Attilio; Pessoa-Júnior, Adalberto; Porto, Ana L F

    2014-01-01

    The selection of new microorganisms able to produce antimicrobial compounds is hoped for to reduce their production costs and the side effects caused by synthetic drugs. Clavulanic acid is a β-lactam antibiotic produced by submerged culture, which is widely used in medicine as a powerful inhibitor of β-lactamases, enzymes produced by bacteria resistant to antibiotics such penicillin and cephalosporin. The purpose of this work was to select the best clavulanic acid producer among strains of Streptomyces belonging to the Microorganism Collection of the Department of Antibiotics of the Federal University of Pernambuco (DAUFPE). Initially, the strains were studied for their capacity to inhibit the action of β-lactamases produced by Klebsiella aerogenes ATCC 15380. From these results, five strains were selected to investigate the batch kinetics of growth and clavulanic acid production in submerged culture carried out in flasks. The results were compared with the ones obtained by Streptomyces clavuligerus ATCC 27064 selected as a control strain. The best clavulanic acid producer was Streptomyces DAUFPE 3060, molecularly identified as Streptomyces variabilis, which increased the clavulanic acid production by 28% compared to the control strain. This work contributes to the enlargement of knowledge on new Streptomyces wild strains able to produce clavulanic acid by submerged culture.

  13. Screening of wild type Streptomyces isolates able to overproduce clavulanic acid

    Directory of Open Access Journals (Sweden)

    Daniela A. Viana Marques

    2014-09-01

    Full Text Available The selection of new microorganisms able to produce antimicrobial compounds is hoped for to reduce their production costs and the side effects caused by synthetic drugs. Clavulanic acid is a β-lactam antibiotic produced by submerged culture, which is widely used in medicine as a powerful inhibitor of β-lactamases, enzymes produced by bacteria resistant to antibiotics such penicillin and cephalosporin. The purpose of this work was to select the best clavulanic acid producer among strains of Streptomyces belonging to the Microorganism Collection of the Department of Antibiotics of the Federal University of Pernambuco (DAUFPE. Initially, the strains were studied for their capacity to inhibit the action of β-lactamases produced by Klebsiella aerogenes ATCC 15380. From these results, five strains were selected to investigate the batch kinetics of growth and clavulanic acid production in submerged culture carried out in flasks. The results were compared with the ones obtained by Streptomyces clavuligerus ATCC 27064 selected as a control strain. The best clavulanic acid producer was Streptomyces DAUFPE 3060, molecularly identified as Streptomyces variabilis, which increased the clavulanic acid production by 28% compared to the control strain. This work contributes to the enlargement of knowledge on new Streptomyces wild strains able to produce clavulanic acid by submerged culture.

  14. Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8.

    Directory of Open Access Journals (Sweden)

    Jose C Huguet-Tapia

    Full Text Available PAISt is a large genomic island located in the chromosome of the plant pathogen Streptomyces turgidiscabies Car8. The island carries clustered virulence genes, transfers to other Streptomyces species, and integrates by site-specific recombination at the 8 bp palindrome TTCATGAA. The palindrome is located at the 3' end of the bacitracin resistance gene (bacA. We demonstrate that PAISt is able to excise in modules by recombination of one internal and two flanking palindromic direct repeats. The gene intSt located at the 3( end of PAISt encodes a tyrosine recombinase. Site-specific recombination activity of intSt was tested and confirmed by heterologous expression in Streptomyces coelicolor. Comparative analysis of PAISt homologues in Streptomyces scabies 87-22 and Streptomyces acidiscabies 84-104 indicates that these islands have been fixed by sequence erosion of intSt and the recombination sites.

  15. EFEKTIFITAS DAYA HAMBAT BAKTERI Streptomyces sp TERHADAP Erwinia sp PENYEBAB PENYAKIT BUSUK REBAH PADA TANAMAN LIDAH BUAYA (Aloe barbadensis Mill

    Directory of Open Access Journals (Sweden)

    SARMILA TASNIM

    2013-05-01

    Full Text Available Streptomyces sp was conducted from December 2010 - June 2011 at the Laboratoryof Microbiology, Biology Department, Math and Science Faculty, UdayanaUniversity Bukit Jimbaran-Bali. Implementation stages of the research consisted ofisolation and testing of the antibiotic activity Streptomyces sp to inhibit growthbacterial pathogens Erwinia sp as a cause of disease in plants fallen foul (Soft rot ofAloe barbadensis Mill.The results of this study have eight isolates of Streptomyces spwith macroscopic and microscopic characters are varied. Furthermore, all isolateswere obtained and then tested against antibiotic activity to inhibit growth the bacteriaErwinia sp. Test results obtained by Streptomyces sp that has the most effective ininhibiting the ability of the bacteria Erwinia sp isolates are Streptomyces sp2for (45%.

  16. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus.

    Science.gov (United States)

    Bressollier, P; Letourneau, F; Urdaci, M; Verneuil, B

    1999-06-01

    Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.

  17. Effect of pamamycin-607 on secondary metabolite production by Streptomyces spp.

    Science.gov (United States)

    Hashimoto, Makoto; Katsura, Hirotaka; Kato, Risako; Kawaide, Hiroshi; Natsume, Masahiro

    2011-01-01

    The effect of the aerial mycelium-inducing compound, pamamycin-607, on antibiotic production by several Streptomyces spp. was examined. Exposure to 6.6 µM pamamycin-607 stimulated by 2.7 fold the puromycin production by Streptomyces alboniger NBRC 12738, in which pamamycin-607 had first been isolated, and restored aerial mycelium formation. Pamamycin-607 also stimulated the respective production of streptomycin by S. griseus NBRC 12875 and that of cinerubins A and B by S. tauricus JCM 4837 by approximately 1.5, 1.7 and 1.9 fold. The antibiotic produced by Streptomyces sp. 91-a was identified as virginiamycin M(1), and its synthesis was enhanced 2.6 fold by pamamycin-607. These results demonstrate that pamamycin-607 not only restored or stimulated aerial mycelium formation, but also stimulated secondary metabolite production.

  18. A novel gene: sawD related to the differentiation of streptomyces ansochromogenes.

    Science.gov (United States)

    Gang, L; Wei, C; Yuqing, T; Huarong, T; Chater, K F; Buttner, M J

    1999-01-01

    A 1.3 kb DNA fragment was cloned from a total DNA library of Streptomyces ansochromogenes using Southern hybridization. Nucleotide sequencing analysis indicated that the 1320 bp DNA fragment contained a complete open reading frame (ORF). In search of databases, the deduced product of ORF containing 213 amino acids is homologous to the serine protease of Caulobacter cresceatus, and a conserved serine-catalytic active site (GPSAG) exists. The gene was designated as sawD. The function of this gene was studied with the strategy of gene disruption, and the result showed that the sawD may be related to sporulation and especially to the spore septation in Streptomyces ansochromogenes. The preliminary result indicated that sawD mutant could produce abundant pigment in contrast with the wild type, it seems that sawD gene may be involved in pigment biosynthesis, and this gene is also dispensable for biosynthesis of nikkomycin in Streptomyces ansochromogenes.

  19. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity

    Science.gov (United States)

    Schrempf, Hildgund; Merling, Philipp

    2015-01-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential. PMID:25851532

  20. Continuous culture of immobilized streptomyces cells for kasugamycin production.

    Science.gov (United States)

    Kim, C J; Chang, Y K; Chun, G T; Jeong, Y H; Lee, S J

    2001-01-01

    Continuous cultures of immobilized Streptomyces kasugaensis, a kasugamycin producer, were carried out on Celite beads. When using a prototype separator for immobilized-cell separation and recycling, the continuous operation could not be sustained for an extended period as a result of an excessive loss of immobilized cells caused by the poor performance of the separator. Accordingly, the immobilized-cell separator was revised to provide better immobilized-cell settling and thus recycling into the reactor. In a subsequent culture using the revised separator, a stable operation was maintained for over 820 h with a high kasugamycin productivity. The kasugamycin productivity ranged from 9.8 to 16.1 mg/L/h, which was about 14- to 23-fold higher than that in a batch suspended-cell culture. When the original feeding medium concentration was doubled at the end of the continuous culture, the productivity became severely impaired for several reasons, which will be discussed. An excessive formation of free cells and loss of immobilized cells through the separator were also observed. PMID:11386865

  1. The Chitinolytic Activities of Streptomyces sp. TH-11

    Directory of Open Access Journals (Sweden)

    Chun-Yi Liau

    2010-12-01

    Full Text Available Chitin is an abundant biopolymer composed of units of N-acetyl-D-glucosamine linked by b-1,4 glycosidic bonds. Chitin is the main component of the shells of mollusks, the cell wall of fungi and yeast and of the exoskeleton of crustaceans and insects. The degradation of chitin is catalyzed by chitinases that occur in a wide range of organisms. Among them, the chitinases from microorganisms are extremely important for the degradation and recycling of the carbon and nitrogen trapped in the large amount of insoluble chitin in nature. Streptomyces sp. TH-11 was isolated from the sediment of the Tou-Chien River, Taiwan. The chitinolytic enzyme activities were detected using a rapid in-gel detection method from the cell-free preparation of the culture medium of TH-11. The chitinolytic enzyme activity during prolonged liquid culturing was also analyzed by direct measurement of the chitin consumption. Decomposition of the exoskeleton of shrimps was demonstrated using electron microscopy and atomic force microscopy.

  2. Biological treatment of colored wastewater by Streptomyces fulvissimus CKS 7.

    Science.gov (United States)

    Buntić, A V; Pavlović, M D; Šiler-Marinković, S S; Dimitrijević-Branković, S I

    2016-01-01

    This study aims to investigate the biological processes related to the biodegradable potential of growing microbial cells for contaminated water treatment. Thus, the use of the Streptomyces fulvissimus CKS 7 (CKS7) has been evaluated for decolorizing efficiency of a solution containing a cationic triphenylmethane dye, crystal violet. The color reduction was monitored by UV-Vis spectroscopic analysis, through changes in their absorption spectrum and comparing the results with those of the respective controls. It was found that the CKS7 performed well and reached up to 100% effectiveness. The required process parameters have been apparently mild and include the reaction temperature of 27-30 °C, 10% inoculum size, under shaking conditions, whereas the time course of decolorization had been concentration dependent. A possible mechanism for removing dye from the working medium was accomplished in two steps: the binding of the dye on the bacterial cell surface, in addition to the dye biodegradation by the bacterial intracellular enzymes. After one cycle of the complete dye removal, the adapted culture was successfully reused for the same purpose. The phytotoxicity analysis revealed that non-toxic compounds were present in decolorized medium, indicating that the CKS7 bacteria seem to be a promising application for contaminated water treatment. PMID:27148725

  3. Optimization of electroporation conditions for toyocamycin producer Streptomyces diastatochromogenes 1628.

    Science.gov (United States)

    Ma, Zheng; Liu, Jinxiu; Shentu, Xuping; Bian, Yalin; Yu, Xiaoping

    2014-04-01

    Because of its structural similarity to nucleoside, toyocamycin exhibits potential of wide application and various biological activities. Streptomyces diastatochromogenes 1628, capable of producing toyocamycin, has exhibited a potential biocontrol effect in inhibiting the development of phytopathogens in the agriculture field. An efficient transformation system is a prerequisite for genetic and molecular study of S. diastatochromogenes 1628. In this study, we optimized experimental factors involved in the electroporation transformation process. Key features of this procedure, including collection of cells at the mid-log phase stage and the treatment of cells with lysozyme and penicillin G prior to the electroporation and recovery medium and time, produced the greatest increase in the efficiency and consistency of results. The transformation efficiency also depends on field strength, cell concentration, and plasmid DNA quantity. Under the optimal conditions, a maximal efficiency of (3 ± 0.4) × 10(4)  µg(-1) DNA was obtained. The development of transformation method for S. diastatochromogenes 1628 will foster genetic manipulation of this important strain. PMID:23775805

  4. Induction of beta-galactosidase in Streptomyces violaceus.

    Science.gov (United States)

    Sanchez, J; Hardisson, C

    1979-07-01

    Synthesis of beta-galactosidase by Streptomyces violaceus was induced by D-galactose and L-arabinose, and to a lesser extent by lactose, D-arabinose, and methyl-beta-D-galactopyranoside. The synthesis of the enzyme was linear and started to increase 2--3 h after induction by galactose, reaching a maximum after 5--7 h. The highest level of specific activity was observed in 2% galactose, with an increase of 45 times over the basal level in glycerol. Isopropyl-beta-D-thiogalactopyranoside (IPTG) and methyl-beta-D-thiogalactopyranoside (TMG) inhibited induction by D-galactose, but did not influence enzymatic activity. Cellular extracts hydrolyzed O-nitrophenyl-beta-D-galactopyranoside, but did not significantly hydrolyze lactose, melibiose, p-nitrophenyl-alpha-D-galactopyranoside, p-nitrophenyl-beta-D-fucoside, or p-nitrophenyl-beta-D-glucopyranoside. Rifampicin and chloramphenicol inhibited beta-galactosidase synthesis in non-preinduced and in preinduced cells. The inhibition by chloramphenicol was reversible. PMID:113072

  5. Heavy metal adsorption of Streptomyces chromofuscus K101

    Institute of Scientific and Technical Information of China (English)

    Said Mohamed Daboor; Amany Mohamed Haroon; Neven Abd Elfatah Esmael; Slah Ibrahem Hanona

    2014-01-01

    Objective:To find the best actinomycete that has potential application value in the heavy metal remediation due to its special morphological and physiological metabolism. Methods: In some areas of River Nile, Egypt, a total of 67 actinomycete isolates (17 isolates from surface water and 50 from sediment) were identified. In addition, the studied area was characterized by a large amount of submerged macrophyte species Ceratophyllum demersum, one free floating species Eichhornia crassipes and two emergent species Polygonum tomentosum and Saccharum spontaneum with the highest biomass production values. Many methods are used in this research like qualitative evaluation of heavy metals, minimum inhibitory concentration of heavy metal determination, metal binding assay, heavy metal assessment, etc. Results: Many actinomycetes isolates were isolated from River Nile, Egypt, the absorbent efficiency of one isolate Streptomyces chromofuscusK101 showed the most efficient metal binding activity. The adsorption process of Zn2+, Pb2+and Fe2+single or mixture metal ions was investigated, where the order of adsorption potential ( Zn2+>Pb2+>Fe2+ ) was observed in single metal reaction. The adsorption in mixed metal reactions was the same order as in single-metal ion with a significant decrease in Fe2+and Pb2+adsorption. Conclusions: In conclusion the metal adsorption reactions were very fast, pH dependent and culture age-independent, suggestive of a physicochemical reaction between cell wall components and heavy metal ions. The absorbent removal efficiency was determined as a function of ion concentration, pH and temperature.

  6. Biological treatment of colored wastewater by Streptomyces fulvissimus CKS 7.

    Science.gov (United States)

    Buntić, A V; Pavlović, M D; Šiler-Marinković, S S; Dimitrijević-Branković, S I

    2016-01-01

    This study aims to investigate the biological processes related to the biodegradable potential of growing microbial cells for contaminated water treatment. Thus, the use of the Streptomyces fulvissimus CKS 7 (CKS7) has been evaluated for decolorizing efficiency of a solution containing a cationic triphenylmethane dye, crystal violet. The color reduction was monitored by UV-Vis spectroscopic analysis, through changes in their absorption spectrum and comparing the results with those of the respective controls. It was found that the CKS7 performed well and reached up to 100% effectiveness. The required process parameters have been apparently mild and include the reaction temperature of 27-30 °C, 10% inoculum size, under shaking conditions, whereas the time course of decolorization had been concentration dependent. A possible mechanism for removing dye from the working medium was accomplished in two steps: the binding of the dye on the bacterial cell surface, in addition to the dye biodegradation by the bacterial intracellular enzymes. After one cycle of the complete dye removal, the adapted culture was successfully reused for the same purpose. The phytotoxicity analysis revealed that non-toxic compounds were present in decolorized medium, indicating that the CKS7 bacteria seem to be a promising application for contaminated water treatment.

  7. Studies on biological reduction of chromate by Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Poopal, Ashwini C. [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India); Laxman, R. Seeta, E-mail: rseetalaxman@yahoo.co.in [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India)

    2009-09-30

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  8. Improved production of spiramycin by mutant Streptomyces ambofaciens

    Institute of Scientific and Technical Information of China (English)

    金志华; 岑沛霖

    2004-01-01

    Strain improvement and medium optimization to increase the productivity of spiramycin were carried out. Of oil tolerant mutant strains screened, one mutant, Streptomyces ambofaciens XC 2-37, produced 9% more spiramycin than the parent strain S. ambofaciens XC 1-29. The effects of soybean oil and propyl alcohol on spiramycin production with S. ambofaciens XC 2-37 were studied. The potency of S. ambofaciens XC 2-37 was improved by 61.8% with addition of 2% soybean oil in the fermentation medium and 0.4% propyl alcohol at 24 hours after incubation. The suitable time for feeding propyl alcohol is at 24 hours after incubation in flask fermentation and at 20 hours after incubation in fermentor fermentation. The new process with S. ambofaciens XC 2-37 was scaled up for industrial scale production of spiramycin in a 60 m3 fermentor in Xinchang Pharmaceutical Factory, Zhejiang Medicine Company, Ltd., China, and the potency and productivity of fermentation were improved by 42.9%.

  9. Improved production of spiramycin by mutant Streptomyces ambofaciens

    Institute of Scientific and Technical Information of China (English)

    金志华; 岑沛霖

    2004-01-01

    Strain improvement and medium optimization to increase the productivity of spiramycin were carried out. Of oil tolerant mutant strains screened, one mutant, Streptomyces ambofaciens XC 2-37, produced 9% more spiramycin than the parent strain S. ambofaciens XC 1-29. The effects of soybean oil and propyl alcohol on spiramycin production with S.ambofaciens XC 2-37 were studied. The potency orS. ambofaciens XC 2-37 was improved by 61.8% with addition of 2% soybean oil in the fermentation medium and 0.4% propyl alcohol at 24 hours after incubation. The suitable time for feeding propyl alcohol is at 24 hours after incubation in flask fermentation and at 20 hours after incubation in fermentor fermentation The new process with S. ambofaciens XC 2-37 was scaled up for industrial scale production of spiramycin in a 60 m3 fermentor in Xinchang Pharmaceutical Factory, Zhejiang Medicine Company, Ltd., China, and the potency and productivity of fermentation were improved by 42.9%.

  10. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Christina Viegelmann

    2014-06-01

    Full Text Available Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8 isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1, 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2, and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3 that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.

  11. [Preliminary study on autoregulation of samR involved in development and differentiation of Streptomyces ansochromogenes].

    Science.gov (United States)

    Yang, Yan-ling; Yang, Hai-hua; Tan, Hua-rong

    2005-02-01

    The previous result showed that samR plays an important role in the development progress of Streptomyces ansochromogenes. It was reported that the differentiation progress of S. ansochromogenes was accelerated by a recombinant plasmid containing an extra copy of samR gene. However, the differentiation progress of S. ansochromogenes was not further accelerated by a multicopy plasmid containing samR gene. Electrophoresis mobility shift assay (EMSA) demonstrated that SamR binds to its own promoter region specifically. All these results hint that samR is an autoregulatory gene in Streptomyces ansochromogenes. PMID:15847153

  12. Phage vectors that allow monitoring of transcription of secondary metabolism genes in Streptomyces.

    Science.gov (United States)

    Bruton, C J; Guthrie, E P; Chater, K F

    1991-07-01

    We describe a bacteriophage phi C31-based system that permits the transcriptional fusion of the convenient reporter gene xylE to chromosomally located promoters in Streptomyces hosts. Applicability of the system to genes for secondary metabolism is demonstrated in an experiment showing that transcription of genes for actinorhodin production in Streptomyces coelicolor A3(2) depends on a transfer RNA gene (bldA) for the rare UUA codon. Two other phi C31::xylE vectors are described that allow detection of promoter activity away from their natural location, either at single copy in a prophage or during lytic infections in plaques.

  13. New Ikarugamycin Derivatives with Antifungal and Antibacterial Properties from Streptomyces zhaozhouensis

    Directory of Open Access Journals (Sweden)

    Rodney Lacret

    2014-12-01

    Full Text Available A bioassay guided fractionation of the ethyl acetate extract from culture broths of the strain Streptomyces zhaozhouensis CA-185989 led to the isolation of three new polycyclic tetramic acid macrolactams (1–3 and four known compounds. All the new compounds were structurally related to the known Streptomyces metabolite ikarugamycin (4. Their structural elucidation was accomplished using a combination of electrospray-time of flight mass spectrometry (ESI-TOF MS and 1D and 2D NMR analyses. Compounds 1–3 showed antifungal activity against Aspergillus fumigatus, Candida albicans and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA.

  14. New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis.

    Science.gov (United States)

    Lacret, Rodney; Oves-Costales, Daniel; Gómez, Cristina; Díaz, Caridad; de la Cruz, Mercedes; Pérez-Victoria, Ignacio; Vicente, Francisca; Genilloud, Olga; Reyes, Fernando

    2014-12-29

    A bioassay guided fractionation of the ethyl acetate extract from culture broths of the strain Streptomyces zhaozhouensis CA-185989 led to the isolation of three new polycyclic tetramic acid macrolactams (1-3) and four known compounds. All the new compounds were structurally related to the known Streptomyces metabolite ikarugamycin (4). Their structural elucidation was accomplished using a combination of electrospray-time of flight mass spectrometry (ESI-TOF MS) and 1D and 2D NMR analyses. Compounds 1-3 showed antifungal activity against Aspergillus fumigatus, Candida albicans and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA).

  15. Capability of Streptomyces spp. in Controlling Bacterial Leaf Blight Disease in Rice Plants

    Directory of Open Access Journals (Sweden)

    Ratih D. Hastuti

    2012-01-01

    Full Text Available Problem statement: Bacterial Leaf Blight (BLB caused by Xanthomonas oryzae pv. oryzae (Xoo is the most damaging disease in lowland rice growing areas in Indonesia. Streptomyces spp. have been known as a producer of antimicrobial compounds that can be used as biocontrol agents. This study examined the ability of three promising indigenous Streptomyces isolates which were previously selected from in vitro agar media and greenhouse test to suppress natural infection of Xoo during dry and wet season trials in 2009/2010 at the Muara Experimental Research Station, Bogor West Java, Indonesia. Approach: Streptomyces isolates (PS4-16, LBR-02 and LSW-05 were applied through seed coating in a peat-based carrier followed by seedling soaking, spray treatment, or combination of both methods, either singly or in combination of two or three isolates. The number of Streptomyces population in the peat carrier at the time of inoculation was above 107 cell g-1. The efficacy of Streptomyces was compared to that chemical spray using NORDOX 56 WP (a.i., zinc oxide 56% and non-treatment. Treated and untreated seeds were grown in plots (5×5 m2 and set in a randomized complete block design with four replications. Results: In the dry season experiment, application of Streptomyces spp. reduced BLB severity when compared to that of untreated plots, although did not reduce BLB incidence. PS4-16, applied singly through seed coating followed by seedling soaking, reduced the Area Under Disease Progress Curve (AUDPC at 70 Days After Planting (DAP to 1458, which was equally effective to the chemical spray (AUDPC value 1434 and simultaneously promoted plant height and gave the highest rice yield. In the wet season trial PS4-16 and LBR-02, applied singly or in dual combination through seed coating followed by seedling soaking, suppressed BLB severity, PS4-16 was confirmed as the most effective isolate by reducing the AUDPC to 1923, which was not significantly different to the

  16. Complete genome sequence of Streptomyces reticuli, an efficient degrader of crystalline cellulose.

    Science.gov (United States)

    Wibberg, Daniel; Al-Dilaimi, Arwa; Busche, Tobias; Wedderhoff, Ina; Schrempf, Hildgund; Kalinowski, Jörn; Ortiz de Orué Lucana, Darío

    2016-03-20

    We report the complete, GC-rich genome sequence of the melanin producer Streptomyces reticuli Tü 45 (S. reticuli) that targets and degrades highly crystalline cellulose by the concerted action of a range of biochemically characterized proteins. It consists of a linear 8.3 Mb chromosome, a linear 0.8 Mb megaplasmid, a linear 94 kb plasmid and a circular 76 kb plasmid. Noteworthy, the megaplasmid is the second largest known Streptomyces plasmid. Preliminary analysis reveals, among others, 43 predicted gene clusters for the synthesis of secondary metabolites and 456 predicted genes for binding and degradation of cellulose, other polysaccharides and carbohydrate-containing compounds. PMID:26851387

  17. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R;

    2011-01-01

    A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis. Sceliphrol......A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis....... Sceliphrolactam displays antifungal activity against amphotericin B-resistant Candida albicans (MIC = 4 µg/mL, 8.3 µM)....

  18. The function of a regulatory gene,scrX related to differentiation in Streptomyces coelicolor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new gene, scrX from Streptomyces coelicolor was cloned and sequenced. It consists of 660 base pair, encoding a peptide of 220 amino acids. There are three rare codons in scrX which are AAA, AAA and ATA. scrX gene may be a typical differentiation regulator which was strictly controlled at translational level. The comparison of amino acids also revealed that ScrX belonged to Ic1R family which acted in transcriptional regulation of prokaryote. Studies on gene function by gene disruption and complementation indicated that scrX may play a positive regulation role in spore formation of Streptomyces coelicolor.

  19. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4

    Institute of Scientific and Technical Information of China (English)

    Sudha S; Masilamani Selvam M

    2012-01-01

    To investigate the cytotoxic activity of actinomycete isolated from marine sediment. Methods: In the present study the DNA was isolated and the ITS region of 16s rRNA was amplified by polymerase chain reaction, using two universal bacterial primers, 1492R (5′-GGTTACCTTGTTAC GACTT-3′) and Eubac27F (5′-AGAGTTTGATCCTGGCTC AG-3′). The amplified products were purified using TIANgel mini purification kit, ligated to MD18-T simple vector (TaKaRa), and transformed into competent cells of Escherichia coli DH5α. 16S rRNA gene fragment was sequenced using forward primer M13F (-47) and reverse primer M13R (-48). Blast search sequence similarity was found against the existing non-redundant nucleotide sequence database thus, identified as Streptomyces sp SU, Streptomyces rubralavandulae strain SU1, Streptomyces cacaoi strain SU2, Streptomyces cavourensis strain SU3, Streptomyces avidinii strain SU4, Streptomyces globisporus strain SU5, Streptomyces variabilis strain SU6, Streptomycescoelicolor strain SU 7. Among the eight identified isolates, one actinomycete Streptomyces avidinii strain SU4 was selected for further study. Results: Crude extract of the actinomycete isolate exhibited IC50 in 64.5 μg against Hep-2 cell line, 250 μg in VERO cell line. This value is very close to the criteria of cytotoxicity activity for the crude extracts, as established by the American National Cancer Institute (NCI) is in IC50 < 30 μg /mL. The GC MS analysis showed that the active principle might be 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (12.17%), isooctyl phthalate (15.29%) with the retention time 15.642 and 21.612, respectively. Conclusions: This study clearly proves that the marine sediment derived actinomycetes with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical and anticancer screening programs. These results help us to conclude that the potential of using metabolic engineering and post genomic

  20. relA Is Required for Actinomycin Production in Streptomyces antibioticus

    OpenAIRE

    Hoyt, Shannan; Jones, George H.

    1999-01-01

    The relA gene from Streptomyces antibioticus has been cloned and sequenced. The gene encodes a protein with an Mr of 93,653, which is 91% identical to the corresponding protein from Streptomyces coelicolor. Disruption of S. antibioticus relA produces a strain which grows significantly more slowly on actinomycin production medium than the wild type or a disruptant to which the intact relA gene was restored. Moreover, the disruptant was unable to accumulate ppGpp to the ...

  1. Influence of geosmin-producing Streptomyces on the growth and volatile metabolites of yeasts during chinese liquor fermentation.

    Science.gov (United States)

    Du, Hai; Lu, Hu; Xu, Yan

    2015-01-14

    Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process, causing an earthy, off-odor containment. Through microbiological and metabolite analyses, this paper investigates the influence of several geosmin-producing Streptomyces on the microbial community of a brewing system. The antifungal activity against functional liquor-brewing microbes was assayed by an agar diffusion method. Several Streptomyces, most notably Streptomyces sampsonii QC-2, inhibited the growth of the brewing functional yeasts and molds in pure culture. In a simulated coculture, Streptomyces spp. reduced the flavor compounds (alcohols and esters) contributed by yeasts. Nine components in Streptomyces sampsonii QC-2 broth were detected by ultraperformance liquid chromatography coupled with photo diode array (UPLC–PDA), with characteristic ultraviolet absorptions at 360, 380, and 400 nm. The main products of Streptomyces sampsonii QC-2 were identified by ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF–MS/MS), and confirmed by standard mass spectrometry. The antifungal active components were revealed as a series of heptaene macrolide antibiotics.

  2. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    Directory of Open Access Journals (Sweden)

    Javier García-Hidalgo

    Full Text Available The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R-3-hydroxybutyrate (PHB degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa , has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131-Asp(209-His(269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt. The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  3. Solid-state fermentation for the production of meroparamycin by streptomyces sp. strain MAR01.

    Science.gov (United States)

    El-Naggar, Moustafa Y; El-Assar, Samy A; Abdul-Gawad, Sahar M

    2009-05-01

    The antibiotic meroparamycin was produced in the free culture system of Streptomyces sp. strain MAR01. Five solid substrates (rice, wheat bran, Quaker, bread, and ground corn) were screened for their ability to support meroparamycin production in solid-state fermentation. In batch culture, wheat bran recorded the highest antibacterial activity with the lowest residual substrate values. The highest residual substrate values were recorded for both ground corn and Quaker. On the other hand, no antibacterial activity was detected for rice as a solid substrate. The use of the original strength of starch-nitrate medium in the solid-state fermentation gave a lower antibacterial activity compared with the free culture system. Doubling the strength of this medium resulted in the increase in the activity to be equivalent to the free culture. The initial pH (7.0) of the culture medium and 2 ml of spore suspension (1 ml contains 5x10(9) spores/ml) were the optima for antibiotic production. The water was the best eluent for the extraction of the antibiotic from the solid-state culture. Ten min was enough time to extract the antibiotic using a mixer, whereas, 60 min was required when shaking was applied. Semicontinuous production of meroparamycin using a percolation method demonstrated a more or less constant antibacterial activity over 4 runs (450-480 microg/ml). The semicontinuous production of the antibiotic was monitored in a fixed-bed bioreactor and the maximum activity was attained after the fourth run (510 microg/ml) and the overall process continued for 85 days.

  4. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D. [Scripps Research Inst., Jupiter, FL (United States); Bigelow, Lance [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Changsoo [Argonne National Lab. (ANL), Argonne, IL (United States); Cuff, Marianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Lohman, Jeremy R. [Scripps Research Inst., Jupiter, FL (United States); Chang, Chin-Yuan [Scripps Research Inst., Jupiter, FL (United States); Ma, Ming [Scripps Research Inst., Jupiter, FL (United States); Yang, Dong [Scripps Research Inst., Jupiter, FL (United States); Clancy, Shonda [Argonne National Lab. (ANL), Argonne, IL (United States); Babnigg, Gyorgy [Argonne National Lab. (ANL), Argonne, IL (United States); Joachimiak, Andrzej [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, George N. [Rice Univ., Houston, TX (United States); Shen, Ben [Scripps Research Inst., Jupiter, FL (United States)

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  5. Streptomyces somaliensis mediated green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-07-01

    Full Text Available Objective(s: The development of reliable and ecofriendly process for the synthesis of nano-metals is an important aspect in the field of nanotechnology. Nano-metals are a special group of materials with broad area of applications. Materials and Methods: In this study, extracellular synthesis of silver nanoparticles (SNPs performed by use of the gram positive soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran (5 isolates. Initial characterization of SNPs was performed by visual change color. To determine the bacterium taxonomical identity, its colonies characterized morphologically by use of scanning electron microscope. The PCR molecular analysis of active isolate represented its identity partially. In this regard, 16S rDNA of isolate G was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI GenBank database using BLAST. Also SNPs were characterized by, transmission electron microscopy (TEM and X-ray diffraction spectroscopy (XRD. Results: From all 5 collected Streptomyces somaliensis isolates, isolate G showed highest extracellular synthesis of SNPs via in vitro. SNPs were formed immediately by the addition of (AgNO3 solution (1 mM. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 450 nm, which confirmed the presence of SNPs. TEM revealed the extracellular formation of spherical silver nanoparticles in the size range of 5-35 nm. Conclusions: The biological approach for the synthesis of metal nanoparticles offers an environmentally benign alternative to the traditional chemical and physical synthesis methods. So, a simple, environmentally friendly and cost-effective method has been developed to synthesize AgNPs using Streptomycetes.

  6. Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous

    NARCIS (Netherlands)

    Melillo, Elena; Muntendam, Remco; Quax, Wim J.; Kayser, Oliver

    2012-01-01

    For the first time, the pentalenene synthase (PSS) gene from Streptomyces UC5319 was expressed in Xanthophyllomyces dendrorhous, a native producer of astaxanthin. For the expression of the gene and the concurrent knock out of the native crtE or crtYB genes, two new vectors were engineered and used f

  7. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata

    OpenAIRE

    de Oliveira, Luciana G; Tormet Gonzalez, Gabriela D.; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L.; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.

  8. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae.

    Science.gov (United States)

    Yagüe, Paula; Willemse, Joost; Koning, Roman I; Rioseras, Beatriz; López-García, María T; Gonzalez-Quiñonez, Nathaly; Lopez-Iglesias, Carmen; Shliaha, Pavel V; Rogowska-Wrzesinska, Adelina; Koster, Abraham J; Jensen, Ole N; van Wezel, Gilles P; Manteca, Ángel

    2016-01-01

    Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young vegetative hyphae of Streptomyces coelicolor, whereby 1 μm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth, but cross-membrane formation does not depend on FtsZ. Thus, a new level of hyphal organization is presented involving unprecedented high-frequency compartmentalization, which changes the old dogma that Streptomyces vegetative hyphae have scarce compartmentalization. PMID:27514833

  9. Martinomycin, a new polyether antibiotic produced by Streptomyces salvialis. I. Taxonomy, fermentation and biological activity.

    Science.gov (United States)

    Bernan, V S; Montenegro, D A; Goodman, J J; Alluri, M R; Carter, G T; Abbanat, D R; Pearce, C J; Maiese, W M; Greenstein, M

    1994-12-01

    Actinomycete culture LL-D37187 has been found to produce the new polyether antibiotic martinomycin. Taxonomic studies, including morphological, physiological, and cell wall chemistry analyses, revealed that culture LL-D37187 is a novel streptomycete species, and the proposed name is Streptomyces salvialis. Martinomycin exhibits activity against the Southern Army Worm (Spodoptera eridania) and Gram-positive bacteria. PMID:7844037

  10. Complete Genome Sequence of Thiostrepton-Producing Streptomyces laurentii ATCC 31255.

    Science.gov (United States)

    Doi, Katsumi; Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya

    2016-06-02

    Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%.

  11. Biosynthesis of the antibiotic actinorhodin. Analysis of blocked mutants of Streptomyces coelicolor.

    Science.gov (United States)

    Cole, S P; Rudd, B A; Hopwood, D A; Chang, C J; Floss, H G

    1987-03-01

    From two types of class V act mutants of Streptomyces coelicolor two monomeric precursors of actinorhodin have been isolated and their structures determined. One is the known antibiotic kalafungin and the other a new compound. Their relationship to actinorhodin biosynthesis is discussed.

  12. EFFECTS OF BACTERIAL LIGNIN PEROXIDASE ON ORGANIC CARBON MINERALIZATION IN SOIL, USING RECOMBINANT STREPTOMYCES STRAINS

    Science.gov (United States)

    Purified lignin peroxidase was added to sterile and nonsterile silt loam soil to study the effects of bacterial lignin peroxidase ALip-P3 of Streptomyces viridosporus T7A on the rate of organic carbon turnover in soil. ignin peroxidase ALip-P3 appears to affect the short-term tur...

  13. Genome Sequence of Streptomyces olindensis DAUFPE 5622, Producer of the Antitumoral Anthracycline Cosmomycin D

    Science.gov (United States)

    Rojas, Juan D.; Starcevic, Antonio; Baranas̆ić, Damir; Ferreira-Torres, Maria A.; Contreras, Camilo A.; Garrido, Leandro M.; Araújo, Welington L.; de Souza, Robson F.; Zucko, Jurica; Hranueli, Daslav; Long, Paul F.; Cullum, John

    2014-01-01

    Streptomyces olindensis DAUFPE 5622, which was isolated from a Brazilian soil sample, produces the antitumor anthracycline cosmomycin D. The genome sequence is 9.4 Mb in length, with a G+C content of 71%. Thirty-four putative secondary metabolite biosynthetic gene clusters were identified, including the cosmomycin D cluster. PMID:24970824

  14. Complete Genome Sequence of Streptomyces clavuligerus F613-1, an Industrial Producer of Clavulanic Acid

    Science.gov (United States)

    Zhong, Chuanqing; Zong, Gongli; Fu, Jiafang; Liu, Zhong; Zhang, Guimin; Qin, Ronghuo

    2016-01-01

    Streptomyces clavuligerus strain F613-1 is an industrial strain with high-yield clavulanic acid production. In this study, the complete genome sequence of S. clavuligerus strain F613-1 was determined, including one linear chromosome and one linear plasmid, carrying numerous sets of genes involving in the biosynthesis of clavulanic acid. PMID:27660792

  15. Genome Sequence of Streptomyces sp. Strain TOR3209, a Rhizosphere Microecology Regulator Isolated from Tomato Rhizosphere

    OpenAIRE

    Hu, Dong; Li, Xiaozhi; Chang, Yueli; He, Huan; Zhang, Cuimian; Jia, Nan; Li, Hongtao; Wang, Zhanwu

    2012-01-01

    Streptomyces sp. strain TOR3209, isolated from tomato rhizosphere, can regulate the rhizosphere microecology of a variety of crops. Strain TOR3209 could improve plant systemic resistance and promote plant growth. Here, the genome sequence of strain TOR3209 is reported, providing the molecular biological basis of the regulation mechanism of rhizosphere microecology.

  16. Complete Genome Sequence of Streptomyces clavuligerus F613-1, an Industrial Producer of Clavulanic Acid.

    Science.gov (United States)

    Cao, Guangxiang; Zhong, Chuanqing; Zong, Gongli; Fu, Jiafang; Liu, Zhong; Zhang, Guimin; Qin, Ronghuo

    2016-01-01

    Streptomyces clavuligerus strain F613-1 is an industrial strain with high-yield clavulanic acid production. In this study, the complete genome sequence of S. clavuligerus strain F613-1 was determined, including one linear chromosome and one linear plasmid, carrying numerous sets of genes involving in the biosynthesis of clavulanic acid. PMID:27660792

  17. Genome Sequence of Streptomyces sp. Strain RTd22, an Endophyte of the Mexican Sunflower

    Science.gov (United States)

    Chagas, Fernanda O.; Bacha, Larissa V.; Samborskyy, Markyian; Conti, Raphael; Pessotti, Rita C.; Clardy, Jon

    2016-01-01

    We report here the complete genome sequence of Streptomyces sp. strain RTd22, an endophytic actinobacterium that was isolated from the roots of the Mexican sunflower Tithonia diversifolia. The bacterium’s 11.1-Mb linear chromosome is predicted to encode a large number of unknown natural products. PMID:27445382

  18. Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007.

    Science.gov (United States)

    Zhang, Hongyu; Wang, Hongbo; Wang, Yipeng; Cui, Hongli; Xie, Zeping; Pu, Yang; Pei, Shiqian; Li, Fuchao; Qin, Song

    2012-07-01

    A large number of novel bioactive compounds were discovered from microbial secondary metabolites based on the traditional bioactivity screenings. Recent fermentation studies indicated that the crude extract of marine Streptomyces sp. W007 possessed great potential in agricultural fungal disease control against Phomopsis asparagi, Polystigma deformans, Cladosporium cucumerinum, Monilinia fructicola, and Colletotrichum lagenarium. To further evaluate the biosynthetic potential of secondary metabolites, we sequenced the genome of Streptomyces sp. W007 and analyzed the identifiable secondary metabolite gene clusters. Moreover, one gene cluster with type II PKS implied the possibility of Streptomyces sp. W007 to produce aromatic polyketide of angucyclinone antibiotics. Therefore, two novel compounds, 3-hydroxy-1-keto-3-methyl-8-methoxy-1,2,3,4-tetrahydro-benz[α]anthracene and kiamycin with potent cytotoxicities against human cancer cell lines, were isolated from the culture broth of Streptomyces sp. W007. In addition, other four known angucyclinone antibiotics were obtained. The gene cluster for these angucyclinone antibiotics could be assigned to 20 genes. This work provides powerful evidence for the interplay between genomic analysis and traditional natural product isolation research. PMID:22536997

  19. Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its' pharmacological potential.

    Science.gov (United States)

    Jenifer, John Selesteen Charles Adlin; Donio, Mariathason Birdilla Selva; Michaelbabu, Mariavincent; Vincent, Samuel Gnana Prakash; Citarasu, Thavasimuthu

    2015-12-01

    Antagonistic Streptomyces spp. AJ8 was isolated and identified from the Kovalam solar salt works in India. The antimicrobial NRPS cluster gene was characterized by PCR, sequencing and predict the secondary structure analysis. The secondary metabolites will be extracted from different organic solvent extraction and studied the antibacterial, antifungal, antiviral and anticancer activities. In vitro antagonistic activity results revealed that, Streptomyces spp. AJ8 was highly antagonistic against Staphylococcus aureus, Aeromonas hydrophila WPD1 and Candida albicans. The genomic level identification revealed that, the strain was confirmed as Streptomyces spp. AJ8 and submitted the NCBI database (KC603899). The NRPS gene was generated a single gene fragment of 781 bp length (KR491940) and the database analysis revealed that, the closely related to Streptomyces spp. SAUK6068 and S. coeruleoprunus NBRC15400. The secondary metabolites extracted with ethyl acetate was effectively inhibited the bacterial and fungal growth at the ranged between 7 and 19.2 mm of zone of inhibition. The antiviral activity results revealed that, the metabolite was significantly (P < 0.001) controlled the killer shrimp virus white spot syndrome virus at the level of 85 %. The metabolite also suppressed the L929 fibroblast cancer cells at 35.7 % viability in 1000 µg treatment.

  20. Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae.

    OpenAIRE

    August, P. R.; Flickinger, M. C.; Sherman, D H

    1994-01-01

    Two genes (mcrA and mcrB) from Streptomyces lavendulae that together confer resistance to mitomycin C were identified. This DNA appears to comprise a polycistronic operon with a drug-inducible leaderless mRNA. The deduced amino acid sequence of mcrA shows similarity to sequences of a special class of bacterial, plant, and animal oxygen oxidoreductases.

  1. Variable antibiotic susceptibility patterns among Streptomyces species causing actinomycetoma in man and animals

    Directory of Open Access Journals (Sweden)

    Hamid Mohamed E

    2011-06-01

    Full Text Available Abstract Background Drug therapy is recommended in conjunction with surgery in treatment of actinomycetoma. The specific prescription depends on the type of bacteria (actinomycetoma or fungi (eumycetoma causing the disease and their in vitro antimicrobial susceptibility. Objectives To investigate the antimicrobial susceptibility among isolates of Streptomyces spp. isolated from cases of actinomycetoma in man and animals in Sudan. Methods Streptomyces strains (n = 18 isolated from cases of actinomycetoma were tested in vitro against 15 commonly prescribed antibacterial agents using MIC agar dilution method as per standard guidelines. Results Streptomyces strains isolated from actinomycetoma fall into various phenotypic groups. All of the strains were inhibited by novobiocin (8 μg/mL, gentamycin (8, 32 μg/mL and doxycycline (32 μg/mL. Fusidic acid (64 μg/mL inhibited 94.4% of the strains; bacitracin, streptomycin, cephaloridine, clindamycin, ampicillin, rifampicin and tetracycline (64 μg/mL inhibited between 61.1 and 77.8% of the strains. All strains were found resistant to amphotericin B (64 μg/mL, penicillin (20 μg/mL and sulphamethoxazole (64 μg/mL. Conclusions Saprophytic Streptomyces spp. cause actinomycetoma in man and animal belong to separate phenotypes and have a wide range of susceptibility patterns to antimicrobial agents, which pose a lot of difficulties in selecting effective in vivo treatment for actinomycetoma.

  2. Potato suberin induces differentiation and secondary metabolism in the genus Streptomyces.

    Science.gov (United States)

    Lerat, Sylvain; Forest, Martin; Lauzier, Annie; Grondin, Gilles; Lacelle, Serge; Beaulieu, Carole

    2012-01-01

    Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces. PMID:22129602

  3. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites

    DEFF Research Database (Denmark)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep;

    2014-01-01

    Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters h...

  4. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505.

    Science.gov (United States)

    Tarkka, M T; Feldhahn, L; Buscot, F; Wubet, T

    2015-04-02

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation.

  5. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    NARCIS (Netherlands)

    Alam, Mohammad Tauqeer; Takano, Eriko; Breitling, Rainer

    2011-01-01

    Background: Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown funct

  6. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor.

    NARCIS (Netherlands)

    Alam, M.T.; Takano, E.; Breitling, R.

    2011-01-01

    ABSTRACT: BACKGROUND: Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unk

  7. Functional Expression of the Ectoine Hydroxylase Gene (thpD) from Streptomyces chrysomallus in Halomonas elongata

    OpenAIRE

    Prabhu, Julia; Schauwecker, Florian; Grammel, Nicolas; Keller, Ullrich; Bernhard, Michael

    2004-01-01

    The formation of hydroxyectoine in the industrial ectoine producer Halomonas elongata was improved by the heterologous expression of the ectoine hydroxylase gene, thpD, from Streptomyces chrysomallus. The efficient conversion of ectoine to hydroxyectoine was achieved by the concerted regulation of thpD by the H. elongata ectA promoter.

  8. Complete Genome Sequence of Thiostrepton-Producing Streptomyces laurentii ATCC 31255

    Science.gov (United States)

    Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya

    2016-01-01

    Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%. PMID:27257211

  9. Draft Genome Sequence of an Anthracimycin Producer, Streptomyces sp. TP-A0875

    OpenAIRE

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Fujita, Nobuyuki; Harunari, Enjuro; Igarashi, Yasuhiro

    2015-01-01

    Here, we report the draft genome sequence of an anthracimycin producer, Streptomyces sp. TP-A0875. The genome contains at least two type I polyketide synthase (PKS) gene clusters, two type II PKS gene clusters, and three nonribosomal peptide synthetase gene clusters. The gene cluster for anthracimycin biosynthesis was identified based on the PKS domain organization.

  10. 77 FR 35291 - Killed, Nonviable Streptomyces acidiscabies Strain RL-110T

    Science.gov (United States)

    2012-06-13

    ...-emergent herbicide and used in accordance with good agricultural practices. Marrone Bio Innovations, Inc... with good agricultural practices. As a result, EPA concludes that no additional margin of exposure... Streptomyces acidiscabies strain RL-110\\T\\ when it is used as labeled and in accordance with good...

  11. Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus

    NARCIS (Netherlands)

    Medema, M.H.; Alam, M.T.; Heijne, W.H.M.; Berg, M.A. van den; Müller, U.; Trefzer, A.; Bovenberg, R.A.L.; Breitling, R.; Takano, E.

    2011-01-01

    To increase production of the important pharmaceutical compound clavulanic acid, a beta-lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome-wide gene expressi

  12. Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus.

    NARCIS (Netherlands)

    Medema, M.H.; Alam, M.T.; Heijne, W.H.; Berg, M.A.M.C. van den; Muller, U.; Trefzer, A.; Bovenberg, R.A.; Breitling, R.; Takano, E.

    2011-01-01

    To increase production of the important pharmaceutical compound clavulanic acid, a beta-lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome-wide gene expressi

  13. Complete Genome Sequence of Streptomyces clavuligerus F613-1, an Industrial Producer of Clavulanic Acid.

    Science.gov (United States)

    Cao, Guangxiang; Zhong, Chuanqing; Zong, Gongli; Fu, Jiafang; Liu, Zhong; Zhang, Guimin; Qin, Ronghuo

    2016-01-01

    Streptomyces clavuligerus strain F613-1 is an industrial strain with high-yield clavulanic acid production. In this study, the complete genome sequence of S. clavuligerus strain F613-1 was determined, including one linear chromosome and one linear plasmid, carrying numerous sets of genes involving in the biosynthesis of clavulanic acid.

  14. Streptomyces abietis sp. nov., a cellulolytic bacterium isolated from soil of a pine forest.

    Science.gov (United States)

    Fujii, Katsuhiko; Satomi, Masataka; Fukui, Youhei; Matsunobu, Shun; Morifuku, Youji; Enokida, Yuya

    2013-12-01

    Cellulolytic bacteria A191(T), A192 and A193 isolated from the soil of Sakhalin fir forest in Hokkaido, Japan were studied phenotypically, genotypically and phylogenetically. Analysis of their 16S rRNA gene and gyrB sequences and DNA base composition suggested that these isolates were conspecific and members of the genus Streptomyces. However, levels of 16S rRNA gene and gyrB sequence similarity between the isolates and the type strains of their closest relatives in the genus Streptomyces were no higher than 97.9 and 95.0 %, respectively, implying that these isolates were distinctive. Moreover, the results of DNA-DNA hybridization experiments and physiological characterization clearly differentiated these isolates from their closest neighbours. It is therefore concluded that these isolates represent a novel species of the genus Streptomyces, for which the name Streptomyces abietis is proposed. The type strain is A191(T) ( = NBRC 109094(T) = DSM 42080(T)). PMID:23990653

  15. Isolation and Structure Elucidation of Autolytimycin, A New Compound Produced by Streptomyces Autolyticus JX-47

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Autolytimycin 1 was isolated from the culture filtrate ofStreptomyces autolyticus JX-47,together with two known compounds, lebstatin 2 and 17-O-demethyl-geldanamycin 3. These compounds showed the activities of anti-HSV-I. The structure of 1 was determined by spectral analysis.

  16. Draft Genome Sequence of Streptomyces mutabilis TRM45540, Isolated from a Hypersaline Soil Sample

    OpenAIRE

    Luo, Xiaoxia; Wan, Chuanxing; Zhang, LiLi

    2015-01-01

    We report here the draft genome sequence of Streptomyces mutabilis TRM45540, a strain isolated from a soil sample from Xinjiang, China. Analysis of the genome using the bioinformatics tool antiSMASH showed the presence of many unique natural-product biosynthetic pathways.

  17. Synthetic Promoter Library for Modulation of Actinorhodin Production in Streptomyces coelicolor A3(2)

    DEFF Research Database (Denmark)

    Sohoni, Sujata Vijay; Fazio, Alessandro; Workman, Christopher;

    2014-01-01

    The objective of this study was the application of the synthetic promoter library (SPL) technology for modulation of actinorhodin production in Streptomyces coelicolor A3(2). The SPL technology was used to optimize the expression of a pathway specific positive transcriptional regulator Actll orf4...

  18. A Novel and Effective Streptomyces sp. N2 Against Various Phytopathogenic Fungi.

    Science.gov (United States)

    Xu, Bo; Chen, Wei; Wu, Zhi-ming; Long, Yue; Li, Kun-tai

    2015-11-01

    Phytopathogenic fungi would induce a variety of plant diseases, resulting in a severe reduction of agricultural output. However, the current plant disease control is mainly dependent on the environmentally and healthily hazardous chemical fungicides. Thus, the present work aimed to isolate an effective antagonistic microorganism against various soilborne phytopathogenic fungi. By dual culture with Rhizoctonia solani, a novel Streptomyces specie, Streptomyces sp. N2, was screened out from a total of 167 isolated actinomycetes, which displayed a strong inhibitory effect on R. solani (26.85 ± 1.35 mm of inhibition zone diameter). By means of macroporous resin and silica gel column chromatography coupled with preparative HPLC, an antifungal metabolite (3-methyl-3,5-amino-4-vinyl-2-pyrone, C6H7O2N) was isolated and purified from Streptomyces sp. N2. The bioassay results showed that the purified antifungal metabolite could not only possess a broad-spectrum inhibitory effect on a range of plant pathogenic fungi in vitro (e.g., R. solani, Pyricularia grisea, Fusarium oxysporum f. sp. niveum, F. oxysporum f. sp. vasinfectum, Penicillium italicum, and Colletotrichum gloeosporioides), but also had a significantly effective in vivo biocontrol efficacy on grape fruits anthracnose caused by C. gloeosporioides. Microscopic observation indicated that the antifungal metabolite from Streptomyces sp. N2 would exert its antimicrobial activity by disorganizing the cytoplasmic organelles of phytopathogenic fungi. The above results suggested that Streptomyces sp. N2 was one of promising fungicide for biocontrol of fungal plant diseases, especially due to its broad-spectrum and effective antagonist on various plant pathogens. PMID:26306529

  19. Reduction of aflatoxin production by Aspergillus flavus and Aspergillus parasiticus in interaction with Streptomyces.

    Science.gov (United States)

    Verheecke, C; Liboz, T; Anson, P; Diaz, R; Mathieu, F

    2015-05-01

    The aim of this study is to investigate aflatoxin gene expression during Streptomyces-Aspergillus interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and Aspergillus parasiticus. A previous study has shown that Streptomyces-A. flavus interaction can reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A. parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [act1, βtub (and cox5 for A. parasiticus)] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene expression showed that Streptomyces repressed gene expression to a greater level in A. parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1 content. The results suggest that aflM expression could be a potential aflatoxin indicator in Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce aflatoxin production by both Aspergillus species and that this effect can be correlated with the repression of aflM expression.

  20. Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor.

    Science.gov (United States)

    Zhi, Yan; Wu, Qun; Du, Hai; Xu, Yan

    2016-08-16

    Streptomyces spp. producing geosmin have been regarded as the most frequent and serious microbial contamination causing earthy off-flavor in Chinese liquor. It is therefore necessary to control the Streptomyces community during liquor fermentation. Biological control, using the native microbiota present in liquor making, appears to be a better solution than chemical methods. The objective of this study was to isolate native microbiota antagonistic toward Streptomyces spp. and then to evaluate the possible action mode of the antagonists. Fourteen Bacillus strains isolated from different Daqu (the fermentation starter) showed antagonistic activity against Streptomyces sampsonii, which is one of the dominant geosmin producers. Bacillus subtilis 2-16 and Bacillus amyloliquefaciens 1-45 from Maotai Daqu significantly inhibited the growth of S. sampsonii by 57.8% and 84.3% respectively, and effectively prevented the geosmin production in the simulated fermentation experiments (inoculation ratio 1:1). To probe the biocontrol mode, the ability of strain 2-16 and 1-45 to produce antimicrobial metabolites and to reduce geosmin in the fermentation system was investigated. Antimicrobial substances were identified as lipopeptides by ultra-performance liquid chromatography tandem electrospray ionization/quadrupole-time-of-flight mass spectrometry (UPLC-ESI/Q-TOF MS) and in vitro antibiotic assay. In addition, strains 2-16 and 1-45 were able to remove 45% and 15% of the geosmin respectively in the simulated solid-state fermentation. This study highlighted the potential of biocontrol, and how the use of native Bacillus species in Daqu could provide an eco-friendly method to prevent growth of Streptomyces spp. and geosmin contamination in Chinese liquor fermentation.

  1. Bioprocess intensification of antibiotic production by Streptomyces coelicolor A3(2) in micro-porous culture

    International Nuclear Information System (INIS)

    A novel functionalized micro-porous matrix was developed with well-controlled physicochemical proprieties such as pore size and surface chemistry. The matrix was used as a solid support in the growth of “Streptomyces coelicolor” A3(2) to enhance the production of antibiotics. The results shown support a higher production of prodigiosin and actinorhodin with overall production increase of 2–5 and 6–17, respectively, compared to conventional submerged liquid culture, offering a potential improvement in volumetric productivity. Scanning Electron Microscopy was used to evaluate pore size as well as bacterial adhesion, penetration, proliferation and migration within the micro-porous matrix. - Highlights: • Preparation of novel micro-porous matrix with different physiochemical proprieties • S. coelicolor A3(2) was cultured in those micro-porous and antibiotics was enhanced. • Matrix pore sizes and surface chemistry influenced bacterial signalling. • Bacterial signalling has a profound effect in the overproduction of Prodigiosin and actinorhodin. • Prodigiosin and actinorhodin production within micro-porous was 5–17 times higher compared with liquid growth

  2. Bioprocess intensification of antibiotic production by Streptomyces coelicolor A3(2) in micro-porous culture

    Energy Technology Data Exchange (ETDEWEB)

    Ndlovu, T.M., E-mail: tm.ndlovu@nutriss.com [NUTRISS Limited, INEX, Herschel Annex, Kings Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Ward, A.C. [School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, Republic of Korea 156-756 (Korea, Republic of); Glassey, J. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Eskildsen, J. [NUTRISS Limited, INEX, Herschel Annex, Kings Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Akay, G. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-04-01

    A novel functionalized micro-porous matrix was developed with well-controlled physicochemical proprieties such as pore size and surface chemistry. The matrix was used as a solid support in the growth of “Streptomyces coelicolor” A3(2) to enhance the production of antibiotics. The results shown support a higher production of prodigiosin and actinorhodin with overall production increase of 2–5 and 6–17, respectively, compared to conventional submerged liquid culture, offering a potential improvement in volumetric productivity. Scanning Electron Microscopy was used to evaluate pore size as well as bacterial adhesion, penetration, proliferation and migration within the micro-porous matrix. - Highlights: • Preparation of novel micro-porous matrix with different physiochemical proprieties • S. coelicolor A3(2) was cultured in those micro-porous and antibiotics was enhanced. • Matrix pore sizes and surface chemistry influenced bacterial signalling. • Bacterial signalling has a profound effect in the overproduction of Prodigiosin and actinorhodin. • Prodigiosin and actinorhodin production within micro-porous was 5–17 times higher compared with liquid growth.

  3. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    NARCIS (Netherlands)

    S. Zindel (Stephan); W.E. Kaman (Wendy); S. Fröls (Sabrina); F. Pfeifer (Felicitas); A. Peters (Annette); J.P. Hays (John); H.-L. Fuchsbauer (Hans-Lothar)

    2013-01-01

    textabstractA novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus ant

  4. 76 FR 20666 - Streptomyces Strain K61, and Wood Oils and Gums; Registration Review Final Decisions; Notice of...

    Science.gov (United States)

    2011-04-13

    ... Rhizoctonia in greenhouse plants and is used as a seed treatment for seed or soil borne damping off and early...). Streptomyces Strain K61 is a naturally occurring soil bacterium registered for control of seed, root and...

  5. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  6. In Situ Near Infrared Spectroscopy for Analyte-Specific Monitoring of Glucose and Ammonium in Streptomyces coelicolor Fermentations

    DEFF Research Database (Denmark)

    Petersen, Nanna; Ödman, Peter; Cervera Padrell, Albert Emili;

    2010-01-01

    There are many challenges associated with in situ collection of near infrared (NIR) spectra in a fermentation broth, particularly for highly aerated and agitated fermentations with filamentous organisms. In this study, antibiotic fermentation by the filamentous bacterium Streptomyces coelicolor...

  7. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin

    OpenAIRE

    Min-Juan XU; WANG, Jia-Hua; Xu-Liang BU; YU, He-Lin; Li, Peng; Ou, Hong-Yu; He, Ying; Fang-Di XU; Hu, Xiao-Yan; Xiao-Mei Zhu; Ao, Ping; Jun Xu

    2016-01-01

    Streptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyce...

  8. Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea

    OpenAIRE

    Molina-Guijarro, Jos?? M.; P??rez Torres, Juana; Mu??oz-Dorado, Jos??; Guill??n Carretero, Francisco; Moya Lobo, Raquel; Hern??ndez Cutuli, Manuel; Arias Fern??ndez, Mar??a Enriqueta

    2009-01-01

    A newly identified extracellular laccase produced by Streptomyces ipomoea CECT 3341 (SilA) was cloned and overexpressed, and its physicochemical characteristics assessed together with its capability to decolorize and detoxify an azotype dye. Molecular analysis of the deduced sequence revealed that SilA contains a TAT-type signal peptide at the N-terminus and only two cupredoxine domains; this is consistent with reports describing two other Streptomyces laccases but contrasts with ...

  9. Hyper secretion of Thermobifida fusca β-glucosidase via a Tat-dependent signal peptide using Streptomyces lividans

    OpenAIRE

    Miyazaki, Takaya; Noda, Shuhei; Tanaka, Tsutomu; Kondo, Akihiko

    2013-01-01

    Background Protein production as secretory-form is a powerful tool in industrial enzyme production due to the simple purification procedure. Streptomyces lividans is a versatile host for secretory production of useful proteins. In order to expand the amount of secreted protein, signal peptide sequences, which encourage protein secretion from inside cell to extracellular environment, are one of the most significant factors. In this study, we focused on Streptomyces lividans as a host strain to...

  10. Draft Genome Sequence of Marine Actinomycete Streptomyces sp. Strain NTK 937, Producer of the Benzoxazole Antibiotic Caboxamycin.

    Science.gov (United States)

    Olano, Carlos; Cano-Prieto, Carolina; Losada, Armando A; Bull, Alan T; Goodfellow, Michael; Fiedler, Hans-Peter; Méndez, Carmen; Salas, José A

    2014-07-03

    Streptomyces sp. strain NTK 937 is the producer of the benzoxazole antibiotic caboxamycin, which has been shown to exert inhibitory activity against Gram-positive bacteria, cytotoxic activity against several human tumor cell lines, and inhibition of the enzyme phosphodiesterase. In this genome announcement, we present a draft genome sequence of Streptomyces sp. NTK 937 in which we identified at least 35 putative secondary metabolite biosynthetic gene clusters.

  11. 拮抗油菜菌核病菌的链霉菌分离筛选与鉴定%Identification of Streptomyces antagonizing oilseed rape pathogen Sclerotinia sclerotiorum

    Institute of Scientific and Technical Information of China (English)

    胡磊; 牛世全; 景彩虹; 达文燕; 朱学泰; 韩建山; 程晓; 张爱梅

    2013-01-01

    从甘肃省河西走廊改良后的盐碱地分离链霉菌用于油菜菌核病菌的拮抗研究,并对拮抗菌进行鉴定.分离得到10株不同菌落形态的链霉菌,其中有2菌株对油菜菌核病有拮抗作用,编号Ⅳ22-3-3和Ⅳ22-3-12.与油菜菌核病进行对峙培养结果发现,Ⅳ22-3-3和Ⅳ22-3-12抑菌圈直径分别为1.2和0.9cm;离体叶菌丝接种试验表明,Ⅳ22-3-3和Ⅳ22-3-12对油菜菌核病菌的防治效果分别达63.5%和49.1%;Ⅳ22-3-12能在油菜菌核上定殖并寄生分解菌核,同对照相比菌核萌发率下降18.2%;通过形态培养特征、生理生化特征和16SrDNA鉴定表明,Ⅳ22-3-3为产水链霉菌(Streptomyces hydrogenans),Ⅳ22-3-12为球孢链霉菌(Streptomyces globisporus).%Different Streptomyces strains were isolated from saline - alkali soils of Hexi Corridor in Gansu Province. Among them, two strains named Ⅳ22 -3-3 and Ⅳ22 -3-12 were found to be antagonists inhibiting Sclerotinia sclerotiorum isolated from oilseed rape. Detached leaf inoculation tests showed that the two strains had preventing effects of 63.5% and 49. 1% respectively. Moreover, Ⅳ22 -3-12 could colonize on the sclerotia and inhibit the germination of the pathogen. Compared to physiological saline (control) , Ⅳ22 - 3 - 12 decreased 18. 2% of the sclerotia germination rate. Morphological and physiological - biochemical characteristics as well as phyloge-netic analysis based on 16S rRNA gene sequence supported strain Ⅳ22 -3 -3 to be Streptomyces hydogenans, and strain Ⅳ22 -3 - 12 to be Streptomyces globisporus.

  12. Mollemycin A: an antimalarial and antibacterial glyco-hexadepsipeptide-polyketide from an Australian marine-derived Streptomyces sp. (CMB-M0244).

    Science.gov (United States)

    Raju, Ritesh; Khalil, Zeinab G; Piggott, Andrew M; Blumenthal, Antje; Gardiner, Donald L; Skinner-Adams, Tina S; Capon, Robert J

    2014-03-21

    A marine-derived Streptomyces sp. (CMB-M0244) isolated from a sediment collected off South Molle Island, Queensland, produced mollemycin A (1) as a new first in class glyco-hexadepsipeptide-polyketide. The structure of 1 was assigned by detailed spectroscopic analysis, supported by chemical derivatization and degradation, and C3 Marfey's analysis. Mollemycin A (1) exhibits exceptionally potent and selective growth inhibitory activity against Gram-positive and Gram-negative bacteria (IC50 10-50 nM) and drug-sensitive (3D7; IC50 7 nM) and multidrug-resistant (Dd2; IC50 9 nM) clones of the malaria parasite Plasmodium falciparum.

  13. Hydrogen peroxide-mediated dealkylation of 7-ethoxycoumarin by cytochrome P450 (CYP107AJ1) from Streptomyces peucetius ATCC27952.

    Science.gov (United States)

    Niraula, Narayan Prasad; Kanth, Bashistha Kumar; Sohng, Jae Kyung; Oh, Tae-Jin

    2011-02-01

    Cytochrome P450 CYP107AJ1, which was isolated from Streptomyces peucetius and showed high homology with peroxygenases, catalyzed a dealkylation reaction with hydrogen peroxide to provide electrons, protons and oxygen, evading the requirement for a supporting redox protein. Preliminary investigation of its transcriptional level in S. peucetius showed significant expression. Homology modeling and subsequent docking with 7-ethoxycoumarin yielded a reasonable docked structure. cyp107AJ1 cloned into pET28a(+) was expressed in Escherichia coli, and soluble protein was subjected to column-chromatographic purification in order to carry out enzyme assays with 7-ethoxycoumarin. HPLC analysis of the extracted product, corresponding to its LC/MS analysis, showed the dealkylated 7-ethoxycoumarin, which was further established by subsequent GC/MS spectral analysis. We suggest that CYP107AJ1 bypassed the requirement for NAD(P)H and redox partners for generating novel analogues. PMID:22112829

  14. Development of Fed-Batch Cultivation Strategy for Efficient Oxytetracycline Production by Streptomyces rimosus at Semi-Industrial Scale

    Directory of Open Access Journals (Sweden)

    Elsayed Ahmed Elsayed

    2015-10-01

    Full Text Available ABSTRACTOxytetracycline (OTC production byStreptomyces rimosus was studied in batch and fed-batch cultures in shake flask and bioreactor levels using semi-defined medium. First, the effect of glucose concentration on OTC production and growth kinetics was studied intensively. The optimal glucose concentration in the medium was 15 g/L. Higher glucose concentrations supported higher biomass production by less volumetric and specific antibiotic production. Based on these data, cultivations were carried out at semi-industrial scale 15 L bioreactor in batch culture. At bioreactor level, cell growth and OTC production were higher compared to the shake flask culture by about 18 and 38%, respectively. During the bioreactor cultivation, glucose was totally consumed after only 48 h. Thus, the fed-batch experiment was designed for mono-glucose feeding and complete medium feeding to increase the OTC production by overcoming carbon limitations. The results showed that the fed-batch culture using constant glucose feeding strategy with rate of 0.33 g/L/h produced 1072 mg/L. On the other hand, feeding with complete medium resulted in 45% higher biomass but less OTC production by about 26% compared to mono-glucose fed culture. A further improvement in this process was achieved in by keeping the dissolved oxygen (DO value at 60% saturation by cascading the glucose feeding pump with the DO controller. The later feeding strategy resulted in higher antibiotic production, reaching 1414 mg/L after 108 h.

  15. Gene controlled by promoter--PTH4 depending on whiG of Streptomyces coelicolor

    Institute of Scientific and Technical Information of China (English)

    谭华荣; 杨海花; 田宇清; 吴畏; 董可宁; K.F.Chater

    1996-01-01

    The downstream gene controlled by promoter--PTH4 which is related to Streptomycesdifferentiation was cloned, and its sequence was determined by the dideoxy chain termination method. The results indicated that the 1597 bp of DNA fragment conferred a complete open reading frame (ORF). In searches of databases, the deduced product of the ORF was not homologous with any known proteins; it may be a new protein. The function of the gene was studied using the strategy of gene disruption; the actinorhodin could not be produced when this gene was disrupted. Therefore, this gene may be related to actinorhodin biosynthesis in Streptomyces coelicolor, and the result also shows that this gene may play a role in multiple level regulation of differentiation genes in Streptomyces.

  16. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi.

    Science.gov (United States)

    Xu, Lijian; Liang, Kangkang; Duan, Bensha; Yu, Mengdi; Meng, Wei; Wang, Qinggui; Yu, Qiong

    2016-01-01

    Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008). With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis. PMID:27556442

  17. Transduction of plasmid DNA in Streptomyces spp. and related genera by bacteriophage FP43.

    Science.gov (United States)

    McHenney, M A; Baltz, R H

    1988-05-01

    A segment (hft) of bacteriophage FP43 DNA cloned into plasmid pIJ702 mediated high-frequency transduction of the resulting plasmid (pRHB101) by FP43 in Streptomyces griseofuscus. The transducing particles contained linear concatemers of plasmid DNA. Lysates of FP43 prepared on S. griseofuscus containing pRHB101 also transduced many other Streptomyces species, including several that restrict plaque formation by FP43 and at least two that produce restriction endonucleases that cut pRHB101 DNA. Transduction efficiencies in different species were influenced by the addition of anti-FP43 antiserum to the transduction plates, the temperature for cell growth before transduction, the multiplicity of infection, and the host on which the transducing lysate was prepared. FP43 lysates prepared on S. griseofuscus(pRHB101) also transduced species of Streptoverticillium, Chainia, and Saccharopolyspora.

  18. Mutants of Streptomyces roseosporus that express enhanced recombination within partially homologous genes.

    Science.gov (United States)

    Hosted, T J; Baltz, R H

    1996-10-01

    Streptomyces roseosporus mutants that express enhanced recombination between partially homologous (homeologous) sequences were isolated by selection for recombination between the bacteriophage phi C31 derivative KC570 containing the Streptomyces coelicolor glucose kinase (glk) gene and the S. roseosporus chromosome. The frequencies of homeologous recombination in the ehr mutants were determined by measuring the chromosomal insertion frequencies of plasmids containing S. coelicolor glnA or whiG genes. S. roseosporus ehr mutants showed 10(2)- to 10(4)-fold increases in homeologous recombination relative to Ehr+ strains, but no increase in homologous recombination. Southern hybridization analysis revealed single unique sites for the insertion of each of the plasmids, and the crossovers occurred in frame and in proper translational register, yielding functional chimeric glnA and whiG genes.

  19. Streptomyces lipmanii expresses two restriction systems that inhibit plasmid transformation and bacteriophage plaque formation.

    Science.gov (United States)

    Matsushima, P; Baltz, R H

    1989-06-01

    Bacteriophage host range studies suggested that several beta-lactam-producing streptomycetes express similar restriction-modification systems. Streptomyces lipmanii LE32 expressed two restriction-modification systems, designated SliI and SliII. A mutant strain, PM87, was defective only in SliI restriction but expressed both SliI and SliII modification. Streptomyces sp. strain A57986, a natural isolate partially deficient in the expression of SliI and SliII restriction, nevertheless modified bacteriophage DNA for both SliI and SliII specificities. Protoplasts of PM87 and A57986 were transformed by several plasmids, and the modified plasmids isolated from these strains transformed wild-type S. lipmanii efficiently.

  20. Fermentation kinetics makeover in poly-ε-lysine biosynthesis by Streptomyces noursei NRRL 5126

    Directory of Open Access Journals (Sweden)

    Sandip Balasaheb Bankar

    2012-04-01

    Full Text Available An unstructured model has been used to predict microbial growth based on glycerol consumption and poly-ε-lysine (ε-PL biosynthesis by Streptomyces noursei NRRL 5126. The logistic and Luedeking-Piret equations have been proposed to describe the time course of ε-PL formation, substrate consumption and cell growth. The shake flask level data from kinetic studies was illustrated and compared with fermenter studies. In all cases, the model simulation matched well with the experimental observations, which made it possible to elucidate the fermentation characteristics of Streptomyces noursei during efficient ε-PL production from glycerol. Optimized oxygen supply into the fermenter shifted mixed growth associated biosynthesis of ε-PL from shake flask level to growth associated biosynthesis. 

  1. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon;

    2011-01-01

    Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social...... of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...

  2. Purification and Activity of Antibacterial Substances Derived from Soil Streptomyces sp.CaiF1

    Institute of Scientific and Technical Information of China (English)

    Hui YANG; Guixiang PENG; Jianmin ZENG; Zhiyuan TAN

    2012-01-01

    [Objective] This study aimed to separate and purify antibacterial sub- stances from soil Streptomyces sp. CaiF1, and to explore the activities of this sub- stance. [Method] The antibacterial substances were separated and purified by Ethyl acetate extraction, macroporous adsorptive resin, silica gel chromatography and preparative high performance liquid chromatography (HPLC), and powdery mildew were taken as the indicating bacterial to study their activities. [Result] Antibacterial substances were purified and the stability analysis of the extracts from Streptomyces CaiF1 fermentation broth showed very stable at pH 2.0-pH 10.0, 100 ~C and changed very little under UV treatment for 24 h. Inhibition rate of powdery mildew was 69.7%. [Conclusion] The purified antibacterial substances showed good stability, which provided theoretical foundation for their structural identifications and future ap- plications.

  3. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    Science.gov (United States)

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi. PMID:24310522

  4. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    Science.gov (United States)

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants.

  5. Biological Control of Rice Blast (Magnaporthe oryzae by use of Streptomyces sindeneusis isolate 263 in Greenhouse

    Directory of Open Access Journals (Sweden)

    M. E. Zarandi

    2009-01-01

    Full Text Available Soil Actinomycetes particularly Streptomyces spp. have antagonistic activity against wide range of plant pathogens. In the recent decades they have attracted high interests as biocontrol agents. In search for finding such principles, in vitro suppression of Magnaporthe oryzae the causal agent of rice blast disease was studied by use of Streptomyces sindeneusis isolate 263 in greenhouse. Spray of rice seedling-leaves with of mixed spore suspension of the pathogen and S. sindeneusis isolate 263 resulted in strong inhibition of the pathogen and suppression of leaf symptoms. Propagation of the antagonist crude sap was performed in aqueous cultures and bioactivity was monitored in shaked cultures. Ongoing goals of this research include isolation, characterization and identification of the active metabolites and future goals include identification of active genes for use in development of recombinant DNAs in transgenic rice varieties bearing elevated resistance to infections by M. oryzae.

  6. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2011-09-01

    Full Text Available Abstract Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function. However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein. Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function.

  7. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Kim, Ki Hyun; Ramadhar, Timothy R.; Beemelmanns, Christine;

    2014-01-01

    We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based on antifun......We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based...... on antifungal activity led to the isolation of natalamycin A, and a combination of NMR spectroscopy and X-ray crystallographic analysis, including highly-accurate quantum-chemical NMR calculations on the largest and most conformationally-flexible system to date, revealed natalamycin A's three-dimensional solid...

  8. Construction of the glucose isomerase deficient strain of Streptomyces M1033 by homologous recombination

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    After the establishment of the transformation conditions of Streptomyces diastaticus No.7 Strain M1033,the integration plasmid pXW for homologous recombination,which contains a 600 bp fragment of incomplete GI (G138P.G247D) gene,has been constructed in order to realize the stable overexpression of the GI (G138P.G247D) which is valuable for large-scale industrial production.The Gigene's disruption has been realized by pXW's integration into M1033 chromosomes via homologous recombination and GI deficient strain of Streptomyces M1033 has been obtained.The reliability of introduction of mutation has been proved by analysis of recombinant fragment and affirmance of existence of the mutation,as well as detection of the stability of the deficient strain.

  9. An adpA homologue in Streptomyces avermitilis is involved in regulation of morphogenesis and melanogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHAO JinLei; WEN Ying; CHEN Zhi; SONG Yuan; LI JiLun

    2007-01-01

    In Streptomyces griseus, AdpA, the key transcriptional activator in the A-factor regulatory cascade, switches on the transcription of multiple genes required for secondary metabolism and morphological differentiation. Streptomyces avermitilis also contains an ortholog of adpA, which is named adpA-a. To clarify the in vivo function of adpA-a, an adpA-a-disrupted strain was constructed by double crossover recombination. No difference in avermectin production was found between the adpA-a-disruptant and the wild-type strain. However, this disruptant neither formed spores nor produced melanin and its phenotype was restored to the original wild-type by a single copy of the adpA-a gene integrated into the chromosome. This report shows that adpA-a is involved in regulation of morphological differentiation and melanin production in S. avermitilis.

  10. Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency.

    Science.gov (United States)

    Bernat, Przemysław; Długoński, Jerzy

    2009-11-15

    Dibutyltin (DBT), a widely used plastic stabilizer, has been detected in the environment as well as in human tissues. DBT is considered to be highly neurotoxic and immunotoxic. Hence, DBT needs to be considered as a potential toxic chemical. Degradation of butyltin compounds by Streptomyces sp. isolated from plant waste composting heaps was studied. Glucose grown cells degraded organotin from 10 to 40 mg l(-1). After 1 day of incubation 90% of DBT (added at 20 mg l(-1)) was converted to less toxic derivative--monobutyltin (MBT). DBT metabolism was inhibited by metyrapone addition, a known cytochrome P-450 inhibitor. It could provide evidence that cytochrome P-450 system is involved in DBT metabolism in Streptomyces sp. IM P102. Moreover, according to our knowledge, the degradation of DBT by actinobacterium has not been previously described. PMID:19592163

  11. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata.

    Science.gov (United States)

    de Oliveira, Luciana G; Tormet Gonzalez, Gabriela D; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content. PMID:24994795

  12. [2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus

    OpenAIRE

    Christian A. Citron; Dickschat, Jeroen S.

    2013-01-01

    During growth on fully deuterated medium the volatile terpene [2H26]-1-epi-cubenol was released by the actinomycete Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known to slow down all metabolic processes in living organisms. Potential app...

  13. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host

    OpenAIRE

    YAMADA, YUUKI; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin’ya, Kazuo; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match any known compounds in the spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowe...

  14. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    OpenAIRE

    Wenwen Yang; Hongzhi Tang; Jun Ni; Qiulin Wu; Dongliang Hua; Fei Tao; Ping Xu

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previou...

  15. Fermentation kinetics makeover in poly-ε-lysine biosynthesis by Streptomyces noursei NRRL 5126

    OpenAIRE

    Sandip Balasaheb Bankar; Singhal, Rekha S.

    2012-01-01

    An unstructured model has been used to predict microbial growth based on glycerol consumption and poly-ε-lysine (ε-PL) biosynthesis by Streptomyces noursei NRRL 5126. The logistic and Luedeking-Piret equations have been proposed to describe the time course of ε-PL formation, substrate consumption and cell growth. The shake flask level data from kinetic studies was illustrated and compared with fermenter studies. In all cases, the model simulation matched well with the ...

  16. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei

    DEFF Research Database (Denmark)

    Jonsbu, E.; Mcintyre, Mhairi; Nielsen, Jens

    2002-01-01

    Carbon source nutrition and morphology were examined during cell growth and production of nystatin by Streptomyces noursei ATCC 11455. This strain was able to utilise glucose, fructose, glycerol and soluble starch for cell growth, but failed to grow on media supplemented with galactose, xylose, m...... that this coincided with loss of activity inside the core of the pellets, probably due to diffusion limitation of oxygen or other nutrients....

  17. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus.

    OpenAIRE

    Pometto, A L; Crawford, D L

    1983-01-01

    A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth ...

  18. Preliminary Crystallographic Study of Streptomyces coelicolor Single-stranded DNA-binding Protein

    OpenAIRE

    Štefanić, Zoran; Vujaklija, Dušica; Andrišić, Luka; Mikleušević, Goran; Andrejašič, Miha; Turk, Dušan; Luić, Marija

    2007-01-01

    Single-stranded DNA-binding proteins (SSBs) play a crucial role in DNA processing such as replication, repair and recombination in all organisms, from bacteria to human. Streptomyces coelicolor ssb gene was overexpressed in a heterologous host, Escherichia coli NM522. 15 mg of purified protein from 1 dm(3) of culture was obtained in one-step procedure applying Ni2+ chelating chromatography. Among bacterial SSBs with the solved crystal structure, the S. coelicolor SSB displayed significant seq...

  19. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  20. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species †

    OpenAIRE

    Lee, Byungtae; Pometto, Anthony L.; Fratzke, Alfred; Bailey, Theodore B.

    1991-01-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placin...

  1. RNA-Seq Analysis Reveals a Six-Gene SoxR Regulon in Streptomyces coelicolor

    OpenAIRE

    Nawar Naseer; Shapiro, Joshua A.; Monica Chander

    2014-01-01

    The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving > 100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transpo...

  2. Effective Antibiofilm Polyketides against Staphylococcus aureus from the Pyranonaphthoquinone Biosynthetic Pathways of Streptomyces Species

    OpenAIRE

    Oja, Terhi; San Martin Galindo, Paola; Taguchi, Takaaki; Manner, Suvi; Vuorela, Pia M.; Ichinose, Koji; Metsä-Ketelä, Mikko; Fallarero, Adyary

    2015-01-01

    Streptomyces bacteria are renowned for their ability to produce bioactive secondary metabolites. Recently, synthetic biology has enabled the production of intermediates and shunt products, which may have altered biological activities compared to the end products of the pathways. Here, we have evaluated the potential of recently isolated alnumycins and other closely related pyranonaphthoquinone (PNQ) polyketides against Staphylococcus aureus biofilms. The antimicrobial potency of the compounds...

  3. Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans

    OpenAIRE

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I.; Trivedi, Drupad K.; Rattray, Nicholas J. W.; Bernaerts, Kristel; Goodacre, Royston

    2015-01-01

    Background Whilst undergoing differentiation, Streptomyces produce a large quantity of hydrolytic enzymes and secondary metabolites, and it is this very ability that has focussed increasing interest on the use of these bacteria as hosts for the production of various heterologous proteins. However, within this genus, the exploration and understanding of the metabolic burden associated with such bio-products has only just begun. In this study our overall aim was to apply metabolomics approaches...

  4. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    Directory of Open Access Journals (Sweden)

    Wen Ying

    2010-07-01

    Full Text Available Abstract Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs, and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously

  5. A Two-Step Mechanism for the Activation of Actinorhodin Export and Resistance in Streptomyces coelicolor

    OpenAIRE

    Xu, Ye; Willems, Andrew; Au-yeung, Catherine; Tahlan, Kapil; Justin R Nodwell

    2012-01-01

    ABSTRACT Many microorganisms produce secondary metabolites that have antibiotic activity. To avoid self-inhibition, the producing cells often encode cognate export and/or resistance mechanisms in the biosynthetic gene clusters for these molecules. Actinorhodin is a blue-pigmented antibiotic produced by Streptomyces coelicolor. The actAB operon, carried in the actinorhodin biosynthetic gene cluster, encodes two putative export pumps and is regulated by the transcriptional repressor protein Act...

  6. Post-PKS Tailoring Steps of the Spiramycin Macrolactone Ring in Streptomyces ambofaciens

    OpenAIRE

    Nguyen, Hoang-Chuong; Darbon, Emmanuelle; Thai, Robert; Pernodet, Jean-Luc; Lautru, Sylvie

    2013-01-01

    Spiramycins are clinically important 16-member macrolide antibiotics produced by Streptomyces ambofaciens. Biosynthetic studies have established that the earliest lactonic intermediate in spiramycin biosynthesis, the macrolactone platenolide I, is synthesized by a type I modular polyketide synthase (PKS). Platenolide I then undergoes a series of post-PKS tailoring reactions yielding the final products, spiramycins I, II, and III. We recently characterized the post-PKS glycosylation steps of s...

  7. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    OpenAIRE

    Hwang, Jae Yoon; Kim, Hyo Sun; Kim, Soo Hee; Oh, Hye Ryeung; Nam, Doo Hyun

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showe...

  8. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis

    OpenAIRE

    Ikeda, Haruo; Nonomiya, Tomoko; Usami, Masayo; Ohta, Toshio; Ōmura, Satoshi

    1999-01-01

    Analysis of the gene cluster from Streptomyces avermitilis that governs the biosynthesis of the polyketide anthelmintic avermectin revealed that it contains four large ORFs encoding giant multifunctional polypeptides of the avermectin polyketide synthase (AVES 1, AVES 2, AVES 3, and AVES 4). These clustered polyketide synthase genes responsible for avermectin biosynthesis together encode 12 homologous sets of enzyme activities (modules), each catalyzing a specific round of polyketide chain el...

  9. Increase of Clavulanic acid production by using recombinant Streptomyces clavuligerus strain including claR gene

    Directory of Open Access Journals (Sweden)

    Maryam Kay

    2014-07-01

    Full Text Available   Introduction : Clavulanic acid is a major β-lactam antibiotic which is produced by Streptomyces clavuligerus. Clavulanic acid is used in combination of strong but sensitive to β-lactamase antibiotics. The claR gene has an important role in regulation of clavulanic acid production and is needed for the expression of the genes in final step of clavulanic acid biosynthesis.   Materials and methods: The recombinant construct pMTclaR which contains claR gene is obtained from Isfahan University and plasmid extraction was done from Streptomyces lividans for next steps. The Streptomyces clavuligerus protoplast was prepared and transformation was done by using polyethylene glycol. Transformation was confirmed by plasmid extraction and PCR. Finally, bioassay method was used to survey the effect of extra copy of claR on clavulanic acid production .   Results : The typical chalky white colony of Streptomyces clavuligerus was seen on GYME plates containing thiostrepton antibiotic. Plasmid extraction was initially carried out. Furthermore, PCR reaction was done by claR specific primers and the 1334 bp band which was belonging to claR was detected. Finally, the bioassay was done and the diameters of zone of inhibition in control and sample were compared. The results of the bioassay show that amplification of the claR gene in multicopy plasmids resulted in a 2.5 fold increase in clavulanic acid production .   Discussion and conclusion : In this study the 3.3 fold increase in clavulanic acid production was obtained by using an expression vector containing claR. According to the clinical use of clavulanic acid, production of bacterial strains which are able to produce high level of antibiotic can help significantly in customization of antibiotic production.

  10. [Composition of cell walls of 2 mutant strains of Streptomyces chrysomallus].

    Science.gov (United States)

    Zaretskaia, M Sh; Nefelova, M V; Baratova, L A; Polin, A N

    1984-12-01

    The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.

  11. Genetics and chemistry of lignin degradation by Streptomyces. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-12-31

    Our research goal was to define the involvement of lignin peroxidases and other extracellular enzymes in lignin degradation by Streptomyces. We examined the biochemistry and genetics of lignin degrading enzyme production by several strains of Streptomyces. The lignin peroxidase ALiP-P3 of S. viridosporus was characterized kinetically and its activity optimized for oxidation of 2,4-dichlorophenol and vanillyl-acetone. Sensitive spectrophotometric assays were developed for monitoring oxidation of these substrates. ALiP-P3 reaction chemistry was examined using both spectrophotometric assays and gas chromatography/mass spectroscopy. Results showed that the enzyme oxidizes phenolic lignin substructure models in strong preference to nonphenolic ones. The peroxidase was also shown to depolymerize native lignin. We also cloned the ALip-P3 gene S. lividans in plasmid vector pIJ702. The cloned gene was partially sequenced, We also immunologically characterized the lignin peroxidase of S. viridosporus T7A and showed it to be structurally related to peroxidases produced by other lignin-solubilizing Streptomyces, but not the the H8 lignin peroxidase of P. chrysosporium. Studies with peroxidase deficient mutants of strain T7A showed that lignin peroxidases of S. viridosporus are directly involved in the solubilization of lignin. Additional research showed that other enzymes are also probably involved in lignin solubilization, possibly including extracellular esterases.

  12. Antioxidant activity and free radical scavenging activities of Streptomyces sp. strain MJM 10778

    Institute of Scientific and Technical Information of China (English)

    Dong-Ryung Lee; Sung-Kwon Lee; Bong-Keun Choi; Jinhua Cheng; Young-Sil Lee; Seung Hwan Yang; Joo-Won Suh

    2014-01-01

    Objective:To investigate the antioxidant activity of soil-borne actinobacteria. Methods:The total phenolic contents, the level of antioxidant potential byDPPH radical scavenging activity,NO scavenging activity, andABTS radical scavenging activity in ethyl acetate extract were determined.Results:The16S rDNA sequencing analysis revealed thatStreptomyces sp. strainMJM10778, which was isolated fromHambakMountain,Korea, has99.9% similarity to Streptomyces misionensis(S. misionensis)NBRC13063.The physiological and the morphological test revealed that the strainMJM10778 has different characteristics from the strainNBRC13063. The entire antioxidant assay with the ethyl acetate extract displayed good radical scavenging activity.TheIC50 values of the strainMJM10778 extract onDPPH,NO, andABTS radicals were identified to be92.8 μg/mL,0.02 μg/mL, and134.9 μg/mL, respectively.The ethyl acetate extract of the strainMJM10778 showed an81.50% of cell viability at100 μg/mL inRaw264.7 cell viability assay.Conclusions:The results obtained suggest that the ethyl acetate extract ofStreptomyces sp. strainMJM10778 could be considered as a potential source of drug for the diseases that is caused by free radicals with its anti-oxidant activities and low cytotoxicity.

  13. Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms).

    Science.gov (United States)

    Baltz, Richard H

    2012-05-01

    ϕC31, ϕBT1, R4, and TG1 are temperate bacteriophages with broad host specificity for species of the genus Streptomyces. They form lysogens by integrating site-specifically into diverse attB sites located within individual structural genes that map to the conserved core region of streptomycete linear chromosomes. The target genes containing the ϕC31, ϕBT1, R4, and TG1 attB sites encode a pirin-like protein, an integral membrane protein, an acyl-CoA synthetase, and an aminotransferase, respectively. These genes are highly conserved within the genus Streptomyces, and somewhat conserved within other actinomycetes. In each case, integration is mediated by a large serine recombinase that catalyzes unidirectional recombination between the bacteriophage attP and chromosomal attB sites. The unidirectional nature of the integration mechanism has been exploited in genetic engineering to produce stable recombinants of streptomycetes, other actinomycetes, eucaryotes, and archaea. The ϕC31 attachment/integration (Att/Int) system has been the most widely used, and it has been coupled with the ϕBT1 Att/Int system to facilitate combinatorial biosynthesis of novel lipopeptide antibiotics in Streptomyces fradiae.

  14. Streptomyces linear plasmids that contain a phage-like, centrally located, replication origin.

    Science.gov (United States)

    Chang, P C; Kim, E S; Cohen, S N

    1996-12-01

    Unlike previously studied linear replicons containing 5' DNA termini covalently bound to protein, pSLA2, a 17 kb linear plasmid of Streptomyces rochei, initiates replication internally rather than at the telomeres (Chang and Cohen, 1994). Here we identify and characterize the replication origin of pSLA2, showing that it contains a series of direct repeats (iterons) within a centrally located gene encoding an essential DNA-binding protein (Rep1); a second essential protein (Rep2), which resembles prokaryotic DNA helicases and has ATPase activity stimulated by single-stranded DNA, is expressed from the same transcript. A 430 bp locus separated by almost 2 kb from the iterons of the origin specifies an as yet undefined additional function required in cis for plasmid replication. pSCL, a 12 kb linear plasmid of Streptomyces clavuligerus, contains, near the centre of the plasmid, a region configured like the pSLA2 origin. The replication regions of pSLA2 and pSCL, which are capable of propagating plasmid DNA in either a circular or linear form (Shiffman and Cohen, 1992; Chang and Cohen, 1994) resemble those of temperate bacteriophages of the Enterobacteriacae and Bacillus. Our observations suggest that Streptomyces linear plasmids may occupy an evolutionarily intermediate position between circular plasmids and linear phage replicons.

  15. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4

    Institute of Scientific and Technical Information of China (English)

    Valliappan Karuppiah; Chandramohan Aarthi; Kannan Sivakumar; Lakshmanan Kannan

    2013-01-01

    Objective: To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Methods:Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Results: Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. Conclusions:The study revealed that the maximum amount of pigment could be produced to treat cancer.

  16. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  17. Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9.

    Science.gov (United States)

    Rekik, Hatem; Nadia, Zaraî Jaouadi; Bejar, Wacim; Kourdali, Sidali; Belhoul, Mouna; Hmidi, Maher; Benkiar, Amina; Badis, Abdelmalek; Sallem, Naim; Bejar, Samir; Jaouadi, Bassem

    2015-02-01

    A novel extracellular lignin peroxidase (called LiP-SN) was produced and purified from a newly isolated Streptomyces griseosporeus strain SN9. The findings revealed that the pure enzyme was a monomeric protein with an estimated molecular mass of 43 kDa and a Reinheitzahl value of 1.63. The 19 N-terminal residue sequence of LiP-SN showed high homology with those of Streptomyces peroxidases. Its optimum pH and temperature were pH 8.5 and 65 °C, respectively. The enzyme was inhibited by sodium azide and potassium cyanide, suggesting the presence of heme components in its tertiary structure. Its catalytic efficiency was higher than that of the peroxidase from Streptomyces albidoflavus strain TN644. Interestingly, LiP-SN showed marked dye-decolorization efficiency and stability toward denaturing, oxidizing, and bleaching agents, and compatibility with EcoVax and Dipex as laundry detergents for 48 h at 40 °C. These properties make LiP-SN a potential candidate for future applications in distaining synthetic dyes and detergent formulations. PMID:25478960

  18. A versatile PCR-based tandem epitope tagging system for Streptomyces coelicolor genome.

    Science.gov (United States)

    Kim, Ji-Nu; Yi, Jeong Sang; Lee, Bo-Rahm; Kim, Eun-Jung; Kim, Min Woo; Song, Yoseb; Cho, Byung-Kwan; Kim, Byung-Gee

    2012-07-20

    Epitope tagging approaches have been widely used for the analysis of functions, interactions and subcellular distributions of proteins. However, incorporating epitope sequence into protein loci in Streptomyces is time-consuming procedure due to the absence of the versatile tagging methods. Here, we developed a versatile PCR-based tandem epitope tagging tool for the Streptomyces genome engineering. We constructed a series of template plasmids that carry repeated sequence of c-myc epitope, Flp recombinase target (FRT) sites, and apramycin resistance marker to insert epitope tags into any desired spot of the chromosomal loci. A DNA module which includes the tandem epitope-encoding sequence and a selectable marker was amplified by PCR with primers that carry homologous extensions to the last portion and downstream region of the targeted gene. We fused the epitope tags at the 3' region of global transcription factors of Streptomyces coelicolor to test the validity of this system. The proper insertion of the epitope tag was confirmed by PCR and western blot analysis. The recombinants showed the identical phenotype to the wild-type that proved the conservation of in vivo function of the tagged proteins. Finally, the direct binding targets were successfully detected by chromatin immunoprecipitation with the increase in the signal-to-noise ratio. The epitope tagging system describes here would provide wide applications to study the protein functions in S. coelicolor. PMID:22704935

  19. Bioremediation of Carbendazim, a Benzimidazole Fungicide Using Brevibacillus borstelensis and Streptomyces albogriseolus Together.

    Science.gov (United States)

    Arya, Ridhima; Sharma, Anil K

    2015-01-01

    Excessive use of pesticides in agriculture has resulted in contamination of water resources, air, soil and disruption of biogeochemical cycles. These compounds adversely affect humans and animal health, helpful soil microbes and crop production as well. Biodegradation of pesticides by microbes exists in a number of habitats like soil, sediments, surface, ground water, and sludge, etc. In the present study, efforts were made to develop a microbial consortium comprising of Streptomyces albogriseolus and Brevibacillus borstelensis strains isolated earlier which are capable of degrading carbendazim, a benzimidazole fungicide and making it harmless. Both the strains Brevibacillus borstelensis and Streptomyces albogriseolus displayed growth even at higher concentrations (500μg mL(-1)) of carbendazim. The consortium containing Brevibacillus borstelensis and Streptomyces albogriseolus reduced carbendazim concentration from 30 µg mL(-1) to 0.86 µg mL(-1) (nearly 97%) in 12hrs to 0.60 µg mL(-1) (~98%) in 20 hrs as determined by LCMS analysis. There was a significant reduction observed in carbendazim concentration than reduction obtained when individual strain was used. This study paves a way for further exploration of degradation mechanism at the genetic level to enhance the capability of microorganisms in consortia. PMID:26420048

  20. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    Directory of Open Access Journals (Sweden)

    Houssam M. Atta

    2015-01-01

    Full Text Available Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9111; Escherichia coli, NCTC 10416; Pseudomonas aeruginosa, ATCC 10145; Saccharomyces cerevisiae ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023; Aspergillus niger IMI 31276; Aspergillus fumigatus ATCC 16424; Fusarium oxysporum; Rhizoctonia solani; Alternaria alternata; Botrytis fabae and Penicillium chrysogenium. The production media were optimized for maximum yield of secondary metabolites. The metabolites were extracted using n-butanol (1:1, v/v at pH 7.0. The chemical structural analysis with UV, IR, and MS spectral analyses confirmed that the compound produced by Streptomyces torulosus, T-4 is tunicamycin antibiotic.

  1. The function of a regulatory gene, scrX related to differentiation in Streptomyces coelicolor

    Institute of Scientific and Technical Information of China (English)

    杨海花; 田宇清; 贾君永; 谭华荣

    2000-01-01

    A new gene, scrX from Streptomyces coelicolor was cloned and sequenced. It consists of 660 base pair, encoding a peptide of 220 amino acids. There are three rare codons in scrX which are AAA, AAA and ATA. scrXgene may be a typical differentiation regulator which was strictly controlled at translational level. The comparison of amino acids also revealed that ScrX belonged to Id R family which acted in transcriptional regulation of prokaryote. Studies on gene function by gene disruption and complementation indicated that scrX may play a positive regulation role in spore formation of Streptomyces coelicolor.A new gene, scrX from Streptomyces coelicolor was cloned and sequenced. It consists of 660 base pair, encoding a peptide of 220 amino acids. There are three rare codons in scrX which are AAA, AAA and ATA. scrXgene may be a typical differentiation regulator which was strictly controlled at translational level. The comparison of amino acids also revealed that ScrX belonged to Id R family which acted in tra

  2. Antioxidant activity and free radical scavenging activities of Streptomyces sp.strain MJM 10778

    Institute of Scientific and Technical Information of China (English)

    Dong-Ryung; Lee; Sung-Kwon; Lee; Bong-Keun; Choi; Jinhua; Cheng; Young-Sil; Lee; Seung; Hwan; Yang; Joo-Won; Suh

    2014-01-01

    Objective:To investigate the antioxidant activity of soil-borne aetinobacteria.Methods:The total phenolic contents,the level of antioxidant potential by DPPH radical scavenging activity,MO scavenging activity,and ABTS radical scavenging activity in ethyl acelale extract were determined.Results:The 16 S rDNA sequencing analysis revealed that Streptomyces sp.strain MJM 10778.which was isolated from Hambak Mountain.Korea,has 99.9% similarity to Streptomyces misionensis(S.misionenis) NBRC 13063.The physiological and the morphological test revealed that the strain MJM 10778 has different characteristics from the strain NBRC.13063.The entire antioxidant assay with the ethyl acelale extract displayed good radical scavenging activity.The IC50 values of the strain MJM 10778 extract on DPPH,.NO.and ABTS radicals were identified to he 92.8 μg/mL,0.02 μg/ml,and 134.9 μg/mL,respectively.The ethyl acetate extract of the strain MJM 10778 showed an 81.500% of cell viability at 100 μg/mL in Raw264.7cell viability assay.Conclusions:The results obtained suggesl that the ethyl acetate extract of Streptomyces sp.strain MJM 10778 could be considered as a potential source of drug for the diseases that is caused by free radicals with its anti-oxidant activities and low cytotoxicity.

  3. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    Directory of Open Access Journals (Sweden)

    Mihaela Cotârleţ

    2011-09-01

    Full Text Available The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20ºC, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20ºC. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures.

  4. Optimization of Cultural Conditions for Production of Antibacterial Metabolites from Streptomyces coelicoflavus BC 01

    Directory of Open Access Journals (Sweden)

    Kothagorla Venkata RAGHAVA RAO

    2015-06-01

    Full Text Available The aim of the present study was to optimize various cultural conditions for the production of antibacterial metabolites by Streptomyces coelicoflavus BC 01 isolated from mangrove soil, Visakhapatnam, Andhra Pradesh, India. The effect of various factors such as carbon and nitrogen sources, different concentrations of NaCl and K2HPO4, different temperature, pH, incubation time and agitation on antibacterial metabolites production were studied. The production of antibacterial metabolites by the isolate Streptomyces coelicoflavus BC 01 was greatly influenced by the cultural conditions. Glucose (1.2% and soya bean meal (1% seemed to be the best carbon and nitrogen source respectively, followed by NaCl (1% and K2HPO4 (0.25%. Maximum production of antibacterial metabolites was observed at a temperature of 30 °C, with pH 7.2, at 160 rpm for 96 hrs. These optimized parameters can be further useful to design a fermentation medium to achieve maximum yield of antibacterial metabolites from Streptomyces coelicoflavus BC 01.

  5. Laser Capture Microdissection of Feline Streptomyces spp Pyogranulomatous Dermatitis and Cellulitis.

    Science.gov (United States)

    Traslavina, R P; Reilly, C M; Vasireddy, R; Samitz, E M; Stepnik, C T; Outerbridge, C; Affolter, V K; Byrne, B A; Lowenstine, L J; White, S D; Murphy, B

    2015-11-01

    Suspected Streptomyces spp infections were identified in 4 cats at UC Davis Veterinary Medical Teaching Hospital between 1982 and 2011. Three had ulcerated, dark red mycetomas involving the dermis, subcutis, and fascia with fistulous tracts and/or regional lymphadenopathy. One cat had pyogranulomatous mesenteric lymphadenitis. Granulomatous inflammation in all cats contained colonies of Gram-positive, non-acid-fast organisms. All 4 cats failed to respond to aggressive medical and surgical treatment and were euthanized. Laser capture microdissection (LCM) was used to selectively harvest DNA from the affected formalin-fixed, paraffin-embedded (FFPE) tissues. Cloned amplicons from LCM-derived tissue confirmed the presence of Streptomyces spp in the dermatitis cases. Amplicons from the remaining cat with peritoneal involvement aligned with the 16S ribosomal RNA gene for Actinomycetales. Usually considered a contaminant, Streptomyces spp can be associated with refractory pyogranulomatous dermatitis and cellulitis in cats with outdoor access. LCM is useful in the diagnosis of bacterial diseases where contamination may be an issue. PMID:25516065

  6. Laser Capture Microdissection of Feline Streptomyces spp Pyogranulomatous Dermatitis and Cellulitis.

    Science.gov (United States)

    Traslavina, R P; Reilly, C M; Vasireddy, R; Samitz, E M; Stepnik, C T; Outerbridge, C; Affolter, V K; Byrne, B A; Lowenstine, L J; White, S D; Murphy, B

    2015-11-01

    Suspected Streptomyces spp infections were identified in 4 cats at UC Davis Veterinary Medical Teaching Hospital between 1982 and 2011. Three had ulcerated, dark red mycetomas involving the dermis, subcutis, and fascia with fistulous tracts and/or regional lymphadenopathy. One cat had pyogranulomatous mesenteric lymphadenitis. Granulomatous inflammation in all cats contained colonies of Gram-positive, non-acid-fast organisms. All 4 cats failed to respond to aggressive medical and surgical treatment and were euthanized. Laser capture microdissection (LCM) was used to selectively harvest DNA from the affected formalin-fixed, paraffin-embedded (FFPE) tissues. Cloned amplicons from LCM-derived tissue confirmed the presence of Streptomyces spp in the dermatitis cases. Amplicons from the remaining cat with peritoneal involvement aligned with the 16S ribosomal RNA gene for Actinomycetales. Usually considered a contaminant, Streptomyces spp can be associated with refractory pyogranulomatous dermatitis and cellulitis in cats with outdoor access. LCM is useful in the diagnosis of bacterial diseases where contamination may be an issue.

  7. Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane.

    Science.gov (United States)

    Aparicio, JuanDaniel; Solá, María Zoleica Simón; Benimeli, Claudia Susana; Amoroso, María Julia; Polti, Marta Alejandra

    2015-06-01

    The aim of this work was to study the impact of environmental factors on the bioremediation of Cr(VI) and lindane contaminated soil, by an actinobacterium, Streptomyces sp. M7, in order to optimize the process. Soil samples were contaminated with 25 µg kg(-1) of lindane and 50 mg kg(-1) of Cr(VI) and inoculated with Streptomyces sp. M7. The lowest inoculum concentration which simultaneously produced highest removal of Cr(VI) and lindane was 1 g kg(-1). The influence of physical and chemical parameters was assessed using a full factorial design. The factors and levels tested were: Temperature: 25, 30, 35°C; Humidity: 10%, 20%, 30%; Initial Cr(VI) concentration: 20, 50, 80 mg kg(-1); Initial lindane concentration: 10, 25, 40 µg kg(-1). Streptomyces sp. M7 exhibited strong versatility, showing the ability to bioremediate co-contaminated soil samples at several physicochemical conditions. Streptomyces sp. M7 inoculum size was optimized. Also, it was fitted a model to study this process, and it was possible to predict the system performance, knowing the initial conditions. Moreover, optimum temperature and humidity conditions for the bioremediation of soil with different concentrations of Cr(VI) and lindane were determined. Lettuce seedlings were a suitable biomarker to evaluate the contaminants mixture toxicity. Streptomyces sp. M7 carried out a successful bioremediation, which was demonstrated through ecotoxicity test with Lactuca sativa.

  8. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  9. Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection.

    Science.gov (United States)

    Liu, Long; Yang, Haiquan; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-11-01

    Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces. PMID:24068337

  10. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.

    Science.gov (United States)

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B; Melançon, Charles E

    2016-02-19

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development. PMID:26562751

  11. Toxicity studies of crude extracts from marine Streptomyces sps. with potential antibacterial sensitivity against antibiotic resistant human pathogens

    Institute of Scientific and Technical Information of China (English)

    Palavesam Suganthi; Sundaram Ravikumar

    2012-01-01

    Objective: To investigate the crude extract of marine actinomycetes with adverse effect locally on the adult Wister albino rats or systematically in the blood circulation. Methods: Acute toxicity, sub acute toxicity, biochemical and histopathological were tested. Results: In the results acute toxicity (LD50=2 500 μg/kg bw), sub acute toxicity study (2 500 μg/kg bw) were significant at 5% level of each experimental groups compared to the control group. Biochemical and histopathological study also showed better as compared with control group Conclusion:This crude microbial extract from Streptomyces sp. RSAUT 20 and Streptomyces scabiei (S. scabiei) RSAUK 49 is potential source for novel antimicrobial compounds. The crude extract of Streptomyces sp. RSAUT 20 and S. scabiei RSAUK 49 were tested for in vivo toxicity study.

  12. Recombinant Streptomyces clavuligerus strain including cas2 gene production and analysis its antibiotic overproduction by bioassay

    Directory of Open Access Journals (Sweden)

    Zohreh Hojati

    2014-03-01

    Full Text Available Background: Streptomyces clavuligerus is one of the most important strain that produce clavulanic acid that wildly used in combination of strong but sensitive to β-lactamase antibiotics in clinics. The cas2 is one of the important genes in the biosynthesis pathway of clavulanic acid. Materials and Methods: The recombinant construct pMTcas2 which contain cas2 gene is obtained from Isfahan University. Recombinant plasmid extracts from streptomyces lividans and confirm by enzyme digestion. The streptomyces clavuligerus protoplast was prepared and transformation was done by using polyethylene glycol. Transformation was confirmed by plasmid extraction and PCR using cas2 specific primers. Finally, bioassay method was used to survey the effect of extra copy of cas2 on clavulanic acid production. Result: Plasmid extraction was initially carried out and the structure of plasmid was confirmed by digestion. The typical white colony was seen on protoplast recovery culture containing thiostrepton antibiotic and gray spores were detected after one week. Plasmid extraction was done from transformed strain and transformation was confirmed by PCR. The results of the bioassay show that amplification of the cas2 gene in multicopy plasmids resulted in a 4.1 fold increase in clavulanic acid production. Conclusion: The bioassay was done and the diameters of zone of inhibition in control and sample were compared. The results of the bioassay show that amplification of the cas2 gene in multicopy plasmids resulted in a 4.1 fold increase in clavulanic acid production. Overproduction of clavulanic acid decreases the cost of its dependent drug production.

  13. Structure and evolution of Streptomyces interaction networks in soil and in silico.

    Directory of Open Access Journals (Sweden)

    Kalin Vetsigian

    2011-10-01

    Full Text Available Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated from several individual grains of soil. We acquired more than 10,000 time-lapse movies of colony development of each isolate on media containing compounds produced by each of the other isolates. We observed a rich set of such sender-receiver interactions, including inhibition and promotion of growth and aerial mycelium formation. The probability that two random isolates interact is balanced; it is neither close to zero nor one. The interactions are not random: the distribution of the number of interactions per sender is bimodal and there is enrichment for reciprocity--if strain A inhibits or promotes B, it is likely that B also inhibits or promotes A. Such reciprocity is further enriched in strains derived from the same soil grain, suggesting that it may be a property of coexisting communities. Interactions appear to evolve rapidly: isolates with identical 16S rRNA sequences can have very different interaction patterns. A simple eco-evolutionary model of bacteria interacting through antibiotic production shows how fast evolution of production and resistance can lead to the observed statistical properties of the network. In the model, communities are evolutionarily unstable--they are constantly being invaded by strains with new sets of interactions. This combination of experimental and theoretical observations suggests that diverse Streptomyces communities do not represent a stable ecological state but an intrinsically dynamic eco-evolutionary phenomenon.

  14. Structure and Evolution of Streptomyces Interaction Networks in Soil and In Silico

    Science.gov (United States)

    Vetsigian, Kalin; Jajoo, Rishi; Kishony, Roy

    2011-01-01

    Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated from several individual grains of soil. We acquired more than 10,000 time-lapse movies of colony development of each isolate on media containing compounds produced by each of the other isolates. We observed a rich set of such sender-receiver interactions, including inhibition and promotion of growth and aerial mycelium formation. The probability that two random isolates interact is balanced; it is neither close to zero nor one. The interactions are not random: the distribution of the number of interactions per sender is bimodal and there is enrichment for reciprocity—if strain A inhibits or promotes B, it is likely that B also inhibits or promotes A. Such reciprocity is further enriched in strains derived from the same soil grain, suggesting that it may be a property of coexisting communities. Interactions appear to evolve rapidly: isolates with identical 16S rRNA sequences can have very different interaction patterns. A simple eco-evolutionary model of bacteria interacting through antibiotic production shows how fast evolution of production and resistance can lead to the observed statistical properties of the network. In the model, communities are evolutionarily unstable—they are constantly being invaded by strains with new sets of interactions. This combination of experimental and theoretical observations suggests that diverse Streptomyces communities do not represent a stable ecological state but an intrinsically dynamic eco-evolutionary phenomenon. PMID:22039352

  15. Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202

    International Nuclear Information System (INIS)

    A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs+ was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs+ was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs+ was taken up into the mycelia competitively with K+, because K+ uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs+ in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, 133Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs+ trapped by intercellular materials such as polyphosphate and Cs+ present in a cytoplasmic pool. - Research highlights: → Cs was taken up into the cells of Streptomyces sp. K202 via 2 steps. → The existence states of Cs accumulated in strain K202 were at least 2 types. → The localized Cs in the cells would be trapped by granules such as polyphosphate. → The localized Cs in the cells might involve in Cs detoxification of strain K202.

  16. Structure and function of sawB, a gene involved in differentiation of Streptomyces ansochromogenes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A partial DNA library of Streptomyces ansochromogenes 7100 was constructed by using plasmid pIJ702 as vector and white mutant W19 as recipient. About 3 000 clones were obtained, two of which gave rise to the grey phenotype as wild type 7100. The plasmids were isolated from two transformants. The result indicated that the 5.2 kb and 5.8 kb DNA fragments were inserted into pIJ702. The resulting recombinant plasmids were designated as pNL-1 and pNL-2 respectively. The 1.25 kb PstI I-Apa I DNA fragment from pNL-1 was recognized as its complementarity to W19 strain. The nucleotide sequence of the 3.0 kb Pst I DNA fragment including 1.25 kb was determined and analyzed. The result indicated that this DNA fragment contains one complete open reading frame (ORF1) which encodes a protein with 295 amino acid residues, and this gene was designated as sawB. The deduced protein has 81% amino acid identities in comparison with that encoded by whiH in Streptomyces coelicolor. The function of sawB gene was studied by using strategy of gene disruption, and the resulting sawB mutant failed to form spores and produced loosely coiled aerial hyphal. The result showed that sawB is closely related to hyphal coiling and sporulation in S. ansochromogenes, and also indicated that the sawB can complement whiH mutant (C119) to restore the grey phenotype of Streptomyces coelicolor J1501(wild type).

  17. ANTI-OXIDANT AND ENZYME-INHIBITORY POTENTIAL OF MARINE STREPTOMYCES

    Directory of Open Access Journals (Sweden)

    K. Suthindhiran

    2013-01-01

    Full Text Available Marine actinomycetes are potential source for the discovery of novel compounds and enzymes. Though extensive research on marine actinomycetes is underway globally, the actinomycetes research from Indian marine ecosystem is unexplored and understudied. Hence, the present research is focussed on the screening of bioactive compounds from marine actinomycetes isolated from Indian coastal region. This study is designed to determine the antioxidant and enzyme inhibitory potential of Streptomyces sp. VITMSS05 strain, isolated from Marakkanam, southern coast of India. An actinomycetes strain designated as VITMSS05 was isolated. This strain was cultivated in Starch Caesin Agar medium (SCA supplemented with sea water. The cultural, morphological and molecular characterization was determined for the isolate. The crude extract of the isolate was extracted with ethyl acetate. Antioxidant activity of the crude extract was determined by DPPH radical scavenging assay. Alpha amylase and alpha glucosidase inhibitory potential of the extract was determined. Based on the phenotypic and phylogenetic analysis the strain was identified as Streptomyces sp. Significant antioxidant activity of the extract was observed with an IC50 value of 92.49 μg mL-1. The extract shows 64.1% inhibition on α-amylase and 91.5% inhibition on α-glucosidase at 100 μg mL-1 with an IC50 value of 385.97 and 42.89 μg mL-1. From the results it is evident that the ethyl acetate extract of Streptomyces sp. VITMSS05 has potent antioxidant and enzyme inhibitory activity in vitro. The combined effect of free radical scavenging and enzyme inhibition makes it a potent anti diabetic drug.

  18. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.

    Science.gov (United States)

    Huang, He; Zheng, Guosong; Jiang, Weihong; Hu, Haifeng; Lu, Yinhua

    2015-04-01

    The RNA-guided DNA editing technology CRISPRs (clustered regularly interspaced short palindromic repeats)/Cas9 had been used to introduce double-stranded breaks into genomes and to direct subsequent site-specific insertions/deletions or the replacement of genetic material in bacteria, such as Escherichia coli, Streptococcus pneumonia, and Lactobacillus reuteri. In this study, we established a high-efficiency CRISPR/Cas9 genome editing plasmid pKCcas9dO for use in Streptomyces genetic manipulation, which comprises a target-specific guide RNA, a codon-optimized cas9, and two homology-directed repair templates. By delivering pKCcas9dO series editing plasmids into the model strain Streptomyces coelicolor M145, through one-step intergeneric transfer, we achieved the genome editing at different levels with high efficiencies of 60%-100%, including single gene deletion, such as actII-orf4, redD, and glnR, and single large-size gene cluster deletion, such as the antibiotic biosynthetic clusters of actinorhodin (ACT) (21.3 kb), undecylprodigiosin (RED) (31.6 kb), and Ca(2+)-dependent antibiotic (82.8 kb). Furthermore, we also realized simultaneous deletions of actII-orf4 and redD, and of the ACT and RED biosynthetic gene clusters with high efficiencies of 54% and 45%, respectively. Finally, we applied this system to introduce nucleotide point mutations into the rpsL gene, which conferred the mutants with resistance to streptomycin. Notably, using this system, the time required for one round of genome modification is reduced by one-third or one-half of those for conventional methods. These results clearly indicate that the established CRISPR/Cas9 genome editing system substantially improves the genome editing efficiency compared with the currently existing methods in Streptomyces, and it has promise for application to genome modification in other Actinomyces species.

  19. [2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus

    Directory of Open Access Journals (Sweden)

    Christian A. Citron

    2013-12-01

    Full Text Available During growth on fully deuterated medium the volatile terpene [2H26]-1-epi-cubenol was released by the actinomycete Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known to slow down all metabolic processes in living organisms. Potential applications of completely labelled compounds from natural sources in structure elucidation, biosynthetic or pharmacokinetic investigations are discussed.

  20. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    OpenAIRE

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire; Thibessard, Annabelle; Leblond, Pierre

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only pu...

  1. Regio-specific Microbial Hydroxylation of Phytolaccagenin by Streptomyces griseus ATCC 13273

    Institute of Scientific and Technical Information of China (English)

    QIAN, Liwu; ZHANG, Jian; LIU, Jihua; YU, Boyang

    2009-01-01

    Microbial transformation of one oleane-type pentacyclic triterpene aglycone, phytolaccagenin (2β,3β,23-trihy- droxy-olean-12-ene-28,30-dioic acid 30-methyl ester) by Streptomyces griseus ATCC 13273 was investigated for developing new bioactive derivatives. A new oxidized metabolite, through the regio-specific hydroxylation on the C-29 methyl group, was obtained from the preparative-scale biotransformation with a standard two-stage fermenta- tion protocol. The metabolite was identified as 2β,3β,23,29-tetrahydroxy-olean-12-ene-28,30-dioic acid 30-methyl ester by mass and 2D-NMR spectra.

  2. Sannastatin, a novel toxic macrolactam polyketide glycoside produced by actinomycete Streptomyces sannanensis.

    Science.gov (United States)

    Yang, Sheng-Xiang; Gao, Jin-Ming; Zhang, An-Ling; Laatsch, Hartmut

    2011-07-01

    A new rare 20-membered macrocyclic lactam incorporating a diene conjugated olefin, designated sannastatin (1), together with the known structurally related vicenistatin (2), has been isolated from the cultures of Streptomyces sannanensis, a bacteria found in the feces of Ailuropoda melanoleuca. The structure of the new compound was established on the basis of extensive spectroscopic analyses including 1D- and 2D-NMR ((1)H-(1)H COSY, TOCSY, HSQC, HMBC, and NOESY) experiments. Compounds 1 and 2 displayed significant growth inhibitory activity against the brine shrimp (Artemia salina) larvae. PMID:21640585

  3. Four new antibacterial xanthones from the marine-derived actinomycetes Streptomyces caelestis

    KAUST Repository

    Liu, Ling-Li

    2012-11-20

    Four new polycyclic antibiotics, citreamicin ? A (1), citreamicin ? B (2), citreaglycon A (3), and dehydrocitreaglycon A (4), were isolated from marine-derived Streptomyces caelestis. The structures of these compounds were elucidated by 1D and 2D NMR spectra. All four compounds displayed antibacterial activity against Staphylococcus haemolyticus, Staphylococcus aureus, and Bacillus subtillis. Citreamicin ? A (1), citreamicin ? B (2) and citreaglycon A (3) also exhibited low MIC values of 0.25, 0.25, and 8.0 ?g/mL, respectively, against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. 2012 by the authors; licensee MDPI.

  4. Delimitation of cohesive ends site (cos) of Streptomyces temperate bacteriophage R4.

    Science.gov (United States)

    Mitsui, H; Takahashi, H

    1992-08-14

    The cohesive ends site (cos) of actinophage R4 was delimitated by assaying the in vivo packaging activity of cosmid derivatives in Streptomyces lividans. A region of 66 bp from -30 to +36 from the center of cohesive ends was required for the basal level of packaging activity. Two additional regions outside the basal sequences from -39 to -31 and from +37 to +97 were necessary for the high level of activity, defined as the accessory sequences. Direct- or inverted-repeat sequences were found within the delimitated region, which might be involved in the recognition by the terminase of actinophage R4.

  5. Transduction in Streptomyces hygroscopicus mediated by the temperate bacteriophage SH10.

    Science.gov (United States)

    Süss, F; Klaus, S

    1981-01-01

    The temperate actinophage SH10 mediates generalized transduction in Streptomyces hygroscopicus at low frequency. The efficiency of transduction depends on the average phage input, age of outgrowing spores of the recipient and on the selective marker. The highest EOT was found for the auxotrophic mutants 21(phe-) and 5(try-) (4.2 x 10(-6) and 2.7 x 10(-6), respectively). Transduction of the thermosensitive mutant NG14-216 ts 35 was two orders of magnitude lower (2.5 x 10(-8)). The transductant colonies segregated into stable and unstable clones. Stable transductants were never found to be lysogenic for phage SH10.

  6. Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces sp.

    OpenAIRE

    Enjuro Harunari; Chiaki Imada; Yasuhiro Igarashi; Takao Fukuda; Takeshi Terahara; Takeshi Kobayashi

    2014-01-01

    Hyaluromycin (1), a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate. The compound’s absolute configuration was determined by the comparison of its circular dichroi...

  7. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations

    DEFF Research Database (Denmark)

    Ödman, Peter; Johansen, C.L.; Olsson, L.;

    2010-01-01

    -one-batch-out cross-validation, and the best models had root mean square error of cross-validation values of 1.02 g l(-1) biomass and 0.8 g l(-1) total amino acids, respectively. The fluorescence data were also explored by parallel factor analysis. The analysis revealed four spectral profiles present......Fed-batch cultivations of Streptomyces coelicolor, producing the antibiotic actinorhodin, were monitored online by multiwavelength fluorescence spectroscopy and off-gas analysis. Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) models were built for prediction...

  8. Abenquines A-D: aminoquinone derivatives produced by Streptomyces sp. strain DB634.

    Science.gov (United States)

    Schulz, Dirk; Beese, Pascal; Ohlendorf, Birgit; Erhard, Arlette; Zinecker, Heidi; Dorador, Cristina; Imhoff, Johannes F

    2011-12-01

    New bioactive secondary metabolites, called abenquines, were found in the fermentation broth of Streptomyces sp. strain DB634, which was isolated from the soils of the Chilean highland of the Atacama Desert. They are composed of an amino acid linked to an N-acetyl-aminobenzoquinone. Isolation of the abenquines (1-4), their structure elucidation by NMR analysis and MS, as well as the kinetics of their production are presented. The abenquines show inhibitory activity against bacteria, dermatophytic fungi and phosphodiesterase type 4b. The amino acid attached to the quinone is relevant to the enzyme inhibitory activity. PMID:21952099

  9. Impact of lead ions on biosynthetic capacity of Streptomyces recifensis var. lyticus 2p-15 strain

    Directory of Open Access Journals (Sweden)

    Т. P. Kilochok

    2006-01-01

    Full Text Available The influence of different concentrations of Pb ions on biosynthetical ability of Streptomyces recifensis var. lyticus 2P-15, which is the producer of compound complex of extracellular enzymes and growth stimulators, was studied. It has been showed, that Pb ions introduced in agar medium have had a stimulative effect on production of surface and depth mycelia. The Pb ions, which have been inoculated into liquid fermentative medium in concentration of 1,0–2,0 mg/l realized directed synthesis of bacterio- and proteolytic enzymes, had an influence on qualitative and quantitative composition of produced enzymes.

  10. Two Antimycin A Analogues from Marine-Derived Actinomycete Streptomyces lusitanus

    Directory of Open Access Journals (Sweden)

    Peiyuan Qian

    2012-03-01

    Full Text Available Two new antimycin A analogues, antimycin B1 and B2 (1–2, were isolated from a spent broth of a marine-derived bacterium, Streptomyces lusitanus. The structures of 1 and 2 were established on the basis of spectroscopic analyses and chemical methods. The isolated compounds were tested for their anti-bacterial potency. Compound 1 was found to be inactive against the bacteria Bacillus subtilis, Staphyloccocus aureus, and Loktanella hongkongensis. Compound 2 showed antibacterial activities against S. aureus and L. hongkongensis with MIC values of 32.0 and 8.0 μg/mL, respectively.

  11. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

    DEFF Research Database (Denmark)

    Seghezzi, Nicolas; Amar, Patrick; Købmann, Brian;

    2011-01-01

    cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different...... concentrations of neomycin (20, 50, and 100 μg ml−1). Promoter strengths varied up to 12-fold, in small increments of activity increase, as determined by reverse transcriptase-PCR. This collection of promoters of various strengths can be useful for the fine-tuning of gene expression in genetic engineering...

  12. Characterization and Purification a Specific Xylanase Showing Arabinofuranosidase Activity from Streptomyces spp. 234P-16

    OpenAIRE

    ALINA AKHDIYA; FAHRRUROZI; TRIO HENDARWIN; ANJA MERYANDINI; DEDEN SAPRUDIN; YULIN LESTARI

    2009-01-01

    Streptomyces spp 234P-16 producing xylanase was isolated from soil sample from Padang, West Sumatra, Indonesia. Crude enzyme (produced by centrifuging the culture at 14000 rpm for about 5 minutes) and purified xylanase have an optimum condition at pH 5 and 90oC. Crude xylanase have half life time of 4 hours, whereas purified xylanase have half life time of 2 ½ hours at 90oC. The molecular mass of purified xylanase was determined to be 42.4 kDa. The Arabinofuranosidase have a Km and Vmax value...

  13. Producción de antibióticos en Streptomyces asociados a organismos marinos

    OpenAIRE

    González Iglesias, Verónica

    2013-01-01

    El género Streptomyces, dentro del grupo de los actinomicetos, se considera la “farmacia” de la naturaleza, ya que de este grupo se extraen la mayor parte de compuestos utilizados en la medicina actual, como antibióticos, antifúngicos, antitumorales, etc. Tradicionalmente han sido consideradas bacterias del suelo, pero en los últimos años se ha puesto de manifiesto la presencia de estreptomicetos en ecosistemas marinos asociados a muchos grupos de organismos, sobre todo a algas, corales y esp...

  14. Glucose inhibibion of galactose-induced synthesis of beta-galactosidase in Streptomyces violaceus.

    Science.gov (United States)

    Sánchez, J; Hardisson, C

    1980-03-01

    Various carbon compounds inhibited galactose induced synthesis of a beta-galactosidase activity in Streptomyces violaceus. Glucose and 2-deoxyglucose, but not methyl-alpha-D-glucose, caused inhibition of galactose uptake activity. In addition, glucose, or one of its metabolites, inhibited the synthesis of the glactose uptake system. Therefore it is concluded that the main inhibitory activity of glucose on galactose induced enzyme synthesis is exerted through inducer exclusion. Other carbon sources, such as D-ribose, D-gluconate, cellobiose or DL-alpha-glycerophosphate, did not inhibit uptake of the inducer galactose and may exert their effect through catabolite repression, inactivation or direct enzyme inhibition. PMID:6770791

  15. Salinazinones A and B: Pyrrolidinyl-Oxazinones from Solar Saltern-Derived Streptomyces sp. KMF-004.

    Science.gov (United States)

    Kim, Min Cheol; Lee, Jung Hwan; Shin, Bora; Subedi, Lalita; Cha, Jin Wook; Park, Jin-Soo; Oh, Dong-Chan; Kim, Sun Yeou; Kwon, Hak Cheol

    2015-10-16

    Salinazinones A (1) and B (2), two unprecedented pyrrolidinyl-oxazinones, were isolated from the culture broth of Streptomyces sp. KMF-004 from a solar saltern at Aphae Island, Korea. The structures of these salinazinones, which are unusual and consist of 2-methylpropenyl-1,3-oxazin-6-one bearing 1-oxopyrrolidinyl substituents, were assigned by spectral and chemical analyses using Mosher's method, circular dichroism (CD), and calculated ECD. Salinazinones are the first examples of a natural alkaloid class composed of an oxazinone-pyrrolidone conjugate. PMID:26446186

  16. Über die Funktion und Struktur der Tyrosinase aus Streptomyces antibioticus

    OpenAIRE

    Salzbrunn, Kai Uwe

    2007-01-01

    Für die Aufklärung der chemisch anspruchsvollen Monophenolase-Reaktion von Tyrosinasen wurde ein System entwickelt, um das Zielprotein aus dem Bakterium Streptomyces antibioticus in großen Mengen und mit hoher Reinheit zu isolieren. Zudem konnte ein hypothetischer Reaktionsmechanismus für die Monophenolase- und die Diphenolase-Aktivität der Tyrosinase formuliert werden. Die beiden Reaktionen der S. antibioticus-Tyrosinase wurden kinetisch analysiert und auf diesem Weg die Aktivität des Enzyms...

  17. Isolation of an Aldehyde Dehydrogenase Involved in the Oxidation of Fluoroacetaldehyde to Fluoroacetate in Streptomyces cattleya

    Science.gov (United States)

    Murphy, Cormac D.; Moss, Steven J.; O'Hagan, David

    2001-01-01

    Streptomyces cattleya is unusual in that it produces fluoroacetate and 4-fluorothreonine as secondary metabolites. We now report the isolation of an NAD+-dependent fluoroacetaldehyde dehydrogenase from S. cattleya that mediates the oxidation of fluoroacetaldehyde to fluoroacetate. This is the first enzyme to be identified that is directly involved in fluorometabolite biosynthesis. Production of the enzyme begins in late exponential growth and continues into the stationary phase. Measurement of kinetic parameters shows that the enzyme has a high affinity for fluoroacetaldehyde and glycoaldehyde, but not acetaldehyde. PMID:11571203

  18. Utjecaj postupka uzgoja na proizvodnju poligalakturonaze s pomoću novog soja Streptomyces lydicus

    OpenAIRE

    Jacob, Nicemol; Prema, Parukuttyamma

    2006-01-01

    Pokušalo se proizvesti različite pektinolitičke enzime submerznim uzgojem s pomoću aktinomicete Streptomyces lydicus. Određena je aktivnost poligalakturonaze i pektin-liaze u supernatantu, ali je utvrđeno da soj nije uspio proizvesti pektin-esterazu. Istražena je proizvodnja poligalakturonaze submerznim uzgojem, uzgojem u polučvrstoj i na čvrstoj podlozi. Svi su pokusi provedeni u statičnoj kulturi i na tresilici. Uzgoj na statičnoj čvrstoj podlozi dao je najbolje rezultate. Kao čvrsta podlog...

  19. Isolation and characterization of stable mutants of Streptomyces peucetius defective in daunorubicin biosynthesis

    Indian Academy of Sciences (India)

    K. S. Vetrivel; K. Dharmalingam

    2001-04-01

    Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced by Streptomyces peucetius. In this study we report isolation of stable mutants of S. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer strains are distinctively coloured on agar plates. Different mutants showed accumulation of aklaviketone, -rhodomycinone, maggiemycin or 13-dihydrocarminomycin in their culture filtrates. These results indicate that the mutations in these isolates affect steps catalysed by dnrE (mutants SPAK and SPMAG), dnrS (SPFS and SPRHO) and doxA (SPDHC) gene products.

  20. A new diketopiperazine derivative from a deep sea-derived Streptomyces sp. SCSIO 04496.

    Science.gov (United States)

    Luo, Minghe; Tang, Guiling; Ju, Jianhua; Lu, Laichun; Huang, Hongbo

    2016-01-01

    A new diketopiperazine (DKP) derivative, (6R,3Z)-3-benzylidene-6-isobutyl-1-methyl piperazine-2,5-dione (1), as well as five known DKPs 2-6 was isolated from a deep sea-derived Streptomyces sp. SCSIO 04496. The structure of 1 was elucidated using a combination of 1D and 2D NMR, HR-ESI-MS and chiral-phase HPLC techniques. Compounds 1-6 did not show cytotoxic activity at a concentration of 100 μM in bioactivity assay.

  1. A bisamide and four diketopiperazines from a marine-derived Streptomyces sp.

    Science.gov (United States)

    Li, Bin; Chen, Gang; Bai, Jiao; Jing, Yong-Kui; Pei, Yue-Hu

    2011-12-01

    A new bisamide N₁-acetyl-N₇-phenylacetyl cadaverine (1) and a series of diketopiperazines including a new diketopiperazine cyclo(2-hydroxy-Pro-R-Leu) (2), together with a new natural product cyclo(4-hydroxy-S-Pro-S-Trp) (3) and two known leucine-based diketopiperazines cyclo(4-hydroxy-R-Pro-S-Leu) (4) and cyclo (S-Pro-R-Leu) (5), were isolated from ethyl acetate extract of a fermentation broth of a marine-derived Streptomyces sp. Their structures were elucidated by the interpretation of spectroscopic analysis. The antitumor activities of compounds 1-3 against HL-60 cell lines were tested by MTT assay.

  2. Streptomyces sÀdebakteerien kilpailusuhteet ja vaikutus perunaruven taudinaiheuttajiin

    OpenAIRE

    OjanperÀ, Taru

    2008-01-01

    Kasvipatologia TiivistelmÀ: Perunaruven aiheuttajat S. scabies, S. turgidiscabies ja S. aureofaciens aiheuttavat lÀhinnÀ laadullisia tappioita muodostaen perunan mukuloihin rupea. Pahimmillaan taudinaiheuttajat hidastavat perunan taimettumista, lisÀÀvÀt pienten mukuloiden mÀÀrÀÀ sekÀ vÀhentÀvÀt satoa. Viljelytekniset keinot eivÀt ole aina tehokkaita eivÀtkÀ kemialliset keinot ole Suomessa sallittuja. TyössÀ selvitettiin Streptomyces-kantojen omin...

  3. Streptomyces zhihengii sp. nov., isolated from rhizospheric soil of Psammosilene tunicoides.

    Science.gov (United States)

    Huang, Mei-Juan; Fei, Jing-Jing; Salam, Nimaichand; Kim, Chang-Jin; Hozzein, Wael N; Xiao, Min; Huang, Hai-Quan; Li, Wen-Jun

    2016-10-01

    An actinomycete strain, designated YIM T102(T), was isolated from the rhizospheric soil of Psammosilene tunicoides W. C. Wu et C. Y. Wu collected from Lijiang, Yunnan Province, China. The taxonomic position of the new isolate was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YIM T102(T) belongs to the genus Streptomyces. Strain YIM T102(T) was most closely related to Streptomyces eurocidicus NRRL B-1676(T) with a pairwise 16S rRNA gene sequence similarity of 98.9 %. However, DNA-DNA relatedness value between strain YIM T102(T) and S. eurocidicus NBRC 13491(T) was found to be 37.8 ± 1.8 %. The menaquinone composition detected for strain YIM T102(T) was MK-9 (H6) and MK-9 (H8), while the major fatty acids were summed feature 4 (38.0 %), anteiso-C15:0 (13.1 %), iso-C16:0 (10.1 %), summed feature 3 (9.8 %) and C16:0 (9.0 %) and iso-C15:0 (5.2 %). The whole-cell hydrolysates contained galactose, glucose, ribose and mannose, along with LL-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan. The DNA G+C content was 70.7 mol%. Strain YIM T102(T) also exhibited antagonistic activity against Alternaria alternata, Alternaria brassicae and Colletotrichum nicotianae Averna, based on the findings from the comparative analyses of phenotypic and genotypic characteristics; it is proposed that strain YIM T102 represents a novel species of the genus Streptomyces, for which the name Streptomyces zhihengii sp. nov. is proposed. The type strain is YIM T102(T) (=KCTC 39115(T) = DSM 42176(T) = CGMCC 4.7248(T)). PMID:27169711

  4. cvhA Gene of Streptomyces hygroscopicus 10-22 Encodes a Negative Regulator for Mycelia Development

    Institute of Scientific and Technical Information of China (English)

    Heng-An WANG; Lei QIN; Ping LU; Zhi-Xuan PANG; Zi-Xin DENG; Guo-Ping ZHAO

    2006-01-01

    A five-gene cluster cvhABCDE was identified from Streptomyces hygroscopicus 10-22. As the first gene of this cluster, cvhA encoded a putative sensor histidine kinase with a predicted sensor domain consisting of two trans-membrane segments at the N-terminus and a conserved HATPase_c domain at the Cterminus. The C-terminus polypeptide of CvhA expressed in Escherichia coli was purified and shown to be autophosphorylated with [γ-32p]ATP in vitro. The phosphoryl group was acid-labile and basic-stable, which supported histidine as the phosphorylation residue. No obvious difference of mycelia development was observed between the null mutant of cvhA generated by targeted gene replacement and the wild-type parental strain 10-22 grown on solid soya flour medium with 2%-8% glucose or sucrose, but the cvhA mutant could form much more abundant aerial mycelia and spores than the wild-type strain on solid soya flour medium supplemented with 6%-8% mannitol, 6%-8% sorbitol, 4%-6% mannose, or 4%-6% fructose. This phenotype was complemented by the cloned wild-type cvhA gene, and no difference was observed for growth curves of the cvhA mutant and the wild strain in liquid minimal medium with the tested sugars at a concentration of 4%, 6% and 8%. We thus propose that CvhA is likely a sensor histidine kinase and negatively regulates the morphological differentiation in a sugar-dependent manner in S. hygroscopicus 10-22.

  5. A potent fish pathogenic bacterial killer Streptomyces sp. isolated from the soils of east coast region, South India

    Institute of Scientific and Technical Information of China (English)

    Durairaj Thirumurugan; Ramasamy Vijayakumar

    2013-01-01

    Objective: To investigate the potentiality of the marine actinobacteria isolated from marine soil against fish pathogenic bacteria.Methods:east coast region (ECR) of Tamilnadu, South India. Then they were used for the isolation of actinobacteria by using conventional serial dilution technique on starch casein agar medium. The antibacterial activities of the actinobacteria were screened primarily by using cross streak plate method against fish pathogenic bacteria namely Vibrio alginolyticus, Vibrio parahaemolyticus,Vibrio cholera, Aeromonas sp. and Pseudomonas sp. The antimicrobial efficacy of the selected isolates was carried out with various organic solvents, and finally the active compound was subjected to chromatographic techniques including TLC and GC-MS.Results:In the present study, a total of 33 soil samples were collected from the Bay of Bengal, against fish pathogenic bacteria. Out of 21 antibacterial isolates, the isolate ECR77 was selected for further study based on its potential activity against fish pathogenic bacteria. Of the various solvents tested, the ethyl acetate extract had good antibacterial activity against the tested bacterial pathogens. The isolate ECR77 grew well on oat meal agar medium with 2% salt level at 35 °C. GC-MS study found that the presence of bioactive compounds namely tetradecanoic acid,n-hexadecanoic acid and octadecanoic acid. The morphological, physiological, biochemical and cultural characteristics of the potential isolate were supported the identity up to generic level asStreptomyces sp. ECR77. Conclusions: The results obtained from this study concludes that the ECR soils of South India is a hot spot of novel bioactive compound producing marine actinobacteria with great pharmaceutical values. Of the 82 actinobacteria isolated, 21 (26%) isolates were possessed antibacterial activity.

  6. Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia.

    Science.gov (United States)

    Nanthini, Jayaram; Chia, Kim-Hou; Thottathil, Gincy P; Taylor, Todd D; Kondo, Shinji; Najimudin, Nazalan; Baybayan, Primo; Singh, Siddharth; Sudesh, Kumar

    2015-11-20

    Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified.

  7. Draft Genome Sequence of Streptomyces sp. Strain Wigar10, Isolated from a Surface-Sterilized Garlic Bulb

    OpenAIRE

    Klassen, Jonathan L.; Adams, Sandye M; Bramhacharya, Shanti; Giles, Steven S.; Goodwin, Lynne A.; Woyke, Tanja; Currie, Cameron R

    2011-01-01

    Streptomyces sp. strain Wigar10 was isolated from a surface-sterilized garlic bulb (Allium sativum var. Purple Stripe). Its genome encodes several novel secondary metabolite biosynthetic gene clusters and provides a genetic basis for further investigation of this strain's chemical biology and potential for interaction with its garlic host.

  8. Selective strategies for antibiotic fermentation, Part II: Effect of aeration on streptomycin production by Streptomyces griseus JB-19.

    Science.gov (United States)

    Maladkar, N K

    1991-01-01

    The effect of higher aerated fermentation medium which enhanced streptomycin production by Streptomyces griseus JB-19 was found mainly related to the changes in dextrose consumption, inorganic phosphate utilisation and ammonia nitrogen accumulation under optimal and suboptimal supply of soluble vegetative protein.

  9. Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis

    NARCIS (Netherlands)

    Chatterjee, Anushree; Drews, Laurie; Mehra, Sarika; Takano, Eriko; Kaznessis, Yiannis N.; Hu, Wei-Shou; Khodursky, Arkady B.

    2011-01-01

    cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modelin

  10. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7.

    Science.gov (United States)

    Sineli, P E; Tortella, G; Dávila Costa, J S; Benimeli, C S; Cuozzo, S A

    2016-05-01

    The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and β-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and β-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and β-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and β-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers. PMID:27038951

  11. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin

    DEFF Research Database (Denmark)

    Carr, Gavin; Poulsen, Michael; Klassen, Jonathan L.;

    2012-01-01

    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the...

  12. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature.

    OpenAIRE

    Suutari, M; Laakso, S

    1992-01-01

    Streptomyces griseus showed three different modes of changing fatty acids in response to temperature change. In Brevibacterium fermentans, two such responses were found. The responses involved changes in fatty acid branching, unsaturation, or chain length, depending on growth temperature range. Changes in unsaturation of branched-chain acids were characteristic at low growth temperatures.

  13. Genome Sequences of the Oxytetracycline Production Strain Streptomyces rimosus R6-500 and Two Mutants with Chromosomal Rearrangements

    OpenAIRE

    Baranasic, Damir; Zucko, Jurica; Nair, Mridul; Pain, Arnab; Long, Paul F.; Hranueli, Daslav; Cullum, John; Starcevic, Antonio

    2014-01-01

    The genome sequence of Streptomyces rimosus R6-500, an industrially improved strain which produces high titers of the important antibiotic oxytetracycline, is reported, as well as the genome sequences of two derivatives arising due to the genetic instability of the strain.

  14. Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose

    NARCIS (Netherlands)

    de Jong, Wouter; Wosten, Han A. B.; Dijkhuizen, Lubbert; Claessen, Dennis; Wösten, Han A.B.

    2009-01-01

    P>The chaplin proteins ChpA-H enable the filamentous bacterium Streptomyces coelicolor to form reproductive aerial structures by assembling into surface-active amyloid-like fibrils. We here demonstrate that chaplins also mediate attachment of S. coelicolor to surfaces. Attachment coincides with the

  15. Novel extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Streptomyces exfoliatus K10 DSMZ 41693

    DEFF Research Database (Denmark)

    Martinez, Virginia; de Santos, Patricia Gómez; García-Hidalgo, Javier;

    2015-01-01

    Cloning and biochemical characterization of a novel extracellular medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase from Streptomyces exfoliatus K10 DSMZ 41693 are described. The primary structure of the depolymerase (PhaZSex2) includes the lipase consensus sequence (serine-histidin...

  16. Purification and Properties of a Prokaryote Type Glutamine Synthetase from the Bialaphos Producer Streptomyces hygroscopicus SF1293

    NARCIS (Netherlands)

    Kumada, Yoichi; Takano, Eriko; Nagaoka, Kozo

    1990-01-01

    A prokaryote type glutamine synthetase (GS) was purified from a bialaphos (BA)-producing organism, Streptomyces hygroscopicus SF1293 (SF1293). The GS (GS I) consisted of a 55,000 dalton subunit, and its N-terminal amino acid sequence was similar to that of S. coelicolor GS. GS I was highly sensitive

  17. Sesquiterpenes and an intermediate 1alpha, 6beta, 11-eudesmanetriol in the biosynthesis of geosmin from Streptomyces sp.

    Science.gov (United States)

    Yang, Ya-Bin; Yang, Zhi; Yang, Xue-Qiong; Zhang, Yong; Zhao, Li-Xing; Xu, Li-Hua; Ding, Zhong-Tao

    2012-03-01

    One new sesquiterpene was isolated from the fermentation broth of Streptomyces sp. and the structure was elucidated by spectral analysis as caryolane-1, 6beta-diol (1). An intermediate 1alpha, 6beta, 11-eudesmanetriol (2) in the biosynthesis of geosmin was also found in this strain which proved sequence for the reactions, especially bicyclization preceding dealkylation.

  18. New rhodomycin analogs, SS-288A and SS-288B, produced by a Streptomyces violaceus A262 mutant.

    Science.gov (United States)

    Saito, S; Katsuda, Y; Johdo, O; Yoshimoto, A

    1995-01-01

    Two new rhodomycin metabolites, SS-288A and SS-288B, were specifically produced by a blocked mutant obtained from Streptomyces violaceus A262 and were respectively identified as 7,10-di(O-rhodosaminyl-deoxyfucosyl-deoxyfucosyl)-beta -rhodomycinone and -beta-isorhodomycinone. PMID:7765964

  19. Draft Genome Sequence of Insecticidal Streptomyces sp. Strain PCS3-D2, Isolated from Mangrove Soil in Philippines

    OpenAIRE

    Bayot-Custodio, Aileen N.; Alcantara, Edwin P.; Zulaybar, Teofila O.

    2014-01-01

    A draft genome sequence of a Streptomyces sp. isolated from mangrove soil in Cebu, Philippines, is described here. This isolate produced compounds with contact insecticidal activity against important corn pests. The genome contains 7,479,793 bp (in 27 scaffolds), 6,297 predicted genes, and 29 secondary metabolite biosynthetic gene clusters.

  20. Azalomycin F4a 2-ethylpentyl ester, a new macrocyclic lactone, from mangrove actinomycete Streptomyces sp.211726

    Institute of Scientific and Technical Information of China (English)

    Gan Jun Yuan; Kui Hong; Hai Peng Lin; Jia Li

    2010-01-01

    Azalomycin F4a 2-ethylpentyl ester,a new 36-membered macrocyclic lactone antibiotic,was isolated from mangrove actinomycete Streptomyces sp.211726.Its structure was elucidated on the basis of spectroscopic data.The compound showed broad-spectrum antifungal activity and moderate cytotoxicity against human colon tumor cell HCT-116.

  1. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. PMID:27034020

  2. Genome Sequences of the Oxytetracycline Production Strain Streptomyces rimosus R6-500 and Two Mutants with Chromosomal Rearrangements

    KAUST Repository

    Baranasic, Damir

    2014-07-17

    The genome sequence of Streptomyces rimosus R6-500, an industrially improved strain which produces high titers of the important antibiotic oxytetracycline, is reported, as well as the genome sequences of two derivatives arising due to the genetic instability of the strain.

  3. A strategy for seamless cloning of large DNA fragments from Streptomyces.

    Science.gov (United States)

    Huang, Jun; Yu, Zhen; Li, Mei-Hong; Li, Na; Zhou, Jun; Zheng, Yu-Guo

    2015-10-01

    We report a novel method for the seamless cloning of large DNA fragments (SCLF) of up to 44 kb or larger from Streptomyces chromosomal DNA. SCLF is based on homologous recombination in Streptomyces and is easy to perform. The strategy of SCLF is to flank the target sequence in the chromosomal DNA with two identical restriction sites by the insertion of plasmids containing that site at either end of the fragment, which is then isolated by plasmid rescue through the self-ligation of restriction digested genomic DNA. The method involves three steps: (i) placing a certain restriction site (CRS) at the 3'-end of the target sequence by insertion through homologous recombination of a plasmid containing the CRS; (ii) inserting through homologous recombination at the 5'-end of the target sequence a linearized self-suicide vector with the identical CRS; (iii) digesting the genomic DNA with the certain restriction enzyme followed by self-ligation in order to plasmid rescue the target fragment. SCLF can be applied to other Actinomycetales, and further optimizations may reduce the amount of time required to perform this technique. PMID:26458547

  4. Comparison of growth methods and biological activities of brazilian marine Streptomyces

    Directory of Open Access Journals (Sweden)

    A. C. Granato

    2013-03-01

    Full Text Available The present work describes the study of the growth and the cytotoxic and antitumor activities of the extracts of the marine microorganisms Streptomyces acrymicini and Streptomyces cebimarensis, the latter a new strain. Both microorganisms were collected from coastal marine sediments of the north coast of São Paulo state. Growth was performed in a shaker and in a bioreactor using Gym medium and the broths of both microorganisms were extracted with ethyl acetate and n-butanol. Three extracts, two organic and one aqueous, from each microorganism were obtained and tested for cytotoxic and antitumor activity using the SF-295 (Central Nervous System, HCT-8 (Colon cell lines, and the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide method. The growth methods were compared and show that, although the shaker presented reasonable results, the bioreactor represents the best choice for growth of these microorganisms. The biological activity of the different extracts was evaluated and it was demonstrated that the growth methodology may influence the secondary metabolite production and the biological activity.

  5. An in vivo effiacy validation and immune-modulatory potential of Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Sujith Sugathan

    2015-11-01

    Full Text Available Objective: To investigate the in vivo efficacy and immune-modulatory potential of antagonistic strain, Streptomyces sp. MAPS15 isolated from marine sponge in Penaeus monodon (P. monodon. Methods: In this study, culture of Streptomyces sp. was incorporated into a commercial feed. P. monodon was orally administered with MAPS15 diet for a period of 21 days followed by a challenge experiment and survival rate was calculated. In addition, the effect of MAPS15 diet on immunological parameters of the haemolymph of P. monodon was also assessed. Results: The overall results of the study showed that survival performance was prominent in MAPS15 treated group when compared with un-treated control groups. That could pertain to the ability of MAPS15 to produce antibiotic compounds to suppress the growth of invading pathogens and thereby increase the disease resistance potency and survival rate. From the results of the immunological studies, it can be envisaged that the immune responses were generally more pronounced with MAPS15 diet treated group. Conclusions: Based on the overall findings, it could be inferred that the health of P. monodon is improved when they are fed with MAPS15 diet for a period of 21 days.

  6. The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages.

    Science.gov (United States)

    Boccard, F; Smokvina, T; Pernodet, J L; Friedmann, A; Guérineau, M

    1989-03-01

    Streptomyces ambofaciens ATCC23877 and derivatives contain the 11-kb element pSAM2 present in an integrated state or as a free and integrated plasmid. This element, able to integrate site-specifically in the genome of different Streptomyces species, is conjugative and mobilizes chromosomal markers. Besides these plasmid functions, we have shown that the site-specific recombination system of pSAM2 presents strong similarities with that of several temperate phages. The integration event is promoted by a site-specific recombinase of the integrase family. The int gene encoding this integrase is closely linked to the plasmid attachment site (attP). A small open reading frame (ORF) overlaps the int gene and the predicted protein exhibits similarities with Xis proteins involved in phages excision. The integrated copy of pSAM2 in strain ATCC23877 is flanked by att sequences (attL and attR). Another att sequence (attX) is present in this strain and attX and attL are the boundaries of a 42-kb fragment (xSAM1) absent, as well as pSAM2, from S.ambofaciens DSM40697. Sequences partially similar to pSAM2 int gene are found near the chromosomal integration zone in both S.ambofaciens strains. The possible origin of pSAM2, an element carrying plasmid as well as phage features, is discussed.

  7. Terpenoid bioactive compound from Streptomyces rochei (M32): taxonomy, fermentation and biological activities.

    Science.gov (United States)

    Pazhanimurugan, Raasaiyah; Radhakrishnan, Manikkam; Shanmugasundaram, Thangavel; Gopikrishnan, Venugopal; Balagurunathan, Ramasamy

    2016-10-01

    The present study emphasized the production of biologically active terpenoid compound from Streptomyces rochei M32, which was isolated from Western Ghats ecosystem, South India. The presence of resistant genes like mecA, vanA of Staphylococcus aureus and bla SHV, bla TEM of Pseudomonas aeruginosa was confirmed by molecular studies. The isolated compound from Streptomyces rochei M32 inhibited wide range of standard and clinical drug resistant pathogens and enteric pathogens. The rice bran supplemented basal medium influenced the active compound production on 8th day of fermentation and yielded 1875 mg of crude extract from 10 g of rice bran substrate. Purification and characterization of crude ethyl acetate extract was achieved by preparative thin layer chromatography. The active fraction was identified as terpenoid class compound by chemical screening. Based on the results of spectral studies (NMR, LC-MS, FTIR, etc.), the active compound was tentatively identified as 1, 19-bis (3-hydroxyazetidin-1-yl) nonadeca-5, 14-diene-1, 8, 12, 19-tetraone with molecular weight 462.41 g/mol. Minimum inhibitory concentration value ranges between 7.6 and 31.2 µg/mL against test organisms was observed. The cytotoxicity results on cervical cancer (HeLa) cell line showed IC50 value of 2.034 µg/mL. The corresponding compound is not previously reported from any microbial resources. PMID:27562595

  8. Complex intra-operonic dynamics mediated by a small RNA in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Hindra

    Full Text Available Streptomyces are predominantly soil-dwelling bacteria that are best known for their multicellular life cycle and their prodigious metabolic capabilities. They are also renowned for their regulatory capacity and flexibility, with each species encoding >60 sigma factors, a multitude of transcription factors, and an increasing number of small regulatory RNAs. Here, we describe our characterization of a conserved small RNA (sRNA, scr4677. In the model species Streptomyces coelicolor, this sRNA is located in the intergenic region separating SCO4677 (an anti-sigma factor-encoding gene and SCO4676 (a putative regulatory protein-encoding gene, close to the SCO4676 translation start site in an antisense orientation. There appears to be considerable genetic interplay between these different gene products, with wild type expression of scr4677 requiring function of the anti-sigma factor SCO4677, and scr4677 in turn influencing the abundance of SCO4676-associated transcripts. The scr4677-mediated effects were independent of RNase III (a double stranded RNA-specific nuclease, with RNase III having an unexpectedly positive influence on the level of SCO4676-associated transcripts. We have shown that both SCO4676 and SCO4677 affect the production of the blue-pigmented antibiotic actinorhodin under specific growth conditions, and that this activity appears to be independent of scr4677.

  9. Effect of carbohydrates on the production of thaxtomin A by Streptomyces acidiscabies.

    Science.gov (United States)

    Wach, Michael J; Krasnoff, Stuart B; Loria, Rosemary; Gibson, Donna M

    2007-07-01

    Several Streptomyces species cause plant diseases, including S. scabies, S. acidiscabies and S. turgidiscabies, which produce common scab of potato and similar diseases of root crops. These species produce thaxtomins, dipeptide phytotoxins that are responsible for disease symptoms. Thaxtomins are produced in vivo on diseased potato tissue and in vitro in oat-based culture media, but the regulation of thaxtomin biosynthesis is not understood. S. acidiscabies was grown in a variety of media to assess the impact of medium components on thaxtomin A (ThxA) production. ThxA biosynthesis was not correlated with bacterial biomass, nor was it stimulated by alpha-solanine or alpha-chaconine, the two most prevalent potato glycoalkaloids. ThxA production was stimulated by oat bran broth, even after exhaustive extraction, suggesting that specific carbohydrates may influence ThxA biosynthesis. Oat bran contains high levels of xylans and glucans, and both of these carbohydrates, as well as xylans from wheat and tamarind, stimulated ThxA production, but not to the same extent as oat bran. Starches and simple sugars did not induce ThxA production. The data indicate that complex carbohydrates may act as environmental signals to plant pathogenic Streptomyces, allowing production of thaxtomin and enabling bacteria to colonize its host.

  10. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    Science.gov (United States)

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.

  11. Purification of an antifungal endochitinase from a potential biocontrol Agent Streptomyces griseus.

    Science.gov (United States)

    Rabeeth, M; Anitha, A; Srikanth, Geetha

    2011-08-15

    Streptomyces griseus (MTCC 9723) is a chitinolytic bacterium isolated from prawn cultivated pond soil of Peddapuram Village; East Godavari District was studied in detailed. Chitinase (EC 3.2.1.14) was extracted from the culture filtrate of Streptomyces griseus and purified by ammonium sulfate precipitation, DEAE-cellulose ionexchange chromatography, Sephadex G-100 and Sephadex G-200 gel filtration chromatography. The molecular mass of the purified chitinase was estimated to be 34, 32 kDa by SDS gel electrophoresis and confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 6.0 and at 40 degrees C. The enzyme was stable from pH 5-9 and up to 20-50 degrees C. The chitinase exhibited Km and Vmax values of 400 mg and 180 IU mL(-1) for colloidal chitin. Among the metals and inhibitors that were tested, the Hg+, Hg2+ and P-chloromercuribenzoic acid completely inhibited the chitinase activity at 1 mM concentration. The purified chitinase showed high activity on colloidal chitin, chitobiose, and chitooligosaccharide. An in vitro assay proved that the crude chitinase, actively growing cells of S. griseus having antifungal activity against all studied fungal pathogen. This result implies that characteristics of S. griseus producing endochitinase made them suitable for biotechnological purpose such as for degradation of chitin containing waste and it might be a promising biocontrol agent for plant pathogens. PMID:22545353

  12. Production, Partial Purification and Characterization of Protease From Irradiated Streptomyces Spp

    International Nuclear Information System (INIS)

    Production and partial purification of protease by the irradiated Streptomyces spp. was the aim of this study. Streptomyces spp. was allowed to grow in culture broth of 4% shrimp shells for purpose of inducing protease enzymes. Optimal conditions for protease production were 30 degree C, 0.3 kGy, ph 7, 5x104/ml inoculum size and 7 days incubation period. Protease was purified by 80% ammonium sulphate saturation which exhibited 8.7 U/ml enzyme activity. Column chromatography using sephadex G-200 exerted 23.3 U/ml enzyme activity from pooled fraction (13-16). The molecular mass of protease was determined to be 39 kDa by SDS-PAGE. The enzyme was more stable over a wide range of ph 6-8 and temperature up to 40 degree C. The produced protease was activated by Ca, Mn and FeCl2 and completely inhibited by ethylene-diamin tetraacetic acid (EDTA) at concentration of 1000 μg/ml

  13. Characterization of the Antibiotic Compound No. 70 Produced by Streptomyces sp. IMV-70

    Directory of Open Access Journals (Sweden)

    Lyudmila P. Trenozhnikova

    2012-01-01

    Full Text Available We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified as Streptomyces sp. IMV-70. In the process of fermentation, the strain Streptomyces spp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics.

  14. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2015-11-01

    Full Text Available A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3, 2.0 and 1.8 folds higher inhibitory effect against HCT116, HT29 and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic towards colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.

  15. Structure and function of sawB, a gene involved in differentiation of Streptomyces ansochromogenes

    Institute of Scientific and Technical Information of China (English)

    聂丽平; 王韫恂; 贾君永; 田宇清; 谭华荣

    2000-01-01

    A partial DNA library of Streptomyces ansochromogenes 7100 was constructed by using plasmid plJ702 as vector and white mutant W19 as recipient. About 3 000 clones were obtained, two of which gave rise to the grey phenotype as wild type 7100. The plasmids were isolated from two transformants. The result indicated that the 5.2 kb and 5.8 kb DNA fragments were inserted into plJ702. The resulting recombinant plasmids were designated as pNL-1 and pNL-2 respectively. The 1.25 kb Pstl l-Apa l DNA fragment from pNL-1 was recognized as its complementarity to W19 strain. The nucleotide sequence of the 3.0 kb Pst I DNA fragment including 1.25 kb was determined and analyzed. The result indicated that this DNA fragment contains one complete open reading frame (ORF1) which encodes a protein with 295 amino acid residues, and this gene was designated as sawB. The deduced protein has 81% amino acid identities in comparison with that encoded by whiH in Streptomyces coelicolor. The function of sawB gene was studied by usi

  16. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces

    DEFF Research Database (Denmark)

    Barends, Sharief; Zehl, Martin; Bialek, Sylwia;

    2010-01-01

    The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyc...... functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress.......The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyces...... coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A...

  17. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    Directory of Open Access Journals (Sweden)

    Eliton da Silva Vasconcelos

    2013-12-01

    Full Text Available Clavulanic acid (CA is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064. The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  18. Role of σ-factor (orf21) in clavulanic acid production in Streptomyces clavuligerus NRRL3585.

    Science.gov (United States)

    Jnawali, Hum Nath; Liou, Kwangkyoung; Sohng, Jae Kyung

    2011-07-20

    A putative sigma factor gene, orf21, was disrupted or overexpressed in the wild-type clavulanic acid (CA) producer Streptomyces clavuligerus NRRL3585 and characterized. An orf21 mutant (Streptomyces clavuligerus HN14) of S. clavuligerus was obtained by insertional inactivation via double-crossover. Although there was little reduction of sporulation in the mutant, the growth pattern was similar between mutant and wild-type. The production was reduced by 10-15% in S. clavuligerus HN14 compared to that in wild-type. Overexpression of orf21 in wild-type cells caused hyperproduction of spores on solid medium and increased clavulanic acid production by 1.43-fold. The overexpression of orf21 in wild-type S. clavuligerus stimulated the expression of the early clavulanic acid genes, ceas2 and cas2, and the regulatory gene, ccaR, as demonstrated by RT-PCR. The elevation of the ceas2, cas2 and ccaR transcripts was consistent with the enhanced production of clavulanic acid.

  19. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064.

    Science.gov (United States)

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-12-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  20. Antagonistic properties of seagrass associated Streptomyces sp. RAUACT-1:A source for anthraquinone rich compound

    Institute of Scientific and Technical Information of China (English)

    S Ravikumar; M Gnanadesigan; A Saravanan; N Monisha; V Brindha; S Muthumari

    2012-01-01

    Objective:To identify the antibacterial potential of seagrass (Syringodium isoetifolium) associate microbes against bacterial pathogens. Methods: Eumeration of microbial associates were analyzed with leaf and root samples of Syringodium isoetifolium. MIC and MBC were calculated for bacterial pathogens with microbial associates. Phylogenetic and GC-MS analysis were calculated for Actinomycetes sp. (Act01) which was the most potent. Results: Of the isolated microbial associates phosphatase producing bacterial isolates were identified as maximum [(261.78±35.09) CFU×104/g] counts in root sample. Of the selected microbial isolates Actinomycete sp (Act01) showed broad spectrum of antibacterial activity against antibiotic resistant and fish bacterial pathogens. Phylogenetic analysis of Act01 showed maximum identities (99%) with the Streptomyces sp. (GU5500072). The 16s rDNA secondary structure of Act01 showed the free energy values as-366.3 kkal/mol. The GC-MS analysis Act01 showed maximum retention value with 23.742 RT and the corresponding chemical class was identified as 1, 4-dihydroxy-2-(3-hydroxybutyl)-9, 10-anthraquinone 9, 10-anthrac. Conclusions:In conclusion, Streptomyces sp. (GU045544.1) from Syringodium isoetifolium could be used as potential antibacterial agent.

  1. In vitro Antimicrobial Activity of Extracts From Marine Streptomyces Isolated From Mangrove Sediments of Tanzania

    Directory of Open Access Journals (Sweden)

    Eva Mathias Sosovele

    2012-04-01

    Full Text Available This study was undertaken to isolate Actinomycetes from mangrove sediments of Tanzania and evaluate their potential for production of bioactive metabolites. Starch cacein agar medium was used to isolate the actinomycetes. Extraction of Actinomycetes using ethyl acetate (1:1, afforded dry extracts. The extracts were tested for antimicrobial activity and brine shrimp toxicity test. A total of three isolates (ACTN 1, ACTN 2 and ACTN 3 were obtained by using culture medium selective for Actinomycetes. Actinomycetes specific primers; S-C-Act-235-S-20 and S-C-Act-878-A-19 were used to identify two isolates as Streptomyces sp and one as actinomycetes sp. The strongest activity against bacterium (Bacillus subtillis and fungus (Candida albicans was exhibited by crude extracts of Streptomyces sp (ACTN 2 and ACTN 3. Crude extracts of all three isolates exhibited non- cytotoxic activity against brine shrimp larvae with LC50 values ranging from 250 - 446 μg/ml respectively. These results provide evidence that the mangrove sediments streptomycetes could be promising sources for antimicrobial bioactive agents.

  2. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-03-01

    Full Text Available Fusarium head blight (FHB caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

  3. Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector.

    Science.gov (United States)

    Van Mellaert, L; Mei, L; Lammertyn, E; Schacht, S; Anné, J

    1998-12-01

    The temperate bacteriophage VWB integrates into the chromosome of Streptomyces venezuelae ETH14630 via site-specific integration. Following recombination of the VWB attP region with the chromosomal attB sequence, the host-phage junctions attL and attR are formed. Nucleotide sequence analysis of attP, attB, attL and attR revealed a 45 bp common core sequence. In attB this 45 bp sequence consists of the 3' end of a putative tRNA Arg(AGG) gene with a 3'-terminal CCA sequence which is typical for prokaryotic tRNAs. Phage DNA integration restores the putative tRNA Arg(AGG) gene in attL. However, following recombination the CCA sequence is missing as is the case for most Streptomyces tRNA genes described so far. Adjacent to VWB attP, an ORF encoding a 427 aa protein was detected. The C-terminal region of this protein shows high similarity to the conserved C-terminal domain of site-specific recombinases belonging to the integrase family. To prove the functionality of this putative integrase gene (int), an integrative vector pKT02 was constructed. This vector consists of a 2.3 kb HindIII-SphI restriction fragment of VWB DNA containing attP and int cloned in a non-replicative Escherichia coli vector carrying a thiostrepton-resistance (tsr) gene. Integration of pKT02 was obtained after transformation of Streptomyces venezuelae ETH14630 and Streptomyces lividans TK24 protoplasts. This vector will thus be useful for a number of additional Streptomyces species in which a suitable tRNA gene can be functional as integration site.

  4. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Science.gov (United States)

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  5. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Science.gov (United States)

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.

  6. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Directory of Open Access Journals (Sweden)

    Adam J Book

    2016-06-01

    Full Text Available The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.

  7. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

    Directory of Open Access Journals (Sweden)

    Barke Jörg

    2010-08-01

    Full Text Available Abstract Background Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive. Results In order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus. Conclusions Our results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.

  8. Continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus: Kinetics of adipoyl-7-aminodeacetoxycephalosporanic acid and byproduct formations

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bruheim, P.; Nielsen, M.L.;

    2003-01-01

    The production kinetics of a transformed strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was investigated in chemostat cultivations. The recombinant strain produces adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) as the major product; howeve...

  9. Quantitative proteome analysis of Streptomyces coelicolor Nonsporulating liquid cultures demonstrates a complex differentiation process comparable to that occurring in sporulating solid cultures

    DEFF Research Database (Denmark)

    Manteca, Angel; Jung, Hye R; Schwämmle, Veit;

    2010-01-01

    involved in primary metabolism (ribosome, Krebs cycle, and energy production) were detected in greater abundance in MI. The most remarkable protein abundance differences between MII from solid and liquid cultures were associated with the final stages of hyphae compartmentalization and spore formation.......Streptomyces species produce many clinically important secondary metabolites and present a complex developmental cycle that includes programmed cell death (PCD) phenomena and sporulation. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains...

  10. Degradation of Textile Dye Reactive Navy – Blue Rx (Reactive blue–59) by an Isolated Actinomycete Streptomyces krainskii SUK – 5

    OpenAIRE

    Mane, U. V.; Gurav, P. N.; Deshmukh, A.M.; Govindwar, S. P.

    2008-01-01

    The isolated Actinomycete, Streptomyces krainskii, SUK -5 was found to decolorize and degrade textile dye Reactive blue–59.This azo dye was decolorized and degraded completely by Streptomyces krainskii SUK–5 at 24 h in shaking condition in the nutrient medium at pH 8. Induction in the activity of Lignin Peroxidase,and NADH-DCIP Reductase and MR reductase represents their role in degradation .The biodegradation was monitored by TLC, UV vis spectroscopy, FTIR. and GCMS analysis. Microbial and p...

  11. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA

    DEFF Research Database (Denmark)

    Liu, M; Kirpekar, F; Van Wezel, G P;

    2000-01-01

    tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two......, indicating that TlrB is the first member to be described in a new subclass of rRNA methyltransferases that are implicated in macrolide drug resistance....

  12. Catabolic fate of Streptomyces viridosporus T7A-Produced, acid precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Degradation of ground and hot-water-extracted corn stover (Zea mays) lignocellulose by Streptomyces viridosporus T7A generates a water-soluble lignin degradation intermediate termed acid-precipitable polymeric lignin (APPL). The further catabolism of T7A-APPL by S. viridosporus T7A, S. badius 252, and S. setonii75Vi2 was followed for 3 weeks. APPL catabolism by Phanerochaete chrysosporium was followed in stationary cultures in a low-nitrogen medium containing 1% (wt/vol) glucose and 0.05% (wt/vol) T7A-APPL. Metabolism of the APPL was followed by turbidometric assay (600 nm) and by direct measurement of APPL recoverable from the medium. Accumulation and disappearance of soluble low-molecular-weight products of APPL catabolism were followed by gas-liquid chromatography and by high-pressure liquid chromatography, utilizing a diode array detector. Mineralization of a [14C-lignin]APPL was also followed. The percent 14C recovered as 14CO2, 14C-APPL, 14C-labeled water-soluble products, and cell mass-associated radioactivity, were determined for each microorganism after 1 and 3 weeks of incubation in bubbler tube cultures at 370C. P. chrysosporium evolved the most 14CO2, and S. viridosporus gave the greatest decrease in recoverable 14C-APPL. The results show that S. badius was not able to significantly degrade the APPL, while the other microorganisms demonstrated various APPL-degrading abilities

  13. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1.

    Science.gov (United States)

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Liang, Jinfeng; Li, Sha; Feng, Xiaohai

    2014-07-01

    Poly(ε-L-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP) co-production by Streptomyces albulus PD-1 from cane molasses and hydrolysate of strepyomyces cells (HSC) was investigated for the first time in this study. The optimal initial total sugar concentration of the cane molasses pretreated with sulfuric acid was determined to be 20 g L(-1), and HSC could substitute for yeast extract for ε-PL and PDAP co-production. When fed-batch fermentation was performed in 1t fermentor with pretreated cane molasses and HSC, 20.6 ± 0.5 g L(-1) of ε-PL and 5.2 ± 0.6 g L(-1) of PDAP were obtained. The amount of strepyomyces cells obtained in one fed-batch fermentation is sufficient to prepare the HSC to satisfy the demand of subsequent fermentations, thus the self-cycling of organic nitrogen source becomes available. These results suggest that the low-cost cane molasses and HSC can be used for the economical production of ε-PL and PDAP by S. albulus PD-1. PMID:24861999

  14. N-methylphenylalanyl-dehydrobutyrine diketopiperazine, an A-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439.

    Science.gov (United States)

    Matselyukh, Bohdan; Mohammadipanah, Fatemeh; Laatsch, Hartmut; Rohr, Jürgen; Efremenkova, Olga; Khilya, Volodymyr

    2015-01-01

    The cell-free extracts of a landomycin E-producing strain, Streptomyces globisporus 1912-2, were shown to contain a low-molecular-weight compound that, like A-factor, restored the landomycin E and streptomycin biosynthesis and sporulation of the defective mutants S. globisporus 1912-B2 and S. griseus 1439, respectively. The compound was purified by thin layer chromatography and HPLC. It had an absorption maximum at λmax=245 nm and a molecular mass of m/z 244. On the basis of NMR spectroscopy ((1)H, (13)C, HSQC, HMBC, COSY and NOE) the chemical structure of the compound was elucidated as 6-benzyl-3-eth-(Z)-ylidene-1-methyl-piperazine-2,6-dione ((L)-N-methylphenylalanyl-dehydrobutyrine diketopiperazine (MDD)). The sequences of arpA genes in S. globisporus 1912-2 and S. griseus NBRC 13350 are highly conserved. An explanation for the observed biological activity of MDD was proposed.

  15. Induction of an altered metabolite profile in streptomyces avermitilis in coculture with pseudomonas fluorescens; Induktion von veraenderten Metabolitenprofilen in Streptomyceten durch Umweltfaktoren. Kokultivierung von Streptomyces avermitilis und Pseudomonas fluorescens und von Streptomyces coelicolor unter Schwermetallionenstress

    Energy Technology Data Exchange (ETDEWEB)

    Behrend, Anne

    2010-10-04

    The cultivation with non kind microorganisms induces the production of antibacterial secondary metabolites in microbes. In S. avermitilis such reaction could be monitored by analyzing the frequently observed guttation droplets, which might serve as reservoir for secondary metabolites in streptomycetes and fungi. Analyses showed that S. avermitilis formed guttation droplets mainly contained sucrose. S. avermitilis produced the sucrose from the nutrients of the medium. As reaction coculture with P. fluorescens the reduction of available sucrose amount was detected. This suggests that the sucrose could serve as energy storage, which is mobilized under the competitive pressure in the mixed culture. As well as non kind microorganisms have certain metal ions a stimulating effect on the secondary metabolism of streptomycetes. Therefore, the effects of cobalt ion stress Streptomyces coelicolor were characterized systematically. Relatively high concentration of cobalt ion in the medium induced the differentiation of a red and a blue colored phenotype of S. coelicolor. GC-MS analysis indicates that the two pigmented phenotypes produce a volatile profile different from the wild type. The volatile emission of S. coelicolor was characterized by the reduction of terpene release under cobalt ion stress. Specifically the red phenotype produced 2-tridecanone and undecylpyrrole, whereas the blue phenotype intensified its isozizaene emission. The formation of undecylprodigiosin as well as butylcycloheptylprodigiosin in the red colonies, and {gamma}-actinorhodin, in the blue colonies was detected. These polyketides considerably contributed to pigmentation of the colored colonies. The gene expression of the colored phenotypes under cobalt ion stress was differentially regulated compared to the wild type. It can be concluded, that the development of an altered metabolite profile in S. coelicolor under cobalt ion stress is based on characteristic patterns in gene expression.

  16. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp.

    Indian Academy of Sciences (India)

    V K Nigam; A K Khandelwal; R K Gothwal; M K Mohan; B Choudhury; A S Vidyarthi; P Ghosh

    2009-03-01

    The biotransformation of acrylonitrile was investigated using thermophilic nitrilase produced from a new isolate Streptomyces sp. MTCC 7546 in both the free and immobilized state. Under optimal conditions, the enzyme converts nitriles to acids without the formation of amides. The whole cells of the isolate were immobilized in agar-agar and the beads so formed were evaluated for 25 cycles at 50°C. The enzyme showed a little loss of activity during reuse. Seventy-one per cent of 0.5 M acrylonitrile was converted to acid at 6 h of incubation at a very low density of immobilized cells, while 100% conversion was observed at 3 h by free cells.

  17. Optimization of Inulinase Production from Garlic by Streptomyces sp. in Solid State Fermentation Using Statistical Designs

    Directory of Open Access Journals (Sweden)

    M. Dilipkumar

    2011-01-01

    Full Text Available Plackett-Burman design was employed for screening 18 nutrient components for the production of inulinase using Garlic as substrate by Streptomyces sp. in solid-state fermentation (SSF. From the experiments, 4 nutrients, namely, NH4NO3, MnSO4⋅7H2O, Soya bean cake, and K2HPO4 were found to be most significant nutrient components. Hence, these 4 components are selected. The selected components were optimized using response surface methodology (RSM. The optimum conditions are NH4NO3—6.63 mg/gds, MnSO4⋅7H2O—26.16 mg/gds, Soya bean cake—60.6 mg/gds, and K2HPO4—5.24 mg/gds. Under these conditions, the production of inulinase was found to be 76 U/gds.

  18. Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI.

    Science.gov (United States)

    Chater, K F; Wilde, L C

    1976-11-01

    The bacteriophage Pa16, isolated from soil on Streptomyces albus G, was restricted when transferred from an alternative host back to S. albus G. Extracted unmodified Pa16 deoxyribonucleic acid was cleaved at a single site by a cell-free extract of S. albus G. Fractions cleaving Pal6 deoxyribonucleic acid contained the endonuclease SalI first described by J. Arrand, P. Myers, and R. J. Roberts (unpublished data). A mutant of S. albus G was isolated which was defective in both restriction and modification of Pal6. This mutant lacked SalI activity. It is concluded that SalI is the agent of restriction of Pal6 by S. albus G.

  19. Phase variation in the phage growth limitation system of Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Sumby, Paul; Smith, Margaret C M

    2003-08-01

    The phase-variable phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2) is an unusual bacteriophage resistance mechanism that confers protection against the temperate phage phiC31 and homoimmune relatives. Pgl is subject to phase variation, and data presented here show that this is at least partially due to expansion and contraction of a polyguanine tract present within the putative adenine-specific DNA methyltransferase gene, pglX. Furthermore, the pglX paralogue SC6G9.02, here renamed pglS, was shown to be able to interfere with the Pgl phenotype, suggesting that PglS could provide an alternative activity to that conferred by PglX.

  20. The effect of rifampicin on the development of the Streptomyces bacteriophage phi C31.

    Science.gov (United States)

    Rodríguez, A; Hardisson, C; Suárez, J E

    1988-02-01

    The production of phi C31 progeny virus was inhibited by rifampicin when it was added at any time before 20 minutes after induction of the thermoinducible lysogen Streptomyces coelicolor 01. The inhibition was gradually lost as the antibiotic was being added later on until the end of the latent period, which lasts about 45 minutes. This effect was not due to resistance of transcription to rifampicin but to accumulation of intracellular virions from around 20 minutes postinduction. When a rifampicin-resistant lysogen was induced in the presence of the antibiotic, no inhibition of RNA synthesis was detected, although a smaller population of progeny than in control cultures without rifampicin was obtained. Two possible explanations of this fact are discussed.

  1. Complete genome sequence of Streptomyces globisporus C-1027, the producer of an enediyne antibiotic lidamycin.

    Science.gov (United States)

    Li, Xingxing; Lei, Xuan; Zhang, Cong; Jiang, Zhibo; Shi, Yuanyuan; Wang, Songmei; Wang, Lifei; Hong, Bin

    2016-03-20

    Streptomyces globisporus C-1027 produces a nine-membered enediyne antitumor antibiotic lidamycin. Here we report the complete genome sequence of S. globisporus C-1027, which consists of a 7,608,611bp linear chromosome, a 167,754bp linear plasmid SGLP1 and a 7,234bp circular plasmid pSGL1. The biosynthetic gene cluster for lidamycin was located in the linear plasmid SGLP1. Genome analysis also revealed a number of genes related to biosynthesis of diverse secondary metabolites. The genome sequence of C-1027 will enable us to disclose biosynthetic pathways of these secondary metabolites and discover new natural products with potential applications notably in human health. PMID:26853480

  2. Three new 2,5-diketopiperazines from the fish intestinal Streptomyces sp. MNU FJ-36.

    Science.gov (United States)

    Ou, Yi-Xin; Huang, Jia-Fu; Li, Xiu-Min; Kang, Qian-Jin; Pan, Yu-Tian

    2016-08-01

    The gut actinobacteria of marine-inhabited fish is one of the most important reservoirs of novel natural products. Currently, the Streptomyces sp. MNU FJ-36 was isolated from the intestinal fabric of Katsuwonus sp. and determined by 16S rRNA analysis. From the cultures of the S. sp. MNU FJ-36, three new 2,5-diketopiperazines (2,5-DKPs) were discovered and identified as 3-(3-hydroxy-4-methoxybenzyl)-6-isobutyl-2,5-diketopiperazine (1), 3-(1,3-benzodioxol-5-ylmethyl)-6-isobutyl-2,5-diketopiperazine (2) and 3-(1,3-benzodioxol-5-ylmethyl)-6-isopropyl-2,5-diketopiperazine (3). Their structures were elucidated on the basis of spectroscopic data analysis. All the compounds were also evaluated for their inhibitory activity against P388, A-549 and HCT-116 cell lines with the MTT assay. PMID:26828674

  3. New Azalomycin F Analogs from Mangrove Streptomyces sp. 211726 with Activity against Microbes and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haipeng Lin

    2013-03-01

    Full Text Available Seven new azalomycin F analogs (1–7 were isolated from the broth of mangrove Streptomyces sp. 211726, and respectively identified as 25-malonyl demalonylazalomycin F5a monoester (1, 23-valine demalonylazalomycin F5a ester (2, 23-(6-methylheptanoic acid demalonylazalomycins F3a ester (3, F4a ester (4 and F5a ester (5, 23-(9-methyldecanoic acid demalonylazalomycin F4a ester (6 and 23-(10-methylundecanoic acid demalony lazalomycin F4a ester (7. Their structures were established by their spectroscopic data and by comparing with those of azalomycins F3a, F4a and F5a. Biological assays exhibited that 1–7 showed broad-spectrum antimicrobial and anti HCT-116 activities.

  4. Improvement of Daptomycin Production in Streptomyces roseosporus through the Acquisition of Pleuromutilin Resistance

    Directory of Open Access Journals (Sweden)

    Linli Li

    2013-01-01

    Full Text Available Daptomycin, a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, displays potent activity against a variety of gram-positive pathogens. There is a demand for generating high-producing strains for industrial production of this valuable antibiotic. Ribosome engineering is a powerful strategy to enhance the yield of secondary metabolites. In this study, the effect of a diterpenoid antibiotic pleuromutilin resistance mutation on daptomycin production was assessed. Spontaneous pleuromutilin-resistant derivatives of S. roseosporus were isolated. Sequencing of rplC locus (encoding the ribosomal protein L3 showed a point mutation at nt 455, resulting in the substitution of glycine with valine. G152V mutants showed increased production of daptomycin by approximately 30% in comparison with the wild-type strain. Its effect on daptomycin production was due to enhanced gene transcription of the daptomycin biosynthetic genes. In conclusion, pleuromutilin could be used as a novel ribosome engineering agent to improve the production of desired secondary metabolites.

  5. Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis

    International Nuclear Information System (INIS)

    For the first time in Georgia a novel actinomycete strain Streptomyces glaucus 71 MD isolated from a soy rhizosphere has been used for microbial synthesis of silver nanoparticles. The Transmission Electron Microscopy (TEM) images revealed that most of the particles produced by these microorganisms from AgNO3 are spherical-like in shape with an average size of 13 nm. The Scanning Electron Microscope (SEM) allowed one to observe extracellular synthesis of nanoparticles, which has many advantages from the point of view of applications. Production of silver nanoparticles proceeds extracellularly with the participation of another microorganism, blue-green microalgae Spirulina platensis. It is shown that the production rate of the nanoparticles depends not only on the initial concentration of AgNO3 but also varies with time in a no monotonic way

  6. Identification and characterization of antifungal active substances of Streptomyces hygroscopicus BS-112.

    Science.gov (United States)

    Zhang, Nan; Song, Zhen; Xie, Yuhua; Cui, Ping; Jiang, Hongxia; Yang, Tao; Ju, Ruicheng; Zhao, Yuhua; Li, Jinyu; Liu, Xunli

    2013-08-01

    An antifungal Actinomyces BS-112 strain, with Aspergillus flavus as the target pathogen, was isolated from soil in the forest land of Mountain Tai. This strain showed a strong antagonistic activity against various mold fungi in food and feed. Strain BS-112 was identified as Streptomyces hygroscopicus based on its morphologic, cultural, physiological, biochemical characteristics, cell wall components and 16S rDNA sequence. Four active components were separated and purified from strain BS-112. These four antifungal components were identified as tetrins A and B and tetramycins A and B using spectroscopic analysis including mass spectrometry and nuclear magnetic resonance spectroscopy. Tetrins A and B and tetramycins A and B strongly inhibited the growth of A. flavus, A. alutaceus, A. niger, and A. fumigatus in vitro. PMID:23468248

  7. Characterization and Purification a Specific Xylanase Showing Arabinofuranosidase Activity from Streptomyces spp. 234P-16

    Directory of Open Access Journals (Sweden)

    ALINA AKHDIYA

    2009-07-01

    Full Text Available Streptomyces spp 234P-16 producing xylanase was isolated from soil sample from Padang, West Sumatra, Indonesia. Crude enzyme (produced by centrifuging the culture at 14000 rpm for about 5 minutes and purified xylanase have an optimum condition at pH 5 and 90oC. Crude xylanase have half life time of 4 hours, whereas purified xylanase have half life time of 2 ½ hours at 90oC. The molecular mass of purified xylanase was determined to be 42.4 kDa. The Arabinofuranosidase have a Km and Vmax value of 1,98 mg/mL and 523 µmol/minute/mg, respectively.

  8. Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    E. R. Gouveia

    2000-12-01

    Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.

  9. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster.

    Science.gov (United States)

    Singh, Bijay; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-10-01

    Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.

  10. Genome‐wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus

    Science.gov (United States)

    Medema, Marnix H.; Alam, Mohammad T.; Heijne, Wilbert H. M.; van den Berg, Marco A.; Müller, Ulrike; Trefzer, Axel; Bovenberg, Roel A. L.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Summary To increase production of the important pharmaceutical compound clavulanic acid, a β‐lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome‐wide gene expression of an industrial S. clavuligerus strain, obtained through iterative mutagenesis, with that of the wild‐type strain. Intriguingly, we found that the majority of the changes contributed not to a complex rewiring of primary metabolism but consisted of a simple upregulation of various antibiotic biosynthesis gene clusters. A few additional transcriptional changes in primary metabolism at key points seem to divert metabolic fluxes to the biosynthetic precursors for clavulanic acid. In general, the observed changes largely coincide with genes that have been targeted by rational engineering in recent years, yet the presence of a number of previously unexplored genes clearly demonstrates that functional genomic analysis can provide new leads for strain improvement in biotechnology. PMID:21342474

  11. Phenomenological model of the clavulanic acid production process utilizing Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    A. Baptista-Neto

    2000-12-01

    Full Text Available The kinetics of clavulanic acid production process by Streptomyces clavuligerus NRRL 3585 was studied. Experiments were carried out in a 4 liters bioreactor, utilizing 2 complex media containing glycerol as the carbon and energy source, and peptone or Samprosoy 90NB (soybean protein as nitrogen source. Temperature was kept at 28°C and the dissolved oxygen was controlled automatically at 40 % saturation value. Samples were withdrawn for determination of cell mass (only peptone medium, glycerol and product concentrations. Gas analyzers allowed on line determination of CO2 and O2 contents in the exit gas. With Samprosoy, cell mass was evaluated by determining glycerol consumption and considering the cell yield, Y X/S, as being the same for both cases. Oxygen uptake and CO2 production rates were strongly related to growth and substrate consumption, allowing determination of stoichiometric constants in relation to growth, substrate, oxygen, product and carbon dioxide.

  12. Kinetic properties of Streptomyces canarius L- Glutaminase and its anticancer efficiency

    OpenAIRE

    Reda, Fifi M.

    2015-01-01

    Abstract L-glutaminase was produced by Streptomyces canarius FR (KC460654) with an apparent molecular mass of 44 kDa. It has 17.9 purification fold with a final specific activity 132.2 U/mg proteins and 28% yield recovery. The purified L-glutaminase showed a maximal activity against L-glutamine when incubated at pH 8.0 at 40 °C for 30 min. It maintained its stability at wide range of pH from 5.0 11.0 and thermal stable up to 60 °C with Tm value 57.5 °C. It has high affinity and catalytic acti...

  13. Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus.

    Science.gov (United States)

    Medema, Marnix H; Alam, Mohammad T; Heijne, Wilbert H M; van den Berg, Marco A; Müller, Ulrike; Trefzer, Axel; Bovenberg, Roel A L; Breitling, Rainer; Takano, Eriko

    2011-03-01

    To increase production of the important pharmaceutical compound clavulanic acid, a β-lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome-wide gene expression of an industrial S. clavuligerus strain, obtained through iterative mutagenesis, with that of the wild-type strain. Intriguingly, we found that the majority of the changes contributed not to a complex rewiring of primary metabolism but consisted of a simple upregulation of various antibiotic biosynthesis gene clusters. A few additional transcriptional changes in primary metabolism at key points seem to divert metabolic fluxes to the biosynthetic precursors for clavulanic acid. In general, the observed changes largely coincide with genes that have been targeted by rational engineering in recent years, yet the presence of a number of previously unexplored genes clearly demonstrates that functional genomic analysis can provide new leads for strain improvement in biotechnology.

  14. Extracellular methionine amino peptidase (MAP production by Streptomyces gedanensis in solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Raji Rahulan

    2014-04-01

    Full Text Available A bioprocess was developed for extracellular MAP production from Streptomyces gedanensis by solid-state fermentation. Response surface methodology of Box Behken Design was performed to evaluate the interaction effects of most significant variables {inoculum size, (NH42SO4 concentration, MgSO4.7H2O and tryptone on MAP production after the single parameter optimization and it resulted a maximum MAP production of 55.26 IU/g PUF after 120 h of fermentation. The concentrated crude MAP displayed a pH and temperature optimum of 8.5 and 50°C. By analyzing the thermal stability, the MAP was found to be stable in a temperature range of 50 to 55°C but lost about 50% of its activity at 65°C after 30 min. This is a first report of this kind of study for MAP.

  15. Crystal structure and site-directed mutagenesis of a nitroalkane oxidase from Streptomyces ansochromogenes.

    Science.gov (United States)

    Li, Yanhua; Gao, Zengqiang; Hou, Haifeng; Li, Lei; Zhang, Jihui; Yang, Haihua; Dong, Yuhui; Tan, Huarong

    2011-02-18

    Nitroalkane oxidase (NAO) catalyzes neutral nitroalkanes to their corresponding aldehydes or ketones, hydrogen peroxide and nitrite. The crystal structure of NAO from Streptomyces ansochromogenes was determined; it consists of two domains, a TIM barrel domain bound to FMN and C-terminal domain with a novel folding pattern. Site-directed mutagenesis of His179, which is spatially adjacent to FMN, resulted in the loss of enzyme activity, demonstrating that this amino acid residue is important for catalysis. The crystal structure of mutant H179D-nitroethane was also analyzed. Interestingly, Sa-NAO shows the typical function as nitroalkane oxidase but its structure is similar to that of 2-nitropropane dioxygenase. Overall, these results suggest that Sa-NAO is a novel nitroalkane oxidase with TIM barrel structure. PMID:21147069

  16. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  17. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2016-04-01

    Full Text Available The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO, from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g. olive oil, corn oil could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.. Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  18. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    Science.gov (United States)

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  19. Crystallization and preliminary characterization of a novel haem-binding protein of Streptomyces reticuli

    International Nuclear Information System (INIS)

    The haem-binding protein HbpS from Streptomyces reticuli was crystallized and diffraction data were collected to a maximal resolution of 2.25 Å. Streptomyces reticuli is a soil-growing Gram-positive bacteria that has been shown to secrete a novel haem-binding protein known as HbpS. Sequence analysis reveals that homologues of HbpS are found in a wide variety of bacteria, including different Actinobacteria and the Gram-negative Vibrio cholera and Klebsiella pneumoniae. The in vivo production of HbpS is greatly increased when S. reticuli is cultured in the presence of the natural antibiotic haemin (Fe3+ oxidized form of haem). Mutational analysis demonstrated that HbpS significantly increases the resistance of S. reticuli to toxic concentrations of haemin. Previous data show that the presence of the newly identified two-component sensor system SenS–SenR also considerably enhances the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting a role in the sensing of redox changes. Specific interaction between HbpS and SenS–SenR, which regulates the expression of the catalase–peroxidase CpeB, as well as HbpS, has been demonstrated in vitro. HbpS has been recombinantly overexpressed, purified and crystallized in space group P213, with a cell edge of 152.5 Å. Diffraction data were recorded to a maximal resolution of 2.25 Å and phases were obtained using the SAD method from crystals briefly soaked in high concentrations of sodium bromide

  20. The Ability of Streptomyces spp. Isolated from Iranian Soil to Solubilize Rock Phosphate

    Directory of Open Access Journals (Sweden)

    Nazila Biglari

    2016-07-01

    Full Text Available Many agricultural soils are deficient in plant available phosphate and hence not able to sustain optimal crop productivity. The problem is due to the ability of many soils to fix phosphate in a wide range of soil pH and ecological conditions. There is a need to search for more environmental friendly alternatives to improve soil fertility and crop production in phosphate deficient soil. The aim of this study was to isolate, screen, and characterize phosphate solubilizing actinomycetes found in different types of soil with varied pH from various sites in Iran. Phosphate solubilizing ability of the actinomycetes was evaluated both on modified Pikovskaya's (PVK agar and into broth media containing Christmas Island Rock Phosphate (CIRP. The abilities of each isolate to solubilize phosphorus was evaluated from day 1 to day 14 after inoculation. Streptomyces spp. were identified morphologically under scanning electron microscope (SEM. About 31% (22/70 isolates of actinomycetes were found to have the ability to solubilize (CIRP. Isolates IA15 and IA31 showed high solubilizing index (SI on agar medium whereas isolates IA61, IA59, IA38, IA35, and IA31 were determined to have high CIRP solubilizing ability in broth medium. Isolates IA11, IA31, IA10, and IA61 had high pH decrease in broth medium after 14 days of inoculation. A gradual decrease in pH was observed over a 14 day period of incubation, suggesting a slow release of phosphate from CIRP. The mechanism of solubilization was related to pH decrease in broth medium. In general, majority of phosphate solubilizing actinomycetes revealed superior ability to solubilize CIRP. Key words: rock phosphate; solubilizing phosphate; Streptomyces spp;

  1. Comparisons between continuous and batch processing to produce clavulanic acid by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    Álvaro Baptista-Neto

    2005-06-01

    Full Text Available The aim of the present work was to compare CA production in continuous culture with and without cell recycling and in batch process by Streptomyces clavuligerus. Continuous cultivations with high cell concentration using cell recycling were performed utilizing a hollow fiber ultrafiltration module to separate cells from the filtrate broth. The continuous cultures without cell recycling and the batch cultivations were performed conventionally. The highest productivity was attained in the continuous cultivation with cell recycling (22.2 mg.L-1.h-1. The highest CA concentration was obtained in the batch process (470 mg.L-1.h-1.O ácido clavulânico (AC é um importante inibidor de beta-lactamases, enzimas que degradampartir do metabolismo secundário do Streptomyces clavuligerus, bactéria filamentosa e estritamente aeróbia. Considerando que a velocidade de produção de metabólitos secundários está ligada à concentração celular, o presente trabalho teve como objetivo comparar a produção de AC nos processos contínuos com e sem reciclo celular e em batelada, realizando cultivos dessa bactéria com alta densidade celular. Para cumprir com o objetivo proposto, foram realizados experimentos em biorreator operando na forma contínua com reciclo utilizando-se um módulo de filtração tangencial de fibra oca para a separação celular. Os processos contínuos sem reciclo e em batelada foram realizados de forma convencional. A produtividade em AC no cultivo contínuo com reciclo celular (22,2 mg.L-1h-1 foi superior aos processos convencionais, apesar de obter-se maior concentração do produto (470 mg.L-1 em batelada.

  2. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  3. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin.

    Science.gov (United States)

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen; Chen, Shawn

    2016-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  4. Lethal effect ofStreptomyces citreofluorescens against larvae of malaria, filaria and dengue vectors

    Institute of Scientific and Technical Information of China (English)

    Gavendra Singh; Soam Prakash

    2012-01-01

    Objective:To investigate lethal effect of culture filtrates ofStreptomyces citreofluorescens (S. citreofluorescens)againstAnopheles stephensi (An. stephensi), Culex quinquefasciatus (Cx. quinquefasciatus), andAedes aegypti (Ae. aegypti) larvae vectors for malaria, filarial and dengue. Methods:The culture filtrates obtained fromS. citreofluorescens2528 was grown inPotato DextroseBroth(PDB), filtrated and used for the bioassay after a growth of15 days.Results:The results demonstrated that theAn. stephensi shows mortalities withLC50,LC90 values of first instar 46.8 μL/mL,79.5 μL/mL, second instar79.0μL/mL,95.6μL/mL, third instar79.0 μL/mL,136.9 μL/mL, and fourth instar122.6 μL/mL,174.5 μL/mL.Whereas,TheCx. quinquefasciatus were found effective on first instar40.0 μL/mL,138.03 μL/mL, second instar80.0 μL/mL,181.97 μL/mL, third instar100.0 μL/mL,309.2 μL/mL, and fourth instar60.0 μL/mL,169.82 μL/mL.The Ae. aegypti were successfully achieved susceptible with higher concentrations in comparisons ofAn. stephensi andCx. quinquefasciatus larvae.These outcomes of the investigations have compared with theChitinase of Streptomyces griseus (S. griseus)C6137 that shows90%-95% mortality.Conclusions:These new findings significantly permitted that the culture filtrates ofS. citreofluorescens can be used as bacterial larvicides.This is an environmentally safe approach to control the vectors of malaria, dengue and filariasis of tropical areas.

  5. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.

    Science.gov (United States)

    Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra

    2010-06-01

    An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces.

  6. Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues.

    Science.gov (United States)

    Chanitnun, Kankiya; Pinphanichakarn, Pairoh

    2012-07-01

    Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K m values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V max values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae. PMID:24031932

  7. The regulatory role of Streptomyces coelicolor TamR in central metabolism.

    Science.gov (United States)

    Huang, Hao; Sivapragasam, Smitha; Grove, Anne

    2015-03-01

    Trans-aconitate methyltransferase regulator (TamR) is a member of the ligand-responsive multiple antibiotic resistance regulator (MarR) family of transcription factors. In Streptomyces coelicolor, TamR regulates transcription of tamR (encoding TamR), tam (encoding trans-aconitate methyltransferase) and sacA (encoding aconitase); up-regulation of these genes promotes metabolic flux through the citric acid cycle. DNA binding by TamR is attenuated and transcriptional derepression is achieved on binding of ligands such as citrate and trans-aconitate to TamR. In the present study, we show that three additional genes are regulated by S. coelicolor TamR. Genes encoding malate synthase (aceB1; SCO6243), malate dehydrogenase (mdh; SCO4827) and isocitrate dehydrogenase (idh; SCO7000) are up-regulated in vivo when citrate and trans-aconitate accumulate, and TamR binds the corresponding gene promoters in vitro, a DNA binding that is attenuated by cognate ligands. Mutations to the TamR binding site attenuate DNA binding in vitro and result in constitutive promoter activity in vivo. The predicted TamR binding sites are highly conserved in the promoters of these genes in Streptomyces species that encode divergent tam-tamR gene pairs, suggesting evolutionary conservation. Like aconitase and trans-aconitate methyltransferase, malate dehydrogenase, isocitrate dehydrogenase and malate synthase are closely related to the citric acid cycle, either catalysing individual reaction steps or, in the case of malate synthase, participating in the glyoxylate cycle to produce malate that enters the citric acid cycle to replenish the intermediate pool. Taken together, our data suggest that TamR plays an important and conserved role in promoting metabolic flux through the citric acid cycle.

  8. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    Science.gov (United States)

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  9. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm.

    Science.gov (United States)

    Rosa, Juliana Pacheco da; Tibúrcio, Samyra Raquel Gonçalves; Marques, Joana Montezano; Seldin, Lucy; Coelho, Rosalie Reed Rodrigues

    2016-01-01

    Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.

  10. Crystallization and preliminary characterization of a novel haem-binding protein of Streptomyces reticuli

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Peijian [EMBL Outstation Hamburg, c/o DESY, Notkestrasse 85, 22607 Hamburg (Germany); Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Groves, Matthew R. [EMBL Outstation Hamburg, c/o DESY, Notkestrasse 85, 22607 Hamburg (Germany); Viale-Bouroncle, Sandra D.; Ortiz de Orué Lucana, Darío, E-mail: ortiz@biologie.uni-osnabrueck.de [Universität Osnabrück, FB Biologie/Chemie, Angewandte Genetik der Mikroorganismen, Barbarastrasse 13, 49069 Osnabrück (Germany); EMBL Outstation Hamburg, c/o DESY, Notkestrasse 85, 22607 Hamburg (Germany)

    2008-05-01

    The haem-binding protein HbpS from Streptomyces reticuli was crystallized and diffraction data were collected to a maximal resolution of 2.25 Å. Streptomyces reticuli is a soil-growing Gram-positive bacteria that has been shown to secrete a novel haem-binding protein known as HbpS. Sequence analysis reveals that homologues of HbpS are found in a wide variety of bacteria, including different Actinobacteria and the Gram-negative Vibrio cholera and Klebsiella pneumoniae. The in vivo production of HbpS is greatly increased when S. reticuli is cultured in the presence of the natural antibiotic haemin (Fe{sup 3+} oxidized form of haem). Mutational analysis demonstrated that HbpS significantly increases the resistance of S. reticuli to toxic concentrations of haemin. Previous data show that the presence of the newly identified two-component sensor system SenS–SenR also considerably enhances the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting a role in the sensing of redox changes. Specific interaction between HbpS and SenS–SenR, which regulates the expression of the catalase–peroxidase CpeB, as well as HbpS, has been demonstrated in vitro. HbpS has been recombinantly overexpressed, purified and crystallized in space group P2{sub 1}3, with a cell edge of 152.5 Å. Diffraction data were recorded to a maximal resolution of 2.25 Å and phases were obtained using the SAD method from crystals briefly soaked in high concentrations of sodium bromide.

  11. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C. K. M.; Mishra, B. N.

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500. PMID:26368924

  12. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: genetic and biochemical evidence for the roles of two glycosyltransferases and a deacetylase.

    Science.gov (United States)

    Fan, Qingzhi; Huang, Fanglu; Leadlay, Peter F; Spencer, Jonathan B

    2008-09-21

    An efficient protocol has been developed for the genetic manipulation of Streptomyces fradiae NCIMB 8233, which produces the 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic neomycin. This has allowed the in vivo analysis of the respective roles of the glycosyltransferases Neo8 and Neo15, and of the deacetylase Neo16 in neomycin biosynthesis. Specific deletion of each of the neo8, neo15 and neo16 genes confirmed that they are all essential for neomycin biosynthesis. The pattern of metabolites produced by feeding putative pathway intermediates to these mutants provided unambiguous support for a scheme in which Neo8 and Neo15, whose three-dimensional structures are predicted to be highly similar, have distinct roles: Neo8 catalyses transfer of N-acetylglucosamine to 2-DOS early in the pathway, while Neo15 catalyses transfer of the same aminosugar to ribostamycin later in the pathway. The in vitro substrate specificity of Neo15, purified from recombinant Escherichia coli, was fully consistent with these findings. The in vitro activity of Neo16, the only deacetylase so far recognised in the neo gene cluster, showed that it is capable of acting in tandem with both Neo8 and Neo15 as previously proposed. However, the deacetylation of N-acetylglucosaminylribostamycin was still observed in a strain deleted of the neo16 gene and fed with suitable pathway precursors, providing evidence for the existence of a second enzyme in S. fradiae with this activity.

  13. [Use of the protoplast fusion and regeneration method for screening antibiotic producers among inactive strains of Streptomyces].

    Science.gov (United States)

    Malanicheva, I A; Koz'mian, L I; Belova, A Iu; Dudnik, Iu V

    1993-06-01

    Intraspecies fusion of protoplasts of two strains of Streptomyces fradiae, i.e native protoplasts of an inactive strain INA 00708 and heat inactivated protoplasts of a neomycin-producing strain ATCC 10745, and regeneration of the protoplasts of the inactive strain INA 00708 resulted in formation of clones producing neomycin and clones synthesizing antibiotics of an unknown nature differing from neomycin. All the active clones were unstable and lost their antibiotic activity in subcultures. Regeneration of the protoplasts of 4 different inactive strains of Streptomyces sp. also resulted in formation of active clones which were unstable and lost their capacity for the antibiotic synthesis after the first subculture. The data in principal indicate to the possible use of protoplast fusion and regeneration in screening of cultures producing new antibiotics among inactive strains of streptomycetes. However, the efficiency of such procedures is low since the experiments are labor-consuming and the resulting active clones are genetically unstable. PMID:8166572

  14. PARTIAL PURIFICATION OF THE ENZYME INVOLVED IN BIOCONVERSION OF ARTEANNUIN B TO ARTEMISNIN FROM A STREPTOMYCES SP.

    Directory of Open Access Journals (Sweden)

    PARCH SREENIVASA RAO

    2006-01-01

    Full Text Available Artemisinin and its derivatives are the most rapidly acting antimalarial drugs effective against falciparum malaria including multidrug resistant infection. An enzyme catalyzing the bioconversion of arteannin-B, a biogenetic precursor of artemisinin to the later is partiallt purified from a soil isolate, Streptomyces sp. Crude cell free extract of a 72 h old culture of Streptomyces sp. on incubation with the precursor arteannuin B had shown bioconversion of 17.64% to artemisinin on molor basis with a specific activity of 0.11 units/mg. Partial pruification of the enzyme by ammonium sulfate precipitation and ion exchange chromatography has resulted in .5.60 fold increase of specific activity with 64.71% of bioconversion

  15. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Science.gov (United States)

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. PMID:23692633

  16. Cloning, sequencing and function of sanB, a gene related to nikkomycin biosynthesis of Streptomyces ansochromogenes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 6.0 kb DNA fragment related to nikkomycin biosynthesis was cloned from nikkomycin- producing Streptomyces ansochromogenes 7100. Sequence analysis showed that the 1.9 kb Tth111Ⅰ fragment, a part of the 6.0 kb DNA fragment, contains one complete ORF designated sanB (GenBank accession No. AF224501), which is composed of 1740 bp encoding a protein consisting of 580 amino acid residues. Its start codon is GTG at 100 bp position and stop codon is TGA at 1840-bp position. Database searching indicated that the deduced protein of sanB is homologous to the histidinol-phosphate aminotransferase in Streptomyces coelicolor with 31% identities and 47% positives. Gene disruption was performed to study the function of sanB. It was found that disruptants of sanB lost the ability to synthesize nikkomycin, which reveals that sanB is a novel gene essential for nikkomycin biosynthesis.

  17. Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution

    Directory of Open Access Journals (Sweden)

    Jayapradha Ramakrishnan

    2011-09-01

    Full Text Available A new Streptomyces sp. IF 5 was isolated from the feather dumped soil and found to have a tremendous keratinase activity. The strain enabled the degradation of the chicken feathers very effectively in 60 h. The 16S rRNA sequence of 1474 bp long was submitted to the National centre for Biotechnological information. The keratinolytic activity in the culture medium was 1181 U/ml. The release and analyses of sulphydryl groups in the culture medium evident the degradation activity by the Streptomyces sp. IF 5. The idea of the present study was to use the degraded chicken feathers as the substrate for the growth and cultivation of microorganisms. We have designed a very economical culture medium that includes the usage of some basal salts alone and degraded chicken feathers (10 g/l. The results of the specific growth rate of the tested microbes confirm the usage of the new designed medium for microbial culturing.

  18. Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution

    Science.gov (United States)

    Ramakrishnan, Jayapradha; Balakrishnan, Hariram; Raja, Selvaraj Thirupathi Kumara; Sundararamakrishnan, Natarajan; Renganathan, Sadagoban; Radha, Venkatesh Nagarajan

    2011-01-01

    A new Streptomyces sp. IF 5 was isolated from the feather dumped soil and found to have a tremendous keratinase activity. The strain enabled the degradation of the chicken feathers very effectively in 60 h. The 16S rRNA sequence of 1474 bp long was submitted to the National centre for Biotechnological information. The keratinolytic activity in the culture medium was 1181 U/ml. The release and analyses of sulphydryl groups in the culture medium evident the degradation activity by the Streptomyces sp. IF 5. The idea of the present study was to use the degraded chicken feathers as the substrate for the growth and cultivation of microorganisms. We have designed a very economical culture medium that includes the usage of some basal salts alone and degraded chicken feathers (10 g/l). The results of the specific growth rate of the tested microbes confirm the usage of the new designed medium for microbial culturing. PMID:24031698

  19. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    OpenAIRE

    Zindel, S.; Kaman, W.E.; Frols, S.; Pfeifer, F; Peters, A.; Hays, J.P.; Fuchsbauer, H.-L.

    2013-01-01

    A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacte...

  20. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus.

    OpenAIRE

    Goszczynski, S; Paszczynski, A; Pasti-Grigsby, M B; Crawford, R L; Crawford, D. L.

    1994-01-01

    Pathways for the degradation of 3,5-dimethyl-4-hydroxy-azobenzene-4'-sulfonic acid (I) and 3-methoxy-4-hydroxyazobenzene-4'-sulfonamide (II) by the manganese peroxidase and ligninase of Phanerochaete chrysosporium and by the peroxidase of Streptomyces chromofuscus have been proposed. Twelve metabolic products were found, and their mechanisms of formation were explained. Preliminary oxidative activation of the dyes resulted in the formation of cationic species, making the molecules vulnerable ...

  1. Bio Prospecting of Marine-derived Streptomyces spectabilis VITJS10 and Exploring its Cytotoxicity Against Human Liver Cancer Cell Lines

    OpenAIRE

    Selvakumar, Jemimah Naine; Chandrasekaran, Subathra Devi; Vaithilingam, Mohanasrinivasan

    2015-01-01

    Background: Recently, numerous pathogens have developed resistance due to the indiscriminate use of commercial therapeutic drugs. Objective: The main aim of the study was to evaluate the bioactive potential of the Streptomyces spectabilis VITJS10 crude extract. Materials and Methods: The S. spectabilis VITJS10 ethyl acetate extract was tested for antibacterial, antioxidant, and cytotoxic properties. Genotypic characterization was done using 16S r-DNA partial gene amplification and sequencing....

  2. Cloning, Characterization and Heterologous Expression of the Indolocarbazole Biosynthetic Gene Cluster from Marine-Derived Streptomyces sanyensis FMA

    OpenAIRE

    Wenli Li; Kui Hong; Weiming Zhu; Jingtao Zhang; Qiu Cui; Yuanyuan Du; Tong Li

    2013-01-01

    The indolocarbazole (ICZ) alkaloids have attracted much attention due to their unique structures and potential therapeutic applications. A series of ICZs were recently isolated and identified from a marine-derived actinomycete strain, Streptomyces sanyensis FMA. To elucidate the biosynthetic machinery associated with ICZs production in S. sanyensis FMA, PCR using degenerate primers was carried out to clone the FAD-dependent monooxygenase gene fragment for ICZ ring formation, which was used as...

  3. The Tat pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies

    OpenAIRE

    JOSHI, MADHUMITA V.; Mann, Stefan G; Antelmann, Haike; Widdick, David; Fyans, Joanna K; Chandra, Govind; Hutchings, Matthew I.; Toth, Ian; Hecker, Michael; Loria, Rosemary; Palmer, Tracy

    2010-01-01

    Abstract Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathw...

  4. SipY Is the Streptomyces lividans Type I Signal Peptidase Exerting a Major Effect on Protein Secretion

    OpenAIRE

    Palacín, Arantxa; Parro, Víctor; Geukens, Nick; Anné, Jozef; Mellado, Rafael P.

    2002-01-01

    Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual s...

  5. Detection of Oxytetracycline Production by Streptomyces rimosus in Soil Microcosms by Combining Whole-Cell Biosensors and Flow Cytometry

    OpenAIRE

    Hansen, Lars Hestbjerg; Ferrari, Belinda; Sørensen, Anders Hay; Veal, Duncan; Sørensen, Søren Johannes

    2001-01-01

    Combining the high specificity of bacterial biosensors and the resolution power of fluorescence-activated cell sorting (FACS) provided qualitative detection of oxytetracycline production by Streptomyces rimosus in soil microcosms. A plasmid containing a transcriptional fusion between the tetR-regulated Ptet promoter from Tn10 and a FACS-optimized gfp gene was constructed. When harbored by Escherichia coli, this plasmid produces large amounts of green fluorescent protein (GFP) in the presence ...

  6. Coenzyme B12 Controls Transcription of the Streptomyces Class Ia Ribonucleotide Reductase nrdABS Operon via a Riboswitch Mechanism†

    OpenAIRE

    Borovok, Ilya; Gorovitz, Batia; Schreiber, Rachel; Aharonowitz, Yair; Cohen, Gerald

    2006-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides and are essential for de novo DNA synthesis and repair. Streptomycetes contain genes coding for two RNRs. The class Ia RNR is oxygen dependent, and the class II RNR is oxygen independent and requires coenzyme B12. Either RNR is sufficient for vegetative growth. We show here that the Streptomyces coelicolor M145 nrdABS genes encoding the class Ia RNR are regulated by coenzyme B12. The 5′-untrans...

  7. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems.

    Science.gov (United States)

    Auffret, Marc; Pilote, Alexandre; Proulx, Emilie; Proulx, Daniel; Vandenberg, Grant; Villemur, Richard

    2011-12-15

    Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events.

  8. Anthracycline metabolites from Streptomyces violaceus A262. III. New anthracycline obelmycins produced by a variant strain SE2-2385.

    Science.gov (United States)

    Johdo, O; Watanabe, Y; Ishikura, T; Yoshimoto, A; Naganawa, H; Sawa, T; Takeuchi, T

    1991-10-01

    New anthracycline antibiotics, designated as obelmycins A, D, E, F and G, were isolated from the culture broth of a variant strain of beta-rhodomycin-producing Streptomyces violaceus A262, identified as beta-isorhodomycinone glycosides and gamma-isorhodomycinone glycosides and assayed for their in vitro cytotoxicities against murine leukemic L1210 cell culture and the antimicrobial activities in comparison with some known anthracyclines. PMID:1955396

  9. Mechanism and regulation of the Two-component FMN-dependent monooxygenase ActVA-ActVB from Streptomyces coelicolor.

    OpenAIRE

    Valton, Julien; Mathevon, Carole; Fontecave, Marc; Nivière, Vincent; Ballou, David P.

    2008-01-01

    International audience The ActVA-ActVB system from Streptomyces coelicolor is a two-component flavin-dependent monooxygenase involved in the antibiotic actinorhodin biosynthesis. ActVB is a NADH:flavin oxidoreductase that provides a reduced FMN to ActVA, the monooxygenase that catalyzes the hydroxylation of dihydrokalafungin, the precursor of actinorhodin. In this work, using stopped-flow spectrophotometry, we investigated the mechanism of hydroxylation of dihydrokalafungin catalyzed by Ac...

  10. Overproduction and identification of butyrolactones SCB1-8 in the antibiotic production superhost Streptomyces M1152.

    Science.gov (United States)

    Sidda, John D; Poon, Vincent; Song, Lijiang; Wang, Weishan; Yang, Keqian; Corre, Christophe

    2016-07-01

    Gamma-butyrolactones (GBLs) are signalling molecules that control antibiotic production in Streptomyces bacteria. The genetically engineered strain S. coelicolor M1152 was found to overproduce GBLs SCB1-3 as well as five novel GBLs named SCB4-8. Incorporation experiments using isotopically-labelled precursors confirmed the chemical structures of SCB1-3 and established those of SCB4-8. PMID:27180870

  11. Magnetic Field Is the Dominant Factor to Induce the Response of Streptomyces avermitilis in Altered Gravity Simulated by Diamagnetic Levitation

    OpenAIRE

    Mei Liu; Hong Gao; Peng Shang; Xianlong Zhou; Elizabeth Ashforth; Ying Zhuo; Difei Chen; Biao Ren; Zhiheng Liu; Lixin Zhang

    2011-01-01

    BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production ...

  12. Quantitative proteomic analysis of Streptomyces coelicolor development demonstrates that onset of secondary metabolism coincides with hyphae differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Sanchez, Jesus; Jung, Hye Ryung;

    2010-01-01

    Streptomyces species produce many clinically important secondary metabolites, including antibiotics and antitumourals. They have a complex developmental cycle that makes this bacterium a multicellular prokaryotic model including programmed cell death (PCD) phenomena. There are two differentiated...... mycelial stages: an early compartmentalized vegetative mycelium (first mycelium, MI), and a multinucleated reproductive mycelium (second mycelium, MII), arising after PCD processes. In the present study, we made a detailed proteomic analysis of the distinct developmental stages of solid confluent...

  13. Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor.

    OpenAIRE

    Zhang, Y. X.; Tang, L.; Hutchinson, C R

    1996-01-01

    A homolog of the mmsA gene of Pseudomonas aeruginosa, which encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is involved in valine catabolism in pseudomonads and mammals, was cloned and sequenced from Streptomyces coelicolor. Of the two open reading frames (ORFs) found, which are convergently transcribed and separated by a 62-nucleotide noncoding region, the deduced amino acid sequence of the msdA ORF (homologous to mmsA) is similar to a variety of prokaryotic and eukaryotic a...

  14. Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998.

    Science.gov (United States)

    Jiang, Lingjuan; Wang, Lu; Zhang, Jihui; Liu, Hao; Hong, Bin; Tan, Huarong; Niu, Guoqing

    2015-01-01

    Antimicrobial agents are urgently needed to tackle the growing threat of antibiotic-resistant pathogens. An important source of new antimicrobials is the large repertoire of cryptic gene clusters embedded in microbial genomes. Genome mining revealed a napsamycin/mureidomycin biosynthetic gene cluster in the chromosome of Streptomyces roseosporus NRRL 15998. The cryptic gene cluster was activated by constitutive expression of a foreign activator gene ssaA from sansanmycin biosynthetic gene cluster of Streptomyces sp. strain SS. Expression of the gene cluster was verified by RT-PCR analysis of key biosynthetic genes. The activated metabolites demonstrated potent inhibitory activity against the highly refractory pathogen Pseudomonas aeruginosa, and characterization of the metabolites led to the discovery of eight acetylated mureidomycin analogues. To our surprise, constitutive expression of the native activator gene SSGG_02995, a ssaA homologue in S. roseosporus NRRL 15998, has no beneficial effect on mureidomycin stimulation. This study provides a new way to activate cryptic gene cluster for the acquisition of novel antibiotics and will accelerate the exploitation of prodigious natural products in Streptomyces. PMID:26370924

  15. Mineral phosphate solubilization by Streptomyces sp. CTM396 involves the excretion of gluconic acid and is stimulated by humic acids.

    Science.gov (United States)

    Farhat, Mounira Ben; Boukhris, Ines; Chouayekh, Hichem

    2015-03-01

    The actinomycetes isolates (128) which were taken from agricultural soil samples and collected near a rock phosphate processing unit were screened for mineral phosphate-solubilizing (MPS) ability. A significant MPS activity was observed for 30 isolates on various phosphate sources when grown in the National Botanical Research Institute's phosphate broth. CTM396 and CTM397 strains which showed the highest MPS abilities were identified by 16S rDNA sequencing as members of the genus Streptomyces. Their MPS activity was proved to be concomitant with a drop in pH due to the secretion of gluconic acid (GA). This was correlated with the simultaneous detection by PCR of genes gdh [encoding the glucose dehydrogenase (GDH) responsible for GA production from glucose] and pqq (involved in biosynthesis of the pyrroloquinoline quinone cofactor of GDH), as well as the highlighting of GHD enzyme activity, for the first time in a Streptomyces sp. strain producing GA. Furthermore, the 0.05% of humic acids proved to have a stimulatory effect on the growth and the ability of CTM396 to solubilize Gafsa rock phosphate. According to this study, it is possible to use humic acids and Gafsa rock phosphate in association with spores of ad hoc Streptomyces strains as natural and efficient amendments to improve plant growth with no need of costly and pollutant transformation of Gafsa rock phosphate.

  16. Identification of antibacterial secondary metabolite from marine Streptomyces sp. VITBRK4 and its activity against drug resistant Gram positive bacteria

    Directory of Open Access Journals (Sweden)

    Benita Mercy R

    2013-12-01

    Full Text Available Drug resistance by bacterial pathogens becomes a major health problem worldwide. Hence, it is important to search for broad spectrum of antibiotic from natural sources. Marine actinomycetes isolated from marine sediments collected at different sampling sites along the southeast coast of Bay of Bengal, India were investigated for antagonistic activity against selected drug resistant Gram positivebacterial pathogens. All actinomycetes isolates were screened for antibacterial activity against standard drug resistant ATCC strains. The potential isolate which showed higher inhibitory activity against drug resistant pathogens was mass cultured and the ethyl acetate (EA extract of the cell free culture broth was tested for antibacterial activity. The biochemical, morphological and physiological characterisation of the isolate revealed that it was Gram-positive rod, sporulating and produced grey aerial mycelium. The spore chain morphology, and smooth surface morphology showed that it belongs to the genus Streptomyces.Based on Nonomura’s key for classification of Streptomycesand Bergey’s Manual of Determinative Bacteriology, the isolatewas identified as Streptomyces species and designated as Streptomyces sp. VITBRK4.Purification and characterization of EA extract of the isolate by thin layer chromatography (TLC and HPLC-DAD analysis showed the presence of indolo compound along with few other unidentified metabolites. The result of this study showed that the antibacterial activity of the EA extract against drug resistant strains may be due to indolo compound present in the extract.

  17. Isolation and structural elucidation of secondary metabolites from marine Streptomyces sp.SCSIO 1934%海洋放线菌Streptomyces sp.SCSIO1934中次生代谢产物的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    牛四文; 李苏; 田新朋; 胡涛; 鞠建华; 杨晓红; 张偲; 张长生

    2011-01-01

    目的:从1株来源于中国南海沉积环境的海洋链霉菌SCSIO 1934的发酵产物中分离鉴定次生代谢产物.方法:对海洋链霉菌SCSIO 1934的发酵液进行有机溶剂萃取,利用硅胶、凝胶柱色谱等方法分离次生代谢产物,通过核磁数据和理化性质对各单体化合物进行结构鉴定.结果:从菌株Streptomyces sp.SCSIO 1934中分离纯化得到17-脱甲基格尔德霉素(17-O-demethylgeldanamycin,1),lebstatin(2),17-O-demethyllebstatin(3),尼日利亚菌素(nigericin,4),尼日利亚菌素钠盐(nigericin sodium salt,5),abierixin(6).结论:本研究发现了1株能够产生多种抗生素的海洋放线菌Streptomyces sp.SCSIO 1934.%Marine Actinobacteria are emerging as new resources for bioactive natural products with promise in novel drug discovery. In recent years, the richness and diversity of marine Actinobacteria from the South China Sea and their ability in producing bioactive products have been investigated. The objective of this work is to isolate and identify bioactive secondary metabolites from a marine actinobacterium SCSIO 1934 derived from sediments of South China Sea. The strain was identified as a Streptomyces spieces by analyzing its 16S rDNA sequence. Streptomyces sp. SCSIO 1934 was fermented under optimized conditions and seven bioactive secondary metabolites were isolated and purified by chromatographic methods including colum chromatography over silica gel and Sephadex LH-20. Their structures were elucidated as 17-0-demethylgeldanamycin (1) , lebstatin (2) , 17-O-demethyllebstatin (3), nigericin (4) , nigericin sodium salt (5), abierixin (6), respectively, by detailed NMR spectroscopic data ('H.^C, COSY, HSQC and HMBC). This work provided a new marine actinobacterium Streptomyces sp. SCSIO 1934, capable of producing diverse bioactive natural products.

  18. Transcriptomic analysis of Streptomyces coelicolor differentiation in solid sporulating cultures: first compartmentalized and second multinucleated mycelia have different and distinctive transcriptomes.

    Directory of Open Access Journals (Sweden)

    Paula Yagüe

    Full Text Available Streptomycetes are very important industrial bacteria, which produce two thirds of all clinically relevant secondary metabolites. They have a complex developmental-cycle in which an early compartmentalized mycelium (MI differentiates to a multinucleated mycelium (MII that grows inside the culture medium (substrate mycelium until it starts to growth into the air (aerial mycelium and ends up forming spores. Streptomyces developmental studies have focused mainly on the later stages of MII differentiation (aerial mycelium and sporulation, with regulation of pre-sporulation stages (MI/MII transition essentially unknown. This work represents the first study of the Streptomyces MI transcriptome, analyzing how it differs from the MII transcriptome. We have used a very conservative experimental approach to fractionate MI from MII and quantify gene expressions. The expression of well characterized key developmental/metabolic genes involved in bioactive compound production (actinorhodin, undecylprodigiosin, calcium-dependent antibiotic, cpk, geosmin or hydrophobic cover formation-sporulation (bld, whi, wbl, rdl, chp, ram was correlated with MII differentiation. Additionally, 122 genes conserved in the Streptomyces genus, whose biological function had not been previously characterized, were found to be differentially expressed (more than 4-fold in MI or MII. These genes encoded for putative regulatory proteins (transcriptional regulators, kinases, as well as hypothetical proteins. Knowledge about differences between the MI (vegetative and MII (reproductive transcriptomes represents a huge advance in Streptomyces biology that will make future experiments possible aimed at characterizing the biochemical pathways controlling pre-sporulation developmental stages and activation of secondary metabolism in Streptomyces.

  19. Crude fatty acid extracts of Streptomyces sps inhibits the biofilm forming Streptococcus pyogenes ATCC 19615

    Directory of Open Access Journals (Sweden)

    Rajalakshm Manickam

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Crude fatty acid extract of soil Streptomyces sps on the biofilm formation by Streptococcus pyogenes ATCC 19615 was investigated. Totally, 25 Streptomyces sps were isolated identified from the soil samples collected from Nilgiris hill station. All the isolates were subjected to hydrogen peroxide assay, fatty acid extraction and antibiofilm assay. The fatty acid extracts of S8, S9, and S15 inhibited S. pyogenes at MIC 10 µg/ml. The BIC was observed as 84.6% , 96.41%, 80.5% at 50 µg/ml concentration. Streptolysin S assay showed that the crude lipid extracts have the capability of inhibiting the Streptolysin S activity. There were changes in extracellular protein of the pathogen exposed to the S8, S9 and S15 crude fatty acid extracts (50 µg/ml at the range of 100-120 kDa which elucidates that the fatty acid extracts have a significant role in altering the extracellular protein which might be responsible for virulence of the pathogen. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  20. TmcN is involved in ATP regulation of tautomycetin biosynthesis in Streptomyces griseochromogenes.

    Science.gov (United States)

    Li, Ming; Chen, Yang; Wu, Sijin; Tang, Yan; Deng, Ying; Yuan, Jieli; Dong, Jianyi; Li, Huajun; Tang, Li

    2016-09-01

    The regulatory mechanism of tautomycetin (TMC) biosynthesis remains largely unknown, although it has been of great interest to the pharmaceutical industry. Our previous study showed that intracellular adenosine triphosphate (inATP) level is negatively correlated with secondary metabolite biosynthesis in various Streptomyces spp. In this study, by exogenous treatment of ATP, we also found a negative correlation between TMC biosynthesis and inATP level in Streptomyces griseochromogenes (S. griseochromogenes). However, the underlying mechanism remains unclear. TmcN, a pathway-specific transcriptional regulator of TMC biosynthetic genes, was previously revealed as a large ATP-binding LuxR (LAL) family protein. The predicted amino acid sequence of TmcN shows highly conserved Walker A and B binding motifs, which suggest an ATPase function of TmcN. We therefore hypothesized that the ATPase domain of TmcN may play a role in sensing endogenous pool of ATP, and is thus involved in the ATP regulation of TMC biosynthesis. To test the hypothesis, we first explored the key residue that affects the ATPase activity of TmcN by amino acid sequence alignment and structural simulation. After that, we disrupted tmcN gene in S. griseochromogenes, and the tmcN or site-direct-mutated tmcN were re-introduced to get the complementary and ATPase domain disrupted strains. The transcription level of tmcN, TMC yield, and inATP, as well as the effect of ATP on TMC production of different mutants were evaluated. Deletion of tmcN or site-direct mutation of ATPase domain of TmcN in S. griseochromogenes significantly reduced the TMC production, and it was not affected by exogenous ATP treatment. In addition, a relatively high level of inATP was detected in tmcN deletion and site-direct mutation strains. Our results here suggested that TmcN, especially its ATPase domain, is involved in consuming of endogenous ATP pool and thus plays pivotal role in connecting the primary and secondary metabolite

  1. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1

    Directory of Open Access Journals (Sweden)

    Ahmad MS

    2015-05-01

    Full Text Available Maged Sayed Ahmad,1 Manal Mohamed Yasser,1 Essam Nageh Sholkamy,1,2 Ali Mohamed Ali,3,4 Magda Mohamed Mehanni3 1Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt; 2Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; 3Department of Botany and Microbiology, College of Science, Minia University, El-Minia, Egypt; 4Department of Biological Sciences, College of Science, King Faisal University, Saudi Arabia Abstract: Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50% of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 µg/mL and 61.86 µg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed. Keywords: biosynthesis, selenium nanorods, Streptomyces, anticancer activity

  2. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Directory of Open Access Journals (Sweden)

    Lakshmi Pathak

    Full Text Available Cholesterol oxidase (COD is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM, artificial neural network (ANN and genetic algorithm (GA have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  3. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Harrison Marcus

    2010-12-01

    Full Text Available Abstract Background Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2, S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145. Results The high coverage and specificity (detection of three nucleotide differences of the new microarrays used has highlighted the macroscopic genomic differences between two S. lividans strains and S. coelicolor. In a series of case studies we have validated the microarray and have identified subtle changes in genomic structure which occur in the Asp-activating adenylation domains of CDA non-ribosomal peptide synthetase genes which provides evidence of gene shuffling between these domains. We also identify single nucleotide sequence inter-species differences which exist in the actinorhodin biosynthetic gene cluster. As the glyoxylate bypass is non-functional in both S. lividans strains due to the absence of the gene encoding isocitrate lyase it is likely that the ethylmalonyl-CoA pathway functions as the alternative mechanism for the assimilation of C2 compounds. Conclusions This study provides evidence for widespread genetic recombination, rather than it being focussed at 'hotspots', suggesting that the previously proposed 'archipelago model' of genomic differences between S. coelicolor and S. lividans is unduly simplistic. The two S. lividans strains investigated differ considerably in genetic complement, with TK24 lacking 175 more genes than its wild-type parent when compared to S. coelicolor. Additionally, we confirm the presence of bldB in S. lividans and

  4. Characterization of bacteriophage phi C69 of Saccharopolyspora erythraea and demonstration of heterologous actinophage propagation by transfection of Streptomyces and Saccharopolyspora.

    Science.gov (United States)

    Katz, L; Chiang, S J; Tuan, J S; Zablen, L B

    1988-07-01

    A bacteriophage, designated phi C69, isolated from a culture of Saccharopolyspora erythraea was characterized. The phage propagates on Sac. erythraea NRRL 2338 but does not infect 10 Streptomyces or 3 Micromonospora species tested. It infects Sac. erythraea NRRL 2359 but does not produce infectious phage particles in this host. phi C69 is approximately 40 kb in length and contains cohesive ends. A cos fragment containing ligated phage DNA ends was cloned in Escherichia coli. Restriction maps of the phage DNA and the cos fragment for several enzymes are shown. Transfection of both Sac. erythraea and Streptomyces lividans with phi C69 resulted in approximately equal titres of infectious phage particles produced from approximately the same number of regenerating cells. Transfection of Sac. erythraea with DNA from Streptomyces phages SH10 and KC404 also resulted in the production of infectious phage particles. The basis for differences among hosts in susceptibility to infection by various actinophages is discussed.

  5. Identification of a new antifungal oligoacetal derivative produced by Streptomyces toxytricini against Candida albicans.

    Science.gov (United States)

    Abdel Azeiz, Ahmed Z; Hanafi, Donia K; Hasanein, Sameh E

    2016-08-01

    Thirty actinomycete isolates were isolated from soil and tested against Candida albicans in vitro. The active isolate was identified by 16s-rRNA gene sequencing method as Streptomyces toxytricini. The antifungal compound was extracted with ethyl acetate followed by diethyl ether. Both HPLC and GC-MS analysis confirmed presence of one pure compound in the diethyl ether extract. The compound is a yellow liquid has a maximum absorbance at 240 nm in methanol. The chemical structure was elucidated by 1D and 2D-NMR and IR analyses. The elucidated molecular formula was C36H54O14. The compound is a polyacetal tricyclononane derivative, composed of a tricyclononane ring attached from the carbon atom number four with an oligo-acetal chain (six acetal groups in chain) and from the carbon atom number seven with a methoxy carbonyl benzene-1,3-dicarboxylic acid. The purposed name is: 4- {[tricycle(3.2.1.1(1,3))non-8-yl] methoxy carbonyl benzene-1,3-dicarboxylic acid} (2,4,5,6,7,8,9 heptaoxa, 3-ethoxy, 5,6,7,9-tetramethyl unidecane). PMID:26336904

  6. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation.

    Science.gov (United States)

    Niladevi, Kizhakkedathu Narayanan; Sukumaran, Rajeev Kumar; Prema, Parukuttyamma

    2007-10-01

    Laccase production from a novel actinobacterial strain, Streptomyces psammoticus, MTCC 7334 was optimized in solid-state fermentation. The process parameters were initially optimized by the conventional "one factor at a time" approach, and the optimal levels of the factors that had considerable influence on enzyme production were identified by response surface methodology. Rice straw was identified as a suitable substrate for laccase production (17.3 U/g), followed by coffee pulp (15.8 U/g). Other optimized conditions were particle size, 500-1,000 mum (21.2 U/g); initial moisture content, 65% (26.8 U/g); pH of moistening solution, 8.0 (26.9 U/g); incubation temperature, 32 degrees C (27.6 U/g) and inoculum size, 1.5 x 10(7) CFU (33.8 U/g). Yeast extract served as the best nitrogen source (34.8 U/g). No enhancement in enzyme yield was observed with carbon supplementation. The level of yeast extract, inoculum size and copper sulphate were optimized statistically. Statistical optimization performed using a central composite design resulted in threefold increase in laccase activity (55.4 U/g) as compared to the unoptimized medium (17.3 U/g). The upgrading of fermented rice straw for fodder enhancement is also discussed briefly.

  7. Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate.

    Science.gov (United States)

    Da Vinha, Fábio Nuno Marques; Gravina-Oliveira, Mônica Pires; Franco, Marcella Novaes; Macrae, Andrew; da Silva Bon, Elba Pinto; Nascimento, Rodrigo Pires; Coelho, Rosalie Reed Rodrigues

    2011-06-01

    An actinomycete strain, isolated from a soil sample under a sugar cane plantation in Brazil and identified as Streptomyces viridobrunneus SCPE-09, was selected as a promising cellulolytic strain, and tested for its ability to produce cellulases from agro-industrial residues. Sugar cane bagasse or wheat bran was tested as carbon source, and corn steep liquor tested as nitrogen source. Different concentrations of carbon and nitrogen were tested using factorial design to identify optimal cellulose production. The results showed that media containing wheat bran 2.0% (w/v) and corn steep liquid 0.19% (w/v) lead to the highest production, 2.0 U mL(-1) of CMCase, obtained on the fifth day of fermentation. The pH and temperature profile showed optimal activity at pH 4.9 and 50°C. As for thermostability, endoglucanases were most tolerant at 50°C, retaining more than 80% of maximal activity even after 2 h of incubation. Zymogram analyses using supernatant from growth under optimized conditions revealed the presence of two CMCase bands with apparent molecular masses of 37 and 119 kDa. The combination of pH tolerance and CMCase production from agro-industrial residues by S. viridobrunneus SCPE-09 offers promise for future bioethanol biotechnologies.

  8. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3.

    Science.gov (United States)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning

    2016-03-01

    The biosorption mechanisms of uranium on an aerobic bacterial strain Streptomyces sporoverrucosus dwc-3, isolated from a potential disposal site for (ultra-)low uraniferous radioactive waste in Southwest China, were evaluated by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Approximately 60% of total uranium at an initial concentration of 10mg/L uranium nitrate solution could be absorbed on 100mg S. sporoverrucosus dwc-3 with an adsorption capacity of more than 3.0mg/g (wet weight) after 12hr at room temperature at pH3.0. The dynamic biosorption process of S. sporoverrucosus dwc-3 for uranyl ions was well described by a pseudo second-order model. S. sporoverrucosus dwc-3 could accumulate uranium on cell walls and within the cell, as revealed by SEM and TEM analysis as well as EDX spectra. XPS and FT-IR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of the cells. Additionally, PIXE and EPBS results confirmed that ion exchange also contributed to the adsorption process of uranium. PMID:26969062

  9. Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7.

    Science.gov (United States)

    Saravana Kumar, P; Duraipandiyan, V; Ignacimuthu, S

    2014-09-01

    Thirty-seven actinomycetes strains were isolated from soil samples collected from an agriculture field in Vengodu, Thiruvannamalai District, Tamil Nadu, India (latitude: 12° 54' 0033″, North; longitude: 79° 78' 5216″, East; elevation: 228.6/70.0 ft/m). The isolates were assessed for antagonistic activity against five Gram-positive bacteria, seven Gram-negative bacteria, and two pathogenic fungi. During the initial screening, 43% of the strains showed weak activity, 16% showed moderate activity, 5% showed good activity, and 35% showed no antagonistic activity. Among the strains tested, SCA 7 showed strong antimicrobial activity. Maximum biological activity was obtained on modified nutrient glucose agar (MNGA) medium. The mycelia of SCA 7 were extracted with methanol and tested against microbial pathogens using the disc diffusion method. The crude extract was purified partially using column chromatography and assessed for antimicrobial activity. Fraction 10 showed good activity against Staphylococcus epidermidis (31.25 μg/mL) and Malassezia pachydermatis (500 μg/mL) and the active principle (fraction 10) was identified as 2,4-bis (1,1-dimethylethyl) phenol. Based on morphological, physiological, biochemical, cultural, and molecular characteristics (16S rDNA sequencing), this strain was identified as Streptomyces sp. SCA 7. It could be used in the development of new substances for pharmaceutical or agricultural purposes.

  10. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor.

    Science.gov (United States)

    Tian, Zhenhua; Cheng, Qian; Yoshimoto, Francis K; Lei, Li; Lamb, David C; Guengerich, F Peter

    2013-02-15

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed 'bld' (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules.

  11. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor.

    Science.gov (United States)

    Mikulík, Karel; Bobek, Jan; Ziková, Alice; Smětáková, Magdalena; Bezoušková, Silvie

    2011-03-01

    The occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27). The ribosomal proteins were phosphorylated mainly on the Ser/Thr residues. Phosphorylation of the ribosomal proteins influences ribosomal subunits association. Ribosomes with phosphorylated proteins were used to examine poly (U) translation activity. Phosphorylation induced about 50% decrease in polyphenylalanine synthesis. After preincubation of ribosomes with alkaline phosphatase the activity of ribosomes was greatly restored. Small differences were observed between phosphorylated and unphosphorylated ribosomes in the kinetic parameters of the binding of Phe-tRNA to the A-site of poly (U) programmed ribosomes, suggesting that the initial binding of Phe-tRNA is not significantly affected by phosphorylation. On contrary, the rate of peptidyl transferase was about two-fold lower than that in unphosphorylated ribosomes. The data presented demonstrate that phosphorylation of ribosomal proteins affects critical steps of protein synthesis.

  12. Transcription map of the early region of the Streptomyces bacteriophage phi C31.

    Science.gov (United States)

    Ingham, C J; Smith, M C

    1992-12-01

    Streptomyces coelicolor A3(2), lysogenised by the temperature-sensitive cts1 mutant of phi C31, can be synchronously induced into the lytic cycle by heat treatment. A transcription map of 10 kb of the phi C31 early gene cluster was deduced using low-resolution S1 nuclease mapping of RNA prepared 10 min after induction. At least nine early transcripts, early (e)RNAs 1-9, were localised reading exclusively rightwards with respect to the standard physical map of phi C31. The mRNAs were extensively overlapping, frequently initiating at the same place but terminating at different sites, and vice versa. Gene expression during the lytic cycle was tightly regulated; no transcription was observed before induction. Transcription was maximal at 10 min post-induction, and at 20 min, eRNAs 5 and 6 persisted whilst eRNAs 7-9 were severely reduced or absent. The pattern of transcription of the early region is consistent with the simultaneous activation of a large number of promoters and differential termination efficiency.

  13. Complete genomic sequence analysis of the temperate bacteriophage phiSASD1 of Streptomyces avermitilis.

    Science.gov (United States)

    Wang, Shiwei; Qiao, Xuewei; Liu, Xiaoxi; Zhang, Xiaolin; Wang, Chao; Zhao, Xuejin; Chen, Zhi; Wen, Ying; Song, Yuan

    2010-07-20

    The bacteriophage phiSASD1, isolated from a failed industrial avermectin fermentation, belongs to the Siphoviridae family. Its four predominant structural proteins, which include the major capsid, portal and two tail-related proteins, were separated and identified by SDS-PAGE and N-terminal sequence analysis. The entire double-stranded DNA genome of phiSASD1 consists of 37,068 bp, with 3'-protruding cohesive ends of nine nucleotides. Putative biological functions have been assigned to 24 of the 43 potential open reading frames. Comparative analysis shows perfect assembly of three "core" gene modules: the morphogenesis and head module, the tail module and the right arm gene module, which displays obvious similarity to the right arm genes of Streptomyces phage phiC31 in function and arrangement. Meanwhile, structural module flexibility within phiSASD1 suggests that assignment of phage taxonomy based on comparative genomics of structural genes will be more complex than expected due to the exchangeability of functional genetic elements.

  14. Cell type differences in activity of the Streptomyces bacteriophage phiC31 integrase.

    Science.gov (United States)

    Maucksch, Christof; Aneja, Manish Kumar; Hennen, Elisabeth; Bohla, Alexander; Hoffmann, Florian; Elfinger, Markus; Rosenecker, Joseph; Rudolph, Carsten

    2008-10-01

    Genomic integration by the Streptomyces bacteriophage C31 integrase is a promising tool for non-viral gene therapy of various genetic disorders. We investigated the C31 integrase recombination activity in T cell derived cell lines, primary T lymphocytes and CD34(+) haematopoietic stem cells in comparison to mesenchymal stem cells and cell lines derived from lung-, liver- and cervix-tissue. In T cell lines, enhanced long-term expression above control was observed only with high amounts of integrase mRNA. Transfections of C31 integrase plasmids were not capable of mediating enhanced long-term transgene expression in T cell lines. In contrast, moderate to high efficiency could be detected in human mesenchymal stem cells, human lung, liver and cervix carcinoma cell lines. Up to 100-fold higher levels of recombination product was found in C31 integrase transfected A549 lung than Jurkat T cells. When the C31 integrase activity was normalized to the intracellular integrase mRNA levels, a 16-fold difference was found. As one possible inhibitor of the C31 integrase, we found 3- to 5-fold higher DAXX levels in Jurkat than in A549 cells, which could in addition to other yet unknown factors explain the observed discrepancy of C31 integrase activity.

  15. The temperate phages RP2 and RP3 of Streptomyces rimosus.

    Science.gov (United States)

    Rausch, H; Vesligaj, M; Pocta, D; Biuković, G; Pigac, J; Cullum, J; Schmieger, H; Hranueli, D

    1993-10-01

    The oxytetracycline-producing Streptomyces rimosus strains R6-65 and R7 (ATCC 10970) are lysogenic for the two narrow-host-range phages RP2 and RP3. Both phages are released at low frequency from the lysogenic strains and form plaques on 'cured' S. rimosus strains. RP2 and RP3 are of similar shape with flexible tails and contain double-stranded DNA of about 70% G+C with cohesive ends (group B1 of bacteriophage classification). The two phages also have identical, very slow, growth kinetics in S. rimosus, with a latent phase of about 6 h and a rise period of about 4 h. RP2 and RP3 are heteroimmune and they differ slightly in their size of phage particles and length of DNA (64.7 and 62.4 kb for RP2 and RP3, respectively). The restriction maps of the two phages are completely different, and hybridization experiments showed only one short region of sequence similarity (less than 430 bp); the two phages are thus essentially unrelated. Both phages lysogenize their hosts by recombination via defined attachment (att) sites. The positions of the attP sites have been localized on the restriction maps of RP2 and RP3 to restriction fragments of 800 and 300 bp, respectively. The prophages did not affect the level of oxytetracycline production or the genetic instability of this trait.

  16. Characterization of bacteriophages infecting Streptomyces erythreus and properties of phage-resistant mutants.

    Science.gov (United States)

    Donadio, S; Paladino, R; Costanzi, I; Sparapani, P; Schreil, W; Iaccarino, M

    1986-06-01

    Three bacteriophages infecting Streptomyces erythreus, called G3, G4 and G5, were isolated and characterized. They contain double-stranded linear DNA molecules with cohesive ends. The restriction map of G3 DNA (48 kilobases long) for four restriction endonucleases and that of G4 DNA (43 kilobases long) for seven restriction endonucleases are reported. Restriction analysis and hybridization experiments showed that G3 and G4 share little DNA homology, while G4 and G5 are apparently identical except for an additional EcoRI site present in G5. The region containing this EcoRI site has been mapped on G4 DNA. Microbiological and serological data showed that G5 is very similar to G4. G3- and G4-resistant mutants of S. erythreus PS1 were isolated. The screening of phage-resistant mutants showed a high frequency of strains with increased erythromycin production. The mechanism of phage resistance of strain PS3 (G3 resistant) and of strain PS16 (G4 resistant) was examined. The DNA of the resistant strains contains no phage DNA, ruling out lysogeny as a cause of phage resistance. Transfection of strains PS1, PS3, and PS16 with DNA of the three phages showed the same efficiency, indicating that resistance is at the level of the bacterial wall.

  17. Separation of avermectin components from Streptomyces avemitilis extraction using high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Su Weike

    2013-01-01

    Full Text Available Three compounds of antibiotics-avermectins from fertilizing product of Streptomyces avemitilis are achieved by high-speed counter-current chromatography (HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (6:4:5:5, v/v on a preparative scale. The separation condition was: 1.5 mL/min (0 to 200 min and 2.0 mL/min (200 to the end, 900 rpm and 20°C based on the peak resolution. About 11.9 mg of avermectin B1a, 1.0 mg of avermectin B1b and 9.6 mg of avermectin B2a from 50 mg of crude extract were obtained by one-step separation. The purities of the three compounds determined by HPLC were 99.7%, 96.2% and 97.6%, respectively. Their chemical structures were identified by electron spray ionization mass spectroscopy (ESI-MS, 1H, 13C nuclear magnetic resonance (NMR.

  18. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments.

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; González, Verónica; Nava, Herminio; Molina, Axayacatl; Llera, Eva; Fiedler, Hans-Peter; Rico, José M; García-Flórez, Lucía; Acuña, José L; García, Luis A; Blanco, Gloria

    2016-02-01

    Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments. PMID:26224165

  19. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Bentley, S D; Chater, K F; Cerdeño-Tárraga, A-M; Challis, G L; Thomson, N R; James, K D; Harris, D E; Quail, M A; Kieser, H; Harper, D; Bateman, A; Brown, S; Chandra, G; Chen, C W; Collins, M; Cronin, A; Fraser, A; Goble, A; Hidalgo, J; Hornsby, T; Howarth, S; Huang, C-H; Kieser, T; Larke, L; Murphy, L; Oliver, K; O'Neil, S; Rabbinowitsch, E; Rajandream, M-A; Rutherford, K; Rutter, S; Seeger, K; Saunders, D; Sharp, S; Squares, R; Squares, S; Taylor, K; Warren, T; Wietzorrek, A; Woodward, J; Barrell, B G; Parkhill, J; Hopwood, D A

    2002-05-01

    Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering. PMID:12000953

  20. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  1. Screening of variables influencing the clavulanic acid production by Streptomyces DAUFPE 3060 strain.

    Science.gov (United States)

    Viana, D A; Carneiro-Cunha, M N; Araújo, J M; Barros-Neto, B; Lima-Filho, J L; Converti, A; Pessoa-Júnior, A; Porto, A L F

    2010-03-01

    Clavulanic acid (CA) is a beta-lactam antibiotic, which has a potent beta-lactamase inhibiting activity. The influence of five variables, namely pH (6.0, 6.4, and 6.8), temperature (28 degrees C, 30 degrees C, and 32 degrees C), agitation intensity (150, 200, and 250 rpm), glycerol concentration (5.0, 7.5, and 10 g/L) and soybean flour concentration (5.0, 12.5, and 20 g/L), on CA production by a new isolate of Streptomyces (DAUFPE 3060) was investigated in 250-mL Erlenmeyer flasks using a fractional factorial design. Temperature and soybean flour concentration were shown to be the two variables that exerted the most important effects on the production of CA at 95% confidence level. The highest CA concentration (494 mg/L) was obtained after 48 h at 150 rpm, 32 degrees C, pH 6.0, 5.0 g/L glycerol, and 20 g/L soybean flour concentrations. Under these conditions, the yields of biomass and product on consumed substrate were 0.26 g(X)/g(S) and 64.3 mg(P)/g(S), respectively. Fermentations performed in 3.0-L bench-scale fermenter allowed increasing the CA production by about 60%. PMID:19475517

  2. Production of leucine amino peptidase in lab scale bioreactors using Streptomyces gedanensis.

    Science.gov (United States)

    Rahulan, Raji; Dhar, Kiran S; Madhavan Nampoothiri, K; Pandey, Ashok

    2011-09-01

    Studies were conducted on the production of leucine amino peptidase (LAP) by Streptomyces gedanensis to ascertain the performance of the process in shake flask, parallel fermenter and 5-L fermenter utilizing soy bean meal as the carbon source. Experiments were conducted to analyze the effects of aeration and agitation rate on cell growth and LAP production. The results unveiled that an agitation rate of 300 rpm, 50% dissolved oxygen (DO) upholding and 0.15 vvm strategies were the optimal for the enzyme production, yielding 22.72 ± 0.11 IU/mL LAP in parallel fermenter which was comparable to flask level (24.65 ± 0.12 IU/mL LAP) fermentation. Further scale-up, in 5-L fermenter showed 50% DO and 1 vvm aeration rate was the best, producing optimum and the production was 20.09 ± 0.06 IU/mL LAP. The information obtained could be useful to design a strategy to improve a large-scale bioreactor cultivation of cells and production of LAP. PMID:21733679

  3. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation.

    Science.gov (United States)

    Wu, Changsheng; Zacchetti, Boris; Ram, Arthur F J; van Wezel, Gilles P; Claessen, Dennis; Hae Choi, Young

    2015-01-01

    Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products. PMID:26040782

  4. A novel cold-adapted lipase, LP28, from a mesophilic Streptomyces strain.

    Science.gov (United States)

    Simkhada, Jaya Ram; Yoo, Hah Young; Cho, Seung Sik; Choi, Yun Hee; Kim, Seung Wook; Park, Don Hee; Yoo, Jin Cheol

    2012-01-01

    Fossil fuel is limited but its usage has been growing rapidly, thus the fuel is predicted to be completely running out and causing an unbearable global energy crisis in the near future. To solve this potential crisis, incorporating with increasing environmental concerns, significant attentions have been given to biofuel production in the recent years. With the aim of isolating a microbial biocatalyst with potential application in the field of biofuel, a lipase from Streptomyces sp. CS628, LP28, was purified using hydroxyapatite column chromatography followed by a gel filtration. Molecular weight of LP28 was estimated to be 32,400 Da by SDS-PAGE. The activity was the highest at 30 °C and pH 8.0 and was stable at pH 6.0-8.0 and below 25 °C. The enzyme preferentially hydrolyzed p-nitrophenyl decanoate (C10), a medium chain substrate. Furthermore, LP28 non-specifically hydrolyzed triolein releasing both 1,2- and 1,3-diolein. More importantly, LP28 manifestly catalyzed biodiesel production using palm oil and methanol; therefore, it can be a potential candidate in the field of biofuel. PMID:21909676

  5. Reduction of foaming and enhancement of ascomycin production in rational Streptomyces hygroscopicus fermentation

    Institute of Scientific and Technical Information of China (English)

    Xing Xin; Haishan Qi; Jianping Wen; Xiaoqiang Jia; Yunlin Chen

    2015-01-01

    Foaming reduces the working volume and limits the biosynthesis of macrolide immunosuppressant ascomycin (FK520) in the batch fermentation process of Streptomyces hygroscopicus FS-35 in a 7.5 L bioreactor. To find the relation between FK520 production and foaming, effects of 10 fermentation parameters including organic acids and membrane permeability were investigated. The results suggest that acetate accumulation caused by short period oxygen deficiency and fast consumption of glucose is the reason for increased foaming and declined FK520 production. Therefore, a fed-batch fermentation strategy was developed to reduce the accumulation of ac-etate. After optimization, the maximum acetate concentration dropped from 320 mg·L−1 to 157 mg·L−1, de-creased by 50.8%, and the maximum foam height reduced from 5.32 cm to 3.74 cm, decreased by 29.7%, while the maximum FK520 production increased from 375 mg·L−1 to 421 mg·L−1, improved by 12%.

  6. Utilization of A New Microbial Transglutaminase from Streptomyces for The Formation of Edible Soybean Protein Films

    Institute of Scientific and Technical Information of China (English)

    Wang Zhang

    2002-01-01

    Soybean protein isolate (SPI) wasused to investigate the formation of edibleprotein films through an enzymatic cross-linkingmethod with a purified microbial transglutaminse(MTG) produced and purified from a neweffective strain Streptomyces sp. WZFF.L-M1preserved in my laboratory, followed by theaddition of glycerol and suitable heating anddrying treatments. Cheaper partially-purifiedskimmed soybean protein powder (SSP) andwhey protein isolates (WPI) were used as thesubstitutes partially replacing the expensive SPIproducts, and purified β-lactoglobulin was takenas the positive control of WPI. The effects ofthe concentrations of the three substitutes andtheir relative ratios have been compared withSPI as a control, and the methodologies ofMTG treatment were examined. Attempts havealso been approached for the films formation-enhancing substances such as glycerol. As theresults, the three alternatives could also formhigh efficient edible films in the optimaloperation conditions experimented. Those filmsmade with SPI alternatives, thin around 50 μm,had the microscopic homogenous networkstructures, without any holes by naked eye. Thetests for the properties of these films showedthat they had high water-keeping capacity andstrong elasticity, that the ultimate tensile strength(TS) and the elongation at break (Eb) had beenremarkably increased (TS>5 MPa, Eb>50%,respectively), and that the prevention ratesagainst the permeability of water vapor andoxygen in air were also upgraded more than85% and 70%, respectively.

  7. EVALUATION OF A NEW LACCASE PRODUCED BY STREPTOMYCES IPOMOEA ON BIOBLEACHING AND AGEING OF KRAFT PULPS

    Directory of Open Access Journals (Sweden)

    M. Enriqueta Arias

    2011-06-01

    Full Text Available The aim of this work is to prove the suitability of a new alkaline and halo-tolerant bacterial laccase (SilA produced by Streptomyces ipomoea CECT 3341 to enhance the conventional chemical bleaching process of an industrial eucalyptus kraft pulp. The laccase used for this study was a recombinant laccase obtained from cultures of E. coli BL21 (DE3 grown in LB liquid medium. The biobleaching experiment was carried out on Eucalyptus globulus kraft pulps using the above mentioned laccase and acetosyringone as natural mediator. Then, an alkaline extraction and further hydrogen peroxide steps were applied to evaluate the efficiency of the laccase-mediator system as a pretreatment in the bleaching sequences. Biobleached pulps showed a kappa number decrease and a brightness increase without decreasing the viscosity values significantly. Also, a reduction in the consumption of hydrogen peroxide was observed when the enzymatic treatment was applied to the pulp. CIE L*a*b* and CIE L*C* color coordinates measured in pulps demonstrated that among all treatments applied to pulps, the laccase-acetosyringone system presented the best optical properties even after an accelerated ageing process. Finally, it is also remarkable that during this treatment 64% of the laccase activity remained unaltered.

  8. Mutational biosynthesis of neomycin analogs by a mutant of neomycin-producing Streptomyces fradiae.

    Science.gov (United States)

    Shi, Guanying; Zhang, Xingang; Wu, Lang; Xie, Jin; Tao, Ke; Hou, Taiping

    2011-11-01

    Neomycin, produced by Streptomyces fradiae, has been widely used for the treatment of bacterial infections in clinical and agricultural applications. In this study, a neomycin nonproducing mutant of S. fradiae was obtained by gene disruption technique for mutational biosynthesis. A crucial gene neoC (neo7) which encodes 2-deoxystreptamine (2-DOS) synthases was disrupted. The mutant could resume producing neomycin in the presence of 2-DOS. Salen derivatives of 2-DOS were synthesized and individually added to cultures of the mutant. Antibacterial activity of the mutasynthesis products against Staphylococcus aureus and four plant pathogenic bacteria (Pseudomonas solanacarum, Erwinia carotovora, Xanthomonas oryzae, and Xanthomonas campestris) was detected quantitatively by Oxford cup method. It is suggested that all 2-DOS derivatives were incorporated by the mutant into new active neomycin analogs except for 2-DOS derivative 2d ((1R,2r,3S,4R,6S)-4,6-bis((E)-3,5-di-tert-butyl-2-hydroxybenzylideneamino)cyclohexane-1,2,3-triol). Neomycin analogs produced by feeding 2-DOS derivative 2a ((1R,2r,3S,4R,6S)-4,6-bis((E)-2 hydroxybenzylideneamino)cyclohexane-1,2,3-triol) to cultures of the mutant displayed a similar antibacterial activity with neomycin produced by wild strain.

  9. Identification of Elaiophylin Skeletal Variants from the Indonesian Streptomyces sp. ICBB 9297.

    Science.gov (United States)

    Sheng, Yan; Lam, Phillip W; Shahab, Salmah; Santosa, Dwi Andreas; Proteau, Philip J; Zabriskie, T Mark; Mahmud, Taifo

    2015-11-25

    Four new elaiophylin macrolides (1-4), together with five known elaiophylins (5-9), have been isolated from cultures of the Indonesian soil bacterium Streptomyces sp. ICBB 9297. The new compounds have macrocyclic skeletons distinct from those of the known dimeric elaiophylins in that one or both of the polyketide chains contain(s) an additional pendant methyl group. Further investigations revealed that 1 and 2 were derived from 3 and 4, respectively, during isolation processes. Compounds 1-3 showed comparable antibacterial activity to elaiophylin against Staphylococcus aureus. However, interestingly, only compounds 1 and 3, which contain a pendant methyl group at C-2, showed activity against Mycobacterium smegmatis, whereas compound 2, which has two pendant methyl groups at C-2 and C-2', and the known elaiophylin analogues (5-7), which lack pendant methyl groups at C-2 and/or C-2', showed no activity. The production of 3 and 4 in strain ICBB 9297 indicates that one of the acyltransferase (AT) domains in the elaiophylin polyketide synthases (PKSs) can recruit both malonyl-CoA and methylmalonyl-CoA as substrates. Bioinformatic analysis of the AT domains of the elaiophylin PKSs revealed that the ela_AT7 domain contains atypical active site amino acid residues, distinct from those conserved in malonyl-CoA- or methylmalonyl-CoA-specific ATs.

  10. Enhancement and selective production of avermectin B by recombinants of Streptomyces avermitilis via intraspecific protoplast fusion

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; WEN Jia; SONG Yuan; WEN Ying; LI JiLun

    2007-01-01

    Among eight components of avermectin, B1 fractions have the most effective antiparasitic activities and the lowest level of toxic side-effects and are used widely in veterinary and agricultural fields. Intraspecific protoplast fusion between two strains of Streptomyces avermitilis, one an avermectin high producer (strain 76-05) and the other a genetically engineered strain containing the mutations aveD- and olmA- (strain 73-12) was performed for enhancement and selective production of avermectin B in the absence of oligomycin. Two recombinant strains (F23 and F29) were isolated and characterized with regards to the parental merits. F23 and F29 produced only the four avermectin B components with high yield and produced no oligomycin. The avermectin production of F23 and F29 was about 84.20% and 103.45% of the parental strain 76-05, respectively, and increased about 2.66-fold and 3.50-fold, respectively, compared to that of parental strain 73-12. F23 and F29 were genetically stable prototrophic recombinants and F29 was quite tolerant of fermentation conditions compared to avermectin high producer parental strain 76-05. The ability to produce avermectin B with high yield without the production of other avermectin components and oligomycin will make F23 and F29 useful strains for avermectin production. Strain F29's tolerance of fermentation conditions will also make it suitable for industrial applications.

  11. Purification and characterization of chitinase from Streptomyces violascens NRRL B2700.

    Science.gov (United States)

    Gangwar, Mamta; Singh, Vineeta; Pandey, Asheesh Kumar; Tripathi, C K M; Mishra, B N

    2016-01-01

    Chitinase is one of the important enzymes as it is directly linked to Chitin that has wide applications in industrial, medical and commercial fields for its biocompatibility and biodegradability. Here, we report extracellular chitinase production by Streptomyces violascens NRRL B2700 under submerged fermentation condition. Chitinase production started after 10 h of incubation and reached to maximum level at 72 h of cultivation. Studies on the influence of additional carbon and nitrogen sources on chitinase production revealed that maltose, xylose, fructose, lactose, soybean meal and ammonium nitrate served as good carbon and nitrogen sources to enhance chitinase yield by 1.6 to 6 fold. Medium supplemented with 1% colloidal chitin produced high chitinase concentration (0.1714 U/mg). The enzyme chitinase was purified from the culture broth by 75% ammonium sulphate precipitation, DEAE-cellulose ion-exchange and sephadex G-100 gel filtration. The molecular mass of the purified chitinase was 65 kDa as estimated by SDS-PAGE. The apparent Michaelis constant (K(m)) and the maximum rate (V(max)) of the enzyme for colloidal chitin were 1.556 mg/mL and 2.680 μM/min/mg, respectively suggested high affinity towards-chitin. Possibly, it is the first report on production of chitinase from S. violascens NRRL B2700. The findings were encouraging, especially for cost effective production, and further warrants media and purification optimization studies for enhanced yield. PMID:26891554

  12. Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Benjaphorn Prapagdee, Chutima Kuekulvong, Skorn Mongkolsuk

    2008-01-01

    Full Text Available Indigenous actinomycetes isolated from rhizosphere soils were assessed for in vitro antagonism against Colletotrichum gloeosporioides and Sclerotium rolfsii. A potent antagonist against both plant pathogenic fungi, designated SRA14, was selected and identified as Streptomyces hygroscopicus. The strain SRA14 highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. Culture filtrates collected from the exponential and stationary phases inhibited the growth of both the fungi tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrates. The percentage of growth inhibition by the stationary culture filtrate was significantly higher than that of exponential culture filtrate. Morphological changes such as hyphal swelling and abnormal shapes were observed in fungi grown on potato dextrose agar that contained the culture filtrates. However, the antifungal activity of exponential culture filtrates against both the experimental fungi was significantly reduced after boiling or treatment with proteinase K. There was no significant decrease in the percentage of fungal growth inhibition by the stationary culture filtrate that was treated as above. These data indicated that the antifungal potential of the exponential culture filtrate was mainly due to the presence of extracellular chitinase enzyme, whereas the antifungal activity of the stationary culture filtrate involved the action of unknown thermostable antifungal compound(s.

  13. Strain Improvement of Streptomyces xanthochromogenes RIA 1098 for Enhanced Pravastatin Production at High Compactin Concentrations.

    Science.gov (United States)

    Dzhavakhiya, Vakhtang V; Voinova, Tatiana M; Glagoleva, Elena V; Petukhov, Dmitry V; Ovchinnikov, Alexander I; Kartashov, Maksim I; Kuznetsov, Boris B; Skryabin, Konstantin G

    2015-12-01

    Pravastatin is one of the most popular cholesterol-lowering drugs. Its industrial production represents a two-stage process including the microbial production of compactin and its further biocatalytic conversion to pravastatin. To increase a conversion rate, a higher compactin content in fermentation medium should be used; however, high compactin concentrations inhibit microbial growth. Therefore, the improvement of the compactin resistance of a producer still remains a relevant problem. A multi-step random UV mutagenesis of a Streptomyces xanthochromogenes strain RIA 1098 and the further selection of high-yield compactin-resistant mutants have resulted in a highly productive compactin-resistant strain S 33-1. After the fermentation medium improvement, the maximum bioconversion rate of this strain has reached 91 % at the daily compactin dose equal to 1 g/L and still remained high (83 %) even at the doubled dose (2 g/L). A 1-year study of the mutant strain stability has proved a stable inheritance of its characteristics that provides this strain to be very promising for the pravastatin-producing industry. PMID:26543270

  14. In vitro Anticancer Property of Yellow Pigment fromStreptomyces griseoaurantiacus JUACT 01

    Directory of Open Access Journals (Sweden)

    Kuruvalli Prashanthi

    2015-12-01

    Full Text Available ABSTRACT Despite the complications in isolation of pigments, microbial pigments are increasingly gaining the attention of researchers because of their broad range therapeutic potentials, especially against cancer. In this study the cytotoxic and anti proliferative potentials of yellow pigment from Streptomyces griseoaurantiacus JUACT 01 isolated from soil are investigated. The effect of pigment treatment on the growth and proliferation of in vitro cervical cancer cells (HeLa and liver cancer cells (Hep G2 was tested by various methods. Significant cytotoxicity was observed with IC 50 values as low as 1.5 and 1.8 µg /mL with HeLa and Hep G2 cells respectively. The pigment exhibited non toxic effects on human lymphocytes. Decrease in the number of viable cells, presence of apoptotic bodies, nuclear condensation and sheared DNA were distinctly observed in pigment treated cancer cells. The biochemical test and the infrared (IR spectra indicated the probable carotenoid presence in the TLC purified pigment fraction. High Performance Liquid Chromatography (HPLC analysis of the TLC purified yellow pigment showed a single large peak with a retention time of 9.90 min and m/z value corresponding to the peak was found to be 413.22 showing 100% relative abundance.

  15. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme.

    Science.gov (United States)

    Jiang, Jiaoyang; He, Xiaofei; Cane, David E

    2007-11-01

    Geosmin is responsible for the characteristic odor of moist soil, as well as off-flavors in drinking water and foodstuffs. Geosmin is generated from farnesyl diphosphate (FPP, 2) by an enzyme that is encoded by the SCO6073 gene in the soil organism Streptomyces coelicolor A32 (ref. 3). We have now shown that the recombinant N-terminal half of this protein catalyzes the Mg2+-dependent cyclization of FPP to germacradienol and germacrene D, while the highly homologous C-terminal domain, previously thought to be catalytically silent, catalyzes the Mg2+-dependent conversion of germacradienol to geosmin. Site-directed mutagenesis confirmed that the N- and C-terminal domains each harbor a distinct, independently functioning active site. A mutation in the N-terminal domain of germacradienol-geosmin synthase of a catalytically essential serine to alanine results in the conversion of FPP to a mixture of sesquiterpenes that includes an aberrant product identified as isolepidozene, which was previously suggested to be an enzyme-bound intermediate in the cyclization of FPP to germacradienol.

  16. Production and characterization of an extracellular polysaccharide from Streptomyces violaceus MM72.

    Science.gov (United States)

    Manivasagan, Panchanathan; Sivasankar, Palaniappan; Venkatesan, Jayachandran; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

    2013-08-01

    The isolation, optimization, purification and characterization of an extracellular polysaccharide (EPS) from a marine actinobacterium, Streptomyces violaceus MM72 were investigated. Medium composition and culture conditions for the EPS production by S. violaceus MM72 were optimized using two statistical methods: Plackett-Burman design applied to find the key ingredients and conditions for the best yield of EPS production and central composite design used to optimize the concentration of the three significant variables: glucose, tryptone and NaCl. The preferable culture conditions for EPS production were pH 7.0, temperature 35°C and NaCl concentration 2.0% for 120h with fructose and yeast extract as best carbon and nitrogen sources, respectively. The results showed that S. violaceus MM72 produced a kind of EPS having molecular weight of 8.96×10(5)Da. In addition, the EPS showed strong DPPH radical-scavenging activity, superoxide scavenging and metal chelating activities while moderate inhibition of lipid peroxidation and reducing activities determined in this study. These results showed the great potential of EPS produced by S. violaceus MM72 could be used in industry in place of synthetic compounds. The EPS from S. violaceus MM72 may be a new source of natural antioxidants with potential value for health, food and therapeutics. PMID:23597709

  17. Initiating a crystallographic analysis of recombinant (S)-2-hydroxypropylphosphonic acid epoxidase from Streptomyces wedmorensis

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Scott; McLuskey, Karen; Chamberlayne, Rachel; Hallyburton, Irene; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH,Scotland (United Kingdom)

    2005-05-01

    The gene encoding the unusual metal-ion-dependent epoxidase involved in fosfomycin biosynthesis, S. wedmorensis (S)-2-hydroxypropylphosphonic acid epoxidase, has been cloned and the protein expressed, purified and crystallized. Two crystal forms have been obtained, one of which diffracts to high resolution. The oxirane (1R,2S)-1,2-epoxypropylphosphonic acid (fosfomycin) is a natural product antibiotic produced in Streptomyces wedmorensis by the metal-ion-dependent (S)-2-hydroxypropylphosphonic acid epoxidase. This epoxidase is highly unusual since it has no requirement for a haem prosthetic group. The gene encoding the enzyme, fom4, has been cloned and a highly efficient recombinant source of the enzyme established. Two different crystal forms, tetragonal and hexagonal, have been obtained. The hexagonal form displays symmetry consistent with space group P6{sub 1/5}22 and unit-cell parameters a = 86.44, c = 221.56 Å, γ = 120°. The Matthews coefficient, V{sub M}, of 2.7 Å{sup 3} Da{sup −1} corresponds to two subunits, each of approximate weight 21.4 kDa, in the asymmetric unit with 55% solvent content. These crystals diffract to high resolution and experimental phases are being sought to determine the structure.

  18. Properties and characterization of Au3+-adsorption by mycelial waste of Streptomyces aureofaciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mycelial waste of Streptomyces aureofaciences procured from the aureomycin fermentation industry is used as biosorbent for Au3+. The properties of Au3+ adsorption by the mycelial waste are studied. The results indicate that the optimum pH value of Au3+ adsorption is 3.5. The biosorption is a rapid and non-temperature-dependent process. The biosorptive capacity with 45.6 mg/g and efficiency with 91.2% are achieved under the conditions of pH 3.5 and 30℃ for 45 min, in which the ratio is 50 mg/g dry weight for the concentrations of initial Au3+ and the myceliai waste. The Au3+ ions adsorbed on the mycelial waste can be eluted. The observation in a transmission electron microscope shows that the Au3+ ions can be reduced to Au particles by the mycelial waste and the Au0 can become gold crystals with different forms and sizes. X-ray photoelectron spectroscopy analysis further proves that the Au3+ can be reduced to Au0 by the mycelial waste.

  19. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    Science.gov (United States)

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides. PMID:16339937

  20. Applications of image analysis in the characterization of Streptomyces olindensis in submerged culture

    Directory of Open Access Journals (Sweden)

    Pamboukian Celso R. Denser

    2002-01-01

    Full Text Available The morphology of Streptomyces olindensis (producer of retamycin, an antitumor antibiotic grown in submerged culture was assessed by image analysis. The morphology was differentiated into four classes: pellets, clumps (or entangled filaments, branched and unbranched free filaments. Four morphological parameters were initially considered (area, convex area, perimeter, and convex perimeter but only two parameters (perimeter and convex perimeter were chosen to automatically classify the cells into the four morphological classes, using histogram analysis. Each morphological class was evaluated during growth carried out in liquid media in fermenter or shaker. It was found that pellets and clumps dominated in early growth stages in fermenter (due to the inoculum coming from a shaker cultivation and that during cultivation, the breakage of pellets and clumps caused an increase in the percentage of free filaments. The criteria of morphological classification by image analysis proposed were useful to quantify the percentage of each morphological class during fermentations and may help to establish correlations between antibiotic production and microorganism morphology.

  1. Production of clavulanic acid and cephamycin C by Streptomyces clavuligerus under different fed-batch conditions

    Directory of Open Access Journals (Sweden)

    C. Bellão

    2013-06-01

    Full Text Available The effect of carbon source and feeding conditions on the production of clavulanic acid (CA and cephamycin C (CephC by Streptomyces clavuligerus was investigated. In fed-batch experiments performed with glycerol feeding, production of CA exceeded that of CephC, and reached 1022 mg.L-1. Highest CephC production (566.5 mg.L-1 was obtained in fed-batch cultivation with glycerol feeding. In fed-batch experiments performed with starch feeding, the production of CephC was in general higher than that of CA. A dissociation index (DI was used to identify feeding conditions that favored production of CephC relative to CA. In all cultures with glycerol, DI values were less than unity, indicating higher production of CA compared to CephC. Conversely, in cultures fed with starch, the DI values obtained were greater than unity. However, no carbon source or feeding condition was able to completely dissociate the production of CA from that of CephC.

  2. Optimization of clavulanic acid production by Streptomyces daufpe 3060 by response surface methodology

    Science.gov (United States)

    Marques, Daniela A. Viana; Cunha, Márcia N. Carneiro; Araújo, Janete M.; Lima-Filho, José L.; Converti, Attilio; Pessoa-Jr, Adalberto; Porto, Ana L. Figueiredo

    2011-01-01

    Clavulanic acid is a ß-lactam antibiotic which has a potent ß-lactamase inhibiting activity. In order to optimize its production by the new isolate Streptomyces DAUFPE 3060, the influence of two independent variables, temperature and soybean flour concentration, on clavulanic acid and biomass concentrations was investigated in 250 mL-Erlenmeyers according to a 22 central composite design. To this purpose, temperature and soybean flour (SF) concentration were varied in the ranges 26–34°C and 10–50 g/L, respectively, and the results evaluated utilizing the Response Surface Methodology. The experimental maximum production of clavulanic acid (629 mg/L) was obtained at 32°C and 40 g/L SF after 48 h, while the maximum biomass concentration (3.9 g/L) at 30°C and 50 g/L soybean flour, respectively. These values are satisfactorily close to those (640 mg/L and 3.75 g/L, respectively) predicted by the model, thereby demonstrating the validity of the mathematical approach adopted in this study. PMID:24031677

  3. Optimization of clavulanic acid production by Streptomyces daufpe 3060 by response surface methodology

    Directory of Open Access Journals (Sweden)

    Daniela A. Viana Marques

    2011-06-01

    Full Text Available Clavulanic acid is a β-lactam antibiotic which has a potent β-lactamase inhibiting activity. In order to optimize its production by the new isolate Streptomyces DAUFPE 3060, the influence of two independent variables, temperature and soybean flour concentration, on clavulanic acid and biomass concentrations was investigated in 250 mL-Erlenmeyers according to a 2² central composite design. To this purpose, temperature and soybean flour (SF concentration were varied in the ranges 26-34°C and 10-50 g/L, respectively, and the results evaluated utilizing the Response Surface Methodology. The experimental maximum production of clavulanic acid (629 mg/L was obtained at 32°C and 40 g/L SF after 48 h, while the maximum biomass concentration (3.9 g/L at 30°C and 50 g/L soybean flour, respectively. These values are satisfactorily close to those (640 mg/L and 3.75 g/L, respectively predicted by the model, thereby demonstrating the validity of the mathematical approach adopted in this study.

  4. Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in Streptomyces clavuligerus.

    Science.gov (United States)

    Leite, Carla A; Cavallieri, André P; Baptista, Amanda S; Araujo, Maria L G C

    2016-01-01

    Streptomyces clavuligerus produces simultaneously cephamycin C (CephC) and clavulanic acid (CA). Adding 1,3-diaminopropane to culture medium stimulates production of beta-lactam antibiotics. However, there are no studies on the influence of this diamine on coordinated production of CephC and CA. This study indicates that 1,3-diaminopropane can dissociate CephC and CA productions. Results indicated that low diamine concentrations (below 1.25 g l(-1)) in culture medium increased CA production by 200%, but not that of CephC. Conversely, CephC production increased by 300% when 10 g l(-1) 1,3-diaminopropane was added to culture medium. Addition of just L-lysine (18.3 g l(-1)) to culture medium increased both biocompounds. On the other hand, while L-lysine plus 7.5 g l(-1) 1,3-diaminopropane increased volumetric production of CephC by 1100%, its impact on CA production was insignificant. The combined results suggest that extracellular concentration of 1,3-diaminopropane may trigger the dissociation of CephC and CA biosynthesis in S. clavuligerus.

  5. An improved HPLC-DAD method for clavulanic acid quantification in fermentation broths of Streptomyces clavuligerus.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; López, Carlos; Zapata, Julian; Sáez, Alex; Neubauer, Peter; Rios-Estepa, Rigoberto

    2016-02-20

    Clavulanic acid (CA) is an important secondary metabolite commercially produced by cultivation of Streptomyces clavuligerus (Sc). It is a potent inhibitor of bacterial β-lactamases. In this work, a specific and improved high performance liquid chromatography (HPLC) method, using a C-18 reversed phase column, diode array detector and gradient elution for CA quantification in fermentation broths of Sc, was developed and successfully validated. Samples were imidazole-derivatized for the purpose of creating a stable chromophore (clavulanate-imidazole). The calibration curve was linear over a typical range of CA concentration between 0.2 and 400mg/L. The detection and quantification limits were 0.01 and 0.02mg/L, respectively. The precision of the method was evaluated for CA spiked into production media and a recovery of 103.8%, on average, was obtained. The clavulanate-imidazole complex was not stable when the samples were not cooled during the analysis. The recovery rate was 39.3% on average. This assay was successfully tested for CA quantification in samples from Sc fermentation, using both, a chemically defined and a complex medium.

  6. Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus.

    Science.gov (United States)

    Guo, Dekun; Zhao, Youbao; Yang, Keqian

    2013-07-01

    The glycerol utilization (gyl) operon is involved in clavulanic acid (CA) production by Streptomyces clavuligerus, and possibly supplies the glyceraldehyde-3-phosphate (G3P) precursor for CA biosynthesis. The gyl operon is regulated by GylR and is induced by glycerol. To enhance CA production in S. clavuligerus, an extra copy of ccaR expressed from Pgyl (the gyl promoter) was integrated into the chromosome of S. clavuligerus NRRL 3585. This construct coordinated the transcription of CA biosynthetic pathway genes with expression of the gyl operon. In the transformants carrying the Pgyl-controlled regulatory gene ccaR, CA production was enhanced 3.19-fold in glycerol-enriched batch cultures, relative to the control strain carrying an extra copy of ccaR controlled by its own promoter (PccaR). Consistent with enhanced CA production, the transcription levels of ccaR, ceas2 and claR were significantly up-regulated in the transformants containing Pgyl-controlled ccaR.

  7. Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes.

    Science.gov (United States)

    Jnawali, Hum Nath; Yoo, Jin Cheol; Sohng, Jae Kyung

    2011-06-01

    To enhance clavulanic acid production, four structural clavulanic acid biosynthesis genes, carboxyethylarginine synthase (ceas2), β-lactam synthetase (bls2), clavaminate synthase (cas2) and proclavaminate amidinohydrolase (pah2), were amplified from Streptomyces clavuligerus genomic DNA. They were cloned in the pSET152 integration and pIBR25 expression vectors containing the strong ermE* promoter to generate pHN18 and pHN19, respectively, and both plasmids were introduced into S. clavuligerus by protoplast transformation. Clavulanic acid production was increased by 8.7-fold (to ~310 mg/l) in integrative pHN18 transformants and by 5.1-fold in pHN19 transformants compared to controls. Transcriptional analyses showed that the expression levels of ceas2, bls2, cas2 and pah2 were markedly increased in both transformants as compared with wild-type. The elevation of the ceas2, bls2, cas2 and pah2 transcripts was consistent with the enhanced production of clavulanic acid.

  8. Flux balance analysis in the production of clavulanic acid by Streptomyces clavuligerus.

    Science.gov (United States)

    Sánchez, Claudia; Quintero, Juan Carlos; Ochoa, Silvia

    2015-01-01

    In this work, in silico flux balance analysis is used for predicting the metabolic behavior of Streptomyces clavuligerus during clavulanic acid production. To choose the best objective function for use in the analysis, three different optimization problems are evaluated inside the flux balance analysis formulation: (i) maximization of the specific growth rate, (ii) maximization of the ATP yield, and (iii) maximization of clavulanic acid production. Maximization of ATP yield showed the best predictions for the cellular behavior. Therefore, flux balance analysis using ATP as objective function was used for analyzing different scenarios of nutrient limitations toward establishing the effect of limiting the carbon, nitrogen, phosphorous, and oxygen sources on the growth and clavulanic acid production rates. Obtained results showed that ammonia and phosphate limitations are the ones most strongly affecting clavulanic acid biosynthesis. Furthermore, it was possible to identify the ornithine flux from the urea cycle and the α-ketoglutarate flux from the TCA cycle as the most determinant internal fluxes for promoting clavulanic acid production.

  9. Influence of glycerol and ornithine feeding on clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    J. C. Teodoro

    2010-12-01

    Full Text Available The influence of glycerol and ornithine feeding on clavulanic acid (CA production by Streptomyces clavuligerus was investigated. In batch experiments, CA maximum concentration (Cp max ranged randomly from 430 to 560 mg.L-1, with a maximum increase of 10% in relation to the control run, without ornithine. However, the maximum volumetric productivity of CA (Pp max of 13.7 mg.L-1.h-1 was obtained with 0.66 g.L-1 of ornithine, 44.2% higher than the Pp max in the control run. In fed-batch experiments, Cp max varied within the narrow range from 1.254 to 1.405 g.L-1, 2.5 times higher than that obtained in the control run. The presence of ornithine increased the Pp max, although it influenced only slightly the Cp max. Concerning glycerol, the highest CA production of 1.6 g.L-1 was obtained in the fed-batch with glycerol and ornithine (180 and 3.7 g.L−1 in a 10-L bioreactor, showing a positive effect of ornithine and glycerol, in the proper proportion (48.6:1, on CA biosynthesis.

  10. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement.

    Science.gov (United States)

    Paradkar, Ashish

    2013-07-01

    Clavulanic acid (CA) is a potent β-lactamase inhibitor produced by Streptomyces clavuligerus and has been successfully used in combination with β-lactam antibiotics (for example, Augmentin) to treat infections caused by β-lactamase-producing pathogens. Since the discovery of CA in the late 1970s, significant information has accumulated on its biosynthesis, and regarding molecular mechanisms involved in the regulation of its production. Notably, the genes directing CA biosynthesis are clustered along with the genes responsible for the biosynthesis of the β-lactam antibiotic, cephamycin C, and co-regulated, which makes this organism unique in that the production of an antibiotic and production of a small molecule to protect the antibiotic from its enzymatic degradation are controlled by shared mechanisms. Traditionally, the industrial strain improvement programs have relied significantly on random mutagenesis and selection approach. However, the recent availability of the genome sequence of S. clavuligerus along with the capability to build metabolic models, and ability to engineer the organism by directed approaches, has created exciting opportunities to improve strain productivity more efficiently. This review will include focus mainly on the gene organization of the CA biosynthetic genes, regulatory mechanisms that affect its production, and will include perspectives on improving strain productivity.

  11. Genetic Stability of Streptomyces Lividans pIJ702 in Response to Spaceflight

    Science.gov (United States)

    Lim, K. S.; Goins, T. L.; Voeikova, T. A.; Pyle, B. H.

    2008-06-01

    Streptomyces lividans carrying plasmid pIJ702 encoding genes for thiostrepton resistance (tsr-) and melanin production (mel+) was plated on agar and flown on the Russian satellite Foton-M3 for 16 days. The percentage loss of plasmid expression in flight samples was lower than that in ground samples when both samples were grown in enriched (ISP) media. Differences in media content also affect plasmid expression rate; ISP media have a higher loss of plasmid expression than samples in minimum media when both were grown on ground conditions. Results suggest that stress resulted in the increased expression of plasmid pIJ702 by S. lividans. Screening of thiostrepton resistant white (tsr+ mel-) mutants showed similar proportions of variants in ground samples and flight samples. To determine if there are mutations in the mel gene, DNA extracted from flight and control white mutants was amplified and gel electrophoresis of amplified products show no major mutation in the products. Sequencing of amplified products is required to identify mutations resulting in loss of pigmentation.

  12. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    Science.gov (United States)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-01-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry. PMID:27181521

  13. Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59

    Directory of Open Access Journals (Sweden)

    Yang-Mei Zhang

    2016-05-01

    Full Text Available An actinomycete strain, H41-59, isolated from sea sediment in a mangrove district, was identified as Streptomyces anandii on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological and biochemical characteristics. Three new ergosterols, ananstreps A–C (1–3, along with ten known ones (4–13, were isolated from the culture broth of this strain. The gross structures of these new compounds were elucidated on the basis of extensive analysis of spectroscopic data, including HR-ESI-MS, and NMR. The cytotoxicities of these isolates against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268, and human lung cancer cell line NCI-H460 and their antibacterial activities in inhibiting the growth of Candida albicans and some other pathogenic microorganisms were tested. Compounds 3–8, 10 and 11 displayed cytotoxicity with IC50 values in a range from 13.0 to 27.8 μg/mL. However, all the tested compounds showed no activity on C. albicans and other bacteria at the test concentration of 1 mg/mL with the paper disc diffusion method.

  14. Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes.

    Science.gov (United States)

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M A; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R R

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  15. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    2013-01-01

    Full Text Available Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  16. Expression and displaying of β-glucosidase from Streptomyces coelicolor A3 in Escherichia coli.

    Science.gov (United States)

    Gu, Ming-Zhu; Wang, Jing-Chao; Liu, Wei-Bing; Zhou, Ying; Ye, Bang-Ce

    2013-08-01

    Two genes encoding β-glucosidase from Streptomyces coelicolor A3(2) were cloned and expressed in Escherichia coli BL21 (DE3). Two recombinant enzymes (SC1059 and SC7558) were purified and characterized. The molecular mass of the purified SC1059 and SC7558 as determined by SDS-PAGE agrees with the calculated values (51.0 and 52.2 kDa, respectively). Optimal temperature and pH for the two enzymes were both at 35 °C and 6.0. SC7558 exhibited to be much more active than SC1059 under optimal conditions, and it was recombined with ice nucleation protein which could anchor on the surface of the cell. The optimal temperature and pH of the recombinant cells were 55 °C and 8.0, respectively. The resultant cells were to be used as material for immobilized β-glucosidase, which is convenient to catalyze substrates in various complicated conditions. PMID:23722947

  17. Streptomyces araujoniae Produces a Multiantibiotic Complex with Ionophoric Properties to Control Botrytis cinerea.

    Science.gov (United States)

    Silva, Leonardo José; Crevelin, Eduardo José; Souza, Wallace Rafael; Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares; Zucchi, Tiago Domingues

    2014-12-01

    A recently described actinomycete species (Streptomyces araujoniae ASBV-1(T)) is effective against many phytopathogenic fungi. In this study, we evaluated the capacity of this species to inhibit Botrytis cinerea development in strawberry pseudofruit, and we identified the chemical structures of its bioactive compounds. An ethyl acetate crude extract (0.1 mg ml(-1)) of ASBV-1(T) fermentation broth completely inhibited fungus growth in strawberry pseudofruit under storage conditions. The crude extract was fractionated by preparative high-performance liquid chromatography; the active fraction was further evaluated by tandem mass spectrometry. ASBV-1(T) produced a multiantibiotic complex with ionophoric properties. This complex contained members of the macrotetralides class (including monactin, dinactin, trinactin, and tetranactin) and the cyclodepsipeptide valinomycin, all of which were active against B. cinerea. Furthermore, the addition of 2 mM MgSO4 and 1 mM ZnSO4 enhanced macrotetralide and valinomycin production, respectively, in the culture broth. These compounds are considered to be the main active molecules that S. araujoniae produces to control B. cinerea. Their low to moderate toxicity to humans and the environment justifies the application of ASBV-1(T) in biological control programs that aim to mitigate the damage caused by this phytopathogen. PMID:24983843

  18. An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis.

    Directory of Open Access Journals (Sweden)

    Yi Qiu

    Full Text Available CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5'-AAG-3' was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis.

  19. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23

    Indian Academy of Sciences (India)

    S K Augustine; S P Bhavsar; B P Kapadnis

    2005-03-01

    In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic.

  20. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    Science.gov (United States)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  1. In vitro Cellulose Rich Organic Material Degradation by Cellulolytic Streptomyces albospinus (MTCC 8768

    Directory of Open Access Journals (Sweden)

    Pinky Prasad

    2012-09-01

    Full Text Available Aims: Cellulosic biomass is the only foreseeable sustainable source of fuels and is also one of the dominating waste materials in nature resulting from human activities. Keeping in view the environmental problems like disposal of large volumes of cellulosic wastes and shortage of fossil fuel in the world, the main aim of the present investigation was to characterize and study the cellulolytic activity of Streptomyces albospinus (MTCC 8768, isolated from municipal wastes, on natural cellulosic substrates viz. straw powder, wood powder and finely grated vegetable peels.Methodology and Result: Stanier’s Basal broth with 100 mg of each of the substrates was inoculated separately with S. albospinus (MTCC No. 8768 and incubated at 37 °C for 8 days. The cellulosic substrates were re-weighed at an interval of 2 days and the difference between the initial weight and the final weight gave the amount of substratesdegraded by the isolate. It was observed that maximum degradation was observed in the grated vegetable peels (64 mg followed by straw powder (38 mg and wood powder (28 mg over a period of 8 days.Conclusion, significance and impact of study: By the selection of efficient cellulolytic microorganisms and cost-effective operational techniques, the production of useful end products from the biodegradation of the low cost enormous stock of cellulose in nature can be very beneficial.

  2. Antifungal Effect of Streptomyces 702 Antifungal Monomer Component DZP8 on Rhizoctonia solani and Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The aim of this study was to investigate the in vitro antifungal effects of antifungal monomer component DZP8 isolated from Streptomyces 702 on the mycelium growth, sclerotium formation and germination of Rhizoctonia solani and on the mycelium growth, conidial formation, germination, appressorium formation of Magnaporthe grisea. The results showed that the antifungal monomer component DZP8 has strong antifungal effect on both the R. solani and M. grisea. The EC50 and EC90 of DZP8 were 1.81 and 3.35 μg/ml on Ft. solani respectively, and 37.01 and 136.21 μg/ml on M. grisea respectively. Under the treatment of 48.01 μg/ml DZP8, the sclerotium formation rate of R. solani was just 39.21%, the formation time delayed by 216 h and the dry weight decreased by 81.37% in comparison the con- trol; and 33.51 μg/ml DZP8 significantly inhibited the sclerotium germination. In the presence of 160.08 μg/ml DZP8, the sporulation of M. grisea was just 9.29% of control sample; 20.14 μg/ml DZP8 inhibited the conidial germination suppression rate by 95.16%, and the appressorium formation by 100%.

  3. A Freshwater Streptomyces, Isolated from Tyume River, Produces a Predominantly Extracellular Glycoprotein Bioflocculant

    Directory of Open Access Journals (Sweden)

    Anthony I. Okoh

    2012-07-01

    Full Text Available We evaluated bioflocculant production by a freshwater actinobacteria whose 16S rDNA nucleotide sequence was deposited in GenBank as Streptomyces sp. Gansen (accession number HQ537129. Optimum culture conditions for bioflocculant production were an initial medium pH of 6.8, incubation temperature of 30 °C, agitation speed of 160 rpm and an inoculum size of 2% (v/v of cell density 1.5 × 108 cfu/mL. The carbon, nitrogen and cation sources for optimum bioflocculant production were glucose (89% flocculating activity, ammonium sulfate (76% flocculating activity and MgCl2. Bioflocculant pyrolysis showed three step decomposition indicative of three components while chemical analyses showed 78% carbohydrate and 22% protein (wt/wt. The mass ratio of neutral sugar, amino sugar and uronic acids was 4.6:2.4:3. FTIR spectrometry indicated the presence of carboxyl, hydroxyl and amino groups, typical for heteropolysaccharide. The bioflocculant showed a lattice structure as seen by SEM imaging. Its high flocculation activity suggests its suitability for industrial applicability.

  4. Xylanase Activity of Streptomyces violascences BF 3.10 on Xylan Corncobs and its Xylooligosaccharide Production

    Directory of Open Access Journals (Sweden)

    W. Salupi

    2015-04-01

    Full Text Available Corn is one of the important carbohydrate sources in Indonesia that is mainly used for food and industrial materials. In addition, the byproducts of corn, such as corncobs, have been reported as xylan-containing materials that can be utilized as substrate in xylooligosaccharides (XOS production. XOS are natural prebiotic fibers that can enhance the performance of animal’s digestive system. The main objective of this study was to exploit xylan from corncobs to produce XOS. The research consisted of extraction and production of xylan from corncobs and the synthesis of XOS from corncob-produced xylan. The corncob and Streptomyces violascens BF 3.10 xylanase is a collection of PPSHB IPB Laboratory. Corncobs xylan extracted by using alkaline method and reducting sugar was analyzed by dinitrosalicylic acid method. The xylan extraction from corncobs could produce 7.93% (w/w of xylan. The activity of S. violascens BF 3.10 xylanase on the substrate of concorb-produced xylan was 6.4 U/mL at the optimum temperature of 60 °C in 50 mM phosphate buffer with pH 5.5. The thin layer chromatography analysis indicated that 1% (w/v corn-cob xylan could produce XOS with degree of polymerization (DP 3.92. XOS, with DP ranging from 2-4, could be used as a livestock feed mixture to stimulate the growth of normal microbes in the gastrointestinal tract of livestock.

  5. Biocontrol of Botrytis allii Munn the Causal Agent of Neck Rot, the Post Harvest Disease in Onion, by use of a New Iranian Isolate of Streptomyces

    Directory of Open Access Journals (Sweden)

    M. Jorjandi

    2009-01-01

    Full Text Available Problem statement: Soil actinomycetes particularly Streptomyces spp. showed antagonistic activity against wide range of plant pathogens. In the recent decades they have attracted high interests as biocontrol agents. Onion neck rot or gray mold caused by Botrytis allii have imposed economic post harvest damages to onion bulbs and decreased its storage durability and market value. Approach: To investigate for biocontrol means against the pathogen, antagonistic activity of 50 isolates of soil Actinomycetes were assayed through agar disk method and dual culture bioassays. Active isolates were exposed to chloroform for detection of antibiotic. Minimum Inhibitory Concentration (MIC value and solubility of active crude extract in organic solvents were determined for Streptomyces isolate No. 347 which showed a unique and stable property of inhibiting Botrytis allii. To investigate the antagonistic effect of Streptomyces isolate No. 347 on control of onion gray mold, 4 different treatments were tested by means of Tukey HSD test. Results: From the tested isolates, 13 showed anti gray mold activities. Exposure of active isolates to chloroform revealed that Streptomyces isolates No. 347, 263 and 350 retained their antifungal activities. The active metabolite(s of Streptomyces isolate No. 347 was polar, soluble in H2O but insoluble in chloroform and methanol. MIC of the crude was determined as 0.05 mg mL-1 against B. allii. Stability of the active crude in distilled water at room temperature (12-30°C was about 6 months. Statistical studies indicated that Streptomyces isolates No. 347 can decrease losses of neck rot with significant level (pConclusion: The future goals include investigation of the antifungal genes in active isolates as candidates for genetic engineering of onion for increased tolerance against B. allii.

  6. Generación de una cepa mutante de Streptomyces coelicolor para su uso como hospedador en la producción de compuestos bioactivos

    OpenAIRE

    Álvarez Alonso, Raquel

    2013-01-01

    Los actinomicetos son bacterias Gram-positivas, y dentro de ellos se encuentra el género Streptomyces, que es su género más extenso. Muchas de las especies de este género producen antibióticos y otros metabolitos secundarios como por ejemplo, antitumorales, antibióticos o inmunosupresores. Streptomyces coelicolor, la especie más conocida y que destaca como modelo genético, muestra en su genoma un agrupamiento génico para la síntesis de hopanoides e isoprenoides. Estos hopanoides bacterianos t...

  7. Caracterización mediante Biología de Sistemas del ciclo de desarrollo de Streptomyces y sus aplicaciones biotecnológicass

    OpenAIRE

    Yagüe Menéndez, Paula

    2012-01-01

    A pesar del hecho de que la mayoría de los procesos industriales para la producción de metabolitos secundarios se realizan en cultivos líquidos, no existe un modelo fiable de desarrollo para Streptomyces bajo estas condiciones. Con la excepción de unas pocas especies que esporulan en líquido, se supuso que ningún proceso de diferenciación morfológica tiene lugar en estas condiciones. En esta tesis, se describen las nuevas características en el desarrollo de Streptomyces en cultivos líquidos ...

  8. Degradation of Textile Dye Reactive Navy – Blue Rx (Reactive blue–59 by an Isolated Actinomycete Streptomyces krainskii SUK – 5

    Directory of Open Access Journals (Sweden)

    Mane, U. V.

    2008-01-01

    Full Text Available The isolated Actinomycete, Streptomyces krainskii, SUK -5 was found to decolorize and degrade textile dye Reactive blue–59.This azo dye was decolorized and degraded completely by Streptomyces krainskii SUK–5 at 24 h in shaking condition in the nutrient medium at pH 8. Induction in the activity of Lignin Peroxidase,and NADH-DCIP Reductase and MR reductase represents their role in degradation .The biodegradation was monitored by TLC, UV vis spectroscopy, FTIR. and GCMS analysis. Microbial and phytotoxicity studies of the product were carried out.

  9. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea

    OpenAIRE

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Alekhya, Gottumukkala; Prakash, Bandikinda; Kudapa, Himabindu; Rathore, Abhishek; Varshney, Rajeev Kumar

    2015-01-01

    The physiological and molecular responses of five strains of Streptomyces sp. (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), with their proven potential for charcoal rot disease control in sorghum and plant growth-promotion (PGP) in sorghum and rice, were studied to understand the mechanisms causing the beneficial effects. In this investigation, those five strains were evaluated for their PGP capabilities in chickpea in the 2012–13 and 2013–14 post-rainy seasons. All of the Streptomyces sp. str...

  10. Cloning, characterization, and heterologous expression of the Saccharopolyspora erythraea (Streptomyces erythraeus) gene encoding an EF-hand calcium-binding protein.

    OpenAIRE

    Swan, D G; Cortes, J; Hale, R S; Leadlay, P F

    1989-01-01

    The regulatory effects of Ca2+ in eucaryotic cells are mostly mediated by a superfamily of Ca2+-binding proteins (CABs) that contain one or more characteristic Ca2+-binding structural motifs, referred to as EF hands. We have cloned and sequenced the structural gene for an authentic EF-hand CAB from the spore-forming gram-positive bacterium Saccharopolyspora erythraea (formerly Streptomyces erythraeus). When the gene was introduced into Streptomyces lividans on the high-copy plasmid vector pIJ...

  11. Secretion of an alkaline protease from a salt- tolerant and alkaliphilic, Streptomyces clavuligerus strain Mit-1 Secreção de uma protease alcalina por uma cepa halotolerante e alcalifílica de Streptomyces clavuligerus, Mit-1

    OpenAIRE

    Jignasha T. Thumar; Singh, Satya P.

    2007-01-01

    An alkaliphilic and salt- tolerant actinomycete, Streptomyces clavuligerus strain Mit-1, was isolated from Mithapur, the western coast of India. The organism was Gram-positive, having filamentous, long thread like structure. The sporulation started after two days of growth and the optimum level of alkaline protease (130 U/ml) was produced during the early stationary phase. The strain could grow and produce protease with 0-10% NaCl (w/v), the optimum being 5% NaCl (w/v). Growth and protease pr...

  12. Expression of the endogenous and heterologous clavulanic acid cluster in Streptomyces flavogriseus: why a silent cluster is sleeping.

    Science.gov (United States)

    Alvarez-Álvarez, R; Martínez-Burgo, Y; Pérez-Redondo, R; Braña, A F; Martín, J F; Liras, P

    2013-11-01

    Clusters for clavulanic acid (CA) biosynthesis are present in the actinomycetes Streptomyces flavogriseus ATCC 33331 and Saccharomonospora viridis DSM 43017. These clusters, which are silent, contain blocks of conserved genes in the same order as those of the Streptomyces clavuligerus CA cluster but assembled in a different organization. S. flavogriseus was grown in nine different media, but clavulanic acid production was undetectable using bioassays or by high-performance liquid chromatography analyses. Reverse-transcriptase polymerase chain reaction (RT-PCR) of S. flavogriseus CA biosynthesis genes showed that the regulatory genes ccaR and claR and some biosynthetic genes were expressed whereas expression of cyp, orf12, orf13, and oppA2 was undetectable. The ccaR gene of S. clavuligerus was unable to switch on CA production in S. flavogriseus::[Pfur-ccaR C], but insertion of a cosmid carrying the S. clavuligerus CA cluster (not including the ccaR gene) conferred clavulanic acid production on S. flavogriseus::[SCos-CA] particularly in TBO and YEME media; these results suggests that some of the S. flavogriseus CA genes are inactive. The known heptameric sequences recognized by CcaR in S. clavuligerus are poorly or not conserved in S. flavogriseus. Quantitative RT-PCR analysis of the CA gene clusters of S. clavuligerus and S. flavogriseus showed that the average expression value of the expressed genes in the former strain was in the order of 1.68-fold higher than in the later. The absence of CA production by S. flavogriseus can be traced to the lack of expression of the essential genes cyp, orf12, orf13, orf14, and oppA2. Heterologous expression of S. clavuligerus CA gene cluster in S. flavogriseus::[SCos-CA] was 11- to 14-fold lower than in the parental strain, suggesting that the genetic background of the host strain is important for optimal production of CA in Streptomyces.

  13. Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Fróes, Adriana; Macrae, Andrew; Rosa, Juliana; Franco, Marcella; Souza, Rodrigo; Soares, Rosângela; Coelho, Rosalie

    2012-10-01

    Control of plant pathogen Sclerotinia sclerotiorum is an ongoing challenge because of its wide host range and the persistence of its sclerotia in soil. Fungicides are the most commonly used method to control this fungus but these can have ecotoxicity impacts. Chitinolytic Streptomyces strains isolated from Brazilian tropical soils were capable of inhibiting S. sclerotiorum growth in vitro, offering new possibilities for integrated pest management and biocontrol, with a new approach to dealing with an old problem. Strain Streptomyces sp. 80 was capable of irreversibly inhibiting fungal growth. Compared to other strains, its crude enzymes had the highest chitinolytic levels when measured at 25°C and strongly inhibited sclerotia from S. sclerotiorum. It produced four hydrolytic enzymes involved in fungal cell wall degradation when cultured in presence of the fungal mycelium. The best production, obtained after three days, was 0.75 U/ml for exochitinase, 0.9 U/ml for endochitinase, 0.16 U/ml for glucanase, and 1.78 U/ml for peptidase. Zymogram analysis confirmed two hydrolytic bands of chitinolytic activity with apparent molecular masses of 45.8 and 206.8 kDa. One glucanase activity with an apparent molecular mass of 55 kDa was also recorded, as well as seven bands of peptidase activity with apparent molecular masses ranging from 15.5 to 108.4 kDa. Differential interference contrast microscopy also showed alterations of hyphal morphology after co-culture. Streptomyces sp. 80 seems to be promising as a biocontrol agent against S. sclerotiorum, contributing to the development of new methods for controlling plant diseases and reducing the negative impact of using fungicides. PMID:23124748

  14. Effects of YM-51084 and YM-51085, new inhibitors produced by Streptomyces sp. Q21705, on cathepsin L.

    Science.gov (United States)

    Teramura, K; Orita, M; Matsumoto, H; Yasumuro, K; Abe, K

    1996-10-01

    The structures of YM-51084 and YM-51085, new protease inhibitors produced by Streptomyces sp. Q21705, were determined by 1H- and 13C-NMR and mass spectrometry. Both were characterized by the basic structures of an acyl-tripeptide. YM-51084 was elucidated to be isovaleryl-tyrosyl-valyl-phenylalaninal and YM-51085 was the reduced phenylalaninol form of YM-51084. These compounds proved to strongly inhibit human kidney cathepsin L; the IC50 values being 9.6 x 10(-9) M and 3.5 x 10(-7) M, respectively. PMID:9204400

  15. Deciphering the regulon of the Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production.

    OpenAIRE

    Rico, Sergio; Santamaría, Ramón I; Yepes, Ana; Rodríguez, Héctor; Laing, Emma; Bucca, Giselda; Smith, Colin P; Díaz, Margarita

    2014-01-01

    The atypical two-component system (TCS) AbrC1/C2/C3 (encoded by SCO4598, SCO4597, and SCO4596), comprising two histidine kinases (HKs) and a response regulator (RR), is crucial for antibiotic production in Streptomyces coelicolor and for morphological differentiation under certain nutritional conditions. In this study, we demonstrate that deletion of the RR-encoding gene, abrC3 (SCO4596), results in a dramatic decrease in actinorhodin (ACT) and undecylprodiginine (RED) production and delays m...

  16. Brewer's spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires do Nascimento

    2011-12-01

    Full Text Available Brewer's spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates.

  17. Function and Redundancy of the Chaplin Cell Surface Proteins in Aerial Hypha Formation, Rodlet Assembly, and Viability in Streptomyces coelicolor▿

    OpenAIRE

    Di Berardo, Christina; Capstick, David S.; Bibb, Maureen J.; Findlay, Kim C.; Buttner, Mark J.; Elliot, Marie A.

    2008-01-01

    The chaplins are a family of eight secreted proteins that are critical for raising aerial hyphae in Streptomyces coelicolor. These eight chaplins can be separated into two main groups: the long chaplins (ChpA to -C) and the short chaplins (ChpD to -H). The short chaplins can be further subdivided on the basis of their abilities to form intramolecular disulfide bonds: ChpD, -F, -G, and -H contain two Cys residues, while ChpE has none. A “minimal chaplin strain” containing only chpC, chpE, and ...

  18. Purification and Characterization of 2,6-β-d-Fructan 6-Levanbiohydrolase from Streptomyces exfoliatus F3-2

    OpenAIRE

    Saito, Katsuichi; Kondo, Kazuya; Kojima, Ichiro; Yokota, Atsushi; Tomita, Fusao

    2000-01-01

    Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH an...

  19. 耐碱放线菌Streptomyces sindenensis OUCMDZ-1368的次生代谢产物研究%Secondary metabolites of alkalitolerant Streptomyces sindenensis OUCMDZ-1368

    Institute of Scientific and Technical Information of China (English)

    廖庆云; 王智颖; 李文均; 朱伟明

    2015-01-01

    目的 研究碱胁迫对放线菌次生代谢产物的影响,寻找结构新颖并具有抗菌和肿瘤细胞毒活性的化合物.方法 采用化学和生物活性相结合的集成筛选方法,从耐碱放线菌中筛选获得代谢产物丰富并具有生物活性的目标菌株;通过碱胁迫目标菌株,利用硅胶柱色谱、凝胶柱色谱和高效液相色谱等方法对发酵产物进行分离和纯化,运用波谱学和钼靶X-射线单晶衍射分析方法鉴定化合物的结构.结果 筛选到一株高产吩嗪生物碱的耐碱放线菌OUCMDZ-1368,鉴定为链霉菌Streptomyces sindenensis;该菌株在pH9的培养基中的次生代谢产物的产量最大,从其发酵产物中分离鉴定了11个化合物,其结构分别为phenazine-1-carboxamide(1,主产物)、phenazine-1-carboxylic acid(2,主产物)、(E)-2-non-l-en-l-yl-4(1H)quinolone (3)、2-methyl-4(1H)quinolone (4)、2-heptyl-4(1H)quinolone (5)、2-nonyl-4(1H)quinolone (6)、2-undecyl-4(1H) quinolone (7)、2-heptyl-3-hydroxy-4(1H)quinolone (8)、2-nonyl-3-hydroxyl-4(1H)quinolone (9)、S-methyl-2,4-dihydroxy-3,5-dimethyl-6-isopropylbenzothioate (10)和N-[2-(4-hydroxyphenyl)ethyl] acetamide (11);化合物1和2对A549细胞有中等程度抑制活性,IC50分别为4.9和5.0μmol/L,化合物1-10分别对金黄色葡萄球菌、枯草杆菌、铜绿假单孢菌、产气杆菌以及白念珠菌表现出不同程度的抑制作用(MIC 17~45tmol/L).结论 培养基的pH值影响放线菌的次生代谢产物,通过碱调节可以诱导微生物产生不同的活性代谢产物.

  20. Feather hydrolysate from Streptomyces sampsonii GS 1322: A potential low cost soil amendment.

    Science.gov (United States)

    Jain, Richa; Jain, Aakanchha; Rawat, Neha; Nair, Meera; Gumashta, Raghvendra

    2016-06-01

    Process parameters for obtaining hydrolysate from hen feathers, i.e., initial pH (5.0-9.0) and incubation period (1-6 day), were set and studied, using Streptomyces sampsonii GS 1322 in submerged and solid state conditions. Under submerged conditions, complete hydrolysis of feathers was observed on fifth day [initial pH 8.0, 28 ± 2°C, shaking (150 rpm)] with release of soluble protein (2985 μg ml(-1)) and amino acids (2407 μg ml(-1)). Cell free hydrolysate showed hydrolysis of casein (18 mm), gelatin (26 mm), collagen (31 mm), hemoglobin (23 mm) and Tween 80 (35 mm) while 445 U keratinase activity. Total soluble protein reached 5 mg ml(-1) in solid state conditions. During Pot experimentation using barren agriculture soil the effect of feather hydrolysate on wheat crop were recorded. Significant increase (pseed germination was observed in treated soils as compared to untreated. Treatment significantly increased plant height from 30 to 60 days and 30-90 days (p<0.001). Treated soil showed an increase in total microbial count, proteolytic activity, phosphate solubilizing bacteria and ammonifying bacteria, whereas pathogenic fungi load was reduced. S. sampsonii GS 1322 can be used for bio-processing of poultry wastes yielding feather hydrolysate rich in proteins and amino acids for development of low-cost organic amendment to accelerate wheat crop growth in barren agricultural land. PMID:26906933