WorldWideScience

Sample records for cancer vaccine strategy

  1. An autoimmune-mediated strategy for prophylactic breast cancer vaccination.

    Science.gov (United States)

    Jaini, Ritika; Kesaraju, Pavani; Johnson, Justin M; Altuntas, Cengiz Z; Jane-Wit, Daniel; Tuohy, Vincent K

    2010-07-01

    Although vaccination is most effective when used to prevent disease, cancer vaccine development has focused predominantly on providing therapy against established growing tumors. The difficulty in developing prophylactic cancer vaccines is primarily due to the fact that tumor antigens are variations of self proteins and would probably mediate profound autoimmune complications if used in a preventive vaccine setting. Here we use several mouse breast cancer models to define a prototypic strategy for prophylactic cancer vaccination. We selected alpha-lactalbumin as our target vaccine autoantigen because it is a breast-specific differentiation protein expressed in high amounts in the majority of human breast carcinomas and in mammary epithelial cells only during lactation. We found that immunoreactivity against alpha-lactalbumin provides substantial protection and therapy against growth of autochthonous tumors in transgenic mouse models of breast cancer and against 4T1 transplantable breast tumors in BALB/c mice. Because alpha-lactalbumin is conditionally expressed only during lactation, vaccination-induced prophylaxis occurs without any detectable inflammation in normal nonlactating breast tissue. Thus, alpha-lactalbumin vaccination may provide safe and effective protection against the development of breast cancer for women in their post-child-bearing, premenopausal years, when lactation is readily avoidable and risk for developing breast cancer is high.

  2. Tailoring DNA vaccines: designing strategies against HER2 positive cancers

    Directory of Open Access Journals (Sweden)

    Cristina eMarchini

    2013-05-01

    Full Text Available The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial (EudraCT 2011-001104-34.

  3. Strategies for Developing Oral Vaccines for Human Papillomavirus (HPV) Induced Cancer using Nanoparticle mediated Delivery System.

    Science.gov (United States)

    Uddin, Mohammad Nasir; Kouzi, Samir A; Hussain, Muhammad Delwar

    2015-01-01

    Human Papillomaviruses (HPV) are a diverse group of small non-enveloped DNA viruses. Some HPVs are classified as low-risk as they are very rarely associated with neoplasia or cancer in the general population, and cause lenient warts. Other HPVs are considered as high-risk types because they are responsible for several important human cancers, including cervical cancer, a large proportion of other anogenital cancers, and a growing number of head and neck cancers. Transmission of HPV occurs primarily by skin-to-skin contact. The risk of contracting genital HPV infection and cervical cancer is influenced by sexual activity. Currently two prophylactic HPV vaccines, Gardasil® (Merck, USA) and Cervarix® (GlaxoSmithKline, UK), are available and recommended for mass immunization of adolescents. However, these vaccines have limitations as they are expensive and require cold chain storage and trained personnel to administer them by injection. The use of nano or micro particulate vaccines could address most of these limitations as they are stable at room temperature, inexpensive to produce and distribute to resource poor regions, and can be administered orally without the need for adjuvants in the formulation. Also it is possible to increase the efficiency of these particulate vaccines by decorating the surface of the nano or micro particulates with suitable ligands for targeted delivery. Oral vaccines, which can be delivered using particulate formulations, have the added potential to stimulate mucosa-associated lymphoid tissue located in the digestive tract and the gut-associated lymphoid tissue, both of which are important for the induction of effective mucosal response against many viruses. In addition, oral vaccines provide the opportunity to reduce production and administration costs and are very patient compliant. This review elaborately discusses different strategies that can be pursued to develop a nano or micro particulate oral vaccine for HPV induced cancers and

  4. Immunotherapy and therapeutic vaccines in prostate cancer:an update on current strategies and clinical implications

    Institute of Scientific and Technical Information of China (English)

    B Harpreet Singh; James L Gulley

    2014-01-01

    In recent years, immunotherapy has emerged as a viable and attractive strategy for the treatment of prostate cancer. While there are multiple ways to target the immune system, therapeutic cancer vaccines and immune checkpoint inhibitors have been most successful in late-stage clinical trials. The landmark Food and Drug Administration approval of sipuleucel-T for asymptomatic or minimally symptomatic metastatic prostate cancer set the stage for ongoing phase III trials with the cancer vaccine PSA-TRICOM and the immune checkpoint inhibitor ipilimumab. A common feature of these immune-based therapies is the appearance of improved overall survival without short-term changes in disease progression. This class effect appears to be due to modulation of tumor growth rate kinetics, in which the activated immune system exerts constant immunologic pressure that slows net tumor growth. Emerging data suggest that the ideal population for clinical trials of cancer vaccines is patients with lower tumor volume and less aggressive disease. Combination strategies that combine immunotherapy with standard therapies have been shown to augment both immune response and clinical beneift.

  5. Immunotherapy and therapeutic vaccines in prostate cancer: an update on current strategies and clinical implications

    Directory of Open Access Journals (Sweden)

    B Harpreet Singh

    2014-06-01

    Full Text Available In recent years, immunotherapy has emerged as a viable and attractive strategy for the treatment of prostate cancer. While there are multiple ways to target the immune system, therapeutic cancer vaccines and immune checkpoint inhibitors have been most successful in late-stage clinical trials. The landmark Food and Drug Administration approval of sipuleucel-T for asymptomatic or minimally symptomatic metastatic prostate cancer set the stage for ongoing phase III trials with the cancer vaccine PSA-TRICOM and the immune checkpoint inhibitor ipilimumab. A common feature of these immune-based therapies is the appearance of improved overall survival without short-term changes in disease progression. This class effect appears to be due to modulation of tumor growth rate kinetics, in which the activated immune system exerts constant immunologic pressure that slows net tumor growth. Emerging data suggest that the ideal population for clinical trials of cancer vaccines is patients with lower tumor volume and less aggressive disease. Combination strategies that combine immunotherapy with standard therapies have been shown to augment both immune response and clinical benefit.

  6. The impact of dendritic cell-tumor fusion cells on cancer vaccines - past progress and future strategies.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Ohkusa, Toshifumi; Koido, Shigeo

    2015-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that can be used in cancer vaccines. Thus, various strategies have been developed to deliver tumor-associated antigens via DCs. One strategy includes administering DC-tumor fusion cells (DC-tumor FCs) to induce antitumor immune responses in cancer patients. However, clinical trials using this strategy have fallen short of expectations. Several factors might limit the efficacy of these anticancer vaccines. To induce efficient antitumor immune responses and enhance potential clinical benefits, DC-tumor FC-based cancer vaccines require manipulations that improve immunogenicity for both DCs and whole tumor cells. This review addresses recent progress in improving clinical outcomes using DC-tumor FC-based cancer vaccines. PMID:26507578

  7. Strategies to vaccinate against cancer of the cervix: feasibility of a school-based HPV vaccination program in Peru.

    Science.gov (United States)

    Penny, Mary; Bartolini, Rosario; Mosqueira, N Rocio; LaMontagne, D Scott; Mendoza, Maria Ana; Ramos, Irma; Winkler, Jennifer L; Villafana, Jose; Janmohamed, Amynah; Jumaan, Aisha O

    2011-07-12

    Operational research using a mixed method, cross-sectional, case-study approach assessed the feasibility and health system impact of large-scale implementation of human papillomavirus (HPV) vaccination into routine vaccine delivery by the Ministry of Health in Peru. The strategy was school-based vaccination of fifth grade girls in 527 primary schools in Piura region. Our evaluation showed that school-based HPV vaccination is feasible without major changes in existing health systems. This was reflected in the opinions of health personnel, the lack of impact on other vaccine coverage, and the high HPV vaccine coverage documented in routine records and by an independent community-based survey.

  8. Typhoid fever vaccination strategies.

    Science.gov (United States)

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control.

  9. Cancer immunotherapy: moving beyond current vaccines

    OpenAIRE

    Rosenberg, Steven A.; Yang, James C.; Restifo, Nicholas P

    2004-01-01

    Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regre...

  10. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, O; Svane, I M;

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  11. Vaccine strategies against schistosomiasis

    Directory of Open Access Journals (Sweden)

    A. Capron

    1992-01-01

    Full Text Available Schistosomiasis, the second major parasitic disease in the world after malaria affects at least 200 million people, 500 million being exposed to the risk of infection. It is widely agreed that a vaccine strategy wich could lead to the induction of effector mechanisms reducing the level of reinfection and ideally parasite fecundity would deeply affect the incidence of pathological manifestations as well as the parasite transmission potentialities. Extensive studies performed in the rat model have allowed the identification of novel effector mechanisms involving IgE antibodies and various inflammatory cell populations (eosinophils, macrophages and platelets whereas regulation of immune response by blocking antibodies has been evidencial. Recent epidemiological studies have now entirely confirmed in human populations the the role of IgE antibodies in the acquisition of resistance and the association of IgG4 blocking antibodies with increased susceptibility. On the basis of these concepts, several schistosome glutathion S-transferase (Sm 28 GST appears as a pronising vaccine candidate. Immunization experiments have shown that two complementary goals can be achieved: (a a partial but significant reduction of the worm population (up to 60//in rats; (b a significant reduction of parasite fecundity (up in the mice and 85//in cattle and egg viability (up to 80//. At least two distinct immunological mechanisms account for these two effects. IgE antibodies appear as a major humoral component of acquired resistance whereas IgA antibodies appear as a major humoral factor affecting parasite fecundity. These studies seem to represent a parasite diseases through the identification of potentially protective antigens and of the components of the immune response which vaccination should aim at inducing.

  12. HIV Vaccine Development: Strategies for Preclinical and Clinical Investigation

    OpenAIRE

    Shapiro, Stuart Z.

    2013-01-01

    This article discusses HIV vaccine discovery and candidate vaccine testing in the context of current realities of funding and clinical trial practice. Lacking perfect animal models for testing candidate HIV vaccines, clinical investigators have proposed a strategy of iterative exploratory clinical trials in the model of cancer chemotherapy development. Problems with the appropriateness of this model to HIV vaccine development are discussed. Also, the future feasibility of this strategy in the...

  13. Dissecting Cancer Vaccines

    Institute of Scientific and Technical Information of China (English)

    Jennifer Couzin; 丁东

    2004-01-01

    @@ If there's one thing cancer vaccine developers would like to know, it's why only a handful of patients respond strongly to their inventions. Now at an immunology② meeting here, a team of scientists reported that a set of patients with metastatic melanoma③ may be revealing an answer to that mysterious question.

  14. Cancer Vaccines: A Brief Overview.

    Science.gov (United States)

    Thomas, Sunil; Prendergast, George C

    2016-01-01

    Vaccine approaches for cancer differ from traditional vaccine approaches for infectious disease in tending to focus on clearing active disease rather than preventing disease. In this review, we provide a brief overview of different types of vaccines and adjuvants that have been investigated for the purpose of controlling cancer burdens in patients, some of which are approved for clinical use or in late-stage clinical trials, such as the personalized dendritic cell vaccine sipuleucel-T (Provenge) and the recombinant viral prostate cancer vaccine PSA-TRICOM (Prostvac-VF). Vaccines against human viruses implicated in the development and progression of certain cancers, such as human papillomavirus in cervical cancer, are not considered here. Cancers express "altered self" antigens that tend to induce weaker responses than the "foreign" antigens expressed by infectious agents. Thus, immune stimulants and adjuvant approaches have been explored widely. Vaccine types considered include autologous patient-derived immune cell vaccines, tumor antigen-expressing recombinant virus vaccines, peptide vaccines, DNA vaccines, and heterologous whole-cell vaccines derived from established human tumor cell lines. Opportunities to develop effective cancer vaccines may benefit from seminal recent advances in understanding how immunosuppressive barricades are erected by tumors to mediate immune escape. In particular, targeted ablation of these barricades with novel agents, such as the immune checkpoint drug ipilimumab (anti-CTLA-4) approved recently for clinical use, may offer significant leverage to vaccinologists seeking to control and prevent malignancy.

  15. Anthrax vaccination strategies

    OpenAIRE

    Cybulski, Robert J.; Sanz, Patrick; O'Brien, Alison D.

    2009-01-01

    The biological attack conducted through the U.S. postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune res...

  16. Therapeutic Vaccination for HPV Induced Cervical Cancers

    Directory of Open Access Journals (Sweden)

    Joeli A. Brinkman

    2007-01-01

    Full Text Available Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  17. Cancer Vaccines in Ovarian Cancer: How Can We Improve?

    Directory of Open Access Journals (Sweden)

    Silvia Martin Lluesma

    2016-05-01

    Full Text Available Epithelial ovarian cancer (EOC is one important cause of gynecologic cancer-related death. Currently, the mainstay of ovarian cancer treatment consists of cytoreductive surgery and platinum-based chemotherapy (introduced 30 years ago but, as the disease is usually diagnosed at an advanced stage, its prognosis remains very poor. Clearly, there is a critical need for new treatment options, and immunotherapy is one attractive alternative. Prophylactic vaccines for prevention of infectious diseases have led to major achievements, yet therapeutic cancer vaccines have shown consistently low efficacy in the past. However, as they are associated with minimal side effects or invasive procedures, efforts directed to improve their efficacy are being deployed, with Dendritic Cell (DC vaccination strategies standing as one of the more promising options. On the other hand, recent advances in our understanding of immunological mechanisms have led to the development of successful strategies for the treatment of different cancers, such as immune checkpoint blockade strategies. Combining these strategies with DC vaccination approaches and introducing novel combinatorial designs must also be considered and evaluated. In this review, we will analyze past vaccination methods used in ovarian cancer, and we will provide different suggestions aiming to improve their efficacy in future trials.

  18. Preventing Cervical Cancer with HPV Vaccines

    Science.gov (United States)

    Cervical cancer can be prevented with HPV vaccines. NCI-supported researchers helped establish HPV as a cause of cervical cancer. They also helped create the first HPV vaccines, were involved in the vaccine trials, and contribute to ongoing studies.

  19. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  20. RNA-Based Vaccines in Cancer Immunotherapy.

    Science.gov (United States)

    McNamara, Megan A; Nair, Smita K; Holl, Eda K

    2015-01-01

    RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  1. Cancer vaccine THERATOPE- Biomira.

    Science.gov (United States)

    2003-01-01

    Biomira is developing a therapeutic cancer vaccine [THERATOPE] for treatment of breast and other cancers. This profile has been selected from R&D Insight, a pharmaceutical intelligence database produced by Adis International Ltd. THERATOPE consists of the mucin antigen, sialyl-Tn (STn), a carbohydrate located on the surface of breast, colorectal and ovarian cancer cells, conjugated to keyhole limpet haemocyanin (KLH). Merck KGaA has acquired a worldwide licence to THERATOPE for treatment of breast cancer. Under the terms of the licence, Biomira and Merck KGaA, via its US affiliate, EMD Pharmaceuticals, will jointly market the vaccine in the US. Merck KGaA holds exclusive marketing rights for the rest of the world, except in Canada (where Biomira retains rights), Israel and the Palestine Autonomy Area. Merck KGaA is now collaborating on phase III development for breast cancer. Biomira stands to receive $US150 million in licence, milestone payments and equity investments. The development costs will be shared between the two companies in North America but Merck KGaA will be solely responsible for these costs in countries outside the US. Previously, Chiron Corporation had purchased a licence to THERATOPE in 1997; however, Chiron terminated this agreement in June 2000. Under the terms of the termination, Biomira paid Chiron $US2.25 million to compensate the company for its investment in the development of THERATOPE. In addition, Biomira will make another payment of $US3.25 million to Chiron upon FDA approval of the vaccine. No further payments or royalties will be made. In the third quarter of 2002, an independent review of interim data from the trial was conducted. This was the fifth scheduled review of the data by the Independent Data Safety Monitoring Board (DSMB), all of which produced a positive response. Following the completion of the review, the DSMB stated that the trial should continue and that it had no safety concerns regarding this trial. Although the data

  2. Economic Evaluation of Screening Strategies Combined with HPV Vaccination of Preadolescent Girls for the Prevention of Cervical Cancer in Vientiane, Lao PDR

    Science.gov (United States)

    2016-01-01

    Background Several approaches to reduce the incidence of invasive cervical cancers exist. The approach adopted should take into account contextual factors that influence the cost-effectiveness of the available options. Objective To determine the cost-effectiveness of screening strategies combined with a vaccination program for 10-year old girls for cervical cancer prevention in Vientiane, Lao PDR. Methods A population-based dynamic compartment model was constructed. The interventions consisted of a 10-year old girl vaccination program only, or this program combined with screening strategies, i.e., visual inspection with acetic acid (VIA), cytology-based screening, rapid human papillomavirus (HPV) DNA testing, or combined VIA and cytology testing. Simulations were run over 100 years. In base-case scenario analyses, we assumed a 70% vaccination coverage with lifelong protection and a 50% screening coverage. The outcome of interest was the incremental cost per Disability-Adjusted Life Year (DALY) averted. Results In base-case scenarios, compared to the next best strategy, the model predicted that VIA screening of women aged 30–65 years old every three years, combined with vaccination, was the most attractive option, costing 2 544 international dollars (I$) per DALY averted. Meanwhile, rapid HPV DNA testing was predicted to be more attractive than cytology-based screening or its combination with VIA. Among cytology-based screening options, combined VIA with conventional cytology testing was predicted to be the most attractive option. Multi-way sensitivity analyses did not change the results. Compared to rapid HPV DNA testing, VIA had a probability of cost-effectiveness of 73%. Compared to the vaccination only option, the probability that a program consisting of screening women every five years would be cost-effective was around 60% and 80% if the willingness-to-pay threshold is fixed at one and three GDP per capita, respectively. Conclusions A VIA screening program

  3. Vaccine strategies against schistosomiasis

    Directory of Open Access Journals (Sweden)

    A. Capron

    1992-01-01

    Full Text Available In this review the authors analyze the effector and regulatory mechanisms in the immune response to schistosomiasis. To study these mechanisms two animal models were used, mouse and rat. The mouse totaly permissive host like human, show prominent-T cell control in the acquisition of resistance. But other mechanisms like antibody mediated cytotoxity (ADCC involving eosinophils and IgG antibodies described in humans, are observed in rats. Also in this animal, it is observed specific IgE antibody high production and blood and tisssue eosinophilia. Using the rat model and schistosomula as target, some ADCC features have emerged: the cellular population involved are bone marrow derived inflammatory cell (mononuclear phagocytes, eosinophils and platelets, interacting with IgE through IgE Fc receptors. Immunization has been attempted using the recombinant protein Sm28/GST. Protection has been observed in rodents with significant decrease of parasite fecundity and egg viability affecting the number, size and volume of liver egg granulomas. The association of praziquantel and immunization with with Sm28/GST increases the resistance to infection and decreases egg viability. The authors suggest the possibility of the stablishment of a future vaccine against Schistosoma mansoni.

  4. Dendritic Cell Cancer Vaccines: From the Bench to the Bedside

    Directory of Open Access Journals (Sweden)

    Tamar Katz

    2014-10-01

    Full Text Available The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both “passive” (e.g. strategies relying on the administration of specific T cells and “active” vaccines (e.g. peptide-directed or whole-cell vaccines have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target “immunosuppressive checkpoints” (anti-CTLA-4, PD-1, etc. is likely to improve and maintain immune response induced by vaccination.

  5. Immune modulations during chemoimmunotherapy & novel vaccine strategies - In metastatic melanoma and non small-cell lung cancer

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg

    2013-01-01

    This thesis describes the treatment of metastatic melanoma (MM) and non small-cell lung cancer (NSCLC) from an immunotherapeutic approach. The purpose of the first part of the thesis was to assess how treatment with Temozolomide (TMZ) chemotherapy affects the immune system in patients with metast...... for 10 months and 6+ months respectively, corresponding to a preliminary objective response rate of 29%. The vaccine has been manageable and without significant side effects....... in patients with metastatic NSCLC. This "First in Man" trial was safe and showed modest side effects only. Since IDO was expressed in NSCLC tissues it was found to be a relevant target. One patient achieved significant regression of liver metastases (confirmed partial response) and another 6/15 patients...... achieved prolonged disease stabilization. Furthermore, median overall survival was 25.9 months demonstrating a better survival in vaccinated compared to non-vaccinated comparable NSCLC patients. The presence of IDO specific CD8+ T cells were detected by IFNy Elispot. In patients with clinical effect...

  6. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    International Nuclear Information System (INIS)

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines

  7. The Promise of Preventive Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    Pier-Luigi Lollini

    2015-06-01

    Full Text Available Years of unsuccessful attempts at fighting established tumors with vaccines have taught us all that they are only able to truly impact patient survival when used in a preventive setting, as would normally be the case for traditional vaccines against infectious diseases. While true primary cancer prevention is still but a long-term goal, secondary and tertiary prevention are already in the clinic and providing encouraging results. A combination of immunopreventive cancer strategies and recently approved checkpoint inhibitors is a further promise of forthcoming successful cancer disease control, but prevention will require a considerable reduction of currently reported toxicities. These considerations summed with the increased understanding of tumor antigens allow space for an optimistic view of the future.

  8. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  9. Realizing the promise of breast cancer vaccines

    Directory of Open Access Journals (Sweden)

    Jackson E

    2012-08-01

    Full Text Available Erica Jackson, Hatem SolimanUniversity of South Florida/Moffitt Cancer Center and Research Institute, Tampa, FL, USAAbstract: Breast cancer vaccines are being developed to stimulate adaptive antitumor immune responses in patients. These vaccines have the potential to treat breast cancer with minimal side effects and toxicity. However, many obstacles still need to be overcome to fully realize the vaccines' clinical benefit. A review of the literature was conducted to assess the use of vaccines in targeting transformed cells. Four vaccines currently under study were discussed, each summarizing the different vaccine platforms used to introduce target antigen to the patient's immune system. The advantages and disadvantages of each method were discussed, although no one method was found to be superior. Additional issues addressed included overcoming tumor-induced immunosuppression, immune evasion of transformed cells, the use of vaccines in combination therapy, and the challenges of using these vaccines in various clinical settings. Vaccines may be most effective in patients with minimal residual disease, as opposed to using them in the metastatic setting. Also, specific clinical trial design considerations for the use of vaccines in cancer patients, such as time-to-failure end points, were discussed. Understanding these various elements will be important to the translation of breast cancer vaccine therapy into routine clinical practice.Keywords: breast cancer, vaccine, immunotherapy, immune tolerance, peptide vaccine, dendritic cell vaccine

  10. Preventive vaccines for cervical cancer

    Directory of Open Access Journals (Sweden)

    WHEELER COSETTE M

    1997-01-01

    Full Text Available The potential use of vaccines for the human papillomavirus (HPV in the prevention and treatment of cervical cancer is a possibility in the near future. Close to 20 genotypes of HPV, of the 75 that have been identified, infect the femine genital tract, but four subtypes (16, 18, 31 and 45 have been associated in close to 80% of cervical cancers. this article proposes that in order to design an effective prophylactic vaccine against HPV infection, an adequate immune response should be guaranteed through four goals; a activation of antigens present in the cell; b overcoming the host response and viral genetic variability in the T cell response; c generation of high levels of T and B memory cells; and d persistence of antigens.

  11. Strategies for Fostering HPV Vaccine Acceptance

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Vaccines that protect against infection with the types of human papillomavirus (HPV commonly associated with cervical cancer (HPV 16 and 18 and genital warts (HPV 6 and 11 are expected to become available in the near future. Because HPV vaccines are prophylactic, they must be administered prior to exposure to the virus, ideally during preadolescence or adolescence. The young age of the target vaccination population means that physicians, parents, and patients will all be involved in the decision-making process. Research has shown that parents and patients are more likely to accept a vaccine if it is efficacious, safe, reasonably priced, and recommended by a physician. Widespread education of physicians, patients, and parents about the risks and consequences of HPV infection and the benefits of vaccination will be instrumental for fostering vaccine acceptance.

  12. Cervical cancer in India and HPV vaccination.

    Science.gov (United States)

    Kaarthigeyan, K

    2012-01-01

    Cervical cancer, mainly caused by Human Papillomavirus infection, is the leading cancer in Indian women and the second most common cancer in women worldwide. Though there are several methods of prevention of cervical cancer, prevention by vaccination is emerging as the most effective option, with the availability of two vaccines. Several studies have been published examining the vaccine's efficacy, immunogenicity and safety. Questions and controversy remain regarding mandatory vaccination, need for booster doses and cost-effectiveness, particularly in the Indian context. PMID:22754202

  13. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  14. Vaccines and immunization strategies for dengue prevention.

    Science.gov (United States)

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  15. Adolescent Vaccination Strategies: Interventions to Increase Coverage.

    Science.gov (United States)

    Lehmann, Corinne E; Brady, Rebecca C; Battley, Reuben O; Huggins, Jennifer L

    2016-08-01

    While vaccines have decreased the burden of disease, many adolescents still remain under-immunized, particularly for human papillomavirus (HPV) and influenza. We review the most current data regarding adolescent immunizations in the United States and discuss proven strategies that work for increasing vaccination rates. Strategies that have been shown to improve rates include provider feedback, immunization information systems (or registries), and enhanced access outside of provider offices, such as school-based immunization programs. Overall, practices may want to consider multimodal quality improvement approaches to enhance practice vaccination rates. The public health and cost benefits of immunizing adolescents are well known, yet recent measles outbreaks in the United States have highlighted issues with state immunization laws and vaccine refusals. Providers should be clear in their advice regarding vaccines and use effective reminder strategies as parents commonly cite not having enough information or knowledge that a vaccine was needed for their adolescent. Additional research is needed regarding adolescent consent for vaccines, as well as adolescent and parental refusal, in order to design systems that will help inform families and allow for widespread vaccine availability. PMID:27146296

  16. Therapeutic Vaccine Strategies against Human Papillomavirus

    Directory of Open Access Journals (Sweden)

    Hadeel Khallouf

    2014-06-01

    Full Text Available High-risk types of human papillomavirus (HPV cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables, and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.

  17. DNA vaccines, electroporation and their applications in cancer treatment.

    Science.gov (United States)

    Lee, Si-Hyeong; Danishmalik, Sayyed Nilofar; Sin, Jeong-Im

    2015-01-01

    Numerous animal studies and recent clinical studies have shown that electroporation-delivered DNA vaccines can elicit robust Ag-specific CTL responses and reduce disease severity. However, cancer antigens are generally poorly immunogenic, requiring special conditions for immune response induction. To date, many different approaches have been used to elicit Ag-specific CTL and anti-neoplastic responses to DNA vaccines against cancer. In vivo electroporation is one example, whereas others include DNA manipulation, xenogeneic antigen use, immune stimulatory molecule and immune response regulator application, DNA prime-boost immunization strategy use and different DNA delivery methods. These strategies likely increase the immunogenicity of cancer DNA vaccines, thereby contributing to cancer eradication. However, cancer cells are heterogeneous and might become CTL-resistant. Thus, understanding the CTL resistance mechanism(s) employed by cancer cells is critical to develop counter-measures for this immune escape. In this review, the use of electroporation as a DNA delivery method, the strategies used to enhance the immune responses, the cancer antigens that have been tested, and the escape mechanism(s) used by tumor cells are discussed, with a focus on the progress of clinical trials using cancer DNA vaccines.

  18. Generation of more effective cancer vaccines

    Science.gov (United States)

    Fenoglio, Daniela; Traverso, Paolo; Parodi, Alessia; Kalli, Francesca; Zanetti, Maurizio; Filaci, Gilberto

    2013-01-01

    Cancer vaccines represent a promising therapeutic approach for which prime time is imminent. However, clinical efficacy must be improved in order for cancer vaccines to become a valid alternative or complement to traditional cancer treatments. Considerable efforts have been undertaken so far to better understand the fundamental requirements for clinically-effective cancer vaccines. Recent data emphasize that important requirements, among others, are (1) the use of multi-epitope immunogens, possibly deriving from different tumor antigens; (2) the selection of effective adjuvants; (3) the association of cancer vaccines with agents able to counteract the regulatory milieu present in the tumor microenvironment; and (4) the need to choose the definitive formulation and regimen of a vaccine after accurate preliminary tests comparing different antigen formulations. The first requirement deals with issues related to HLA restriction of tumor antigen presentation, as well as usefulness of tumor antigen spreading and counteraction of immune escape phenomena, linked to tumor antigen down-modulation, for an effective anti-cancer immune response. The second point underscores the necessity of optimal activation of innate immunity to achieve an efficient adaptive anti-cancer immune response. The third point focuses on the importance to inhibit subsets of regulatory cells. The last requirement stresses the concept that the regimen and formulation of the vaccine impacts profoundly on cancer vaccine efficacy. A new generation of cancer vaccines, provided with both immunological and clinical efficacy, will hopefully soon address these requirements. PMID:23978951

  19. Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible?

    Directory of Open Access Journals (Sweden)

    Kavitha Yaddanapudi

    Full Text Available The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine embryonic stem cells (ESC. Naïve C57BL/6 mice were vaccinated with ESC along with a source of granulocyte macrophage-colony stimulating factor (GM-CSF in order to provide immunostimulatory adjuvant activity. Vaccinated mice were protected against subsequent challenge with implantable Lewis lung carcinoma (LLC. ESC-induced anti-tumor immunity was not due to a non-specific "allo-response" as vaccination with allogeneic murine embryonic fibroblasts did not protect against tumor outgrowth. Vaccine efficacy was associated with robust tumor-reactive primary and memory CD8(+ T effector responses, Th1 cytokine response, higher intratumoral CD8(+ T effector/CD4(+CD25(+Foxp3(+ T regulatory cell ratio, and reduced myeloid derived suppressor cells in the spleen. Prevention of tumorigenesis was found to require a CD8-mediated cytotoxic T lymphocyte (CTL response because in vivo depletion of CD8(+ T lymphocytes completely abrogated the protective effect of vaccination. Importantly, this vaccination strategy also suppressed the development of lung cancer induced by the combination of carcinogen administration and chronic pulmonary inflammation. Further refinement of this novel vaccine strategy and identification of shared ESC/tumor antigens may lead to immunotherapeutic options for lung cancer patients and, perhaps more importantly, could represent a first step toward the development of prophylactic cancer vaccines.

  20. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-14

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  1. Cervical cancer in India and HPV vaccination

    Directory of Open Access Journals (Sweden)

    K Kaarthigeyan

    2012-01-01

    Full Text Available Cervical cancer, mainly caused by Human Papillomavirus infection, is the leading cancer in Indian women and the second most common cancer in women worldwide. Though there are several methods of prevention of cervical cancer, prevention by vaccination is emerging as the most effective option, with the availability of two vaccines. Several studies have been published examining the vaccine′s efficacy, immunogenicity and safety. Questions and controversy remain regarding mandatory vaccination, need for booster doses and cost-effectiveness, particularly in the Indian context.

  2. Are Fewer Cervical Cancer Screenings Needed After HPV Vaccine?

    Science.gov (United States)

    ... html Are Fewer Cervical Cancer Screenings Needed After HPV Vaccine? Less testing could reduce risk of false positives ... said. Women vaccinated with earlier versions of the HPV vaccine -- which protect against the two worst cancer-causing ...

  3. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  4. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  5. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  6. Pancreatic cancer vaccine: a unique potential therapy

    Directory of Open Access Journals (Sweden)

    Cappello P

    2015-12-01

    Full Text Available Paola Cappello, Moitza Principe, Francesco Novelli Department of Molecular Biotechnologies and Health Sciences, Center for Experimental Research and Medical Studies, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy Abstract: Pancreatic ductal adenocarcinoma (PDA is a lethal disease and is one of the cancers that is most resistant to traditional therapies. Historically, neither chemotherapy nor radiotherapy has provided any significant increase in the survival of patients with PDA. Despite intensive efforts, any attempts to improve the survival in the past 15 years have failed. This holds true even after the introduction of molecularly targeted agents, chosen on the basis of their involvement in pathways that are considered to be important in PDA development and progression. Recently, however, FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin treatment has provided a limited survival advantage in patients with advanced PDA. Therefore, effective therapeutic strategies are urgently needed to improve the survival rate of patients with PDA. Results from the last 10 years of research in the field of PDA have helped to identify new immunological targets and develop new vaccines that are capable of stimulating an immune response. In addition, the information obtained about the role of the tumor microenvironment in suppressing the immune response and the possibility of targeting PDA microenvironment to limit immune suppression and enhance the response of effector T-cells has opened new avenues for treating this incurable disease. The time is ripe for developing new therapeutic approaches that are able to effectively counteract the progression and spreading of PDA. This review discusses the potential prospects in the care of patients with pancreatic cancer through vaccination and its combination therapy with surgery, chemotherapy, targeting of the tumor microenvironment, and inhibition of immunological

  7. Strategies to eradicate minimal residual disease in small cell lung cancer: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

    Science.gov (United States)

    Krug, L M; Grant, S C; Miller, V A; Ng, K K; Kris, M G

    1999-10-01

    In the last 25 years, treatment for small cell lung cancer (SCLC) has improved with advances in chemotherapy and radiotherapy. Standard chemotherapy regimens can yield 80% to 90% response rates and some cures when combined with thoracic irradiation in limited-stage patients. Nonetheless, small cell lung cancer has a high relapse rate due to drug resistance; this has resulted in poor survival for most patients. Attacking this problem requires a unique approach to eliminate resistant disease remaining after induction therapy. This review will focus on three potential strategies: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

  8. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    Science.gov (United States)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  9. NIH Research Leads to Cervical Cancer Vaccine

    Science.gov (United States)

    ... NIH researchers Drs. Douglas Lowy (left) and John Schiller developed the vaccine to prevent HPV infection in ... But thanks to Drs. Douglas Lowy and John Schiller, senior research scientists at NIH's National Cancer Institute, ...

  10. Dengue Fever: Causes, Complications, and Vaccine Strategies.

    Science.gov (United States)

    Khetarpal, Niyati; Khanna, Ira

    2016-01-01

    Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals. PMID:27525287

  11. Dengue Fever: Causes, Complications, and Vaccine Strategies

    Science.gov (United States)

    Khanna, Ira

    2016-01-01

    Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals. PMID:27525287

  12. Prophylactic HPV vaccination and anal cancer.

    Science.gov (United States)

    Stier, Elizabeth A; Chigurupati, Nagasudha L; Fung, Leslie

    2016-06-01

    The incidence of anal cancer is increasing. High risk populations include HIV-positive men who have sex with men (MSM), HIV-negative MSM, HIV-positive women and heterosexual men and women with a history of cervical cancer. HPV has been detected in over 90% of anal cancers. HPV16 is the most common genotype detected in about 70% of anal cancers. The quadrivalent HPV (qHPV) vaccine has been demonstrated to prevent vaccine associated persistent anal HPV infections as well as anal intraepithelial neoplasia grades 2-3 (AIN2+) in young MSM not previously infected. A retrospective analysis also suggests that qHPV vaccination of older MSM treated for AIN2+ may significantly decrease the risk of recurrence of the AIN2+. The HPV types detected in anal cancer are included in the 9-valent vaccine. Thus, the 9-valent HPV vaccine, when administered to boys and girls prior to the onset of sexual activity, should effectively prevent anal cancer. PMID:26933898

  13. New strategies for simplifying influenza vaccination

    OpenAIRE

    Murugappan, Senthil

    2014-01-01

    Griep is een virale ziekte die wereldwijd een enorme impact heeft op de gezondheid van de mens. Vaccinatie wordt gezien als de beste maatregel om de verspreiding van het influenzavirus onder controle te houden. De huidige vaccins hebben echter een aantal tekortkomingen. Ze moeten per injectie worden toegediend, de productiecapaciteit is beperkt, de immuunreactie die ze opwekken is niet optimaal en ze zijn niet stabiel tijdens opslag. In dit proefschrift zijn twee strategieën onderzocht om dez...

  14. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  15. Economic analysis of pandemic influenza vaccination strategies in Singapore.

    Directory of Open Access Journals (Sweden)

    Vernon J Lee

    Full Text Available BACKGROUND: All influenza pandemic plans advocate pandemic vaccination. However, few studies have evaluated the cost-effectiveness of different vaccination strategies. This paper compares the economic outcomes of vaccination compared with treatment with antiviral agents alone, in Singapore. METHODOLOGY: We analyzed the economic outcomes of pandemic vaccination (immediate vaccination and vaccine stockpiling compared with treatment-only in Singapore using a decision-based model to perform cost-benefit and cost-effectiveness analyses. We also explored the annual insurance premium (willingness to pay depending on the perceived risk of the next pandemic occurring. PRINCIPAL FINDINGS: The treatment-only strategy resulted in 690 deaths, 13,950 hospitalization days, and economic cost of USD$497 million. For immediate vaccination, at vaccine effectiveness of >55%, vaccination was cost-beneficial over treatment-only. Vaccine stockpiling is not cost-effective in most scenarios even with 100% vaccine effectiveness. The annual insurance premium was highest with immediate vaccination, and was lower with increased duration to the next pandemic. The premium was also higher with higher vaccine effectiveness, attack rates, and case-fatality rates. Stockpiling with case-fatality rates of 0.4-0.6% would be cost-beneficial if vaccine effectiveness was >80%; while at case-fatality of >5% stockpiling would be cost-beneficial even if vaccine effectiveness was 20%. High-risk sub-groups warrant higher premiums than low-risk sub-groups. CONCLUSIONS: The actual pandemic vaccine effectiveness and lead time is unknown. Vaccine strategy should be based on perception of severity. Immediate vaccination is most cost-effective, but requires vaccines to be available when required. Vaccine stockpiling as insurance against worst-case scenarios is also cost-effective. Research and development is therefore critical to develop and stockpile cheap, readily available effective vaccines.

  16. Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage

    International Nuclear Information System (INIS)

    The transmission of infectious, yet vaccine-preventable, diseases is a typical complex social phenomenon, where the increasing level of vaccine update in the population helps to inhibit the epidemic spreading, which in turn, however, discourages more people to participate in vaccination campaigns, due to the “externality effect” raised by vaccination. We herein study the impact of vaccination strategies, pure, continuous (rather than adopt vaccination definitely, the individuals choose to taking vaccine with some probabilities), or continuous with randomly mutation, on the vaccination dynamics with a spatial susceptible-vaccinated-infected-recovered (SVIR) epidemiological model. By means of extensive Monte-Carlo simulations, we show that there is a crossover behavior of the final vaccine coverage between the pure-strategy case and the continuous-strategy case, and remarkably, both the final vaccination level and epidemic size in the continuous-strategy case are less than them in the pure-strategy case when vaccination is cheap. We explain this phenomenon by analyzing the organization process of the individuals in the continuous-strategy case in the equilibrium. Our results are robust to the SVIR dynamics defined on other spatial networks, like the Erdős–Rényi and Barabási–Albert networks

  17. Therapeutic cancer vaccines: are we there yet?

    OpenAIRE

    Klebanoff, Christopher A.; Acquavella, Nicholas; Yu, Zhiya; Restifo, Nicholas P

    2011-01-01

    Enthusiasm for therapeutic cancer vaccines has been rejuvenated with the recent completion of several large, randomized phase III clinical trials that in some cases have reported an improvement in progression free or overall survival. However, an honest appraisal of their efficacy reveals modest clinical benefit and a frequent requirement for patients with relatively indolent cancers and minimal or no measurable disease. Experience with adoptive cell transfer-based immunotherapies unequivocal...

  18. Potential influence of seasonal influenza vaccination requirement versus traditional vaccine promotion strategies on unvaccinated healthcare personnel.

    Science.gov (United States)

    Thompson, Mark G; McIntyre, Anne F; Naleway, Allison L; Black, Carla; Kennedy, Erin D; Ball, Sarah; Walker, Deborah Klein; Henkle, Emily M; Gaglani, Manjusha J

    2013-08-20

    In a prospective cohort study of 1670 healthcare personnel (HCP) providing direct patient care at Scott & White Healthcare in Texas and Kaiser Permanente Northwest in Oregon and Washington, we examined the potential impact of twelve vaccine promotion strategies on the likelihood of being vaccinated. Internet-based surveys were conducted at enrollment (Fall, 2010) and at post-season (Spring, 2011), which asked HCP whether twelve vaccination promotion strategies would make them "much less" to "much more" likely to be vaccinated next season (on a 5-point Likert scale). Overall, 366 of 1670 HCP (22%) were unvaccinated. Half (50%) of unvaccinated HCP self-reported that a vaccination requirement would make them more likely to be vaccinated and most (62%) identified at least one strategy other than a vaccination requirement that would make them more likely to be vaccinated. In sub-groups of unvaccinated HCPs with specific barriers to vaccination, about one in three (range=27-35%) indicated that interventions targeting specific vaccination barrier would increase the likelihood they would be vaccinated. However, in all cases, significantly more unvaccinated HCP reported that a vaccination requirement would increase the likelihood of vaccination than reported a targeted intervention would have this effect (range in difference scores=+11-23%).

  19. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW: We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential...... synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN: The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE: Chemoimmunotherapy using epigenetic drugs and CG...

  20. Influenza vaccination in children being treated with chemotherapy for cancer

    NARCIS (Netherlands)

    G.M. Goossen; L.C.M. Kremer; M.D. van de Wetering

    2009-01-01

    Background Influenza infection is a potential cause of severe morbidity in children with cancer, therefore vaccination against influenza is recommended. However, there are conflicting data concerning the immune response to influenza vaccination in children with cancer and the value of vaccination re

  1. A Generic Polymer-Protein Ligation Strategy for Vaccine Delivery.

    Science.gov (United States)

    Lybaert, Lien; Vanparijs, Nane; Fierens, Kaat; Schuijs, Martijn; Nuhn, Lutz; Lambrecht, Bart N; De Geest, Bruno G

    2016-03-14

    Although the field of cancer immunotherapy is intensively investigated, there is still a need for generic strategies that allow easy, mild and efficient formulation of vaccine antigens. Here we report on a generic polymer-protein ligation strategy to formulate protein antigens into reversible polymeric conjugates for enhanced uptake by dendritic cells and presentation to CD8 T-cells. A N-hydroxypropylmethacrylamide (HPMA)-based copolymer was synthesized via RAFT polymerization followed by introduction of pyridyldisulfide moieties. To enhance ligation efficiency to ovalbumin, which is used as a model protein antigen, protected thiols were introduced onto lysine residues and deprotected in situ in the presence of the polymer. The ligation efficiency was compared for both the thiol-modified versus unmodified ovalbumin, and the reversibility was confirmed. Furthermore, the obtained nanoconjugates were tested in vitro for their interaction and association with dendritic cells, showing enhanced cellular uptake and antigen cross-presentation to CD8 T-cells.

  2. Strategy of topical vaccination with nanoparticles

    Science.gov (United States)

    Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen

    2009-03-01

    Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached ~70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.

  3. Optimization model of vaccination strategy for dengue transmission

    Science.gov (United States)

    Widayani, H.; Kallista, M.; Nuraini, N.; Sari, M. Y.

    2014-02-01

    Dengue fever is emerging tropical and subtropical disease caused by dengue virus infection. The vaccination should be done as a prevention of epidemic in population. The host-vector model are modified with consider a vaccination factor to prevent the occurrence of epidemic dengue in a population. An optimal vaccination strategy using non-linear objective function was proposed. The genetic algorithm programming techniques are combined with fourth-order Runge-Kutta method to construct the optimal vaccination. In this paper, the appropriate vaccination strategy by using the optimal minimum cost function which can reduce the number of epidemic was analyzed. The numerical simulation for some specific cases of vaccination strategy is shown.

  4. Vaccines with dendritic cells in prostate cancer patients

    International Nuclear Information System (INIS)

    It has been shown that autologous D Cs pulsed with peptides specific for prostate specific Ag (PSA) or prostate-specific membrane Ag are capable of stimulating potent CT L in vitro. However there is evidence to believe that multiple tumour derived antigens would be more potent to elicit anti-tumour responses. Based on these observations a Phase I/II clinical trial in has been initiated. Autologous monocyte-derived dendritic cells (DC s) were transfected with mRNA from three prostate cancer cell lines (DU145, LNCaP and P C-3) and used for vaccination. Twenty patients have been enrolled and 19 have finished vaccination. Each patient received at least four weekly injections. Of them, 10 patients were vaccinated intranodally under ultrasonic guidance and 9 others received the vaccine intradermally. Safety and feasibility were evaluated. No evidence of toxicity and adverse events was observed. Immune response was measured as DTH and by vitro immunoassays including ELISPOT, T cell proliferation test and cytotoxicity test in pre- and post-vaccination peripheral blood samples. Twelve patients developed a specific immune response to tumour cells. Ten patients showed a significant decrease in log slope PSA. Patients with lower PSA tend to give a better response. The early clinical outcome was significantly related to immune responses (p<0.05). We conclude that the strategy of vaccinating with mRNA transfected D Cs functions to elicit cellular immune responses specific for antigens associated with prostate cancer cells and such responses may result in a clinical benefit for the patients

  5. Clinical cancer chemoprevention: From the hepatitis B virus (HBV) vaccine to the human papillomavirus (HPV) vaccine.

    Science.gov (United States)

    Tsai, Horng-Jyh

    2015-04-01

    Approximately 2 million new cancer cases are attributed to infectious agents each year worldwide. Vaccines for the hepatitis B virus (HBV), a risk factor of hepatocellular cancer, and human papillomavirus (HPV), a risk factor of cervical cancer, are considered major successes in clinical chemoprevention of cancer. In Taiwan, the first evidence of cancer prevention through vaccinations was provided by HBV vaccination data in infants. The Taiwanese HBV vaccination program has since become a model immunization schedule for newborns worldwide. Persistent infection with high-risk HPV is generally accepted as prerequisite for cervical cancer diagnosis; however, cervical cancer is a rare complication of HPV infections. This is due to the fact that such infections tend to be transient. The safety and efficacy of both available HPV quadrivalent vaccine and bivalent vaccine are not in doubt at the present time. Until a human cytomegalovirus (CMV) vaccine becomes available, simple hygienic practices, such as hand washing, can prevent CMV infection both before and during pregnancy. Each country should establish her official guidelines regarding which vaccines should be used to treat various conditions, the target population (i.e., universal or limited to a selected population), and the immunization schedules. After a vaccine is recommended, decisions regarding reimbursement by the public health care fund are evaluated. The guidelines become part of the immunization schedule, which is updated annually and published in the official bulletin. In conclusion, both HBV and HPV vaccines are considered major successes in the chemoprevention of cancer.

  6. Cervarix™: a vaccine for the prevention of HPV 16, 18-associated cervical cancer

    Directory of Open Access Journals (Sweden)

    Archana Monie

    2008-03-01

    Full Text Available Archana Monie1, Chien-Fu Hung1,2, Richard Roden1,2,4, T-C Wu1,2,3,41Departments of Pathology, 2Obstetrics and Gynecology, 3Molecular Microbiology and Immunology, and 4Oncology, 5Institute of Genetic Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USAAbstract: Cervical cancer continues to be the second largest cause of cancer deaths in women worldwide. Persistent infection with high-risk types of human papillomavirus (HPV is a necessary cause of cervical cancer. Thus, prophylactic vaccination against HPV is an attractive strategy to prevent cervical cancer. Current strategies for the development of safe and effective preventive vaccines are based on the induction of neutralizing antibodies against the major capsid protein, L1 of HPV. Cervarix™ is one of the preventive HPV vaccines that has been approved in the Europe and Australia and is currently under review by the US Food and Drug Administration. Cervarix is composed of HPV16 and HPV18 L1 virus-like particles (VLPs formulated in ASO4 adjuvant. Vaccination with Cervarix has been shown to protect women against a high proportion of precursor lesions of cervical cancer caused by these two HPV types. This review explores the various features of this new vaccine candidate and discusses the future directions in the field of HPV vaccine development.Keywords: HPV, L1, VLP, vaccine, Cervarix

  7. Pneumococcal Vaccination Strategies. An Update and Perspective.

    Science.gov (United States)

    Berical, Andrew C; Harris, Drew; Dela Cruz, Charles S; Possick, Jennifer D

    2016-06-01

    Streptococcus pneumoniae is an important global pathogen that causes a wide range of clinical disease in children and adults. Pneumococcal pneumonia is by far the common presentation of noninvasive and invasive pneumococcal disease and affects the young, the elderly, and the immunocompromised disproportionately. Patients with chronic pulmonary diseases are also at higher risk for pneumococcal infections. Substantial progress over the century has been made in the understanding of pneumococcal immunobiology and the prevention of invasive pneumococcal disease through vaccination. Currently, two pneumococcal vaccines are available for individuals at risk of pneumococcal disease: the 23-valent pneumococcal polysaccharide vaccine (PPV23) and the 13-valent pneumococcal protein-conjugate vaccine (PCV13). The goal of pneumococcal vaccination is to stimulate effective antipneumococcal antibody and mucosal immunity response and immunological memory. Vaccination of infants and young children with pneumococcal conjugate vaccine has led to significant decrease in nasal carriage rates and pneumococcal disease in all age groups. Recent pneumococcal vaccine indication and schedule recommendations on the basis of age and risk factors are outlined in this Focused Review. As new pneumococcal vaccine recommendations are being followed, continued efforts are needed to address the vaccine efficacy in the waning immunity of the ever-aging population, the implementation of vaccines using two different vaccines under very specific schedules and their real world clinical and cost effectiveness, and the development of next generation pneumococcal vaccines. PMID:27088424

  8. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Maurizio Chiriva-Internati

    Full Text Available Sperm protein (Sp17 is an attractive target for ovarian cancer (OC vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17 was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.

  9. Vaccines and vaccination strategies against human cutaneous leishmaniasis.

    Science.gov (United States)

    Okwor, Ifeoma; Uzonna, Jude

    2009-05-01

    One might think that the development of a vaccine against cutaneous leishmaniasis would be relatively straightforward because the type of immune response required for protection is known and natural immunity occurs following recovery from primary infection. However, there is as yet no effective vaccine against the disease in humans. Although vaccination in murine studies has yielded promising results, these vaccines have failed miserably when tested in primates or humans. The reasons behind these failures are unknown and remain a major hurdle for vaccine design and development against cutaneous leishmaniasis. In contrast, recovery from natural, deliberate or experimental infections results in development of long-lasting immunity to re-infection. This so called infection-induced resistance is the strongest anti-Leishmania immunity known. Here, we briefly review the different approaches to vaccination against cutaneous leishmaniasis and argue that vaccines composed of genetically modified (attenuated) parasites, which induce immunity akin to infection-induced resistance, may provide best protection against cutaneous leishmaniasis in humans.

  10. A prospective highlight on exosomal nanoshuttles and cancer immunotherapy and vaccination

    Directory of Open Access Journals (Sweden)

    Mohammad A. Rafi

    2015-08-01

    Conclusions: As complex systems, these vesicular micro-/nano-machines convey important cellular messages dependent upon the cells/tissue setting(s. In addition to their potential in diagnosis of cancers, they have been exploited for cancer immunotherapy/vaccination. However, such treatment strategies need to be carefully designed to attain desired clinical outcomes.

  11. Dendritic cell vaccines in cancer immunotherapy: from biology to translational medicine

    Institute of Scientific and Technical Information of China (English)

    Hongmei Xu; Xuetao Cao

    2011-01-01

    According to the GLOBOCAN reports,there were about 12.7 million cancer cases and 7.6 million cancer deaths in 2008,and the cancer burden continues to increase worldwide [1].At present,the common treatments for cancer include surgery,chemotherapy,radiotherapy,and immunotherapy.Immunotherapy aims to enhance or regulate the patient's own immune response to fight against tumors.It represents a novel and effective strategy in cancer treatments,but,generally,its efficacy needs to be improved [2].Cancer vaccination is an important and promising approach in cancer immunotherapy.For many years,prophylactic vaccines have exhibited profound accomplishment in preventing serious infectious diseases in humankind,including polio,small pox,and diphtheria.However,cancer vaccines are vastly different from the prophylactic vaccines in that they are aimed to eliminate preexisting tumors.Furthermore,the immune system is immunosuppressed in most cancer patients,so it is much more difficult to develop effective cancer vaccines.

  12. Dengue vaccine: an update on recombinant subunit strategies.

    Science.gov (United States)

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines. PMID:26982462

  13. Dengue vaccine: an update on recombinant subunit strategies.

    Science.gov (United States)

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines.

  14. Modelling vaccination strategies against foot-and-mouth disease

    Science.gov (United States)

    Keeling, M. J.; Woolhouse, M. E. J.; May, R. M.; Davies, G.; Grenfell, B. T.

    2003-01-01

    Vaccination has proved a powerful defence against a range of infectious diseases of humans and animals. However, its potential to control major epidemics of foot-and-mouth disease (FMD) in livestock is contentious. Using an individual farm-based model, we consider either national prophylactic vaccination campaigns in advance of an outbreak, or combinations of reactive vaccination and culling strategies during an epidemic. Consistent with standard epidemiological theory, mass prophylactic vaccination could reduce greatly the potential for a major epidemic, while the targeting of high-risk farms increases efficiency. Given sufficient resources and preparation, a combination of reactive vaccination and culling might control ongoing epidemics. We also explore a reactive strategy, `predictive' vaccination, which targets key spatial transmission loci and can reduce markedly the long tail that characterizes many FMD epidemics. These analyses have broader implications for the control of human and livestock infectious diseases in heterogeneous spatial landscapes.

  15. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene;

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model...... replicates both a passive and active flight of midges between cattle distributed on pastures and cattle farms in Denmark. A seasonal abundance of midges and temperature dependence of biological processes were included in the model. The eight vaccination strategies were investigated under four different...... grazing conditions. Furthermore, scenarios were tested with three different index locations stratified for cattle density. The cheapest way to vaccinate cattle with a medium risk profile (less than 1000 total affected cattle) was to vaccinate cattle on pasture. Regional vaccination displayed better...

  16. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer.

    Science.gov (United States)

    Fioretti, Daniela; Iurescia, Sandra; Rinaldi, Monica

    2014-01-01

    A variety of clinical trials for vaccines against cancer have provided evidence that DNA vaccines are well tolerated and have an excellent safety profile. DNA vaccines require much improvement to make them sufficiently effective against cancer in the clinic. Nowadays, it is clear that an increased antigen expression correlates with improved immunogenicity and it is critical to vaccine performance in large animals and humans. Similarly, additional strategies are required to activate effective immunity against poorly immunogenic tumour antigens. This review discusses very recent scientific references focused on the development of sophisticated DNA vaccines against cancer. We report a selection of novel and relevant patents employed to improve their immunogenicity through several strategies such as the use of tissue-specific transcriptional elements, nuclear localisation signalling, codon-optimisation and by targeting antigenic proteins to secretory pathway. Recent patents validating portions or splice variants of tumour antigens as candidates for cancer DNA vaccines with improved specificity, such as mesothelin and hTERT, are also discussed. Lastly, we review novel patents on the use of genetic immunomodulators, such as "universal" T helper epitopes derived from tetanus toxin, E. coli heat labile enterotoxin and vegetable proteins, as well as cytokines, chemokines or costimulatory molecules such as IL-6, IL-15, IL- 21 to amplify immunity against cancer.

  17. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  18. Study Hints At HPV Vaccine's Cancer Prevention Promise

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_159696.html Study Hints at HPV Vaccine's Cancer Prevention Promise Fewer ... that can lead to cervical cancer, a new study shows. Canadian researchers found that young women who ...

  19. Cervical cancer: The preventive role of HPV vaccine (review article

    Directory of Open Access Journals (Sweden)

    N. Behtash

    2007-05-01

    Full Text Available Cervical cancer is the second most common gynecologic cancer. A steady 70% annual decline in mortality from cervical cancers has been observed since the mid 20th century after the introduction of widespread papanicolaou cytological screening. But also cervical cancer continues to be an important world health problem for women. Cervical cancer is one of the best- understood neoplasm given its well known viral cause of persistent infection with high risk human papillomavirus (HPV. To date, two manufacturers have developed HPV vaccines composed of noninfectious, recombinant HPV viral-like particles (VLPs. This article presents current advances and perspectives on HPV vaccines.The vaccine is administered by intramuscular injection, and the recommended schedule is a 3-dose series with the second and third doses administered 2 and 6 months after the first dose. The recommended age for vaccination of females is 11-12 years. Vaccine can be administered as young as age 9 years. Catch-up vaccination is recommended for females aged 13--26 years who have not been previously vaccinated. Vaccination is not a substitute for routine cervical cancer screening, and vaccinated females should have cervical cancer screening as recommended.

  20. Immunostimulation, vaccine and phage therapy strategies in aquaculture

    Science.gov (United States)

    This invited article provides a comparison between fish and shrimp immunity, and reviews the use of immunostimulation, vaccination strategies and bacteriophage therapies. Immunostimulants, a heterogenous group of compounds that are derived from bacterial, plant and animal extracts are compounds bel...

  1. Strategies and hurdles using DNA vaccines to fish.

    Science.gov (United States)

    Hølvold, Linn B; Myhr, Anne I; Dalmo, Roy A

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen - and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish.

  2. Tumor vaccine strategies after allogeneic T-cell depleted bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Ferrara James L.M.

    2002-01-01

    Full Text Available Allogeneic bone marrow transplantation is currently restricted to hematological malignancies because of a lack of anti-tumor activity against solid cancers. We have tested a novel treatment strategy to stimulate specific anti-tumor activity against a solid tumor after transplantation by vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor. Using the B16 melanoma model, we found that vaccination elicited potent anti-tumor activity in recipients of syngeneic bone marrow transplantation in a time dependent fashion, and that immune reconstitution was critical for the development of anti-tumor activity. Vaccination did not stimulate anti-tumor immunity after allogeneic bone marrow transplantation because of the post-transplantation immunodeficiency associated with graft-versus-host disease. Remarkably, vaccination was effective in stimulating potent and long-lasting anti-tumor activity in recipients of T cell-depleted allogeneic bone marrow. Thus T cells derived from donor stem cells were able to recognize tumor antigens even though they remained tolerant to host histocompatibility antigens. Donor leukocyte infusion from a donor immunized with the recipient-derived B16 vaccines enhanced clinical activity of tumor vaccines without exacerbating graft-versus-host disease and CD4+ T cells are essential for this enhancement. These results demonstrate that vaccination of both donors and recipients can stimulate potent anti-tumor effects without the induction of graft-versus-host disease, and this strategy has important implications for the treatment of patients with solid malignancies.

  3. Cancer vaccines and immunotherapeutics: challenges for pricing, reimbursement and market access.

    Science.gov (United States)

    Jönsson, Bengt; Wilking, Nils

    2012-09-01

    Public payment is key to market access for new therapeutics including cancer vaccines and cancer immunotherapeutics. However, the methodology for economic evaluation aimed at informing decisions about pricing and reimbursement is different for cancer vaccines, such as HPV for preventing the occurrence or incidence of cancer, and immunotherapeutics for treatment of patients with manifest cancer. Vaccination against HPV is a traditional public health intervention, where the role of economic evaluation is to inform decisions about optimal vaccination strategies. The decision is about funding for a vaccination program, aimed at vaccinating a defined population at risk, either at a national or regional level. The methodology of economic evaluation is based on statistical modeling of number of cases prevented over a long time period, and the costs and health outcome related to this, for different vaccination strategies For immunotherapeutics, the role of economic evaluation is to assist decisions about reimbursement and guidelines for treatment of patients with establish disease, very often at advanced stages with short life expectancy. The focus is on alternative treatment options, and the costs and outcomes associated with these. Alternatives may be best supportive care, immunotherapeutics or other treatments like surgery, radiotherapy and other anti-cancer drugs. From an economic perspective the type of therapy does not matter, only costs and outcome associated with the relevant alternatives. The main controversy about reimbursement of immunotherapeutics, as with other new cancer drugs, has been the cost of treatment, mainly determined by the price of the therapy, in relation to the expected benefits in terms of survival and quality of life. This paper reviews the evidence on cost-effectiveness, the reimbursement decisions made, and the impact on market access for new immunotherapeutics. Sipuleucel-T (Provenge(®)) and abiraterone (Zytiga(®)) for treatment of

  4. [Vaccination safety and media publicity strategy].

    Science.gov (United States)

    Tan, Jibin; Guo, Xiaomin; Li, Keli; Zhang, Xiumin

    2016-03-01

    Due to the over negative report of adverse event following immunization (AEFI) by media, some people began to question the safety of vaccination. Date published since 2005 were collected by literature retrieval, mainly including relative AEFI date, current status of media report of AEFI, public awareness about AEFI. Public concern about the vaccination safety mainly focused on the serious diseases which might be caused, influence on immune system. Media' s over negative reactions to AEFI and lack of related knowledge in general public have led to the public' s concern about vaccination safety. Vaccination is the most economical and effective measure for the prevention of diseases and AEFI incidence rate is very low. Therefore, it is necessary for media to give more positive report about vaccination safety.

  5. HPV and Cervical Cancer Epidemiology - Current Status of HPV Vaccination in India.

    Science.gov (United States)

    Chatterjee, Sharmila; Chattopadhyay, Amit; Samanta, Luna; Panigrahi, Pinaki

    2016-01-01

    Cervical cancer (CaCx) is the second most fatal cancer contributing to 14% of cancers in Indian females, which account for 25.4% and 26.5% of the global burden of CaCx prevalence and mortality, respectively. Persistent infection with high-risk human papilloma virus (HPV- strains 16 and 18) is the most important risk factor for precursors of invasive CaCx. Comprehensive prevention strategies for CaCx should include screening and HPV vaccination. Three screening modalities for CaCx are cytology, visual inspection with acetic acid, and HPV testing. There is no Indian national policy on CaCx prevention, and screening of asymptomatic females against CaCx is practically non-existent. HPV vaccines can make a major breakthrough in the control of CaCx in India which has high disease load and no organized screening program. Despite the Indian Government's effort to introduce HPV vaccination in the National Immunization Program and bring down vaccine cost, challenges to implementing vaccination in India are strong such as: inadequate epidemiological evidence for disease prioritization, duration of vaccine use, parental attitudes, and vaccine acceptance. This paper reviews the current epidemiology of CaCx and HPV in India, and the current status of HPV vaccination in the country. This article stresses the need for more research in the Indian context, to evaluate interventions for CaCx and assess their applicability, success, scalability and sustainability within the constraints of the Indian health care system. PMID:27644600

  6. Natural Killer cells as helper cells in Dendritic cell cancer vaccines

    Directory of Open Access Journals (Sweden)

    María Betina Pampena

    2015-01-01

    Full Text Available Vaccine-based cancer immunotherapy has generated highly variable clinical results due to differing methods of vaccine preparation and variation in patient populations, among other lesser factors. Moreover, these clinical responses do not necessarily correspond with the induction of tumor-specific cytotoxic lymphocytes. Here we review the participation of natural killer (NK cells as alternative immune components that could cooperate in successful vaccination treatment. NK cells have been described as helper cells in dendritic cell-based cancer vaccines, but the role in other kinds of vaccination strategies (whole cells, peptide or DNA- based vaccines is poorly understood. In this article we address the following issues regarding the role of NK cells in cancer vaccines: NK cell anti-tumor action sites, and the loci of NK cell interaction with other immune cells; descriptions of new data on the memory characteristics of NK cells described in infectious diseases; and finally phenotypical and functional changes after vaccination measured by immunomonitoring in preclinical and clinical settings.

  7. Preclinical and clinical development of DNA vaccines for prostate cancer.

    Science.gov (United States)

    Colluru, V T; Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2016-04-01

    Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic.

  8. The Prevention of Liver Cancer by HBV Vaccine Program

    Institute of Scientific and Technical Information of China (English)

    TAO Xiong

    2002-01-01

    Objective To recognize the HBV vaccine program for prevention of the hepatic cancer.Methods To discuss the relation between the HBV and hepatic cancer arising, and to discuss the immunology respond of the HBV vaccine (HBV surface antigen protein) in our patient group. Result Our data indicates that the predisposing of the HBV infection is required for the hepatic cancer arising and for the high expression of the AFP gene, and our data indicates that the HBV vaccine can induce highly immuno respond in about 78.8 % of the adult for achieving the HBV prevention status and the hepatic cancer prevention status.

  9. Optimal pandemic influenza vaccine allocation strategies for the Canadian population.

    Directory of Open Access Journals (Sweden)

    Ashleigh R Tuite

    Full Text Available BACKGROUND: The world is currently confronting the first influenza pandemic of the 21(st century. Influenza vaccination is an effective preventive measure, but the unique epidemiological features of swine-origin influenza A (H1N1 (pH1N1 introduce uncertainty as to the best strategy for prioritization of vaccine allocation. We sought to determine optimal prioritization of vaccine distribution among different age and risk groups within the Canadian population, to minimize influenza-attributable morbidity and mortality. METHODOLOGY/PRINCIPAL FINDINGS: We developed a deterministic, age-structured compartmental model of influenza transmission, with key parameter values estimated from data collected during the initial phase of the epidemic in Ontario, Canada. We examined the effect of different vaccination strategies on attack rates, hospitalizations, intensive care unit admissions, and mortality. In all scenarios, prioritization of high-risk individuals (those with underlying chronic conditions and pregnant women, regardless of age, markedly decreased the frequency of severe outcomes. When individuals with underlying medical conditions were not prioritized and an age group-based approach was used, preferential vaccination of age groups at increased risk of severe outcomes following infection generally resulted in decreased mortality compared to targeting vaccine to age groups with higher transmission, at a cost of higher population-level attack rates. All simulations were sensitive to the timing of the epidemic peak in relation to vaccine availability, with vaccination having the greatest impact when it was implemented well in advance of the epidemic peak. CONCLUSIONS/SIGNIFICANCE: Our model simulations suggest that vaccine should be allocated to high-risk groups, regardless of age, followed by age groups at increased risk of severe outcomes. Vaccination may significantly reduce influenza-attributable morbidity and mortality, but the benefits are

  10. Swine flu vaccination for patients with cancers

    OpenAIRE

    Viroj Wiwanitkit

    2011-01-01

    In oncology, vaccination is accepted as an important preventive measure. As a tertiary prevention protocol, several vaccines are recommended for the oncology patients. The newest vaccine in medicine is swine flu vaccine which is developed for prevention of novel H1N1 influenza virus infection. In this paper, the author will briefly discuss on swine flu vaccination for oncology patients.

  11. Compliance to compulsory vaccination: strategies and results.

    Science.gov (United States)

    Serafini, G; Caramello, S; Vaudetto, S

    1995-06-01

    This report is devoted to analyze the effect that compulsory vaccination has on the compliance of the population, compared with the results obtained by massive campaigns for optional vaccinations. The implementation of a specific software for the management of individual schedules helps to reach a substantial complete coverage of the individuals for the first ones, while improving but incomplete results regard the vaccines against pertussis and measles-mumps-rubella, optional in Italy. The optimization of data management at the local health unit level improves the quality and the satisfaction of the work performed by the personnel, but has a limited effect on the already nearly complete coverage for the compulsory immunizations. The mounting percentage of children immunized with optional vaccines can be explained both by the massive campaigns of information conducted in recent years and by the better tracking of individual immunization schedules.

  12. Bacterial otitis media: current vaccine development strategies.

    Science.gov (United States)

    Cripps, Allan W; Kyd, Jennelle

    2003-02-01

    Otitis media is the most common reason for children less than 5 years of age to visit a medical practitioner. Whilst the disease rarely results in death, there is significant associated morbidity. The most common complication is loss of hearing at a critical stage of the development of speech, language and cognitive abilities in children. The cause and pathogenesis of otitis media is multifactorial. Among the contributing factors, the single most important are viral and bacterial infections. Infection with respiratory syncytial virus, influenza viruses, para-influenza viruses, enteroviruses and adenovirus are most commonly associated with acute and chronic otitis media. Streptococcus pneumoniae, non-typeable Haemophilus influenzae and Moraxella catarrhalis are the most commonly isolated bacteria from the middle ears of children with otitis media. Treatment of otitis media has largely relied on the administration of antimicrobials and surgical intervention. However, attention has recently focused on the development of a vaccine. For a vaccine to be effective against bacterial otitis media, it must, at the very least, contain antigens that induce a protective immune response in the middle ear against the three most common infecting bacteria. Whilst over the past decade there has been significant progress in the development of vaccines against invasive S. pneumoniae disease, these vaccines are less efficacious for otitis media. The search for candidate vaccine antigens for non-typeable H. influenzae are well advanced whilst less progress has been made for M. catarrhalis. No human studies have been conducted for non-typeable H. influenzae or M. catarrhalis and the concept of a tribacterial vaccine remains to be tested in animal models. Only when vaccine antigens are determined and an understanding of the immune responses induced in the middle ear by infection and immunization is gained will the formulation of a tribacterial vaccine against otitis media be possible.

  13. TAA Polyepitope DNA-Based Vaccines: A Potential Tool for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Roberto Bei

    2010-01-01

    Full Text Available DNA-based cancer vaccines represent an attractive strategy for inducing immunity to tumor associated antigens (TAAs in cancer patients. The demonstration that the delivery of a recombinant plasmid encoding epitopes can lead to epitope production, processing, and presentation to CD8+ T-lymphocytes, and the advantage of using a single DNA construct encoding multiple epitopes of one or more TAAs to elicit a broad spectrum of cytotoxic T-lymphocytes has encouraged the development of a variety of strategies aimed at increasing immunogenicity of TAA polyepitope DNA-based vaccines. The polyepitope DNA-based cancer vaccine approach can (a circumvent the variability of peptide presentation by tumor cells, (b allow the introduction in the plasmid construct of multiple immunogenic epitopes including heteroclitic epitope versions, and (c permit to enroll patients with different major histocompatibility complex (MHC haplotypes. This review will discuss the rationale for using the TAA polyepitope DNA-based vaccination strategy and recent results corroborating the usefulness of DNA encoding polyepitope vaccines as a potential tool for cancer therapy.

  14. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases.

    Science.gov (United States)

    Skeate, Joseph G; Woodham, Andrew W; Einstein, Mark H; Da Silva, Diane M; Kast, W Martin

    2016-06-01

    Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.

  15. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  16. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Directory of Open Access Journals (Sweden)

    Gennaro Ciliberto

    2011-09-01

    Full Text Available Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  17. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Aurisicchio, Luigi, E-mail: aurisicchio@takis-it.it [Takis, via di Castel Romano 100, 00128 Rome (Italy); BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV) (Italy); Ciliberto, Gennaro [Takis, via di Castel Romano 100, 00128 Rome (Italy); Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro (Italy)

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  18. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    OpenAIRE

    Wold, William S.M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  19. The human papillomavirus vaccine: A powerful tool for the primary prevention of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Nubia Muñoz

    2009-11-01

    Full Text Available Prophylactic human papillomavirus (HPV vaccine is the most promissory public health tool for primary prevention of cervical cancer. Immunization of females before the acquisition of HPV infection has the greatest impact in preventing pre-neoplasic lesions and cervical cancer. Current HPV vaccines do not eliminate cervical cancer risk, therefore, screening should continue covering vaccinated as well as women that do not get the vaccine. The strategies that include combination of high-coverage vaccination of HPV-unexposed adolescents with screening using methods with higher sensitivity than cytology as HPV test may be more cost-effective than the strategies currently used. The cytology-based screening programs of Latin America countries including Colombia are very ineffective. The evidence in favor of the cost-effectiveness of other screening strategies such as HPV tests and visual inspection followed by immediate treatment for women with difficult access to health care services in developing countries warrants the immediate revision of the current strategies.

  20. Advances in strategies and methodologies in cancer immunotherapy.

    Science.gov (United States)

    Lam, Samuel S K; Zhou, Feifan; Hode, Tomas; Nordquist, Robert E; Alleruzzo, Luciano; Raker, Joseph; Chen, Wei R

    2015-04-01

    Since the invention of Coley's toxin by William Coley in early 1900s, the path for cancer immunotherapy has been a convoluted one. Although still not considered standard of care, with the FDA approval of trastuzumab, Provenge and ipilimumab, the medical and scientific community has started to embrace the possibility that immunotherapy could be a new hope for cancer patients with otherwise untreatable metastatic diseases. This review aims to summarize the development of some major strategies in cancer immunotherapy, from the earliest peptide vaccine and transfer of tumor specific antibodies/T cells to the more recent dendritic cell (DC) vaccines, whole cell tumor vaccines, and checkpoint blockade therapy. Discussion of some major milestones and obstacles in the shaping of the field and the future perspectives is included. Photoimmunotherapy is also reviewed as an example of emerging new therapies combining phototherapy and immunotherapy.

  1. Vaccination strategies for SEIR models using feedback linearization. Preliminary results

    CERN Document Server

    De la Sen, M; Alonso-Quesada, S

    2011-01-01

    A linearization-based feedback-control strategy for a SEIR epidemic model is discussed. The vaccination objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e. susceptible plus infected plus infectious) to asymptotically tend to zero. The disease controlpolicy is designed based on a feedback linearization technique which provides a general method to generate families of vaccination policies with sound technical background.

  2. An epidemiological model with vaccination strategies

    Science.gov (United States)

    Prates, Dérek B.; Silva, Jaqueline M.; Gomes, Jessica L.; Kritz, Maurício V.

    2016-06-01

    Mathematical models can be widely found in the literature describing epidemics. The epidemical models that use differential equations to represent mathematically such description are especially sensible to parameters. This work analyze a variation of the SIR model when applied to a epidemic scenario including several aspects, as constant vaccination, pulse vaccination, seasonality, cross-immunity factor, birth and dead rate. The analysis and results are performed through numerical solutions of the model and a special attention is given to the discussion generated by the paramenters variation.

  3. On the robust optimization to the uncertain vaccination strategy problem

    International Nuclear Information System (INIS)

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented

  4. On the robust optimization to the uncertain vaccination strategy problem

    Energy Technology Data Exchange (ETDEWEB)

    Chaerani, D., E-mail: d.chaerani@unpad.ac.id; Anggriani, N., E-mail: d.chaerani@unpad.ac.id; Firdaniza, E-mail: d.chaerani@unpad.ac.id [Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Padjadjaran Indonesia, Jalan Raya Bandung Sumedang KM 21 Jatinangor Sumedang 45363 (Indonesia)

    2014-02-21

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented.

  5. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines

    International Nuclear Information System (INIS)

    Chemotherapy has been a mainstay in cancer treatment for many years. Despite some success, the cure rate with chemotherapy remains unsatisfactory in some types of cancers, and severe side effects from these treatments are a concern. Recently, understanding of the dynamic interplay between the tumor and immune system has led to the development of novel immunotherapies, including cancer vaccines. Cancer vaccines have many advantageous features, but their use has been hampered by poor immunogenicity. Many developments have increased their potency in pre-clinical models, but cancer vaccines continue to have a poor clinical track record. In part, this could be due to an inability to effectively overcome tumor-induced immune suppression. It had been generally assumed that immune-stimulatory cancer vaccines could not be used in combination with immunosuppressive chemotherapies, but recent evidence has challenged this dogma. Chemotherapies could be used to condition the immune system and tumor to create an environment where cancer vaccines have a better chance of success. Other types of immunotherapies could also be used to modulate the immune system. This review will discuss how immune modulation by chemotherapy or immunotherapy could be used to bolster the effects of cancer vaccines and discuss the advantages and disadvantages of these treatments

  6. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    Marc Mansour

    2011-08-01

    Full Text Available Chemotherapy has been a mainstay in cancer treatment for many years. Despite some success, the cure rate with chemotherapy remains unsatisfactory in some types of cancers, and severe side effects from these treatments are a concern. Recently, understanding of the dynamic interplay between the tumor and immune system has led to the development of novel immunotherapies, including cancer vaccines. Cancer vaccines have many advantageous features, but their use has been hampered by poor immunogenicity. Many developments have increased their potency in pre-clinical models, but cancer vaccines continue to have a poor clinical track record. In part, this could be due to an inability to effectively overcome tumor-induced immune suppression. It had been generally assumed that immune-stimulatory cancer vaccines could not be used in combination with immunosuppressive chemotherapies, but recent evidence has challenged this dogma. Chemotherapies could be used to condition the immune system and tumor to create an environment where cancer vaccines have a better chance of success. Other types of immunotherapies could also be used to modulate the immune system. This review will discuss how immune modulation by chemotherapy or immunotherapy could be used to bolster the effects of cancer vaccines and discuss the advantages and disadvantages of these treatments.

  7. Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Weir, Genevieve M. [Suite 411, 1344 Summer St., Immunovaccine Inc., Halifax, NS, B3H 0A8 (Canada); Room 11-L1, Sir Charles Tupper Building, Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS, B3H 1X5 (Canada); Liwski, Robert S. [Room 11-L1, Sir Charles Tupper Building, Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS, B3H 1X5 (Canada); Room 206E, Dr. D. J. Mackenzie Building, Department of Pathology, Dalhousie University, 5788 University Avenue, Halifax, NS, B3H 2Y9 (Canada); Mansour, Marc [Suite 411, 1344 Summer St., Immunovaccine Inc., Halifax, NS, B3H 0A8 (Canada)

    2011-08-05

    Chemotherapy has been a mainstay in cancer treatment for many years. Despite some success, the cure rate with chemotherapy remains unsatisfactory in some types of cancers, and severe side effects from these treatments are a concern. Recently, understanding of the dynamic interplay between the tumor and immune system has led to the development of novel immunotherapies, including cancer vaccines. Cancer vaccines have many advantageous features, but their use has been hampered by poor immunogenicity. Many developments have increased their potency in pre-clinical models, but cancer vaccines continue to have a poor clinical track record. In part, this could be due to an inability to effectively overcome tumor-induced immune suppression. It had been generally assumed that immune-stimulatory cancer vaccines could not be used in combination with immunosuppressive chemotherapies, but recent evidence has challenged this dogma. Chemotherapies could be used to condition the immune system and tumor to create an environment where cancer vaccines have a better chance of success. Other types of immunotherapies could also be used to modulate the immune system. This review will discuss how immune modulation by chemotherapy or immunotherapy could be used to bolster the effects of cancer vaccines and discuss the advantages and disadvantages of these treatments.

  8. Cost-effectiveness of adding vaccination with the AS04-adjuvanted human papillomavirus 16/18 vaccine to cervical cancer screening in Hungary

    Directory of Open Access Journals (Sweden)

    Vokó Zoltán

    2012-10-01

    Full Text Available Abstract Background The cervical cancer screening program implemented in Hungary to date has not been successful. Along with screening, vaccination is an effective intervention to prevent cervical cancer. The aim of this study was to assess the cost-effectiveness of adding vaccination with the human papillomavirus 16/18 vaccine to the current cervical cancer screening program in Hungary. Methods We developed a cohort simulation state-transition Markov model to model the life course of 12-year-old girls. Eighty percent participation in the HPV vaccination program at 12 years of age was assumed. Transitional probabilities were estimated using data from the literature. Local data were used regarding screening participation rates, and the costs were estimated in US $. We applied the purchasing power parity exchange rate of 129 HUF/$ to the cost data. Only direct health care costs were considered. We used a 3.7% discount rate for both the cost and quality-adjusted life years (QALYs. The time horizon was 88 years. Results Inclusion of HPV vaccination at age 12 in the cervical cancer prevention program was predicted to be cost-effective. The incremental cost-effectiveness ratio (ICER of adding HPV vaccination to the current national cancer screening program was estimated to be 27 588 $/QALY. The results were sensitive to the price of the vaccine, the discount rate, the screening participation rate and whether herd immunity was taken into account. Conclusions Our modeling analysis showed that the vaccination of 12-year-old adolescent girls against cervical cancer with the AS04-adjuvanted human papillomavirus 16/18 vaccine would be a cost-effective strategy to prevent cervical cancer in Hungary.

  9. A vaccination strategy to SEIR-CA model

    Science.gov (United States)

    Almuzakki, Muhammad Zaki; Nuraini, Nuning

    2016-04-01

    A combination between Susceptible-Exposed-Infected-Removed (SEIR) model and Cellular Automaton (CA) called SEIR-CA model has been proposed to simulate spreading diseases through populations. We make an improvement to the parameter which describe the impact of neighborhood in CA system. We also propose a vaccination strategy to the model. Three examples are given to illustrate the model. The first one shows that the previously established SEIR-CA model does not work properly in a population with randomly distributed individuals. After an improvement to the neighborhood impact parameter has been made, the model works properly in a population with randomly distributed individuals and it is shown in the second example. The last example shows the spreading mechanisms with a chosen vaccination strategy. We also show that the vaccination strategy can reduce the number of infected individuals and can suppress the spread of the diseases.

  10. Evolution of the health economics of cervical cancer vaccination

    NARCIS (Netherlands)

    Ferko, Nicole; Postma, Maarten; Gallivan, Steve; Kruzikas, Denise; Drummond, Michael

    2008-01-01

    This paper reviews the history of modelling for cervical cancer vaccination. We provide an interpretation and summary of conclusions pertaining to the usefulness of different models, the predicted epidemiological impact of vaccination and the cost-effectiveness of adolescent, catch-up and sex-specif

  11. Human papillomavirus vaccination guideline update: American Cancer Society guideline endorsement.

    Science.gov (United States)

    Saslow, Debbie; Andrews, Kimberly S; Manassaram-Baptiste, Deana; Loomer, Lacey; Lam, Kristina E; Fisher-Borne, Marcie; Smith, Robert A; Fontham, Elizabeth T H

    2016-09-01

    Answer questions and earn CME/CNE The American Cancer Society (ACS) reviewed and updated its guideline on human papillomavirus (HPV) vaccination based on a methodologic and content review of the Advisory Committee on Immunization Practices (ACIP) HPV vaccination recommendations. A literature review was performed to supplement the evidence considered by the ACIP and to address new vaccine formulations and recommendations as well as new data on population outcomes since publication of the 2007 ACS guideline. The ACS Guideline Development Group determined that the evidence supports ACS endorsement of the ACIP recommendations, with one qualifying statement related to late vaccination. The ACS recommends vaccination of all children at ages 11 and 12 years to protect against HPV infections that lead to several cancers and precancers. Late vaccination for those not vaccinated at the recommended ages should be completed as soon as possible, and individuals should be informed that vaccination may not be effective at older ages. CA Cancer J Clin 2016;66:375-385. © 2016 American Cancer Society.

  12. Approaches to improve development methods for therapeutic cancer vaccines.

    Science.gov (United States)

    Ogi, Chizuru; Aruga, Atsushi

    2015-04-01

    Therapeutic cancer vaccines are an immunotherapy that amplify or induce an active immune response against tumors. Notably, limitations in the methodology for existing anti-cancer drugs may subsist while applying them to cancer vaccine therapy. A retrospective analysis was performed using information obtained from ClinicalTrials.gov, PubMed, and published articles. Our research evaluated the optimal methodologies for therapeutic cancer vaccines based on (1) patient populations, (2) immune monitoring, (3) tumor response evaluation, and (4) supplementary therapies. Failure to optimize these methodologies at an early phase may impact development at later stages; thus, we have proposed some points to be considered during the early phase. Moreover, we compared our proposal with the guidance for industry issued by the US Food and Drug Administration in October 2011 entitled "Clinical Considerations for Therapeutic Cancer Vaccines". Consequently, while our research was aligned with the guidance, we hope it provides further insights in order to predict the risks and benefits and facilitate decisions for a new technology. We identified the following points for consideration: (1) include in the selection criteria the immunological stage with a prognostic value, which is as important as the tumor stage; (2) select immunological assays such as phenotype analysis of lymphocytes, based on their features and standardize assay methods; (3) utilize optimal response criteria for immunotherapy in therapeutic cancer vaccine trials; and (4) consider supplementary therapies, including immune checkpoint inhibitors, for future therapeutic cancer vaccines. PMID:25746315

  13. Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements

    Directory of Open Access Journals (Sweden)

    Maha Zohra eLadjemi

    2012-11-01

    Full Text Available Since the discovery of tumor-associated antigens (TAA, researchers have tried to develop immune-based anti-cancer therapies. Thanks to their specificity, monoclonal antibodies (mAbs offer the major advantage to induce fewer side effects than those caused by non-specific conventional treatments (eg. chemotherapy, radiotherapy. Passive immunotherapy by means of mAbs or cytokines has proved efficacy in oncology and validated the use of immune-based agents as part of anti-cancer treatment options. The next step was to try to induce an active immune protection aiming to boost own’s host immune defense against TAAs. Cancer vaccines are thus developed to specifically induce active immune protection targeting only tumor cells while preserving normal tissues from a non-specific toxicity. But, as most of TAAs are self antigens, an immune tolerance against them exists representing a barrier to effective vaccination against these oncoproteins. One promising approach to break this immune tolerance consists in the use of anti-idiotypic mAbs, so called Ab2, as antigen surrogates. This vaccination strategy allows also immunization against non-proteic antigens (such as carbohydrates. In some clinical studies, anti-idiotypic (anti-Id cancer vaccines indeed induced efficient humoral and/or cellular immune responses associated with clinical benefit.This review article will focus on recent achievements of anti-Id mAbs use as cancer vaccines in solid tumors.

  14. DNA vaccines, electroporation and their applications in cancer treatment

    OpenAIRE

    Lee, Si-Hyeong; Danishmalik, Sayyed Nilofar; Sin, Jeong-Im

    2015-01-01

    Numerous animal studies and recent clinical studies have shown that electroporation-delivered DNA vaccines can elicit robust Ag-specific CTL responses and reduce disease severity. However, cancer antigens are generally poorly immunogenic, requiring special conditions for immune response induction. To date, many different approaches have been used to elicit Ag-specific CTL and anti-neoplastic responses to DNA vaccines against cancer. In vivo electroporation is one example, whereas others inclu...

  15. Cervical Cancer Screening in Partly HPV Vaccinated Cohorts - A Cost-Effectiveness Analysis.

    Directory of Open Access Journals (Sweden)

    Steffie K Naber

    Full Text Available Vaccination against the oncogenic human papillomavirus (HPV types 16 and 18 will reduce the prevalence of these types, thereby also reducing cervical cancer risk in unvaccinated women. This (measurable herd effect will be limited at first, but is expected to increase over time. At a certain herd immunity level, tailoring screening to vaccination status may no longer be worth the additional effort. Moreover, uniform screening may be the only viable option. We therefore investigated at what level of herd immunity it is cost-effective to also reduce screening intensity in unvaccinated women.We used the MISCAN-Cervix model to determine the optimal screening strategy for a pre-vaccination population and for vaccinated women (~80% decreased risk, assuming a willingness-to-pay of €50,000 per quality-adjusted life year gained. We considered HPV testing, cytology testing and co-testing and varied the start age of screening, the screening interval and the number of lifetime screens. We then calculated the incremental cost-effectiveness ratio (ICER of screening unvaccinated women with the strategy optimized to the pre-vaccination population as compared to with the strategy optimized to vaccinated women, assuming different herd immunity levels.Primary HPV screening with cytology triage was the optimal strategy, with 8 lifetime screens for the pre-vaccination population and 3 for vaccinated women. The ICER of screening unvaccinated women 8 times instead of 3 was €28,085 in the absence of herd immunity. At around 50% herd immunity, the ICER reached €50,000.From a herd immunity level of 50% onwards, screening intensity based on the pre-vaccination risk level becomes cost-ineffective for unvaccinated women. Reducing the screening intensity of uniform screening may then be considered.

  16. Evaluation of targeted influenza vaccination strategies via population modeling.

    Directory of Open Access Journals (Sweden)

    John Glasser

    Full Text Available BACKGROUND: Because they can generate comparable predictions, mathematical models are ideal tools for evaluating alternative drug or vaccine allocation strategies. To remain credible, however, results must be consistent. Authors of a recent assessment of possible influenza vaccination strategies conclude that older children, adolescents, and young adults are the optimal targets, no matter the objective, and argue for vaccinating them. Authors of two earlier studies concluded, respectively, that optimal targets depend on objectives and cautioned against changing policy. Which should we believe? METHODS AND FINDINGS: In matrices whose elements are contacts between persons by age, the main diagonal always predominates, reflecting contacts between contemporaries. Indirect effects (e.g., impacts of vaccinating one group on morbidity or mortality in others result from off-diagonal elements. Mixing matrices based on periods in proximity with others have greater sub- and super-diagonals, reflecting contacts between parents and children, and other off-diagonal elements (reflecting, e.g., age-independent contacts among co-workers, than those based on face-to-face conversations. To assess the impact of targeted vaccination, we used a time-usage study's mixing matrix and allowed vaccine efficacy to vary with age. And we derived mortality rates either by dividing observed deaths attributed to pneumonia and influenza by average annual cases from a demographically-realistic SEIRS model or by multiplying those rates by ratios of (versus adding to them differences between pandemic and pre-pandemic mortalities. CONCLUSIONS: In our simulations, vaccinating older children, adolescents, and young adults averts the most cases, but vaccinating either younger children and older adults or young adults averts the most deaths, depending on the age distribution of mortality. These results are consistent with those of the earlier studies.

  17. DNA vaccine prime and recombinant FPV vaccine boost: an important candidate immunization strategy to control bluetongue virus type 1.

    Science.gov (United States)

    Li, Junping; Yang, Tao; Xu, Qingyuan; Sun, Encheng; Feng, Yufei; Lv, Shuang; Zhang, Qin; Wang, Haixiu; Wu, Donglai

    2015-10-01

    Bluetongue virus (BTV) is the causative agent of bluetongue (BT), an important sheep disease that caused great economic loss to the sheep industry. There are 26 BTV serotypes based on the outer protein VP2. However, the serotypes BTV-1 and BTV-16 are the two most prevalent serotypes in China. Vaccination is the most effective method of preventing viral infections. Therefore, the need for an effective vaccine against BTV is urgent. In this study, DNA vaccines and recombinant fowlpox virus (rFPV) vaccines expressing VP2 alone or VP2 in combination with VP5 or co-expressing the VP2 and VP5 proteins of BTV-1 were evaluated in both mice and sheep. Several strategies were tested in mice, including DNA vaccine prime and boost, rFPV vaccine prime and boost, and DNA vaccine prime and rFPV vaccine boost. We then determined the best vaccine strategy in sheep. Our results indicated that a strategy combining a DNA vaccine prime (co-expressing VP2 and VP5) followed by an rFPV vaccine boost (co-expressing VP2 and VP5) induced a high titer of neutralizing antibodies in sheep. Therefore, our data suggest that a DNA vaccine consisting of a pCAG-(VP2+VP5) prime and an rFPV-(VP2+VP5) boost is an important candidate for the design of a novel vaccine against BTV-1.

  18. GENERAL AWARNANCE OF HUMAN PAPILLOMA VIRUS VACCINE AGAINST CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    SAFILA NAVEED

    2014-01-01

    Full Text Available We have conducted a survey program on the awarnance of HPV vaccine of cervical cancer in common people. Methods: For this survey we perform 2 steps. First we made a questionnaires in which we ask to female of different belongs to different education field either they are married or not. Secondly we gone in the different hospitals of Karachi and observe treatment, diagnosis, vaccination availability and frequency of cervical cancer. Results:From questionnaire we observed that only 1 % female are aware about cervical cancer and its vaccine i.e. HPV, even female belongs medical field are not aware about it. Form hospital survey we observed that frequency of cervical cancer is very less but in Shaukat Khanum hospital 90 cases reported out of 1803 cancer. The given treatment is radiology, chemotherapy and surgery.

  19. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy.

    Science.gov (United States)

    Fan, Yuchen; Moon, James J

    2015-01-01

    Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.

  20. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy

    Directory of Open Access Journals (Sweden)

    Yuchen Fan

    2015-08-01

    Full Text Available Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.

  1. Cancer treatment: the combination of vaccination with other therapies

    DEFF Research Database (Denmark)

    Andersen, M.H.; Sorensen, R.B.; Schrama, D.;

    2008-01-01

    Harnessing of the immune system by the development of 'therapeutic' vaccines, for the battle against cancer has been the focus of tremendous research efforts over the past two decades. As an illustration of the impressive amounts of data gathered over the past years, numerous antigens expressed...... their escape from cytotoxic therapies represent prime vaccination candidates. The characterization of a high number of tumor antigens allow the concurrent or serial immunological targeting of different proteins associated with such cancer traits. Moreover, while vaccination in itself is a promising new...... approach to fight cancer, the combination with additional therapy could create a number of synergistic effects. Herein we discuss the possibilities and prospects of vaccination when combined with other treatments. In this regard, cell death upon drug exposure may be immunogenic or non-immunogenic depending...

  2. Meningococcal B vaccination strategies and their practical application in Italy.

    Science.gov (United States)

    Gasparini, R; Amicizia, D; Lai, P L; Panatto, D

    2015-08-31

    Immunisation against meningococcal meningitis has a long history, which has passed through several phases: the studies by Flexner, extraction of the polysaccharide capsule, the development of monovalent and multivalent conjugate vaccines, the outer membrane vesicle vaccines up to the development of effective and safe vaccines for meningococcal B invasive disease through the application of the techniques of molecular biology and reverse vaccinology. The new available vaccines are Bexsero® and Trumenba®. Bexsero ® has been approved and is available in Europe, the USA, Canada, Australia and Chile, and is currently under review in Brazil for the prevention of MenB invasive disease in subjects ≥ 2 months. Trumemba® is currently approved only in the USA, for use in adolescents and young adults. At present, the greatest obstacle to the extensive use of these vaccines in industrialised countries is the high cost and the need administer multiple doses in infants. However, in some European countries and in some Italian Regions, strategies (free and active call) to fight the disease through vaccination (Bexsero®) are already in place.

  3. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models

    Directory of Open Access Journals (Sweden)

    Soledad eMac Keon

    2015-05-01

    Full Text Available Dendritic cells (DCs play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel T there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts towards an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.

  4. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate. PMID:19835869

  5. Identifying optimal vaccination strategies for serogroup A Neisseria meningitidis conjugate vaccine in the African meningitis belt.

    Directory of Open Access Journals (Sweden)

    Sara Tartof

    Full Text Available OBJECTIVE: The optimal long-term vaccination strategies to provide population-level protection against serogroup A Neisseria meningitidis (MenA are unknown. We developed an age-structured mathematical model of MenA transmission, colonization, and disease in the African meningitis belt, and used this model to explore the impact of various vaccination strategies. METHODS: The model stratifies the simulated population into groups based on age, infection status, and MenA antibody levels. We defined the model parameters (such as birth and death rates, age-specific incidence rates, and age-specific duration of protection using published data and maximum likelihood estimation. We assessed the validity of the model by comparing simulated incidence of invasive MenA and prevalence of MenA carriage to observed incidence and carriage data. RESULTS: The model fit well to observed age- and season-specific prevalence of carriage (mean pseudo-R2 0.84 and incidence of invasive disease (mean R2 0.89. The model is able to reproduce the observed dynamics of MenA epidemics in the African meningitis belt, including seasonal increases in incidence, with large epidemics occurring every eight to twelve years. Following a mass vaccination campaign of all persons 1-29 years of age, the most effective modeled vaccination strategy is to conduct mass vaccination campaigns every 5 years for children 1-5 years of age. Less frequent campaigns covering broader age groups would also be effective, although somewhat less so. Introducing conjugate MenA vaccine into the EPI vaccination schedule at 9 months of age results in higher predicted incidence than periodic mass campaigns. DISCUSSION: We have developed the first mathematical model of MenA in Africa to incorporate age structures and progressively waning protection over time. Our model accurately reproduces key features of MenA epidemiology in the African meningitis belt. This model can help policy makers consider vaccine

  6. Vaccination Strategies: a comparative study in an epidemic scenario

    Science.gov (United States)

    Prates, D. B.; Jardim, C. L. T. F.; Ferreira, L. A. F.; da Silva, J. M.; Kritz, M. V.

    2016-08-01

    Epidemics are an extremely important matter of study within the Mathematical Modeling area and can be widely found in the literature. Some epidemiological models use differential equations, which are very sensible to parameters, to represent and describe the diseases mathematically. For this work, a variation of the SIR model is discussed and applied to a certain epidemic scenario, wherein vaccination is introduced through two different strategies: constant vaccination and vaccination in pulses. Other epidemiological and population aspects are also considered, such as mortality/natality and infection rates. The analysis and results are performed through numerical solutions of the model and a special attention is given to the discussion generated by the paramenters variation.

  7. Glycan changes: cancer metastasis and anti-cancer vaccines

    Indian Academy of Sciences (India)

    Min Li; Lujun Song; Xinyu Qin

    2010-12-01

    Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell–cell and cell–extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.

  8. Post-polio eradication: vaccination strategies and options for India

    Directory of Open Access Journals (Sweden)

    Jayakrishnan Thayyil

    2014-11-01

    Full Text Available In 1988, the World Health Organization (WHO resolved to eradicate poliomyelitis globally. Since then, the initiative has reported dramatic progress in decreasing the incidence of poliomyelitis and limiting the geographical extent of transmission. 2013 is recorded as the second consecutive year not reporting wild poliovirus (WPV from India. If the country can retain this position for one more year India will be declared as polio eradicated. What should be the future vaccination strategies? We searched and reviewed the full text of the available published literature on polio eradication via PubMed and examined Internet sources and websites of major international health agencies. The oral polio vaccine (OPV has been the main tool in the polio eradication program. Once WPV transmission is interrupted, the poliomyelitis will be caused only by OPV. India could expect 1 vaccine-associated paralytic polio per 4.2-4.6 million doses of OPV. Considering the threat of vaccine-derived viruses to polio eradication, WHO urged to develop a strategy to safely discontinue OPV after certification. The ultimate aim is to stop OPV safely and effectively, and eventually substitute with inactivated polio vaccine (IPV. The argument against the use of IPV is its cost. From India, field based data were available on the efficacy of IPV, which was better than OPV. IPV given intradermally resulted in seroconversion rates similar to full-dose intramuscular vaccine. The incremental cost of adopting IPV to replace OPV is relatively low, about US $1 per child per year, and most countries should be able to afford this additional cost.

  9. Voluntary vaccination strategy and the spread of sexually transmitted diseases.

    Science.gov (United States)

    Xu, Fei; Cressman, Ross

    2016-04-01

    In this work, we investigate the spread and control of sexually transmitted diseases when a game-theory based vaccination strategy is involved. An individual's decision on vaccination uptake may follow a cost-benefit analysis since the individual obtains immunity against the disease from the vaccination and, at the same time, may have some perceived side effects. Evolutionary game theory is integrated into the epidemic model to reveal the relationship between individuals' voluntary decisions on vaccination uptake and the spread and control of such diseases. We show that decreasing the perceived cost of taking vaccine or increasing the payoff from social obligation is beneficial to controlling the disease. It is also shown how the "degree of rationality" of males and females affects the disease spread through the net payoff of the game. In particular, individual awareness of the consequences of the disease on the infectives also contributes to slowing down the disease spread. By analyzing an asymmetric version of our evolutionary game, it is shown that the disease is better controlled when individuals are more sensitive to fitness differences when net payoff is positive than when it is negative. PMID:26877073

  10. Current trends in cancer vaccines--a bioinformatics perspective.

    Science.gov (United States)

    Sankar, Shanju; Nayanar, Sangeetha K; Balasubramanian, Satheesan

    2013-01-01

    Cancer vaccine development is in the process of becoming reality in future, due to successful phase II/III clinical trials. However, there are still problems due to the specificity of tumor antigens and weakness of tumor associated antigens in eliciting an effective immune response. Computational models to assess the vaccine efficacy have helped to improve and understand what is necessary for personalized treatment. Further research is needed to elucidate the mechanisms of activation of antigen specific cytotoxic T lymphocytes, decreased TREG number functionality and antigen cascade, so that overall improvement in vaccine efficacy and disease free survival can be attained. T cell epitomic based in sillico approaches might be very effective for the design and development of novel cancer vaccines.

  11. Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    Md Kamal Hossain

    2016-07-01

    Full Text Available Aberrantly glycosylated mucin 1 (MUC1 is a recognized tumor-specific antigen on epithelial cell tumors. A wide variety of MUC1 glycopeptide anti-cancer vaccines have been formulated by many research groups. Some researchers have used MUC1 alone as an immunogen whereas other groups used different antigenic carrier proteins such as bovine serum albumin or keyhole limpet hemocyanin for conjugation with MUC1 glycopeptide. A variety of adjuvants have been used with MUC1 glycopeptides to improve their immunogenicity. Fully synthetic multicomponent vaccines have been synthesized by incorporating different T helper cell epitopes and Toll-like receptor agonists. Some vaccine formulations utilized liposomes or nanoparticles as vaccine delivery systems. In this review, we discuss the immunological evaluation of different conjugate or synthetic MUC1 glycopeptide vaccines in different tumor or mouse models that have been published since 2012.

  12. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine.

    Science.gov (United States)

    Precioso, Alexander Roberto; Palacios, Ricardo; Thomé, Beatriz; Mondini, Gabriella; Braga, Patrícia; Kalil, Jorge

    2015-12-10

    Butantan Institute is a public Brazilian biomedical research-manufacturer center affiliated to the São Paulo State Secretary of Health. Currently, Butantan is one of the main public producers of vaccines, antivenoms, and antitoxins in Latin America. The partnership between Butantan and the National Institutes of Health (NIH) of the United Sates has been one of the longest and most successful partnerships in the development and manufacturing of new vaccines. Recently, Butantan Institute has developed and manufactured a lyophilized tetravalent live attenuated dengue vaccine with the four dengue viruses attenuated and licensed from the Laboratory of Infectious Diseases at The National Institutes of Allergy and Infectious Diseases (LID/NIAID/NIH). The objective of this paper is to describe the clinical evaluation strategies of a live attenuated tetravalent dengue vaccine (Butantan-DV) developed and manufactured by Butantan Institute. These clinical strategies will be used to evaluate the Butantan-DV Phase III trial to support the Butantan-DV licensure for protection against any symptomatic dengue caused by any serotype in people aged 2 to 59 years.

  13. Particulate based vaccines for cancer immunotherapy

    NARCIS (Netherlands)

    Rosalia, Rodney Alexander

    2014-01-01

    In this thesis we describe our studies aimed at optimizing the efficacy of synthetic long peptide (SLP) vaccines via the encapsulation in Poly-(lactic-co-glycolic acid) (PLGA)particles. Immunotherapy based on SLP-vaccines has resulted in strong tumor specific immune response and importantly, impro

  14. Therapeutic cancer vaccines in combination with conventional therapy

    DEFF Research Database (Denmark)

    Junker, Niels; Ellebaek, Eva; Svane, Inge Marie;

    2010-01-01

    The clinical efficacy of most therapeutic vaccines against cancer has not yet met its promise. Data are emerging that strongly support the notion that combining immunotherapy with conventional therapies, for example, radiation and chemotherapy may improve efficacy. In particular combination...... of proteins coupled to intrinsic properties of cancer cells. For example, proteins associated with drug resistance can be targeted, and form ideal target structures for use in combination with chemotherapy for killing of surviving drug resistant cancer cells. Proteins associated with the malignant phenotype...... can be targeted to specifically target cancer cells, but proteins targeted by immunotherapy may also simultaneously target cancer cells as well as suppressive cells in the tumor stroma....

  15. 76 FR 68768 - Guidance for Industry: Clinical Considerations for Therapeutic Cancer Vaccines; Availability

    Science.gov (United States)

    2011-11-07

    ... Therapeutic Cancer Vaccines; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY... treatment of patients with an existing diagnosis of cancer. The guidance does not apply to vaccines for... patients with an existing diagnosis of cancer. The guidance does not apply to vaccines for preventative...

  16. Development of a therapeutic vaccination strategy against cervical neoplasia

    NARCIS (Netherlands)

    Riezebos-Brilman, Annelies

    2008-01-01

    The aim of the studies described in this thesis was to investigate the effi cacy of a therapeutic immunization strategy against cervical cancer and premalignant cervical disease. Cervical cancer is caused by persistent infection with high-risk human papillomavirus (HPV). Two of the early proteins of

  17. 预防肿瘤术后复发和转移的最新疗法 :热休克蛋白 /肽复合物疫苗的研究与应用%A new strategy to prevent cancer recurrence and metastasis after operation:research and application of heat shock protein/peptides complex vaccine

    Institute of Scientific and Technical Information of China (English)

    陈继营; 袁玫; 卢世璧

    2002-01-01

    Deepened understanding of the mechanism involved in the activation of T cells and improved molecular biology techniques have brought a promising strategy to active a patient's immune system to prevent tumor recurrence and metastasis. Heat shock proteins (HSPs) are chaperones of peptides,It can elicit array of immune responses,such as:present tumor antigens to T cells, stimulate antigen presenting cells to secrete cytokines,mediate maturation of dentritic cells,active NK cells and/T cells.Extract HSP/peptides complex from tumor cells can be used as a polyvalent vaccine for treatment of cancers,The elicited antigen specific immune response is restricted to the tumor from which the HSPs are purified.HSP/peptides complex vaccine has been started in third clinical trials.The rationale,feasibility,advantages and safety of this new approach were discussed.

  18. Rational design of diagnostic and vaccination strategies for tuberculosis

    Directory of Open Access Journals (Sweden)

    Sibele Borsuk

    2012-02-01

    Full Text Available The development of diagnostic tests which can readily differentiate between vaccinated and tuberculosis-infected individuals is crucial for the wider utilization of bacillus Calmette-Guérin (BCG as vaccine in humans and animals. BCG_0092 is an antigen that elicits specific delayed type hypersensitivity reactions similar in size and morphological aspects to that elicited by purified protein derivative, in both animals and humans infected with the tubercle bacilli. We carried out bioinformatics analyses of the BCG_0092 and designed a diagnostic test by using the predicted MHC class I epitopes. In addition, we performed a knockout of this gene by homologous recombination in the BCG vaccine strain to allow differentiation of vaccinated from infected individuals. For that, the flanking sequences of the target gene (BCG_0092were cloned into a suicide vector. Spontaneous double crossovers, which result in wild type revertants or knockouts were selected using SacB. BCG_0092 is present only in members of the Mycobacterium tuberculosis complex. Eight predicted MHC class I epitopes with potential for immunological diagnosis were defined, allowing the design of a specific diagnostic test. The strategy used to delete the (BCG_0092 gene from BCG was successful. The knockout genotype was confirmed by PCR and by Southern blot. The mutant BCG strain has the potential of inducing protection against tuberculosis without interfering with the diagnostic test based on the use of selected epitopes from BCG_0092.

  19. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren;

    2003-01-01

    for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...

  20. Prevention of cervical, vaginal, and vulval cancers: role of the quadrivalent human papillomavirus (6, 11, 16, 18 recombinant vaccine

    Directory of Open Access Journals (Sweden)

    Maria Lina Diaz

    2009-09-01

    Full Text Available Maria Lina DiazSection of Ambulatory Gynecology Cleveland Clinic Florida Weston, Florida, USAAbstract: The relationship between the human papillomavirus (HPV and malignancies of the uterine cervix, vagina, and vulva has been established. The development of a quadrivalent HPV recombinant prophylactic vaccine represents the first time in history that primary prevention of these cancers is offered to girls and women. The prevalence of oncogenic HPV subtypes in cervical cancers has been the most studied, but prevalence has also been established for vaginal and vulvar cancers. Clinical trials demonstrate impressive efficacy in disease prevention as well as excellent safety and tolerability. The role the quadrivalent HPV recombinant vaccine promises to have in the reduction of gynecologic malignancies will depend on various factors, including acceptance and accessibility of the vaccine, duration of immunity, and cross-protection against other oncogenic HPV subtypes. The HPV vaccine’s role in disease reduction will probably be viewed in the context of a strategy that involves continued secondary screening and lifestyle modification to reduce modifiable risk factors, along with widespread vaccination.Keywords: human papillomavirus, quadrivalent vaccine, cervical cancer, vaginal cancer, vulvar cancer

  1. Highest Vaccine Uptake after School-Based Delivery - A County-Level Evaluation of the Implementation Strategies for HPV Catch-Up Vaccination in Sweden

    OpenAIRE

    Rehn, Moa; Uhnoo, Ingrid; Kuhlmann-Berenzon, Sharon; Wallensten, Anders; Sparen, Par; Netterlid, Eva

    2016-01-01

    Background The Swedish school-based vaccination programme offers HPV vaccine to girls born >= 1999 in 5-6th grade. In 2012, all counties introduced free-of-charge catch-up vaccination campaigns targeting girls born 1993-1998. Varying vaccine uptake in the catch-up group by December 2012 suggested that some implementation strategies were more successful than others. In order to inform future vaccination campaigns, we assessed the impact of different implementation strategies on the county-l...

  2. Some vaccination strategies for the SEIR epidemic model. Preliminary results

    CERN Document Server

    De la Sen, M; Alonso-Quesada, S

    2011-01-01

    This paper presents a vaccination-based control strategy for a SEIR (susceptible plus infected plus infectious plus removed populations) propagation disease model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among susceptible and infected. The control objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e. susceptible plus infected plus infectious) to asymptotically tend to zero.

  3. Respiratory Homeostasis and Exploitation of the Immune System for Lung Cancer Vaccines.

    Science.gov (United States)

    Yagui-Beltrán, Adam; Coussens, Lisa M; Jablons, David M

    2009-01-01

    Lung cancer is the leading cause of all cancer deaths in the US. The international scientific and clinical community has made significant advances toward understanding specific molecular mechanisms underlying lung carcinogenesis; however, despite these insights and advances in surgery and chemoradiotherapy, the prognosis for non-small-cell lung cancer (NSCLC) remains poor. Nonetheless, significant effort is being focused on advancing translational research evaluating the efficacy of novel targeted therapeutic strategies for lung cancer. Illustrative examples of this include antagonists of the epidermal growth factor receptor (EGFR), tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib, and a diverse assortment of anti-angiogenic compounds targeting growth factors and/or their receptors that regulate tumor-associated angiogenic programs. In addition, with the increased awareness of the significant role chronically activated leukocytes play as potentiators of solid-tumor development, the role of innate and adaptive immune cells as regulators of lung carcinogenesis is being examined. While some of these studies are examining how novel therapeutic strategies may enhance the efficacy of lung cancer vaccines, others are evaluating the intrinsic characteristics of the immune response to lung cancer in order to identify rate-limiting molecular and/or cellular programs to target with novel anticancer therapeutics. In this article, we explore important aspects of the immune system and its role in regulating normal respiratory homeostasis compared with the immune response accompanying development of lung cancer. These hallmarks are then discussed in the context of recent efforts to develop lung cancer vaccines, where we have highlighted important concepts that must be taken into consideration for future development of novel therapeutic strategies and clinical trials assessing their efficacy.

  4. Therapeutic vaccines against human papillomavirus and cervical cancer.

    Science.gov (United States)

    Cid-Arregui, Angel

    2009-01-01

    Cervical cancer and its precursor intra-epithelial lesions are linked to infection by a subset of so-called "highrisk" human papillomavirus types, which are estimated to infect nearly four hundred million women worldwide. Two prophylactic vaccines have been commercialized recently targeting HPV16 and 18, the most prevalent viral types found in cervical cancer, which operate through induction of capsid-specific neutralizing antibodies. However, in patients with persistent infection these vaccines have not been found to protect against progression to neoplasia. Attempts are being made to develop therapeutic vaccines targeting nonstructural early viral proteins. Among these, E6 and E7 are the preferred targets, since they are essential for induction and maintenance of the malignant phenotype and are constitutively expressed by the transformed epithelial cells. Here are reviewed the most relevant potential vaccines based on HPV early antigens that have shown efficacy in preclinical models and that are being tested in clinical studies, which should determine their therapeutic capacity for eradicating HPV-induced premalignant and malignant lesions and cure cervical cancer. PMID:19915722

  5. Cancer therapy using a self-replicating RNA vaccine

    OpenAIRE

    Ying, Han; Zaks, Tal Z.; Wang, Rong-fu; Irvine, Kari R.; Kammula, Udai S.; Marincola, Francesco M.; Leitner, Wolfgang W.; Restifo, Nicholas P

    1999-01-01

    ‘Naked’ nucleic acid vaccines are potentially useful candidates for the treatment of patients with cancer1-3, but their clinical efficacy has yet to be demonstrated. We sought to enhance the immunogenicity of a nucleic acid vaccine by making it ‘self-replicating’. We accomplished this by using a gene encoding an RNA replicase polyprotein derived from the Semliki forest virus, in combination with a model antigen. A single intramuscular injection of a self-replicating RNA immunogen elicited ant...

  6. Economic Analysis of Vaccination Strategies for PRRS Control.

    Directory of Open Access Journals (Sweden)

    Daniel C L Linhares

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSv is a swine-specific pathogen that causes significant increases in production costs. When a breeding herd becomes infected, in an attempt to hasten control and elimination of PRRSv, some veterinarians have adopted a strategy called load-close-expose which consists of interrupting replacement pig introductions into the herd for several weeks (herd closure and exposing the whole herd to a replicating PRRSv to boost herd immunity. Either modified-live virus (MLV vaccine or live field-virus inoculation (FVI is used. This study consisted of partial budget analyses to compare MLV to FVI as the exposure method of load-close-expose program to control and eliminate PRRSv from infected breeding herds, and secondly to estimate benefit / cost of vaccinating sow herds preventatively. Under the assumptions used in this study, MLV held economic advantage over FVI. However, sensitivity analysis revealed that decreasing margin over variable costs below $ 47.32, or increasing PRRSv-attributed cost above $18.89 or achieving time-to-stability before 25 weeks resulted in advantage of FVI over MLV. Preventive vaccination of sow herds was beneficial when the frequency of PRRSv infection was at least every 2.1 years. The economics of preventative vaccination was minimally affected by cost attributed to field-type PRRSv infection on growing pigs or by the breeding herd productivity level. The models developed and described in this paper provide valuable tools to assist veterinarians in their efforts to control PRRSv.

  7. Vaccination of adolescents with chronic medical conditions: Special considerations and strategies for enhancing uptake

    Science.gov (United States)

    Hofstetter, Annika M; LaRussa, Philip; Rosenthal, Susan L

    2015-01-01

    Adolescents with chronic medical conditions (CMCs), a growing population worldwide, possess a wide array of preventive health care needs. Vaccination is strongly recommended for the vast majority of these adolescents given their increased risk of vaccine preventable infection and associated complications. Not only should they receive routine vaccines, but some also require additional vaccines. Despite these guidelines, evidence suggests that adolescents with CMCs often fail to receive needed vaccines. Many factors contribute to this under-immunization, including lack of knowledge among parents and providers and suboptimal coordination of primary and subspecialty care. This review describes current vaccination recommendations for these adolescents as well as recent data related to infection risk, vaccine efficacy and safety, vaccination coverage, and the unique multilevel factors impacting uptake in this population. It also discusses strategies for improving coverage levels and reducing missed vaccination opportunities, with a particular focus on technology-based interventions. PMID:26212313

  8. Response to influenza virus vaccination during chemotherapy in patients with breast cancer

    NARCIS (Netherlands)

    Meerveld-Eggink, A.; de Weerdt, O.; van der Velden, A. M. T.; Los, M.; van der Velden, A. W. G.; Stouthard, J. M. L.; Nijziel, M. R.; Westerman, M.; Beeker, A.; van Beek, R.; Rimmelzwaan, G. F.; Rijkers, G. T.; Biesma, D. H.

    2011-01-01

    Background: Patients receiving chemotherapy are at increased risk for influenza virus infection. Little is known about the preferred moment of vaccination during chemotherapy. Patients and methods: Breast cancer patients received influenza vaccination during FEC (5-fluorouracil, epirubicin and cyclo

  9. Enhancing DNA Vaccine Potency by Combining a Strategy to Prolong Dendritic Cell Life and Intracellular Targeting Strategies with a Strategy to Boost CD4+ T Cells

    OpenAIRE

    Kim, Daejin; Hoory, Talia; Wu, T.-C.; Hung, Chien-Fu

    2007-01-01

    Intradermal administration of DNA vaccines, using a gene gun, represents an effective means of delivering DNA directly into professional antigen-presenting cells (APCs) in the skin and thus allows the application of strategies to modify the properties of APCs to enhance DNA vaccine potency. In the current study, we hypothesized that the potency of human papillomavirus (HPV) type 16 E7 DNA vaccines employing intracellular targeting strategies combined with a strategy to prolong the life of den...

  10. Brachyury, a vaccine target, is overexpressed in triple-negative breast cancer.

    Science.gov (United States)

    Hamilton, Duane H; Roselli, Mario; Ferroni, Patrizia; Costarelli, Leopoldo; Cavaliere, Francesco; Taffuri, Mariateresa; Palena, Claudia; Guadagni, Fiorella

    2016-10-01

    Patients diagnosed with triple-negative breast cancer (TNBC) have a high rate of tumor metastasis and a poor prognosis. The treatment option for these patients is currently chemotherapy, which results in very low response rates. Strategies that exploit the immune system for the treatment of cancer have now shown the ability to improve survival in several tumor types. Identifying potential targets for immune therapeutic interventions is an important step in developing novel treatments for TNBC. In this study, in silico analysis of publicly available datasets and immunohistochemical analysis of primary and metastatic tumor biopsies from TNBC patients were conducted to evaluate the expression of the transcription factor brachyury, which is a driver of tumor metastasis and resistance and a target for cancer vaccine approaches. Analysis of breast cancer datasets demonstrated a predominant expression of brachyury mRNA in TNBC and in basal vs luminal or HER2 molecular breast cancer subtypes. At the protein level, variable levels of brachyury expression were detected both in primary and metastatic TNBC lesions. A strong association was observed between nuclear brachyury protein expression and the stage of disease, with nuclear brachyury being more predominant in metastatic vs primary tumors. Survival analysis also demonstrated an association between high levels of brachyury in the primary tumor and poor prognosis. Two brachyury-targeting cancer vaccines are currently undergoing clinical evaluation; the data presented here provide rationale for using brachyury-targeting immunotherapy approaches for the treatment of TNBC. PMID:27580659

  11. Business models and opportunities for cancer vaccine developers.

    Science.gov (United States)

    Kudrin, Alex

    2012-10-01

    Despite of growing oncology pipeline, cancer vaccines contribute only to a minor share of total oncology-attributed revenues. This is mainly because of a limited number of approved products and limited sales from products approved under compassionate or via early access entry in smaller and less developed markets. However revenue contribution from these products is extremely limited and it remains to be established whether developers are breaking even or achieving profitability with existing sales. Cancer vaccine field is well recognized for high development costs and risks, low historical rates of investment return and high probability of failures arising in ventures, partnerships and alliances. The cost of reimbursement for new oncology agents is not universally acceptable to payers limiting the potential for a global expansion, market access and reducing probability of commercial success. In addition, the innovation in cancer immunotherapy is currently focused in small and mid-size biotech companies and academic institutions struggling for investment. Existing R&D innovation models are deemed unsustainable in current "value-for-money" oriented healthcare environment. New business models should be much more open to collaborative, networked and federated styles, which could help to outreach global, markets and increase cost-efficiencies across an entire value chain. Lessons learned from some developing countries and especially from South Korea illustrate that further growth of cancer vaccine industry will depends not only on new business models but also will heavily rely on regional support and initiatives from different bodies, such as governments, payers and regulatory bodies. PMID:22894953

  12. Business models and opportunities for cancer vaccine developers.

    Science.gov (United States)

    Kudrin, Alex

    2012-10-01

    Despite of growing oncology pipeline, cancer vaccines contribute only to a minor share of total oncology-attributed revenues. This is mainly because of a limited number of approved products and limited sales from products approved under compassionate or via early access entry in smaller and less developed markets. However revenue contribution from these products is extremely limited and it remains to be established whether developers are breaking even or achieving profitability with existing sales. Cancer vaccine field is well recognized for high development costs and risks, low historical rates of investment return and high probability of failures arising in ventures, partnerships and alliances. The cost of reimbursement for new oncology agents is not universally acceptable to payers limiting the potential for a global expansion, market access and reducing probability of commercial success. In addition, the innovation in cancer immunotherapy is currently focused in small and mid-size biotech companies and academic institutions struggling for investment. Existing R&D innovation models are deemed unsustainable in current "value-for-money" oriented healthcare environment. New business models should be much more open to collaborative, networked and federated styles, which could help to outreach global, markets and increase cost-efficiencies across an entire value chain. Lessons learned from some developing countries and especially from South Korea illustrate that further growth of cancer vaccine industry will depends not only on new business models but also will heavily rely on regional support and initiatives from different bodies, such as governments, payers and regulatory bodies.

  13. Therapeutic vaccines in non-small cell lung cancer

    Science.gov (United States)

    Socola, Francisco; Scherfenberg, Naomi; Raez, Luis E

    2013-01-01

    Non-small cell lung cancer (NSCLC) unfortunately carries a very poor prognosis. Patients usually do not become symptomatic, and therefore do not seek treatment, until the cancer is advanced and it is too late to employ curative treatment options. New therapeutic options are urgently needed for NSCLC, because even current targeted therapies cure very few patients. Active immunotherapy is an option that is gaining more attention. A delicate and complex interplay exists between the tumor and the immune system. Solid tumors utilize a variety of mechanisms to evade immune detection. However, if the immune system can be stimulated to recognize the tumor as foreign, tumor cells can be specifically eliminated with little systemic toxicity. A number of vaccines designed to boost immunity against NSCLC are currently undergoing investigation in phase III clinical trials. Belagenpumatucel-L, an allogeneic cell vaccine that decreases transforming growth factor (TGF-β) in the tumor microenvironment, releases the immune suppression caused by the tumor and it has shown efficacy in a wide array of patients with advanced NSCLC. Melanoma-associated antigen A3 (MAGE-A3), an antigen-based vaccine, has shown promising results in MAGE-A3+ NSCLC patients who have undergone complete surgical resection. L-BLP25 and TG4010 are both antigenic vaccines that target the Mucin-1 protein (MUC-1), a proto-oncogene that is commonly mutated in solid tumors. CIMAVax is a recombinant human epidermal growth factor (EGF) vaccine that induces anti-EGF antibody production and prevents EGF from binding to its receptor. These vaccines may significantly improve survival and quality of life for patients with an otherwise dismal NSCLC prognosis. This review is intended to give an overview of the current data and the most promising studies of active immunotherapy for NSCLC.

  14. OBSERVATION ON VACCINATING Newcastle Disease Virus Vaccine with Inhalation and Preventing Recurrence of Nasopharyngeal cancer after Radiotherapy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To understand whether the Newcastle disease virus(NDV) vaccine can successfully vaccinate the rabbits and volunteers of cancer patients by inhalation and to observe the effects of NDV vaccine on nasopharyngeal carcinoma (NRC) patients after radiotherapy. Methods: The live NDV vaccine was vaccinated through nasal cavities of rabbits, NPC patients and other cancer patients who were treated by surgery or chemotherapy with larynx spray. The blood specimens of vein from the tested rabbits and volunteers of patients with cancer were collected before and after vaccination. The anti-NDV-antibody in serum was detected by conventional blood coagulation inhibiting method. The white blood cell (WBC) amount in blood samples was counted. In addition, the NPC patients after radiotherapy were divided into both test group and control group with random match. The both were followed-up by multiple kinds of way in order to understand effects of NDV immunotherapy for NPC. Results: The anti-NDV-antibody level of the rabbits and the patients with NPC rose significantly after vaccination. The WBC amount of cancer patients treated by surgery or chemotherapy also rose significantly after vaccination. The recurrence rate (3.23%) of NRC patients in test group who received immunotherapy of NDV vaccine for 4 to 10 treatment courses within 3 years after end of radiotherapy were significantly lower than that (25.81%) of the control group (P<0.025). Conclusion: The NDV vaccine La Sota strain can vaccinate the rabbits and the cancer patients in success by inhalation. And it has remarkable effect to decrease 3 year recurrence rate of NRC patients after radiotherapy.

  15. Therapeutic vaccines in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Socola F

    2013-09-01

    Full Text Available Francisco Socola,1 Naomi Scherfenberg,2 Luis E Raez3 1Division of Hematology/Oncology, Sylvester Comprehensive Cancer Center, University of Miami Leonard M Miller School of Medicine, Miami, Florida, USA; 2University of Miami Leonard M Miller School of Medicine, Miami, Florida, USA; 3Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, Florida, USA Abstract: Non-small cell lung cancer (NSCLC unfortunately carries a very poor prognosis. Patients usually do not become symptomatic, and therefore do not seek treatment, until the cancer is advanced and it is too late to employ curative treatment options. New therapeutic options are urgently needed for NSCLC, because even current targeted therapies cure very few patients. Active immunotherapy is an option that is gaining more attention. A delicate and complex interplay exists between the tumor and the immune system. Solid tumors utilize a variety of mechanisms to evade immune detection. However, if the immune system can be stimulated to recognize the tumor as foreign, tumor cells can be specifically eliminated with little systemic toxicity. A number of vaccines designed to boost immunity against NSCLC are currently undergoing investigation in phase III clinical trials. Belagenpumatucel-L, an allogeneic cell vaccine that decreases transforming growth factor (TGF-β in the tumor microenvironment, releases the immune suppression caused by the tumor and it has shown efficacy in a wide array of patients with advanced NSCLC. Melanoma-associated antigen A3 (MAGE-A3, an antigen-based vaccine, has shown promising results in MAGE-A3+ NSCLC patients who have undergone complete surgical resection. L-BLP25 and TG4010 are both antigenic vaccines that target the Mucin 1 protein (MUC-1, a proto-oncogene that is commonly mutated in solid tumors. CIMAVax is a recombinant human epidermal growth factor (EGF vaccine that induces anti-EGF antibody production and prevents EGF

  16. Disparities in Human Papillomavirus Vaccine Literacy and Vaccine Completion among Asian American Pacific Islander Undergraduates: Implications for Cancer Health Equity

    Science.gov (United States)

    Lee, Hee Yun; Kwon, Melissa; Vang, Suzanne; DeWolfe, Jessica; Kim, Nam Keol; Lee, Do Kyung; Yeung, Miriam

    2015-01-01

    Purpose: Low rates of human papillomavirus (HPV) vaccination among young Asian American and Pacific Islander (AAPI) women need to be addressed, particularly given the high incidence of cervical cancer in this population. The current study aims to investigate predictors of HPV vaccination in young AAPI and non-Latina white (NLW) women. Methods: A…

  17. Cost-effectiveness of prophylactic vaccination against human papillomavirus 16/18 for the prevention of cervical cancer : Adaptation of an existing cohort model to the situation in the Netherlands

    NARCIS (Netherlands)

    Rogoza, R M; Westra, T A; Ferko, N; Tamminga, J J; Drummond, M F; Daemen, T; Wilschut, J C; Postma, Maarten

    2009-01-01

    Cervical cancer is one of the most prevalent cancers among women worldwide. Implementation of an HPV-vaccination strategy targeting the major oncogenic types 16 and 18 that cause cervical cancer is generally expected to significantly reduce the burden of cervical cancer disease. Here we estimate the

  18. Advances and perspectives of colorectal cancer stem cell vaccine.

    Science.gov (United States)

    Guo, Mei; Dou, Jun

    2015-12-01

    Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.

  19. Effect of type 2 diabetes mellitus on efficacy of hepatitis B vaccine and revaccination strategy

    OpenAIRE

    Wen-shu LI; Wei, Zhen-man; Lan-ping CAI; Tang, Li; Hong-ye REN; Wang, Hai-Bin; Li, Ya; Yu-lai ZHAO

    2011-01-01

    Objective To investigate the effects of type 2 diabetes mellitus on vaccination efficacy of hepatitis B vaccine,and explore the effective revaccination strategy.Methods Seventy-six adults with type 2 diabetes mellitus and 70 sex-and age-matched healthy individuals from 4 vaccination centers,who were vaccinated for one standard schedule(month 0,1,6) with gene recombinant yeast hepatitis B vaccine,were enrolled in present study.The serum anti-HBs and geometric mean titer(GMT) thereof were assay...

  20. Tocotrienols are good adjuvants for developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Ammu

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours. Methods In this study we have used tocotrienol-rich fraction (TRF, a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF and DC pulsed with tumour lysate from 4T1 cells (DC+TL. Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF while two groups of animal which were supplemented daily with carrier oil (control and with TRF (TRF. After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour. Results Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-γ and IL-12 in experimental mice (DC+TL+TRF compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8 and natural killer cells (NK were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice. Conclusion Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy.

  1. Mapping HPV Vaccination and Cervical Cancer Screening Practice in the Pacific Region-Strengthening National and Regional Cervical Cancer Prevention

    DEFF Research Database (Denmark)

    Obel, J; McKenzie, J; Buenconsejo-Lum, L E;

    2015-01-01

    OBJECTIVE: To provide background information for strengthening cervical cancer prevention in the Pacific by mapping current human papillomavirus (HPV) vaccination and cervical cancer screening practices, as well as intent and barriers to the introduction and maintenance of national HPV vaccination...... insufficient, with only two of 21 countries and territories having achieved coverage of cervical cancer screening above 40%. Ten of 21 countries and territories had included HPV vaccination in their immunization schedule, but only two countries reported coverage of HPV vaccination above 60% among the targeted...... population. Key barriers to the introduction and continuation of HPV vaccination were reported to be: (i) Lack of sustainable financing for HPV vaccine programs; (ii) Lack of visible government endorsement; (iii) Critical public perception of the value and safety of the HPV vaccine; and (iv) Lack of clear...

  2. Prevention strategies in prostate cancer

    OpenAIRE

    Trottier, Greg; Lawrentschuk, N.; Fleshner, N.E.

    2010-01-01

    Prostate cancer (pca) prevention has been an exciting and controversial topic since the results of the Prostate Cancer Prevention Trial (pcpt) were published. With the recently published results of the reduce (Reduction by Dutasteride of Prostate Cancer Events) trial, interest in this topic is at a peak. Primary pca prevention will be unlikely to affect mortality significantly, but the reduction in overtreatment and the effect on quality of life from the avoidance of a cancer diagnosis are im...

  3. Robustness of networks against propagating attacks under vaccination strategies

    CERN Document Server

    Hasegawa, Takehisa

    2011-01-01

    We study the effect of vaccination on robustness of networks against propagating attacks that obey the susceptible-infected-removed model. By extending the generating function formalism developed by Newman (2005), we analytically determine the robustness of networks that depends on the vaccination parameters. We consider the random defense where nodes are vaccinated randomly and the degree-based defense where hubs are preferentially vaccinated. We apply the obtained results to the random graph and scale-free networks.

  4. Changes in knowledge of cervical cancer following introduction of human papillomavirus vaccine among women at high risk for cervical cancer

    Directory of Open Access Journals (Sweden)

    L. Stewart Massad

    2015-04-01

    Conclusion: Substantial gaps in understanding of HPV and cervical cancer prevention exist despite years of health education. While more effective educational interventions may help, optimal cancer prevention may require opt-out vaccination programs that do not require nuanced understanding.

  5. An effective DNA priming-protein boosting approach for the cervical cancer vaccination.

    Science.gov (United States)

    Kianmehr, Zahra; Ardestani, Susan K; Soleimanjahi, Hoorieh; Farahmand, Behrokh; Abdoli, Asghar; Khatami, Maryam; Akbari, Khadijeh; Fotouhi, Fatemeh

    2015-03-01

    Considerable advances have been made in developing human papillomaviruses (HPV) prophylactic vaccines based on L1 virus-like particles (VLPs). However, there are limitations in the availability of these vaccines in developing countries, where most cases of cervical cancer occur. In the current study, the prime-boost immunization strategies were studied using a DNA vaccine carrying HPV-16 L1 gene (pcDNA/L1) and insect cell baculovirus-derived HPV-16 L1 VLP. The humoral immunity was evaluated by measuring the specific IgG levels, and the T-cell immune response was assessed by measuring different cytokines such as IFN-γ, TNF-α and IL-10. Results showed that although immunization with pcDNA/L1 alone could induce strong cellular immune responses, higher immunogenicity especially antibody response was achieved in pcDNA/L1 priming-VLP boosting regimen. Therefore, we suggest that prime-boost regimen can be considered as an efficient prophylactic and therapeutic vaccine.

  6. Therapeutic Cancer Vaccines in Combination with Conventional Therapy

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Junker, N.; Ellebaek, E.;

    2010-01-01

    The clinical efficacy of most therapeutic vaccines against cancer has not yet met its promise. Data are emerging that strongly support the notion that combining immunotherapy with conventional therapies, for example, radiation and chemotherapy may improve efficacy. In particular combination...... with chemotherapy may lead to improved clinical efficacy by clearing suppressor cells, reboot of the immune system, by rendering tumor cells more susceptible to immune mediated killing, or by activation of cells of the immune system. In addition, a range of tumor antigens have been characterized to allow targeting...... of proteins coupled to intrinsic properties of cancer cells. For example, proteins associated with drug resistance can be targeted, and form ideal target structures for use in combination with chemotherapy for killing of surviving drug resistant cancer cells. Proteins associated with the malignant phenotype...

  7. Recombinant cancer vaccines and new vaccine targets. Interview by Jenaid Rees.

    Science.gov (United States)

    Schlom, Jeffrey

    2013-10-01

    Interview by Jenaid Rees, Commissioning Editor Jeffrey Schlom obtained his PhD from Rutgers University (NJ, USA). After obtaining his PhD, he worked at Columbia University (NY, USA) before moving in 1973 to the National Cancer Institute, National Institutes of Health (MD, USA). Since then he has served as the Chief of several sections, including his present position as the Chief of the Laboratory of Tumor Immunology and Biology in the Center for Cancer Research which he has held for the past 30 years. During this period, he has worked as an Adjunct Professor at George Washington University (Washington, DC, USA), served on the Editorial Board of several journals and holds membership in a number of committees. He holds over 30 patents and patent applications in the areas of vaccines, tumor antigens and monoclonal antibodies and has received honors and awards throughout his career. Jeffrey Schlom has been involved in translational research involving the immunotherapy of a range of carcinomas and predominantly works in the areas of tumor immunology, mechanisms of tumor cell-immune cell interactions and immune mechanisms. He has recently been working on the design and characterization of recombinant vaccines for cancer therapy. PMID:24098990

  8. Potential Target Antigens for a Universal Vaccine in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Renee Vermeij

    2010-01-01

    Full Text Available The prognosis of epithelial ovarian cancer (EOC, the primary cause of death from gynaecological malignancies, has only modestly improved over the last decades. Immunotherapeutic treatment using a cocktail of antigens has been proposed as a “universal” vaccine strategy. We determined the expression of tumor antigens in the context of MHC class I expression in 270 primary tumor samples using tissue microarray. Expression of tumor antigens p53, SP17, survivin, WT1, and NY-ESO-1 was observed in 120 (48.0%, 173 (68.9%, 208 (90.0%, 129 (56.3%, and 27 (11.0% of 270 tumor specimens, respectively. In 93.2% of EOC, at least one of the investigated tumor antigens was (overexpressed. Expression of MHC class I was observed in 78.1% of EOC. In 3 out 4 primary tumors, (overexpression of a tumor antigen combined with MHC class I was observed. These results indicate that a multiepitope vaccine, comprising these antigens, could serve as a universal therapeutic vaccine for the vast majority of ovarian cancer patients.

  9. Rabies control in rural Africa: Evaluating strategies for effective domestic dog vaccination

    OpenAIRE

    Kaare, M.; Lembo, T.; Hampson, K.; Ernest, E.; Estes, A.; Mentzel, C.; Cleaveland, S.

    2009-01-01

    Effective vaccination campaigns need to reach a sufficient percentage of the population to eliminate disease and prevent future outbreaks, which for rabies is predicted to be 70%, at a cost that is economically and logistically sustainable. Domestic dog rabies has been increasing across most of sub-Saharan Africa indicating that dog vaccination programmes to date have been inadequate. We compare the effectiveness of a variety of dog vaccination strategies in terms of their cost and coverage i...

  10. Dynamics of vaccination strategies via projected dynamical systems.

    Science.gov (United States)

    Cojocaru, Monica-Gabriela; Bauch, Chris T; Johnston, Matthew D

    2007-07-01

    Previous game theoretical analyses of vaccinating behaviour have underscored the strategic interaction between individuals attempting to maximise their health states, in situations where an individual's health state depends upon the vaccination decisions of others due to the presence of herd immunity. Here, we extend such analyses by applying the theories of variational inequalities (VI) and projected dynamical systems (PDS) to vaccination games. A PDS provides a dynamics that gives the conditions for existence, uniqueness and stability properties of Nash equilibria. In this paper, it is used to analyse the dynamics of vaccinating behaviour in a population consisting of distinct social groups, where each group has different perceptions of vaccine and disease risks. In particular, we study populations with two groups, where the size of one group is strictly larger than the size of the other group (a majority/minority population). We find that a population with a vaccine-inclined majority group and a vaccine-averse minority group exhibits higher average vaccine coverage than the corresponding homogeneous population, when the vaccine is perceived as being risky relative to the disease. Our model also reproduces a feature of real populations: In certain parameter regimes, it is possible to have a majority group adopting high vaccination rates and simultaneously a vaccine-averse minority group adopting low vaccination rates. Moreover, we find that minority groups will tend to exhibit more extreme changes in vaccinating behaviour for a given change in risk perception, in comparison to majority groups. These results emphasise the important role played by social heterogeneity in vaccination behaviour, while also highlighting the valuable role that can be played by PDS and VI in mathematical epidemiology.

  11. Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine

    OpenAIRE

    Xiaosong Li; Min Min; Nan Du; Ying Gu; Tomas Hode; Mark Naylor; Dianjun Chen; Nordquist, Robert E.; Chen, Wei R.

    2013-01-01

    With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development.

  12. Cost-effectiveness of human papillomavirus vaccine in reducing the risk of cervical cancer in Ireland due to HPV types 16 and 18 using a transmission dynamic model

    DEFF Research Database (Denmark)

    Usher, C.; Tilson, L.; Olsen, J.;

    2008-01-01

    We evaluated the cost-effectiveness of combining a cervical cancer screening programme with a national HPV vaccination programme compared to a screening programme alone to prevent cervical dysplasia and cervical cancer related to HPV types 16 and 18 in the Irish healthcare setting. The incremental...... per LYG was ((sic)3400 to E38,400). This suggests that vaccination against HPV types 16 and 18 would be cost-effective from the perspective of the Irish healthcare payer. (C) 2008 Elsevier Ltd. All rights reserved...... cost effectiveness of vaccination strategies for 12-year-old females (base-case) and 12-26-year-old catch-up vaccination strategies were examined. The base-case incremental cost-effectiveness ratio was (sic)17,383/LYG. Using a probabilistic sensitivity analysis about the base-case, the 95% CI for cost...

  13. The introduction of new vaccines into developing countries. IV: Global Access Strategies.

    Science.gov (United States)

    Mahoney, Richard T; Krattiger, Anatole; Clemens, John D; Curtiss, Roy

    2007-05-16

    This paper offers a framework for managing a comprehensive Global Access Strategy for new vaccines in developing countries. It is aimed at strengthening the ability of public-sector entities to reach their goals. The Bill and Melinda Gates Foundation and The Rockefeller Foundation have been leaders in stimulating the creation of new organizations - public/private product development partnerships (PDPs) - that seek to accelerate vaccine development and distribution to meet the health needs of the world's poor. Case studies of two of these PDPs - the Salmonella Anti-pneumococcal Vaccine Program and the Pediatric Dengue Vaccine Initiative - examine development of such strategies. Relying on the application of innovation theory, the strategy leads to the identification of six Components of Innovation which cover all aspects of the vaccine innovation process. Appropriately modified, the proposed framework can be applied to the development and introduction of other products in developing countries including drugs, and nutritional and agricultural products.

  14. The introduction of new vaccines into developing countries. IV: Global Access Strategies.

    Science.gov (United States)

    Mahoney, Richard T; Krattiger, Anatole; Clemens, John D; Curtiss, Roy

    2007-05-16

    This paper offers a framework for managing a comprehensive Global Access Strategy for new vaccines in developing countries. It is aimed at strengthening the ability of public-sector entities to reach their goals. The Bill and Melinda Gates Foundation and The Rockefeller Foundation have been leaders in stimulating the creation of new organizations - public/private product development partnerships (PDPs) - that seek to accelerate vaccine development and distribution to meet the health needs of the world's poor. Case studies of two of these PDPs - the Salmonella Anti-pneumococcal Vaccine Program and the Pediatric Dengue Vaccine Initiative - examine development of such strategies. Relying on the application of innovation theory, the strategy leads to the identification of six Components of Innovation which cover all aspects of the vaccine innovation process. Appropriately modified, the proposed framework can be applied to the development and introduction of other products in developing countries including drugs, and nutritional and agricultural products. PMID:17363119

  15. The stem cell patent landscape as relevant to cancer vaccines.

    Science.gov (United States)

    Wang, Shyh-Jen

    2011-10-01

    Cancer vaccine targeting cancer stem cells is proposed to serve as a potent immunotherapy. Thus, it would be useful to examine the main trends in stem cell patenting activity as a guide for those seeking to develop such cancer vaccines. We found that a substantial number of stem cell patents were granted up to the end of 2010, including ~2000 issued in the US. Many of these have been filed since 2001, including 7,551 applications in the US. Stem cell development, as evidenced by the numbers of PubMed articles, has matured steadily in recent years. However, the other metrics, such as the number of patent applications, the technology-science linkage and the number of patent assignees, have been stagnant. Moreover, the ownership of stem cell patents is still quiet fragmented across multiple organizations, and the number of stem cell patent assignees from the business sector has not increased significantly. Academic and nonprofit institutions not only account for a large share of stem cell patents but also apply for patents continually. Based on this analysis, the strength of stem cell resources seems to remain stagnant in recent years due to the ban on government funding of embryonic stem cell research. Furthermore, the patent prosecution or technical barriers in the field of stem cells would be another main reason that the number of US-issued stem cell patents for each application have been in gradual decline since 2000. Therefore, we consider stem cell technology to still be under development. PMID:21957493

  16. Parental decisional strategies regarding HPV vaccination before media debates: a focus group study

    NARCIS (Netherlands)

    Hofman, R.; Empelen, P. van; Vogel, I.; Raat, H.; Ballegooijen, M. van; Korfage, I.J.

    2013-01-01

    Before the introduction of the human papillomavirus (HPV) vaccine, decisional strategies and factors that could guide HPV vaccination intentions were explored. The authors conducted 4 focus group discussions with 36 parents of children 8-15 years of age. Three groups consisted primarily of Dutch par

  17. Tumor vaccines

    International Nuclear Information System (INIS)

    Tumor vaccines have several potential advantages over standard anticancer regiments. They represent highly specific anticancer therapy. Inducing tumor-specific memory T-lymphocytes, they have potential for long-lived antitumor effects. However, clinical trials, in which cancer patients were vaccinated with tumor vaccines, have been so far mainly disappointing. There are many reasons for the inefficiency of tumor vaccines. Most cancer antigens are normal self-molecules to which immune tolerance exists. That is why the population of tumor-specific lymphocytes is represented by a small number of low-affinity T-lymphocytes that induce weak antitumor immune response. Simultaneously, tumors evolve many mechanisms to actively evade immune system, what makes them poorly immunogenic or even tolerogenic. Novel immunotherapeutic strategies are directed toward breaking immune tolerance to tumor antigens, enhancing immunogenicity of tumor vaccines and overcoming mechanisms of tumor escape. There are several approaches, unfortunately, all of them still far away from an ideal tumor vaccine that would reject a tumor. Difficulties in the activation of antitumor immune response by tumor vaccines have led to the development of alternative immunotherapeutic strategies that directly focus on effector mechanisms of immune system (adoptive tumor- specific T-lymphocyte transfer and tumor specific monoclonal antibodies). (author)

  18. Therapeutic vaccines for cancer: an overview of clinical trials.

    Science.gov (United States)

    Melero, Ignacio; Gaudernack, Gustav; Gerritsen, Winald; Huber, Christoph; Parmiani, Giorgio; Scholl, Suzy; Thatcher, Nicholas; Wagstaff, John; Zielinski, Christoph; Faulkner, Ian; Mellstedt, Håkan

    2014-09-01

    The therapeutic potential of host-specific and tumour-specific immune responses is well recognized and, after many years, active immunotherapies directed at inducing or augmenting these responses are entering clinical practice. Antitumour immunization is a complex, multi-component task, and the optimal combinations of antigens, adjuvants, delivery vehicles and routes of administration are not yet identified. Active immunotherapy must also address the immunosuppressive and tolerogenic mechanisms deployed by tumours. This Review provides an overview of new results from clinical studies of therapeutic cancer vaccines directed against tumour-associated antigens and discusses their implications for the use of active immunotherapy.

  19. Robustness of networks against propagating attacks under vaccination strategies

    International Nuclear Information System (INIS)

    We study the effect of vaccination on the robustness of networks against propagating attacks that obey the susceptible–infected–removed model. By extending the generating function formalism developed by Newman (2005 Phys. Rev. Lett. 95 108701), we analytically determine the robustness of networks that depends on the vaccination parameters. We consider the random defense where nodes are vaccinated randomly and the degree-based defense where hubs are preferentially vaccinated. We show that, when vaccines are inefficient, the random graph is more robust against propagating attacks than the scale-free network. When vaccines are relatively efficient, the scale-free network with the degree-based defense is more robust than the random graph with the random defense and the scale-free network with the random defense

  20. Optimal Finite Cancer Treatment Duration by Using Mixed Vaccine Therapy and Chemotherapy: State Dependent Riccati Equation Control

    Directory of Open Access Journals (Sweden)

    Ali Ghaffari

    2014-01-01

    Full Text Available The main objective of this paper is to propose an optimal finite duration treatment method for cancer. A mathematical model is proposed to show the interactions between healthy and cancerous cells in the human body. To extend the existing models, the effect of vaccine therapy and chemotherapy are also added to the model. The equilibrium points and the related local stability are derived and discussed. It is shown that the dynamics of the cancer model must be changed and modified for finite treatment duration. Therefore, the vaccine therapy is used to change the parameters of the system and the chemotherapy is applied for pushing the system to the domain of attraction of the healthy state. For optimal chemotherapy, an optimal control is used based on state dependent Riccati equation (SDRE. It is shown that, in spite of eliminating the treatment, the system approaches the healthy state conditions. The results show that the development of optimal vaccine-chemotherapy protocols for removing tumor cells would be an appropriate strategy in cancer treatment. Also, the present study states that a proper treatment method not only reduces the population of the cancer cells but also changes the dynamics of the cancer.

  1. [Strategies for BCG vaccination 1947 - 94].

    Science.gov (United States)

    Harthug, Henrik

    2016-06-01

    The tuberculosis reform of 1947 stipulated a clear responsibility of the state to combat tuberculosis. This entailed sanctions directed at individuals, as well as compulsory vaccination. Universal vaccination was to be achieved through extensive information work that emphasised the responsibility of the individual. The decline in the disease, the dawning of human rights thinking and the decline of professional boards in public administration help to explain the downgrading of compulsory vaccination over time.

  2. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  3. Strategies to advance vaccine technologies for resource-poor settings.

    Science.gov (United States)

    Kristensen, Debra; Chen, Dexiang

    2013-04-18

    New vaccine platform and delivery technologies that can have significant positive impacts on the effectiveness, acceptability, and safety of immunizations in developing countries are increasingly available. Although donor support for vaccine technology development is strong, the uptake of proven technologies by the vaccine industry and demand for them by purchasers continues to lag. This article explains the challenges and opportunities associated with accelerating the availability of innovative and beneficial vaccine technologies to meet critical needs in resource-poor settings over the next decade. Progress will require increased dialog between the public and private sectors around vaccine product attributes; establishment of specifications for vaccines that mirror programmatic needs; stronger encouragement of vaccine developers to consider novel technologies early in the product development process; broader facilitation of research and access to technologies through the formation of centers of excellence; the basing of vaccine purchase decisions on immunization systems costs rather than price per dose alone; possible subsidization of early technology adoption costs for vaccine producers that take on the risks of new technologies of importance to the public sector; and the provision of data to purchasers, better enabling them to make informed decisions that take into account the value of specific product attributes. PMID:23598477

  4. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine

    International Nuclear Information System (INIS)

    Pancreatic cancer is a common, highly lethal disease with a rising incidence. MUC1 is a tumor-associated antigen that is over-expressed in pancreatic adenocarcinoma. Active immunotherapy that targets MUC1 could have great treatment value. Here we investigated the preventive and therapeutic effect of a MUC1 DNA vaccine on the pancreatic cancer. MUC1-various tandem repeat units(VNTR) DNA vaccine was produced by cloning one repeat of VNTR and inserting the cloned gene into the pcDNA3.1. In the preventive group, female C57BL/6 mice were immunized with the vaccine, pcDNA3.1 or PBS; and challenged with panc02-MUC1 or panc02 cell. In the therapeutic group the mice were challenged with panc02-MUC1 or panc02 cell, and then immunized with the vaccine, pcDNA3.1 or PBS. The tumor size and the survival time of the animals were compared between these groups. The DNA vaccine pcDNA3.1-VNTR could raise cytotoxic T lymphocyte (CTL) activity specific for MUC1. In the preventive experiment, the mice survival time was significantly longer in the vaccine group than in the control groups (P < 0.05). In the therapeutic experiment, the DNA vaccine prolonged the survival time of the panc02-MUC1-bearing mice (P < 0.05). In both the preventive and therapeutic experiments, the tumor size was significantly less in the vaccine group than in the control groups (P < 0.05). This pcDNA3.1-VNTR vaccine, however, could not prevent the mice attacked by panc02 cells and had no therapeutic effect on the mice attacked by panc02 cells. The MUC1 DNA vaccine pcDNA3.1-VNTR could induce a significant MUC1-specific CTL response; and had both prophylactic and therapeutic effect on panc02-MUC1 tumors. This vaccine might be used as a new adjuvant strategy against pancreatic cancer

  5. Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study.

    Directory of Open Access Journals (Sweden)

    Gerardo Chowell

    Full Text Available We explore vaccination strategies against pandemic influenza in Mexico using an age-structured transmission model calibrated against local epidemiological data from the Spring 2009 A(H1N1 pandemic.In the context of limited vaccine supplies, we evaluate age-targeted allocation strategies that either prioritize youngest children and persons over 65 years of age, as for seasonal influenza, or adaptively prioritize age groups based on the age patterns of hospitalization and death monitored in real-time during the early stages of the pandemic. Overall the adaptive vaccination strategy outperformed the seasonal influenza vaccination allocation strategy for a wide range of disease and vaccine coverage parameters.This modeling approach could inform policies for Mexico and other countries with similar demographic features and vaccine resources issues, with regard to the mitigation of the S-OIV pandemic. We also discuss logistical issues associated with the implementation of adaptive vaccination strategies in the context of past and future influenza pandemics.

  6. Prevention strategies for prostate cancer.

    Science.gov (United States)

    Schmitz-Dräger, B J; Lümmen, G; Bismarck, E; Fischer, C

    2012-12-01

    Through the last decade consideration of the role of vitamins and minerals in primary prevention of genitourinary tumors has dramatically changed. Despite all efforts efficacy of a specific compound has not been proven, so far. In consequence, recommendations for a use of vitamins or other supplements with the intention of prostate cancer prevention should be avoided today. In contrast, there is some evidence that life style modification might be helpful: recent investigations suggest that smoking may be involved in prostate cancer carcinogenesis. In addition, there is evidence that moderate food consumption, reduction of dairy products and an Asian or Mediterranean diet might not only prevent prostate cancer but also harbors additional beneficial effects on general health. This move from single compounds to more complex diets can be considered as a change of paradigm in prostate cancer prevention and could be the starting point of future epidemiological research. Disappointing findings with regards to nutritional cancer prevention contrast with a solid evidence concerning the efficacy of chemoprevention using 5a-reductase inhibitors: Long-term use of Finasteride and Dutasteride significantly reduces prostate cancer detection. Further candidate drugs are under investigation. However, translation of these findings into urological practice remains a matter of controversial discussion. PMID:23288209

  7. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  8. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Claesson, Mogens Helweg; Nielsen, Hans J;

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction ......-inflammatory cytokines in serum of patients who achieved stable disease following vaccination suggest the occurrence of vaccine-induced Th1 responses. Since Th1 responses seem to be essential in cancer immunotherapy this may indicate a therapeutic potential of the vaccine....

  9. Strategies for Sustainable Cancer Care.

    Science.gov (United States)

    Kerr, David J; Jani, Anant; Gray, Sir Muir

    2016-01-01

    There is an increasing focus on the relative cost-effectiveness and sustainability of delivering high-quality cancer care, with most emphasis, debatably, given to cost control of innovative treatments. It is difficult to calculate all the direct and indirect contributors to the total cost of cancer treatment, but it is estimated that cancer drugs constitute 10% to 30% of the total cost of cancer care. A 2007 study in France showed the contribution of drug costs was less than 20%, with approximately 70% of the total expenditure on cancer accounted for by health care resource use, such as hospitalization. The U.K. government established the National Institute for Health and Care Excellence (NICE)-the dominant function of which is technology appraisal-to assess the clinical and cost-effectiveness of new pharmaceutical and biopharmaceutical products. This is to ensure that all National Health Service (NHS) patients have equitable access to the most clinically effective and cost-effective treatments that are viable. NICE has developed a transparent, public process to judge incremental cost-effectiveness using the quality-adjusted life year (QALY), which allows comparisons of cost-effectiveness across medical specialties. NICE has been both lauded and criticized-especially when it passes judgment on marginally effective but expensive anticancer drugs-but it provides a route to "rational rationing" and, therefore, may contribute to sustainable cancer care by highlighting the issue of affordable medicine. This implies a challenge to the wider oncology community as to how we might cooperate to introduce the concept of value-driven cancer care. PMID:27249712

  10. Use of standardized patients to examine physicians' communication strategies when addressing vaccine refusal: a pilot study.

    Science.gov (United States)

    Bryant, Kristina A; Wesley, Gina C; Wood, Jo Ann; Hines, Carol; Marshall, Gary S

    2009-06-01

    Vaccine refusal is increasingly reported but few direct observations of the communication between physicians and parents skeptical about vaccines have been made. In a pilot study, a standardized patient posing as an expectant mother (standardized mother, SM) opposed to immunization met with blinded community physicians under the pretext of prenatal interviews. Persuasive communication strategies were scored using a standardized questionnaire. Recorded transcripts were evaluated for compliance with American Academy of Pediatrics recommendations for handling vaccine refusal. Nine encounters were conducted, representing 16% of pediatric and 3% of family practices in the area. Physicians scored high on listening, maintaining eye contact, spending time with the SM, using understandable terms, and avoiding a paternalistic posture. Lower scores were obtained on encouraging questions, checking for understanding, validating the importance of the SM's concerns, and assessing knowledge about vaccines. The median recorded encounter lasted 19 min. SMs represent a novel strategy for studying physician/parent communication about vaccines. PMID:19464542

  11. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  12. Poor HPV vaccine-related awareness and knowledge among Utah Latinas overdue for recommended cancer screenings.

    Science.gov (United States)

    Fowler, Brynn; Bodson, Julia; Warner, Echo L; Dyer, Jane; Kepka, Deanna

    2016-08-01

    Individuals overdue for recommended cancer screenings may not be receiving adequate cancer prevention education. Since Latinas have the highest incidence of cervical cancer among all racial/ethnic groups, human papillomavirus (HPV) vaccination education is especially important for this population. The correlates of HPV vaccine-related awareness and knowledge were assessed among Latinas who were overdue for recommended cancer screenings. N = 206 Latinas who were overdue for recommended cancer screenings were recruited by health educators from local community groups. Bivariate analyses and multivariable regression models were used to investigate factors associated with HPV vaccine-related awareness and knowledge among participants as well as to assess correlates of HPV vaccine receipt for eligible children of participants. In multivariable regression analyses, years living in the U.S. (p = 0.05) and health insurance status (p = 0.03) were significantly related to HPV vaccine-related knowledge measures. Age (p vaccine-related knowledge measures (p vaccination outcomes for eligible daughters of participants. Cervical cancer screening status (p = 0.02) and HPV vaccine-related knowledge measures (p = 0.01) were significantly associated with HPV vaccination outcomes for eligible sons of participants. Results indicate poor HPV vaccine-related awareness and knowledge among Latinas. Interventions to improve HPV vaccine-related awareness and knowledge in Utah's growing Latino population should target vulnerable individuals (e.g., not employed outside the home, less educated, less acculturated, poor, uninsured, overdue for cervical cancer screening) by using materials that are culturally sensitive, linguistically appropriate, and easily accessible. PMID:26860277

  13. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S;

    2008-01-01

    -testis antigens. Vaccines were biweekly administered intradermally with a total of 10 vaccines per patient. CT scans were performed and responses were graded according to the RECIST criteria. Quality of life was monitored with the SF-36 questionnaire. Toxicity and adverse events were graded according...... with this DC-based cancer vaccine was safe and non-toxic. Stable disease was found in 24% (4/17) of the patients. The quality of life remained for most categories high and stable throughout the study period.......Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...

  14. A novel "priming-boosting" strategy for immune interventions in cervical cancer.

    Science.gov (United States)

    Liao, Shujie; Zhang, Weina; Hu, Xiaoji; Wang, Wei; Deng, Dongrui; Wang, Hui; Wang, Changyu; Zhou, Jianfeng; Wang, Shixuan; Zhang, Hanwang; Ma, Ding

    2015-04-01

    Despite the encouraging development of a preventive vaccine for human papillomavirus (HPV), it cannot improve ongoing infections. Therefore, a new vaccine is urgently needed that can prevent and treat cervical cancer, and cure pre-cancerous lesions. In this study, we constructed two peptide-based vaccines. The first was a short-term, long-peptide (ST-LP) vaccine that simultaneously targeted three key carcinogenic epitopes (E5-E6-E7) on HPV16. We tested this vaccine in murine TC-1 cells infected with a recombinant adeno-associated virus (rAAV) fused with HPV16E5 DNA (rTC-1 cells), which served as a cell model; we also tested it in immune-competent mice loaded with rTC-1 cells, which served as an ectopic tumor model. The ST-LP injections resulted in strong, cell-mediated immunity, capable of attacking and eliminating abnormal antigen-bearing cells. Furthermore, to prolong immunogenic capability, we designed a unique rAAV that encoded the three predicted epitopes for a second, long-term, long-peptide (LT-LP) vaccine. Moreover, we used a new immune strategy of continuous re-injections, where three ST-LP injections were performed at one-week intervals (days 0, 7, 14), then one LT-LP injection was performed on day 120. Our in vitro and in vivo studies revealed that this strategy could boost the immune response to produce longer and stronger protection against target cells, and mice were thoroughly protected from tumor growth. Our results showed that priming the immune system with the ST-LP vaccine, followed by boosting the immune system with the LT-LP vaccine could generate a rapid, robust, durable cytotoxic T-lymphocyte response to HPV16-positive tumors. PMID:25575128

  15. Cervical cancer and HPV: Awareness and vaccine acceptability among parents in Morocco.

    Science.gov (United States)

    Mouallif, Mustapha; Bowyer, Harriet L; Festali, Soukaina; Albert, Adelin; Filali-Zegzouti, Younes; Guenin, Samuel; Delvenne, Philippe; Waller, Jo; Ennaji, Moulay Mustapha

    2014-01-01

    Cervical cancer is a major public health concern in Morocco where it represents the second most common and lethal cancer in women. Human papillomavirus (HPV) vaccines have been licensed in Morocco since 2008 but there are no available data on their acceptability. This study aimed to assess awareness of HPV and the vaccine, and to identify factors associated with acceptability of the vaccine among parents in Morocco. We carried out a questionnaire-based survey using face-to-face interviews in a sample of 852 parents (670 mothers and 182 fathers) with at least one unmarried daughter ≤26 years. We collected data within public and private health centres and clinics in four regions in Morocco between July and August 2012. The main outcome measure was parental acceptability of the HPV vaccine for their daughter(s). Responses revealed very low awareness of HPV infection (4.7%) and the HPV vaccine (14.3%). None of the participants had vaccinated their daughter(s) against HPV and vaccine acceptability was low among mothers (32%) and fathers (45%). Higher education and income, previous awareness of the HPV vaccine and endorsement of the belief that a recommendation from the Ministry of Health or a doctor to have the vaccine would be encouraging, were associated with mothers' HPV vaccine acceptability. Non-acceptability among mothers was associated with having more than two daughters, believing the vaccine was expensive, lack of information and believing that whatever happens to an individual's health is God's will. The only factor associated with the fathers' acceptability of the vaccine was the cost of the vaccine. Increasing HPV and HPV vaccine awareness through educational campaigns, along with active recommendation by physicians and a publically funded vaccination programme could increase parental acceptability of the HPV vaccine in Morocco.

  16. Strategies for advancing cancer nanomedicine

    Science.gov (United States)

    Chauhan, Vikash P.; Jain, Rakesh K.

    2013-11-01

    Cancer nanomedicines approved so far minimize toxicity, but their efficacy is often limited by physiological barriers posed by the tumour microenvironment. Here, we discuss how these barriers can be overcome through innovative nanomedicine design and through creative manipulation of the tumour microenvironment.

  17. Prostate Cancer: Current Treatment and Prevention Strategies

    OpenAIRE

    Chen, Fang-zhi; Zhao, Xiao-kun

    2013-01-01

    Abstract Prostate cancer is one of the life threatening disorders of male. Although, over the last two decades, a high rate of overdiagnosis, and overtreatment has lowered the incidence rate of prostate cancer, the treatment or prevention strategies are not enough to control the high rate of disease related mortality. Current medical treatment approaches include surgery, radiation therapy, chemotherapy, hormonal therapy, cryosurgery and other methods. These approaches are more or less effecti...

  18. Farmers' perception of the role of veterinary surgeons in vaccination strategies on British dairy farms.

    Science.gov (United States)

    Richens, I F; Hobson-West, P; Brennan, M L; Lowton, R; Kaler, J; Wapenaar, W

    2015-11-01

    There is limited research investigating the motivators and barriers to vaccinating dairy cattle. Veterinary surgeons have been identified as important sources of information for farmers making vaccination and disease control decisions, as well as being farmers' preferred vaccine suppliers. Vets' perception of their own role and communication style can be at odds with farmers' reported preferences. The objective of this study was to investigate how dairy farmers perceived the role of vets in implementing vaccination strategies on their farm. Semi-structured interviews were conducted with 24 dairy farmers from across Britain. The data were analysed using thematic analysis. Analysis revealed that farmers perceive vets to have an important role in facilitating decision-making in all aspects of vaccination, including the aspects of vaccine distribution and advice on implementation. This important role is acknowledged by farmers who have regular veterinary contact, but also farmers with solely emergency veterinary contact. Given this finding, future work should investigate the attitudes of vets towards vaccination and how they perceive their role. Combining this knowledge will enable optimisation of vaccination strategies on British dairy farms. PMID:26530434

  19. Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies.

    Directory of Open Access Journals (Sweden)

    David A Garber

    Full Text Available BACKGROUND: Modified Vaccinia virus Ankara (MVA is a safe, highly attenuated orthopoxvirus that is being developed as a recombinant vaccine vector for immunization against a number of infectious diseases and cancers. However, the expression by MVA vectors of large numbers of poxvirus antigens, which display immunodominance over vectored antigens-of-interest for the priming of T cell responses, and the induction of vector-neutralizing antibodies, which curtail the efficacy of subsequent booster immunizations, remain as significant impediments to the overall utility of such vaccines. Thus, genetic approaches that enable the derivation of MVA vectors that are antigenically less complex may allow for rational improvement of MVA-based vaccines. PRINCIPAL FINDINGS: We have developed a genetic complementation system that enables the deletion of essential viral genes from the MVA genome, thereby allowing us to generate MVA vaccine vectors that are antigenically less complex. Using this system, we deleted the essential uracil-DNA-glycosylase (udg gene from MVA and propagated this otherwise replication-defective variant on a complementing cell line that constitutively expresses the poxvirus udg gene and that was derived from a newly identified continuous cell line that is permissive for growth of wild type MVA. The resulting virus, MVADeltaudg, does not replicate its DNA genome or express late viral gene products during infection of non-complementing cells in culture. As proof-of-concept for immunological 'focusing', we demonstrate that immunization of mice with MVADeltaudg elicits CD8+ T cell responses that are directed against a restricted repertoire of vector antigens, as compared to immunization with parental MVA. Immunization of rhesus macaques with MVADeltaudg-gag, a udg(- recombinant virus that expresses an HIV subtype-B consensus gag transgene, elicited significantly higher frequencies of Gag-specific CD8 and CD4 T cells following both primary (2

  20. Progress and challenges in the vaccine-based treatment of head and neck cancers

    Directory of Open Access Journals (Sweden)

    Venuti Aldo

    2009-05-01

    Full Text Available Abstract Head and neck (HN cancer represents one of the most challenging diseases because the mortality remains high despite advances in early diagnosis and treatment. Although vaccine-based approaches for the treatment of advanced squamous cell carcinoma of the head and neck have achieved limited clinical success, advances in cancer immunology provide a strong foundation and powerful new tools to guide current attempts to develop effective cancer vaccines. This article reviews what has to be rather what has been done in the field for the development of future vaccines in HN tumours.

  1. Hepatitis B vaccinations among Koreans: Results from 2005 Korea National Cancer Screening Survey

    Directory of Open Access Journals (Sweden)

    Kwak Min-Son

    2009-11-01

    Full Text Available Abstract Background Liver cancer is one of most commonly diagnosed cancers among Koreans. Chronic hepatitis B virus (HBV infection is a major risk factor for liver cancer. HBV infection can be prevented by effective screening and vaccination programs. The purpose of this study is to examine the status of HBV infection and the predictors associated with HBV vaccination. Methods The study population was derived from the 2005 Korea National Cancer Screening Survey (KNCSS. The KNCSS is an annual cross-sectional survey that uses a nationally-representative random sampling to investigate cancer screening rates. A total of 1,786 Koreans over 40 years of age participated in this study. Results Of all the participants, 5.9% reported HBV positive (HBsAg+, HBsAb-, 41.8% were HBV negative but protected (HBsAg-, HBsAb+, and 52.3% were unprotected (HBsAg-, HBsAb-. Among unprotected individuals (n = 934, 23.1% reported to have received the vaccination. About half of those who had vaccinations completed the 3-shot vaccine series. In multiple analyses, education, having private cancer insurance, alcohol use, having regular check-up, and doing regular exercise were associated with completed HBV vaccination. Conclusion This study result suggests that we need a liver cancer education program to increase HBV awareness and to increase the liver cancer prevention message among low educated populations.

  2. The pharmaceuticalization of sexual risk: vaccine development and the new politics of cancer prevention.

    Science.gov (United States)

    Mamo, Laura; Epstein, Steven

    2014-01-01

    Vaccine development is a core component of pharmaceutical industry activity and a key site for studying pharmaceuticalization processes. In recent decades, two so-called cancer vaccines have entered the U.S. medical marketplace: a vaccine targeting hepatitis B virus (HBV) to prevent liver cancers and a vaccine targeting human papillomavirus (HPV) to prevent cervical and other cancers. These viruses are two of six sexually transmissible infectious agents (STIs) that are causally linked to the development of cancers; collectively they reference an expanding approach to apprehending cancer that focuses attention simultaneously "inward" toward biomolecular processes and "outward" toward risk behaviors, sexual practices, and lifestyles. This paper juxtaposes the cases of HBV and HPV and their vaccine trajectories to analyze how vaccines, like pharmaceuticals more generally, are emblematic of contemporary pharmaceuticalization processes. We argue that individualized risk, in this case sexual risk, is produced and treated by scientific claims of links between STIs and cancers and through pharmaceutical company and biomedical practices. Simultaneous processes of sexualization and pharmaceuticalization mark these cases. Our comparison demonstrates that these processes are not uniform, and that the production of risks, subjects, and bodies depends not only on the specificities of vaccine development but also on the broader political and cultural frames within which sexuality is understood. PMID:24560236

  3. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines?

    Science.gov (United States)

    Bobbala, Sharan; Hook, Sarah

    2016-09-01

    Modern vaccine design has moved away from attenuated or inactivated whole-pathogen vaccines to more pure and defined subunit vaccines. However subunit antigens have poor bioavailability and stability and lack immunogenicity. To overcome these issues subunit vaccines have to be administered in a suitable delivery system in combination with immune stimulants. Many different delivery systems have been developed and investigated each having different modes of action, for example increasing delivery and/or sustaining delivery of antigen to immune cells. In addition a number of different routes of immunization are possible and these can play a crucial role in determining the fate of an immune response. In this review the different strategies for the delivery of prophylactic and therapeutic subunit vaccines along with the impact of these on the immune responses generated are discussed. PMID:27380191

  4. Anticipating crisis: towards a pandemic flu vaccination strategy through alignment of public health and industrial policy.

    Science.gov (United States)

    Daems, Rudi; Del Giudice, Giuseppe; Rappuoli, Rino

    2005-12-30

    Flu pandemics (worldwide epidemics) have occurred at irregular and unpredictable intervals, and have been associated with substantial morbidity, mortality and economic cost. In response to the emerging potential for a new pandemic to occur, national and international preparedness plans are being drawn up specifying the use of antivirals and vaccines. A number of challenges to pandemic vaccine development, large-scale production and the timing of distribution have also been highlighted. This article reviews the rationale and consequential policy for aligned public- and private sector planning in the present inter-pandemic period despite the prevalent risks and uncertainties. We propose a model for product development of pandemic flu vaccine based on public-private partnership, including push and pull incentive mechanisms for stimulating work in this therapeutic area. In addition, we argue that innovative vaccination strategies, together with special vaccine formulations which may offer cross-protection against multiple flu pandemic strains might avert the worse effects of an influenza infection.

  5. FDA Approves Two HPV Vaccines: Cervarix for Girls, Gardasil for Boys | Division of Cancer Prevention

    Science.gov (United States)

    The FDA has approved a second vaccine to prevent cervical cancer and cervical precancers, the vaccine’s manufacturer, GlaxoSmithKline (GSK), announced last week. The approval is based on data from a large clinical trial showing that the vaccine, Cervarix, prevented precancerous lesions in 93 percent of those who received the full vaccine sequence of three injections over 6 months. |

  6. Aromatase inhibitor strategies in metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Heather L McArthur

    2009-07-01

    Full Text Available Heather L McArthur, Patrick G MorrisBreast Cancer Medicine Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USAAbstract: Despite ongoing therapeutic innovations, metastatic breast cancer (MBC remains a treatable but incurable disease. In the developed world, a diagnosis of MBC without a preceding diagnosis of early stage disease is a rare event. However, approximately one-third of women with early stage breast cancer ultimately experience a distant recurrence. Because the majority of breast cancers express estrogen and/or progesterone receptors and are accordingly considered hormone-sensitive, therapeutic strategies that interfere with hormone-mediated tumorigenesis have been a cornerstone of the breast cancer management paradigm for decades. Historically, the selective estrogen receptor modulator tamoxifen has been the most extensively studied and widely used hormone maneuver in breast cancer. However, a recent therapeutic innovation, namely the successful development of third-generation aromatase inhibitors (AIs, has had a dramatic impact on the treatment paradigm for women with hormone-sensitive MBC. Because of the demonstrated efficacy in postmenopausal breast cancer patients, the generally favorable side-effect profile, and the convenience of oral administration, AIs are now in widespread clinical use. Currently, there are three clinically available third-generation AIs: two reversible, nonsteroidal AIs, letrozole and anastrozole; and one irreversible, steroidal AI, exemestane. All three agents are at least as efficacious as tamoxifen as monotherapy for postmenopausal women with hormone-sensitive MBC. Current clinical research aims to improve upon existing strategies by evaluating AIs in combination with systemic chemotherapy regimens and/or novel targeted agents. It is hoped that these therapeutic innovations will lead to ongoing improvements in quality of life parameters and ideally survival for women

  7. Gene gun delivery systems for cancer vaccine approaches.

    Science.gov (United States)

    Aravindaram, Kandan; Yang, Ning Sun

    2009-01-01

    Gene-based immunization with transgenic DNA vectors expressing tumor-associated antigens (TAA), cytokines, or chemokines, alone or in combination, provides an attractive approach to increase the cytotoxic T cell immunity against various cancer diseases. With this consideration, particle-mediated or gene gun technology has been developed as a nonviral method for gene transfer into various mammalian tissues. It has been shown to induce both humoral and cell-mediated immune responses in both small and large experimental animals. A broad range of somatic cell types, including primary cultures and established cell lines, has been successfully transfected ex vivo or in vitro by gene gun technology, either as suspension or adherent cultures. Here, we show that protocols and techniques for use in gene gun-mediated transgene delivery system for skin vaccination against melanoma using tumor-associated antigen (TAA) human gpl00 and reporter gene assays as experimental systems.

  8. Effect of type 2 diabetes mellitus on efficacy of hepatitis B vaccine and revaccination strategy

    Directory of Open Access Journals (Sweden)

    Wen-shu LI

    2011-10-01

    Full Text Available Objective To investigate the effects of type 2 diabetes mellitus on vaccination efficacy of hepatitis B vaccine,and explore the effective revaccination strategy.Methods Seventy-six adults with type 2 diabetes mellitus and 70 sex-and age-matched healthy individuals from 4 vaccination centers,who were vaccinated for one standard schedule(month 0,1,6 with gene recombinant yeast hepatitis B vaccine,were enrolled in present study.The serum anti-HBs and geometric mean titer(GMT thereof were assayed before and month 1,12,24 after completion of one standard schedule of vaccination.The profiles of serum cytokines including interferon-γ(IFN-γ,interleukin(IL-2,-4 and-10 were determined before and after vaccination.To improve the vaccine efficacy of non-or lower-response patients with type 2 diabetes mellitus,a dose of 20μg gene recombinant yeast hepatitis B vaccine were used to revaccinate intramuscularly or subcutaneously plus intramuscularly.Results One month after completion of one standard schedule of vaccination,the positive conversion rates of anti-HBs in diabetes mellitus group and healthy group were 98.6 and 92.1%(P < 0.05,the anti-HBs GMT were 106.78 mU/ml and 167.14 mU/ml(P < 0.01,and the non-or lower-response rate were 19.7% and 7.1%,respectively(P < 0.05.The mean levels of serum IFN-γ,IL-2 and IL-4 were lower in diabetes mellitus group(P < 0.05 or P < 0.01,especially in non-or lower-response individuals,than in healthy group before and after a standard schedule of vaccination.Patients with non-or lower-response type 2 diabetes mellitus received revaccination with 20μg hepatitis B vaccine,the positive conversion rates of anti-HBs were 60.0% and 73.3%,respectively(P < 0.05,when injected subcutaneously plus intramuscularly or only intramuscularly.Conclusions Type 2 diabetes mellitus could influence the vaccination efficacy of hepatitis B vaccine,probably through a mechanism of down-regulating Th1 and Th2 mediated immune response

  9. WT1 Peptide Cancer Vaccine for Patients with Hematopoietic Malignancies and Solid Cancers

    Directory of Open Access Journals (Sweden)

    Yoshihiro Oka

    2007-01-01

    Full Text Available Wild-type Wilms' tumor gene WT1 is expressed at a high level in hematopoietic malignancies including acute leukemia, chronic myelogenous leukemia, and myelodysplastic syndromes, as well as in various kinds of solid cancers. Human cytotoxic T lymphocytes (CTLs, which could specifically lyse WT1-expressing tumor cells with HLA class I restriction, were generated in vitro. It was also demonstrated that mice immunized with the WT1 peptide rejected challenges by WT1-expressing cancer cells and survived with no signs of autoaggression to normal organs that physiologically expressed WT1. Furthermore, we and others detected IgM and IgG WT1 antibodies in patients with hematopoietic malignancies, indicating that the WT1 protein was highly immunogenic, and that immunoglobulin class-switch-inducing, WT1-specific, cellular immune responses were elicited in these patients. CD8+ WT1-specific CTLs were also detected in peripheral blood or tumor-draining lymph nodes of cancer patients. These results provided us with the rationale for elicitation of CTL responses targeting the WT1 product for cancer immunotherapy. On the basis of these findings, we performed a phase I clinical trial of a WT1 peptide cancer vaccine for the patients with malignant neoplasms. These results strongly suggested that the WT1 peptide cancer vaccine had efficacy in the clinical setting because clinical responses, including reduction of leukemic blast cells or regression of tumor masses, were observed after the WT1 vaccination in patients with hematopoietic malignancies or solid cancers. The power of a tumor-associated-antigen (TAA-derived cancer vaccine may be enhanced in combination with stronger adjuvants, helper peptide, molecular-target-based drugs, or some chemotherapy drugs, such as gemcitabine, which has been revealed to suppress regulartory T-cell function. In contrast, reduction of WT1 peptide dose may be needed for the treatment of patients with hematological stem cell diseases

  10. Identification of a microRNA signature in dendritic cell vaccines for cancer immunotherapy

    DEFF Research Database (Denmark)

    Holmstrøm, Kim; Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg;

    2010-01-01

    Dendritic cells (DCs) exposed to tumor antigens followed by treatment with T(h)1-polarizing differentiation signals have paved the way for the development of DC-based cancer vaccines. Critical parameters for assessment of the optimal functional state of DCs and prediction of the vaccine potency o...

  11. Preventing cervical cancer and genital warts - How much protection is enough for HPV vaccines?

    Science.gov (United States)

    Stanley, Margaret

    2016-07-01

    HPV associated disease is a global health problem: 5.2% of all cancers are HPV associated with HPV 16 and 18 accounting for 70% of cases of cervical cancer. Genital warts caused by HPV 6 and 11 have a lifetime risk of acquisition of 10%. HPV vaccines are subunit vaccines consisting of virus like particles comprised of the L1 major capsid protein. Two vaccines have been licenced since 2006/2007 and are in the National Immunisation programmes in 62 countries. Both vaccines include HPV 16 and 18 VLPs and one also includes HPV 6 and 11. The vaccines are highly immunogenic and well tolerated. Genital HPV is a sexually transmitted infection with peak incidence occurring just after the onset of sexual activity and the routine cohort for immunisation in almost all countries are adolescent girls 9-15 years of age with or without catch up for older adolescents and young women. Population effectiveness is now being demonstrated for these vaccines in countries with high vaccine coverage. HPV vaccines are highly immunogenic and effective and the original 3 dose schedules have already been reduced, for those 14 years and under, to 2 for both licenced vaccines. There is preliminary evidence that 1 dose of vaccine is as effective as 2 or 3 in preventing persistent HPV infection in the cervix in young women and further reductions in dosage may be possible if supported by appropriate virological, immunological and modelling studies.

  12. The potential impact of prophylactic human papillomavirus vaccination on oropharyngeal cancer.

    Science.gov (United States)

    Guo, Theresa; Eisele, David W; Fakhry, Carole

    2016-08-01

    The incidence of oropharyngeal cancer (OPC) is significantly increasing in the United States. Given that these epidemiologic trends are driven by human papillomavirus (HPV), the potential impact of prophylactic HPV vaccines on the prevention of OPC is of interest. The primary evidence supporting the approval of current prophylactic HPV vaccines is from large phase 3 clinical trials focused on the prevention of genital disease (cervical and anal cancer, as well as genital warts). These trials reported vaccine efficacy rates of 89% to 98% for the prevention of both premalignant lesions and persistent genital infections. However, these trials were designed before the etiologic relationship between HPV and OPC was established. There are differences in the epidemiology of oral and genital HPV infection, such as differences in age and sex distributions, which suggest that the vaccine efficacy observed in genital cancers may not be directly translatable to the cancers of the oropharynx. Evaluation of vaccine efficacy is challenging in the oropharynx because no premalignant lesion analogous to cervical intraepithelial neoplasia in cervical cancer has yet been identified. To truly investigate the efficacy of these vaccines in the oropharynx, additional clinical trials with feasible endpoints are needed. Cancer 2016;122:2313-2323. © 2016 American Cancer Society. PMID:27152637

  13. Hand, Foot, and Mouth Disease in China: Critical Community Size and Spatial Vaccination Strategies

    Science.gov (United States)

    Van Boeckel, Thomas P.; Takahashi, Saki; Liao, Qiaohong; Xing, Weijia; Lai, Shengjie; Hsiao, Victor; Liu, Fengfeng; Zheng, Yaming; Chang, Zhaorui; Yuan, Chen; Metcalf, C. Jessica E.; Yu, Hongjie; Grenfell, Bryan T.

    2016-01-01

    Hand Foot and Mouth Disease (HFMD) constitutes a considerable burden for health care systems across China. Yet this burden displays important geographic heterogeneity that directly affects the local persistence and the dynamics of the disease, and thus the ability to control it through vaccination campaigns. Here, we use detailed geographic surveillance data and epidemic models to estimate the critical community size (CCS) of HFMD associated enterovirus serotypes CV-A16 and EV-A71 and we explore what spatial vaccination strategies may best reduce the burden of HFMD. We found CCS ranging from 336,979 (±225,866) to 722,372 (±150,562) with the lowest estimates associated with EV-A71 in the southern region of China where multiple transmission seasons have previously been identified. Our results suggest the existence of a regional immigration-recolonization dynamic driven by urban centers. If EV-A71 vaccines doses are limited, these would be optimally deployed in highly populated urban centers and in high-prevalence areas. If HFMD vaccines are included in China’s National Immunization Program in order to achieve high coverage rates (>85%), routine vaccination of newborns largely outperforms strategies in which the equivalent number of doses is equally divided between routine vaccination of newborns and pulse vaccination of the community at large. PMID:27125917

  14. A cost-utility analysis of cervical cancer vaccination in preadolescent Canadian females

    Directory of Open Access Journals (Sweden)

    Merid Maraki

    2009-10-01

    Full Text Available Abstract Background Despite the fact that approximately 70% of Canadian women undergo cervical cancer screening at least once every 3 years, approximately 1,300 women were diagnosed with cervical cancer and approximately 380 died from it in 2008. This study estimates the effectiveness and cost-effectiveness of vaccinating 12-year old Canadian females with an AS04-adjuvanted cervical cancer vaccine. The indirect effect of vaccination, via herd immunity, is also estimated. Methods A 12-health-state 1-year-cycle Markov model was developed to estimate lifetime HPV related events for a cohort of 12-year old females. Annual transition probabilities between health-states were derived from published literature and Canadian population statistics. The model was calibrated using Canadian cancer statistics. From a healthcare perspective, the cost-effectiveness of introducing a vaccine with efficacy against HPV-16/18 and evidence of cross-protection against other oncogenic HPV types was evaluated in a population undergoing current screening practices. The base-case analysis included 70% screening coverage, 75% vaccination coverage, $135/dose for vaccine, and 3% discount rate on future costs and health effects. Conservative herd immunity effects were taken into account by estimated HPV incidence using a mathematical model parameterized by reported age-stratified sexual mixing data. Sensitivity analyses were performed to address parameter uncertainties. Results Vaccinating 12-year old females (n = 100,000 was estimated to prevent between 390-633 undiscounted cervical cancer cases (reduction of 47%-77% and 168-275 undiscounted deaths (48%-78% over their lifetime, depending on whether or not herd immunity and cross-protection against other oncogenic HPV types were included. Vaccination was estimated to cost $18,672-$31,687 per QALY-gained, the lower range representing inclusion of cross-protective efficacy and herd immunity. The cost per QALY-gained was most

  15. Vaccination against Alzheimer disease: an update on future strategies.

    Science.gov (United States)

    Fettelschoss, Antonia; Zabel, Franziska; Bachmann, Martin F

    2014-01-01

    Alzheimer disease is a devastating chronic disease without adequate therapy. More than 10 years ago, it was demonstrated in transgenic mouse models that vaccination may be a novel, disease-modifying therapy for Alzheimer. Subsequent clinical development has been a roller-coaster with some positive and many negative news. Here, we would like to summarize evidence that next generation vaccines optimized for old people and focusing on patients with mild disease stand a good chance to proof efficacious for the treatment of Alzheimer.

  16. Photocarcinogenesis and Skin Cancer Prevention Strategies.

    Science.gov (United States)

    Seebode, Christina; Lehmann, Janin; Emmert, Steffen

    2016-03-01

    In this review the basic principles of UV-induced carcinogenesis are summarized and the state of the art diagnosis and therapeutic strategies are discussed. The prevalent keratinocyte-derived neoplasms of the skin are basal cell and squamous cell carcinomas. Cutaneous melanoma is less frequent but associated with high mortality. Common risk factors for all three tumor entities include sun exposure and DNA-repair deficiencies. Photocarcinogenesis follows a multistep model of cancer development in which ultraviolet-induced DNA damage leads to mutations resulting in activation of oncogenes or silencing of tumor-suppressor genes. This ends in a cellular mutator phenotype even more prone to mutation acquisition. DNA repair, especially the nucleotide excision repair (NER) pathway, counteracts mutation formation and skin cancer development. This is vividly demonstrated by the NER-defective disorder xeroderma pigmentosum. Primary skin cancer preventative strategies, therefore, include reduction of DNA photodamage by protection from the sun. Secondary preventative strategies include skin cancer screening. This implies standard examination techniques with the naked eye, an epiluminescence microscope, or digital epiluminescence microscopy. More advanced techniques include confocal laser scan microscopy. PMID:26977038

  17. A case study using the United Republic of Tanzania: costing nationwide HPV vaccine delivery using the WHO Cervical Cancer Prevention and Control Costing Tool

    Directory of Open Access Journals (Sweden)

    Hutubessy Raymond

    2012-11-01

    Full Text Available Abstract Background The purpose, methods, data sources and assumptions behind the World Health Organization (WHO Cervical Cancer Prevention and Control Costing (C4P tool that was developed to assist low- and middle-income countries (LMICs with planning and costing their nationwide human papillomavirus (HPV vaccination program are presented. Tanzania is presented as a case study where the WHO C4P tool was used to cost and plan the roll-out of HPV vaccines nationwide as part of the national comprehensive cervical cancer prevention and control strategy. Methods The WHO C4P tool focuses on estimating the incremental costs to the health system of vaccinating adolescent girls through school-, health facility- and/or outreach-based strategies. No costs to the user (school girls, parents or caregivers are included. Both financial (or costs to the Ministry of Health and economic costs are estimated. The cost components for service delivery include training, vaccination (health personnel time and transport, stationery for tally sheets and vaccination cards, and so on, social mobilization/IEC (information, education and communication, supervision, and monitoring and evaluation (M&E. The costs of all the resources used for HPV vaccination are totaled and shown with and without the estimated cost of the vaccine. The total cost is also divided by the number of doses administered and number of fully immunized girls (FIGs to estimate the cost per dose and cost per FIG. Results Over five years (2011 to 2015, the cost of establishing an HPV vaccine program that delivers three doses of vaccine to girls at schools via phased national introduction (three regions in year 1, ten regions in year 2 and all 26 regions in years 3 to 5 in Tanzania is estimated to be US$9.2 million (excluding vaccine costs and US$31.5 million (with vaccine assuming a vaccine price of US$5 (GAVI 2011, formerly the Global Alliance for Vaccines and Immunizations. This is equivalent to a

  18. COPING STRATEGIES IN PATIENTS WITH PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    J. R. Gardanova

    2015-01-01

    Full Text Available Diagnostics of psycho-emotional disorders of patients with malignant diseases of the prostate is not doubt, because timely correction contributes to the shortening of rehabilitation period and restoration of the quality of life of patients after treatment. Detection and diagnosis of prostate cancer for many patients is stressful and causes changes in the affective sphere, and manifests itself in increased levels of anxiety and depression in men. To cope with stress is possible due to the used coping strategies.Purpose. Studying the coping mechanisms in prostate cancer patients.Materials and methods. 56 men treated in FGBU "LRTS" Russian Ministry of Health. The average age was 65.7 ± 6.1 years. The average duration of the disease prostate cancer is 3 ± 2 months. All men were subjected to the standard algorithm for the evaluation of hormonal status, the PSA, taking a history, inspection and physical examination, magnetic resonance imaging and scintigraphy of bones of a skeleton. All the patients underwent laparoscopic radical prostatectomy. Psychological testing with the use of the method of "Coping test" the scale of reactive and personal anxiety for the differentiated evaluation of anxiety. Results. The most common for prostate cancer revealed constructive coping strategies are "planning solve", "selfcontrol" and "search of social support". According to the scale Spielberg–Hanin a high level of situational anxiety was revealed.Conclusion. According to the results of the research, patients with prostate cancer are likely to use constructive coping strategies, that leads to stabilization of psycho-emotional state of men and promotes more effective adaptation in the terms of stress, that is caused by treatment of prostate cancer.

  19. [BENEFITS AND RISKS AT IMPLEMENTATION OF PROPHILACTIC VACCINES FOR CERVICAL CANCER].

    Science.gov (United States)

    Zlatkov, V; Kostova, P

    2016-01-01

    The aim of this review is to present the benefits and risks of the implementation of prophylactic vaccines for cervical cancer. The classical understanding of human papilloma virus (HPV) infection and its role for the cervical oncogenesis, as well as, the place of prophylactic HPV vaccines are discussed. Results concerning the effectiveness of vaccines 10 years after their introduction and data about their safety are presented. Reports of the use in practice of the new 9-valent HPV vaccine and the first results of its implementation are studied. PMID:27514142

  20. Vaccines for established cancer: overcoming the challenges posed by immune evasion.

    Science.gov (United States)

    van der Burg, Sjoerd H; Arens, Ramon; Ossendorp, Ferry; van Hall, Thorbald; Melief, Cornelis J M

    2016-04-01

    Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.

  1. Prion疾病疫苗研究策略%Strategies of Vaccines against Prion Disease

    Institute of Scientific and Technical Information of China (English)

    郭燕; 董小平

    2009-01-01

    朊病毒病是一类侵袭人类及多种动物中枢神经系统的致死性退行性脑病,目前缺乏有效的预防和治疗方法.朊病毒病的重组蛋白亚单位疫苗、DNA疫苗、合成肽疫苗、病毒样颗粒疫苗、树突状细胞疫苗、黏膜免疫疫苗等已取得一定进展,但现有的免疫策略仅能部分克服免疫耐受,诱导较低或中等滴度的抗体,对PrP~(Sc)感染动物模型只能提供部分保护,Prion疫苗研究任重而道远.%Prion diseases are fatal neurodegenerative disorders which can be acquired by human and many kinds of animals.At present,there are no effective preventive and therapeutic methods.Recombinant protein subunit vaccine,DNA vaccine,synthetic peptide vaccine,viral like particles,dendritic cell vaccine and musocal vaccine against Prion diseases have achieved certain progress.However,strategies used now can only partially overcome immune tolerance,induce only low and moderate degree of antibody,and provide inadequate protection in animal models.Therefore,strategy of vaccines against Prion diseases is thorny but imminent.

  2. Advanced strategies in liposomal cancer therapy

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Jensen, Simon Skøde; Jørgensen, Kent

    2005-01-01

    Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles...... of this paper, we review our own work, exploiting secretory phospholipase A(2) as a site-specific trigger and prodrug activator in cancer therapy. We present novel prodrug lipids together with biophysical investigations of liposome systems, constituted by these new lipids and demonstrate their degradability...... is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug...

  3. Storytelling in the context of vaccine refusal: a strategy to improve communication and immunisation.

    Science.gov (United States)

    Cawkwell, Philip B; Oshinsky, David

    2016-03-01

    The December 2014 outbreak of measles in California impacted over 100 children and served as a reminder that this disease still plagues the USA, even 50 years following the first licensed vaccine. Refusal of vaccination is a complicated and multifaceted issue, one that clearly demands a closer look by paediatricians and public health officials alike. While medical doctors and scientists are trained to practice 'evidence-based medicine', and studies of vaccine safety and efficacy speak the language of statistics, there is reason to believe that this is not the most effective strategy for communicating with all groups of parents. Herein, we consider other methods such as narrative practices that employ stories and appeal more directly to parents. We also examine how doctors are trained to disseminate information and whether there are reasonable supplementary methods that could be used to improve vaccine communication and ultimately immunisation rates. PMID:26438615

  4. Improving influenza vaccination coverage among high-risk patients : a role for computer-supported prevention strategy?

    NARCIS (Netherlands)

    Hak, E; van Essen, G A; Stalman, W A; de Melker, R A

    1998-01-01

    BACKGROUND: Worldwide, population-based influenza vaccination strategies are being developed to trace, immunize and monitor high-risk persons efficiently. Computerized prevention modules may facilitate such a strategy in general practice. OBJECTIVES: We established the applicability of a computerize

  5. Anti-Tumor Effects of Peptide Therapeutic and Peptide Vaccine Antibody Co-targeting HER-1 and HER-2 in Esophageal Cancer (EC) and HER-1 and IGF-1R in Triple-Negative Breast Cancer (TNBC)

    OpenAIRE

    Jay Overholser; Kristen Henkins Ambegaokar; Eze, Siobhan M.; Eduardo Sanabria-Figueroa; Rita Nahta; Tanios Bekaii-Saab; Kaumaya, Pravin T. P.

    2015-01-01

    Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC) and triple-negative breast cancer (TNBC). Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, pot...

  6. Cancer and fertility: strategies to preserve fertility.

    Science.gov (United States)

    Diedrich, K; Fauser, B C J M; Devroey, P

    2011-03-01

    Fertility preservation is a key component of cancer management in young people. The Fourth Evian Annual Reproduction Workshop Meeting was held in April 2009 to discuss cancer and fertility in young adults. Specialists in oncology, assisted reproduction, embryology and clinical genetics presented published data and ongoing research on cancer and fertility, with particular focus on strategies to preserve fertility. This report is based on the expert presentations and group discussions, supplemented with publications from literature searches and the authors' knowledge. Fertility preservation should be considered for all young people undergoing potentially gonadotoxic cancer treatment. A variety of options are required to facilitate safe and effective fertility preservation for individual patients. Sperm banking is a simple and low-cost intervention. Embryo cryopreservation is the only established method of female fertility preservation. Oocyte cryopreservation offers a useful option for women without a male partner. Emergency ovarian stimulation and cryopreservation of ovarian tissue (followed by tissue transplantation or in-vitro maturation of oocytes) are experimental techniques for women who require urgent cancer treatment. Further prospective studies are required to validate cryopreservation of oocytes and ovarian tissue, in-vitro maturation of oocytes and new vitrification techniques and to identify any long-term sequelae of slow freezing of embryos.

  7. Inclusion of the benefits of enhanced cross-protection against cervical cancer and prevention of genital warts in the cost-effectiveness analysis of human papillomavirus vaccination in the Netherlands

    Directory of Open Access Journals (Sweden)

    Westra Tjalke A

    2013-02-01

    Full Text Available Abstract Background Infection with HPV 16 and 18, the major causative agents of cervical cancer, can be prevented through vaccination with a bivalent or quadrivalent vaccine. Both vaccines provide cross-protection against HPV-types not included in the vaccines. In particular, the bivalent vaccine provides additional protection against HPV 31, 33, and 45 and the quadrivalent vaccine against HPV31. The quadrivalent vaccine additionally protects against low-risk HPV type 6 and 11, responsible for most cases of genital warts. In this study, we made an analytical comparison of the two vaccines in terms of cost-effectiveness including the additional benefits of cross-protection and protection against genital warts in comparison with a screening-only strategy. Methods We used a Markov model, simulating the progression from HPV infection to cervical cancer or genital warts. The model was used to estimate the difference in future costs and health effects of both HPV-vaccines separately. Results In a cohort of 100,000 women, use of the bivalent or quadrivalent vaccine (both at 50% vaccination coverage reduces the cervical cancer incidence by 221 and 207 cases, corresponding to ICERs of €17,600/QALY and €18,900/QALY, respectively. It was estimated that the quadrivalent vaccine additionally prevents 4390 cases of genital warts, reducing the ICER to €16,300/QALY. Assuming a comparable willingness to pay for cancer and genital warts prevention, the difference in ICERs could justify a slightly higher price (~7% per dose in favor of the quadrivalent vaccine. Conclusions Clearly, HPV vaccination has been implemented for the prevention of cervical cancer. From this perspective, use of the bivalent HPV vaccine appears to be most effective and cost-effective. Including the benefits of prevention against genital warts, the ICER of the quadrivalent HPV vaccine was found to be slightly more favourable. However, current decision-making on the introduction of HPV

  8. T-Regulatory Cells and Vaccination "Pay Attention and Do Not Neglect Them": Lessons from HIV and Cancer Vaccine Trials.

    Science.gov (United States)

    Brezar, Vedran; Godot, Véronique; Cheng, Liang; Su, Lishan; Lévy, Yves; Seddiki, Nabila

    2016-01-01

    Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models. PMID:27608046

  9. Communication strategies to promote the uptake of childhood vaccination in Nigeria: a systematic map

    Science.gov (United States)

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2016-01-01

    Background Effective communication is a critical component in ensuring that children are fully vaccinated. Although numerous communication interventions have been proposed and implemented in various parts of Nigeria, the range of communication strategies used has not yet been mapped systematically. This study forms part of the ‘Communicate to vaccinate’ (COMMVAC) project, an initiative aimed at building research evidence for improving communication with parents and communities about childhood vaccinations in low- and middle-income countries. Objective This study aims to: 1) identify the communication strategies used in two states in Nigeria; 2) map these strategies against the existing COMMVAC taxonomy, a global taxonomy of vaccination communication interventions; 3) create a specific Nigerian country map of interventions organised by purpose and target; and 4) analyse gaps between the COMMVAC taxonomy and the Nigerian map. Design We conducted the study in two Nigerian states: Bauchi State in Northern Nigeria and Cross River State in Southern Nigeria. We identified vaccination communication interventions through interviews carried out among purposively selected stakeholders in the health services and relevant agencies involved in vaccination information delivery; through observations and through relevant documents. We used the COMMVAC taxonomy to organise the interventions we identified based on the intended purpose of the communication and the group to which the intervention was targeted. Results The Nigerian map revealed that most of the communication strategies identified aimed to inform and educate and remind or recall. Few aimed to teach skills, enhance community ownership, and enable communication. We did not identify any intervention that aimed to provide support or facilitate decision-making. Many interventions had more than one purpose. The main targets for most interventions were caregivers and community members, with few interventions directed at

  10. Communication strategies to promote the uptake of childhood vaccination in Nigeria: a systematic map

    Directory of Open Access Journals (Sweden)

    Afiong Oku

    2016-02-01

    Full Text Available Background: Effective communication is a critical component in ensuring that children are fully vaccinated. Although numerous communication interventions have been proposed and implemented in various parts of Nigeria, the range of communication strategies used has not yet been mapped systematically. This study forms part of the ‘Communicate to vaccinate’ (COMMVAC project, an initiative aimed at building research evidence for improving communication with parents and communities about childhood vaccinations in low- and middle-income countries. Objective: This study aims to: 1 identify the communication strategies used in two states in Nigeria; 2 map these strategies against the existing COMMVAC taxonomy, a global taxonomy of vaccination communication interventions; 3 create a specific Nigerian country map of interventions organised by purpose and target; and 4 analyse gaps between the COMMVAC taxonomy and the Nigerian map. Design: We conducted the study in two Nigerian states: Bauchi State in Northern Nigeria and Cross River State in Southern Nigeria. We identified vaccination communication interventions through interviews carried out among purposively selected stakeholders in the health services and relevant agencies involved in vaccination information delivery; through observations and through relevant documents. We used the COMMVAC taxonomy to organise the interventions we identified based on the intended purpose of the communication and the group to which the intervention was targeted. Results: The Nigerian map revealed that most of the communication strategies identified aimed to inform and educate and remind or recall. Few aimed to teach skills, enhance community ownership, and enable communication. We did not identify any intervention that aimed to provide support or facilitate decision-making. Many interventions had more than one purpose. The main targets for most interventions were caregivers and community members, with few

  11. The granulocyte macrophage–colony stimulating factor surface modified MB49 bladder cancer stem cells vaccine against metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Yong-tong Zhu

    2014-07-01

    Full Text Available The MB49 bladder cancer cell vaccine was effective against bladder cancer in the mice model in previous studies. However, part of the tumors regrew as the vaccine could not eliminate the cancer stem cells (CSCs. MB49 bladder cancer stem cells (MCSCs were isolated by a combination of the limited dilution method and the serum free culture medium method. MCSCs possessed higher expression of CD133, CD44, OCT4, NANOG, and ABCG2, the ability of differentiation, higher proliferative abilities, lower susceptibility to chemotherapy, greater migration in vitro, and stronger tumorigenic abilities in vivo. Then streptavidin–mouse granulocyte macrophage–colony stimulating factor (SA–mGM–CSF MCSCs vaccine was prepared. SA–mGM–CSF MCSCs vaccine extended the survival of the mice and inhibited the growth of tumor in protective, therapeutic, memorial and specific immune response experiments. The level of immunoglobulin G and the ratio of dendritic cells and CD4+ and CD8+ T cells were highest in the experimental group when compared to those in other four control groups, as well as for the cytotoxicity assay. We demonstrated that SA–mGM–CSF MCSCs vaccine induces an antitumor immune response to metastatic bladder cancer.

  12. Effectiveness of Ring Vaccination as Control Strategy for Ebola Virus Disease.

    Science.gov (United States)

    Kucharski, Adam J; Eggo, Rosalind M; Watson, Conall H; Camacho, Anton; Funk, Sebastian; Edmunds, W John

    2016-01-01

    Using an Ebola virus disease transmission model, we found that addition of ring vaccination at the outset of the West Africa epidemic might not have led to containment of this disease. However, in later stages of the epidemic or in outbreaks with less intense transmission or more effective control, this strategy could help eliminate the disease.

  13. Modelling the impact of extended vaccination strategies on the epidemiology of pertussis

    NARCIS (Netherlands)

    Rozenbaum, M.H.; De Vries, R.; Le, H.H.; Postma, M.J.

    2012-01-01

    The aim of this study was to investigate the optimal pertussis booster vaccination strategy for The Netherlands. A realistic age-structured deterministic model was designed. Assuming a steady-state situation and correcting for underreporting, the model was calibrated using notification data from the

  14. Media Use and the Cancer Communication Strategies of Cancer Survivors

    Science.gov (United States)

    Yoon, Heesoo; Sohn, Minsung; Jung, Minsoo

    2016-01-01

    Communication related to health not only substantially affects perceptions and behaviors related to health but is also positively associated with the extent of health-information seeking and the practice of preventive behavior. Despite the fact that the number of cancer survivors has increased dramatically, there are few studies of the lack of health information, factors which act as barriers, and the difficulties in follow-up care experienced by cancer survivors. Therefore, we reviewed media utilization and the types of media used by cancer survivors with regard to risk communication and suggested appropriate strategies for cancer communication. According to the results, health communication contributed to health promotion by providing health-related information, consolidating social support factors such as social solidarity and trust, and reducing anxiety. In particular, participatory health communication may establish preventive programs which reflect the needs of communities, expand accessibility to better quality healthcare, and intensify healthy living by reducing health inequalities. Therefore, when people do not have an intention to obtain cancer screening, we need to intervene to change their behavior, norms, and degrees of self-efficacy. The findings of this study may help those involved in building partnerships by assisting in their efforts to understand and communicate with the public.

  15. Efficacy of DNA vaccines forming e7 recombinant retroviral virus-like particles for the treatment of human papillomavirus-induced cancers.

    Science.gov (United States)

    Lescaille, Geraldine; Pitoiset, Fabien; Macedo, Rodney; Baillou, Claude; Huret, Christophe; Klatzmann, David; Tartour, Eric; Lemoine, François M; Bellier, Bertrand

    2013-05-01

    Human papillomavirus (HPV) is involved in the development of anogenital tumors and also in the development of oropharyngeal head and neck carcinomas, where HPV-16, expressing the E6 and E7 oncoproteins, is the most frequent serotype. Although vaccines encoding L1 and L2 capsid HPV proteins are efficient for the prevention of HPV infection, they are inadequate for treating established tumors. Hence, development of innovative vaccine therapies targeting E6/E7 is important for controlling HPV-induced cancers. We have engineered a nononcogenic mutated E7-specific plasmo-retroVLP vaccine (pVLP-E7), consisting of plasmid DNA, that is able to form recombinant retrovirus-based virus-like particles (VLPs) that display E7 antigen into murine leukemia virus Gag proteins pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G). pVLP-E7 vaccinations were studied for their ability to generate specific immune responses and for induction of protective immunity against tumor cell challenge in preventive and therapeutic models. The produced VLPs induce the maturation of human dendritic cells in vitro and mount specific E7 T cell responses. Intradermic vaccinations of mice with pVLP-E7 show their efficacy to generate antigen-specific T cell responses, to prevent and protect animals from early TC-1 tumor development compared with standard DNA or VLP immunizations. The vaccine efficacy was also evaluated for advanced tumors in mice vaccinated at various time after the injection of TC-1 cells. Data show that pVLP-E7 vaccination can cure mice with already established tumors only when combined with Toll-like receptor-7 (TLR7) and TLR9 agonists. Our findings provide evidence that pVLPs, combining the advantages of DNA and VLP vaccines, appear to be a promising strategy for the treatment of HPV-induced cancers. PMID:23521528

  16. Therapeutic strategies for targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Yu Jeong Kim; Elizabeth L Siegler; Natnaree Siriwon; Pin Wang

    2016-01-01

    The therapeutic limitations of conventional chemotherapeutic drugs present a challenge for cancer therapy; these shortcomings are largely attributed to the ability of cancer cells to repopulate and metastasize after initial therapies. Compelling evidence suggests that cancer stem cells (CSCs) have a crucial impact in current shortcomings of cancer therapy because they are largely responsible for tumor initiation, relapse, metastasis, and chemo-resistance. Thus, a better understanding of the properties and mechanisms underlying CSC resistance to treatments is necessary to improve patient outcomes and survival rates. In this review, the authors characterize and compare different CSC-speciifc biomarkers that are present in various types of tumors. We further discuss multiple targeting approaches currently in preclinical or clinical testing that show great potential for targeting CSCs. This review discusses numerous strategies to eliminate CSCs by targeting surface biomarkers, regulating CSC-associated oncogenes and signaling pathways, inhibiting drug-eflfux pumps involved in drug resistance, modulating the tumor microenvironment and immune system, and applying drug combination therapy using nanomedicine.

  17. Development of a rubella vaccination strategy: contribution of a rubella susceptibility study of women of childbearing age in Kyrgyzstan, 2001.

    Science.gov (United States)

    Malakmadze, Naile; Zimmerman, Laura A; Uzicanin, Amra; Shteinke, Luidmila; Caceres, Victor M; Kasymbekova, Kaliya; Sozina, Irina; Glasser, John W; Joldubaeva, Mira; Aidyralieva, Chinara; Icenogle, Joseph P; Strebel, Peter M; Reef, Susan E

    2004-06-15

    To contribute to the development of a rubella vaccination strategy, we conducted a study to determine age-specific susceptibility among women aged 15-39 years by testing for rubella-specific IgG antibodies. Of 964 women, 13% were found to be susceptible to rubella. Significantly higher susceptibility among women >25 years old was observed. Susceptibility data are important but are not sufficient to develop a vaccination strategy. After considering all available information, we suggested vaccination of women aged <35 years and selective vaccination of older women who were planning pregnancy. PMID:15227627

  18. HPV infection in cervical and other cancers in Saudi Arabia: implication for prevention and vaccination

    Directory of Open Access Journals (Sweden)

    Ghazi eAlsbeih

    2014-03-01

    Full Text Available HPV is closely associated with cervical cancer that the incidence of this tumor is regarded as a surrogate marker for HPV infection in countries lacking epidemiological studies. HPV is also implicated in subsets of anogenital and oro-pharyngeal cancers. Although cervical cancer is the third most common cancer in women worldwide, its reported incidence is low in Saudi Arabia, ranking number 12 between all cancers in females and accounts only for 2.4% of all new cases, despite the lack of national screening programs. However, the limited available studies from Saudi Arabia indicate that HPV prevalence and genotypes’ distribution in invasive cervical cancer show similar pattern as in the world. Cytology screening (Pap Smear and HPV vaccinations are the two preventive measures against cervical cancer. The two available vaccines are effective against the two most common HPV genotypes (HPV-16 and 18. Since 92% of cervical tumors in the Kingdom are infected with HPV of which 78% are HPV-16 and 18 genotypes, vaccination is expected to protect against more than two-third of cervical cancers in Saudi Arabia. Nevertheless, due to its low incidence (2.1/100,000 women, a proper cost-effectiveness analysis is required to justify the implementation of a costly vaccine bearing in mind that HPV could potentially be associated with about 3% of all cancers. However, further studies are needed to ascertain the real prevalence of HPV at the population level at large, its association with various types of cancers and also the impact of local tradition and emerging behavioral trends that could affect HPV transmission and consequently the effectiveness of applying national vaccination program.

  19. Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies

    Directory of Open Access Journals (Sweden)

    Stefan eNiewiesk

    2014-09-01

    Full Text Available Neonates have an immature immune system which cannot adequately protect against infectious diseases. Early in life, immune protection is accomplished by maternal antibodies transferred from mother to offspring. However, decaying maternal antibodies inhibit vaccination as is examplified by the inhibition of seroconversion after measles vaccination. This phenomenon has been described in both human and veterinary medicine and is independent of the type of vaccine being used. This review will discuss the use of animal models for vaccine research. I will review clinical solutions for inhibition of vaccination by maternal antibodies, and the testing and development of potentially effective vaccines. These are based on new mechanistic insight about the inhibitory mechanism of maternal antibodies. Maternal antibodies inhibit the generation of antibodies whereas the T cell response is usually unaffected. B cell inhibition is mediated through a cross-link between B-cell receptor (BCR with the Fcg receptor IIB (FcgRIIB by a vaccine-antibody complex. In animal experiments, this inhibition can be partially overcome by injection of a vaccine-specific monoclonal IgM antibody. IgM stimulates the B-cell directly through cross-linking the BCR via complement protein C3d and antigen to the complement receptor 2 (CR2 signaling complex. In addition, it was shown that interferon alpha binds to the CD21 chain of CR2 as well as the interferon receptor and that this dual receptor usage drives B cell responses in the presence of maternal antibodies. In lieu of immunizing the infant the concept of maternal immunization as a strategy to protect neonates has been proposed. This approach would still not solve the question of how to immunize in the presence of maternal antibodies but would defer the time of infection to an age where infection might not have such a detrimental outcome as in neonates. I will review successful examples and potential challenges of implementing

  20. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  1. Toward a cure for HIV--Seeking effective therapeutic vaccine strategies.

    Science.gov (United States)

    Autran, Brigitte

    2015-12-01

    This review article focuses on the rationale and evaluation of therapeutic vaccines against HIV. This strategy has been developed in order to restore or restimulate HIV-specific immunity in patients treated with antiretroviral therapies. Despite the lack of good candidate vaccines against HIV, two objectives have been targeted during the past 15 years. Therapeutic immunization was first proposed to help control virus relapses during treatment interruptions. More recently, the concept of therapeutic immunization has been boosted by efforts to reach HIV remission or cure, in combination to HIV reactivating agents, to help purge HIV reservoirs in a "shock and kill" strategy. This review analyses the rationales for these strategies and the results of the most widely therapeutic vaccines designed to generate T-cell immunity, i.e. recombinant viral vectors and dendritic cell-based strategies, while extremely few strategies targeted HIV-specific Abs. Only marginal control of HIV was obtained with cellular-based strategies, suggesting that approaches targeting or using broadly neutralizing Abs, should be of benefit for future efforts of therapeutic immunization against HIV in the quest toward a cure for HIV.

  2. Knowledge and acceptability of human papillomavirus vaccination and cervical cancer screening among women in Karnataka, India.

    Science.gov (United States)

    Montgomery, Martha P; Dune, Tanaka; Shetty, Prasanna K; Shetty, Avinash K

    2015-03-01

    Cervical cancer is the leading cause of cancer-related mortality among women in India; however, participation in prevention and screening is low and the reasons for this are not well understood. In a cross-sectional survey in August 2008, 202 healthy women in Karnataka, India completed a questionnaire regarding knowledge, attitudes, and practices related to human papillomavirus (HPV) and cervical cancer. Factors associated with vaccination and Papanicolau (Pap) smear screening acceptance were explored. Thirty-six percent of women had heard of HPV while 15% had heard of cervical cancer. Five percent of women reported ever having a Pap smear, and 4% of women felt at risk of HPV infection. Forty-six percent of women were accepting of vaccination, but fewer (21%) were willing to have a Pap smear. Overall, knowledge related to HPV and cervical cancer topics was low. Women with negative attitudes toward HPV infection were 5.3 (95% confidence interval (CI) 2.8-10) times more likely to accept vaccination but were not significantly more likely to accept Pap smear (odds ratio 1.5, 95% CI 0.7-3.0). Cost and a low level of perceived risk were the most frequent factors cited as potential barriers. Improving awareness of HPV and cervical cancer through health care providers in addition to increasing access to vaccination and screening through government-sponsored programs may be feasible and effective methods to reduce cervical cancer burden in India.

  3. BCG Vaccination as a Prevention Strategy, Threats and Benefits

    Directory of Open Access Journals (Sweden)

    Shirvani

    2016-04-01

    Full Text Available Context Tuberculosis is still one of the deadliest communicable diseases. Objectives Nine million people worldwide developed TB in 2013, and 1.5 million people died from it, 360000 of which were HIV positive. Although the disease is controllable by means of diagnostic and treatment measures, the death toll from the disease is still high, and efforts to combat it must be accelerated. Data Sources Data compiled from 202 countries in the Global Tuberculosis Report 2014 showed that TB is present in all regions of the world. Study Selection Higher numbers of tuberculosis cases were diagnosed in 2013 in comparison with previous reports, indicating that diagnoses and reports of new cases may be improved by stringent data collection. Data Extraction A special note to the 2014 report highlighted the progress of drug resistant TB during the last two decades. Results Worldwide, a proportion of new cases with multidrug-resistant TB (MDR-TB were reported at 3.5% in 2013 without a significant change compared with recent years. Interestingly, higher levels of resistance and poor treatment outcomes are of major concern in some parts of the world. Due to this concern, special attention is focused on prevention rather than treatment. On the other hand, the effectiveness of an existing vaccine (BCG is increasingly questionable. Conclusions It has the potential to cause disseminated infection, and an increasing number of immunocompromised patients prone to disease and the suboptimal preventive potency of this vaccine suggest the need for a global attempt to review its benefits and disadvantages.

  4. Effect of human papillomavirus vaccination on cervical cancer screening in Alberta

    Science.gov (United States)

    Kim, Jong; Bell, Christopher; Sun, Maggie; Kliewer, Gordon; Xu, Linan; McInerney, Maria; Svenson, Lawrence W.; Yang, Huiming

    2016-01-01

    Background: A school-based program with quadrivalent human papillomavirus (HPV) vaccination was implemented in Alberta in 2008. We assessed the impact of this program on Pap test cytology results using databases of province-wide vaccination and cervical cancer screening. Methods: We conducted a nested case–control study involving a cohort of women in Alberta born between 1994 and 1997 who had at least 1 Pap test between 2012 and 2015. Women with negative cytology results were controls. Women with low-grade (atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion) and high-grade (atypical squamous cells, cannot rule out a high-grade lesion; or high-grade squamous intraepithelial lesion) cervical abnormalities were cases. Exposure status was assigned according to records of HPV vaccination. Odds ratios (ORs) for abnormal cytology results by vaccination status were adjusted for neighbourhood income, laboratory service, rural versus urban residency, and age. Results: The total study population was 10 204. Adjusting for age, vaccinated women had a higher screening rate than unvaccinated women (13.0% v. 11.4%, p vaccination (≥ 3 doses), the adjusted OR for cervical abnormalities was 0.72 (95% confidence interval [CI] 0.63–0.82). For high-grade lesions, the adjusted OR was 0.50 (95% CI 0.30–0.85). With 2-dose HPV vaccination, the adjusted OR for cervical abnormalities was 1.08 (95% CI 0.84–1.38). Interpretation: Quadrivalent HPV vaccination significantly reduced high-grade cervical abnormalities but required 3 doses. Vaccination against HPV was associated with screening uptake. Population-based vaccination and screening programs should work together to optimize cervical cancer prevention. PMID:27378467

  5. Human papillomavirus (HPV vaccination for the prevention of HPV 16/18 induced cervical cancer and its precursors

    Directory of Open Access Journals (Sweden)

    Greiner, Wolfgang

    2009-03-01

    Full Text Available Introduction: Essential precondition for the development of cervical cancer is a persistent human papillomavirus (HPV infection. The majority - approximately 70% - of cervical carcinomas is caused by two high-risk HPV types (16 and 18. Recently, two vaccines have been approved to the German market with the potential to induce protection against HPV 16 and HPV 18 among additional low-risk virus types. Objectives: To analyse whether HPV vaccination is effective with regard to the reduction of cervical cancer and precursors of cervical carcinoma (CIN, respectively? Does HPV vaccination represent a cost-effective alternative or supplement to present screening practice? Are there any differences concerning cost-effectiveness between the two available vaccines? Should HPV vaccination be recommended from a health economic point of view? If so, which recommendations can be conveyed with respect to a (reorganization of the German vaccination strategy? Which ethical, social and legal implications have to be considered? Methods: Based on a systematic literature review, randomized controlled trials (RCT looking at the effectiveness of HPV vaccination for the prevention of cervical carcinoma and its precursors - cervical intraepithelial neoplasia - have been identified. In addition, health economic models were identified to address the health economic research questions. Quality assessment of medical and economic literature was assured by application of general assessment standards for the systematic and critical appraisal of scientific studies. Results: Vaccine efficacy in prevention of CIN 2 or higher lesions in HPV 16 or HPV 18 negative women, who received all vaccination doses, ranges between 98% and 100%. Side effects of the vaccination are mainly associated with injection site reactions (redness, turgor, pain. No significant differences concerning serious complications between the vaccination- and the placebo-groups were reported. Results of base case

  6. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer.

    Science.gov (United States)

    Scheiermann, Julia; Klinman, Dennis M

    2014-11-12

    Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer. PMID:24975812

  7. Quantifying the decisional satisfaction to accept or reject the Human Papillomavirus (HPV vaccine: a preference for cervical cancer prevention.

    Directory of Open Access Journals (Sweden)

    Diane M Harper

    Full Text Available OBJECTIVE: Only a portion of the US population is willing to consider HPV vaccination to date. The primary aim of this study is to determine the decisional satisfaction associated with HPV vaccination. STUDY DESIGN: This is a prospective survey conducted at an urban college where women 18-26 years old completed a decisional satisfaction survey about their HPV vaccine experience. RESULTS: Regardless of the decision to accept or reject HPV vaccination, the decisional satisfaction was very high (mean 5-item score = 21.2 (SD 3.8. Women without HPV vaccination were decisionally neutral significantly more often than those already vaccinated; 22% were decisionally neutral for the option to accept HPV vaccination at that visit. Cervical cancer prevention was preferred significantly more often than genital wart prevention in all analyses. CONCLUSIONS: Targeting those who are decisionally neutral about HPV vaccination may result in a higher uptake of HPV vaccination.

  8. In situ vaccination: Cancer immunotherapy both personalized and off-the-shelf.

    Science.gov (United States)

    Hammerich, Linda; Binder, Adam; Brody, Joshua D

    2015-12-01

    As cancer immunotherapy continues to benefit from novel approaches which cut immune 'brake pedals' (e.g. anti-PD1 and anti-CTLA4 antibodies) and push immune cell gas pedals (e.g. IL2, and IFNα) there will be increasing need to develop immune 'steering wheels' such as vaccines to guide the immune system specifically toward tumor associated antigens. Two primary hurdles in cancer vaccines have been: identification of universal antigens to be used in 'off-the-shelf' vaccines for common cancers, and 2) logistical hurdles of ex vivo production of individualized whole tumor cell vaccines. Here we summarize approaches using 'in situ vaccination' in which intratumoral administration of off-the-shelf immunomodulators have been developed to specifically induce (or amplify) T cell responses to each patient's individual tumor. Clinical studies have confirmed the induction of systemic immune and clinical responses to such approaches and preclinical models have suggested ways to further potentiate the translation of in situ vaccine trials for our patients.

  9. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies.

    Science.gov (United States)

    Aboul-Ata, Aboul-Ata E; Vitti, Antonella; Nuzzaci, Maria; El-Attar, Ahmad K; Piazzolla, Giuseppina; Tortorella, Cosimo; Harandi, Ali M; Olson, Olof; Wright, Sandra A; Piazzolla, Pasquale

    2014-01-01

    A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and

  10. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers

    Science.gov (United States)

    Braitbard, Ori; Roniger, Maayan; Bar-Sinai, Allan; Rajchman, Dana; Gross, Tamar; Abramovitch, Hillel; Ferla, Marco La; Franceschi, Sara; Lessi, Francesca; Naccarato, Antonio Giuseppe; Mazzanti, Chiara M.; Bevilacqua, Generoso; Hochman, Jacob

    2016-01-01

    Mouse Mammary Tumor Virus (MMTV) causes mammary carcinoma or lymphoma in mice. An increasing body of evidence in recent years supports its involvement also in human sporadic breast cancer. It is thus of importance to develop new strategies to impair the development, growth and metastasis of MMTV-associated cancers. The signal peptide of the envelope precursor protein of this virus: MMTV-p14 (p14) is an excellent target for such strategies, due to unique characteristics distinct from its regular endoplasmic reticulum targeting function. These include cell surface expression in: murine cancer cells that harbor the virus, human breast cancer (MCF-7) cells that ectopically express p14, as well as cultured human cells derived from an invasive ductal breast carcinoma positive for MMTV sequences. These findings support its use in signal peptide-based immune targeting. Indeed, priming and boosting mice with p14 elicits a specific anti-signal peptide immune response sufficient for protective vaccination against MMTV-associated tumors. Furthermore, passive immunization using a combination of anti-p14 monoclonal antibodies or the transfer of T-cells from immunized mice (Adoptive Cell Transfer) is also therapeutically effective. With reports demonstrating involvement of MMTV in human breast cancer, we propose the immune-mediated targeting of p14 as a strategy for prevention, treatment and diagnosis of MMTV-associated cancers. PMID:26934560

  11. Muc1 based breast cancer vaccines: role of post translational modifications

    International Nuclear Information System (INIS)

    Vaccine development is one of the most promising fields in cancer research. After autologous transplantation, due to low tumour burden, patients are more likely to respond immunologically to a cancer vaccine. MUC1 with its adhesive and anti adhesive functions, immunostimulatory and immunosuppressive activities, is therefore a good candidate for breast cancer vaccine. A structure-based insight into the immunogenicity of natural MUC1 glyco forms, of its sub-domains, motifs and post translational modification like glycosylation and myriostoylation may aid the design of tumour vaccines. Primary sequences of human MUC1 were retrieved from the SWISSPROT data bank. Protein pattern search: The primary sequence of Human MUC1 was searched at PROSITE (a dictionary of protein sites and patterns) database. Our study observes that post-translational modifications play an important role in presenting MUC1 as a candidate for breast cancer vaccine. It is found that the phosphorylation and glycosylation of important functional motifs of MUC1 may take part in the production of cytokines that may provide immunization. (author)

  12. Immunological efficacy of pneumococcal vaccine strategies in HIV-infected adults: a randomized clinical trial

    Science.gov (United States)

    Sadlier, C.; O’Dea, S.; Bennett, K.; Dunne, J.; Conlon, N.; Bergin, C.

    2016-01-01

    The aim of this study was to compare the immunologic response to a prime-boost immunization strategy combining the 13-valent conjugate pneumococcal vaccine (PCV13) with the 23-valent polysaccharide pneumococcal vaccine (PPSV23) versus the PPSV23 alone in HIV-infected adults. HIV-infected adults were randomized to receive PCV13 at week 0 followed by PPSV23 at week 4 (n = 31, prime-boost group) or PPSV23 alone at week 4 (n = 33, PPSV23-alone group). Serotype specific IgG geometric mean concentration (GMC) and functional oposonophagocytic (OPA) geometric mean titer (GMT) were compared for 12 pneumococcal serotypes shared by both vaccines at week 8 and week 28. The prime-boost vaccine group were more likely to achieve a ≥2-fold increase in IgG GMC and a GMC >1 ug/ml at week 8 (odds ratio (OR) 2.00, 95% confidence interval (CI) 1.46–2.74, p < 0.01) and week 28 (OR 1.95, 95% CI 1.40–2.70, p < 0.01). Similarly, the prime-boost vaccine group were more likely to achieve a ≥4-fold increase in GMT at week 8 (OR 1.71, 95% CI 1.22–2.39, p < 0.01) and week 28 (OR 1.6, 95% CI 1.15–2.3, p < 0.01). This study adds to evidence supporting current pneumococcal vaccination recommendations combining the conjugate and polysaccharide pneumococcal vaccines in the United States and Europe for HIV-infected individuals. PMID:27580688

  13. CpG Oligodeoxynucleotide1826 combined with radioresistant cancer cell vaccine confers significant antitumor effects.

    Science.gov (United States)

    Zhuang, X B; Xing, N; Zhang, Q; Yuan, S J; Chen, W; Qiao, T K

    2015-01-01

    Immunotherapy is a hot issue in cancer research over the years and tumor cell vaccine is one of the increasing number of studies. Although the whole tumor cell vaccine can provide the best source of immunizing antigens, there is still a limitation that most tumors are not naturally immunogenic. CpG Oligodeoxynucleotides (CpG ODNs), synthetic oligonucleotides containing a cytosine-phosphate-guanine(CpG) motif, was shown to enhance immune responses to a wide variety of antigens. In this study, we generated the radioresistant Lewis lung cancer cell by repeated X-ray radiation and inactivated it as a whole tumor cell vaccine to enhance the immunogenicity of tumor cell vaccine. Mice were subcutaneously immunized with this inactivated vaccine combined with CpG ODN1826 and then inoculated with autologous Lewis lung cancer (LLC) to estimate the antitumor efficacy. The results showed that the radioresistant tumor cell vaccine combined with CpG ODN1826 could significantly inhibit tumor growth, increased survival of the mice and with 20% of the mice surviving tumor free in vivo compared with the unimmunized mice bearing LLC tumor. A significant increase of apoptosis was also observed in the tumor prophylactically immunized with vaccine of inactivated radioresistant tumor cell plus CpG ODN1826. The potent antitumor effect correlated with higher secretion levels of tumor necrosis factor-alpha(TNF-α) and lower levels of interleukin-10(IL-10) concentration in serum. Furthermore, the results suggested that the antitumor mechanism was probably depended on the decreased level of programmed death ligand-1(PD-L1) which plays an important role in the negative regulation of immune response by the inhibition of tumor antigen-specific T cell activation. These findings clearly demonstrated that the radioresistant tumor cell vaccine combined with CpG ODN1826 as an appropriate adjuvant could induce effective antitumor immunity in vivo. PMID:26458317

  14. A molecular evaluation of dengue virus pathogenesis and its latest vaccine strategies.

    Science.gov (United States)

    Faheem, Muhammad; Raheel, Ummar; Riaz, Muhammad Nasir; Kanwal, Naghmana; Javed, Farakh; us Sahar Sadaf Zaidi, Najam; Qadri, Ishtiaq

    2011-08-01

    More than one third of the world's population living in tropical and subtropical areas of the world is at risk of dengue infections and as many as 100 million people are yearly infected. This disease has reemerged during the past 20 years in the form of an epidemic. Dengue is caused by one of four related serotypes of dengue virus and often leads to severe forms of the disease, resulting commonly from secondary infections. Dengue virus is a mosquito borne virus, belongs to the family Flaviviridae and consists of a single stranded positive sense RNA genome. Like other RNA viruses it escapes defense mechanisms and neutralization attempts by mutations, which make it more resistant and adaptable to its environment. Antiviral strategies and vaccine development is thus impaired and hence to date there is no licensed vaccine available for dengue virus. Here we discuss various efforts made towards the identification of potential vaccine targets for dengue as well as various strategies employed by research groups/pharmaceutical companies towards the development of a successful dengue vaccine. PMID:21107723

  15. Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: Potential utility and limitations.

    Science.gov (United States)

    Kudrna, Jeremy J; Ugen, Kenneth E

    2015-01-01

    There has been a recent expansion of vaccination and immunotherapeutic strategies from controlling infectious diseases to the targeting of non-infectious conditions including neurodegenerative disorders. In addition to conventional vaccine and immunotherapeutic modalities, gene-based methods that express antigens for presentation to the immune system by either live viral vectors or non-viral naked DNA plasmids have been developed and evaluated. This mini-review/commentary summarizes the advantages and disadvantages, as well as the research findings to date, of both of these gene-based vaccination approaches in terms of how they can be targeted against appropriate antigens within the Alzheimer and Parkinson disease pathogenesis processes as well as potentially against targets in other neurodegenerative diseases. Most recently, the novel utilization of these viral vector and naked DNA gene-based technologies includes the delivery of immunoglobulin genes from established biologically active monoclonal antibodies. This modified passive immunotherapeutic strategy has recently been applied to deliver passive antibody immunotherapy against the pathologically relevant amyloid β protein in Alzheimer disease. The advantages and disadvantages of this technological application of gene-based immune interventions, as well as research findings to date are also summarized. In sum, it is suggested that further evaluation of gene based vaccines and immunotherapies against neurodegenerative diseases are warranted to determine their potential clinical utility.

  16. A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18 recombinant vaccine (Gardasil®

    Directory of Open Access Journals (Sweden)

    Vandana A Govan

    2008-03-01

    Full Text Available Vandana A GovanDivision of Medical Virology, Department of Clinical Laboratory Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South AfricaAbstract: Human papillomaviruses (HPVs are one of the most common sexually transmitted infections and remains a public health problem worldwide. There is strong evidence that HPV causes cervical, vulva and vaginal cancers, genital warts and recurrent respiratory papillomatosis. The current treatments for HPV-induced infections are ineffective and recurrence is commonplace. Therefore, to reduce the burden of HPV-induced infections, several studies have investigated the efficacy of different prophylactic vaccines in clinical human trials directed against HPV types 6, 11, 16, or 18. Notably, these HPV types contribute to a significant proportion of disease worldwide. This review will focus on the published results of Merck & Co’s prophylactic quadrivalent recombinant vaccine targeting HPV types 6, 11, 16, and 18 (referred to as Gardasil®. Data from the Phase III trial demonstrated that Gardasil was 100% effi cacious in preventing precancerous lesions of the cervix, vulva, and vagina and effective against genital warts. Due to the success of these human clinical trials, the FDA approved the registration of Gardasil on the 8 June 2006. In addition, since Gardasil has been efficacious for 5 years post vaccination, the longest evaluation of an HPV vaccine, it is expected to reduce the incidence of these type specific HPV-induced diseases in the future.Keywords: Gardasil, HPV, prophylactic vaccine, cervical disease

  17. Financial evaluation of different vaccination strategies for controlling the bluetongue virus serotype 8 epidemic in The Netherlands in 2008.

    Directory of Open Access Journals (Sweden)

    Annet G J Velthuis

    Full Text Available BACKGROUND: Bluetongue (BT is a vector-borne disease of ruminants caused by bluetongue virus that is transmitted by biting midges (Culicoides spp.. In 2006, the introduction of BTV serotype 8 (BTV-8 caused a severe epidemic in Western and Central Europe. The principal effective veterinary measure in response to BT was believed to be vaccination accompanied by other measures such as movement restrictions and surveillance. As the number of vaccine doses available at the start of the vaccination campaign was rather uncertain, the Dutch Ministry of Agriculture, Nature and Food Quality and the Dutch agricultural industry wanted to evaluate several different vaccination strategies. This study aimed to rank eight vaccination strategies based on their efficiency (i.e. net costs in relation to prevented losses or benefits for controlling the bluetongue virus serotype 8 epidemic in 2008. METHODOLOGY/PRINCIPAL FINDINGS: An economic model was developed that included the Dutch professional cattle, sheep and goat sectors together with the hobby farms. Strategies were evaluated based on the least cost - highest benefit frontier, the benefit-cost ratio and the total net returns. Strategy F, where all adult sheep at professional farms in The Netherlands would be vaccinated was very efficient at lowest costs, whereas strategy D, where additional to all adult sheep at professional farms also all adult cattle in the four Northern provinces would be vaccinated, was also very efficient but at a little higher costs. Strategy C, where all adult sheep and cattle at professional farms in the whole of The Netherlands would be vaccinated was also efficient but again at higher costs. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that a financial analysis differentiates between vaccination strategies and indicates important decision rules based on efficiency.

  18. Adult vaccination strategies for the control of pertussis in the United States: an economic evaluation including the dynamic population effects.

    Directory of Open Access Journals (Sweden)

    Laurent Coudeville

    Full Text Available BACKGROUND: Prior economic evaluations of adult and adolescent vaccination strategies against pertussis have reached disparate conclusions. Using static approaches only, previous studies failed to analytically include the indirect benefits derived from herd immunity as well as the impact of vaccination on the evolution of disease incidence over time. METHODS: We assessed the impact of different pertussis vaccination strategies using a dynamic compartmental model able to consider pertussis transmission. We then combined the results with economic data to estimate the relative cost-effectiveness of pertussis immunization strategies for adolescents and adults in the US. The analysis compares combinations of programs targeting adolescents, parents of newborns (i.e. cocoon strategy, or adults of various ages. RESULTS: In the absence of adolescent or adult vaccination, pertussis incidence among adults is predicted to more than double in 20 years. Implementing an adult program in addition to childhood and adolescent vaccination either based on 1 a cocoon strategy and a single booster dose or 2 a decennial routine vaccination would maintain a low level of pertussis incidence in the long run for all age groups (respectively 30 and 20 cases per 100,000 person years. These strategies would also result in significant reductions of pertussis costs (between -77% and -80% including additional vaccination costs. The cocoon strategy complemented by a single booster dose is the most cost-effective one, whereas the decennial adult vaccination is slightly more effective in the long run. CONCLUSIONS: By providing a high level of disease control, the implementation of an adult vaccination program against pertussis appears to be highly cost-effective and often cost-saving.

  19. [Cancer of cervix in Chile. Too much vaccine amid a neglected Papanicolau].

    Science.gov (United States)

    Fica, Alberto

    2014-04-01

    The Chilean Ministry of Health announced the incorporation of a human papillomavirus (HPV) vaccine to prevent cervix uterine cancer (CUC) into the national immunization program during year 2014 This decision was adopted despite of two opposing documents and a significant decrease in cervical cancer associated mortality due to cytological cervical screening. The burden of disease attributed to CUC has declined in Chile and current cost-effectiveness studies should be reviewed considering this decreasing trend, the progressive decrease in coverage rates observed during the past years, the potential need for aditional doses and lower vaccine costs if vaccine is acquired through the PAHO revolving fund. Moreover, serious adverse events associated with these vaccines, which in some countries are more frequent than CUC associated mortality, have not been thoroughly evaluated and are probably underreported. The decision to incorporate the vaccine occurs in a context of progressive weakening of the national cervical screening program leading to a reduced population coverage. This situation jepeordizes the achievements already obtained and poses a challenge to vaccine introduction considering that not all the high-risk viral subtypes are included and thus the risk for CUC does not disappear making cervical screening a vital component of the program that needs to be maintained. This governmental resolution requires a more solid scientific foundation and should not be implemented without resolving current cervical screening shortcomings.

  20. Immunobiology of the human immunodeficiency virus envelope and its relationship to vaccine strategies.

    Science.gov (United States)

    Bolognesi, D P

    1990-02-01

    The envelope of human immunodeficiency virus (HIV) is an essential building block of the virus and it plays a major role in its life-cycle, particularly during the early stages of infection. It very likely determines, at least in part, the host range and tissue specificity of HIV, participates in pathogenic processes mediated by the virus and can itself be immunosuppressive. Because of its strategic location on the outer surface of the virion and the infected cell, it also represents an optimal (although not the only) target for immune attack and thus a prime candidate for development of vaccine and therapeutic strategies. Efforts to better understand its structural, functional and antigenic properties will thus be well worthwhile. Some of its principal features are reviewed herein and its role in vaccine strategies is discussed. PMID:2182967

  1. Cost-effectiveness of human papillomavirus vaccination for prevention of cervical cancer in Taiwan

    Directory of Open Access Journals (Sweden)

    Chow Song-Nan

    2010-01-01

    Full Text Available Abstract Background Human papillomavirus (HPV infection has been shown to be a major risk factor for cervical cancer. Vaccines against HPV-16 and HPV-18 are highly effective in preventing type-specific HPV infections and related cervical lesions. There is, however, limited data available describing the health and economic impacts of HPV vaccination in Taiwan. The objective of this study was to assess the cost-effectiveness of prophylactic HPV vaccination for the prevention of cervical cancer in Taiwan. Methods We developed a Markov model to compare the health and economic outcomes of vaccinating preadolescent girls (at the age of 12 years for the prevention of cervical cancer with current practice, including cervical cytological screening. Data were synthesized from published papers or reports, and whenever possible, those specific to Taiwan were used. Sensitivity analyses were performed to account for important uncertainties and different vaccination scenarios. Results Under the assumption that the HPV vaccine could provide lifelong protection, the massive vaccination among preadolescent girls in Taiwan would lead to reduction in 73.3% of the total incident cervical cancer cases and would result in a life expectancy gain of 4.9 days or 8.7 quality-adjusted life days at a cost of US$324 as compared to the current practice. The incremental cost-effectiveness ratio (ICER was US$23,939 per life year gained or US$13,674 per quality-adjusted life year (QALY gained given the discount rate of 3%. Sensitivity analyses showed that this ICER would remain below US$30,000 per QALY under most conditions, even when vaccine efficacy was suboptimal or when vaccine-induced immunity required booster shots every 13 years. Conclusions Although gains in life expectancy may be modest at the individual level, the results indicate that prophylactic HPV vaccination of preadolescent girls in Taiwan would result in substantial population benefits with a favorable cost

  2. Dendritic Cell-Based Adjuvant Vaccination Targeting Wilms’ Tumor 1 in Patients with Advanced Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Shigetaka Shimodaira

    2015-12-01

    Full Text Available Despite significant recent advances in the development of immune checkpoint inhibitors, the treatment of advanced colorectal cancer involving metastasis to distant organs remains challenging. We conducted a phase I study to investigate the safety and immunogenicity of Wilms’ tumor (WT1 class I/II peptides-pulsed dendritic cell DC vaccination for patients with advanced colorectal cancer. Standard treatment comprising surgical resection and chemotherapy was followed by one course of seven biweekly administrations of 1–2 × 107 DCs with 1–2 KE of OK-432 (streptococcal preparation in three patients. Clinical efficacy was confirmed based on WT1 expression using immunohistochemistry on paraffin-embedded tissues and immune monitoring using tetramer analysis and enzyme-linked immunosorbent spot (ELISPOT assays. WT1 expression with human leukocyte antigen (HLA-class I molecules was detected in surgical resected tissues. Adverse reactions to DC vaccinations were tolerable under an adjuvant setting. WT1-specific cytotoxic T cells were detected by both modified WT1-peptide/HLA-A*24:02 tetramer analysis and/or interferon-γ-producing cells through the use of ELISPOT assays after the first DC vaccination. Immunity acquired from DC vaccination persisted for two years with prolonged disease-free and overall survival. The present study indicated that DC vaccination targeting WT1 demonstrated the safety and immunogenicity as an adjuvant therapy in patients with resectable advanced colorectal cancer.

  3. Humoral Immune Response to Keyhole Limpet Haemocyanin, the Protein Carrier in Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    A. Kantele

    2011-01-01

    Full Text Available Keyhole limpet haemocyanin (KLH appears to be a promising protein carrier for tumor antigens in numerous cancer vaccine candidates. The humoral immune response to KLH was characterized at the single-cell level with ELISPOT combined with separations of cell populations according to their expression of homing receptors (HRs. The analysis of HR expressions is expected to reveal the targeting of the immune response in the body. Eight orally primed and four nonprimed volunteers received KLH-vaccine subcutaneously. Circulating KLH-specific plasmablasts were found in all volunteers, 60 KLH-specific plasmablasts/106 PBMC in the nonprimed and 136/106 in the primed group. The proportion of L-selectin+ plasmablasts proved high and integrin α4β7+ low. KLH serving as protein carrier in several vaccines, the homing profile of KLH-specific response may be applicable to the cancer antigen parts in the same vaccines. The present data reflect a systemic homing profile, which appears advantageous for the targeting of immune response to cancer vaccines.

  4. Application of SCR priming VLP boosting as a novel vaccination strategy against HIV-1.

    Science.gov (United States)

    Sadat, Seyed Mehdi; Zabihollahi, Rezvan; Aghasadeghi, Mohammad Reza; Vahabpour, Rouhollah; Siadat, Seyed Davar; Memarnejadian, Arash; Azadmanesh, Kayhan; Parivar, Kazem

    2011-04-01

    Human immunodeficiency virus infection is a worldwide health problem and a protective vaccine is desperately needed to control the AIDS pandemics. To address this concern, we previously constructed single-cycle replicable (SCR) HIV-1 virions, which completely maintained the antigenic structures of HIV-1. Herein, to optimize a vaccination strategy, we studied the immunogenicity of produced SCR virions and adjuvant-formulated HIV-1 virus-like particles (VLPs) in homologous and heterologous prime-boosting regimens. Accordingly, BALB/c mice received three doses of immunogens in 3-week intervals and their immune responses were evaluated using ELISA, cytokine and IFN-γ ELISpot assays. These analyses not only indicated the superiority of SCR prime-VLP boosting for strong induction of specific IFN-γ producing cells, but also showed the capability of this strategy over the others for better stimulation of humoral response, which was evidenced with the detection of highest titer of total IgG against HIV ENV glycoprotein. Furthermore, determination of IgG subclasses and IFN-γ/IL4 secretion ratio in cultured splenocytes demonstrated the efficient augmentation of mixed responses with the dominancy of Th1 immunity following SCR/VLP immunization strategy. Our results additionally pointed towards the applicability of Montanide ISA 720 + CpG as a potent Th1-directing adjuvant mixture. Overall, this study suggests SCR prime-VLP boosting as a promising approach in HIV vaccine development.

  5. Cervical cancer screening in partly HPV vaccinated cohorts - A cost-effectiveness analysis

    NARCIS (Netherlands)

    S.K. Naber (Steffie); S.M. Matthijsse (Suzette); K. Rozemeijer (Kirsten); C. Penning (Corine); I.M.C.M. de Kok (Inge); M. van Ballegooijen (Marjolein)

    2016-01-01

    textabstractBackground: Vaccination against the oncogenic human papillomavirus (HPV) types 16 and 18 will reduce the prevalence of these types, thereby also reducing cervical cancer risk in unvaccinated women. This (measurable) herd effect will be limited at first, but is expected to increase over t

  6. Vaccination against prostate cancer using a live tissue factor deficient cell line in Lobund-Wistar rats.

    Science.gov (United States)

    Heinrich, Julie E; Pollard, Morris; Wolter, William A; Liang, Zhong; Song, Hui; Rosen, Elliot D; Suckow, Mark A

    2007-05-01

    Reducing expression of the tissue factor gene in prostate adenocarcinoma cells (PAIII) results in a cell line that, in vivo, mimics the growth of wildtype (wt) PAIII. However, instead of continuing to grow and metastasize as wt PAIII tumors do, tissue factor deficient PAIII (TFD PAIII) masses spontaneously regress after several weeks. Although whole cell vaccines are typically inactivated prior to administration to prevent proliferation within the host, numerous studies have suggested that exposure to live, attenuated, whole tumor cells, and the extracellular microenvironment they recruit, increases immunotherapeutic potential. Here, we provide support for this notion, and a strategy through which to implement it, by demonstrating that subcutaneous vaccinations with the TFD PAIII protect the Lobund-Wistar rat against subsequent wt PAIII cell challenge. TFD PAIII immunized rats suffered significantly less metastasis of wt PAIII challenge tumors compared to unvaccinated naïve controls rats. These results offer the intriguing possibility that the TFD PAIII vaccine is an effective system for the prevention and, possibly, the treatment of prostate cancer. PMID:16953436

  7. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    International Nuclear Information System (INIS)

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells

  8. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jin [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Qiang [Department of Hematology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jiandong [Department of Hepatobiliary Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Ren, Qinyou [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Cao, Wei [Department of Interventional Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yang, Jingyue; Yu, Zhaocai [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Yu, Fang [Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi' an, Shaanxi (China); Wu, Yanlan [Department of Infectious Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Shi, Hengjun [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China); Liu, Wenchao [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, the Fourth Military Medical University, Xi' an, Shaanxi (China)

    2012-04-27

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.

  9. Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy.

    Science.gov (United States)

    Aswathyraj, S; Arunkumar, G; Alidjinou, E K; Hober, D

    2016-10-01

    Hand, foot, and mouth disease (HFMD) is a contagious viral disease and mainly affects infants and young children. The main manifestations are fever, vesicular rashes on hand, feet and buttocks and ulcers in the oral mucosa. Usually, HFMD is self-limiting, but a small proportion of children may experience severe complications such as meningitis, encephalitis, acute flaccid paralysis and neurorespiratory syndrome. Historically, outbreaks of HFMD were mainly caused by two enteroviruses: the coxsackievirus A16 (CV-A16) and the enterovirus 71 (EV-A71). In the recent years, coxsackievirus A6 and coxsackievirus A10 have been widely associated with both sporadic cases and outbreaks of HFMD worldwide, particularly in India, South East Asia and Europe with an increased frequency of neurological complications as well as mortality. Currently, there is no pharmacological intervention or vaccine available for HFMD. A formalin-inactivated EV-A71 vaccine has completed clinical trial in several Asian countries. However, this vaccine cannot protect against other major emerging etiologies of HFMD such as CV-A16, CV-A6 and CV-A10. Therefore, the development of a globally representative multivalent HFMD vaccine could be the best strategy. PMID:27406374

  10. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery.

    Science.gov (United States)

    Tawde, Suprita A; Chablani, Lipika; Akalkotkar, Archana; D'Souza, Martin J

    2016-08-10

    Ovarian cancer is the fifth most commonly occurring malignancy in women, with the highest mortality rate among all the gynecological tumors. Microparticulate vaccine can serve as an immunotherapeutic approach with a promising antigenic delivery system without a need for conventional adjuvants. In this study, a microparticulate vaccine using whole cell lysate of a murine ovarian cancer cell line, ID8 was prepared by spray drying. Further, the effect of interleukins (ILs) such as IL-2 and IL-12 was evaluated in a separate study group by administering them with vaccine particles to enhance the immune response. The vaccine microparticles were administered to C57BL/6 female mice via transdermal alone and in combination with the oral route. The transdermal vaccine was delivered using a metallic microneedle device, AdminPen™. Orally administered microparticles also included an M-cell targeting ligand, Aleuria aurantia lectin, to enhance the targeted uptake from microfold cells (M-cells) in Peyer's patches of small intestine. In case of combination of routes, mice were given 5 transdermal doses and 5 oral doses administered alternatively, beginning with transdermal dose. At the end of vaccination, mice were challenged with live tumor cells. Vaccine alone resulted in around 1.5 times tumor suppression in case of transdermal and combination of routes at the end of 15th week when compared to controls. Inclusion of interleukins resulted in 3 times tumor suppression when administered with transdermal vaccine and around 9 times tumor suppression for the combination route of delivery in comparison to controls. These results were further potentiated by serum IgG, IgG1 and IgG2a titers. Moreover, CD8+ T-cell, CD4+ T-cell and NK (natural killer) cell populations in splenocytes were elevated in case of vaccinated mice. Thus, vaccine microparticles could trigger humoral as well as cellular immune response when administered transdermally and via combination of route of delivery

  11. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effect (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of the

  12. Are Older Adults Up-to-Date With Cancer Screening and Vaccinations?

    Directory of Open Access Journals (Sweden)

    Douglas Shenson, MD, MPH, MS

    2005-07-01

    Full Text Available Introduction Public health organizations in the United States emphasize the importance of providing routine screening for breast cancer, cervical cancer, and colorectal cancer, as well as vaccinations against influenza and pneumococcal disease among older adults. We report a composite measure of adults aged 50 years and older who receive recommended cancer screening services and vaccinations. Methods We analyzed state data from the 2002 Behavioral Risk Factor Surveillance System, which included 105,860 respondents aged 50 and older. We created a composite measure that included colonoscopy or sigmoidoscopy within 10 years or a fecal occult blood test in the past year, an influenza vaccination in the past year, a Papanicolaou test within 3 years for women with an intact cervix, a mammogram, and for adults aged 65 and older, a pneumonia vaccination during their lifetime. We performed separate analyses for four age and sex groups: men aged 50 to 64, women aged 50 to 64, men aged 65 and older, and women aged 65 and older. Results The percentage of each age and sex group that was up-to-date according to our composite measure ranged from 21.1% of women aged 50 to 64 (four tests to 39.6% of men aged 65 and older (three tests. For each group, results varied by income, education, race/ethnicity, insurance status, and whether the respondent had a personal physician. Conclusion These results suggest the need to improve the delivery of cancer screenings and vaccinations among adults aged 50 and older. We propose continued efforts to measure use of clinical preventive services.

  13. Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses.

    Directory of Open Access Journals (Sweden)

    Ruanne V Barnabas

    2006-05-01

    Full Text Available BACKGROUND: Candidate human papillomavirus (HPV vaccines have demonstrated almost 90%-100% efficacy in preventing persistent, type-specific HPV infection over 18 mo in clinical trials. If these vaccines go on to demonstrate prevention of precancerous lesions in phase III clinical trials, they will be licensed for public use in the near future. How these vaccines will be used in countries with national cervical cancer screening programmes is an important question. METHODS AND FINDINGS: We developed a transmission model of HPV 16 infection and progression to cervical cancer and calibrated it to Finnish HPV 16 seroprevalence over time. The model was used to estimate the transmission probability of the virus, to look at the effect of changes in patterns of sexual behaviour and smoking on age-specific trends in cancer incidence, and to explore the impact of HPV 16 vaccination. We estimated a high per-partnership transmission probability of HPV 16, of 0.6. The modelling analyses showed that changes in sexual behaviour and smoking accounted, in part, for the increase seen in cervical cancer incidence in 35- to 39-y-old women from 1990 to 1999. At both low (10% in opportunistic immunisation and high (90% in a national immunisation programme coverage of the adolescent population, vaccinating women and men had little benefit over vaccinating women alone. We estimate that vaccinating 90% of young women before sexual debut has the potential to decrease HPV type-specific (e.g., type 16 cervical cancer incidence by 91%. If older women are more likely to have persistent infections and progress to cancer, then vaccination with a duration of protection of less than 15 y could result in an older susceptible cohort and no decrease in cancer incidence. While vaccination has the potential to significantly reduce type-specific cancer incidence, its combination with screening further improves cancer prevention. CONCLUSIONS: HPV vaccination has the potential to

  14. Creating Therapeutic Cancer Vaccines: Notes from the Battlefield

    OpenAIRE

    Overwijk, Willem W.; Restifo, Nicholas P

    2001-01-01

    With the identification of tumor antigens and a knowledge of how to vaccinate against them, the field of tumor immunology faces new challenges. In this article, the authors argue that successful immunotherapies of the future will activate anti-tumor T cells without inducing their anergy or apoptotic death.

  15. An Association of Cancer Physicians’ strategy for improving services and outcomes for cancer patients

    Science.gov (United States)

    Baird, Richard; Banks, Ian; Cameron, David; Chester, John; Earl, Helena; Flannagan, Mark; Januszewski, Adam; Kennedy, Richard; Payne, Sarah; Samuel, Emlyn; Taylor, Hannah; Agarwal, Roshan; Ahmed, Samreen; Archer, Caroline; Board, Ruth; Carser, Judith; Copson, Ellen; Cunningham, David; Coleman, Rob; Dangoor, Adam; Dark, Graham; Eccles, Diana; Gallagher, Chris; Glaser, Adam; Griffiths, Richard; Hall, Geoff; Hall, Marcia; Harari, Danielle; Hawkins, Michael; Hill, Mark; Johnson, Peter; Jones, Alison; Kalsi, Tania; Karapanagiotou, Eleni; Kemp, Zoe; Mansi, Janine; Marshall, Ernie; Mitchell, Alex; Moe, Maung; Michie, Caroline; Neal, Richard; Newsom-Davis, Tom; Norton, Alison; Osborne, Richard; Patel, Gargi; Radford, John; Ring, Alistair; Shaw, Emily; Skinner, Rod; Stark, Dan; Turnbull, Sam; Velikova, Galina; White, Jeff; Young, Alison; Joffe, Johnathan; Selby, Peter

    2016-01-01

    The Association of Cancer Physicians in the United Kingdom has developed a strategy to improve outcomes for cancer patients and identified the goals and commitments of the Association and its members. PMID:26913066

  16. Effect of 25-Hydroxyvitamin D Status on Serological Response to Influenza Vaccine in Prostate Cancer Patients

    Science.gov (United States)

    Chadha, Manpreet K.; Fakih, Marwan; Muindi, Josephia; Tian, Lili; Mashtare, Terry; Johnson, Candace S.; Trump, Donald

    2015-01-01

    BACKGROUND Epidemiologic data suggest that there is an association between vitamin D deficiency and influenza infection. We conducted a prospective influenza vaccination study to determine the influence of vitamin D status on serological response to influenza vaccine in prostate cancer (CaP) patients. METHODS During the 2006–2007 influenza season, CaP patients treated at Roswell Park Cancer Institute were offered vaccination with the trivalent influenza vaccine (Fluzone®, 2006–2007) and sera collected for hemagglutination inhibition (HI) assay titers before and 3 months after vaccination. Response to vaccination was defined as ≥1:40 titer ratio or a fourfold increase in titer at 3 months, against any of the three strains. Serum 25-hydroxyvitamin D (25-D3) levels were measured using DiaSorin 125I radioimmunoassay kits. RESULTS Thirty-five patients with CaP participated in the study. Median baseline 25-D3 level was 44.88 ng/ml (range: 9.16–71.98 ng/ml) Serological response against any of the three strains was noted in 80%. There was a significant effect of baseline 25-D3 level when tested as a continuous variable in relation to serological response (P = 0.0446). All patients in the upper quartile of 25-D3 level responded by mounting a serological response (P = 0.0344). None of the other baseline variables (age, race, chemotherapy status, or white cell count) had an effect on serological response. CONCLUSIONS In this study in CaP patients, a replete vitamin D status was associated with more frequent serological response to influenza vaccine. PMID:20812224

  17. Simulation of control strategies for the cattle tick Boophilus microplus employing vaccination with a recombinant Bm86 antigen preparation.

    Science.gov (United States)

    Labarta, V; Rodríguez, M; Penichet, M; Lleonart, R; Luaces, L L; de la Fuente, J

    1996-05-01

    Current strategies for the control of the cattle tick Boophilus microplus include the use of chemicals as the principal control method. These methods, however, have met with partially successful results. The recent development of immunological methods for the control of the cattle tick has opened new possibilities for the design of control strategies. Employing the results obtained by us in experiments testing the effect of vaccination with the recombinant vaccine, Gavac (Heber Biotec S.A.), on tick populations, we have developed a model to evaluate, through a computer program, the efficacy of the vaccine as a control method. The action of the vaccine on the control of tick populations was simulated and the specific serum antibody titers required to decrease the tick population in the field were calculated. The specific serum antibody titer required to decrease the tick population in the field after the first vaccination scheme was found to be > or = 57,200 and the antibody titer required to maintain this effect when the vaccine is already acting and after successive revaccinations was found to be > or = 27,500. Considerations about revaccination schemes and combination between vaccination and acaricide treatments as possible control strategies are discussed. PMID:8792587

  18. A Human Vaccine Strategy Based On Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts and Sustains Functional HCV Specific T-Cell Memory*

    Science.gov (United States)

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D.; Brown, Anthony; Richardson, Rachel; Newell, Evan W.; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2015-01-01

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies and assessment of host immunity during acute infection highlight the critical role that effective T-cell immunity plays in viral control. In this first-in-man study we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A and NS5B proteins of HCV genotype-1b. Analysis employed single cell mass cytometry (CyTOF), and HLA class-I peptide tetramer technology in healthy human volunteers. We show that HCV specific T-cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV specific T-cells targeting multiple HCV antigens. Sustained memory and effector T-cell populations are generated and T-cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) following heterologous MVA boost. We have developed a HCV vaccine strategy, with durable, broad, sustained and balanced T-cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine. PMID:25378645

  19. Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance.

    Directory of Open Access Journals (Sweden)

    Regina Joice

    Full Text Available The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8% against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains. Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak.

  20. Calreticulin as cancer treatment adjuvant: combination with photodynamic therapy and photodynamic therapy-generated vaccines

    Directory of Open Access Journals (Sweden)

    Mladen eKorbelik

    2015-02-01

    Full Text Available Calreticulin is recognized as one of pivotal damage-associated molecular pattern (DAMP molecules alerting the host of the presence of distressed cells. In this role, calreticulin becomes exposed on the surface of tumor cells treated by several types of cancer therapy including photodynamic therapy (PDT. The goal of the present study was to examine the potential of externally added calreticulin for augmenting antitumor effect mediated by PDT. Recombinant calreticulin was found to bind to mouse SCCVII tumor cells treated by PDT. Compared to the outcome with PDT alone, cure-rates of SCCVII tumors grown in immunocompetent C3H/HeN mice were elevated when calreticulin (0.4 mg/mouse was injected peritumorally immediately after PDT. Such therapeutic gain with PDT plus calreticulin combination was not obtained with SCCVII tumors growing in immunodeficient NOD-scid mice. In PDT vaccine protocol, where PDT-treated SCCVII cells are used for vaccination of SCCVII tumor-bearing mice, adding recombinant calreticulin to cells before their injection produced improved therapeutic effect. The expression of calreticulin gene was reduced in PDT-treated cells, while no changes were observed with the expression of this gene in tumor, liver, and spleen tissues in PDT vaccine-treated mice. These findings reveal that externally added recombinant calreticulin can boost antitumor responses elicited by PDT or PDT-generated vaccines, and can thus serve as an effective adjuvant for cancer treatment with PDT and probably other cancer cell stress-inducing modalities.

  1. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer.

    Science.gov (United States)

    Odunsi, Kunle; Matsuzaki, Junko; James, Smitha R; Mhawech-Fauceglia, Paulette; Tsuji, Takemasa; Miller, Austin; Zhang, Wa; Akers, Stacey N; Griffiths, Elizabeth A; Miliotto, Anthony; Beck, Amy; Batt, Carl A; Ritter, Gerd; Lele, Shashikant; Gnjatic, Sacha; Karpf, Adam R

    2014-01-01

    The cancer-testis/cancer-germline antigen NY-ESO-1 is a vaccine target in epithelial ovarian cancer (EOC), but its limited expression is a barrier to vaccine efficacy. As NY-ESO-1 is regulated by DNA methylation, we hypothesized that DNA methyltransferase (DNMT) inhibitors may augment NY-ESO-1 vaccine therapy. In agreement, global DNA hypomethylation in EOC was associated with the presence of circulating antibodies to NY-ESO-1. Pre-clinical studies using EOC cell lines showed that decitabine treatment enhanced both NY-ESO-1 expression and NY-ESO-1-specific CTL-mediated responses. Based on these observations, we performed a phase I dose-escalation trial of decitabine, as an addition to NY-ESO-1 vaccine and doxorubicin liposome (doxorubicin) chemotherapy, in 12 patients with relapsed EOC. The regimen was safe, with limited and clinically manageable toxicities. Both global and promoter-specific DNA hypomethylation occurred in blood and circulating DNAs, the latter of which may reflect tumor cell responses. Increased NY-ESO-1 serum antibodies and T cell responses were observed in the majority of patients, and antibody spreading to additional tumor antigens was also observed. Finally, disease stabilization or partial clinical response occurred in 6/10 evaluable patients. Based on these encouraging results, evaluation of similar combinatorial chemo-immunotherapy regimens in EOC and other tumor types is warranted.

  2. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S;

    2008-01-01

    -testis antigens. Vaccines were biweekly administered intradermally with a total of 10 vaccines per patient. CT scans were performed and responses were graded according to the RECIST criteria. Quality of life was monitored with the SF-36 questionnaire. Toxicity and adverse events were graded according...... to the National Cancer Institute's common Toxicity Criteria. Four patients were graded with stable disease. Two remained stable throughout the entire study period. Analysis of changes in the patients' quality of life revealed stability in the subgroups: 'physical function' (p=0.872), 'physical role limitation' (p...

  3. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases

    Science.gov (United States)

    Campos, João Henrique; Soares, Rodrigo Pedro; Ribeiro, Kleber; Cronemberger Andrade, André; Batista, Wagner Luiz; Torrecilhas, Ana Claudia

    2015-01-01

    Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases. PMID:26380326

  4. Immunogenicity and clinical effectiveness of the trivalent inactivated influenza vaccine in immunocompromised children undergoing treatment for cancer.

    Science.gov (United States)

    Kotecha, Rishi S; Wadia, Ushma D; Jacoby, Peter; Ryan, Anne L; Blyth, Christopher C; Keil, Anthony D; Gottardo, Nicholas G; Cole, Catherine H; Barr, Ian G; Richmond, Peter C

    2016-02-01

    Influenza is associated with significant morbidity and mortality in children receiving therapy for cancer, yet recommendation for, and uptake of the seasonal vaccine remains poor. One hundred children undergoing treatment for cancer were vaccinated with the trivalent inactivated influenza vaccine according to national guidelines in 2010 and 2011. Influenza-specific hemagglutinin inhibition antibody titers were performed on blood samples taken prior to each vaccination and 4 weeks following the final vaccination. A nasopharyngeal aspirate for influenza was performed on all children who developed an influenza-like illness. Following vaccination, seroprotection and seroconversion rates were 55 and 43% for H3N2, 61 and 43% for H1N1, and 41 and 33% for B strain, respectively. Overall, there was a significant geometric mean fold increase to H3N2 (GMFI 4.56, 95% CI 3.19-6.52, P children with solid compared with hematological malignancies and in children vaccinated study population, compared with 6.8% in unvaccinated controls, providing an adjusted estimated vaccine effectiveness of 72% (95% CI -26-94%). There were no serious adverse events and a low reactogenicity rate of 3%. The trivalent inactivated influenza vaccine is safe, immunogenic, provides clinical protection and should be administered annually to immunosuppressed children receiving treatment for cancer. All children <10 years of age should receive a two-dose schedule.

  5. Association between human papillomavirus vaccine uptake uptake and cervical cancer screening in the Netherlands: Implications for future impact on prevention

    NARCIS (Netherlands)

    Steens, A.; Wielders, C.C.; Bogaards, J.A.; Boshuizen, H.C.; Greeff, de S.C.; Melker, de H.E.

    2013-01-01

    Several countries recently added human papillomavirus (HPV) vaccination to cervical cancer screening in the effort to prevent cervical cancer. They include the Netherlands, where both programs are free. To estimate their combined future impact on cancer prevention, information is needed on the assoc

  6. Efficacy of HPV-16 E7 Based Vaccine in a TC-1 Tumoric Animal Model of Cervical Cancer - page 483

    Directory of Open Access Journals (Sweden)

    Maryam Fazeli

    2011-01-01

    Full Text Available Objective: The human papillomavirus as an etiological agent of cervical cancer doesnot grow adequately in tissue culture systems. The tumor cell line TC-1 continuously expressesthe E6 and E7 oncogenic proteins of HPV, and is considered a suitable tool inlaboratory investigations and vaccine researches against cervical cancer.Materials and Methods: The TC-1 cell line was grown in RPMI 1650 supplemented with10% FBS, glutamine and antibiotics, and was used for tumor development in mice. Six toseven week-old tumor bearing C57BL/6 mice were divided into 3 groups consisting of 7mice per group. The first group received pcDNA-E7, the second group received pcDNA3,and the third group received phosphate buffered saline (PBS. The treated animals weremonitored for their tumor size progression and survival. At last, the tumoric tissues fromautopsied animals were fixed and examined with Mayer's hematoxylin and eosin (H&E.All experiments were done in accordance with guidelines of the Laboratory Animal EthicalCommission of Tarbiat Modares University. Data analysis was performed using the onewayANOVA followed by Tukey's test in both experimental and control groups. A p-value<0.05 was considered significant.Results: There were significant decreases in tumor growth; there were also improvementsin survival among mice in the treated groups (p<0.041. H&E stained sections fromuntreated mice were studied independently in a blinded fashion by two observers andshowed malignant neoplasms composed of severely pleomorphic tumor cells with nuclearenlargement, high nuclear-cytoplasmic (N/C ratios, and prominent nucleoli in solid andfascicular patterns of growth. High mitotic activity with extensive necrosis was also notedin both test and control groups.Conclusion: The TC-1 lung metastatic model can be used to test the efficacy of variousE7-based therapeutic cancer vaccine strategies for cervical cancer and the prevention ofHPV-related neoplasia.

  7. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact.

  8. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. PMID:26541249

  9. Changes in knowledge of cervical cancer following introduction of human papillomavirus vaccine among women at high risk for cervical cancer

    Science.gov (United States)

    Stewart Massad, L.; Evans, Charlesnika T.; Weber, Kathleen M.; D'Souza, Gypsyamber; Hessol, Nancy A.; Wright, Rodney L.; Colie, Christine; Strickler, Howard D.; Wilson, Tracey E.

    2015-01-01

    Purpose To describe changes in knowledge of cervical cancer prevention, human papillomavirus (HPV), and HPV vaccination among women at high risk for cervical cancer in the first five years after introduction of HPV vaccination. Methods In 2007, 2008–9, and 2011, women in a multicenter U.S. cohort study completed 44-item self-report questionnaires assessing knowledge of cervical cancer prevention, HPV, and HPV vaccination. Results across time were assessed for individuals, and three study enrollment cohorts were compared. Knowledge scores were correlated with demographic variables, measures of education and attention, and medical factors. Associations were assessed in multivariable models. Results In all, 974 women completed three serial questionnaires; most were minority, low income, and current or former smokers. The group included 652 (67%) HIV infected and 322 (33%) uninfected. Summary knowledge scores (possible range 0–24) increased from 2007 (12.8, S.D. 5.8) to 2008–9 (13.9, S.D. 5.3, P < 0.001) and to 2011 (14.3, S.D. 5.2, P < 0.0001 vs 2007 and < 0.04 vs 2008–9). Higher knowledge scores at first and follow-up administration of questionnaires, higher income, and higher education level were associated with improved knowledge score at third administration. Women not previously surveyed had scores similar to those of the longitudinal group at baseline. Conclusion Substantial gaps in understanding of HPV and cervical cancer prevention exist despite years of health education. While more effective educational interventions may help, optimal cancer prevention may require opt-out vaccination programs that do not require nuanced understanding. PMID:25870859

  10. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Parida, Satya; Rasmussen, Thomas Bruun;

    2010-01-01

    The prophylactic use of vaccines against exotic viral infections in production animals is undertaken exclusively in regions where the disease concerned is endemic. In such areas, the infection pressure is very high and so, to assure optimal protection, the most efficient vaccines are used. However......, in areas considered to be free from these diseases and in which there is the possibility of only limited outbreaks, the use of Differentiation of Infected from Vaccinated Animals (DIVA) or marker vaccines allows for vaccination while still retaining the possibility of serological surveillance...... for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry....

  11. Agility in adversity: Vaccines on Demand.

    Science.gov (United States)

    De Groot, Anne S; Moise, Leonard; Olive, David; Einck, Leo; Martin, William

    2016-09-01

    Is the US ready for a biological attack using Ebola virus or Anthrax? Will vaccine developers be able to produce a Zika virus vaccine, before the epidemic spreads around the world? A recent report by The Blue Ribbon Study Panel on Biodefense argues that the US is not ready for these challenges, however, technologies and capabilities that could address these deficiencies are within reach. Vaccine technologies have advanced and readiness has improved in recent years, due to advances in sequencing technology and computational power making the 'vaccines on demand' concept a reality. Building a robust strategy to design effective biodefense vaccines from genome sequences harvested by real-time biosurveillance will benefit from technologies that are being brought to bear on the cancer cure 'moonshot'. When combined with flexible vaccine production platforms, vaccines on demand will relegate expensive and, in some cases, insufficiently effective vaccine stockpiles to the dust heap of history. PMID:27389971

  12. Agility in adversity: Vaccines on Demand.

    Science.gov (United States)

    De Groot, Anne S; Moise, Leonard; Olive, David; Einck, Leo; Martin, William

    2016-09-01

    Is the US ready for a biological attack using Ebola virus or Anthrax? Will vaccine developers be able to produce a Zika virus vaccine, before the epidemic spreads around the world? A recent report by The Blue Ribbon Study Panel on Biodefense argues that the US is not ready for these challenges, however, technologies and capabilities that could address these deficiencies are within reach. Vaccine technologies have advanced and readiness has improved in recent years, due to advances in sequencing technology and computational power making the 'vaccines on demand' concept a reality. Building a robust strategy to design effective biodefense vaccines from genome sequences harvested by real-time biosurveillance will benefit from technologies that are being brought to bear on the cancer cure 'moonshot'. When combined with flexible vaccine production platforms, vaccines on demand will relegate expensive and, in some cases, insufficiently effective vaccine stockpiles to the dust heap of history.

  13. Immunotherapy for metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Ellebaek, Eva; Andersen, Mads Hald; Svane, Inge Marie;

    2012-01-01

    presents the most interesting strategies investigated so far: cancer vaccination including antigen-defined vaccination and dendritic cell vaccination, chemo-immunotherapy, and adoptive cell transfer. Future treatment options as well as the possibility of combining existing therapies will be discussed along......Although no immunotherapeutic treatment is approved for colorectal cancer (CRC) patients, promising results from clinical trials suggest that several immunotherapeutic strategies may prove efficacious and applicable to this group of patients. This review describes the immunogenicity of CRC and...

  14. DNA vaccines against influenza.

    Science.gov (United States)

    Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka

    2014-01-01

    Genetic vaccine technology has been considerably developed within the last two decades. This cost effective and promising strategy can be applied for therapy of cancers and for curing allergy, chronic and infectious diseases, such as a seasonal and pandemic influenza. Despite numerous advantages, several limitations of this technology reduce its performance and can retard its commercial exploitation in humans and its veterinary applications. Inefficient delivery of the DNA vaccine into cells of immunized individuals results in low intracellular supply of suitable expression cassettes encoding an antigen, in its low expression level and, in turn, in reduced immune responses against the antigen. Improvement of DNA delivery into the host cells might significantly increase effectiveness of the DNA vaccine. A vast array of innovative methods and various experimental strategies have been applied in order to enhance the effectiveness of DNA vaccines. They include various strategies improving DNA delivery as well as expression and immunogenic potential of the proteins encoded by the DNA vaccines. Researchers focusing on DNA vaccines against influenza have applied many of these strategies. Recent examples of the most successful modern approaches are discussed in this review.

  15. Rationale for a multimodality strategy to enhance the efficacy of dendritic cell-based cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Jashodeep eDatta

    2015-06-01

    Full Text Available Dendritic cells (DC, master antigen-presenting cells that orchestrate interactions between the adaptive and innate immune arms, are increasingly utilized in cancer immunotherapy. Despite remarkable progress in our understanding of DC immunobiology, as well as several encouraging clinical applications — such as DC-based sipuleucel-T for metastatic castration-resistant prostate cancer — clinically effective DC-based immunotherapy as monotherapy for a majority of tumors remains a distant goal. The complex interplay between diverse molecular and immune processes that govern resistance to DC-based vaccination compels a multimodality approach, encompassing a growing arsenal of antitumor agents which target these distinct processes and synergistically enhance DC function. These include antibody-based targeted molecular therapies, immune checkpoint inhibitors, therapies that inhibit immunosuppressive cellular elements, conventional cytotoxic modalities, and immune potentiating adjuvants. It is likely that in the emerging era of precision cancer therapeutics, tangible clinical benefits will only be realized with a multifaceted—and personalized—approach combining DC-based vaccination with adjunctive strategies.

  16. Rationale for a Multimodality Strategy to Enhance the Efficacy of Dendritic Cell-Based Cancer Immunotherapy.

    Science.gov (United States)

    Datta, Jashodeep; Berk, Erik; Cintolo, Jessica A; Xu, Shuwen; Roses, Robert E; Czerniecki, Brian J

    2015-01-01

    Dendritic cells (DC), master antigen-presenting cells that orchestrate interactions between the adaptive and innate immune arms, are increasingly utilized in cancer immunotherapy. Despite remarkable progress in our understanding of DC immunobiology, as well as several encouraging clinical applications - such as DC-based sipuleucel-T for metastatic castration-resistant prostate cancer - clinically effective DC-based immunotherapy as monotherapy for a majority of tumors remains a distant goal. The complex interplay between diverse molecular and immune processes that govern resistance to DC-based vaccination compels a multimodality approach, encompassing a growing arsenal of antitumor agents which target these distinct processes and synergistically enhance DC function. These include antibody-based targeted molecular therapies, immune checkpoint inhibitors, therapies that inhibit immunosuppressive cellular elements, conventional cytotoxic modalities, and immune potentiating adjuvants. It is likely that in the emerging era of "precision" cancer therapeutics, tangible clinical benefits will only be realized with a multifaceted - and personalized - approach combining DC-based vaccination with adjunctive strategies. PMID:26082780

  17. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine

    OpenAIRE

    Rong Yefei; Jin Dayong; Wu Wenchuan; Lou Wenhui; Wang Danshong; Kuang Tiantao; Ni Xiaoling; Qin Xinyu

    2009-01-01

    Abstract Background Pancreatic cancer is a common, highly lethal disease with a rising incidence. MUC1 is a tumor-associated antigen that is over-expressed in pancreatic adenocarcinoma. Active immunotherapy that targets MUC1 could have great treatment value. Here we investigated the preventive and therapeutic effect of a MUC1 DNA vaccine on the pancreatic cancer. Methods MUC1-various tandem repeat units(VNTR) DNA vaccine was produced by cloning one repeat of VNTR and inserting the cloned gene...

  18. Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model.

    Directory of Open Access Journals (Sweden)

    Holly J Corbett

    Full Text Available BACKGROUND: Better delivery systems are needed for routinely used vaccines, to improve vaccine uptake. Many vaccines contain alum or alum based adjuvants. Here we investigate a novel dry-coated densely-packed micro-projection array skin patch (Nanopatch™ as an alternate delivery system to intramuscular injection for delivering an alum adjuvanted human papillomavirus (HPV vaccine (Gardasil® commonly used as a prophylactic vaccine against cervical cancer. METHODOLOGY/PRINCIPAL FINDINGS: Micro-projection arrays dry-coated with vaccine material (Gardasil® delivered to C57BL/6 mouse ear skin released vaccine within 5 minutes. To assess vaccine immunogenicity, doses of corresponding to HPV-16 component of the vaccine between 0.43 ± 0.084 ng and 300 ± 120 ng (mean ± SD were administered to mice at day 0 and day 14. A dose of 55 ± 6.0 ng delivered intracutaneously by micro-projection array was sufficient to produce a maximal virus neutralizing serum antibody response at day 28 post vaccination. Neutralizing antibody titres were sustained out to 16 weeks post vaccination, and, for comparable doses of vaccine, somewhat higher titres were observed with intracutaneous patch delivery than with intramuscular delivery with the needle and syringe at this time point. CONCLUSIONS/SIGNIFICANCE: Use of dry micro-projection arrays (Nanopatch™ has the potential to overcome the need for a vaccine cold chain for common vaccines currently delivered by needle and syringe, and to reduce risk of needle-stick injury and vaccine avoidance due to the fear of the needle especially among children.

  19. Mathematical analysis of a Chlamydia epidemic model with pulse vaccination strategy.

    Science.gov (United States)

    Samanta, G P

    2015-03-01

    In this paper, we have considered a dynamical model of Chlamydia disease with varying total population size, bilinear incidence rate and pulse vaccination strategy. We have defined two positive numbers R₀ and (R₁≤ R₀). It is proved that there exists an infection-free periodic solution which is globally attractive if R₀ 1 The important mathematical findings for the dynamical behaviour of the Chlamydia disease model are also numerically verified using MATLAB. Finally epidemiological implications of our analytical findings are addressed critically.

  20. AACR 2010: Strategy for Mapping of 20 Cancers - TCGA

    Science.gov (United States)

    TCGA held an NCI-sponsored session at the American Association for Cancer Research's (AACR) 101st Annual Meeting 2010 to address the program’s Phase II structure and strategies for sample acquisition, evolving technologies, data management and analysis.

  1. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Science.gov (United States)

    Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus. PMID:27082428

  2. A multivalent and cross-protective vaccine strategy against arenaviruses associated with human disease.

    Directory of Open Access Journals (Sweden)

    Maya F Kotturi

    2009-12-01

    Full Text Available Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses, either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.

  3. Heteroclitic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination.

    Science.gov (United States)

    Kawada, Junji; Wada, Hisashi; Isobe, Midori; Gnjatic, Sacha; Nishikawa, Hiroyoshi; Jungbluth, Achim A; Okazaki, Nami; Uenaka, Akiko; Nakamura, Yurika; Fujiwara, Shinichi; Mizuno, Naoaki; Saika, Takashi; Ritter, Erika; Yamasaki, Makoto; Miyata, Hiroshi; Ritter, Gerd; Murphy, Roger; Venhaus, Ralph; Pan, Linda; Old, Lloyd J; Doki, Yuichiro; Nakayama, Eiichi

    2012-02-01

    NY-ESO-1 is a prototypic cancer/testis antigen. In a recent phase I clinical trial, we vaccinated 13 patients bearing NY-ESO-1-expressing tumors with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1) and showed efficient induction of NY-ESO-1 antibody, and CD4 and CD8 T cell responses using peripheral blood from the patients. In our study, we analyzed heteroclitic serological responses in those patients after vaccination. Serological response against 11 tumor antigens including MAGE-A1, MAGE-A3, MAGE-A4, CT7/MAGEC1, CT10/MAGEC2, CT45, CT46/HORMAD1, SOX2, SSX2, XAGE1B and p53 was examined by enzyme-linked immunosorbent assay (ELISA) using sera from ten vaccinated patients. Expression of tumor antigens was determined by reverse transcription-polymerase chain reaction or immunohistochemistry. Eight of nine patients who showed antibody responses against NY-ESO-1 also showed an antibody response against at least 1 of these 11 tumor antigens after vaccination. In one patient, seven tumor antigens were recognized. Specificity analysis of the antibody response by ELISA using control recombinant proteins and synthetic peptides and by Western blot showed that the response was not against His6-tag and/or bacterial products included in a preparation of CHP-NY-ESO-1 used for vaccination. Thus, heteroclitic serological responses appear to be indicative of the overall immune response against the tumor, and their analysis could be useful for immune monitoring in cancer vaccine.

  4. Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV).

    Science.gov (United States)

    Huang, Y W; Meng, X J

    2010-12-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important swine pathogen. Since its discovery in the early 1990 s, tremendous progresses have been made in understanding the molecular biology and pathogenesis of PRRSV. Although modified live-attenuated vaccines (MLVs) and inactivated vaccines against PRRSV have been available for more than a decade, the disease remains difficult to control. The efficacies of these vaccines especially against heterologous strains remain questionable: the MLVs were generally effective against homologous strains but variable in success against heterologous strains, and the outcomes of inactivated vaccines in the field are not very promising. With the development of PRRSV reverse genetics systems and the acquisition of new understanding on anti-PRRSV immunity, rational design of the next generation of PRRSV vaccines can now be explored. In this review, we discussed the recent advances in anti-PRRSV immunity and vaccinology, the recent progresses in PRRSV vaccine development particularly the reverse genetics system-based vaccine development, and provided a perspective on potential novel strategies and approaches that may be applicable to the development of the next generation of PRRSV vaccines. PMID:20655962

  5. Antibody-Mediated Fcγ Receptor-Based Mechanisms of HIV Inhibition: Recent Findings and New Vaccination Strategies

    OpenAIRE

    Christiane Moog; Vincent Holl; Maryse Peressin

    2009-01-01

    The HIV/AIDS pandemic is one of the most devastating pandemics worldwide. Today, the major route of infection by HIV is sexual transmission. One of the most promising strategies for vaccination against HIV sexual infection is the development of a mucosal vaccine, which should be able to induce strong local and systemic protective immunity. It is believed that both humoral and cellular immune responses are needed for inducing a sterilizing protection against HIV. Recently, passive administrati...

  6. Protective Effect of a Prime-Boost Strategy with the Ts87 Vaccine against Trichinella spiralis Infection in Mice

    OpenAIRE

    Yuan Gu; Bin Zhan; Yaping Yang; Xiaodi Yang; Xi Zhao; Lei Wang; Jing Yang; Kuo Bi; Yunyun Wang; Xinping Zhu

    2014-01-01

    Trichinellosis is a widespread zoonosis primarily caused by Trichinella spiralis. Mucosal immunity is crucial for preventing Trichinella spiralis infection. In our previous study, a DNA vaccine with the Trichinella antigen Ts87 delivered by an attenuated Salmonella typhimurium elicited partial protection against Trichinella spiralis infection in mice. In the current study, to elicit a more robust immune response and develop a potent vaccination strategy against trichinellosis, a heterologous ...

  7. Fueling the engine and releasing the break:combinational therapy of cancer vaccines and immune checkpoint inhibitors

    Institute of Scientific and Technical Information of China (English)

    Jennifer Kleponis; Richard Skelton; Lei Zheng

    2015-01-01

    Immune checkpoint inhibitors are increasingly drawing much attention in the therapeutic development for cancer treatment. However, many cancer patients do not respond to treatments with immune checkpoint inhibitors, partly because of the lack of tumor-inifltrating effector T cells. Cancer vaccines may prime patients for treatments with immune checkpoint inhibitors by inducing effector T-cell infiltration into the tumors and immune checkpoint signals. The combination of cancer vaccine and an immune checkpoint inhibitor may function synergistically to induce more effective antitumor immune responses, and clinical trials to test the combination are currently ongoing.

  8. The Consequence of Immune Suppressive Cells in the Use of Therapeutic Cancer Vaccines and Their Importance in Immune Monitoring

    Directory of Open Access Journals (Sweden)

    Matteo Vergati

    2011-01-01

    Full Text Available Evaluating the number, phenotypic characteristics, and function of immunosuppressive cells in the tumor microenvironment and peripheral blood could elucidate the antitumor immune response and provide information to evaluate the efficacy of cancer vaccines. Further studies are needed to evaluate the correlation between changes in immunosuppressive cells and clinical outcomes of patients in cancer vaccine clinical trials. This paper focuses on the role of T-regulatory cells, myeloid-derived suppressor cells, and tumor-associated macrophages in cancer and cancer immunotherapy and their role in immune monitoring.

  9. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests

    Science.gov (United States)

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past.

  10. Novel imaging strategies for upper gastrointestinal tract cancers

    DEFF Research Database (Denmark)

    Mortensen, Michael Bau

    2015-01-01

    Accurate pretherapeutic imaging is the cornerstone of all cancer treatment. Unfortunately, modern imaging modalities have several unsolved problems and limitations. The differentiation between inflammation and cancer infiltration, false positive and false negative findings as well as lack of...... confirming biopsies in suspected metastases may have serious negative consequences in cancer patients. This review describes some of these problems and challenges the use of conventional imaging by suggesting new combined strategies that include selective use of confirming biopsies and complementary methods...

  11. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies.

    Science.gov (United States)

    Vici, P; Pizzuti, L; Mariani, L; Zampa, G; Santini, D; Di Lauro, L; Gamucci, T; Natoli, C; Marchetti, P; Barba, M; Maugeri-Saccà, M; Sergi, D; Tomao, F; Vizza, E; Di Filippo, S; Paolini, F; Curzio, G; Corrado, G; Michelotti, A; Sanguineti, G; Giordano, A; De Maria, R; Venuti, A

    2016-10-01

    Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease.

  12. Triple peptide vaccination as consolidation treatment in women affected by ovarian and breast cancer: Clinical and immunological data of a phase I/II clinical trial

    Science.gov (United States)

    ANTONILLI, MORENA; RAHIMI, HASSAN; VISCONTI, VALERIA; NAPOLETANO, CHIARA; RUSCITO, ILARY; ZIZZARI, ILARIA GRAZIA; CAPONNETTO, SALVATORE; BARCHIESI, GIACOMO; IADAROLA, ROBERTA; PIERELLI, LUCA; RUGHETTI, AURELIA; BELLATI, FILIPPO; PANICI, PIERLUIGI BENEDETTI; NUTI, MARIANNA

    2016-01-01

    Vaccination with priming and expansion of tumour reacting T cells is an important therapeutic option to be used in combination with novel checkpoint inhibitors to increase the specificity of the T cell infiltrate and the efficacy of the treatment. In this phase I/II study, 14 high-risk disease-free ovarian (OC) and breast cancer (BC) patients after completion of standard therapies were vaccinated with MUC1, ErbB2 and carcinoembryonic antigen (CEA) HLA-A2+-restricted peptides and Montanide. Patients were subjected to 6 doses of vaccine every two weeks and a recall dose after 3 months. ECOG grade 2 toxicity was observed at the injection site. Eight out of 14 patients showed specific CD8+ T cells to at least one antigen. None of 4 patients vaccinated for compassionate use showed a CD8 activation. An OC patient who suffered from a lymph nodal recurrence, showed specific anti-ErbB2 CD8+ T cells in the bulky aortic lymph nodes suggesting homing of the activated T cells. Results confirm that peptide vaccination strategy is feasible, safe and well tolerated. In particular OC patients appear to show a higher response rate compared to BC patients. Vaccination generates a long-lasting immune response, which is strongly enhanced by recall administrations. The clinical outcome of patients enrolled in the trial appears favourable, having registered no deceased patients with a minimum follow-up of 8 years. These promising data, in line with the results of similar studies, the high compliance of patients observed and the favourable toxicity profile, support future trials of peptide vaccination in clinically disease-free patients who have completed standard treatments. PMID:26892612

  13. Scaling up cervical cancer screening in the midst of human papillomavirus vaccination advocacy in Thailand

    Directory of Open Access Journals (Sweden)

    Teerawattananon Yot

    2010-07-01

    Full Text Available Abstract Background Screening tests for cervical cancer are effective in reducing the disease burden. In Thailand, a Pap smear program has been implemented throughout the country for 40 years. In 2008 the Ministry of Public Health (MoPH unexpectedly decided to scale up the coverage of free cervical cancer screening services, to meet an ambitious target. This study analyzes the processes and factors that drove this policy innovation in the area of cervical cancer control in Thailand. Methods In-depth interviews with key policy actors and review of relevant documents were conducted in 2009. Data analysis was guided by a framework, developed on public policy models and existing literature on scaling-up health care interventions. Results Between 2006 and 2008 international organizations and the vaccine industry advocated the introduction of Human Papillomavirus (HPV vaccine for the primary prevention of cervical cancer. Meanwhile, a local study suggested that the vaccine was considerably less cost-effective than cervical cancer screening in the Thai context. Then, from August to December 2008, the MoPH carried out a campaign to expand the coverage of its cervical cancer screening program, targeting one million women. The study reveals that several factors were influential in focusing the attention of policymakers on strengthening the screening services. These included the high burden of cervical cancer in Thailand, the launch of the HPV vaccine onto the global and domestic markets, the country’s political instability, and the dissemination of scientific evidence regarding the appropriateness of different options for cervical cancer prevention. Influenced by the country’s political crisis, the MoPH’s campaign was devised in a very short time. In the view of the responsible health officials, the campaign was not successful and indeed, did not achieve its ambitious target. Conclusion The Thai case study suggests that the political crisis was a

  14. Hepatitis B screening and vaccination strategies for newly arrived adult Canadian immigrants and refugees: a cost-effectiveness analysis.

    Directory of Open Access Journals (Sweden)

    Carmine Rossi

    Full Text Available BACKGROUND: Immigrants have increased mortality from hepatocellular carcinoma as compared to the host populations, primarily due to undetected chronic hepatitis B virus (HBV infection. Despite this, there are no systematic programs in most immigrant-receiving countries to screen for chronic HBV infection and immigrants are not routinely offered HBV vaccination outside of the universal childhood vaccination program. METHODS AND FINDINGS: A cost-effective analysis was performed to compare four HBV screening and vaccination strategies with no intervention in a hypothetical cohort of newly-arriving adult Canadian immigrants. The strategies considered were a universal vaccination, b screening for prior immunity and vaccination, c chronic HBV screening and treatment, and d combined screening for chronic HBV and prior immunity, treatment and vaccination. The analysis was performed from a societal perspective, using a Markov model. Seroprevalence estimates, annual transition probabilities, health-care costs (in Canadian dollars, and utilities were obtained from the published literature. Acute HBV infection, mortality from chronic HBV, quality-adjusted life years (QALYs, and costs were modeled over the lifetime of the cohort of immigrants. Costs and QALYs were discounted at a rate of 3% per year. Screening for chronic HBV infection, and offering treatment if indicated, was found to be the most cost-effective intervention and was estimated to cost $40,880 per additional QALY gained, relative to no intervention. This strategy was most cost-effective for immigrants < 55 years of age and would cost < $50,000 per additional QALY gained for immigrants from areas where HBV seroprevalence is ≥ 3%. Strategies that included HBV vaccination were either prohibitively expensive or dominated by the chronic HBV screening strategy. CONCLUSIONS: Screening for chronic HBV infection from regions where most Canadian immigrants originate, except for Latin America and the

  15. Evaluating a strategy to deliver vaccine to white-tailed deer at a landscape level

    Science.gov (United States)

    Fischer, Justin W.; Blass, Chad R.; Walter, William D.; Anderson, Charles W.; Lavelle, Michael J.; Hall, Wayne H.; VerCauterren, Kurt C.

    2016-01-01

    Effective delivery of vaccines and other pharmaceuticals to wildlife populations is needed when zoonotic diseases pose a risk to public health and natural resources or have considerable economic consequences. The objective of our study was to develop a bait-distribution strategy for potential delivery of oral bovine tuberculosis (bTB) vaccine to white-tailed deer (Odocoileus virginianus) where deer are reservoirs for the disease. During 17 February and 2 March 2011, we created a grid of experimental bait stations (n = 64) on Sandhill Wildlife Management Area, Wisconsin, USA, to assess station densities needed to attract and deliver placebo baits to free-ranging white-tailed deer and look for associations among deer density, number of bait stations per deer, and bait consumption. We placed 1 L of commercially available alfalfa cubes at bait stations 652 m apart, and monitored stations with motion-activated cameras for 5 days to document visitation and consumption by deer and nontarget species. Deer discovered 38% of all bait stations within 37 hr, on average (SE = 3.91 hr), and consumed variable amounts of bait at each station. Deer were documented in 94% of all photographs of wildlife at bait stations. We found no correlation between bait consumption and deer density or the number of bait stations per deer. We provide the first information on use of baits by free-ranging deer and nontarget wildlife to eventually vaccinate deer against bTB at a landscape level. The results of this study can further the development of strategies in delivery of pharmaceuticals to free-ranging white-tailed deer.

  16. Improving Screening Strategies for Prostate Cancer

    NARCIS (Netherlands)

    T. Wolters (Tineke)

    2010-01-01

    textabstractTh is thesis describes research on screening for prostate cancer. To improve understanding of the thesis, some background information will be provided in this introduction. First, a short description of the prostate and of prostate cancer will be given in Chapter 1, followed by more deta

  17. Imaging strategy in differentiated thyroid cancer

    NARCIS (Netherlands)

    Phan, Thi Thanh Ha

    2007-01-01

    This thesis focuses on clinical dilemmas, which the clinician faces in the management of patients with differentiated thyroid cancer (DTC) with a specific emphasis on the role of current and new diagnostic imaging. Thyroid cancer is a rare disease, but it is the most common endocrine malignancy of a

  18. Cancer and fertility : strategies to preserve fertility

    NARCIS (Netherlands)

    Diedrich, K.; Fauser, B. C. J. M.; Devroey, P.

    2011-01-01

    Fertility preservation is a key component of cancer management in young people. The Fourth Evian Annual Reproduction Workshop Meeting was held in April 2009 to discuss cancer and fertility in young adults. Specialists in oncology, assisted reproduction, embryology and clinical genetics presented pub

  19. Novel translational strategies in colorectal cancer research

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Defining translational research is still a complex task. In oncology, translational research implies using our basic knowledge learnt from in vitro and in vivo experiments to directly improve diagnostic tools and therapeutic approaches in cancer patients. Moreover, the better understanding of human cancer and its use to design more reliable tumor models and more accurate experimental systems also has to be considered a good example of translational research. The identification and characterization of new molecular markers and the discovery of novel targeted therapies are two main goals in colorectal cancer translational research. However, the straightforward translation of basic research findings, specifically into colorectal cancer treatment and vice versa is still underway. In the present paper, a summarized view of some of the new available approaches on colorectal cancer translational research is provided. Pros and cons are discussed for every approach exposed.

  20. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    International Nuclear Information System (INIS)

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  1. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  2. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES

    Directory of Open Access Journals (Sweden)

    Chen Hui-Ming

    2012-04-01

    Full Text Available Abstract Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs, a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100 DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100 tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can

  3. Cervical cancer vaccine: Exploring new opportunities and challenges for developing countries

    Directory of Open Access Journals (Sweden)

    Ananya Ray Laskar

    2011-01-01

    Full Text Available Cervical cancer is the second most common cancer in women worldwide, and the burden of the disease is disproportionately high in the developing world (>80%. With the advent of two new vaccines, "Gardasil" developed by Merck & Co. New Jersey, USA and "Cervarix" developed by GlaxoSmithKline (GSK in Philadelphia, USA, the future holds newer promises for prevention and control of the disease. However, various regulatory and policy changes also may be required to be undertaken and the various new challenges need to be addressed.

  4. Perceptions of Nigerian Women about Human Papilloma Virus, Cervical Cancer, and HPV Vaccine.

    Science.gov (United States)

    Akanbi, Olusola Anuoluwapo; Iyanda, Abiodun; Osundare, Folakemi; Opaleye, Oluyinka Oladele

    2015-01-01

    Background. Cervical cancer caused by human papilloma virus (HPV) though preventable has claimed the lives of many women worldwide. This study was embarked upon to evaluate the general knowledge and perceptions of Nigerian women on HPV, cervical cancer, and HPV vaccine. Methods. Structured questionnaires were administered to a cross section of 737 women randomly selected from the general population in two southwestern States of Nigeria. Statistical analysis was done using SPSS computer software version 16. A P value >0.05 was considered statistically significant. Results. One hundred and seventy-six (23.9%) of the respondents had knowledge of HPV; 474 (64.3%) are aware of cervical cancer but only 136 (18.5%) know that HPV causes cervical cancer. 200 (27.1%) are aware that there is an HPV vaccine while 300 (40.7%) had knowledge of Pap smear test. Two hundred and sixty (35.3%) of the respondents know that early detection of HPV can prevent cervical cancer and in spite of this, only 110 (14.9%) have taken the Pap smear test before while 151 (20.5%) are not willing to go for the test at all. Conclusions. There is therefore the need to create proper awareness on the HPV and its possible consequence of cervical carcinoma.

  5. Perceptions of Nigerian Women about Human Papilloma Virus, Cervical Cancer, and HPV Vaccine

    Directory of Open Access Journals (Sweden)

    Olusola Anuoluwapo Akanbi

    2015-01-01

    Full Text Available Background. Cervical cancer caused by human papilloma virus (HPV though preventable has claimed the lives of many women worldwide. This study was embarked upon to evaluate the general knowledge and perceptions of Nigerian women on HPV, cervical cancer, and HPV vaccine. Methods. Structured questionnaires were administered to a cross section of 737 women randomly selected from the general population in two southwestern States of Nigeria. Statistical analysis was done using SPSS computer software version 16. A P value >0.05 was considered statistically significant. Results. One hundred and seventy-six (23.9% of the respondents had knowledge of HPV; 474 (64.3% are aware of cervical cancer but only 136 (18.5% know that HPV causes cervical cancer. 200 (27.1% are aware that there is an HPV vaccine while 300 (40.7% had knowledge of Pap smear test. Two hundred and sixty (35.3% of the respondents know that early detection of HPV can prevent cervical cancer and in spite of this, only 110 (14.9% have taken the Pap smear test before while 151 (20.5% are not willing to go for the test at all. Conclusions. There is therefore the need to create proper awareness on the HPV and its possible consequence of cervical carcinoma.

  6. [Treatment strategies for advanced prostate cancer].

    Science.gov (United States)

    Küronya, Zsófia; Bíró, Krisztina; Géczi, Lajos; Németh, Hajnalka

    2015-09-01

    There has been dramatic improvement in the diagnosis and treatment of prostate cancer recently. The treatment of localized disease became more successful with the application of new, sophisticated techniques available for urologic surgeons and radiotherapists. Nevertheless a significant proportion of patients relapses after the initial local treatment or is diagnosed with metastatic disease at the beginning. In the past five years, six new drugs became registered for the treatment of metastatic, castration-resistant prostate cancer, such as sipuleucel-T, cabazitaxel, abiraterone, enzalutamide, the α-emitting radionuclide alpharadin and the receptor activator of nuclear factor kappa-B (RANK) ligand inhibitor denosumab. The availability of these new treatment options raises numerous questions. In this review we present the standard of care of metastatic prostate cancer by disease stage (hormone naive/ hormone sensitive metastatic prostate cancer, non-metastatic castration-resistant prostate cancer, oligometastatic/multimetastatic castration-resistant prostate cancer) and the emerging treatment modalities presently assessed in clinical trials. We would also like to give advice on debatable aspects of the management of metastatic prostate cancer. PMID:26339912

  7. Recent advance in carbohydrate-based cancer vaccines%肿瘤糖疫苗的研究进展

    Institute of Scientific and Technical Information of China (English)

    霍常鑫; 叶新山

    2012-01-01

    The abnormal glycans expressing on the surface of tumor cells are good targets to develop carbohydrate-based anti-cancer vaccines. However, one of the major problems is that carbohydrate antigens possess weak immunogenicity. This review summarizes the recent efforts to overcome this problem: glycoconjugates produced by coupling the carbohydrate antigens and proper carrier proteins improve their immunogenicity, many glycoconjugates have entered clinical trials; the vaccines become chemically well-defined when coupling the carbohydrate antigens with a T-cell peptide epitope and an immunostimulant to form fully synthetic multi-component glycoconjugate vaccines; the modification of carbohydrate antigens in combination with the technology of metabolic oligosaccharide engineering of tumor cells induces a strong immune response; and the fact that the antibodies elicited against the unnatural carbohydrate antigens can recognize the native carbohydrate antigens on tumor cells provides a new promising strategy for the development of anti-cancer vaccines.%肿瘤细胞表面异常表达的糖抗原为肿瘤糖疫苗的研究提供了合适的靶标,然而由于这些糖抗原的免疫原性较差,这又给糖疫苗的发展带来了很大的困难.本文概述了近年来科学工作者在提高肿瘤糖疫苗的免疫原性方面所做的努力:半合成的肿瘤糖疫苗将糖抗原与蛋白共价连接,已经有很多疫苗进入了临床试验;随后发展的全合成的肿瘤糖疫苗将糖抗原、T细胞表位和内源性佐剂共价连接,使疫苗的结构和组成更加确定;基于细胞代谢糖工程的肿瘤糖疫苗将非天然的糖疫苗与细胞表面代谢糖工程相结合,得到了强烈的免疫应答;某些基于天然糖抗原结构修饰的疫苗产生的抗体也可以与天然糖抗原发生交叉反应,这为肿瘤糖疫苗的发展提供了新的方向.

  8. Human papillomavirus vaccination: what is the best choice? A comparison of 16 strategies by means of a decisional model.

    Science.gov (United States)

    Gasparini, R; Amicizia, D; Manfredi, P; Ansaldi, F; Lucioni, C; Gallelli, G; Panatto, D

    2009-06-01

    Some European countries decided to include human papillomavirus (HPV) vaccines in national immunization schedules. In order to help decision makers choose the best vaccination policy for females, a decisional model has been developed. The study was performed from the National Health Service perspective. Several hypotheses of multi-cohort vaccination policies were compared. 'Potentially avoidable infections' were chosen as the outcome. The model envisioned a short-term scenario (2008-2011). The best policy was that of vaccinating 12-year-olds and, a year later, those aged 14-16 years; the most expensive strategy was that of vaccinating 12-year-old females and, after 1 year, vaccinating those aged 15, 18 and 25 years. The sensitivity analysis showed that coverage rate has a great effect on the cost of avoidable infections. The study offers stake-holders an important datum-point for the choice of the best HPV policy vaccination in the short term. Indeed, it could generate interesting savings for the National Health Service and a rapid HPV immunization of young girls.

  9. Specific Dioscorea Phytoextracts Enhance Potency of TCL-Loaded DC-Based Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    Wei-Ting Chang

    2013-01-01

    Full Text Available Dioscorea tuber phytoextracts can confer immunomodulatory activities ex vivo and improve regeneration of bone marrow cells in vivo. In present study, we evaluated specific Dioscorea phytoextracts for use ex vivo as a bone-marrow-derived dendritic cell- (DC- based vaccine adjuvant for cancer immunotherapy. Fractionated Dioscorea extracts (DsII were assayed for their effect on maturation and functions of DC ex vivo and antimelanoma activity of DC-based vaccine in vivo. The phytoextract from 50–75% ethanol-precipitated fraction of Dioscorea alata var. purpurea Tainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL- loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1β in TCL-loaded DCs and downregulated the expression of TGF-β1. DC vaccines prepared by a specific schema (TCL (2 h + LPS (22 h showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53% of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines.

  10. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Directory of Open Access Journals (Sweden)

    Touihri Leila

    2012-12-01

    Full Text Available Abstract Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV or distemper virus (CDV after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The

  11. Novel translational strategies in colorectal cancer research

    OpenAIRE

    Gil-Bazo, Ignacio

    2007-01-01

    Defining translational research is still a complex task. In oncology, translational research implies using our basic knowledge learnt from in vitro and in vivo experiments to directly improve diagnostic tools and therapeutic approaches in cancer patients. Moreover, the better understanding of human cancer and its use to design more reliable tumor models and more accurate experimental systems also has to be considered a good example of translational research. The identification and characteriz...

  12. Progress in new vaccine strategies against influenza: a review%流感疫苗研制的新策略

    Institute of Scientific and Technical Information of China (English)

    刘志辉; 姜涛; 秦鄂德; 冉多良; 秦成峰

    2012-01-01

    Influenza, caused by influenza virus, is a serious respiratory illness which poses a global public health threat. Vaccination is the primary strategy for the prevention and control of influenza. Although both inactivated vaccines and the live attenuated vaccines are effective in preventing influenza, the current vaccines have poor efficacy in the elderly and fail to provide protection against heterosubtype viruses. Development of a safer and more effective influenza vaccine that provides broad cross protection, overcoming the intrinsic limitation of the current vaccines, has been a scientific challenge.During the past decades, structural biology, reverse genetic and other virological technologies developed quickly and sped the progress of influenza vaccinology. Some new strategies for developing influenza vaccine have been generated, produced encouraging results, which showed great prospect as next-generation of influenza vaccines.%流感病毒感染可引起急性呼吸道传染病,严重危害人类的健康与生命.疫苗免疫是防控流感的重要手段.目前广泛应用的传统灭活疫苗和减毒活疫苗,在预防流感中发挥了重要作用,但存在通用性差和免疫效率低等不足.研制更为安全高效特别是能针对多种流感亚型的新型广谱疫苗成为当前流感疫苗研究的热点.随着结构生物学和反向遗传生物学等新技术的迅速发展,一些新策略不断应用于新型流感疫苗的研究,显示出良好的应用前景.

  13. Adherence to cervical cancer screening varies by human papillomavirus vaccination status in a high-risk population

    Directory of Open Access Journals (Sweden)

    Christopher A. Paynter

    2015-01-01

    Full Text Available Cervical cancer screening has reduced the incidence of cervical cancer over the past 75 years. The primary aim of this study was to determine if women receiving Gardasil™ (HPV4 vaccine participated in future cervical cancer screening at the same rate as that observed for unvaccinated women matched on birth year and health care campus. This is a retrospective cohort study of subjects selected from 27,786 females born from 1980 to 1992 who received health care in the Truman Medical Center safety net health system in Kansas City Missouri, USA. 1154 women 14–26 years old who received at least one dose of HPV4 vaccine between 2006 and 2009 were chosen at random from the vaccine records. 1154 randomly chosen unvaccinated women were age and health campus matched to the vaccinated women and all were followed until July 1, 2013. Women who were screened after 21 years and received three vaccine doses before 21 years, had the lowest screening rate of 24%. Their only predictive factor for screening, compared to the unvaccinated, was being closer to 21 years than 14 years at vaccination (aOR = 1.71 95% CI: 1.45, 2.00. Women vaccinated with three doses and screened at or after 21 years had the highest screening rate of 84% predicting a six-fold increase in screening participation over no vaccine received (aOR = 5.94 95% CI: 3.77, 9.35. Our results suggest that women who receive HPV4 vaccination closer to 21 years, not 14, are more likely to participate in cervical cancer screening in an underserved US population.

  14. Thyroid cancer: Natural history, management strategies and outcomes

    International Nuclear Information System (INIS)

    Objectives: To understand the natural history of thyroid cancer and high risk groups; To define the biological behavior of thyroid cancer and relate it to various prognostic factors and risk groups; To divide the management strategies into conservation, radical surgery and radioactive iodine treatment; To define the role of external radiation therapy and the management of complex and advanced thyroid cancer; To analyze the results of management of anaplastic thyroid cancer and make a plea for combined modality treatment; To define the current role of genetic studies in medullary thyroid cancer. At the end of this refresher course, the attendees will be able to understand the natural history, the prognostic factors and risk groups and surgical and combined modality treatment in thyroid cancer

  15. Overlapping Synthetic Peptides Encoding TPD52 as Breast Cancer Vaccine in Mice: Prolonged Survival1

    OpenAIRE

    Mirshahidi, Saied; Kramer, Victor G; James B Whitney; Essono, Sosthène; Lee, Sandra; Dranoff, Glenn; Anderson, Karen S.; Ruth M Ruprecht

    2009-01-01

    Peptide-based vaccines, one of several anti-tumor immunization strategies currently under investigation, can elicit both MHC Class I-restricted (CD8+) and Class II-restricted (CD4+) responses. However, the need to identify specific T-cell epitopes in the context of MHC alleles has hampered the application of this approach. We have tested overlapping synthetic peptides (OSP) representing a tumor antigen as a novel approach that bypasses the need for epitope mapping, since OSP contain all possi...

  16. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  17. Novel medical strategies combating nonmelanoma skin cancer

    Directory of Open Access Journals (Sweden)

    Prasan R Bhandari

    2014-01-01

    Full Text Available The incidence of nonmelanoma skin cancer (NMSC continues to rise, partly because of aging, the frequency of early childhood sunburns, and sporadic extreme recreational sun exposure. A nonsurgical approach to selected cutaneous malignancy could possibly reduce the cost as well as morbidity of surgical treatment for NMSC. There has been growing interest in isolating compounds that could suppress or reverse the biochemical changes necessary for cutaneous malignancies to progress by pharmacologic intervention. By targeting diverse pathways recognized as important in the pathogenesis of nonmelanoma skin cancers, a combination approach with multiple agents or addition of chemopreventative agents to topical sunscreens may offer the potential for novel and synergistic therapies in treating nonmelanoma skin cancer. This preliminary information will expand to include more therapeutic options for NMSC in the future.

  18. Inclusion of the benefits of enhanced cross-protection against cervical cancer and prevention of genital warts in the cost-effectiveness analysis of human papillomavirus vaccination in the Netherlands.

    NARCIS (Netherlands)

    Westra, T.A.; Stirbu-Wagner, I.; Dorsman, S.; Tutuhatunewa, E.D.; Vrij, E.L. de; Nijman, H.W.; Daemen, T.; Wilschut, J.C.; Postma, M.J.

    2013-01-01

    Background: Infection with HPV 16 and 18, the major causative agents of cervical cancer, can be prevented through vaccination with a bivalent or quadrivalent vaccine. Both vaccines provide cross-protection against HPV-types not included in the vaccines. In particular, the bivalent vaccine provides a

  19. Inclusion of the benefits of enhanced cross-protection against cervical cancer and prevention of genital warts in the cost-effectiveness analysis of human papillomavirus vaccination in the Netherlands

    NARCIS (Netherlands)

    Westra, Tjalke A.; Stirbu-Wagner, Irina; Dorsman, Sara; Tutuhatunewa, Eric D.; de Vrij, Edwin L.; Nijman, Hans W.; Daemen, Toos; Wilschut, Jan C.; Postma, Maarten J.

    2013-01-01

    Background: Infection with HPV 16 and 18, the major causative agents of cervical cancer, can be prevented through vaccination with a bivalent or quadrivalent vaccine. Both vaccines provide cross-protection against HPV-types not included in the vaccines. In particular, the bivalent vaccine provides a

  20. Cancer Vaccines: State of the Art of the Computational Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Francesco Pappalardo

    2013-01-01

    Full Text Available Cancer vaccines are a real application of the extensive knowledge of immunology to the field of oncology. Tumors are dynamic complex systems in which several entities, events, and conditions interact among them resulting in growth, invasion, and metastases. The immune system includes many cells and molecules that cooperatively act to protect the host organism from foreign agents. Interactions between the immune system and the tumor mass include a huge number of biological factors. Testing of some cancer vaccine features, such as the best conditions for vaccine administration or the identification of candidate antigenic stimuli, can be very difficult or even impossible only through experiments with biological models simply because a high number of variables need to be considered at the same time. This is where computational models, and, to this extent, immunoinformatics, can prove handy as they have shown to be able to reproduce enough biological complexity to be of use in suggesting new experiments. Indeed, computational models can be used in addition to biological models. We now experience that biologists and medical doctors are progressively convinced that modeling can be of great help in understanding experimental results and planning new experiments. This will boost this research in the future.

  1. HPV Prevalence in Colombian Women with Cervical Cancer: Implications for Vaccination in a Developing Country

    Directory of Open Access Journals (Sweden)

    Raúl Murillo

    2009-01-01

    Full Text Available Human Papillomavirus (HPV vaccines have been considered potentially cost-effective for the reduction of cervical cancer burden in developing countries; their effectiveness in a public health setting continues to be researched. We conducted an HPV prevalence survey among Colombian women with invasive cancer. Paraffin-embedded biopsies were obtained from one high-risk and one low-middle-risk regions. GP5+/GP6+ L1 primers, RLB assays, and E7 type specific PCR were used for HPV-DNA detection. 217 cases were analyzed with 97.7% HPV detection rate. HPV-16/18 prevalence was 63.1%; HPV-18 had lower occurrence in the high-risk population (13.8% versus 9.6% allowing for the participation of less common HPV types; HPV-45 was present mainly in women under 50 and age-specific HPV type prevalence revealed significant differences. Multiple high-risk infections appeared in 16.6% of cases and represent a chance of replacement. Age-specific HPV prevalence and multiple high-risk infections might influence vaccine impact. Both factors highlight the role of HPVs other than 16/18, which should be considered in cost-effectiveness analyses for potential vaccine impact.

  2. Modulating autophagy: a strategy for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jun-Lin Li; Shao-Liang Han; Xia Fan

    2011-01-01

    Autophagy is a process in which long-lived proteins,damaged cell organelles,and other cellular particles are sequestered and degraded.This process is important for maintaining the cellular microenvironment when the cell is under stress.Many studies have shown that autophagy plays a complex role in human diseases,especially in cancer,where it is known to have paradoxical effects.Namely,autophagy provides the energy for metabolism and tumor growth and leads to cell death that promotes tumor suppression.The link between autophagy and cancer is also evident in that some of the genes that regulate carcinogenesis,oncogenes and tumor suppressor genes,participate in or impact the autophagy process.Therefore,modulating autophagy will be a valuable topic for cancer therapy.Many studies have shown that autophagy can inhibit the tumor growth when autophagy modulators are combined with radiotherapy and/or chemotherapy.These findings suggest that autophagy may be a potent target for cancer therapy.

  3. Antibody-based imaging strategies for cancer

    NARCIS (Netherlands)

    Warram, Jason M.; de Boer, Esther; Sorace, Anna G.; Chung, Thomas K.; Kim, Hyunki; Pleijhuis, Rick G.; van Dam, Gooitzen M.; Rosenthal, Eben L.

    2014-01-01

    Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both

  4. Testicular Cancer Survivorship : Research Strategies and Recommendations

    NARCIS (Netherlands)

    Travis, Lois B.; Beard, Clair; Allan, James M.; Dahl, Alv A.; Feldman, Darren R.; Oldenburg, Jan; Daugaard, Gedske; Kelly, Jennifer L.; Dolan, M. Eileen; Hannigan, Robyn; Constine, Louis S.; Oeffinger, Kevin C.; Okunieff, Paul; Armstrong, Greg; Wiljer, David; Miller, Robert C.; Gietema, Jourik A.; van Leeuwen, Flora E.; Williams, Jacqueline P.; Nichols, Craig R.; Einhorn, Lawrence H.; Fossa, Sophie D.

    2010-01-01

    Testicular cancer represents the most curable solid tumor, with a 10-year survival rate of more than 95%. Given the young average age at diagnosis, it is estimated that effective treatment approaches, in particular, platinum-based chemotherapy, have resulted in an average gain of several decades of

  5. Deubiquitinase inhibition as a cancer therapeutic strategy.

    Science.gov (United States)

    D'Arcy, Padraig; Wang, Xin; Linder, Stig

    2015-03-01

    The ubiquitin proteasome system (UPS) is the main system for controlled protein degradation and a key regulator of fundamental cellular processes. The dependency of cancer cells on a functioning UPS has made this an attractive target for development of drugs that show selectivity for tumor cells. Deubiquitinases (DUBs, ubiquitin isopeptidases) are components of the UPS that catalyze the removal of ubiquitin moieties from target proteins or polyubiquitin chains, resulting in altered signaling or changes in protein stability. A number of DUBs regulate processes associated with cell proliferation and apoptosis, and as such represent candidate targets for cancer therapeutics. The majority of DUBs are cysteine proteases and are likely to be more "druggable" than E3 ligases. Cysteine residues in the active sites of DUBs are expected to be reactive to various electrophiles. Various compounds containing α,β-unsaturated ketones have indeed been demonstrated to inhibit cellular DUB activity. Inhibition of proteasomal cysteine DUB enzymes (i.e. USP14 and UCHL5) can be predicted to be particularly cytotoxic to cancer cells as it leads to blocking of proteasome function and accumulation of proteasomal substrates. We here provide an overall review of DUBs relevant to cancer and of various small molecules which have been demonstrated to inhibit DUB activity.

  6. Randomized, single blind, controlled trial to evaluate the prime-boost strategy for pneumococcal vaccination in renal transplant recipients.

    Directory of Open Access Journals (Sweden)

    Selma Tobudic

    Full Text Available UNLABELLED: Renal transplant recipients are at increased risk of developing invasive pneumococcal diseases but may have poor response to the 23-valent pneumococcal polysaccharide vaccine (PPV. It may be possible to enhance immunogenicity by priming with 7-valent pneumococcal conjugate vaccine (7vPnC and boosting with PPV 1 year later. In a randomized single-blind, controlled study, adult recipients of renal transplants received either 7nPVC or PPV followed by PPV 1 year later. The vaccine response was defined as 2-fold increase in antibody concentration from baseline and an absolute post-vaccination values ≥1 µg/ml. The primary endpoint was vaccine response of the primed group (7vPnC/PPV compared with single PPV vaccination. Antibody concentrations for 10 serotypes were measured at baseline, 8 weeks after first vaccination, before second vaccination, and 8 weeks after second vaccination. Of 320 screened patients, 80 patients were randomized and 62 completed the study. Revaccination with PPV achieved no significant increase of immune response in the 7vPnC/PPV group compared with the single PPV recipients A response to at least 1 serotype was seen in 77.1% of patients who received 7vPnC and 93.1% of patients who received PPV (P = 0.046. After second vaccination response to at least 1 serotype was seen in 87.5% patients of 7vPnC/PPV group and 87.1% patients of PPV group (non significant p. The median number of serotypes eliciting a response was 3.5 (95% CI 2.5-4.5 in the 7vPnC/PPV group versus 5 (95% CI 3.9-6.1 in the PPV group (non-significant p. Immunogenicity of pneumococcal vaccination was not enhanced by the prime-boost strategy compared with vaccination with PPV alone. Administration of a single dose of PPV should continue to be the standard of care for adult recipients of renal transplants. TRIAL REGISTRATION: EudraCT 2007-004590-25.

  7. A cancer vaccine induces expansion of NY-ESO-1-specific regulatory T cells in patients with advanced melanoma.

    Science.gov (United States)

    Ebert, Lisa M; MacRaild, Sarah E; Zanker, Damien; Davis, Ian D; Cebon, Jonathan; Chen, Weisan

    2012-01-01

    Cancer vaccines are designed to expand tumor antigen-specific T cells with effector function. However, they may also inadvertently expand regulatory T cells (Treg), which could seriously hamper clinical efficacy. To address this possibility, we developed a novel assay to detect antigen-specific Treg based on down-regulation of surface CD3 following TCR engagement, and used this approach to screen for Treg specific to the NY-ESO-1 tumor antigen in melanoma patients treated with the NY-ESO-1/ISCOMATRIX™ cancer vaccine. All patients tested had Treg (CD25(bright) FoxP3(+) CD127(neg)) specific for at least one NY-ESO-1 epitope in the blood. Strikingly, comparison with pre-treatment samples revealed that many of these responses were induced or boosted by vaccination. The most frequently detected response was toward the HLA-DP4-restricted NY-ESO-1(157-170) epitope, which is also recognized by effector T cells. Notably, functional Treg specific for an HLA-DR-restricted epitope within the NY-ESO-1(115-132) peptide were also identified at high frequency in tumor tissue, suggesting that NY-ESO-1-specific Treg may suppress local anti-tumor immune responses. Together, our data provide compelling evidence for the ability of a cancer vaccine to expand tumor antigen-specific Treg in the setting of advanced cancer, a finding which should be given serious consideration in the design of future cancer vaccine clinical trials.

  8. Exploration of graphene oxide as an intelligent platform for cancer vaccines.

    Science.gov (United States)

    Yue, Hua; Wei, Wei; Gu, Zonglin; Ni, Dezhi; Luo, Nana; Yang, Zaixing; Zhao, Lin; Garate, Jose Antonio; Zhou, Ruhong; Su, Zhiguo; Ma, Guanghui

    2015-12-21

    We explored an intelligent vaccine system via facile approaches using both experimental and theoretical techniques based on the two-dimensional graphene oxide (GO). Without extra addition of bio/chemical stimulators, the microsized GO imparted various immune activation tactics to improve the antigen immunogenicity. A high antigen adsorption was acquired, and the mechanism was revealed to be a combination of electrostatic, hydrophobic, and π-π stacking interactions. The "folding GO" acted as a cytokine self-producer and antigen reservoir and showed a particular autophagy, which efficiently promoted the activation of antigen presenting cells (APCs) and subsequent antigen cross-presentation. Such a "One but All" modality thus induced a high level of anti-tumor responses in a programmable way and resulted in efficient tumor regression in vivo. This work may shed light on the potential use of a new dimensional nano-platform in the development of high-performance cancer vaccines.

  9. Vector prime/protein boost vaccine that overcomes defects acquired during aging and cancer

    DEFF Research Database (Denmark)

    Tang, Y.; Akbulut, H.; Maynard, J.;

    2006-01-01

    decrement of negative regulatory CD4CD25FOXP3-T cells in the tumor tissue of 18-mo-old mice. These results suggest that the Ad-sig-TAA/ecdCD40L vector prime-TAA/ecdCD40L protein boost vaccine platform may be valuable in reducing postsurgery recurrence in a variety of epithelial neoplasms....... following the Ad-sig-TAA/ecdCD40L vector, the levels of the TAA-specific CD8 T cells and Abs increase dramatically over that seen with vector alone, in young (2-mo-old) as well as old (18-mo-old) mice. The Abs induced against hMUC-1 react with human breast cancer. This vaccine also induces a 4-fold...

  10. Coping strategies of long-term cancer survivors.

    Science.gov (United States)

    Halstead, M T; Fernsler, J I

    1994-04-01

    Cancer survival is a stressful experience requiring coping for the maintenance of equilibrium. Lazarus' Theory of Stress and Coping was the framework for this descriptive study of the use and effectiveness of coping strategies as assessed by long-term survivors of cancer. The Jalowiec Coping Scale (JCS) and a subject information sheet (SIS) were mailed to 128 potential subjects, identified by the snowball technique, who survived cancer for > 5 years, were not currently receiving therapy, and were not in a terminal stage of disease. Fifty-nine subjects with a mean survival of 13.03 years correctly completed and returned the questionnaire and were included in data analysis. Respondents were predominantly white (88.1%), female (83.7%), married (72.8%), employed as professionals (57.8%), 41-65 years of age (59.3%), and diagnosed with breast cancer (50.8%). Subjects rated optimistic, supportive, and confrontive strategies as most often used and effective. Length of survival did not result in different choices of strategies. Statistically significant differences were found in coping styles between elderly and middle-aged survivors. Results of this study increase nurses' awareness of effective coping strategies and the importance of assessment of coping in long-term survivors of cancer. The importance of social support, spirituality, and helping others is emphasized.

  11. Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination.

    Science.gov (United States)

    Meunier, M; Guyard-Nicodème, M; Dory, D; Chemaly, M

    2016-05-01

    Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union, and ranks second in the United States only behind salmonellosis. In Europe, there are about nine million cases of campylobacteriosis every year, making the disease a major public health issue. Human cases are mainly caused by the zoonotic pathogen Campylobacter jejuni. The main source of contamination is handling or consumption of poultry meat. Poultry constitutes the main reservoir of Campylobacter, substantial quantities of which are found in the intestines following rapid, intense colonization. Reducing Campylobacter levels in the poultry chain would decrease the incidence of human campylobacteriosis. As primary production is a crucial step in Campylobacter poultry contamination, controlling the infection at this level could impact the following links along the food chain (slaughter, retail and consumption). This review describes the control strategies implemented during the past few decades in primary poultry production, including the most recent studies. In fact, the implementation of biosecurity and hygiene measures is described, as well as the immune strategy with passive immunization and vaccination trials and the nutritional strategy with the administration of organic and fatty acids, essential oil and plant-derived compound, probiotics, bacteriocins and bacteriophages. PMID:26541243

  12. 肿瘤疫苗免疫策略研究进展%Research progress of tumor vaccine strategy

    Institute of Scientific and Technical Information of China (English)

    司春枫; 鲁美钰; 周玲; 徐茂磊; 杨小平

    2016-01-01

    随着免疫学的发展以及对肿瘤发生发、展机理的进一步认识,肿瘤疫苗已成为肿瘤治疗新的研究热点。相比于传统的放化疗,手术切除等手段,肿瘤疫苗具有特异性强,抗瘤谱广,耐受性低等优点。肿瘤疫苗主要通过调节机体的免疫反应,促进 T 细胞增殖和活化及细胞因子释放发挥作用,可以显著抑制肿瘤生长和转移,临床试验结果显示已取得一定效果。肿瘤疫苗免疫手段主要包括肿瘤细胞疫苗、树突状细胞疫苗、DNA 疫苗、多肽疫苗、CTL 表位肽疫苗、靶向肿瘤新生血管疫苗等。本文主要对肿瘤疫苗治疗的免疫学基础、作用特点、研究进展及应用现状作一综述。%Along with the development of immunology and further understanding of the mechanism of tumorigenesis, tumor vaccine has become a new research focus of cancer treatment.Compared with the traditional therapies such as radiotherapy,chemotherapy,surgical and other means,tumor vaccine has the characteristic of strong specificity,broad antitumor spectrum and low tolerance.Tumor vaccine can significantly inhibit tumor growth and metastasis mainly through regulating the immune response,promoting T cell proliferation and activation and cytokine release,and has ob-tained some achievements in clinical trails.Tumor vaccines mainly include tumor cell vaccine,dendritic cell vaccine, DNA vaccine,peptide vaccine,CTL epitope vaccine,anti -angiogenesis of tumor vaccine and so on.This article main-ly reviews immunology foundation of tumor immunotherapy,function characteristics,research progress and application status of tumor vaccines.

  13. Exploration of graphene oxide as an intelligent platform for cancer vaccines

    Science.gov (United States)

    Yue, Hua; Wei, Wei; Gu, Zonglin; Ni, Dezhi; Luo, Nana; Yang, Zaixing; Zhao, Lin; Garate, Jose Antonio; Zhou, Ruhong; Su, Zhiguo; Ma, Guanghui

    2015-11-01

    We explored an intelligent vaccine system via facile approaches using both experimental and theoretical techniques based on the two-dimensional graphene oxide (GO). Without extra addition of bio/chemical stimulators, the microsized GO imparted various immune activation tactics to improve the antigen immunogenicity. A high antigen adsorption was acquired, and the mechanism was revealed to be a combination of electrostatic, hydrophobic, and π-π stacking interactions. The ``folding GO'' acted as a cytokine self-producer and antigen reservoir and showed a particular autophagy, which efficiently promoted the activation of antigen presenting cells (APCs) and subsequent antigen cross-presentation. Such a ``One but All'' modality thus induced a high level of anti-tumor responses in a programmable way and resulted in efficient tumor regression in vivo. This work may shed light on the potential use of a new dimensional nano-platform in the development of high-performance cancer vaccines.We explored an intelligent vaccine system via facile approaches using both experimental and theoretical techniques based on the two-dimensional graphene oxide (GO). Without extra addition of bio/chemical stimulators, the microsized GO imparted various immune activation tactics to improve the antigen immunogenicity. A high antigen adsorption was acquired, and the mechanism was revealed to be a combination of electrostatic, hydrophobic, and π-π stacking interactions. The ``folding GO'' acted as a cytokine self-producer and antigen reservoir and showed a particular autophagy, which efficiently promoted the activation of antigen presenting cells (APCs) and subsequent antigen cross-presentation. Such a ``One but All'' modality thus induced a high level of anti-tumor responses in a programmable way and resulted in efficient tumor regression in vivo. This work may shed light on the potential use of a new dimensional nano-platform in the development of high-performance cancer vaccines. Electronic

  14. Oral attenuated Salmonella typhimurium vaccine against MG7-Ag mimotope of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Fan-Ping Meng; Jie Ding; Zhao-Cai Yu; Quan-Li Han; Chang-Cun Guo; Na Liu; Dai-Ming Fan

    2005-01-01

    AIM: To develop an oral attenuated Salmonella typhimurium vaccine against gastric cancer and to evaluate its efficacy in mice.METHODS: A complementary sequence of Nco I site and a sequence coding for MG7-Ag mimotope were designed at the 5' terminus of forward primer. Using p1.2 Ⅱ-HBCAg plasmid as template, PCR was performed to get a fusion gene of the mimotope and a HBcAg gene. The fusion gene was then subcloned into the plasmid pYA3341complementary to Salmonella typhimurium X4550, and the recombinant plasmid was then transformed into attenuated Salmonella typhimurium X4550. Balb/c mice were orally immunized with the recombinant Salmonella typhimurium X4550. The mice were immunized every 2 wk to reinforce the immunity. At the 6th wk, serum titer of antibody was detected by ELISA, and at the 8th wk,cellular immunity was detected by 51Cr release test. Ehrlich ascites carcinoma cells expressing MG7-Ag were used in tumor challenge assay as a model to evaluate the protective effect of the vaccine.RESULTS: Serum titer of antibody against MG7-Ag was significantly higher in mice immunized with the vaccine than in control groups (0.9538±0.043 vs0.6531±0.018,P<0.01; 0.9538±0.043 vs0.6915±0.012, P<0.01), while in vitro 51Cr release assay of the splenocytes showed no statistical difference in the three groups. Two weeks after tumor challenge, 1 in 5 immunized mice was tumor free, while all the mice in the control group presented tumor.CONCLUSION: Oral attenuated Salmonella typhimurium vaccine against the MG7-Ag mimotope of gastric cancer is immunogenic. It can induce significant humoral immunity against tumors in mice, and has some protective effects.

  15. Profile and retrospective analysis of the use of preventive strategies in patients with cervical cancer in South-South Nigeria

    Directory of Open Access Journals (Sweden)

    Bassey Goddy

    2015-01-01

    Full Text Available Background: Cervical cancer is the commonest malignancy of the female genital tract in developing countries, with a global burden of 530,000 new cases annually. This study aims to review the current situation of this important malignancy and to assess the previous use of preventive measures in patients with cervical cancer at the Port Harcourt Teaching Hospital (UPTH, Port Harcourt, Nigeria. Materials and Methods: This was a retrospective review of all cases of cervical cancer managed at the UPTH, Port Harcourt, Nigeria, between 1 January 2008 and 31 December, 2012. Results: The prevalence of cervical cancer was 3.53% of all gynaecological admissions. The peak age of incidence was 50-59 years, accounting for 40% of the study population. Women with high parity contributed to 93.3% of the study population. Early coitarche was observed in 78.7% and a history of multiple sexual partners in 65.3%. Vaginal bleeding was the commonest clinical feature seen in all the women studied, followed by pelvic pain in 84% of cases. Advanced-stage cervical cancer was seen in 93.4%. None of the women studied had been previously vaccinated against human papilloma virus (HPV, and only 1.3% had had any form of screening methods for early detection of cervical cancer. Conclusion: Cervical cancer remains an important cancer in our environment, and late presentation with advance disease is still the norm despite advances in screening and preventive modalities. The reason for this is buttressed on the finding that despite the availability of these preventive strategies, women in the South-South of Nigeria did not partake of these measures. There is an urgent need to develop programmes to re-sensitise women on the need for screening and vaccination to reduce cancer-associated morbidity and mortality in Port Harcourt, South-South Nigeria.

  16. IS IT NECESSARY TO VACCINATE CHILDREN AGAINST HEPATITIS A ROUTINELY IN PRESENT TIME? THE EVALUATION OF RESULTS OF SUCH STRATEGY OF HEPATITIS A VACCINE PROPHYLAXIS IN SELECTED REGIONS OF THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    I. V. Shakhgildian

    2011-01-01

    Full Text Available Abstract. Data about efficacy of conducting of routine vaccination of children against Hepatitis A are presented in the article. The results of realization such strategy of vaccine prevention of Hepatitis A in selected regions of Russian Federation are evaluated. The perspectives of using this experience in other regions of the country is discussed.

  17. Strategy against micrometastasis of epithelial cancer: Detection and elimination

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tumor metastasis is generally agreed to be the major cause of cancer death. Over the last few years, studies of new diagnosis techniques and tumor immunotherapy have made great progress. Recent clinical studies on the occult metastases of breast, lung and colorectal cancer all suggested that the detection of micrometastases in bone marrow is prognostically important and provides substantial evidence of tumor dissemination. On the other hand, two kinds of the mAb-based immunotherapy have been approved for the treatment against epithelial cancer. Monoclonal antibody (mAb) 17-1A for colorectal carcinomas and mAb herceptin for breast cancer both have produced good curative effects. Potential therapeutics based on some antibodies with prominent antitumor activity also has shown obvious clinical effect. These studies indicate that detection of micrometastasis in circulatory system and immunotherapy by eliminating metastatic malignant cells suggested a new strategy against the metastatic cancer.

  18. Experimental vaccines for sexually transmitted infections

    Directory of Open Access Journals (Sweden)

    Jovanović Marina

    2009-01-01

    Full Text Available Introduction. Sexually transmitted infections (STIs are major global public health problems. Present strategies for prevention have limitations. Vaccines are an attractive addition to the current prevention armamentarium because they provide durable protection and do not require repetitive adherence to be effective. Challenges for vaccination include induction and long-term maintaince of mucosal immune responses in the female genital tract. Vaccines: a realistic goal?. For the time being, US Centers for Disease Control and Prevention have recommended only hepatitis and HPV immunization to be routinely offered. Final, III stage trials are underway on other prophylactic vaccines for human papillomavirus and genital herpes. Though vaccines against Chlamydia trachomatis and Neisseria gonorrhoeae are in early stages of development they do offer the hope of preventing pelvic inflammations. The high incidence of HIV-infection for which a vaccine would not be readily available, 'cries out' for an effective vaccine. Vaccines for HPV infections. According to a recent meta-analysis of worldwide prevalence data, vaccinating with HPV-16/18 VLP against HPV-16 and HPV-18 could prevent over 70% of invasive cervical cancer worldwide. The latest release of data from the phase III trial of a quadrivalent recombinant non-infectious vaccine HPV-6/11/ 16/18 L1 VLP, including HPV types 6,11,16,18 have given complete protection against HPV-16/18-related cervical intraepithelial neoplasias 1, 2/3, and adenocarcinoma in situ and cancer through 2 years of post-vaccination follow up. Conclusion. Despite the fact that the development of vaccines for STI prevention was rather slow in the past, the ideal vaccine would decrease transmission of the infection between partners and would prevent complications of disease. Moreover, in future decades, increasingly successful universal vaccination of newborns and children will substantially reduce the need for vaccination of persons

  19. COPING STRATEGIES IN PATIENTS WITH PROSTATE CANCER

    OpenAIRE

    J. R. Gardanova; I. I. Abdullin; D. N. Chernov; Chernov, A. V.; Y. I. Kekteeva

    2015-01-01

    Diagnostics of psycho-emotional disorders of patients with malignant diseases of the prostate is not doubt, because timely correction contributes to the shortening of rehabilitation period and restoration of the quality of life of patients after treatment. Detection and diagnosis of prostate cancer for many patients is stressful and causes changes in the affective sphere, and manifests itself in increased levels of anxiety and depression in men. To cope with stress is possible due to the used...

  20. Optimized oral cholera vaccine distribution strategies to minimize disease incidence: A mixed integer programming model and analysis of a Bangladesh scenario.

    Science.gov (United States)

    Smalley, Hannah K; Keskinocak, Pinar; Swann, Julie; Hinman, Alan

    2015-11-17

    In addition to improved sanitation, hygiene, and better access to safe water, oral cholera vaccines can help to control the spread of cholera in the short term. However, there is currently no systematic method for determining the best allocation of oral cholera vaccines to minimize disease incidence in a population where the disease is endemic and resources are limited. We present a mathematical model for optimally allocating vaccines in a region under varying levels of demographic and incidence data availability. The model addresses the questions of where, when, and how many doses of vaccines to send. Considering vaccine efficacies (which may vary based on age and the number of years since vaccination), we analyze distribution strategies which allocate vaccines over multiple years. Results indicate that, given appropriate surveillance data, targeting age groups and regions with the highest disease incidence should be the first priority, followed by other groups primarily in order of disease incidence, as this approach is the most life-saving and cost-effective. A lack of detailed incidence data results in distribution strategies which are not cost-effective and can lead to thousands more deaths from the disease. The mathematical model allows for what-if analysis for various vaccine distribution strategies by providing the ability to easily vary parameters such as numbers and sizes of regions and age groups, risk levels, vaccine price, vaccine efficacy, production capacity and budget. PMID:26458806

  1. Forced co-expression of IL-21 and IL-7 in whole-cell cancer vaccines promotes antitumor immunity.

    Science.gov (United States)

    Gu, Yang-Zhuo; Fan, Chuan-Wen; Lu, Ran; Shao, Bin; Sang, Ya-Xiong; Huang, Qiao-Rong; Li, Xue; Meng, Wen-Tong; Mo, Xian-Ming; Wei, Yu-Quan

    2016-01-01

    Genetic modification of whole-cell cancer vaccines to augment their efficacies has a history of over two and a half decades. Various genes and gene combinations, targeting different aspects of immune responses have been tested in pursuit of potent adjuvant effects. Here we show that co-expression of two cytokine members of the common cytokine receptor γ-chain family, IL-21 and IL-7, in whole-cell cancer vaccines boosts antitumor immunity in a CD4(+) and CD8(+) T cell-dependent fashion. It also generates effective immune memory. The vaccine-elicited short-term effects positively correlated with enhanced infiltration of CD4(+) and CD8(+) effector T cells, and the long-term effects positively correlated with enhanced infiltration of effector memory T cells, especially CD8(+) effector memory T cells. Preliminary data suggested that the vaccine exhibited good safety profile in murine models. Taken together, the combination of IL-21 and IL-7 possesses potent adjuvant efficacy in whole-cell vaccines. This finding warrants future development of IL-21 and IL-7 co-expressing whole-cell cancer vaccines and their relevant combinatorial regimens. PMID:27571893

  2. Coping Strategies in Egyptian Ladies with Breast Cancer

    OpenAIRE

    Elsheshtawy, Eman A.; Abo-Elez, Warda F.; Hala S. Ashour; Omar Farouk; Maha l. Esmael El zaafarany

    2014-01-01

    INTRODUCTION A diagnosis of breast cancer regardless of the stage can be stressful, impact multiple spheres of life, and disrupt physical status, emotional and spiritual well-being, and personal relationships for the patient and family. In order to adapt, the patient ought to employ certain coping mechanisms. Individuals with terminal illness who utilize coping strategies have better quality of life compared to those who do not. PATIENTS AND METHODS This study aimed to determine the strategie...

  3. An update of cost-effectiveness of rotavirus vaccination in indonesia: Takinga birth-dose vaccination strategy into account

    NARCIS (Netherlands)

    Suwantika, A.A.; Setiawan, D.; Atthobari, J.; Postma, M.J.

    2014-01-01

    Objectives: Rotavirus infection was reported as the major cause of severe diarrhea in children under 5-years-old in Indonesia. A low cost rotavirus vaccine to protect infants from birth has been developed for developing countries, such as Indonesia. This study aims to update our initial analysis on

  4. Royal College of Radiologists Annual Undergraduate Essay Prize. Melanoma: the new smallpox? Can vaccines be used to treat melanoma?

    Science.gov (United States)

    Forbes, Gareth

    2002-02-01

    This essay assesses the effectiveness of vaccine therapy for melanoma. Risks and benefits of various vaccine strategies are explored, as are the processes by which such therapies are assessed. An overview of cancer immunobiology underlying vaccine therapy is given. PMID:11898780

  5. Phase I trial of thymidylate synthase poly-epitope peptide (TSPP) vaccine in advanced cancer patients.

    Science.gov (United States)

    Cusi, Maria Grazia; Botta, Cirino; Pastina, Pierpaolo; Rossetti, Maria Grazia; Dreassi, Elena; Guidelli, Giacomo Maria; Fioravanti, Antonella; Martino, Elodia Claudia; Gandolfo, Claudia; Pagliuchi, Marco; Basile, Assunta; Carbone, Salvatore Francesco; Ricci, Veronica; Micheli, Lucia; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Pirtoli, Luigi; Correale, Pierpaolo

    2015-09-01

    Thymidylate synthase (TS) poly-epitope peptide (TSPP) is a 27-mer peptide vaccine containing the amino acidic sequences of three epitopes with HLA-A2.1-binding motifs of TS, an enzyme overexpressed in cancer cells, which plays a crucial role in DNA repair and replication. Based on the results of preclinical studies, we designed a phase Ib trial (TSPP/VAC1) to investigate, in a dose escalation setting, the safety and the biological activity of TSPP vaccination alone (arm A) or in combination with GM-CSF and IL-2 (arm B) in cancer patients. Twenty-one pretreated metastatic cancer patients, with a good performance status (ECOG ≤ 1) and no severe organ failure or immunological disease, were enrolled in the study (12 in arm A, nine in arm B) between April 2011 and January 2012, with a median follow-up of 28 months. TSPP resulted safe, and its maximal tolerated dose was not achieved. No grade 4 toxicity was observed. The most common adverse events were grade 2 dermatological reactions to the vaccine injection, cough, rhinitis, fever, poly-arthralgia, gastro-enteric symptoms and, to a lesser extent, moderate hypertension and hypothyroidism. We detected a significant rise in auto-antibodies and TS-epitope-specific CTL precursors. Furthermore, TSPP showed antitumor activity in this group of pretreated patients; indeed, we recorded one partial response and seven disease stabilizations (SD) in arm A, and three SD in arm B. Taken together, our findings provide the framework for the evaluation of the TSPP anti-tumor activity in further disease-oriented clinical trials. PMID:26031574

  6.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup;

    2008-01-01

    Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine hydro...... show effective therapeutic vaccination against neuroblastoma with a novel rationally designed TH minigene vaccine without induction of autoimmunity providing an important baseline for future clinical application of this strategy....

  7. T-Regulatory Cells and Vaccination “Pay Attention and Do Not Neglect Them”: Lessons from HIV and Cancer Vaccine Trials

    Directory of Open Access Journals (Sweden)

    Vedran Brezar

    2016-09-01

    Full Text Available Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular and T-regulatory cells (Tregs. While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models.

  8. T-Regulatory Cells and Vaccination “Pay Attention and Do Not Neglect Them”: Lessons from HIV and Cancer Vaccine Trials

    Science.gov (United States)

    Brezar, Vedran; Godot, Véronique; Cheng, Liang; Su, Lishan; Lévy, Yves; Seddiki, Nabila

    2016-01-01

    Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models. PMID:27608046

  9. [Staging Based Strategies and Practice for Prostate Cancer].

    Science.gov (United States)

    Chen, Zhi-qiang; Wang, Shu-sheng; Bai, Zun-guang; Wang, Zhao-hui; Lv, Li-guo; Gu, Chi-ming; Xiang, Song-tao; Dai, Rui-xin; Zhu, Shou-lun

    2016-06-01

    Authors raised that staging based strategies and practice of integrative medicine (IM) by combining syndrome typing and disease identification, and choosing suitable measures in accordance with different persons and seasonal conditions after more than ten years' clinical practice and researches. Radical operation as prior (as evil eliminating) and strengthening vital qi in perioerative period are best strategy for promoting rapid rehabilitation of early stage prostate cancer patients. Strengthening body resistance to eliminate evil was used in treating advanced prostate cancer patients. For example, a comprehensive treatment program for hormone-dependent patients was combined with endocrinotherapy and Chinese herbs for synergisic efficacy-enhancing actions. In this way, these patients' quality of life (QOL) were improved and time to castration resistant prostate cancer (CRPC) was delayed, even some patients were clinically cured. There are lack of effective medicines and methods for CRPC patients. Greatly tonifying original qi is mainly used for improving their clinical symptoms and prolonging survivals. Practice has proved staging based strategies and practice of IM has favorable advantages in treating prostate cancer, especially showing prospect in prolonging survival and postponing progression of advanced prostate cancer patients. Besides, it also could provide beneficial considerations and inspiration for combination of syndrome typing and disease identification. PMID:27491237

  10. Vaccination strategies against myxomavirus infections: are we really doing the best?

    Science.gov (United States)

    Marlier, D

    2010-03-01

    Vaccination is the best way to control myxomatosis in both pet and production rabbits. Two types of myxomatosis vaccines are commercially available, namely, a vaccine prepared from the Shope fibroma virus (SFV) and one prepared from an attenuated myxoma virus (MV) strain, e.g., SG33. The first one is weakly immunogenic and provides only short-term protection whereas atypical reactions have been described with the second one. This short review describes the vaccine strains and provides some data on the host-virus relationship, resistance, and immunity in myxomatosis. In the last section, recommended myxomatosis vaccination schemes for production and pet animals are presented. PMID:20334023

  11. Endoscopic surveillance strategy after endoscopic resection for early gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Tsutomu; Nishida; Masahiko; Tsujii; Motohiko; Kato; Yoshito; Hayashi; Tomofumi; Akasaka; Hideki; Iijima; Tetsuo; Takehara

    2014-01-01

    Early detection of early gastric cancer(EGC)is important to improve the prognosis of patients with gastric cancer.Recent advances in endoscopic modalities and treatment devices,such as image-enhanced endoscopy and high-frequency generators,may make endoscopic treatment,such as endoscopic submucosal dissection,a therapeutic option for gastric intraepithelial neoplasia.Consequently,short-term outcomes of endoscopic resection(ER)for EGC have improved.Therefore,surveillance with endoscopy after ER for EGC is becoming more important,but how to perform endoscopic surveillance after ER has not been established,even though the follow-up strategy for more advanced gastric cancer has been outlined.Therefore,a surveillance strategy for patients with EGC after ER is needed.

  12. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mauricio P. Pinto

    2016-09-01

    Full Text Available Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1 upregulation of compensatory/alternative pathways for angiogenesis; (2 vasculogenic mimicry; and (3 vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.

  13. Phage Particles as Vaccine Delivery Vehicles: Concepts, Applications and Prospects.

    Science.gov (United States)

    Jafari, Narjes; Abediankenari, Saeid

    2015-01-01

    The development of new strategies for vaccine delivery for generating protective and long-lasting immune responses has become an expanding field of research. In the last years, it has been recognized that bacteriophages have several potential applications in the biotechnology and medical fields because of their intrinsic advantages, such as ease of manipulation and large-scale production. Over the past two decades, bacteriophages have gained special attention as vehicles for protein/peptide or DNA vaccine delivery. In fact, whole phage particles are used as vaccine delivery vehicles to achieve the aim of enhanced immunization. In this strategy, the carried vaccine is protected from environmental damage by phage particles. In this review, phage-based vaccine categories and their development are presented in detail, with discussion of the potential of phage-based vaccines for protection against microbial diseases and cancer treatment. Also reviewed are some recent advances in the field of phage- based vaccines.

  14. Synopsis of the 6th Walker's Cay Colloquium on Cancer Vaccines and Immunotherapy

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2004-06-01

    Full Text Available Abstract The 6th annual Cancer Vaccines and Immunotherapy Colloquium at Walker's Cay was held under the auspices of the Albert B. Sabin Vaccine Institute on March 10–13, 2004. The Colloquium consisted of a select group of 34 scientists representing academia, biotechnology and pharmaceutical industry. The main goal of this gathering was to promote in a peaceful and comfortable environment exchanges between basic and clinical science. The secondary benefit was to inspire novel bench to bedside ventures and at the same time provide feed back about promising and/or disappointing clinical results that could help re-frame some scientific question or guide the design of future trials. Several topics were covered that included tumor antigen discovery and validation, platforms for vaccine development, tolerance, immune suppression and tumor escape mechanisms, adoptive T cell therapy and dendritic cell-based therapies, clinical trials and assessment of response. Here we report salient points raised by speakers or by the audience during animated discussion that followed each individual presentation.

  15. Anti-Tumor Effects of Peptide Therapeutic and Peptide Vaccine Antibody Co-targeting HER-1 and HER-2 in Esophageal Cancer (EC and HER-1 and IGF-1R in Triple-Negative Breast Cancer (TNBC

    Directory of Open Access Journals (Sweden)

    Jay Overholser

    2015-07-01

    Full Text Available Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC and triple-negative breast cancer (TNBC. Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety. Specifically, we postulate that novel combination treatments targeting members of the EGFR family and IGF-1R will yield significant anti-tumor effects in in vitro models of EC and TNBC possibly overcoming mechanisms of resistance. We show that the combination of HER-1 and HER-2 or HER-1 and IGF-1R peptide mimics/vaccine antibodies exhibited enhanced antitumor properties with significant inhibition of tumorigenesis in OE19 EC and MDA-MB-231 TNBC cell lines. Our work elucidates the mechanisms of HER-1/IGF-1R and HER-1/HER-2 signaling in these cancer cell lines, and the promising results support the rationale for dual targeting with HER-1 and HER-2 or IGF-1R as an improved treatment regimen for advanced therapy tailored to difference types of cancer.

  16. Get Vaccinated! and Get Tested! Developing Primary and Secondary Cervical Cancer Prevention Videos for a Haitian Kreyòl-Speaking Audience.

    Science.gov (United States)

    Frett, Brigitte; Aquino, Myra; Fatil, Marie; Seay, Julia; Trevil, Dinah; Fièvre, Michèle Jessica; Kobetz, Erin

    2016-05-01

    Although routine screening reduces cervical cancer rates between 60% and 90%, thousands of women worldwide are diagnosed with the disease on an annual basis because of inadequate screening. Haitian women in South Florida experience a disproportionate burden of cervical cancer, with disease rates 4 times higher than the average for women in Miami. An ongoing community-based participatory research initiative to assess and reduce this burden has revealed that a complex interplay of factors contributes to a lack of access to screening in this community, including socioeconomics, language barriers, and traditional understandings of health and disease. In an effort to address some of these barriers and encourage uptake of primary and secondary cervical cancer prevention strategies, 2 videos on cervical cancer prevention were created using a community-based participatory research framework. The video screenplays were created by a Haitian screenwriter using evidence-based medical information provided by academic researchers. The films feature Haitian actors speaking a Haitian Kreyòl dialogue with a storyline portraying friends and family discussing human papillomavirus disease and vaccination, Papanicolaou testing, and cervical cancer. Focus groups held with Haitian women in South Florida suggested that the films are engaging; feature relatable characters; and impact knowledge about human papillomavirus, cervical cancer development, and current prevention recommendations.

  17. Current strategies for the prevention of breast cancer

    Directory of Open Access Journals (Sweden)

    Advani P

    2014-05-01

    Full Text Available Pooja Advani, Alvaro Moreno-AspitiaDepartment of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USAAbstract: Due to the high incidence of breast cancer in the United States, optimal strategies for its prevention are imperative. This entails identification of women who are at an increased risk for breast cancer and an integrative approach that includes effective screening methods as well as nutritional, pharmacologic, and surgical management. Several breast cancer risk-assessment tools, such as the Gail and Claus models, can help clinicians determine the quantitative risk of breast cancer. The role of selective estrogen receptor modulators, such as tamoxifen and raloxifene, for the prevention of breast cancer has been well established. Several other agents, such as aromatase inhibitors, are currently being investigated. The potential adverse effects of these chemopreventive agents, which include an impact on the quality of life, must be discussed with the patient before deciding on this approach. Additionally, breast cancer risk factors have been identified over the years; some of them are modifiable, but others are not. Although there is no conclusive evidence to suggest the protective role of specific dietary components, alcohol consumption and obesity are associated with an increased breast cancer risk; thus lifestyle changes can lead to a lower risk of developing breast cancer. Surgical approaches, including bilateral risk-reduction mastectomy and salpingo-oophorectomy, are usually limited to women with a hereditary predisposition to development of breast cancer. The objective of this review is to summarize the various approaches directed at reducing the incidence of breast cancer.Keywords: chemoprevention, tamoxifen, raloxifene, prophylactic surgery

  18. Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines

    Directory of Open Access Journals (Sweden)

    Chang Wei-Ting

    2011-06-01

    Full Text Available Abstract Background Damage-associated molecular patterns (DAMPs are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs. Specific microtubule-depolymerizing agents (MDAs such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs. Methods In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine. Results The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT. DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs. Conclusions Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.

  19. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    Directory of Open Access Journals (Sweden)

    Iole Macchia

    2013-01-01

    Full Text Available The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs and tumor-associated antigens (TAAs and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM- based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma.

  20. Cancer Vaccine:promise in the 21st Century%癌症疫苗:21世纪征服癌症的希望

    Institute of Scientific and Technical Information of China (English)

    曾钢

    2001-01-01

    Cancer vaccine,the idea of utilizing the immune system to prevent and/or treat human cancers has been proposed for nearly a century.Only since the last decasde,the discovery of tumor-associated antigens has helped us to understand the molecular details of tumor-immune system interaction as well as provided new opportunities for cancer vaccine development.Cancer vaccine has seen remarked progress in both basic scientific research and clinical trials based on the discoveries of these studies.Inaddition,more and more efforts from industry are being made to the commercialization of these discoverise.Cancer vaccine,in combination with surgery,chemotherapy and rediation therapy may potentially provide effective treatment to most human cancers in the 21st century.

  1. Antitumor immunity by a dendritic cell vaccine encoding secondary lymphoid chemokine and tumor lysate on murine prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Qi Zhang; Chun-Min Liang; Shu-Jie Xia; Cui-Ping Zhong; Da-Wei Wang

    2008-01-01

    Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were transfected with a plasmid vector expressing secondary lymphoid chemokine (SLC) cDNA by Lipofectamine2000 liposome and tumor lysate. Total RNA extracted from SLC+lysate-DC was used to verify the expression of SLC by reverse transcriptase-polymerase chain reaction (RT-PCR). The immunotherapeutic effect of DC vaccine on murine prostate cancer was assessed. Results: We found that in the prostate tumor model of C57BL/6 mice, the adminstration of SLC+lysate-DC inhibited tumor growth most significantly when compared with SLC-DC, lysate-DC, DC or phos-phate buffer solution (PBS) counterparts (P<0.01). Immunohistochemical fluorescent staining analysis showed the infiltration of more CD4+, CD8+ T cell and CD11c+ DC within established tumor treated by SLC+lysate-DC vaccine than other DC vaccines (P<0.01). Conclusion: DC vaccine encoding secondary lymphoid chemokine and tumor lysate can elicit significant antitumor immunity by infiltration of CD4+, CD8+ T cell and DC, which might provide a potential immunotherapy method for prostate cancer.

  2. Cancer-related fatigue: prevalence, assessment and treatment strategies.

    Science.gov (United States)

    Weis, Joachim

    2011-08-01

    Cancer-related fatigue (CRF) is one of the most common symptoms reported by patients and is defined as the feeling of extraordinary exhaustion associated with a high level of distress, disproportionate to the patients' activity, and is not relieved by sleep or rest. Prevalence rates range from 59 to nearly 100% depending on the clinical status of the cancer. Except for chemotherapy-induced anemia, the mechanisms responsible for CRF are not yet completely understood. Therefore, CRF may be influenced by multiple possible somatic and psychosocial factors. CRF has been shown as either a short-term side effect of adjuvant cancer therapy or a chronic long-term late effect. Compared with other symptoms, such as pain or nausea, CRF is more distressing and often long lasting, with a strong impact on daily living and quality of life. The concept of fatigue has been widely elaborated and operationalized in different dimensions within the last few decades and specific instruments assessing fatigue in cancer populations have been developed. To support patients and alleviate CRF symptoms various treatment strategies are discussed in this article, including information and counseling, enhancement of activities, exercise and sports therapy, psychosocial interventions as well as pharmacological treatment. In most Western countries, treatment of CRF has been identified as a priority for advancing cancer patient care. This article gives an overview of the concept of CRF, its pathogenesis, assessment and treatment strategies. PMID:21831025

  3. The new first-line defense: the potential of nasopharyngeal colonization in vaccine strategies

    Directory of Open Access Journals (Sweden)

    Chan WY

    2016-10-01

    Full Text Available Win-Yan Chan, Jonathan M Cohen, Jeremy S Brown Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, London, UK Abstract: Pathogens that can colonize the upper respiratory tract include Streptococcus pneumoniae, Hemophilus influenzae, Neisseria meningitidis, Moraxella catarrhalis, and Staphylococcus aureus. While these pathogens commonly asymptomatically colonize the nasopharynx of healthy adults, disease progression may occur in some individuals. In addition to these respiratory pathogens, there are a large number of commensal species also found in the upper respiratory tract which only very rarely cause disease, creating a complex community of bacterial species in the nasopharynx. This review addresses the novel, potential strategies that utilize the interactions between both homologous and heterologous species in the nasopharynx to vaccinate individuals against pathogenic bacteria. These strategies include the mechanisms employed by colonizing bacteria to regulate the presence of other species in the nasopharynx and the effect that colonization of the nasopharynx has on the host immune response. Interventional strategies investigated so far include the introduction of nonpathogenic bacteria to the nasopharynx to immunize against a closely related species, controlled colonization using both wild-type and attenuated species, and the use of other nonpathogenic colonizers to express antigens from potential pathogens. All these approaches harness the ability of the colonization to induce a mucosal immune response that can protect against future infection. In this review, S. pneumoniae and N. meningitidis colonization are used as case studies for this approach as the immunological effects of colonization have been widely studied in animal and human models. Colonization-based strategies have great potential, and, in particular, the attenuated strain approach has produced some encouraging data

  4. Cancer immunotherapy: Strategies for personalization and combinatorial approaches.

    Science.gov (United States)

    Sathyanarayanan, Vishwanath; Neelapu, Sattva S

    2015-12-01

    The results of recent clinical trials using novel immunotherapy strategies such as immune checkpoint blockade and adoptive T-cell therapy approaches including CAR T-cell therapy have clearly established immunotherapy as an important modality for the treatment of cancer besides the traditional approaches of surgery, radiotherapy, and chemotherapy or targeted therapy. However, to date immunotherapy has been shown to induce durable clinical benefit in only a fraction of the patients. The use of combination strategies is likely to increase the number of patients that might benefit from immunotherapy. Indeed, over the last decade, the characterization of multiple immune resistance mechanisms used by the tumor to evade the immune system and the development of agents that target those mechanisms has generated a lot of enthusiasm for cancer immunotherapy. But a critical issue is to determine how best to combine such agents. This review will focus on novel immunotherapy agents currently in development and discuss strategies to develop and personalize combination cancer immunotherapy strategies.

  5. Review article: colitis-associated cancer -- time for new strategies.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    Colorectal cancer (CRC) remains a feared and potentially life-threatening complication of both ulcerative colitis and Crohn\\'s colitis. Currently, the main preventive strategy is a secondary one, i.e. surveillance colonoscopy usually after 8 years of disease duration, when the risk for neoplasia begins to increase. Despite its widespread acceptance, dysplasia and cancer surveillance is unproven in terms of reducing mortality or morbidity and there is a remarkable lack of uniformity in the manner in which it is practised. In this review article, the pitfalls of dysplasia surveillance are summarized and the need for novel chemopreventive and perhaps pharmabiotic approaches for prevention are highlighted.

  6. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin

    OpenAIRE

    Roehrl, Michael H.; Wang, Jun-Xia

    2005-01-01

    The successful use of Bacillus anthracis as a lethal biological weapon has prompted renewed research interest in the development of more effective vaccines against anthrax. The disease consists of three critical components: spore, bacillus, and toxin, elimination of any of which confers at least partial protection against anthrax. Current remedies rely on postexposure antibiotics to eliminate bacilli and pre- and postexposure vaccination to target primarily toxins. Vaccines effective against ...

  7. A phase II trial of personalized peptide vaccination in castration-resistant prostate cancer patients: prolongation of prostate-specific antigen doubling time

    OpenAIRE

    Noguchi, Masanori; MORIYA, FUKUKO; SUEKANE, SHIGETAKA; Ohnishi, Rei; Matsueda, Satoko; Sasada, Tetsuro; Yamada, Akira; Itoh, Kyogo

    2013-01-01

    Background Cancer vaccine is one of the attractive treatment modalities for patients with castration-resistant prostate cancer (CRPC). However, because of delayed immune responses, its clinical benefits, besides for overall survival (OS), are not well captured by the World Health Organization (WHO) and Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Several surrogate markers for evaluation of cancer vaccine, including prostate-specific antigen doubling time (PSADT), are curren...

  8. Advances in human papilloma virus vaccines: a review

    Directory of Open Access Journals (Sweden)

    Akhilesh Tomar

    2014-02-01

    Full Text Available Cervical cancer is the second most common cancer among women and third leading cause of cancer death. Approximately 500,000 women worldwide develop new cases of cervical cancer annually, with 80% of these new cases occurring in developing countries. Human papilloma virus (HPV infection is the main factor associated with the development of cervical cancer. The currently available HPV vaccines, gardasil and cervarix, can prevent infection by certain HPV types, but not all. At present, research efforts are being devoted to developing broader spectrum preventative vaccines, as well as therapeutic vaccines. To confer additional therapeutic activities, chimeric vaccines have been developed. Multivalent vaccine technologies employ strategies for addressing a broader spectrum of HPV types or for combining HPV with other pathogens. Edible vaccines are also disclosed. For needleless immunization, jet gun, gene gun and microneedles have been developed. Biodegradable and mucoadhesive polymer-based vaccine formulations have been developed to deliver vaccines through the mucosa and enhance immunogenicity. Various viral vectors of recombinant HPV DNA vaccine are disclosed. [Int J Basic Clin Pharmacol 2014; 3(1.000: 37-43

  9. Strategies for the plant-based expression of dengue subunit vaccines.

    Science.gov (United States)

    Yap, Yun-Kiam; Smith, Duncan R

    2010-10-01

    Despite significant efforts in many countries, there is still no commercially viable dengue vaccine. Currently, attention is focused on the development of either live attenuated vaccines or live attenuated chimaeric vaccines using a variety of backbones. Alternate vaccine approaches, such as whole inactivated virus and subunit vaccines are in the early stages of development, and are each associated with different problems. Subunit vaccines offer the advantage of providing a uniform antigen of well-defined nature, without the added risk of introducing any genetic material into the person being inoculated. Preliminary trials of subunit vaccines (using dengue E protein) in rhesus monkeys have shown promising results. However, the primary disadvantages of dengue subunit vaccines are the low levels of expression of dengue proteins in mammalian or insect cells, as well as the added unknown risks of antigens produced from mammalian cells containing other potential sources of contamination. In the past two decades, plants have emerged as an alternative platform for expression of biopharmaceutical products, including antigens of bacterial, fungal or viral origin. In the present minireview, we highlight the current plant expression technologies used for expression of biopharmaceutical products, with an emphasis on plants as a production system for dengue subunit vaccines.

  10. NIH study finds two doses of HPV vaccine may be as protective as full course | Division of Cancer Prevention

    Science.gov (United States)

    Two doses of the human papillomavirus (HPV) vaccine Cervarix were as effective as the current standard three-dose regimen after four years of follow-up, according to researchers from the National Cancer Institute (NCI), part of the National Institutes of Health, and their colleagues. The results of the study, based on data from a community-based clinical trial of Cervarix in Costa Rica, appeared online Sept.9, 2011, in the Journal of the National Cancer Institute. |

  11. Prevention of cervical, vaginal, and vulval cancers: role of the quadrivalent human papillomavirus (6, 11, 16, 18) recombinant vaccine

    OpenAIRE

    Maria Lina Diaz

    2010-01-01

    Maria Lina DiazSection of Ambulatory Gynecology Cleveland Clinic Florida Weston, Florida, USAAbstract: The relationship between the human papillomavirus (HPV) and malignancies of the uterine cervix, vagina, and vulva has been established. The development of a quadrivalent HPV recombinant prophylactic vaccine represents the first time in history that primary prevention of these cancers is offered to girls and women. The prevalence of oncogenic HPV subtypes in cervical cancers has been the most...

  12. Preventive vaccination against cervical cancer: Korean Society of Gynecologic Oncology Guideline

    OpenAIRE

    Min, Kyung-Jin; Kwon, Sang-Hoon; Kim, Sunghoon; Kim, Hyun Jung; Seong, Seok Ju; Song, Yong Jung; Shin, Jin Woo; Lee, Keun Ho; Lim, Myong Cheol; Chung, Hyun Hoon; Ju, Woong; Hong, Jin Hwa; Lee, Jeong-Won; Kim, Jae-Weon; Bae, Duk-Soo

    2016-01-01

    After human papillomavirus (HPV) vaccine guidelines published by Korean Society of Gynecologic Oncology (KSGO) in 2011, new studies have been published, leading to additional data regarding efficacy, safety, number of vaccination rounds, and ideal age of vaccine administration. We searched and reviewed the literatures focused on the efficacy of 2-dose schedule vaccination, the efficacy of 3-dose schedule vaccination in middle-aged women, the ideal age of 3-dose schedule vaccination, the safet...

  13. Risk in vaccine research and development quantified.

    Directory of Open Access Journals (Sweden)

    Esther S Pronker

    Full Text Available To date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-over. While risk profiles (combining research and development timelines and transition rates have been published for new chemical entities (NCE, little is documented on vaccine development. The objective is to calculate risk profiles for vaccines targeting human infectious diseases. A database was actively compiled to include all vaccine projects in development from 1998 to 2009 in the pre-clinical development phase, clinical trials phase I, II and III up to Market Registration. The average vaccine, taken from the preclinical phase, requires a development timeline of 10.71 years and has a market entry probability of 6%. Stratification by disease area reveals pandemic influenza vaccine targets as lucrative. Furthermore, vaccines targeting acute infectious diseases and prophylactic vaccines have shown to have a lower risk profile when compared to vaccines targeting chronic infections and therapeutic applications. In conclusion; these statistics apply to vaccines targeting human infectious diseases. Vaccines targeting cancer, allergy and autoimmune diseases require further analysis. Additionally, this paper does not address orphan vaccines targeting unmet medical needs, whether projects are in-licensed or self-originated and firm size and experience. Therefore, it remains to be investigated how these - and other - variables influence the vaccine risk profile. Although we find huge differences between the risk profiles for vaccine and NCE; vaccines outperform NCE when it comes to development timelines.

  14. University Students' Knowledge and Attitudes Regarding Cervical Cancer, Human Papillomavirus, and Human Papillomavirus Vaccines in Turkey

    Science.gov (United States)

    Koç, Zeliha

    2015-01-01

    Objectives: The current descriptive study aimed to determine university students' knowledge and attitudes regarding cervical cancer, human papillomavirus (HPV), and HPV vaccines in Turkey. Participants: A total of 800 students participated. Methods: This study was carried out between September 1, 2012, and October 30, 2012, in 8 female…

  15. Optimal breast cancer screening strategies for older women: current perspectives

    Directory of Open Access Journals (Sweden)

    Braithwaite D

    2016-02-01

    Full Text Available Dejana Braithwaite,1 Joshua Demb,1 Louise M Henderson2 1Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 2Department of Radiology, University of North Carolina, Chapel Hill, NC, USA Abstract: Breast cancer is a major cause of cancer-related deaths among older women, aged 65 years or older. Screening mammography has been shown to be effective in reducing breast cancer mortality in women aged 50–74 years but not among those aged 75 years or older. Given the large heterogeneity in comorbidity status and life expectancy among older women, controversy remains over screening mammography in this population. Diminished life expectancy with aging may decrease the potential screening benefit and increase the risk of harms. In this review, we summarize the evidence on screening mammography utilization, performance, and outcomes and highlight evidence gaps. Optimizing the screening strategy will involve separating older women who will benefit from screening from those who will not benefit by using information on comorbidity status and life expectancy. This review has identified areas related to screening mammography in older women that warrant additional research, including the need to evaluate emerging screening technologies, such as tomosynthesis among older women and precision cancer screening. In the absence of randomized controlled trials, the benefits and harms of continued screening mammography in older women need to be estimated using both population-based cohort data and simulation models. Keywords: aging, breast cancer, precision cancer screening

  16. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    Institute of Scientific and Technical Information of China (English)

    Kun Zhang; Peng-Fen Gao; Pei-Wu Yu; Yun Rao; Li-Xin Zhou

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines.METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems.The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes' proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals.RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes' proliferations were remarkably increased than their parental dendritic cells.CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their antitumor biotherapies.

  17. Efficacy and safety of human papillomavirus vaccine for primary prevention of cervical cancer: A review of evidence from phase III trials and national programs

    Directory of Open Access Journals (Sweden)

    Partha Basu

    2013-01-01

    Full Text Available The Human Papillomavirus (HPV vaccines have been widely introduced in the national immunization programs in most of the medium and high income countries following endorsement from national and international advisory bodies. HPV vaccine is unique and its introduction is challenging in many ways - it is the first vaccine developed to prevent any cancer, the vaccine is gender specific, it targets adolescent females who are difficult to reach by any health intervention programs. It is not unusual for such a vaccine to face scepticism and reservations not only from lay public but also from professionals in spite of the clinical trial results convincingly and consistently proving their efficacy and safety. Over the last few years millions of doses of the HPV vaccine have been administered round the world and the efficacy and safety data have started coming from the real life programs. A comprehensive cervical cancer control program involving HPV vaccination of the adolescent girls and screening of the adult women has been proved to be the most cost-effective approach to reduce the burden of cervical cancer. The present article discusses the justification of HPV vaccination in the backdrop of natural history of cervical cancer, the mechanism of action of the vaccines, efficacy and safety data from phase III randomized controlled trials as well as from the national immunization programs of various countries.

  18. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis.

    Science.gov (United States)

    Pliaka, Vaia; Kyriakopoulou, Zaharoula; Markoulatos, Panayotis

    2012-05-01

    The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.

  19. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Mi Kyung Yu, Jinho Park, Sangyong Jon

    2012-01-01

    Full Text Available Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications.

  20. A novel strategy for cancer gene therapy: RNAi

    Institute of Scientific and Technical Information of China (English)

    PAN Qiuwei; CAI Rong; LIU Xinyuan; QIAN Cheng

    2006-01-01

    RNA interference (RNAi) induces genesilencing at a level of posttranscription mediated bydouble stranded RNA. There are numerous methods for delivery of small double-stranded interference RNA (siRNA) to the target cells, including nonviral and viral vectors. Among these methods, viral vectors are the more efficient vehicles. The expression of short hairpin RNA (shRNA) by viral vectors in target cells can be cut by Dicer enzyme to become ~21 bp siRNA, which could guide degradation of cognate mRNA. RNAi technology can be directed against cancer using a variety of strategies, including the inhibition of overexpressed oncogenes, promoting apoptosis, regulating cell cycle, antiangiogenesis and enhancing the efficacy of chemotherapy and radiotherapy. Since RNAi technology has become an excellent strategy for cancer gene therapy, this review outlines the latest developments and applications of such a novel technology.

  1. Strategies of functional food for cancer prevention in human beings.

    Science.gov (United States)

    Zeng, Ya-Wen; Yang, Jia-Zheng; Pu, Xiao-Ying; Du, Juan; Yang, Tao; Yang, Shu-Ming; Zhu, Wei-Hua

    2013-01-01

    Functional food for prevention of chronic diseases is one of this century's key global challenges. Cancer is not only the first or second leading cause of death in China and other countries across the world, but also has diet as one of the most important modifiable risk factors. Major dietary factors now known to promote cancer development are polished grain foods and low intake of fresh vegetables, with general importance for an unhealthy lifestyle and obesity. The strategies of cancer prevention in human being are increased consumption of functional foods like whole grains (brown rice, barley, and buckwheat) and by-products, as well some vegetables (bitter melon, garlic, onions, broccoli, and cabbage) and mushrooms (boletes and Tricholoma matsutake). In addition some beverages (green tea and coffee) may be protective. Southwest China (especially Yunnan Province) is a geographical area where functional crop production is closely related to the origins of human evolution with implications for anticancer influence. PMID:23679240

  2. Modulating Dickkopf-1: A Strategy to Monitor or Treat Cancer?

    Science.gov (United States)

    Mazon, Mélody; Masi, Delphine; Carreau, Madeleine

    2016-06-28

    Dickkopf-1 (DKK1) is a secreted Wnt/β-catenin pathway antagonist involved in embryogenesis. It was first described 25 years ago for its function in head induction and limb morphogenesis. Since then, this protein has been widely studied in the context of active Wnt/β-catenin signalling during cellular differentiation and development. Dysregulation of DKK1 has been associated with bone pathologies and has now emerged as a potential biomarker of cancer progression and prognosis for several types of malignancies. Reducing the amount of circulating DKK1 may reveal a simple and efficient strategy to limit or reverse cancer growth. This review will provide an overview of the role of Dickkopf-1 in cancer and explore its potential use as a biomarker and therapeutic target.

  3. Modulating Dickkopf-1: A Strategy to Monitor or Treat Cancer?

    Directory of Open Access Journals (Sweden)

    Mélody Mazon

    2016-06-01

    Full Text Available Dickkopf-1 (DKK1 is a secreted Wnt/β-catenin pathway antagonist involved in embryogenesis. It was first described 25 years ago for its function in head induction and limb morphogenesis. Since then, this protein has been widely studied in the context of active Wnt/β-catenin signalling during cellular differentiation and development. Dysregulation of DKK1 has been associated with bone pathologies and has now emerged as a potential biomarker of cancer progression and prognosis for several types of malignancies. Reducing the amount of circulating DKK1 may reveal a simple and efficient strategy to limit or reverse cancer growth. This review will provide an overview of the role of Dickkopf-1 in cancer and explore its potential use as a biomarker and therapeutic target.

  4. HPV-vaccination for the prevention of cervical cancer in Austria: a model based long-term prognosis of cancer epidemiology

    OpenAIRE

    Zechmeister, Ingrid; Freiesleben de Blasio, Birgitte; Garnett, Geoff

    2009-01-01

    Abstract Aim Cervical cancer incidence and mortality have decreased for the last 20 years in Austria; however, they remain relatively high in comparison to other European countries. Screening quality has been suboptimal. In this paper we aim to predict the population-wide long-term effects on cervical cancer morbidity and mortality after introducing an HPV vaccination for 12-year-old girls (and boys) in addition to current screening in comparison with scr...

  5. The Optimality of Different Strategies for Supplemental Staging of Non–Small-Cell Lung Cancer

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Fischer, Barbara Malene B; Mortensen, Jann;

    2013-01-01

    To assess the expected costs and outcomes of alternative strategies for staging of lung cancer to inform a Danish National Health Service perspective about the most cost-effective strategy.......To assess the expected costs and outcomes of alternative strategies for staging of lung cancer to inform a Danish National Health Service perspective about the most cost-effective strategy....

  6. A rapid immunization strategy with a live attenuated tetravalent dengue vaccine elicits protective neutralizing antibody responses in non-human primates

    Directory of Open Access Journals (Sweden)

    Yuping eAmbuel

    2014-06-01

    Full Text Available Dengue viruses (DENVs cause approximately 390 million cases of DENV infections annually and over 3 billion people worldwide are at risk of infection. No dengue vaccine is currently available nor is there an antiviral therapy for DENV infections. We have developed a tetravalent live-attenuated DENV vaccine (TDV that consists of a molecularly characterized attenuated DENV-2 strain (TDV-2 and three chimeric viruses containing the pre-membrane and envelope genes of DENV-1, -3 and -4 expressed in the context of the TDV-2 genome. To impact dengue vaccine delivery in endemic areas and immunize travelers, a simple and rapid immunization strategy (RIS is preferred. We investigated RIS consisting of two full vaccine doses being administered subcutaneously or intradermally on the initial vaccination visit (day 0 at two different anatomical locations with a needle-free disposable syringe jet injection (DSJI delivery devices (PharmaJet in non-human primates (NHP. This vaccination strategy resulted in efficient priming and induction of neutralizing antibody responses to all four DENV serotypes comparable to those elicited by the traditional prime and boost (two months later vaccination schedule. In addition, the vaccine induced CD4+ and CD8+ T cells producing IFN-γ, IL-2, and TNF-α, and targeting the DENV-2 NS1, NS3 and NS5 proteins. Moreover, vaccine-specific T cells were cross-reactive with the non-structural NS3 and NS5 proteins of DENV-4. When animals were challenged with DENV-2 they were protected with no detectable viremia, and exhibited sterilizing immunity (no increase of neutralizing titers post- challenge. RIS could decrease vaccination visits and provide quick immune response to all four DENV serotypes. This strategy could increase vaccination compliance and would be especially advantageous for travelers into endemic areas.

  7. Intent to participate in future cervical cancer screenings is lower when satisfaction with the decision to be vaccinated is neutral.

    Directory of Open Access Journals (Sweden)

    Natalie Marya Alexander

    Full Text Available HPV vaccination programs have adversely affected participation in future cervical cancer screening. The purpose of this study is to determine the influence of decision satisfaction with accepting/rejecting the HPV vaccine, as well as traditional clinical factors, on the intent to participate in future screening.From January 2011 through August 2012 women 18-26 years old presenting for health care in an urban college student health and wellness clinic in the US Midwest were asked to complete a descriptive and medical history survey including a six element decisional satisfaction survey scored on 5-point Likert scales, where the intent to participate in future cervical cancer screening was measured. Of the 568 women who completed the decisional satisfaction survey, 17% of those <21 years and 7% ≥ 21 years indicated no intent to participate in future cervical cancer screenings. Among women of current screening age, the univariate risk factors of race/ethnicity, contraceptive use, number of lifetime sexual partners, and receipt of HPV vaccine were not predictors of intent for future cervical cancer screening. Instead, only a history of a prior Pap test was a significant positive predictor and only a decisional satisfaction of 'neutral' (Likert score = 3 for any of the four decisional satisfaction elements was a significant negative predictor. For the decisional satisfaction element "best for me personally", there was a 78% decreased likelihood of intending to participate in future screening if the satisfaction was neutral rather than firm (aOR = 0.22, 95% CI: 0.05-0.91 and a 26 fold increased likelihood if she had had a prior Pap test (aOR = 26, 95% CI: 5-133.HPV vaccination implementation programs must help women be the owner of their decision around HPV vaccination and understand the importance of future participation in cervical cancer screening.

  8. Anamnestic responses in pigs to the Taenia solium TSOL18 vaccine and implications for control strategies.

    Science.gov (United States)

    Lightowlers, Marshall W; Donadeu, Meritxell; Elaiyaraja, M; Maithal, Kapil; Kumar, K Anand; Gauci, Charles G; Firestone, Simon M; Sarasola, Patxi; Rowan, Tim G

    2016-04-01

    Specific antibody responses were assessed in pigs immunized with the Taenia solium vaccine TSOL18. Anti-TSOL18 responses were compared 2 weeks after secondary immunization, where the interval between primary and secondary immunization was 4, 8, 12, 16 or 20 weeks. All animals responded to the vaccine and there was no diminution in antibody responses in animals receiving their second injection after an interval up to 20 weeks. Pigs receiving vaccinations at an interval of 12 weeks developed significantly increased antibody responses compared with animals receiving immunizations 4 weeks apart (P = 0.046). The ability to deliver TSOL18 vaccination effectively where the revaccination schedule can be delayed for up to 12-16 weeks in pigs increases the options available for designing T. solium control interventions that incorporate TSOL18 vaccination. PMID:26892239

  9. Cancer Vaccines

    Science.gov (United States)

    ... abnormal cells. Some types of leukocytes patrol the circulatory system , seeking foreign invaders and diseased, damaged, or dead ... and that are relatively easy for the immune system to recognize as ... viruses ( hepatitis B virus and human papillomavirus ), stimulate the ...

  10. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Oishi, Xin Wei Wang

    2011-01-01

    Full Text Available The cancer stem cell (CSC hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (ICC. It is believed that hepatic progenitor cells (HPCs could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC.Here we provide a brief

  11. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Science.gov (United States)

    Ghaffari-Nazari, Haniyeh; Tavakkol-Afshari, Jalil; Jaafari, Mahmoud Reza; Tahaghoghi-Hajghorbani, Sahar; Masoumi, Elham; Jalali, Seyed Amir

    2015-01-01

    Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu) using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL) in combination with a universal Pan DR epitope (PADRE) or CpG-oligodeoxynucleotides (CpG-ODNs) as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice. PMID:26556756

  12. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  13. Exploring Different Strategies for Efficient Delivery of Colorectal Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Congcong Lin

    2015-11-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer and the fourth leading cause of cancer death in the world. Currently available chemotherapy of CRC usually delivers the drug to both normal as well as cancerous tissues, thus leading to numerous undesirable effects. Much emphasis is being laid on the development of effective drug delivery systems for achieving selective delivery of the active moiety at the anticipated site of action with minimized unwanted side effects. Researchers have employed various techniques (dependent on pH, time, pressure and/or bacteria for targeting drugs directly to the colonic region. On the other hand, systemic drug delivery strategies to specific molecular targets (such as FGFR, EGFR, CD44, EpCAM, CA IX, PPARγ and COX-2 overexpressed by cancerous cells have also been shown to be effective. This review aims to put forth an overview of drug delivery technologies that have been, and may be developed, for the treatment of CRC.

  14. Unexpected gallbladder cancer: Surgical strategies and prognostic factors.

    Science.gov (United States)

    Clemente, Gennaro

    2016-08-27

    Gallbladder cancer is the most common tumor of the biliary tract and it is associated with a poor prognosis. Unexpected gallbladder cancer is a cancer incidentally discovered, as a surprise, at the histological examination after cholecystectomy for gallstones or other indications. It is a potentially curable disease, with an intermediate or good prognosis in most cases. An adequate surgical strategy is mandatory to improve the prognosis and an adjunctive radical resection may be required depending on the depth of invasion. If the cancer discovered after cholecystectomy is a pTis or a pT1a, a second surgical procedure is not mandatory. In the other cases (pT1b, pT2 and pT3 cancer) a re-resection (4b + 5 liver segmentectomy, lymphadenectomy and port-sites excision in some cases) is required to obtain a radical excision of the tumor and an accurate disease staging. The operative specimens of re-resection should be examined by the pathologist to find any "residual" tumor. The "residual disease" is the most important prognostic factor, significantly reducing median disease-free survival and disease-specific survival. The other factors include depth of parietal invasion, metastatic nodal disease, surgical margin status, cholecystectomy for acute cholecystitis, histological differentiation, lymphatic, vascular and peri-neural invasion and overall TNM-stage. PMID:27648157

  15. 宫颈癌治疗性疫苗临床研究进展%Clinical research advance in therapeutic vaccines against cervical cancer

    Institute of Scientific and Technical Information of China (English)

    黄云霞

    2012-01-01

    Persistent infection by high-risk human papillomavirus (HPV) has been found associated with most cervical cancers.With the further study on HPV and its pathogenic mechanism,several therapeutic vaccines against cervical cancer have been developed,and even in clinical trial phrase.In this paper,the progress in clinical trials and design strategies of therapeutic HPV vaccines are reviewed.%宫颈癌的发生与高危型人乳头瘤病毒( human papillomavirus,HPV)的持续感染有关.随着对HPV及其致病机制的深入研究,已经开发了多种用于宫颈癌生物免疫治疗的疫苗,有些已进入临床试验.此文对已进入临床试验阶段的宫颈癌疫苗的设计策略和临床试验进展做一综述.

  16. Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine.

    Science.gov (United States)

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Mandal, Debasis; Das, Balaram; Tripathy, Satyajit; Dey, Aditi; Pramanik, Panchanan; Roy, Somenath

    2016-02-10

    In the present study, we would like to evaluate the efficacy of modified metal oxide nanoparticles (NPs) as cancer antigen delivery vehicles for macrophage (MФs) based antitumor vaccine. The cobalt oxide nanoparticles (CoO NPs) were promising tools for delivery of antigens to antigen presenting cells and have induced an antitumor immune response. Synthesized CoO NPs were modified by N-phosphonomethyliminodiacetic acid (PMIDA), facilitated the conjugation of lysate antigen, i.e. cancer antigen derived from lysis of cancer cells. The cancer cell lysate antigen conjugated PMIDA-CoO NPs (Ag-PMIDA-CoO NPs) successfully activated macrophage (MФ) evident by the increasing the serum IFN-γ and TNF-α level. Immunization of mice with the Ag-PMIDA-CoO NPs constructed an efficient immunological adjuvant induced anticancer IgG responses, and increased the antibody dependent cellular cytotoxicity (ADCC) response than only lysate antigen treated group to combat the cancer cell. The nanocomplexes enhanced the anticancer CD4(+)T cell response in mice. The result showed that Ag-PMIDA-CoO NPs can stimulate the immune responses over only lysate antigens, which are the most important findings in this study. These NP-mediated Ag deliveries may significantly improve the anticancer immune response by activating MФs and may act as adjuvant and will balance the pro-inflammatory and anti-inflammatory immunoresponse. The crosstalk between the activated MФ with other immune competent cells will be monitored by measuring the cytokines which illustrate the total immunological network setups.

  17. Gradual reduction of testosterone using a gonadotropin-releasing hormone vaccination delays castration resistance in a prostate cancer model

    Science.gov (United States)

    Barranco, Jesús A. Junco; Millar, Robert P.; Fuentes, Franklin; Bover, Eddy; Pimentel, Eulogio; Basulto, Roberto; Calzada, Lesvia; Morán, Rolando; Rodríguez, Ayni; Garay, Hilda; Reyes, Osvaldo; Castro, Maria D.; Bringas, Ricardo; Arteaga, Niurka; Toudurí, Henio; Rabassa, Mauricio; Fernández, Yairis; Serradelo, Andrés; Hernández, Eduardo; Guillén, Gerardo E.

    2016-01-01

    In a previous study aimed to design a novel prostate cancer vaccine, the authors of the present study demonstrated the advantage of combining the adjuvants Montanide ISA 51 with very small size proteoliposomes (VSSP) to promote a significant humoral immune response to gonadotropin-releasing hormone (GnRH) in healthy animals. The present study compared the efficacy of this vaccine formulation versus the standard treatment currently available in terms of preventing the development of tumors in DD/S mice injected with Shionogi carcinoma (SC) 115 cells. The results demonstrated that 5 non-vaccinated control mice exhibited a fast tumor growth, and succumbed to the disease within 19–31 days. Mice immunized with the GnRH/Montanide ISA 51/VSSP vaccine exhibited a moderate decline in testosterone levels that was associated with a decrease in anti-GnRH antibody titers, which lead to a sustained tumor growth inhibition. In total, 2 mice in the immunized group exhibited complete remission of the tumor for the duration of the present study. In addition, castrated mice, which were used as a control for standard hormonal therapy, exhibited an accelerated decrease in tumor size. However, tumor relapse was observed between days 50 and 54, and between days 65 and 85, following the injection of SC 155 cells. Therefore, these mice were sacrificed at day 90. The present study concludes that the slow and moderate reduction of testosterone levels observed using the GnRH-based vaccine may delay the appearance of castration resistance in a Shionogi prostate cancer model. These findings suggest that this vaccine may be used to delay castration resistance in patients with prostate cancer.

  18. Gradual reduction of testosterone using a gonadotropin-releasing hormone vaccination delays castration resistance in a prostate cancer model

    Science.gov (United States)

    Barranco, Jesús A. Junco; Millar, Robert P.; Fuentes, Franklin; Bover, Eddy; Pimentel, Eulogio; Basulto, Roberto; Calzada, Lesvia; Morán, Rolando; Rodríguez, Ayni; Garay, Hilda; Reyes, Osvaldo; Castro, Maria D.; Bringas, Ricardo; Arteaga, Niurka; Toudurí, Henio; Rabassa, Mauricio; Fernández, Yairis; Serradelo, Andrés; Hernández, Eduardo; Guillén, Gerardo E.

    2016-01-01

    In a previous study aimed to design a novel prostate cancer vaccine, the authors of the present study demonstrated the advantage of combining the adjuvants Montanide ISA 51 with very small size proteoliposomes (VSSP) to promote a significant humoral immune response to gonadotropin-releasing hormone (GnRH) in healthy animals. The present study compared the efficacy of this vaccine formulation versus the standard treatment currently available in terms of preventing the development of tumors in DD/S mice injected with Shionogi carcinoma (SC) 115 cells. The results demonstrated that 5 non-vaccinated control mice exhibited a fast tumor growth, and succumbed to the disease within 19–31 days. Mice immunized with the GnRH/Montanide ISA 51/VSSP vaccine exhibited a moderate decline in testosterone levels that was associated with a decrease in anti-GnRH antibody titers, which lead to a sustained tumor growth inhibition. In total, 2 mice in the immunized group exhibited complete remission of the tumor for the duration of the present study. In addition, castrated mice, which were used as a control for standard hormonal therapy, exhibited an accelerated decrease in tumor size. However, tumor relapse was observed between days 50 and 54, and between days 65 and 85, following the injection of SC 155 cells. Therefore, these mice were sacrificed at day 90. The present study concludes that the slow and moderate reduction of testosterone levels observed using the GnRH-based vaccine may delay the appearance of castration resistance in a Shionogi prostate cancer model. These findings suggest that this vaccine may be used to delay castration resistance in patients with prostate cancer. PMID:27446378

  19. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force.

    Science.gov (United States)

    Tyagi, Rajeev K; Garg, Neeraj K; Sahu, Tejram

    2012-08-20

    The introduction of vaccine technology has facilitated an unprecedented multi-antigen approach to develop an effective vaccine against complex systemic inflammatory pathogens such as Plasmodium spp. that cause severe malaria. The capacity of multi subunit DNA vaccine encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and interferon-γ responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be capable of eliciting both cell mediated and humoral immune responses. The cytotoxic T cell responses are categorically needed against intracellular hepatic stage and humoral response with antibodies targeted against antigens from all stages of malaria parasite life cycle. Therefore, the key to success for any DNA based vaccine is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of non-viral DNA-mediated gene transfer techniques such as liposome, virosomes, microsphere and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. Also, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells (APC). Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. In this review we discussed various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccine.

  20. Preclinical Safety Pharmacology Study of a Novel Protein-Based Cancer Vaccine CHP-NY-ESO-1

    OpenAIRE

    Harada, Naozumi; Hoshiai, Kiyotaka; Takahashi, Yoshiyasu; Sakaguchi, Yasue; Kuno, Takayoshi; Hishida, Tadashi; Shiku, Hiroshi

    2008-01-01

    CHP-NY-ESO-1 is a novel therapeutic cancer vaccine consisting of a recombinantprotein of cancer antigen NY-ESO-1 and a polysaccharide-based delivery system,cholesteryl pullulan. A pilot clinical study of CHP-NY-ESO-1 in cancer patients waspreviously conducted, and the adverse events related to this drug were observed to belimited to skin reactions at injection sites. To further establish the safety ofCHP-NY-ESO-1, we studied the effects of its subcutaneous injection on vital functionssuch as ...

  1. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    DEFF Research Database (Denmark)

    Burgdorf, Stefan; Claesson, Mogens; Nielsen, Hans;

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction...... disease showed increasing levels of plasma GM-CSF, TNF-alpha, IFN-gamma, IL-2, and IL-5. Patients with progressive disease showed significant increase in CEA and TIMP-1 levels, while patients with stable disease showed relatively unaltered levels. Conclusion. The increased levels of key pro...

  2. Assessment of vaccination strategies against highly pathogenic avian influenza in China

    Directory of Open Access Journals (Sweden)

    Honglei SUN,Jinhua LIU

    2014-12-01

    Full Text Available Vaccination for highly pathogenic avian influenza (HPAI has been implemented in China for a decade, however, the virus is still present in poultry. A series of recombinant vaccines, Re-1 to Re-7, have been developed and used, and Re-8 will also be used in clinical settings to prevent the prevailing flu strains. The question remains, when can China eradicate the disease? Here, we review the epidemiology of H5 HPAI along with the development, usage and problems of vaccines. Further suggestions for controlling the disease in China are provided.

  3. Preventive vaccines for cervical cancer Vacunas para prevenir el cáncer cervical

    Directory of Open Access Journals (Sweden)

    COSETTE M WHEELER

    1997-07-01

    Full Text Available The potential use of vaccines for the human papillomavirus (HPV in the prevention and treatment of cervical cancer is a possibility in the near future. Close to 20 genotypes of HPV, of the 75 that have been identified, infect the femine genital tract, but four subtypes (16, 18, 31 and 45 have been associated in close to 80% of cervical cancers. this article proposes that in order to design an effective prophylactic vaccine against HPV infection, an adequate immune response should be guaranteed through four goals; a activation of antigens present in the cell; b overcoming the host response and viral genetic variability in the T cell response; c generation of high levels of T and B memory cells; and d persistence of antigens.El potencial uso de vacunas de virus del papiloma humano (VPH en la prevención y tratamiento del cáncer cervical posiblemente será implementado durante los próximos años. Cerca de los 20 genotipos de VPH de los 75 que se encuentran identificados infectan el tracto genital femenino, pero son cuatro subtipos: 16, 18, 31 y 45 los que se han asociado en cerca de 80% a cáncer cervical. En este ensayo se plantea que para poder diseñar una vacuna profiláctica contra la infección de VPH, efectiva, se debe garantizar una adecuada respuesta inmune a través de cuatro metas: a activación de antígenos presentes en la célula; b superar la respuesta del huésped y la variabilidad genética viral en la respuesta de células T; c generación de altos niveles de células T y B de memoria, y d persistencia de antígenos.

  4. Formative research and development of an evidence-based communication strategy: the introduction of Vi typhoid fever vaccine among school-aged children in Karachi, Pakistan.

    Science.gov (United States)

    Pach, Alfred; Tabbusam, Ghurnata; Khan, M Imran; Suhag, Zamir; Hussain, Imtiaz; Hussain, Ejaz; Mumtaz, Uzma; Haq, Inam Ul; Tahir, Rehman; Mirani, Amjad; Yousafzai, Aisha; Sahastrabuddhe, Sushant; Ochiai, R Leon; Soofi, Sajid; Clemens, John D; Favorov, Michael O; Bhutta, Zulfiqar A

    2013-01-01

    The authors conducted formative research (a) to identify stakeholders' concerns related to typhoid fever and the need for disease information and (b) to develop a communication strategy to inform stakeholders and address their concerns and motivate for support of a school-based vaccination program in Pakistan. Data were collected during interactive and semi-structured focus group discussions and interviews, followed by a qualitative analysis and multidisciplinary consultative process to identify an effective social mobilization strategy comprised of relevant media channels and messages. The authors conducted 14 focus group discussions with the parents of school-aged children and their teachers, and 13 individual interviews with school, religious, and political leaders. Parents thought that typhoid fever was a dangerous disease, but were unsure of their children's risk. They were interested in vaccination and were comfortable with a school-based vaccination if conducted under the supervision of trained and qualified staff. Teachers and leaders needed information on typhoid fever, the vaccine, procedures, and sponsors of the vaccination program. Meetings were considered the best form of information dissemination, followed by printed materials and mass media. This study shows how qualitative research findings can be translated into an effective social mobilization and communication approach. The findings of the research indicated the importance of increasing awareness of typhoid fever and the benefits of vaccination against the disease. Identification and dissemination of relevant, community-based disease and vaccination information will increase demand and use of vaccination.

  5. Formative research and development of an evidence-based communication strategy: the introduction of Vi typhoid fever vaccine among school-aged children in Karachi, Pakistan.

    Science.gov (United States)

    Pach, Alfred; Tabbusam, Ghurnata; Khan, M Imran; Suhag, Zamir; Hussain, Imtiaz; Hussain, Ejaz; Mumtaz, Uzma; Haq, Inam Ul; Tahir, Rehman; Mirani, Amjad; Yousafzai, Aisha; Sahastrabuddhe, Sushant; Ochiai, R Leon; Soofi, Sajid; Clemens, John D; Favorov, Michael O; Bhutta, Zulfiqar A

    2013-01-01

    The authors conducted formative research (a) to identify stakeholders' concerns related to typhoid fever and the need for disease information and (b) to develop a communication strategy to inform stakeholders and address their concerns and motivate for support of a school-based vaccination program in Pakistan. Data were collected during interactive and semi-structured focus group discussions and interviews, followed by a qualitative analysis and multidisciplinary consultative process to identify an effective social mobilization strategy comprised of relevant media channels and messages. The authors conducted 14 focus group discussions with the parents of school-aged children and their teachers, and 13 individual interviews with school, religious, and political leaders. Parents thought that typhoid fever was a dangerous disease, but were unsure of their children's risk. They were interested in vaccination and were comfortable with a school-based vaccination if conducted under the supervision of trained and qualified staff. Teachers and leaders needed information on typhoid fever, the vaccine, procedures, and sponsors of the vaccination program. Meetings were considered the best form of information dissemination, followed by printed materials and mass media. This study shows how qualitative research findings can be translated into an effective social mobilization and communication approach. The findings of the research indicated the importance of increasing awareness of typhoid fever and the benefits of vaccination against the disease. Identification and dissemination of relevant, community-based disease and vaccination information will increase demand and use of vaccination. PMID:23330632

  6. Silencing B7-H1 enhances the anti-tumor effect of bladder cancer antigen-loaded dendritic cell vaccine in vitro

    Directory of Open Access Journals (Sweden)

    Wang S

    2014-08-01

    Full Text Available Shuo Wang,1 Yonghua Wang,1 Jing Liu,2 Shixiu Shao,1 Xianjun Li,1 Jiannan Gao,1 Haitao Niu,1 Xinsheng Wang1 1Department of Urology, 2Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China Objective: The aim of this study was to examine whether short hairpin RNA (shRNA expressing lentiviral particles targeting B7-H1 infection could result in B7-H1 knockdown on dendritic cells (DCs and to investigate whether B7-H1 silencing could augment the immune function of DCs and further elicit a more potent anti-tumor immune effect against bladder cancer cells in vitro. Methods: Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells, were infected by a recombinant lentivirus containing shRNA sequence aimed at B7-H1. After that, the infected DCs were pulsed by tumor antigens and used to stimulate cytotoxic T lymphocytes-based anti-tumor effect in vitro. Results: The lentivirus-mediated shRNA delivery method efficiently and effectively silenced B7-H1 in DCs. Furthermore, the B7-H1 silencing enhanced the stimulatory capacity and the secretion of interleukin-12, but down-regulated interleukin-10 secretion. And more importantly, the anti-tumor effect of bladder cancer antigen-loaded DC vaccine in vitro was also potentially augmented. Conclusion: This study suggests that a combination of B7-H1 knockdown and target antigen delivery could augment anti-tumor effects in vitro, which potentially provides a novel strategy in the immunotherapy of bladder cancer. Keywords: B7-H1, bladder cancer, dendritic cell, vaccine, immunotherapy

  7. The HPV Vaccination Crisis

    Science.gov (United States)

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  8. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus.

    Science.gov (United States)

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-01

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate's protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development. PMID:26777545

  9. The Italian alliance for vaccination strategies: Facebook as a learning tool for preventive medicine and public health.

    Science.gov (United States)

    La Torre, Giuseppe; Miccoli, Silvia; Ricciardi, Walter

    2014-01-01

    The Italian Alliance of vaccination strategies project was born with the aim of informing healthcare workers and the general population about vaccination through Facebook. The evaluation of the account has been carried out using 3 indicators: friend membership, numbers of "I like," and amount of "share" of contents for type of news and for day of the week. The survey was performed on 743 users. Institutional events were the most popular type of news; the day of the week in which users were most likely to be attracted by links was Friday. Press releases were the communication form most shared by users. Social media marketing carries the advantages of low cost, rapid transmission and user interaction. PMID:25483459

  10. Bath immersion, booster vaccination strategy holds potential for protecting juvenile tilapia against Streptococcus iniae

    Science.gov (United States)

    Streptococcus iniae is a significant bacterial pathogen that causes hemorrhagic septicemia and meningoencephalitis in tilapia, hybrid striped bass, rainbow trout, olive flounder, yellowtail, barramundi and other species of cultured and wild fish worldwide. In tilapia production, vaccination of fry ...

  11. Costs and effectiveness of extended vaccination strategies against pertussis and pneumococcal disease

    NARCIS (Netherlands)

    Rozenbaum, Mark Hermannes

    2013-01-01

    Omdat het Nederlandse Rijksvaccinatieprogramma al intensief is en de gezondheidszorg kampt met gelimiteerde budgetten, zijn de mogelijkheden voor opname van nieuwe vaccins in het Rijksvaccinatieprogramma beperkt. Naast vele andere factoren, hebben doelmatigheidsuitkomsten een groot effect op de besl

  12. A novel strategy for cancer treatment:Targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; MA LeiNa; WANG YiGang; LIU XinYuan; QIAN QiJun

    2008-01-01

    Cancer stem cell/tumor-initiating cell (CSC/TIC) is a subclass of cancer cells possessing parts of properties of normal stem cell. It has a high capacity of proliferation and plays a pivotal role in tumor recurrence and tumor resistance to radiotherapy and chemotherapy. At present, small molecule in-hibitors and fusion proteins are widely used in the CSC-targeting strategy. Gene-virotherapy, which uses oncolytic adenovirus as a vector to mediate the expression of therapeutic gene, shows a signifi-cant superiority to other regimens of cancer treatment and has a good efficacy in the treatment of solid tumors. Thus, it is a promising choice to apply gene-virotherapy into the CSC-targeting treatment. Based on the molecular mechanism underlying CSC self-renewal, a series of effective strategies for targeting CSC have been established. This review will summarize the recent research progresses on CSC-targeting treatment.

  13. Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombinant proteins against Leishmania.

    Science.gov (United States)

    Todolí, Felicitat; Rodríguez-Cortés, Alhelí; Núñez, María Del Carmen; Laurenti, Márcia D; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M; Alberola, Jordi

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against

  14. Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombinant proteins against Leishmania.

    Directory of Open Access Journals (Sweden)

    Felicitat Todolí

    Full Text Available Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL, its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1 raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT; 2 naked pVAX1 plasmids carrying the four genes individually (DNA; 3 a heterologous prime-boost (HPB strategy involving DNA followed by PROT (DNA-PROT; and 4 a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against

  15. [Poliomyelitis and vaccination strategy in Russian Federation in post-certification period].

    Science.gov (United States)

    Ivanova, O E

    2011-01-01

    Immunization schedules implemented in various countries by using poliovirus vaccines are presented. Approaches to prevent development of vaccine associated paralytic poliomyelitis and risk groups for this infection are discussed. In recent years poliomyelitis morbidity situation in the European region has become more complex, with the example of poliomyelitis outbreak in Tajikistan in 2010. The resulting problem of protection of Russian against emergence and spread of poliomyelitis caused by wild type virus is discussed.

  16. Vaccination success and body condition in the European wild rabbit: Applications for conservation strategies

    OpenAIRE

    Cabezas, Sonia; Calvete, C.; Moreno, Sacramento

    2006-01-01

    The European wild rabbit (Oryctolagus cuniculus) is the main prey for several endangered species and an important game species in the Iberian Peninsula. However, over the last several decades 2 diseases, myxomatosis and rabbit hemorrhagic disease (RHD), have contributed to a decline in rabbit populations. In Spain, vaccination campaigns against both diseases and the translocation of vaccinated rabbits are frequently used in projects aimed at stimulating the recovery of wild populations. We es...

  17. 75 FR 48707 - Proposed Vaccine Information Materials for Pneumococcal Conjugate Vaccine and Human...

    Science.gov (United States)

    2010-08-11

    ... get vaccinated? HPV vaccine is important because it can prevent most cases of cervical cancer in... this HPV vaccine and when? Females: Routine Vaccination HPV vaccine is recommended for girls 11 or 12... is best to be vaccinated before the first sexual contact. HPV vaccine is given as a 3-dose series...

  18. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    Science.gov (United States)

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  19. Clinical Benefit of Allogeneic Melanoma Cell Lysate-Pulsed Autologous Dendritic Cell Vaccine in MAGE-Positive Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Toh, Han Chong; Wang, Who-Whong; Chia, Whay Kuang;

    2009-01-01

    patients received a total of 161 vaccinations. Treatment was well tolerated and quality of life measurements did not vary much across time. One patient experienced partial response [5%; 95% confidence interval (CI), 1-24%] and seven achieved stable disease (35%; 95% CI, 18-57%), one of whom also achieved......PURPOSE: We evaluated the clinical benefit of an allogeneic melanoma cell lysate (MCL)-pulsed autologous dendritic cell (DC) vaccine in advanced colorectal cancer patients expressing at least one of six MAGE-A antigens overexpressed by the cell line source of the lysate. EXPERIMENTAL DESIGN: DCs...... were cultured from peripheral blood mononuclear cells (PBMC), pulsed with the allogeneic MCL, and matured using cytokines that achieved high CD83- and CCR7-expressing DCs. Each patient received up to 10 intradermal vaccinations (3-5 x 10(6) cells per dose) at biweekly intervals. RESULTS: Twenty...

  20. Nonlinear Optical Microscopy Signal Processing Strategies in Cancer

    Science.gov (United States)

    Adur, Javier; Carvalho, Hernandes F; Cesar, Carlos L; Casco, Víctor H

    2014-01-01

    This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes. PMID:24737930

  1. Comparison of accelerated and rapid schedules for monovalent hepatitis B and combined hepatitis A/B vaccines in children with cancer.

    Science.gov (United States)

    Köksal, Yavuz; Varan, Ali; Aydin, G Burca; Sari, Neriman; Yazici, Nalan; Yalcin, Bilgehan; Kutluk, Tezer; Akyuz, Canan; Büyükpamukçu, Münevver

    2007-12-01

    The aim of this study was to determine the efficacy of immunization against hepatitis A and B infections with "rapid" or "accelerated" schedules in children with cancer receiving chemotherapy. Fifty-one children were recruited to receive either vaccination schedule, in the "rapid vaccination schedule"; hepatitis B (group I) or combined hepatitis A/B vaccines (group III) were administered at months 0, 1, 2, and 12; in the "accelerated vaccination schedule," hepatitis B (group II) or combined hepatitis A/B (group IV) vaccines were administered on days 0, 7, 21, and 365 intramuscularly. The seroconversion rates at months 1 and 3 were 35.7 and 57.1% in group I and 25 and 18.8% in group II, respectively. Group I developed higher seroconversion rates at month 3. In group III the seroconversion rates for hepatitis B at months 1 and 3 were 54.5 and 60% and in group IV 50 and 70%, respectively. For hepatitis A, the seroconversion rates at months 1 and 3 were 81.8 and 90% in group III and 80 and 88.9% in group IV, respectively. The accelerated vaccination schedule seems to have no advantage in children receiving cancer chemotherapy except for high antibody levels at month 1. In conclusion, the accelerated vaccination schedules are not good choices for cancer patients. The combined hepatitis A/B vaccine is more effective than monovalent vaccine in cancer patients, which probably can be explained by an adjuvant effect of the antigens. The seroconversion of hepatitis A by the combined hepatitis A/B vaccination is very good in cancer patients.

  2. Estimated health and economic impact of quadrivalent HPV (types 6/11/16/18 vaccination in Brazil using a transmission dynamic model

    Directory of Open Access Journals (Sweden)

    Kawai Kosuke

    2012-10-01

    Full Text Available Abstract Background Cervical cancer is the second most common cancer among women in Brazil. We examined the health and economic impacts of quadrivalent HPV vaccination in Brazil. Methods We adapted a previously developed transmission dynamic model to estimate the effectiveness of HPV vaccination on cervical cancer, cervical intraepithelial neoplasia grades 2 and 3 (CIN2/3, CIN1, and genital warts. We evaluated following vaccination strategies: routine vaccination of 12-year-old girls and routine vaccination in combination with a catch-up vaccination of 12 to 26-year-old women. Results The model projected that the vaccination would reduce the incidence rates of HPV 6/11/16/18-related cervical cancer, CIN2/3, CIN1, and female genital warts by 94% to 98% at year 100. Routine vaccination in combination with a catch-up vaccination could prevent approximately 163,000 cases of cervical cancer, 48,000 deaths from cervical cancer, 2.3 million cases of CIN2/3, and 11.4 million genital warts in the next 50 years. The incremental cost-effectiveness ratios for female vaccination strategies ranged from R$350 to R$720 (US$219 to US$450 per quality-adjusted life year (QALY gained. Conclusions Our study demonstrates that quadrivalent HPV female vaccination can be a cost-effective public health intervention that can substantially reduce the burden of cervical diseases and genital warts in Brazil.

  3. Adjuvant Strategies for Resectable Pancreatic Cancer: Have We Made Progress?

    Directory of Open Access Journals (Sweden)

    Suzanne Russo

    2012-03-01

    Full Text Available Substantial controversy remains regarding the optimal adjuvant treatment for patients with resectable pancreatic adenocarcinoma. Despite improvements in radiation techniques, systemic therapies, and incorporation of targeted agents, the 5-year survival rates for early stage patients remains less than 25% and the optimal adjuvant treatment approach remains unclear. Here we summarize the data presented at the 2012 American Society of Clinical Oncology (ASCO Gastrointestinal Cancers Symposium regarding controversial issues surrounding the role, timing, and selection of patients for adjuvant chemoradiation strategies following curative resection for pancreatic adenocarcinoma. (Abstracts #301, #333, and #206.

  4. Preventing cervical cancer in the United States: barriers and resolutions for HPV vaccination

    Directory of Open Access Journals (Sweden)

    Anna Louise Beavis

    2016-02-01

    Full Text Available HPV vaccination rates for preadolescent and adolescent girls in the United States are far behind those of other developed nations. These rates differ substantially by region and state, socioeconomic status, and insurance status. In parents and young women, a lack of awareness and a misperception of the risk of this vaccine drive low vaccination rates. In physicians, lack of comfort with discussion of sexuality, and the perception that the vaccine should be delayed to a later age contribute to low vaccination rates. Patient and physician-targeted educational campaigns, systems-based interventions, and school-based vaccine clinics offer a variety of ways to address the barriers to HPV vaccination. A diverse and culturally appropriate approach to promoting vaccine uptake has the potential to significantly improve vaccination rates in order to reach the Healthy People 2020 goal of over 80% vaccination in adolescent girls. This article reviews the disparities in HPV vaccination rates in girls in the United States, the influences of patients’, physicians’ and parents’ attitudes on vaccine uptake, and the proposed interventions that may help the US reach its goal for vaccine coverage.

  5. Key issues for estimating the impact and cost-effectiveness of seasonal influenza vaccination strategies.

    Science.gov (United States)

    Jit, Mark; Newall, Anthony T; Beutels, Philippe

    2013-04-01

    Many countries have considered or are considering modifying their seasonal influenza immunization policies. Estimating the impact of such changes requires understanding the existing clinical and economic burden of influenza, as well as the potential impact of different vaccination options. Previous studies suggest that vaccinating clinical risk groups, health care workers, children and the elderly may be cost-effective. However, challenges in such estimation include: (1) potential cases are not usually virologically tested; (2) cases have non-specific symptoms and are rarely reported to surveillance systems; (3) endpoints for influenza proxies (such as influenza-like illness) need to be matched to case definitions for treatment costs, (4) disease burden estimates vary from year to year with strain transmissibility, virulence and prior immunity, (5) methods to estimate productivity losses due to influenza vary, (6) vaccine efficacy estimates from trials differ due to variation in subtype prevalence, vaccine match and case ascertainment, and (7) indirect (herd) protection from vaccination depends on setting-specific variables that are difficult to directly measure. Given the importance of knowing the impact of changes to influenza policy, such complexities need careful treatment using tools such as population-based trial designs, meta-analyses, time-series analyses and transmission dynamic models.

  6. Strategies for optimizing the clinical impact of immunotherapeutic agents such as sipuleucel-T in prostate cancer.

    Science.gov (United States)

    Madan, Ravi A; Schwaab, Thomas; Gulley, James L

    2012-12-01

    Sipuleucel-T is a therapeutic cancer vaccine that has shown improved survival in men with metastatic castration-resistant prostate cancer. As a first-in-class agent, it has been met with both fan-fare and controversy. A broad review of immune-based therapies may reveal the delayed clinical impact of sipuleucel-T to be a class effect. As new strategies of immune-based therapy are developed, their effects can be optimized through better understanding of how they affect disease differently from more standard therapeutics. Furthermore, combination therapy with agents that can either work synergistically with immune-activating therapies or deplete immune-regulating cells may result in more vigorous immune responses and improved clinical outcomes. In addition, therapeutic vaccines may be ideal candidates to safely combine with standard-of-care therapies because of their nonoverlapping toxicity profile. The ultimate role of immunotherapy may not be to supplant standard therapies, but rather to work in concert with them to maximize clinical benefit for patients. PMID:23221788

  7. 医务人员乙型肝炎病毒感染及疫苗免疫%Hepatitis B virus infection in health care workers and vaccination strategies

    Institute of Scientific and Technical Information of China (English)

    马俊凤; 李杰; 庄辉

    2013-01-01

    Health care workers are among the high-risk populations for hepatitis B virus (HBV) infection as they have more opportunities exposing to blood or other body fluids from HBV infected patients.The main routes of HBV infection are needle sticks or sharp injuries for health care workers.Vaccination is the most effective measure to prevent HBV infection in this population.The prevalence of HBsAg varies because of different immunization strategies and vaccination coverage rates of health care workers in different regions.In Europe such as France,all of the health care workers except housekeeping and supporting staff must be vaccinated compulsorily and the vaccination coverage rate reached up to 97.0%,which resulted in a quick decrease in HBV infection.In America such as United States,each medical facility is required to provide hepatitis B vaccine free for its health care workers.In 2006,the vaccination coverage rate in USA was 90.0%,and HBV infection rate (1.0× 10-4) was lower than that in general population (5.0 × 10-4).In East Mediterranean countries such as Pakistan,the vaccination coverage rate in health care workers was 73.4% but no immunization strategy for them was found.The relatively high vaccination coverage rate decreased the rate of HBsAg carrier to 0.6%-2.2%,lower than that in the regular population (6.0%).In Africa such as Uganda,only 6.2% of health care workers had history of HBV vaccination,and HBsAg carrier rate was as high as 9.0%.Uganda is currently drafting hepatitis B vaccination strategies for health care workers.In Western Pacific area such as Hong Kong and Taiwan of China,the vaccination coverage rates in health care workers were 85.0% and 73.7 % respectively,but the vaccination strategies were unclear.In 2009,we investigated the HBV infection status in 3 126 health care workers in Jilin province of China,and the positive rates of HBsAg and antiHBc were 1.4% and 33.4%,respectively,which were lower than that in common

  8. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Directory of Open Access Journals (Sweden)

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  9. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Science.gov (United States)

    Ramanathan, Babu; Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  10. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Carolina R Oliveira

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. METHODS AND FINDINGS: Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF and simulated intestinal fluid (SIF. Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. CONCLUSIONS: Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  11. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.

    Science.gov (United States)

    Vinay, Dass S; Ryan, Elizabeth P; Pawelec, Graham; Talib, Wamidh H; Stagg, John; Elkord, Eyad; Lichtor, Terry; Decker, William K; Whelan, Richard L; Kumara, H M C Shantha; Signori, Emanuela; Honoki, Kanya; Georgakilas, Alexandros G; Amin, Amr; Helferich, William G; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Keith, W Nicol; Bilsland, Alan; Bhakta, Dipita; Halicka, Dorota; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan; Choi, Beom K; Kwon, Byoung S

    2015-12-01

    Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection. PMID:25818339

  12. Cost-effectiveness analysis of the direct and indirect impact of intranasal live attenuated influenza vaccination strategies in children: alternative country profiles

    Science.gov (United States)

    Gibson, Edward; Begum, Najida; Martinón-Torres, Federico; Safadi, Marco Aurélio; Sackeyfio, Alfred; Hackett, Judith; Rajaram, Sankarasubramanian

    2016-01-01

    Background Influenza poses a significant burden on healthcare systems and society, with under-recognition in the paediatric population. Existing vaccination policies (largely) target the elderly and other risk groups where complications may arise. Objective The goal of this study was to evaluate the cost-effectiveness of annual paediatric vaccination (in 2–17-year-olds) with live attenuated influenza vaccination (LAIV), as well as the protective effect on the wider population in England and Wales (base). The study aimed to demonstrate broad applications of the model in countries where epidemiological and transmission data is limited and that have sophisticated vaccination policies (Brazil, Spain, and Taiwan). Methods The direct and indirect impact of LAIV in the paediatric cohort was simulated using an age-stratified dynamic transmission model over a 5-year time horizon of daily cycles and applying discounting of 3.5% in the base case. Pre-existing immunity structure was based on a 1-year model run. Sensitivity analyses were conducted. Results In the base case for England and Wales, the annual paediatric strategy with LAIV was associated with improvements in influenza-related events and quality-adjusted life years (QALYs) lost, yielding an incremental cost per QALY of £6,208. The model was robust to change in the key input parameters. The probabilistic analysis demonstrated LAIV to be cost effective in more than 99% of iterations, assuming a willingness-to-pay threshold of £30,000. Incremental costs per QALY for Brazil were £2,817, and for the cases of Spain and Taiwan the proposed strategy was dominant over the current practice. Conclusion In addition to existing policies, annual paediatric vaccination using LAIV provides a cost-effective strategy that offers direct and indirect protection in the wider community. Paediatric vaccination strategies using LAIV demonstrated clinical and economic benefits over alternative (current vaccination) strategies in

  13. Modern trends in radioimmunotherapy of cancer. Pre targeting strategies for the treatment of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mcquarrie, S.A.; Xiao, Z.; Mercer, J. R.; Suresh, M. R. [Edmonton Univ. of Alberta, Edmonton, AL (Canada). Faculty of Pharmacy and Pharmaceutical Sciences; Miller, G. G. [University of Alberta, Noujaim Institute for Pharmaceutical Oncology Research, Edmonton, AL (Canada)

    2001-06-01

    A review of published data on some of the problems associated in treating cancer using radioimmunotherapy is presented. Potential improvements for this type of therapy using pretargeting strategies are discussed and preliminary results on a novel multistep regimen to treat human ovarian cancer are presented. A pretargeting strategy using ovarian cancer are presented. A pretargeting strategy using a biotinylated, anti-CA 125 monoclonal antibody (MAb) to attract biotinylated long-circulating liposomes to the surface of CA 125-expressing ovarian cancer cells, was employed. Confocal laser scanning microscopy and fluorescent labels were used to establish the biodistribution patterns in NIH:OVCAR-3 (CA-125 positive) and SK-OV-3 (CA-125 negative) human ovarian cancer cells. Shedding kinetics of the pretargeted stage were measured using {sup 125}I labeled MAbs. No significant internalization of the MAb used in the pretargeting step was observed by 4 hrs. The antibody was gradually internalized starting at 6 hrs, and most of the labelled MAb was detected in cytoplasm by 24 hrs. Shedding and exocytosis of the antigen-MAb complex was not significant for up to 6-hours following administration of the iodinated MAb. Biotinylated liposomes were shown to specifically target the biotinylated MAb/streptavidin complex on the cell surface. It has been demonstrated that by a three-step pretargeting approach, biotinylated liposomes can be specifically delivered to cells pretargeted with biotinylated MAb/SAv complex. The slow internalization and shedding properties of the two MAbs are ideal for multistep pretargeting methods. A successful multistep linkage was established with the biotinylated MAb B27.1, streptavidin and biotinylated liposomes to OVCAR-3 cells, but not to SK-OV-3 cells.

  14. Greek health professionals’ perceptions of the HPV vaccine, state policy recommendations and their own role with regards to communication of relevant health information

    OpenAIRE

    Karamanidou, Christina; Dimopoulos, Kostas

    2016-01-01

    Background Every year in Europe 60,000 women develop cervical cancer and 30,000 die from the disease. HPV vaccines are currently believed to constitute an important element of cervical cancer control strategy. Currently in Greece, the HPV vaccine is given on demand after prescription by a healthcare professional. Health care professionals’ role is key as they are in a position to discuss HPV vaccination with parents, adolescents and young women. This study is aiming to explore health care pro...

  15. New generation typhoid vaccines: an effective preventive strategy to control typhoid fever in developing countries.

    Science.gov (United States)

    Verma, Ramesh; Bairwa, Mohan; Chawla, Suraj; Prinja, Shankar; Rajput, Meena

    2011-08-01

    Typhoid fever is a serious systemic infection, caused by the enteric pathogen Salmonella enterica serovar Typhi, a highly virulent and invasive enteric bacterium. This disease occurs in all parts of world where water supplies and sanitation are substandard. These pathogens then travel to food, drinks and water through house-flies and other vectors. Globally, an estimated 12-33 million cases of enteric fever occur with 216,00-600,000 deaths per year, almost exclusively in the developing countries. Health surveys conducted by the Health Ministry of India in the community development areas indicated a morbidity rate varying from 102-2219/100,000 population in different parts of the country. A limited study in an urban slum showed 1% of children up to 17 years of age suffer from typhoid fever annually. The continued high burden of typhoid fever and the alarming spread of antibiotic resistant strains led the World Health Organization (WHO), almost ten years ago, to recommend immunization using the two new-generation vaccines in school- aged children in areas where typhoid fever posed a significant problem and where antibiotic resistant strains were prevalent. Morbidity and mortality due to high incidence of typhoid fever favors the introduction of typhoid vaccine in routine immunization in India. This vaccine should be given at the age of 2 years with Vi antigen vaccine and at least one more dose be given at 5 years of age.

  16. Strategies for Implementing School-Located Influenza Vaccination of Children: A Systematic Literature Review

    Science.gov (United States)

    Cawley, John; Hull, Harry F.; Rousculp, Matthew D.

    2010-01-01

    Background: The Advisory Committee on Immunization Practices (ACIP) recommends influenza vaccinations for all children 6 months to 18 years of age, which includes school-aged children. Influenza immunization programs may benefit schools by reducing absenteeism. Methods: A systematic literature review of PubMed, PsychLit, and Dissertation Abstracts…

  17. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies

    Institute of Scientific and Technical Information of China (English)

    Qi-En; Wang

    2015-01-01

    The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response(DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.

  18. Combinatorial Synthetic Peptide Vaccine Strategy Protects against Hypervirulent CovR/S Mutant Streptococci.

    Science.gov (United States)

    Pandey, Manisha; Mortensen, Rasmus; Calcutt, Ainslie; Powell, Jessica; Batzloff, Michael R; Dietrich, Jes; Good, Michael F

    2016-04-15

    Cluster of virulence responder/sensor (CovR/S) mutant group A streptococci (GAS) are serious human pathogens of multiple M protein strains that upregulate expression of virulence factors, including the IL-8 proteaseStreptococcus pyogenescell envelope proteinase (SpyCEP), thus blunting neutrophil-mediated killing and enabling ingress of bacteria from a superficial wound to deep tissue. We previously showed that a combination vaccine incorporating J8-DT (conserved peptide vaccine from the M protein) and a recombinant SpyCEP fragment protects against CovR/S mutants. To enhance the vaccine's safety profile, we identified a minimal epitope (S2) that was the target for anti-SpyCEP Abs that could protect IL-8 from SpyCEP-mediated proteolysis. Abs from healthy humans and from mice experimentally infected with GAS also recognized S2, albeit at low titers. Native SpyCEP may be poorly immunogenic (cryptic or subdominant), and it would be to the organism's advantage if the host did not induce a strong Ab response against it. However, S2 conjugated to diphtheria toxoid is highly immunogenic and induces Abs that recognize and neutralize SpyCEP. Hence, we describe a two-component peptide vaccine that induces Abs (anti-S2) that protect IL-8 from proteolysis and other Abs (anti-J8) that cause strain-independent killing in the presence of neutrophils. We show that either component alone is ineffectual in preventing skin infection and bacteremia due to CovR/S mutants but that the combination induces complete protection. This protection correlated with a significant influx of neutrophils to the infection site. The data strongly suggest that the lack of natural immunity to hypervirulent GAS strains in humans could be rectified by this combination vaccine.

  19. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    Science.gov (United States)

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. PMID:27523740

  20. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    Science.gov (United States)

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1.

  1. Prevention of hepatocellular carcinoma in mice by IL-2 and B7-1genes co-transfected liver cancer cell vaccines

    Institute of Scientific and Technical Information of China (English)

    Ning-Ling Ge; Sheng-Long Ye; Ning Zheng; Rui-Xia Sun; Yin-Kun Liu; Zhao-You Tang

    2003-01-01

    AIM: To study the immunoprotective effect of liver cancer vaccine with co-transfected IL-2 and B7-1 genes on hepatocarcinogenesis in mice.METHODS: The murine liver cancer cell line Hepal-6 was transfected with IL-2 and/or B7-1 gene via recombinant adenoviral vectors and the liver cancer vaccines were prepared. C57BL/6 mice were immunized with these vaccines and challenged with the parental Hepal-6 cells afterwards.The immunoprotection was investigated and the reactive T cell line was assayed.RESULTS: The immunoprotection of the tumor vaccine was demonstrated. The effect of IL-2 and B7-1 genes cotransfected Hepal-6 liver cancer vaccine (Hep6-IL2/B7vaccine) on the onset of tumor formation was the strongest.When attacked with wild Hepal-6 cells, the median survival period of the mice immunized with Hep6-IL2/B7 vaccine was the longest (68 days, χ2=7.70-11.69, P<0.05) and the implanted tumor was the smallest (z =3.20-44.10, P<0.05).The effect of single IL-2 or B7-1 gene-transfected vaccine was next to the IL2/B7 gene co-transfected group, and the mean survival periods were 59 and 54 days, respectively.The mean survival periods of wild or enhanced green fluorescence protein gene modified vaccine immunized group were 51 and 48 days, respectively. The mice in control group all died within 38 days and the implanted tumor was the largest (z=3.20-40.21, P<0.05). The cellular immunofunction test and cytotoxicity study showed that the natural killer (NK) cell, lymphokine activated killer (LAK) cell and cytotoxic T lymphocyte (CTL) activities were significantly increased in mice immunized with the Hep6-IL2/B7 vaccine, (29.5±2.5%,65.0±2.9%, 83.1±1.5% respectively, compared with other groups, P<0.05).CONCLUSION: The Hep6-IL2/B7 liver cancer vaccines can induce the mice to produce activated and specific CTL against the parental tumor cells, and demonstrate stronger effect on the hepatocarcinogenesis than single gene modified or the regular tumor vaccine. Therefore, the

  2. A push-pull vaccine strategy using Toll-like receptor ligands, IL-15, and blockade of negative regulation to improve the quality and quantity of T cell immune responses.

    Science.gov (United States)

    Berzofsky, Jay A

    2012-06-19

    We have developed a strategy to optimize the efficacy of vaccines to induce T-cell immunity against chronic viral infections and cancer based on a "push-pull" approach in which we first optimize the antigen structure by increasing the affinity of epitopes for major histocompatibility complex molecules ("epitope enhancement"), then push the response not only in magnitude but also in quality toward the desired response phenotype, using synergistic combinations of cytokines, Toll-like receptor ligands, and costimulatory molecules, and then pull the response by removing the brakes exerted by negative regulatory mechanisms, including regulatory cells, cell surface molecules, and cytokines. Components of this approach show promise in macaque models of AIDS virus infection and in murine models of cancer, and are being developed for human clinical trials.

  3. Vaccines and immunization against human papillomavirus.

    Science.gov (United States)

    Christensen, Neil D; Budgeon, Lynn R

    2014-01-01

    Prophylactic and therapeutic immunization strategies are an effective method to control human papillomavirus (HPV)-associated diseases and cancers. Current protective virus-like particle and capsid-based vaccines are highly protective against vaccine-matched HPV types, and continued improvements in second-generation vaccines will lead to broader protection and cross-protection against the cancer-associated types. Increasing the effectiveness of broadly cross-protective L2-based immunogens will require adjuvants that activate innate immunity to thus enhance adaptive immunity. Therapeutic immunization strategies are needed to control and cure clinical disease and HPV-associated cancers. Significant advances in strategies to improve induction of cell-mediated immunity to HPV early (and capsid) proteins have been pretested in preclinical animal papillomavirus models. Several of these effective protocols have translated into successful therapeutic immune-mediated clearance of clinical lesions. Nevertheless, there are significant challenges in activating immunity to cancer-associated lesions due to various immune downregulatory events that are triggered by persistent HPV infections. A better understanding of immune responses to HPV lesions in situ is needed to optimize immune effector T cells that efficiently locate to sites of infection and which should lead to an effective immunotherapeutic management of this important human viral pathogen. The most effective immunization strategy may well require combination antiviral and immunotherapeutic treatments to achieve complete clearance of HPV infections and associated cancers. PMID:24643192

  4. Chimeric Bivalent Virus-Like Particle Vaccine for H5N1 HPAI and ND Confers Protection against a Lethal Challenge in Chickens and Allows a Strategy of Differentiating Infected from Vaccinated Animals (DIVA)

    Science.gov (United States)

    Noh, Jin-Yong; Park, Jae-Keun; Lee, Dong-Hun; Yuk, Seong-Su; Kwon, Jung-Hoon; Lee, Sang-Won; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-01-01

    Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are considered as the most devastating poultry infections, owing to their worldwide distribution and economical threat. Vaccines have been widely used to control these diseases in the poultry industry in endemic countries. However, vaccination policy without differentiating infected animals from vaccinated animals (DIVA) makes the virus surveillance difficult. In this study, we developed a bivalent virus-like particle (VLP) vaccine that is composed of the hemagglutinin (HA) and matrix 1 (M1) proteins of the H5N1 HPAI virus (HPAIV) and a chimeric protein containing the ectodomain of the ND virus (NDV) fusion (F) protein fused with the cytoplasmic and transmembrane domains of the HPAIV HA protein. A single immunization of chickens with the chimeric VLP vaccine induced high levels of hemagglutination inhibition (HI) antibody titers against H5N1 HPAI virus and anti-NDV antibody detected in ELISA and protected chickens against subsequent lethal HPAIV and NDV infections. Furthermore, we could easily perform DIVA test using the commercial NP-cELISA tests against HPAIV and HI assay against NDV. These results strongly suggest that utilization of chimeric VLP vaccine in poultry species would be a promising strategy for the better control of HPAI and ND simultaneously. PMID:27626934

  5. Chimeric Bivalent Virus-Like Particle Vaccine for H5N1 HPAI and ND Confers Protection against a Lethal Challenge in Chickens and Allows a Strategy of Differentiating Infected from Vaccinated Animals (DIVA).

    Science.gov (United States)

    Noh, Jin-Yong; Park, Jae-Keun; Lee, Dong-Hun; Yuk, Seong-Su; Kwon, Jung-Hoon; Lee, Sang-Won; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-01-01

    Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are considered as the most devastating poultry infections, owing to their worldwide distribution and economical threat. Vaccines have been widely used to control these diseases in the poultry industry in endemic countries. However, vaccination policy without differentiating infected animals from vaccinated animals (DIVA) makes the virus surveillance difficult. In this study, we developed a bivalent virus-like particle (VLP) vaccine that is composed of the hemagglutinin (HA) and matrix 1 (M1) proteins of the H5N1 HPAI virus (HPAIV) and a chimeric protein containing the ectodomain of the ND virus (NDV) fusion (F) protein fused with the cytoplasmic and transmembrane domains of the HPAIV HA protein. A single immunization of chickens with the chimeric VLP vaccine induced high levels of hemagglutination inhibition (HI) antibody titers against H5N1 HPAI virus and anti-NDV antibody detected in ELISA and protected chickens against subsequent lethal HPAIV and NDV infections. Furthermore, we could easily perform DIVA test using the commercial NP-cELISA tests against HPAIV and HI assay against NDV. These results strongly suggest that utilization of chimeric VLP vaccine in poultry species would be a promising strategy for the better control of HPAI and ND simultaneously. PMID:27626934

  6. Cost-effectiveness of the prophylactic HPV vaccine : An application to the Netherlands taking non-cervical cancers and cross-protection into account

    NARCIS (Netherlands)

    Luttjeboer, J.; Westra, T.A.; Wilschut, J.C.; Nijman, H.W.; Daemen, T.; Postma, M.J.

    2013-01-01

    Despite an effective screening programme, 600-700 women are still diagnosed with cervical cancer in the Netherlands each year. In 2009 a prophylactic vaccine against HPV-type 16 and 18 was implemented in the national immunisation programme to decrease the incidence of cervical cancer. There is evide

  7. Potential use of [gammadelta] T cell-based vaccines in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Mohd Wajid A. Khan

    2014-10-01

    Full Text Available Immunotherapy is a fast advancing methodology involving one of two approaches: 1 compounds targeting immune checkpoints, and 2 cellular immunomodulators. The latter approach is still largely experimental and features in vitro generated, live immune effector cells or antigen-presenting cells (APC. [gammadelta] T cells are known for their efficient in vitro tumor killing activities. Consequently, many laboratories worldwide are currently testing the tumor killing function of [gammadelta] T cells in clinical trials. Reported benefits are modest; however, these studies have demonstrated that large [gammadelta] T cell infusions were well tolerated. Here, we discuss the potential of using human [gammadelta] T cells not as effector cells but as a novel cellular vaccine for treatment of cancer patients. Antigen-presenting [gammadelta] T cells do not require to home to tumor tissues but, instead, need to interact with endogenous, tumor-specific [alphabeta] T cells in secondary lymphoid tissues. Newly mobilised effector [alphabeta] T cells are then thought to overcome the immune blockade by creating proinflammatory conditions fit for effector T cell homing to and killing of tumor cells. Immunotherapy may include tumor antigen-loaded [gammadelta] T cells alone or in combination with immune checkpoint inhibitors.

  8. The most promising strategy targeted against cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    LIN Zhi-xiong; YANG Li-juan; ZHEN Shi-ming

    2011-01-01

    To the Editor:We read with great enthusiasm an interesting and exciting review article Targeting glioma stem cells:enough to terminate gliomagenesis? by Dong and Huang,1 who believed that single targeting therapy against glioma stem cells is unsuccessful and ameliorating the local tumor inducing/promoting microenvironment should be a reasonable strategy.Our group is enduringly engaged in the study of glioma,and we also put much concern upon the research of tumor microecosystem (TMES).In fact,the targeting therapy against cancer stem cells (CSCs) involves two aspects.One is the marked molecular target against CSCs.The other is how to deal with CSCs,by cytotoxic against CSCs,or inducing tumor stem cells to differentiate,or others?

  9. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer.

    Science.gov (United States)

    Pavlenko, M; Roos, A-K; Lundqvist, A; Palmborg, A; Miller, A M; Ozenci, V; Bergman, B; Egevad, L; Hellström, M; Kiessling, R; Masucci, G; Wersäll, P; Nilsson, S; Pisa, P

    2004-08-16

    Prostate-specific antigen (PSA) is a serine protease secreted at low levels by normal luminal epithelial cells of the prostate and in significantly higher levels by prostate cancer cells. Therefore, PSA is a potential target for various immunotherapeutical approaches against prostate cancer. DNA vaccination has been investigated as immunotherapy for infectious diseases in patients and for specific treatment of cancer in certain animal models. In animal studies, we have demonstrated that vaccination with plasmid vector pVAX/PSA results in PSA-specific cellular response and protection against tumour challenge. The purpose of the trial was to evaluate the safety, feasibility and biological efficacy of pVAX/PSA vaccine in the clinic. A phase I trial of pVAX/PSA, together with cytokine granulocyte/macrophage-colony stimulating factor (GM-CSF) (Molgramostim) and IL-2 (Aldesleukin) as vaccine adjuvants, was carried out in patients with hormone-refractory prostate cancer. To evaluate the biologically active dose, the vaccine was administered during five cycles in doses of 100, 300 and 900 microg, with three patients in each cohort. Eight patients were evaluable. A PSA-specific cellular immune response, measured by IFN-gamma production against recombinant PSA protein, and a rise in anti-PSA IgG were detected in two of three patients after vaccination in the highest dose cohort. A decrease in the slope of PSA was observed in the two patients exhibiting IFN-gamma production to PSA. No adverse effects (WHO grade >2) were observed in any dose cohort. We demonstrate that DNA vaccination with a PSA-coding plasmid vector, given with GM-CSF and IL-2 to patients with prostate cancer, is safe and in doses of 900 microg the vaccine can induce cellular and humoral immune responses against PSA protein. PMID:15280930

  10. The changing epidemiology of Asian digestive cancers: From etiologies and incidences to preventive strategies.

    Science.gov (United States)

    Wu, Chun-Ying; Lin, Jaw-Town

    2015-12-01

    Digestive cancers are a major health burden in Asia. Due to the presence of similar "infection-inflammation-cancer" pathways in the carcinogenesis process, eradicating infective pathogens or attenuating relevant inflammatory signaling pathways may reduce digestive cancer incidences and improve patient outcomes. The aim of this paper is to review the recent evidence regarding the epidemiology of three major digestive cancers in Asia: stomach cancer, liver cancer, and colorectal cancer. We focused on the incidence trends, the major etiologies, and especially the potential preventive strategies.

  11. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Andreas Draube

    Full Text Available BACKGROUND: More than 200 clinical trials have been performed using dendritic cells (DC as cellular adjuvants in cancer. Yet the key question whether there is a link between immune and clinical response remains unanswered. Prostate and renal cell cancer (RCC have been extensively studied for DC-based immunotherapeutic interventions and were therefore chosen to address the above question by means of a systematic review and meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS: Data was obtained after a systematic literature search from clinical trials that enrolled at least 6 patients. Individual patient data meta-analysis was performed by means of conditional logistic regression grouped by study. Twenty nine trials involving a total of 906 patients were identified in prostate cancer (17 and RCC (12. Objective response rates were 7.7% in prostate cancer and 12.7% in RCC. The combined percentages of objective responses and stable diseases (SD amounted to a clinical benefit rate (CBR of 54% in prostate cancer and 48% in RCC. Meta-analysis of individual patient data (n = 403 revealed the cellular immune response to have a significant influence on CBR, both in prostate cancer (OR 10.6, 95% CI 2.5-44.1 and in RCC (OR 8.4, 95% CI 1.3-53.0. Furthermore, DC dose was found to have a significant influence on CBR in both entities. Finally, for the larger cohort of prostate cancer patients, an influence of DC maturity and DC subtype (density enriched versus monocyte derived DC as well as access to draining lymph nodes on clinical outcome could be demonstrated. CONCLUSIONS/SIGNIFICANCE: As a 'proof of principle' a statistically significant effect of DC-mediated cellular immune response and of DC dose on CBR could be demonstrated. Further findings concerning vaccine composition, quality control, and the effect of DC maturation status are relevant for the immunological development of DC-based vaccines.

  12. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results

    Directory of Open Access Journals (Sweden)

    Pham PV

    2016-07-01

    Full Text Available Phuc Van Pham,1 Hanh Thi Le,1 Binh Thanh Vu,1 Viet Quoc Pham,1 Phong Minh Le,1 Nhan Lu-Chinh Phan,1 Ngu Van Trinh,1 Huyen Thi-Lam Nguyen,1 Sinh Truong Nguyen,1 Toan Linh Nguyen,2 Ngoc Kim Phan1 1Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, 2Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam Background: Breast cancer (BC is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs to treat tumor-bearing humanized mice models. Materials and methods: NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 106 cells/mice, and the survival percentage was monitored in both treated and untreated groups. Results: The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. Conclusion: These results suggested that targeting BCSCs with DCs is a promising therapy for BC. Keywords: breast cancer, breast cancer stem cells, targeting cancer therapy, humanized mice, targeting cancer stem cells 

  13. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith;

    2016-01-01

    be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode...... for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce...... protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have...

  14. STRATEGY OF TWO-STEP RESECTION FOR MASSIVE LIVER CANCER

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Zuo-shen

    2001-01-01

    [1]Tang Zhao-you, Yu Ye-qin, Zhou Xin-da, et al. Cytoreduction and sequential resection for surgically verified unresectable hepatocellular carcinoma: evaluation with analysis of 72 patients [J]. World J Surg 1995; 19:784.[2]Zheng Zuo-shen. Research progress for cyto-reduction and sequential resection for unrectable hepatocellular carcinoma [J]. China Oncology 1999; 9:51.[3]World Health Organization. Practical manual of cancerous radiotherapy [M]. Beijing: People's Medical Publishing House, 1999; 122.[4]Ingold JA. Radiation hepatitis [J]. Am J Roent 1965; 93:200.[5]Sogni P. Non-Surgical treatments of hepato-cellular carcinoma [J]. Ann Chir 1995; 49:160.[6]Gao Lin-rui, Yu Er-xing. Radiotherapy of primary carcinoma of the liver (Report of 350 cases) [J]. Tumor 1981; 1:19.[7]Ohto M, Ebara M, Yoshikawa M, et al. Radiation therapy and percutaneus ethanol injection for tile treatment of hepatocellular carcinoma. In: Okuda K, Ishak KG, eds. Neoplasm of the Liver [M]. Tokyo Springer-verlag, 1987; 335.[8]Zheng Zuo-shen, Chen Yao-hui, Lai Qi-tai, et al. Strategy of Two-step Resection for Massive Liver Cancer. In: Wang Lei, eds. Papers on Medical Sciences of China (II) [M]. Beijing: Scientific Technological Publishing House, 1997; 6011.[9]Xia Yun-fei. Qian Jian-yang, Zheng Zuo-shen. Radiation biology and dosimetry of moving strip technique [J]. Chin J Cancer 2000; 19:82.

  15. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  16. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies.

    Science.gov (United States)

    Marciani, Dante J

    2016-06-01

    The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines. PMID:26990863

  17. Opportunities and strategies to further reduce animal use for Leptospira vaccine potency testing.

    Science.gov (United States)

    Walker, A; Srinivas, G B

    2013-09-01

    Hamsters are routinely infected with virulent Leptospira for two purposes in the regulation of biologics: the performance of Codified potency tests and maintenance of challenge culture for the Codified potency tests. Options for reducing animal use in these processes were explored in a plenary lecture at the "International Workshop on Alternative Methods for Leptospira Vaccine Potency Testing: State of the Science and the Way Forward" held at the Center for Veterinary Biologics in September 2012. The use of validated in vitro potency assays such as those developed by the U.S. Department of Agriculture for Leptospira (L.) canicola, Leptospira grippotyphosa, Leptospira pomona, and Leptospira icterohaemorrhagiae rather than the Codified hamster vaccination-challenge assay was encouraged. Alternatives such as reduced animal numbers in the hamster vaccination-challenge testing were considered for problematic situations. Specifically, the merits of sharing challenge controls, reducing group sizes, and eliminating animals for concurrent challenge dose titration were assessed. Options for maintaining virulent, stable cultures without serial passage through hamsters or with decreased hamster use were also discussed. The maintenance of virulent Leptospira without the use of live animals is especially difficult since a reliable means to maintain virulence after multiple in vitro passages has not yet been identified. PMID:23891496

  18. Goal adjustment strategies operationalised and empirically examined in adolescents with cancer

    NARCIS (Netherlands)

    Janse, Moniek; Sulkers, Esther; Tissing, Wim Je; Sanderman, Robbert; Sprangers, Mirjam A. G.; Ranchor, Adelita V; Fleer, Joke

    2014-01-01

    Adolescents facing cancer may need to adjust their personal life goals. Theories identified several goal adjustment strategies, but their use has not been tested. Therefore, this study operationalises goal adjustment strategies and examines their use. Adolescent cancer patients listed their goals 3

  19. CAN RAP: A Program to Help Patients Choose a Screening Strategy for Colon Cancer

    OpenAIRE

    Detmer, William M.; Gilbertson, David G.

    1993-01-01

    The CANcer Risk Assessment and Preference (CAN RAP) system is a prototype computer program that helps patients to select a screening strategy for colon cancer. CAN RAP uses demographic and risk-factor information to calculate the benefit and cost of various screening strategies. The system communicates to patients these benefits and costs, and elicits patient preferences using audio, text, and graphics.

  20. Effective strategies for recruiting of Asian cancer patients in internet research.

    Science.gov (United States)

    Lim, Hyun Ju; Lin, Chia-Ju; Liu, Yi; Chee, Wonshik; Im, Eun-Ok

    2006-01-01

    This poster is aims to provide directions for effective strategies for recruiting Asian cancer patients in Internet study among Asian American cancer patients. In the study, we used four different strategies to recruit Asian cancer participants: (a) general and ethnic specific Internet cancer support groups; (b) Asian Internet communities/groups; (c) Asian physician clinics, Asian community and culture center; and (d) community consultants. The most effective recruitment strategy among them was the recruitment through community consultant. The findings support the importance of using key persons in ethnic minority communities to recruit ethnic minority participants.

  1. Ethics and reproductive health: The issue of HPV vaccination

    Directory of Open Access Journals (Sweden)

    Matejić Bojana

    2013-01-01

    Full Text Available The ethics of reproductive health covers a wide field of different issues, from the ethical dimensions of assisted reproduction, life of newborns with disabilities to the never-ending debate on the ethical aspects of abortion. Furthermore, increasing attention is paid to the ethical dimensions of using stem cells taken from human embryos, the creation of cloned embryos of patients for possible self-healing, and the increasingly present issue of reproductive cloning. Development of vaccines against human papillomavirus (HPV has introduced new ethical aspects related to reproductive health and the need for a consensus of clinical and public-healthcare population. Today immunization with HPV vaccine is a measure for the primary prevention of cervical cancer and it provides effective protection against certain types of viruses included in the vaccine. The most often mentioned issues of discussions on ethical concerns about HPV vaccination are the recommended age of girls who should be informed and vaccinated (12-14 years, attitudes and fears of parents concerning discussion with their preadolescent daughters on issues important for their future sexual behavior, dilemma on the vaccination of boys and the role of the chosen pediatrician in providing information on the vaccination. In Serbia, two HPV vaccines have been registered but the vaccination is not compulsory. Up-till-now there has been no researches on the attitudes of physicians and parents about HPV vaccination. Nevertheless, it is very important to initiate education of general and medical public about the fact that the availability of vaccine, even if we disregard all aforementioned dilemmas, does not lead to the neglect of other preventive strategies against cervical cancer, primarily screening. The National Program for Cervical Cancer Prevention involves organized screening, i.e. regular cytological examinations of the cervical smear of all women aged 25-69 years, every three years

  2. [Ethics and reproductive health: the issue of HPV vaccination].

    Science.gov (United States)

    Matejić, Bojana; Kesić, Vesna

    2013-01-01

    The ethics of reproductive health covers a wide field of different issues, from the ethical dimensions of assisted reproduction, life of newborns with disabilities to the never-ending debate on the ethical aspects of abortion. Furthermore, increasing attention is paid to the ethical dimensions of using stem cells taken from human embryos, the creation of cloned embryos of patients for possible self-healing, and the increasingly present issue of reproductive cloning. Development of vaccines against human papillomavirus (HPV) has introduced new ethical aspects related to reproductive health and the need for a consensus of clinical and public-healthcare population. Today immunization with HPV vaccine is a measure for the primary prevention of cervical cancer and it provides effective protection against certain types of viruses included in the vaccine. The most often mentioned issues of discussions on ethical concerns about HPV vaccination are the recommended age of girls who should be informed and vaccinated (12-14 years), attitudes and fears of parents concerning discussion with their preadolescent daughters on issues important for their future sexual behavior, dilemma on the vaccination of boys and the role of the chosen pediatrician in providing information on the vaccination. In Serbia, two HPV vaccines have been registered but the vaccination is not compulsory. Up-till-now there has been no researches on the attitudes of physicians and parents about HPV vaccination. Nevertheless, it is very important to initiate education of general and medical public about the fact that the availability of vaccine, even if we disregard all aforementioned dilemmas, does not lead to the neglect of other preventive strategies against cervical cancer, primarily screening. The National Program for Cervical Cancer Prevention involves organized screening, i.e. regular cytological examinations of the cervical smear of all women aged 25-69 years, every three years, regardless of the

  3. [Ethics and reproductive health: the issue of HPV vaccination].

    Science.gov (United States)

    Matejić, Bojana; Kesić, Vesna

    2013-01-01

    The ethics of reproductive health covers a wide field of different issues, from the ethical dimensions of assisted reproduction, life of newborns with disabilities to the never-ending debate on the ethical aspects of abortion. Furthermore, increasing attention is paid to the ethical dimensions of using stem cells taken from human embryos, the creation of cloned embryos of patients for possible self-healing, and the increasingly present issue of reproductive cloning. Development of vaccines against human papillomavirus (HPV) has introduced new ethical aspects related to reproductive health and the need for a consensus of clinical and public-healthcare population. Today immunization with HPV vaccine is a measure for the primary prevention of cervical cancer and it provides effective protection against certain types of viruses included in the vaccine. The most often mentioned issues of discussions on ethical concerns about HPV vaccination are the recommended age of girls who should be informed and vaccinated (12-14 years), attitudes and fears of parents concerning discussion with their preadolescent daughters on issues important for their future sexual behavior, dilemma on the vaccination of boys and the role of the chosen pediatrician in providing information on the vaccination. In Serbia, two HPV vaccines have been registered but the vaccination is not compulsory. Up-till-now there has been no researches on the attitudes of physicians and parents about HPV vaccination. Nevertheless, it is very important to initiate education of general and medical public about the fact that the availability of vaccine, even if we disregard all aforementioned dilemmas, does not lead to the neglect of other preventive strategies against cervical cancer, primarily screening. The National Program for Cervical Cancer Prevention involves organized screening, i.e. regular cytological examinations of the cervical smear of all women aged 25-69 years, every three years, regardless of the

  4. Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Qing-tian LI; Yong-zhang ZHU; Jia-you CHU; Ke DONG; Ping HE; Chun-yan FENG; Bao-yu HU; Shu-min ZHANG; Xiao-kui GUO

    2006-01-01

    Aim: To investigate a new strategy to enhance the efficacy of a recombinant pertussis DNA vaccine. The strategy is co-injection with cytokine plasmids as prime, and boosted with purified homologous proteins. Method: A recombinant pertussis DNA vaccine containing the pertussis toxin subunit 1 (PTS1), fragments of the filamentous hemagglutinin (FHA) gene and pertactin (PRN) gene encoding filamentous hemagglutinin and pertactin were constructed. Balb/c mice were immunized with several DNA vaccines and antigen-specific antibodies anti-PTSl, anti-PRN, anti-FHA, cytokines interleukin (IL)-10, IL-4, IFN-γ, TNF-oc, and spleno-cyte-proliferation assay were used to describe immune responses. Results: The recombinant DNA vaccine could elicit similar immune responses in mice as that of separate plasmids encoding the 3 fragments, respectively. Mice immunized with DNA and boosted with the corresponding protein elicited more antibodies than those that received DNA as boost. In particular, when the mice were co-immunized with murine granulocyte-macrophage colony-stimulating factor plasmids and boosted with proteins, all 4 cytokines and the 3 antigen-specific antibodies were significantly increased compared to the pVAXl group. Anti-PTSl, anti-FHA, IL-4 and TNF-α elicited in the colony stimulating factor (CSF) prime-protein boost group showed significant increase compared to all the other groups. Conclusion: This prime and boost strategy has proven to be very useful in improving the immunogenicity of DNA vaccines against pertussis.

  5. Development of behaviour change communication strategy for a vaccination-linked malaria control tool in southern Tanzania

    Directory of Open Access Journals (Sweden)

    Mshinda Hassan

    2008-09-01

    Full Text Available Abstract Background Intermittent preventive treatment of malaria in infants (IPTi using sulphadoxine-pyrimethamine and linked to the expanded programme on immunization (EPI is a promising strategy for malaria control in young children. As evidence grows on the efficacy of IPTi as public health strategy, information is needed so that this novel control tool can be put into practice promptly, once a policy recommendation is made to implement it. This paper describes the development of a behaviour change communication strategy to support implementation of IPTi by the routine health services in southern Tanzania, in the context of a five-year research programme evaluating the community effectiveness of IPTi. Methods Mixed methods including a rapid qualitative assessment and quantitative health facility survey were used to investigate communities' and providers' knowledge and practices relating to malaria, EPI, sulphadoxine-pyrimethamine and existing health posters. Results were applied to develop an appropriate behaviour change communication strategy for IPTi involving personal communication between mothers and health staff, supported by a brand name and two posters. Results Malaria in young children was considered to be a nuisance because it causes sleepless nights. Vaccination services were well accepted and their use was considered the mother's responsibility. Babies were generally taken for vaccination despite complaints about fevers and swellings after the injections. Sulphadoxine-pyrimethamine was widely used for malaria treatment and intermittent preventive treatment of malaria in pregnancy, despite widespread rumours of adverse reactions based on hearsay and newspaper reports. Almost all health providers said that they or their spouse were ready to take SP in pregnancy (96%, 223/242. A brand name, key messages and images were developed and pre-tested as behaviour change communication materials. The posters contained public health messages

  6. Development of InCVAX as a novel in situ autologous vaccine for metastatic cancers (Conference Presentation)

    Science.gov (United States)

    Hode, Tomas; Alleruzzo, Luciano; Raker, Joseph; Lam, Samuel Siu Kit; Nordquist, Robert E.; Chen, Wei R.

    2016-03-01

    A novel method, an in situ autologous whole-cell cancer vaccine (inCVAX), is being developed by Immunophotonics, Inc., for the treatment of metastatic cancers. inCVAX combines phototherapy and immunotherapy to potentially induce a systemic anti-tumor immune response in the hosts. Immunophotonics and its academic partners have spent years conducting nonclinical research, developing CMC techniques and conducting clinical research. In 2015 the company initiated a late-stage (II/III) clinical trial in South America for advanced breast cancer patients. The process of developing the inCVAX approach from a laboratory setting into clinical trials requires significant efforts from a group of dedicated engineers, scientists, and physicians. The growth of the company and its business advances demonstrated the determination of a group of visionary investors, entrepreneurs, and business leaders. This talk will chronicle the milestones of the scientific achievement, medical progress, and business development of Immunophotonics.

  7. Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery

    OpenAIRE

    Ian Collins; Jones, Alan M.

    2014-01-01

    How can diversity-oriented strategies for chemical synthesis provide chemical tools to help shape our understanding of complex cancer pathways and progress anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the present) considers the applications of diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS) and associated strategies to cancer biology and drug discovery, summarising the syntheses of novel and often highly complex scaffolds from p...

  8. A Longitudinal Examination of Couples’ Coping Strategies as Predictors of Adjustment to Breast Cancer

    OpenAIRE

    Kraemer, Lia M.; Stanton, Annette L.; Meyerowitz, Beth E.; Rowland, Julia H.; Ganz, Patricia A.

    2011-01-01

    This study’s goals were to examine coping strategies of women and their male partners as predictors of change in women’s adjustment over the year following breast cancer treatment and to test whether partners’ coping processes interact to predict adjustment. In a sample of women who had recently completed breast cancer treatment and were taking part in a psychoeducational intervention trial and their partners, patients’ and partners’ cancer-specific coping strategies were assessed at study en...

  9. Current state in the development of candidate therapeutic HPV vaccines.

    Science.gov (United States)

    Yang, Andrew; Jeang, Jessica; Cheng, Kevin; Cheng, Ting; Yang, Benjamin; Wu, T-C; Hung, Chien-Fu

    2016-08-01

    The identification of human papillomavirus (HPV) as an etiological factor for HPV-associated malignancies creates the opportunity to control these cancers through vaccination. Currently, available preventive HPV vaccines have not yet demonstrated strong evidences for therapeutic effects against established HPV infections and lesions. Furthermore, HPV infections remain extremely common. Thus, there is urgent need for therapeutic vaccines to treat existing HPV infections and HPV-associated diseases. Therapeutic vaccines differ from preventive vaccines in that they are aimed at generating cell-mediated immunity rather than neutralizing antibodies. The HPV-encoded early proteins, especially oncoproteins E6 and E7, form ideal targets for therapeutic HPV vaccines since they are consistently expressed in HPV-associated malignancies and precancerous lesions, playing crucial roles in the generation and maintenance of HPV-associated disease. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we review strategies to enhance vaccine efficacy and the latest clinical trials on therapeutic HPV vaccines. PMID:26901118

  10. Newsprint media representations of the introduction of the HPV vaccination programme for cervical cancer prevention in the UK (2005-2008).

    Science.gov (United States)

    Hilton, Shona; Hunt, Kate; Langan, Mairi; Bedford, Helen; Petticrew, Mark

    2010-03-01

    In September 2008, the human papillomavirus (HPV) immunisation programme was introduced in the UK for schoolgirls aged between 12 and 18 years of age. The vaccine shows high efficacy in preventing infection against HPV types 16 and 18 responsible for 70% of cervical cancer. However, to be most effective, the vaccine needs to be administered before exposure to the viruses and therefore, ideally, before young people become sexually active. The introduction of any new vaccine, and perhaps particularly one given to young teenage girls to prevent a sexually transmitted cancer-causing virus, has the potential to attract a great deal of media attention. This paper reports on content analysis of 344 articles published between January 2005 and December 2008 in 15 UK newspapers. It includes both manifest and latent analysis to examine newsprint media coverage of the introduction of the HPV vaccination programme and its role in HPV advocacy. We concluded that the newspapers were generally positive towards the new HPV vaccination and that over the 4 years period the newsworthiness of the HPV vaccination programme increased. In 2008 two events dominated coverage, firstly, the introduction of the HPV programme in September 2008 and secondly, in August 2008 the diagnosis on camera of cervical cancer given to Jade Goody, a 27 year old mother of two, who gained fame and notoriety in the UK through her participation in several reality television shows. There are two conclusions from this study. Firstly, the positive media coverage surrounding the introduction of the HPV vaccination programme is to be welcomed as it is likely to contribute towards influencing public perceptions about the acceptability and need for HPV vaccination. Secondly, the focus on prevalence rates of HPV infection among women and on women's sexual behaviours, in relation to HPV vaccination 'encouraging' promiscuity, is an unhelpful aspect of media coverage. PMID:20064682

  11. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection.

    Science.gov (United States)

    French, Martyn A; Abudulai, Laila N; Fernandez, Sonia

    2013-01-01

    The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  12. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection

    Directory of Open Access Journals (Sweden)

    Sonia Fernandez

    2013-08-01

    Full Text Available The development of vaccines to treat and prevent human immunodeficiency virus (HIV infection has been hampered by an incomplete understanding of “protective” immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8+ T-cell responses restricted by “protective” HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK cell responses and plasmacytoid dendritic cell (pDC responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  13. Epitope fluctuations in the human papillomavirus are under dynamic allosteric control: a computational evaluation of a new vaccine design strategy.

    Science.gov (United States)

    Singharoy, Abhishek; Polavarapu, Abhigna; Joshi, Harshad; Baik, Mu-Hyun; Ortoleva, Peter

    2013-12-11

    The dynamic properties of the capsid of the human papillomavirus (HPV) type 16 were examined using classical molecular dynamics simulations. By systematically comparing the structural fluctuations of the capsid protein, a strong dynamic allosteric connection between the epitope containing loops and the h4 helix located more than 50 Å away is identified, which was not recognized thus far. Computer simulations show that restricting the structural fluctuations of the h4 helix is key to rigidifying the epitopes, which is thought to be required for eliciting a proper immune response. The allostery identified in the components of the HPV is nonclassical because the mean st