WorldWideScience

Sample records for cancer tumor cells

  1. Circulating Tumor Cells in Prostate Cancer

    International Nuclear Information System (INIS)

    Hu, Brian; Rochefort, Holly; Goldkorn, Amir

    2013-01-01

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management

  2. Circulating tumor cells in breast cancer.

    Science.gov (United States)

    Bidard, Francois-Clement; Proudhon, Charlotte; Pierga, Jean-Yves

    2016-03-01

    Over the past decade, technically reliable circulating tumor cell (CTC) detection methods allowed the collection of large datasets of CTC counts in cancer patients. These data can be used either as a dynamic prognostic biomarker or as tumor material for "liquid biopsy". Breast cancer appears to be the cancer type in which CTC have been the most extensively studied so far, with level-of-evidence-1 studies supporting the clinical validity of CTC count in both early and metastatic stage. This review summarizes and discusses the clinical results obtained in breast cancer patients, the issues faced by the molecular characterization of CTC and the biological findings about cancer biology and metastasis that were obtained from CTC. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. Copyright © 2012 S. Karger AG, Basel.

  4. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  5. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.

    Science.gov (United States)

    Testa, Ugo; Pelosi, Elvira; Castelli, Germana

    2018-04-13

    Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.

  6. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  7. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  8. Molecular markers for tumor cell dissemination in female cancers

    International Nuclear Information System (INIS)

    Obermayr, E.

    2009-01-01

    In the fight against cancer many advances have been made in early detection and treatment of the disease during the last few decades. Nevertheless, many patients still die of cancer due to metastatic spreading of the disease. Tumor cell dissemination may occur very early and usually is not discovered at the time of initial diagnosis. In these cases, the mere excision of the primary tumor is an insufficient treatment. Microscopic tumor residues will remain in the blood, lymph nodes, or the bone marrow and will cause disease recurrence. To improve the patient's prognosis, a sensitive tool for the detection of single tumor cells supplementing conventional diagnostic procedures is required. As the blood is more easily accessible than the bone marrow or tissue biopsies, we intended to identify gene markers for the detection of circulating tumor cells in the blood of cancer patients. We focused on patients with breast, ovarian, endometrial or cervical cancer. Starting from a genome-wide gene expression analysis of tumor cells and blood cells, we found six genes higher expression levels in cancer patients compared to healthy women. These findings suggest that an increased expression of these genes in the blood indicates the presence of circulating tumor cells inducing future metastases and thus the need for adjuvant therapy assisting the primary treatment. Measuring the expression levels of these six genes in the blood may supplement conventional diagnostic tests and improve the patient's prognosis. (author) [de

  9. Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming

    Directory of Open Access Journals (Sweden)

    Victoire Gouirand

    2018-04-01

    Full Text Available As with castles, tumor cells are fortified by surrounding non-malignant cells, such as cancer-associated fibroblasts, immune cells, but also nerve fibers and extracellular matrix. In most cancers, this fortification creates a considerable solid pressure which limits oxygen and nutrient delivery to the tumor cells and causes a hypoxic and nutritional stress. Consequently, tumor cells have to adapt their metabolism to survive and proliferate in this harsh microenvironment. To satisfy their need in energy and biomass, tumor cells develop new capacities to benefit from metabolites of the microenvironment, either by their uptake through the macropinocytosis process or through metabolite transporters, or by a cross-talk with stromal cells and capture of extracellular vesicles that are released by the neighboring cells. However, the microenvironments of primary tumor and metastatic niches differ tremendously in their cellular/acellular components and available nutrients. Therefore, cancer cells must develop a metabolic flexibility conferring on them the ability to satisfy their biomass and energetic demands at both primary and metastasis sites. In this review, we propose a brief overview of how proliferating cancer cells take advantage of their surrounding microenvironment to satisfy their high metabolic demand at both primary and metastasis sites.

  10. Antibody-linked drug destroys tumor cells and tumor blood vessels in many types of cancer | Center for Cancer Research

    Science.gov (United States)

    A team led by Brad St. Croix, Ph.D., Senior Associate Scientist, Mouse Cancer Genetics Program, has developed an antibody-drug conjugate (ADC) that destroys both tumor cells and the blood vessels that nourish them. The drug significantly shrank breast tumors, colon tumors and several other types of cancer and prolonged survival. Learn more...  

  11. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4

    NARCIS (Netherlands)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B.; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-01-01

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The

  12. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    Science.gov (United States)

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.

  13. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  14. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  15. Expression profiling of circulating tumor cells in metastatic breast cancer

    Czech Academy of Sciences Publication Activity Database

    Lang, J.; Scott, J.H.; Wolf, D.M.; Novák, Petr; Punj, V.; Magbanua, M.J.M.; Zhu, W.Z.; Mineyev, N.; Haqq, CH.; Crothers, J.

    2015-01-01

    Roč. 149, č. 1 (2015), s. 121-131 ISSN 0167-6806 Institutional support: RVO:60077344 Keywords : Circulating tumor cells * Micrometastases * Breast cancer * EpCAM Subject RIV: FD - Oncology ; Hematology Impact factor: 4.085, year: 2015

  16. Importance of circulating tumor cells in newly diagnosed colorectal cancer

    NARCIS (Netherlands)

    van Dalum, Guus; Stam, Gerrit-Jan; Scholten, Loes F.A.; Mastboom, Walter J.B.; Vermes, I.; Tibbe, Arjan G.J.; De Groot, Marco R.; Terstappen, Leonardus Wendelinus Mathias Marie

    2015-01-01

    Presence of circulating tumor cells (CTC) is associated with poor prognosis in patients with metastatic colorectal cancer (CRC). The present study was conducted to determine if the presence of CTC prior to surgery and during follow‑up in patients with newly diagnosed non-metastatic CRC can identify

  17. Cancer vaccine development: Designing tumor cells for greater immunogenicity

    Science.gov (United States)

    Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy

    2014-01-01

    Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822

  18. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  19. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  20. Cancer stem cells in solid tumors: is 'evading apoptosis' a hallmark of cancer?

    Science.gov (United States)

    Enderling, Heiko; Hahnfeldt, Philip

    2011-08-01

    Conventional wisdom has long held that once a cancer cell has developed it will inevitably progress to clinical disease. Updating this paradigm, it has more recently become apparent that the tumor interacts with its microenvironment and that some environmental bottlenecks, such as the angiogenic switch, must be overcome for the tumor to progress. In parallel, attraction has been drawn to the concept that there is a minority population of cells - the cancer stem cells - bestowed with the exclusive ability to self-renew and regenerate the tumor. With therapeutic targeting issues at stake, much attention has shifted to the identification of cancer stem cells, the thinking being that the remaining non-stem population, already fated to die, will play a negligible role in tumor development. In fact, the newly appreciated importance of intercellular interactions in cancer development also extends in a unique and unexpected way to interactions between the stem and non-stem compartments of the tumor. Here we discuss recent findings drawn from a hybrid mathematical-cellular automaton model that simulates growth of a heterogeneous solid tumor comprised of cancer stem cells and non-stem cancer cells. The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  2. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  3. Intravital imaging of cancer stem cell plasticity in mammary tumors

    NARCIS (Netherlands)

    Zomer, A.; Ellenbroek, S.I.; Ritsma, L.; Beerling, E.; Vrisekoop, N.; van Rheenen, J.

    2013-01-01

    It is widely debated whether all tumor cells in mammary tumors have the same potential to propagate and maintain tumor growth or whether there is a hierarchical organization. Evidence for the latter theory is mainly based on the ability or failure of transplanted tumor cells to produce detectable

  4. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients

    Czech Academy of Sciences Publication Activity Database

    Hensler, M.; Vancurova, I.; Becht, E.; Palata, O.; Strnad, P.; Tesarova, P.; Cabinakova, M.; Švec, David; Kubista, Mikael; Bartunkova, J.; Spisek, R.; Sojka, L.

    2016-01-01

    Roč. 5, č. 4 (2016), e1102827 ISSN 2162-402X Institutional support: RVO:86652036 Keywords : Breast cancer * gene expression profiling * circulating tumor cells Subject RIV: FD - Oncology ; Hematology Impact factor: 7.719, year: 2016

  5. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    2018-03-01

    Full Text Available Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis. We also demonstrate that tumor-associated MSCs induce the expression of genes associated with an aggressive phenotype in primary lung cancer cells and selectively promote their dissemination rather than local growth. Our observations provide insight into mechanisms by which the stroma promotes lung cancer metastasis. Keywords: Tumor-associated MSCs, lung cancer, metastasis, GREM1, LOXL2, ADAMTS12, ITGA11

  6. Seeing is believing: are cancer stem cells the Loch Ness monster of tumor biology?

    Science.gov (United States)

    Lathia, Justin D; Venere, Monica; Rao, Mahendra S; Rich, Jeremy N

    2011-06-01

    Tumors are complex systems with a diversity of cell phenotypes essential to tumor initiation and maintenance. With the heterogeneity present within the neoplastic compartment as its foundation, the cancer stem cell hypothesis posits that a fraction of tumor cells has the capacity to recapitulate the parental tumor upon transplantation. Over the last decade, the cancer stem cell hypothesis has gained support and shown to be relevant in many highly lethal solid tumors. However, the cancer stem cell hypothesis is not without its controversies and critics question the validity of this hypothesis based upon comparisons to normal somatic stem cells. Cancer stem cells may have direct therapeutic relevance due to resistance to current treatment paradigms, suggesting novel multimodal therapies targeting the cancer stem cells may improve patient outcomes. In this review, we will use the most common primary brain tumor, glioblastoma multiforme, as an example to illustrate why studying cancer stem cells holds great promise for more effective therapies to highly lethal tumors. In addition, we will discuss why the abilities of self-renewal and tumor propagation are the critical defining properties of cancer stem cells. Furthermore, we will examine recent progress in defining appropriate cell surface selection markers and mouse models which explore the potential cell(s) or origin for GBMs. What remains clear is that a population of cells is present in many tumors which are resistant to conventional therapies and must be considered in the design of the next generation of cancer treatments.

  7. Perspective on Cancer Therapeutics Utilizing Analysis of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Keun-Yeong Jeong

    2018-04-01

    Full Text Available Various methods are available for cancer screening, and the methods are performed depending on the origin site of cancer. Among these methods, biopsy followed by medical imaging is the most common. After cancer progression is determined, an optimal treatment—such as surgery, chemotherapy, and/or radiation therapy—is selected. A new assay has been developed that detects circulating tumor cells (CTCs. Tracking changes in CTCs may reveal important tumoral sensitivity information or resistance patterns to specific regimens and prompt changes in therapy on a personalized basis. Characterization of CTCs at the DNA, RNA, and protein levels is important for gaining insight for clinical applications. A small number of CTCs can be analyzed to obtain genome information such as the progression of cancer including metastasis, even in a single cluster. Although many clinical studies, particularly CTC enumeration and detection of specific oncogene expression, have increased the success rate of diagnosis and predicting prognosis, there is no consensus regarding the technical approaches and various aspects of the methodology, making it difficult to standardize optimal methods for CTC analysis. However, ongoing technological advances are currently being achieved and large-scale clinical studies are being conducted. Applying CTC analysis in the clinic would be very useful for advancing diagnosis, prognosis prediction, and therapeutics.

  8. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue.

    Directory of Open Access Journals (Sweden)

    Anna Lyberopoulou

    Full Text Available Circulating tumor cells (CTCs provide a non-invasive accessible source of tumor material from patients with cancer. The cellular heterogeneity within CTC populations is of great clinical importance regarding the increasing number of adjuvant treatment options for patients with metastatic carcinomas, in order to eliminate residual disease. Moreover, the molecular profiling of these rare cells might lead to insight on disease progression and therapeutic strategies than simple CTCs counting. In the present study we investigated the feasibility to detect KRAS, BRAF, CD133 and Plastin3 (PLS3 mutations in an enriched CTCs cell suspension from patients with colorectal cancer, with the hypothesis that these genes` mutations are of great importance regarding the generation of CTCs subpopulations. Subsequently, we compared CTCs mutational status with that of the corresponding primary tumor, in order to access the possibility of tumor cells characterization without biopsy. CTCs were detected and isolated from blood drawn from 52 colorectal cancer (CRC patients using a quantum-dot-labelled magnetic immunoassay method. Mutations were detected by PCR-RFLP or allele-specific PCR and confirmed by direct sequencing. In 52 patients, discordance between primary tumor and CTCs was 5.77% for KRAS, 3.85% for BRAF, 11.54% for CD133 rs3130, 7.69% for CD133 rs2286455 and 11.54% for PLS3 rs6643869 mutations. Our results support that DNA mutational analysis of CTCs may enable non-invasive, specific biomarker diagnostics and expand the scope of personalized medicine for cancer patients.

  9. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    Science.gov (United States)

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  10. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer.

    Science.gov (United States)

    Riva, Francesca; Dronov, Oleksii I; Khomenko, Dmytro I; Huguet, Florence; Louvet, Christophe; Mariani, Pascale; Stern, Marc-Henri; Lantz, Olivier; Proudhon, Charlotte; Pierga, Jean-Yves; Bidard, Francois-Clement

    2016-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type and is characterized by a dismal prognosis due to late diagnosis, local tumor invasion, frequent distant metastases and poor sensitivity to current therapy. In this context, circulating tumor cells and circulating tumor DNA constitute easily accessible blood-borne tumor biomarkers that may prove their clinical interest for screening, early diagnosis and metastatic risk assessment of PDAC. Moreover these markers represent a tool to assess PDAC mutational landscape. In this review, together with key biological findings, we summarize the clinical results obtained using "liquid biopsies" at the different stages of the disease, for early and metastatic diagnosis as well as monitoring during therapy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  12. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply.

    Science.gov (United States)

    Yang, Zhigang; Yao, Hong; Fei, Fei; Li, Yuwei; Qu, Jie; Li, Chunyuan; Zhang, Shiwu

    2018-04-01

    During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.

  13. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    Science.gov (United States)

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  14. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  15. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  16. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  17. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4.

    Science.gov (United States)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-10-11

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133(+) cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133(+) cells. Further analysis revealed that the CD133(+) cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Ralpha antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133(+) cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4.

  18. Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer

    DEFF Research Database (Denmark)

    Tvedskov, Tove F; Jensen, Maj-Britt; Kroman, Niels

    2012-01-01

    Isolated tumor cells (ITC) are more common in the sentinel node (SN) after needle biopsy of a breast cancer, indicating iatrogenic displacement of tumor cells. We here investigate whether similar iatrogenic displacement occurs after surgical excision of a breast tumor. We compared the incidence...

  19. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  20. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.

    Science.gov (United States)

    Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A

    2008-09-01

    The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.

  1. Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance

    Directory of Open Access Journals (Sweden)

    Alessandra Zingoni

    2017-09-01

    Full Text Available Natural killer (NK cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. An equilibrium between immune control and tumor growth is maintained as long as cancer cells evade immunosurveillance. Therapies designed to kill cancer cells and to simultaneously sustain host antitumor immunity are an appealing strategy to control tumor growth. Several chemotherapeutic agents, depending on which drugs and doses are used, give rise to DNA damage and cancer cell death by means of apoptosis, immunogenic cell death, or other forms of non-apoptotic death (i.e., mitotic catastrophe, senescence, and autophagy. However, it is becoming increasingly clear that they can trigger additional stress responses. Indeed, relevant immunostimulating effects of different therapeutic programs include also the activation of pathways able to promote their recognition by immune effector cells. Among stress-inducible immunostimulating proteins, changes in the expression levels of NK cell-activating and inhibitory ligands, as well as of death receptors on tumor cells, play a critical role in their detection and elimination by innate immune effectors, including NK cells. Here, we will review recent advances in chemotherapy-mediated cellular stress pathways able to stimulate NK cell effector functions. In particular, we will address how these cytotoxic lymphocytes sense and respond to different types of drug-induced stresses contributing to anticancer activity.

  2. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis | Center for Cancer Research

    Science.gov (United States)

    We demonstrate a novel tumor-promoting role of myeloid immune suppressor Gr+CD11b+ cells, which are evident in cancer patients and tumor-bearing animals. These cells constitute approximately 5% of total cells in tumors. Tumors coinjected with Gr+CD11b+ cells exhibited increased vascular density, vascular maturation, and decreased necrosis. These immune cells produce high

  3. International study on inter-reader variability for circulating tumor cells in breast cancer

    NARCIS (Netherlands)

    Ignatiadis, Michail; Riethdorf, Sabine; Bidard, François-Clement; Vaucher, Isabelle; Khazour, Mustapha; Rothe, Francoise; Metallo, Jessica; Rouas, Ghizlane; Payne, Rachel E.; Coombes, Raoul Charles; Teufel, Ingrid; Andergassen, Ulrich; Apostolaki, Stella; Politaki, Eleni; Mavroudis, Dimitris; Bessi, Silvia; Pestrin, Martta; di Leo, Angelo; Campion, Michael; Reinholz, Monica; Perez, Edith; Piccart, Martine; Borgen, Elin; Naume, Bjorn; Jimenez, Jose; Aura, Claudia Monica; Zorzino, Laura; Cassatella, Maria Cristina; Sandri, Maria Teresa; Mostert, Bianca; Sleijfer, Stefan; Kraan, Jaco; Janni, Wolfgang; Fehm, Tanja; Rack, Brigitte; Terstappen, Leonardus Wendelinus Mathias Marie; Repollet, Madeline; Pierga, Jean-Yves; Miller, Craig; Sotiriou, Christos; Michiels, Stefan; Pantel, Klaus

    2014-01-01

    IntroductionCirculating tumor cells (CTCs) have been studied in breast cancer with the CellSearch® system. Given the low CTC counts in non-metastatic breast cancer, it is important to evaluate the inter-reader agreement. MethodsCellSearch® images (N = 272) of either CTCs or white blood cells or

  4. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  5. Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors

    Science.gov (United States)

    Beckhove, Philipp; Feuerer, Markus; Dolenc, Mathias; Schuetz, Florian; Choi, Carmen; Sommerfeldt, Nora; Schwendemann, Jochen; Ehlert, Katrin; Altevogt, Peter; Bastert, Gunther; Schirrmacher, Volker; Umansky, Viktor

    2004-01-01

    Bone marrow of breast cancer patients was found to contain CD8+ T cells specific for peptides derived from breast cancer–associated proteins MUC1 and Her-2/neu. Most of these cells had a central or effector memory phenotype (CD45RA–CD62L+ or CD45RA–CD62L–, respectively). To test their in vivo function, we separated bone marrow–derived CD45RA+ naive or CD45RA–CD45RO+ memory T cells, stimulated them with autologous dendritic cells pulsed with tumor lysate, and transferred them into NOD/SCID mice bearing autologous breast tumors and normal skin transplants. CD45RA– memory but not CD45RA+ naive T cells infiltrated autologous tumor but not skin tissues after the transfer. These tumor-infiltrating cells had a central or effector memory phenotype and produced perforin. Many of them expressed the P-selectin glycoprotein ligand 1 and were found around P-selectin+ tumor endothelium. Tumor infiltration included cluster formation in tumor tissue by memory T cells with cotransferred dendritic cells. It was associated with the induction of tumor cell apoptosis and significant tumor reduction. We thus demonstrate selective homing of memory T cells to human tumors and suggest that tumor rejection is based on the recognition of tumor-associated antigens on tumor cells and dendritic cells by autologous specifically activated central and effector memory T cells. PMID:15232613

  6. Identification of tumor cells infiltrating into connective tissue in esophageal cancer by multiphoton microscopy

    Science.gov (United States)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Esophageal cancer is one of the most common malignancies of the gastrointestinal cancers and carries poorer prognosis than other gastrointestinal cancers. In general practice, the depth of tumor infiltration in esophageal wall is crucial to establishing appropriate treatment plan which is established by detecting the tumor infiltration depth. Connective tissue is one of the main structures that form the esophageal wall. So, identification of tumor cells infiltrating into connective tissue is helping for detecting the tumor infiltration depth. Our aim is to evaluate whether multiphoton microscopy (MPM) can be used to detect tumor cells infiltrating into connective tissue in the esophageal cancer. MPM is well-suited for real-time detecting morphologic and cellular changes in fresh tissues since many endogenous fluorophores of fresh tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In this work, microstructure of tumor cells and connective tissue are first studied. Then, morphological changes of collagen fibers after the infiltration of tumor cells are shown. These results show that MPM has the ability to detect tumor cells infiltrating into connective tissue in the esophageal cancer. In the future, MPM may be a promising imaging technique for detecting tumor cells in esophageal cancer.

  7. Clinical relevance of occult tumor cells in lymph nodes from gastric cancer patients.

    NARCIS (Netherlands)

    Doekhie, F.S.; Mesker, W.H.; Krieken, J.H.J.M. van; Kok, N.F.; Hartgrink, H.H.; Kranenbarg, E.K.; Putter, H.; Kuppen, P.J.; Tanke, H.J.; Tollenaar, R.A.E.M.; Velde, C.J. van de

    2005-01-01

    The current method for staging in gastric cancer is not sufficient as even after a complete primary tumor resection, patients with node-negative gastric cancer suffer from disease recurrence. In this study, the relation between disease recurrence and the presence of occult tumor cells (OTC) in lymph

  8. Tumor cell-derived microparticles: a new form of cancer vaccine.

    Science.gov (United States)

    Zhang, Huafeng; Huang, Bo

    2015-08-01

    For cancer vaccines, tumor antigen availability is currently not an issue due to technical advances. However, the generation of optimal immune stimulation during vaccination is challenging. We have recently demonstrated that tumor cell-derived microparticles (MP) can function as a new form of potent cancer vaccine by efficiently activating type I interferon pathway in a cGAS/STING dependent manner.

  9. Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells: tumor allies and foes.

    Science.gov (United States)

    Ronca, Roberto; Van Ginderachter, Jo A; Turtoi, Andrei

    2018-01-01

    Tumor stroma is composed of many cellular subtypes, of which the most abundant are fibroblasts, macrophages and endothelial cells. During the process of tissue injury, these three cellular subtypes must coordinate their activity to efficiently contribute to tissue regeneration. In tumor, this mechanism is hijacked by cancer cells, which rewire the interaction of stromal cells to benefit tumor development. The present review aims at summarizing most relevant information concerning both pro-tumorigenic and anti-tumorigenic actions implicating the three stromal cell subtypes as well as their mutual interactions. Although stromal cells are generally regarded as tumor-supportive and at will manipulated by cancer cells, several novel studies point at many defaults in cancer cell-mediated stromal reprograming. Indeed, parts of initial tissue-protective and homeostatic functions of the stromal cells remain in place even after tumor development. Both tumor-supportive and tumor-suppressive functions have been well described for macrophages, whereas similar results are emerging for fibroblasts and endothelial cells. Recent success of immunotherapies have finally brought the long awaited proof that stroma is key for efficient tumor targeting. However, a better understanding of paracrine stromal interactions is needed in order to encourage drug development not only aiming at disruption of tumor-supportive communication but also re-enforcing, existing, tumor-suppressive mechanisms.

  10. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells.

    Science.gov (United States)

    Shen, Haifa; Sun, Tong; Hoang, Hanh H; Burchfield, Jana S; Hamilton, Gillian F; Mittendorf, Elizabeth A; Ferrari, Mauro

    2017-12-01

    Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    Science.gov (United States)

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  12. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    International Nuclear Information System (INIS)

    Hindriksen, Sanne; Bijlsma, Maarten F.

    2012-01-01

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer

  13. "Cancer tumor".

    Science.gov (United States)

    Bronshtehn, V. A.

    The title is a phrase borrowed from a speech by a Leningrad pressman, V. E. Lvov, who called upon those attending a theoretical conference on ideological issues in astronomy held by the Leningrad Branch of the All-Union Astronomic and Geodetic Society (13 - 4 December 1948), "to make a more radical emphasis on the negative role of relativistic cosmology which is a cancer tumor disintegrating the contemporary astronomy theory, and a major ideological enemy of a materialist astronomy".

  14. Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix

    Science.gov (United States)

    López, Jacqueline; Ruíz, Graciela; Organista-Nava, Jorge; Gariglio, Patricio; García-Carrancá, Alejandro

    2012-01-01

    Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development. PMID:23341858

  15. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  16. Tumor Immunology meets…Immunology: Modified cancer cells as professional APC for priming naïve tumor-specific CD4+ T cells.

    Science.gov (United States)

    Bou Nasser Eddine, Farah; Ramia, Elise; Tosi, Giovanna; Forlani, Greta; Accolla, Roberto S

    2017-01-01

    Although recent therapeutic approaches have revitalized the enthusiasm of the immunological way to combat cancer, still the comprehension of immunity against tumors is largely incomplete. Due to their specific function, CD8+ T cells with cytolytic activity (CTL) have attracted the attention of most investigators because CTL are considered the main effectors against tumor cells. Nevertheless, CTL activity and persistence is largely dependent on the action of CD4+ T helper cells (TH). Thus establishment of tumor-specific TH cell response is key to the optimal response against cancer. Here we describe emerging new strategies to increase the TH cell recognition of tumor antigens. In particular, we review recent data indicating that tumor cells themselves can act as surrogate antigen presenting cells for triggering TH response and how these findings can help in constructing immunotherapeutic protocols for anti-cancer vaccine development.

  17. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  18. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Malgorzata Banys

    2014-01-01

    Full Text Available Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  19. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina [Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195-6043 (United States); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario 46A 4L6 (Canada)

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained

  20. Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells?

    Science.gov (United States)

    Paldino, Emanuela; Tesori, Valentina; Casalbore, Patrizia; Gasbarrini, Antonio; Puglisi, Maria Ausiliatrice

    2014-01-01

    There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called "cancer stem cells" (CSCs). In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.

  1. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Exchange of cytosolic content between T cells and tumor cells activates CD4 T cells and impedes cancer growth.

    Directory of Open Access Journals (Sweden)

    Matthias Hardtke-Wolenski

    Full Text Available BACKGROUND: T cells are known to participate in the response to tumor cells and react with cytotoxicity and cytokine release. At the same time tumors established versatile mechanisms for silencing the immune responses. The interplay is far from being completely understood. In this study we show contacts between tumor cells and lymphocytes revealing novel characteristics in the interaction of T cells and cancer cells in a way not previously described. METHODS/ FINDINGS: Experiments are based on the usage of a hydrophilic fluorescent dye that occurs free in the cytosol and thus transfer of fluorescent cytosol from one cell to the other can be observed using flow cytometry. Tumor cells from cell lines of different origin or primary hepatocellular carcinoma (HCC cells were incubated with lymphocytes from human and mice. This exposure provoked a contact dependent uptake of tumor derived cytosol by lymphocytes--even in CD4⁺ T cells and murine B cells--which could not be detected after incubation of lymphocytes with healthy cells. The interaction was a direct one, not requiring the presence of accessory cells, but independent of cytotoxicity and TCR engagement. Electron microscopy disclosed 100-200 nm large gaps in the cell membranes of connected cells which separated viable and revealed astonishing outcome. While the lymphocytes were induced to proliferate in a long term fashion, the tumor cells underwent a temporary break in cell division. The in vitro results were confirmed in vivo using a murine acute lymphoblastic leukemia (ALL model. The arrest of tumor proliferation resulted in a significant prolonged survival of challenged mice. CONCLUSIONS: The reported cell-cell contacts reveal new characteristics i.e. the enabling of cytosol flow between the cells including biological active proteins that influence the cell cycle and biological behaviour of the recipient cells. This adds a completely new aspect in tumor induced immunology.

  3. eTumorType, An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood

    Directory of Open Access Journals (Sweden)

    Jinfeng Zou

    2017-04-01

    Full Text Available With the technology development on detecting circulating tumor cells (CTCs and cell-free DNAs (cfDNAs in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86–0.96 and high recall rates (0.79–0.92 for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78–0.92 and recall rates (0.58–0.95 have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs.

  4. Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.

    Science.gov (United States)

    Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie

    2017-11-14

    Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.

  5. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  6. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer

    Directory of Open Access Journals (Sweden)

    Samantha Morley

    2014-08-01

    Full Text Available Prostate cancer (PCa remains a principal cause of mortality in developed countries. Because no clinical interventions overcome resistance to androgen ablation therapy, management of castration resistance and metastatic disease remains largely untreatable. Metastasis is a multistep process in which tumor cells lose cell-cell contacts, egress from the primary tumor, intravasate, survive shear stress within the vasculature and extravasate into tissues to colonize ectopic sites. Tumor cells reestablish migratory behaviors employed during nonneoplastic processes such as embryonic development, leukocyte trafficking and wound healing. While mesenchymal motility is an established paradigm of dissemination, an alternate, 'amoeboid' phenotype is increasingly appreciated as relevant to human cancer. Here we discuss characteristics and pathways underlying the phenotype, and highlight our findings that the cytoskeletal regulator DIAPH3 governs the mesenchymal-amoeboid transition. We also describe our identification of a new class of tumor-derived microvesicles, large oncosomes, produced by amoeboid cells and with potential clinical utility in prostate and other cancers.

  7. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  8. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-01-01

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression

  9. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    Science.gov (United States)

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  10. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells.

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Lorvik, Kristina Berg; Yagita, Hideo; Bogen, Bjarne; Corthay, Alexandre

    The role of inflammation in cancer is controversial as both tumor-promoting and tumor-suppressive aspects of inflammation have been reported. In particular, it has been shown that pro-inflammatory cytokines, like interleukin-1α (IL-1α), IL-1β, IL-6, and tumor necrosis factor α (TNFα), may either promote or suppress cancer. However, the cellular and molecular basis underlying these opposing outcomes remains enigmatic. Using mouse models for myeloma and lymphoma, we have recently reported that inflammation driven by tumor-specific T helper 1 (Th1) cells conferred protection against B-cell cancer and that interferon-γ (IFN-γ) was essential for this process. Here, we have investigated the contribution of several inflammatory mediators. Myeloma eradication by Th1 cells was not affected by inhibition of TNF-α, TNF-related weak inducer of apoptosis (TWEAK), or TNF-related apoptosis-inducing ligand (TRAIL). In contrast, cancer elimination by tumor-specific Th1 cells was severely impaired by the in vivo neutralization of both IL-1α and IL-1β (collectively named IL-1) with IL-1 receptor antagonist (IL-1Ra). The antitumor functions of tumor-specific Th1 cells and tumor-infiltrating macrophages were both affected by IL-1 neutralization. Secretion of the Th1-derived cytokines IL-2 and IFN-γ at the incipient tumor site was severely reduced by IL-1 blockade. Moreover, IL-1 was shown to synergize with IFN-γ for induction of tumoricidal activity in tumor-infiltrating macrophages. This synergy between IL-1 and IFN-γ may explain how inflammation, when driven by tumor-specific Th1 cells, represses rather than promotes cancer. Collectively, the data reveal a central role of inflammation, and more specifically of the canonical pro-inflammatory cytokine IL-1, in enhancing Th1-mediated immunity against cancer.

  11. The potential diagnostic power of circulating tumor cell analysis for non-small-cell lung cancer.

    Science.gov (United States)

    Ross, Kirsty; Pailler, Emma; Faugeroux, Vincent; Taylor, Melissa; Oulhen, Marianne; Auger, Nathalie; Planchard, David; Soria, Jean-Charles; Lindsay, Colin R; Besse, Benjamin; Vielh, Philippe; Farace, Françoise

    2015-01-01

    In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC.

  12. Targeting Gas6/TAM in cancer cells and tumor microenvironment.

    Science.gov (United States)

    Wu, Guiling; Ma, Zhiqiang; Cheng, Yicheng; Hu, Wei; Deng, Chao; Jiang, Shuai; Li, Tian; Chen, Fulin; Yang, Yang

    2018-01-31

    Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.

  13. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    DEFF Research Database (Denmark)

    Egerod, Frederikke N S Lihme; Bartels, Annette; Fristrup, Niels

    2009-01-01

    bladder cancer. RESULTS: The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling...... than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling...

  14. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  15. Occurrence of thymosin ß4 in human breast cancer cells and in other cell types of the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Holck, Susanne

    2007-01-01

    that there is a considerable heterogeneity in the cellular distribution of thymosin ß4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin ß4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity...... to thymosin ß4, whereas myofibroblasts were negative. There was no correlation between the intensity of tumor cell staining and histological grade, whereas there was a tendency toward a correlation between endothelial cell staining and grade. These results demonstrate that multiple cell types within the tumor...

  16. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity

    Directory of Open Access Journals (Sweden)

    Tania Løve Aaes

    2016-04-01

    Full Text Available Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.

  17. Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer.

    Science.gov (United States)

    Aponte-López, Angélica; Fuentes-Pananá, Ezequiel M; Cortes-Muñoz, Daniel; Muñoz-Cruz, Samira

    2018-01-01

    Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.

  18. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  19. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  20. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Science.gov (United States)

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target cells either by releasing granules containing toxic molecules including perforin, or by producing a membrane protein called Fas ligand (FasL) which on interaction with the tumor cell results in cell death.

  1. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  2. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells.

    Science.gov (United States)

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilan J

    2016-03-01

    Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14 + , CD163 weak and CD68 + macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293

  3. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors.

    Directory of Open Access Journals (Sweden)

    Ardian Latifi

    Full Text Available Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD and non-adherent (NAD cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN and 14 chemoresistant (CR. AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125, epithelial cell adhesion molecule (EpCAM and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p. injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.

  4. Reprogramming tumor-infiltrating dendritic cells for CD103+CD8+ mucosal T cell differentiation and breast cancer rejection

    Science.gov (United States)

    Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G. Jackson; O’Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina

    2014-01-01

    Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory T helper 2 (iTh2) cells and protumor inflammation. Here we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells, and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DC via the ligation of dectin-1, enabling the DC to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL12p70, and to favor the generation of T helper 1 (Th1) cells. DC activated via dectin-1, but not those activated with TLR-7/8 ligand or poly IC, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+CD8+ mucosal T cells accumulate in the tumors thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+CD8+ mucosal T cells elicited by reprogrammed DC can reject established cancer. Thus, reprogramming tumor-infiltrating DC represents a new strategy for cancer rejection. PMID:24795361

  5. Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Yasumoto, Kosei; Hanagiri, Takeshi; Takenoyama, Mitsuhiro

    2009-01-01

    Despite recent advances in surgery, irradiation, and chemotherapy, the prognosis of patients with lung cancer is still poor. Therefore, the development and application of new therapeutic strategies are essential for improving the prognosis of this disease. Significant progress in our understanding of tumor immunology and molecular biology has allowed us to identify the tumor-associated antigens recognized by cytotoxic T lymphocytes. Immune responses and tumor-associated antigens against not only malignant melanoma but also lung cancer have been elucidated at the molecular level. In a theoretical sense, tumor eradication is considered possible through antigen-based immunotherapy against such diseases. However, many clinical trials of cancer vaccination with defined tumor antigens have resulted in objective clinical responses in only a small number of patients. Tumor escape mechanisms from host immune surveillance remain a major obstacle for cancer immunotherapy. A better understanding of the immune escape mechanisms employed by tumor cells is necessary before we can develop a more effective immunotherapeutic approach to lung cancer. We review recent studies regarding the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer. (author)

  6. Deregulated GSK3β activity in colorectal cancer: Its association with tumor cell survival and proliferation

    International Nuclear Information System (INIS)

    Shakoori, Abbas; Ougolkov, Andrei; Yu Zhiwei; Zhang Bin; Modarressi, Mohammad H.; Billadeau, Daniel D.; Mai, Masayoshi; Takahashi, Yutaka; Minamoto, Toshinari

    2005-01-01

    Glycogen synthase kinase 3β (GSK3β) reportedly has opposing roles, repressing Wnt/β-catenin signaling on the one hand but maintaining cell survival and proliferation through the NF-κB pathway on the other. The present investigation was undertaken to clarify the roles of GSK3β in human cancer. In colon cancer cell lines and colorectal cancer patients, levels of GSK3β expression and amounts of its active form were higher in tumor cells than in their normal counterparts; these findings were independent of nuclear accumulation of β-catenin oncoprotein in the tumor cells. Inhibition of GSK3β activity by phosphorylation was defective in colorectal cancers but preserved in non-neoplastic cells and tissues. Strikingly, inhibition of GSK3β activity by chemical inhibitors and its expression by RNA interference targeting GSK3β induced apoptosis and attenuated proliferation of colon cancer cells in vitro. Our findings demonstrate an unrecognized role of GSK3β in tumor cell survival and proliferation other than its predicted role as a tumor suppressor, and warrant proposing this kinase as a potential therapeutic target in colorectal cancer

  7. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Chen, Pin-Yuan

    2018-05-01

    Glioblastoma (GBM) is the most malignant primary brain tumor and contains tumorigenic cancer stem cells (CSCs), which support the progression of tumor growth. The selection of CSCs and facilitation of the brain tumor niches may assist the development of novel therapeutics for GBM. Herein, hydrogel materials composed of agarose and hydroxypropyl methyl cellulose (HMC) in different concentrations were established and compared to emulate brain tumor niches and CSC microenvironments within a label-free system. Human GBM cell line, U-87 MG, was cultured on a series of HMC-agarose based culture system. Cell aggregation and spheroids formation were investigated after 4 days of culture, and 2.5% HMC-agarose based culture system demonstrated the largest spheroids number and size. Moreover, CD133 marker expression of GBM cells after 6 days of culture in 2.5% HMC-agarose based culture system was 60%, relatively higher than the control group at only 15%. Additionally, cells on 2.5% HMC-agarose based culture system show the highest chemoresistance, even at the high dose of 500 µM temozolomide for 72 h, the live cell ratio was still > 80%. Furthermore, the results also indicate that the expression of ABCG2 gene was up-regulated after culture in 2.5% HMC-agarose based culture system. Therefore, our results demonstrated that biomimetic brain tumor microenvironment may regulate GBM cells towards the CSC phenotype and expression of CSC characteristics. The microenvironment selection and spheroids formation in HMC-agarose based culture system may provide a label-free CSC selection strategy and drug testing model for future biomedical applications.

  8. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer

    NARCIS (Netherlands)

    Franken, Bas; De Groot, Marco R.; Mastboom, Walter J.B.; Vermes, I.; van der Palen, Jacobus Adrianus Maria; Tibbe, Arjan G.J.; Terstappen, Leonardus Wendelinus Mathias Marie

    2012-01-01

    Introduction The presence of circulating tumor cells (CTC) is an independent prognostic factor for progression-free survival and breast cancer-related death (BRD) for patients with metastatic breast cancer beginning a new line of systemic therapy. The current study was undertaken to explore whether

  9. Role of stem cells in tumor initiation, metastasis formation and their use in cancer therapy

    International Nuclear Information System (INIS)

    Altaner, C.; Altanerova, V.

    2010-01-01

    This review considers recent advances in the stem cell field focusing on the challenges and opportunities for their use in clinical practice. Various kinds of stem cells and their roles in the human organism are in the review described. Attention is given to the role of mesenchymal stem cells as a potential tool in regenerative medicine. The origin and consequences of existence of tumor-initiating cells known as cancer stem cells is discussed also in context of metastasis formation. It seems that tumor-initiating cells might be responsible for resistance to many conventional cancer therapies, which might explain the limitations of these therapeutic modalities. Furthermore, the review focuses to tumor homing property of adult mesenchymal (stromal) stem cells. The feasibility of mesenchymal stem cells isolation from human adipose tissue, their genetic modifications with suicide genes together with ability to find tumor in the organism make them an attractive vehicle for cancer therapy without systemic toxicity. Published achievements from our laboratory in stem cell-based gene cancer therapy are shortly summarized. Generally, it is believed that the stem cell therapies might be ideal future treatment modality for inherited, degenerative diseases and in curing human malignancies as well. (author)

  10. Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient

    International Nuclear Information System (INIS)

    Bernal-Estévez, David; Sánchez, Ramiro; Tejada, Rafael E.; Parra-López, Carlos

    2016-01-01

    Experimental evidence and clinical studies in breast cancer suggest that some anti-tumor therapy regimens generate stimulation of the immune system that accounts for tumor clinical responses, however, demonstration of the immunostimulatory power of these therapies on cancer patients continues to be a formidable challenge. Here we present experimental evidence from a breast cancer patient with complete clinical response after 7 years, associated with responsiveness of tumor specific T cells. T cells were obtained before and after anti-tumor therapy from peripheral blood of a 63-years old woman diagnosed with ductal breast cancer (HER2/neu+++, ER-, PR-, HLA-A*02:01) treated with surgery, followed by paclitaxel, trastuzumab (suspended due to cardiac toxicity), and radiotherapy. We obtained a leukapheresis before surgery and after 8 months of treatment. Using in vitro cell cultures stimulated with autologous monocyte-derived dendritic cells (DCs) that produce high levels of IL-12, we characterize by flow cytometry the phenotype of tumor associated antigens (TAAs) HER2/neu and NY-ESO 1 specific T cells. The ex vivo analysis of the TCR-Vβ repertoire of TAA specific T cells in blood and Tumor Infiltrating Lymphocytes (TILs) were performed in order to correlate both repertoires prior and after therapy. We evidence a functional recovery of T cell responsiveness to polyclonal stimuli and expansion of TAAs specific CD8+ T cells using peptide pulsed DCs, with an increase of CTLA-4 and memory effector phenotype after anti-tumor therapy. The ex vivo analysis of the TCR-Vβ repertoire of TAA specific T cells in blood and TILs showed that whereas the TCR-Vβ04-02 clonotype is highly expressed in TILs the HER2/neu specific T cells are expressed mainly in blood after therapy, suggesting that this particular TCR was selectively enriched in blood after anti-tumor therapy. Our results show the benefits of anti-tumor therapy in a breast cancer patient with clinical complete response in

  11. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands.

    Science.gov (United States)

    He, Wei; Kularatne, Sumith A; Kalli, Kimberly R; Prendergast, Franklyn G; Amato, Robert J; Klee, George G; Hartmann, Lynn C; Low, Philip S

    2008-10-15

    Quantitation of circulating tumor cells (CTCs) can provide information on the stage of a malignancy, onset of disease progression and response to therapy. In an effort to more accurately quantitate CTCs, we have synthesized fluorescent conjugates of 2 high-affinity tumor-specific ligands (folate-AlexaFluor 488 and DUPA-FITC) that bind tumor cells >20-fold more efficiently than fluorescent antibodies. Here we determine whether these tumor-specific dyes can be exploited for quantitation of CTCs in peripheral blood samples from cancer patients. A CTC-enriched fraction was isolated from the peripheral blood of ovarian and prostate cancer patients by an optimized density gradient centrifugation protocol and labeled with the aforementioned fluorescent ligands. CTCs were then quantitated by flow cytometry. CTCs were detected in 18 of 20 ovarian cancer patients (mean 222 CTCs/ml; median 15 CTCs/ml; maximum 3,118 CTCs/ml), whereas CTC numbers in 16 gender-matched normal volunteers were negligible (mean 0.4 CTCs/ml; median 0.3 CTCs/ml; maximum 1.5 CTCs/ml; p < 0.001, chi(2)). CTCs were also detected in 10 of 13 prostate cancer patients (mean 26 CTCs/ml, median 14 CTCs/ml, maximum 94 CTCs/ml) but not in 18 gender-matched healthy donors (mean 0.8 CTCs/ml, median 1, maximum 3 CTC/ml; p < 0.0026, chi(2)). Tumor-specific fluorescent antibodies were much less efficient in quantitating CTCs because of their lower CTC labeling efficiency. Use of tumor-specific fluorescent ligands to label CTCs in peripheral blood can provide a simple, accurate and sensitive method for determining the number of cancer cells circulating in the bloodstream.

  12. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer.

    Science.gov (United States)

    Daman, Zahra; Faghihi, Homa; Montazeri, Hamed

    2018-05-02

    Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice. SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs. These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.

  13. Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    Science.gov (United States)

    Aspord, Caroline; Pedroza-Gonzalez, Alexander; Gallegos, Mike; Tindle, Sasha; Burton, Elizabeth C.; Su, Dan; Marches, Florentina; Banchereau, Jacques; Palucka, A. Karolina

    2007-01-01

    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development. PMID:17438063

  14. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy.

    Science.gov (United States)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc; Brennen, W Nathaniel; Dalrymple, Susan; Dach, Ingrid; Olesen, Claus; Gurel, Bora; Demarzo, Angelo M; Wilding, George; Carducci, Michael A; Dionne, Craig A; Møller, Jesper V; Nissen, Poul; Christensen, S Brøgger; Isaacs, John T

    2012-06-27

    Heterogeneous expression of drug target proteins within tumor sites is a major mechanism of resistance to anticancer therapies. We describe a strategy to selectively inhibit, within tumor sites, the function of a critical intracellular protein, the sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host. On the basis of these data, a phase 1 dose-escalation clinical trial has been initiated with G202 in patients with advanced cancer.

  15. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Martin eAugsten

    2014-03-01

    Full Text Available Tumor- or cancer-associated fibroblasts (CAFs are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular ´polarization´, previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.

  16. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Science.gov (United States)

    Hawk, Mark A; McCallister, Chelsea; Schafer, Zachary T

    2016-10-13

    Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  17. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Directory of Open Access Journals (Sweden)

    Mark A. Hawk

    2016-10-01

    Full Text Available Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS. While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  18. Probing Androgen Receptor Signaling in Circulating Tumor Cells in Prostate Cancer

    Science.gov (United States)

    2013-07-01

    2010). Toxicity and outcomes after chemoradiation for esophageal cancer in patients age 75 or older. Diseases of the Esophagus , 23:316-23. Epub 2009...Circulating Tumor Cells in Prostate Cancer PRINCIPAL INVESTIGATOR: David T. Miyamoto, M.D., Ph.D... Cancer 5b. GRANT NUMBER W81XWH-12-1-0153 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER David T. Miyamoto, M.D., Ph.D. 5e

  19. Circulating tumor cells and their relationship with clinical and morphological characteristics of colorectal cancer

    Directory of Open Access Journals (Sweden)

    O I Kit

    2018-02-01

    Full Text Available Aim. To investigate the dependence of the number of circulating tumor cells in peripheral blood of colorectal cancer patients on the clinical and morphological characteristics of underlying disease. Methods. 91 patients with verified metastatic colorectal cancer Т3-4N1-2М1 were included in the study. The average age of the patients was 61.5±1.7 years. The patients were divided into the study group (laparoscopic surgical treatment, n=44 and control group (open surgical intervention, n=47. The number of circulating tumor cells was determined in CellSearch™ system in the peripheral blood drawn before the intervention. The study of the association of attributes by constructing contingency tables consisted in calculating Pearson’s contingency coefficient c2 with Mantel-Haenszel correction for likelihood (nonparametric correction, estimating statistical significance of contingency and analyzing the tightness of the association by A. Chuprov’s mutual contingency coefficient. Results. We found contingency of the number of circulating tumor cells with clinical and morphological parameters of patients with colorectal cancer. The relationship between potential risk factors and increase of the number of circulating tumor cells in the peripheral blood was observed in all colorectal cancer patients, regardless of the surgical intervention method. The most pronounced association of the number of circulating tumor cells in the peripheral blood of metastatic colorectal cancer patients before surgery according to the mutual contingency coefficient (K was shown to be with present distant metastases (status M1b; K=0.63, p=0.0001 and stage T4 (K=0.56, p=0.0009. Conclusion. The obtained results emphasize the important predictive significance of the circulating tumor cells level in peripheral blood for assessment of the potential for colorectal cancer progression.

  20. Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma

    DEFF Research Database (Denmark)

    Andersen, Rikke; Donia, Marco; Westergaard, Marie Christine Wulff

    2015-01-01

    stimulated the interest in developing this approach for other indications. Here, we summarize the early clinical data in the field of adoptive cell transfer therapy (ACT) using tumor-infiltrating lymphocytes for patients with renal cell carcinoma (RCC) and ovarian cancer (OC). In addition we describe...

  1. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Hur, T. R.; Lee, Y. M.; Park, J. W.; Sohn, E. J.

    2006-05-01

    The physical properties of charged particles such as protons are uniquely suited to target the radiation dose precisely in the tumor. In proton therapy, the Bragg peak is spread out by modulating or degrading the energy of the particles to cover a well defined target volume at a given depth. Due to heterogeneity in the various tumors and end-points as well as in the physical properties of the beams considered, it is difficult to fit the various results into a clear general description of the biological effect of proton in tumor therapy. Tumor hypoxia is a main obstacle to radiotherapy, including gamma-ray. Survived tumor cells under hypoxic region are resistant to radiation and more aggressive to be metastasized. To investigate the dose of proton beam to induce cell death of various tumor cells and hypoxic tumor cells at the Bragg peak in vitro, we used 3 kinds of tumor cells, lung cancer, leukemia and hepatoma cells. Proton beam induces apoptosis in Lewis lung carcinoma cells dose dependently and, slightly in leukemia but not in hepatoma cells at all. Above 1000 gray of proton beam, 60% of cells died even the hypoxic cells in Lewis lung carcinoma cells. But the Molt-4 leukemia cells showed milder effect, 20% cell death by the above 1000 Gray of proton beam and typical resistant pattern (5-10%) of hypoxia in desferrioxamine treated cells. Hepatoma cells (HepG2) were not responsive to proton beam even in rather higher dose (4000G). However, by the gamma-irradiation, Molt-4 was more sensitive than hepatoma or lung cancer cells, but still showed hypoxic resistance. The cell death by proton beam in Lewis lung carcinoma cells was confirmed by PARP cleavage and may be mediated by increased p53. Pro-caspases were also activated and cleaved by the proton beam irradiations for lung cancer cell death. In conclusion, high dose of proton beam (above 1000 gray) may be a good therapeutic radiation even in hypoxic region at the Bragg peak, but further investigations about the

  2. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  3. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

    Science.gov (United States)

    Završnik, Janja; Butinar, Miha; Prebanda, Mojca Trstenjak; Krajnc, Aleksander; Vidmar, Robert; Fonović, Marko; Grubb, Anders; Turk, Vito; Turk, Boris; Vasiljeva, Olga

    2017-09-26

    Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro , indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

  4. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  5. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Hage-Sleiman, Rouba; Herveau, Stéphanie; Matera, Eva-Laure; Laurier, Jean-Fabien; Dumontet, Charles

    2010-01-01

    Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and in xenografts. These

  6. Occurrence of thymosin beta4 in human breast cancer cells and in other cell types of the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsson, L.-I.; Holck, Susanne

    2007-01-01

    that there is a considerable heterogeneity in the cellular distribution of thymosin beta4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin beta4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity...... to thymosin beta4, whereas myofibroblasts were negative. There was no correlation between the intensity of tumor cell staining and histological grade, whereas there was a tendency toward a correlation between endothelial cell staining and grade. These results demonstrate that multiple cell types within...

  7. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    Science.gov (United States)

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    Science.gov (United States)

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  9. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer

    Science.gov (United States)

    Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.

    2016-01-01

    Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599

  10. T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire.

    Science.gov (United States)

    Beausang, John F; Wheeler, Amanda J; Chan, Natalie H; Hanft, Violet R; Dirbas, Frederick M; Jeffrey, Stefanie S; Quake, Stephen R

    2017-11-28

    Tumor-infiltrating T cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T cell beta-chain repertoire in 16 patients with early-stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing ∼2.5-fold greater density of T cells and higher clonality compared with normal breast. The clonal structure of T cells in blood and normal breast is more similar than between blood and tumor, and could be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T cell sequences overlap between tissue and blood from the same patient, including ∼50% of T cells between tumor and normal breast. Both tumor and normal breast contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T cells in both tumor and normal breast. Enriched T cell sequences are typically unique to each patient, but a subset is shared between many different patients. We show that many of these are commonly generated sequences, and thus unlikely to play an important role in the tumor microenvironment. Copyright © 2017 the Author(s). Published by PNAS.

  11. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    Science.gov (United States)

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  12. eTumorType, An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood.

    Science.gov (United States)

    Zou, Jinfeng; Wang, Edwin

    2017-04-01

    With the technology development on detecting circulating tumor cells (CTCs) and cell-free DNAs (cfDNAs) in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs) of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86-0.96) and high recall rates (0.79-0.92) for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78-0.92) and recall rates (0.58-0.95) have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  13. Renal cell tumors with clear cell histology and intact VHL and chromosome 3p: a histological review of tumors from the Cancer Genome Atlas database.

    Science.gov (United States)

    Favazza, Laura; Chitale, Dhananjay A; Barod, Ravi; Rogers, Craig G; Kalyana-Sundaram, Shanker; Palanisamy, Nallasivam; Gupta, Nilesh S; Williamson, Sean R

    2017-11-01

    Clear cell renal cell carcinoma is by far the most common form of kidney cancer; however, a number of histologically similar tumors are now recognized and considered distinct entities. The Cancer Genome Atlas published data set was queried (http://cbioportal.org) for clear cell renal cell carcinoma tumors lacking VHL gene mutation and chromosome 3p loss, for which whole-slide images were reviewed. Of the 418 tumors in the published Cancer Genome Atlas clear cell renal cell carcinoma database, 387 had VHL mutation, copy number loss for chromosome 3p, or both (93%). Of the remaining, 27/31 had whole-slide images for review. One had 3p loss based on karyotype but not sequencing, and three demonstrated VHL promoter hypermethylation. Nine could be reclassified as distinct or emerging entities: translocation renal cell carcinoma (n=3), TCEB1 mutant renal cell carcinoma (n=3), papillary renal cell carcinoma (n=2), and clear cell papillary renal cell carcinoma (n=1). Of the remaining, 6 had other clear cell renal cell carcinoma-associated gene alterations (PBRM1, SMARCA4, BAP1, SETD2), leaving 11 specimens, including 2 high-grade or sarcomatoid renal cell carcinomas and 2 with prominent fibromuscular stroma (not TCEB1 mutant). One of the remaining tumors exhibited gain of chromosome 7 but lacked histological features of papillary renal cell carcinoma. Two tumors previously reported to harbor TFE3 gene fusions also exhibited VHL mutation, chromosome 3p loss, and morphology indistinguishable from clear cell renal cell carcinoma, the significance of which is uncertain. In summary, almost all clear cell renal cell carcinomas harbor VHL mutation, 3p copy number loss, or both. Of tumors with clear cell histology that lack these alterations, a subset can now be reclassified as other entities. Further study will determine whether additional entities exist, based on distinct genetic pathways that may have implications for treatment.

  14. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy

    DEFF Research Database (Denmark)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc

    2012-01-01

    adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment...... of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host...

  15. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.

    Science.gov (United States)

    Zhang, Bing-Lan; Qin, Di-Yuan; Mo, Ze-Ming; Li, Yi; Wei, Wei; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-04-01

    Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.

  16. Allogeneic tumor cell vaccines

    Science.gov (United States)

    Srivatsan, Sanjay; Patel, Jaina M; Bozeman, Erica N; Imasuen, Imade E; He, Sara; Daniels, Danielle; Selvaraj, Periasamy

    2014-01-01

    The high mortality rate associated with cancer and its resistance to conventional treatments such as radiation and chemotherapy has led to the investigation of a variety of anti-cancer immunotherapies. The development of novel immunotherapies has been bolstered by the discovery of tumor-associated antigens (TAAs), through gene sequencing and proteomics. One such immunotherapy employs established allogeneic human cancer cell lines to induce antitumor immunity in patients through TAA presentation. Allogeneic cancer immunotherapies are desirable in a clinical setting due to their ease of production and availability. This review aims to summarize clinical trials of allogeneic tumor immunotherapies in various cancer types. To date, clinical trials have shown limited success due potentially to extensive degrees of inter- and intra-tumoral heterogeneity found among cancer patients. However, these clinical results provide guidance for the rational design and creation of more effective allogeneic tumor immunotherapies for use as monotherapies or in combination with other therapies. PMID:24064957

  17. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor.

    Science.gov (United States)

    Dahlin, Anna M; Henriksson, Maria L; Van Guelpen, Bethany; Stenling, Roger; Oberg, Ake; Rutegård, Jörgen; Palmqvist, Richard

    2011-05-01

    The aim of this study was to relate the density of tumor infiltrating T cells to cancer-specific survival in colorectal cancer, taking into consideration the CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) screening status. The T-cell marker CD3 was stained by immunohistochemistry in 484 archival tumor tissue samples. T-cell density was semiquantitatively estimated and scored 1-4 in the tumor front and center (T cells in stroma), and intraepithelially (T cells infiltrating tumor cell nests). Total CD3 score was calculated as the sum of the three CD3 scores (range 3-12). MSI screening status was assessed by immunohistochemistry. CIMP status was determined by quantitative real-time PCR (MethyLight) using an eight-gene panel. We found that patients whose tumors were highly infiltrated by T cells (total CD3 score ≥7) had longer survival compared with patients with poorly infiltrated tumors (total CD3 score ≤4). This finding was statistically significant in multivariate analyses (multivariate hazard ratio, 0.57; 95% confidence interval, 0.31-1.00). Importantly, the finding was consistent in rectal cancer patients treated with preoperative radiotherapy. Although microsatellite unstable tumor patients are generally considered to have better prognosis, we found no difference in survival between microsatellite unstable and microsatellite stable (MSS) colorectal cancer patients with similar total CD3 scores. Patients with MSS tumors highly infiltrated by T cells had better prognosis compared with intermediately or poorly infiltrated microsatellite unstable tumors (log rank P=0.013). Regarding CIMP status, CIMP-low was associated with particularly poor prognosis in patients with poorly infiltrated tumors (multivariate hazard ratio for CIMP-low versus CIMP-negative, 3.07; 95% confidence interval, 1.53-6.15). However, some subset analyses suffered from low power and are in need of confirmation by independent studies. In conclusion, patients whose

  18. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL

  19. Prognostic factors of tumor recurrence in completely resected non-small cell lung cancer

    International Nuclear Information System (INIS)

    Tantraworasin, Apichat; Saeteng, Somcharoen; Lertprasertsuke, Nirush; Arreyakajohn, Nuttapon; Kasemsarn, Choosak; Patumanond, Jayanton

    2013-01-01

    Patients with completely resected non-small cell lung cancer (NSCLC) have an excellent outcome; however tumor recurs in 30%–77% of patients. This study retrospectively analyzed the clinicopathologic features of patients with any operable stage of NSCLC to identify the prognostic factors that influence tumor recurrence, including intratumoral blood vessel invasion (IVI), tumor size, tumor necrosis, and intratumoral lymphatic invasion. From January 2002 to December 2011, 227 consecutive patients were enrolled in this study. They were divided into two groups: the “no recurrence” group and the “recurrence” group. Recurrence-free survival was analyzed by multivariable Cox regression analysis, stratified by tumor staging, chemotherapy, and nodal involvement. IVI, tumor necrosis, tumor diameter more than 5 cm, and nodal involvement were identified as independent prognostic factors of tumor recurrence. The hazard ratio (HR) of patients with IVI was 2.1 times higher than that of patients without IVI (95% confident interval [CI]: 1.4–3.2) (P = 0.001).The HR of patients with tumor necrosis was 2.1 times higher than that of patients without tumor necrosis (95% CI: 1.3–3.4) (P = 0.001). Patients who had a maximum tumor diameter greater than 5 cm had significantly higher risk of recurrence than patients who had a maximum tumor diameter of less than 5 cm (HR 1.9, 95% CI: 1.0–3.5) (P = 0.033). IVI, tumor diameter more than 5 cm, and tumor necrosis are prognostic factors of tumor recurrence in completely resected NSCLC. Therefore, NSCLC patients, with or without nodal involvement, who have one or more prognostic factors of tumor recurrence may benefit from adjuvant chemotherapy for prevention of tumor recurrence

  20. High hydrostatic pressure affects antigenic pool in tumor cells: Implication for dendritic cell-based cancer immunotherapy.

    Science.gov (United States)

    Urbanova, Linda; Hradilova, Nada; Moserova, Irena; Vosahlikova, Sarka; Sadilkova, Lenka; Hensler, Michal; Spisek, Radek; Adkins, Irena

    2017-07-01

    High hydrostatic pressure (HHP) can be used to generate dendritic cell (DC)-based active immunotherapy for prostate, lung and ovarian cancer. We showed here that HHP treatment of selected human cancer cell lines leads to a degradation of tumor antigens which depends on the magnitude of HHP applied and on the cancer cell line origin. Whereas prostate or ovarian cell lines displayed little protein antigen degradation with HHP treatment up to 300MPa after 2h, tumor antigens are hardly detected in lung cancer cell line after treatment with HHP 250MPa at the same time. On the other hand, quick reduction of tumor antigen-coding mRNA was observed at HHP 200MPa immediately after treatment in all cell lines tested. To optimize the DC-based active cellular therapy protocol for HHP-sensitive cell lines the immunogenicity of HHP-treated lung cancer cells at 150, 200 and 250MPa was compared. Lung cancer cells treated with HHP 150MPa display characteristics of immunogenic cell death, however cells are not efficiently phagocytosed by DC. Despite induction of the highest number of antigen-specific CD8 + T cells, 150 MPa-treated lung cancer cells survive in high numbers. This excludes their use in DC vaccine manufacturing. HHP of 200MPa treatment of lung cancer cells ensures the optimal ratio of efficient immunogenic killing and delivery of protein antigens in DC. These results represent an important pre-clinical data for generation of immunogenic killed lung cancer cells in ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa). Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  2. Decreased tumor cell proliferation as an indicator of the effect of preoperative radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Adell, Gunnar; Zhang Hong; Jansson, Agneta; Sun Xiaofeng; Staal, Olle; Nordenskjoeld, Bo

    2001-01-01

    Background: Rectal cancer is a common malignancy, with significant local recurrence and death rates. Preoperative radiotherapy and refined surgical technique can improve local control rates and disease-free survival. Purpose: To investigate the relationship between the tumor growth fraction in rectal cancer measured with Ki-67 and the outcome, with and without short-term preoperative radiotherapy. Method: Ki-67 (MIB-1) immunohistochemistry was used to measure tumor cell proliferation in the preoperative biopsy and the surgical specimen. Materials: Specimens from 152 patients from the Southeast Swedish Health Care region were included in the Swedish rectal cancer trial 1987-1990. Results: Tumors with low proliferation treated with preoperative radiotherapy had a significantly reduced recurrence rate. The influence on death from rectal cancer was shown only in the univariate analysis. Preoperative radiotherapy of tumors with high proliferation did not significantly improve local control and disease-free survival. The interaction between Ki-67 status and the benefit of radiotherapy was significant for the reduced recurrence rate (p=0.03), with a trend toward improved disease-free survival (p=0.08). In the surgery-alone group, Ki-67 staining did not significantly correlate with local recurrence or survival rates. Conclusion: Many Ki-67 stained tumor cells in the preoperative biopsy predicts an increased treatment failure rate after preoperative radiotherapy of rectal cancer

  3. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells.

    Science.gov (United States)

    Lugini, Luana; Valtieri, Mauro; Federici, Cristina; Cecchetti, Serena; Meschini, Stefania; Condello, Maria; Signore, Michele; Fais, Stefano

    2016-08-02

    Cancer cells, including colorectal cancer ones (CRC), release high amounts of nanovesicles (exosomes), delivering biochemical messages for paracrine or systemic crosstalk. Mesenchymal stromal cells (MSCs) have been shown to play contradicting roles in tumor progression. CRC exosomes induce in cMSCs: i) atypical morphology, higher proliferation, migration and invasion; ii) formation of spheroids; iii) an acidic extracellular environment associated with iv) a plasma membrane redistribution of vacuolar H+-ATPase and increased expression of CEA. Colon cancer derived MSCs, which were isolated from tumor masses, produce umbilicated spheroids, a future frequently observed in the inner core of rapidly growing tumors and recapitulate the changes observed in normal colonic MSCs exposed to CRC exosomes. Tissue specific colonic (c)MSCs were exposed to primary or metastatic CRC exosomes and analysed by light and electron microscopy, proliferation in 2D and 3D cultures, migration and invasion assays, Western blot and confocal microscopy for vacuolar H+-ATPase expression. CRC exosomes are able to induce morphological and functional changes in colonic MSCs, which may favour tumor growth and its malignant progression. Our results suggest that exosomes are actively involved in cancer progression and that inhibiting tumor exosome release may represent a way to interfere with cancer.

  4. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin

    NARCIS (Netherlands)

    van Gisbergen, Klaas P. J. M.; Aarnoudse, Corlien A.; Meijer, Gerrit A.; Geijtenbeek, Teunis B. H.; van Kooyk, Yvette

    2005-01-01

    Dendritic cells play a pivotal role in the induction of antitumor immune responses. Immature dendritic cells are located intratumorally within colorectal cancer and intimately interact with tumor cells, whereas mature dendritic cells are present peripheral to the tumor. The majority of colorectal

  5. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    International Nuclear Information System (INIS)

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed

  6. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Directory of Open Access Journals (Sweden)

    Xingyue He

    Full Text Available SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  7. Case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, K.; Ootsuka, F. (Tokyo Univ. (Japan). Faculty of Medicine); Mizoguchi, M.

    1980-12-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered.

  8. A case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    International Nuclear Information System (INIS)

    Oohara, Kuniaki; Ootsuka, Fujio; Mizoguchi, Masako.

    1980-01-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered. (Tsunoda, M.)

  9. Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis

    Directory of Open Access Journals (Sweden)

    Patel Shonak

    2006-08-01

    Full Text Available Abstract Background Soluble fibrin (sFn is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αIIbβ3, and tumor cell CD54 (ICAM-1, which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2. We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion sFn inhibits monocyte adherence and cytotoxicity of

  10. Tumor Initiating Cells and Chemoresistance: Which Is the Best Strategy to Target Colon Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Emanuela Paldino

    2014-01-01

    Full Text Available There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called “cancer stem cells” (CSCs. In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.

  11. Circulating cell-free DNA and circulating tumor cells, the "liquid biopsies" in ovarian cancer.

    Science.gov (United States)

    Cheng, Xianliang; Zhang, Lei; Chen, Yajuan; Qing, Chen

    2017-11-13

    Limited understanding of ovarian cancer (OC) genome portrait has hindered the therapeutic advances. The serial monitoring of tumor genotypes is becoming increasingly attainable with circulating cell-free DNA (cf-DNA) and circulating tumor cells (CTCs) emerging as "liquid biopsies". They represent non-invasive biomarkers and are viable, as they can be isolated from human plasma, serum and other body fluids. Molecular characterization of circulating tumor DNA (ct-DNA) and CTCs offer unique potentials to better understand the biology of metastasis and resistance to therapies. The liquid biopsies may also give innovative insights into the process of rapid and accurate identification, resistant genetic alterations and a real time monitoring of treatment responses. In addition, liquid biopsies are shedding light on elucidating signal pathways involved in invasiveness and metastasis competence; but the detection and molecular characterization of ct-DNA and CTCs are still challenging, since they are rare, and the amount of available samples are very limited. This review will focus on the clinical potential of ct-DNA and CTCs in both the early and advanced diagnosis, prognosis, and in the identification of resistance mutations in OC.

  12. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host. PMID:22530882

  13. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo.

    Science.gov (United States)

    Hickman, John A; Graeser, Ralph; de Hoogt, Ronald; Vidic, Suzana; Brito, Catarina; Gutekunst, Matthias; van der Kuip, Heiko

    2014-09-01

    Cancers are complex and heterogeneous pathological "organs" in a dynamic interplay with their host. Models of human cancer in vitro, used in cancer biology and drug discovery, are generally highly reductionist. These cancer models do not incorporate complexity or heterogeneity. This raises the question as to whether the cancer models' biochemical circuitry (not their genome) represents, with sufficient fidelity, a tumor in situ. Around 95% of new anticancer drugs eventually fail in clinical trial, despite robust indications of activity in existing in vitro pre-clinical models. Innovative models are required that better capture tumor biology. An important feature of all tissues, and tumors, is that cells grow in three dimensions. Advances in generating and characterizing simple and complex (with added stromal components) three-dimensional in vitro models (3D models) are reviewed in this article. The application of stirred bioreactors to permit both scale-up/scale-down of these cancer models and, importantly, methods to permit controlled changes in environment (pH, nutrients, and oxygen) are also described. The challenges of generating thin tumor slices, their utility, and potential advantages and disadvantages are discussed. These in vitro/ex vivo models represent a distinct move to capture the realities of tumor biology in situ, but significant characterization work still remains to be done in order to show that their biochemical circuitry accurately reflects that of a tumor. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer

    NARCIS (Netherlands)

    Alonso-Alconada, Lorena; Muinelo-Romay, Laura; Madissoo, Kadri; Diaz-Lopez, Antonio; Krakstad, Camilla; Trovik, Jone; Wik, Elisabeth; Hapangama, Dharani; Coenegrachts, Lieve; Cano, Amparo; Gil-Moreno, Antonio; Chiva, Luis; Cueva, Juan; Vieito, Maria; Ortega, Eugenia; Mariscal, Javier; Colas, Eva; Castellvi, Josep; Cusido, Maite; Dolcet, Xavier; Nijman, Hans W.; Bosse, Tjalling; Green, John A.; Romano, Andrea; Reventos, Jaume; Lopez-Lopez, Rafael; Salvesen, Helga B.; Amant, Frederic; Matias-Guiu, Xavier; Moreno-Bueno, Gema; Abal, Miguel

    2014-01-01

    Background: About 20% of patients diagnosed with endometrial cancer (EC) are considered high-risk with unfavorable prognosis. In the framework of the European Network for Individualized Treatment in EC (ENITEC), we investigated the presence and phenotypic features of Circulating Tumor Cells (CTC) in

  15. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    International Nuclear Information System (INIS)

    Egerod, Frederikke Lihme; Bartels, Annette; Fristrup, Niels; Borre, Michael; Ørntoft, Torben F; Oleksiewicz, Martin B; Brünner, Nils; Dyrskjøt, Lars

    2009-01-01

    Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression. Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer. The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies. The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer

  16. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  17. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    Science.gov (United States)

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  18. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    Energy Technology Data Exchange (ETDEWEB)

    Selle, F.; Gligorov, J. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France); Richard, S.; Khalil, A. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Alexandre, I. [Medical Oncology Department, Hospital Centre of Bligny, Briis-sous-Forges (France); Avenin, D.; Provent, S.; Soares, D.G. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Lotz, J.P. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France)

    2014-11-04

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis.

  19. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    International Nuclear Information System (INIS)

    Selle, F.; Gligorov, J.; Richard, S.; Khalil, A.; Alexandre, I.; Avenin, D.; Provent, S.; Soares, D.G.; Lotz, J.P.

    2014-01-01

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis

  20. Pre-Clinical Studies of Dendritic Cell-Tumor Cell Fusion Vaccines to Treat Breast Cancer

    National Research Council Canada - National Science Library

    Akporiaye, Emmanuel

    2002-01-01

    ...+ T-helper cells, CD8+ cytotoxic T lymphocytes (CTLs), NK and NKT cells (1,2). Because DC have the capacity to take up various types of molecules, the cells can be loaded with tumor-associated antigens (TAAs...

  1. Tumor-initiating CD49f cells are a hallmark of chemoresistant triple negative breast cancer.

    Science.gov (United States)

    Gomez-Miragaya, Jorge; González-Suárez, Eva

    2017-01-01

    Taxanes are mainstay treatment of triple negative breast cancer (TNBC) patients but resistance often develops. Using TNBC patient-derived orthoxenografts (PDX) we have recently discovered that a CD49f+ chemoresistant population with tumor-initiating ability is present in sensitive tumors and expands in tumors that have acquired resistance. Importantly, sensitivity to taxanes is recovered after long-term drug interruption. The characterization of this chemoresistant CD49f+ cells provides a unique opportunity to identify novel targets for the treatment of chemoresistant TNBC.

  2. Molecular characterization of circulating colorectal tumor cells defines genetic signatures for individualized cancer care

    Science.gov (United States)

    Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A.; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y.; Lim, Bing; Tan, Min-Han; Hillmer, Axel M.

    2017-01-01

    Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions. PMID:28978093

  3. Clinical Utility of Circulating Tumor Cells in ALK-Positive Non-Small-Cell Lung Cancer.

    Science.gov (United States)

    Faugeroux, Vincent; Pailler, Emma; Auger, Nathalie; Taylor, Melissa; Farace, Françoise

    2014-01-01

    The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors.

  4. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone

    Science.gov (United States)

    Kolonin, Mikhail G.; Sergeeva, Anna; Staquicini, Daniela I.; Smith, Tracey L.; Tarleton, Christy A.; Molldrem, Jeffrey J.; Sidman, Richard L.; Marchiò, Serena; Pasqualini, Renata; Arap, Wadih

    2017-01-01

    Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a non-proteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short time frame. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. PMID:28428279

  5. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

    Science.gov (United States)

    Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M; Elbaz, Mohamad; Cuitiño, Maria C; Kladney, Raleigh D; Varikuti, Sanjay; Kaul, Kirti; Satoskar, Abhay R; Ramaswamy, Bhuvaneswari; Zhang, Xiaoli; Ostrowski, Michael C; Leone, Gustavo; Ganju, Ramesh K

    2018-05-03

    The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

  6. [Construction of 2-dimensional tumor microvascular architecture phenotype in non-small cell lung cancer].

    Science.gov (United States)

    Liu, Jin-kang; Wang, Xiao-yi; Xiong, Zeng; Zhou, Hui; Zhou, Jian-hua; Fu, Chun-yan; Li, Bo

    2008-08-01

    To construct a technological platform of 2-dimensional tumor microvascular architecture phenotype (2D-TAMP) expression. Thirty samples of non-small cell lung cancer (NSCLC) were collected after surgery. The corresponding sections of tumor tissue specimens to the slice of CT perfusion imaging were selected. Immunohistochemical staining,Gomori methenamine silver stain, and electron microscope observation were performed to build a technological platform of 2D-TMAP expression by detecting the morphology and the integrity of basement membrane of microvasculature, microvascular density, various microvascular subtype, the degree of the maturity and lumenization of microvasculature, and the characteristics of immunogenetics of microvasculature. The technological platform of 2D-TMAP expression was constructed successfully. There was heterogeneity in 2D-TMAP expression of non-small cell lung cancer. The microvascular of NSCLC had certain characteristics. 2D-TMAP is a key technology that can be used to observe the overall state of micro-environment in tumor growth.

  7. Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment.

    Science.gov (United States)

    Guzman-Rojas, Liliana; Rangel, Roberto; Salameh, Ahmad; Edwards, Julianna K; Dondossola, Eleonora; Kim, Yun-Gon; Saghatelian, Alan; Giordano, Ricardo J; Kolonin, Mikhail G; Staquicini, Fernanda I; Koivunen, Erkki; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2012-01-31

    Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.

  8. Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer.

    Science.gov (United States)

    Howells, Anwen; Marelli, Giulia; Lemoine, Nicholas R; Wang, Yaohe

    2017-01-01

    Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.

  9. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-Leydig cell tumor (SLCT) is a rare cancer of the ovaries. The cancer cells produce and release a male sex hormone ... lead to cancer. SLCT starts in the female ovaries. The cancer cells release a male sex hormone. As a ...

  10. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  11. Role of Axumin PET Scan in Germ Cell Tumor

    Science.gov (United States)

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  12. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    Directory of Open Access Journals (Sweden)

    Federico Garrido

    2017-02-01

    Full Text Available Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL.

  13. Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Anna Babayan

    Full Text Available BACKGROUND: Endocrine treatment is the most preferable systemic treatment in metastatic breast cancer patients that have had an estrogen receptor (ER positive primary tumor or metastatic lesions, however, approximately 20% of these patients do not benefit from the therapy and demonstrate further metastatic progress. One reason for failure of endocrine therapy might be the heterogeneity of ER expression in tumor cells spreading from the primary tumor to distant sites which is reflected in detectable circulating tumor cells (CTCs. METHODS: A sensitive and specific staining protocol for ER, keratin 8/18/19, CD45 was established. Peripheral blood from 35 metastatic breast cancer patients with ER-positive primary tumors was tested for the presence of CTCs. Keratin 8/18/19 and DAPI positive but CD45 negative cells were classified as CTCs and evaluated for ER staining. Subsequently, eight individual CTCs from four index patients (2 CTCs per patient were isolated and underwent whole genome amplification and ESR1 gene mutation analysis. RESULTS: CTCs were detected in blood of 16 from 35 analyzed patients (46%, with a median of 3 CTCs/7.5 ml. In total, ER-negative CTCs were detected in 11/16 (69% of the CTC positive cases, including blood samples with only ER-negative CTCs (19% and samples with both ER-positive and ER-negative CTCs (50%. No correlation was found between the intensity and/or percentage of ER staining in the primary tumor with the number and ER status of CTCs of the same patient. ESR1 gene mutations were not found. CONCLUSION: CTCs frequently lack ER expression in metastatic breast cancer patients with ER-positive primary tumors and show a considerable intra-patient heterogeneity, which may reflect a mechanism to escape endocrine therapy. Provided single cell analysis did not support a role of ESR1 mutations in this process.

  14. Heterogeneity of Estrogen Receptor Expression in Circulating Tumor Cells from Metastatic Breast Cancer Patients

    Science.gov (United States)

    Babayan, Anna; Hannemann, Juliane; Spötter, Julia; Müller, Volkmar

    2013-01-01

    Background Endocrine treatment is the most preferable systemic treatment in metastatic breast cancer patients that have had an estrogen receptor (ER) positive primary tumor or metastatic lesions, however, approximately 20% of these patients do not benefit from the therapy and demonstrate further metastatic progress. One reason for failure of endocrine therapy might be the heterogeneity of ER expression in tumor cells spreading from the primary tumor to distant sites which is reflected in detectable circulating tumor cells (CTCs). Methods A sensitive and specific staining protocol for ER, keratin 8/18/19, CD45 was established. Peripheral blood from 35 metastatic breast cancer patients with ER-positive primary tumors was tested for the presence of CTCs. Keratin 8/18/19 and DAPI positive but CD45 negative cells were classified as CTCs and evaluated for ER staining. Subsequently, eight individual CTCs from four index patients (2 CTCs per patient) were isolated and underwent whole genome amplification and ESR1 gene mutation analysis. Results CTCs were detected in blood of 16 from 35 analyzed patients (46%), with a median of 3 CTCs/7.5 ml. In total, ER-negative CTCs were detected in 11/16 (69%) of the CTC positive cases, including blood samples with only ER-negative CTCs (19%) and samples with both ER-positive and ER-negative CTCs (50%). No correlation was found between the intensity and/or percentage of ER staining in the primary tumor with the number and ER status of CTCs of the same patient. ESR1 gene mutations were not found. Conclusion CTCs frequently lack ER expression in metastatic breast cancer patients with ER-positive primary tumors and show a considerable intra-patient heterogeneity, which may reflect a mechanism to escape endocrine therapy. Provided single cell analysis did not support a role of ESR1 mutations in this process. PMID:24058649

  15. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth

    Science.gov (United States)

    Saha, Nayanendu; Eissman, Moritz F.; Xu, Kai; Llerena, Carmen; Kusebauch, Ulrike; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M.; Nikolov, Dimitar B.; Lackmann, Martin

    2016-01-01

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  16. Relationship between circulating tumor cells and epithelial to mesenchymal transition in early breast cancer

    International Nuclear Information System (INIS)

    Mego, M.; Cierna, Z.; Janega, P.; Karaba, M.; Minarik, G.; Benca, J.; Sedlácková, T.; Sieberova, G.; Gronesova, P.; Manasova, D.; Pindak, D.; Sufliarsky, J.; Danihel, L.; Reuben, JM; Mardiak, J.

    2015-01-01

    Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are an independent survival predictor in breast cancer (BC) patients. Epithelial to mesenchymal transition (EMT) is involved in cancer invasion and metastasis. The aim of this study was to assess correlation between CTCs and expression of EMT transcription factors TWIST1 and SLUG in breast tumor tissue. This study included 102 early BC patients treated by primary surgery. Peripheral blood mononuclear cells (PBMC) were depleted of hematopoietic cells using RossetteSep™ negative selection kit. RNA extracted from CD45-depleted PBMC was interrogated for expression of EMT (TWIST1, SNAIL1, SLUG, FOXC2 and ZEB1) and epithelial (KRT19) gene transcripts by qRT-PCR. Expression of TWIST1 and SLUG in surgical specimens was evaluated by immunohistochemistry and quantified by multiplicative score. CTCs were detected in 24.5 % patients. CTCs exhibiting only epithelial markers were present in 8.8 % patients, whereas CTCs with only EMT markers were observed in 12.8 % of pts and CTCs co-expressing both markers were detected in 2.9 % pts. We observed lack of correlation between CTCs and expression of TWIST1 and SLUG in breast cancer cells or cancer associated stroma. Lack of correlation was observed for epithelial CTCs as well as for CTCs with EMT. In this translational study, we showed a lack of association between CTCs and expression of EMT-inducing transcription factors, TWIST1 and SLUG, in breast tumor tissue. Despite the fact that EMT is involved in cancer invasion and metastasis our results suggest, that expression of EMT proteins in unselected tumor tissue is not surrogate marker of CTCs with either mesenchymal or epithelial features

  17. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao; Zhou, Xi

    2015-01-01

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  18. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun-Hai; Zhao, Chun-Liu [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China); Ding, Lan-Bao [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Zhou, Xi, E-mail: modelmap@139.com [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China)

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  19. Clinical use of serum TRA-1-60 as tumor marker in patients with germ cell cancer

    DEFF Research Database (Denmark)

    Lajer, Henrik; Daugaard, Gedske; Andersson, Anna-Maria

    2002-01-01

    TRA-1-60 antigen has been related to the presence of embryonal germ cell carcinoma (EC) and carcinoma in situ. Our study further investigated the clinical efficacy of TRA-1-60 as a serum tumor marker for germ cell cancer in the testis. Three groups of patients with germ cell tumors were included:...

  20. TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells.

    Directory of Open Access Journals (Sweden)

    Tiffany M Scharadin

    Full Text Available TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.

  1. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  2. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  3. Androgen receptor expression on circulating tumor cells in metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Takeo Fujii

    Full Text Available Androgen receptor (AR is frequently detected in breast cancers, and AR-targeted therapies are showing activity in AR-positive (AR+ breast cancer. However, the role of AR in breast cancers is still not fully elucidated and the biology of AR in breast cancer remains incompletely understood. Circulating tumor cells (CTCs can serve as prognostic and diagnostic tools, prompting us to measure AR protein expression and conduct genomic analyses on CTCs in patients with metastatic breast cancer.Blood samples from patients with metastatic breast cancer were deposited on glass slides, subjected to nuclear staining with DAPI, and reacted with fluorescent-labeled antibodies to detect CD45, cytokeratin (CK, and biomarkers of interest (AR, estrogen receptor [ER], and HER2 on all nucleated cells. The stained slides were scanned and enumerated by non-enrichment-based non-biased approach independent of cell surface epithelial cell adhesion molecule (EpCAM using the Epic Sciences CTC platform. Data were analyzed using established digital pathology algorithms.Of 68 patients, 51 (75% had at least 1 CTC, and 49 of these 51 (96% had hormone-receptor-positive (HR+/HER2-negative primary tumors. AR was expressed in CK+ CTCs in 10 patients. Of these 10 patients, 3 also had ER expression in CK+ CTCs. Single cell genomic analysis of 78 CTCs from 1 of these 3 patients identified three distinct copy number patterns. AR+ cells had a lower frequency of chromosomal changes than ER+ and HER2+ cells.CTC enumeration and analysis using no enrichment or selection provides a non-biased approach to detect AR expression and chromosomal aberrations in CTCs in patients with metastatic breast cancer. The heterogeneity of intrapatient AR expression in CTCs leads to the new hypothesis that patients with AR+ CTCs have heterogeneous disease with multiple drivers. Further studies are warranted to investigate the clinical applicability of AR+ CTCs and their heterogeneity.

  4. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

    Science.gov (United States)

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-03-07

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

  5. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Ito

    Full Text Available Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs, but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1 was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.

  6. Cytotoxicity and anti-tumor effects of new ruthenium complexes on triple negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Cecília P Popolin

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive breast cancer subtype. The high rate of metastasis associated to the fact that these cells frequently display multidrug resistance, make the treatment of metastatic disease difficult. Development of antitumor metal-based drugs was started with the discovery of cisplatin, however, the severe side effects represent a limitation for its clinical use. Ruthenium (Ru complexes with different ligands have been successfully studied as prospective antitumor drugs. In this work, we demonstrated the activity of a series of biphosphine bipyridine Ru complexes (1 [Ru(SO4(dppb(bipy], (2 [Ru(CO3(dppb(bipy], (3 [Ru(C2O4(dppb(bipy] and (4 [Ru(CH3CO2(dppb(bipy]PF6 [where dppb = 1,4-bis(diphenylphosphinobutane and bipy = 2,2'-bipyridine], on proliferation of TNBC (MDA-MB-231, estrogen-dependent breast tumor cells (MCF-7 and a non-tumor breast cell line (MCF-10A. Complex (4 was most effective among the complexes and was selected to be further investigated on effects on tumor cell adhesion, migration, invasion and in apoptosis. Moreover, DNA and HSA binding properties of this complex were also investigated. Results show that complex (4 was more efficient inhibiting proliferation of MDA-MB-231 cells over non-tumor cells. In addition, complex (4 was able to inhibit MDA-MB231 cells adhesion, migration and invasion and to induce apoptosis and inhibit MMP-9 secretion in TNBC cells. Complex (4 should be further investigated in vivo in order to stablish its potential to improve breast cancer treatment.

  7. Cancer Vaccine Composed of Oligonucleotides Conjugated to Apoptotic Tumor Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Synthetic oligodeoxynucleotides (ODN) containing unmethylated Cytosine-Guanine (CpG) motifs mimic the immunostimulatory activity of bacterial DNA. CpG ODN directly stimulate B cells and plasmacytoid dendritic cells (pDC), promote the production of T Helper 1 cells (Th1) and pro-inflammatory cytokines, and  trigger the maturation/activation of professional antigen presenting cells. The National Cancer Institute, Laboratory of Experimental Immunology, seeks interested parties to co- develop methods for inducing an immune response to tumors.

  8. A genome editing approach to study cancer stem cells in human tumors.

    Science.gov (United States)

    Cortina, Carme; Turon, Gemma; Stork, Diana; Hernando-Momblona, Xavier; Sevillano, Marta; Aguilera, Mònica; Tosi, Sébastien; Merlos-Suárez, Anna; Stephan-Otto Attolini, Camille; Sancho, Elena; Batlle, Eduard

    2017-07-01

    The analysis of stem cell hierarchies in human cancers has been hampered by the impossibility of identifying or tracking tumor cell populations in an intact environment. To overcome this limitation, we devised a strategy based on editing the genomes of patient-derived tumor organoids using CRISPR/Cas9 technology to integrate reporter cassettes at desired marker genes. As proof of concept, we engineered human colorectal cancer (CRC) organoids that carry EGFP and lineage-tracing cassettes knocked in the LGR5 locus. Analysis of LGR5-EGFP + cells isolated from organoid-derived xenografts demonstrated that these cells express a gene program similar to that of normal intestinal stem cells and that they propagate the disease to recipient mice very efficiently. Lineage-tracing experiments showed that LGR5 + CRC cells self-renew and generate progeny over long time periods that undergo differentiation toward mucosecreting- and absorptive-like phenotypes. These genetic experiments confirm that human CRCs adopt a hierarchical organization reminiscent of that of the normal colonic epithelium. The strategy described herein may have broad applications to study cell heterogeneity in human tumors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Cell-cycle-dependent drug-resistant quiescent cancer cells induce tumor angiogenesis after chemotherapy as visualized by real-time FUCCI imaging

    Science.gov (United States)

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2017-01-01

    ABSTRACT We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression. PMID:27715464

  10. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy.

    Science.gov (United States)

    Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya

    2016-11-01

    To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p exosomes significantly suppressed (p exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.

  11. Combination of Vorinostat and caspase‐8 inhibition exhibits high anti‐tumoral activity on endometrial cancer cells

    OpenAIRE

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    Histone deacetylase inhibitors such as Vorinostat display anti‐neoplastic activity against a variety of solid tumors. Here, we have investigated the anti‐tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat‐induced the activation of caspase‐8 and ‐9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we ...

  12. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells.

    Science.gov (United States)

    Książkiewicz, Magdalena; Markiewicz, Aleksandra; Zaczek, Anna J

    2012-01-01

    The occurrence of either regional or distant metastases is an indicator of poor prognosis for cancer patients. The mechanism of their formation has not yet been fully uncovered, which limits the possibility of developing new therapeutic strategies. Nevertheless, the discovery of circulating tumor cells (CTCs), which are responsible for tumor dissemination, and cancer stem cells (CSCs), required for tumor growth maintenance, shed light on the metastatic cascade. It seems that CTCs and CSCs are not necessarily separate populations of cancer cells, as CTCs generated in the process of epithelial-mesenchymal transition (EMT) can bear features characteristic of CSCs. This article describes the mechanisms of CTC and CSC formation and characterizes their molecular hallmarks. Moreover, we present different types of EMT occurring in physiological and pathological conditions, and we demonstrate its crucial role in providing CTCs with a CSC phenotype. The article delineates molecular changes acquired by cancer cells undergoing EMT that facilitate metastasis formation. Deeper understanding of those processes is of fundamental importance for the development of new strategies of early cancer detection and effective cancer treatment approaches that will be translated into clinical practice. Copyright © 2012 S. Karger AG, Basel.

  13. CCR 20th Anniversary Commentary: Circulating Tumor Cells in Prostate Cancer.

    Science.gov (United States)

    Mehra, Niven; Zafeiriou, Zafeiris; Lorente, David; Terstappen, Leon W M M; de Bono, Johann S

    2015-11-15

    Circulating tumor cells (CTC) have substantial promise for multipurpose biomarker studies in prostate cancer. The IMMC-38 trial conducted by de Bono and colleagues, which was published in the October 1, 2008, issue of Clinical Cancer Research, demonstrated for the first time that CTCs are the most accurate and independent predictor of overall survival in metastatic prostate cancer. Since the publication of prospective trials demonstrating prognostic utility, CTCs have been utilized for nucleic acid analyses, for protein analyses, and in intermediate endpoint studies. CTC studies are also now facilitating the analysis of intrapatient heterogeneity. See related article by de Bono et al., Clin Cancer Res 2008;14(19) October 1, 2008;6302-9. ©2015 American Association for Cancer Research.

  14. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Directory of Open Access Journals (Sweden)

    Goldberg José

    2008-08-01

    Full Text Available Abstract Background Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. Methods A set of 4 genes, including CDH1 (E-cadherin, SFN (stratifin, RARB (retinoic acid receptor, beta and RASSF1A (Ras association (RalGDS/AF-6 domain family 1, had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group. A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. Results CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p RASSF1A gene, respectively, in relation to the control group. Conclusion Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of

  15. Prognostic factors of tumor recurrence in completely resected non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Tantraworasin A

    2013-06-01

    Full Text Available Apichat Tantraworasin,1 Somcharean Seateang,1 Nirush Lertprasertsuke,2 Nuttapon Arreyakajohn,3 Choosak Kasemsarn,4 Jayanton Patumanond5 1General Thoracic Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University Hospital, Chiang Mai, Thailand; 2Department of Pathology, Faculty of Medicine, Chiang Mai University Hospital, Chiang Mai, Thailand; 3Cardiovascular Thoracic Unit, Department of Surgery, Lampang Hospital, Lampang, Thailand; 4Cardiovascular Thoracic Unit, Department of Surgery, Chest Institute, Nonthaburi, Thailand; 5Department of Community Medicine, Faculty of Medicine, Chiang Mai University Hospital, Chiang Mai, Thailand Background: Patients with completely resected non-small cell lung cancer (NSCLC have an excellent outcome; however tumor recurs in 30%-77% of patients. This study retrospectively analyzed the clinicopathologic features of patients with any operable stage of NSCLC to identify the prognostic factors that influence tumor recurrence, including intratumoral blood vessel invasion (IVI, tumor size, tumor necrosis, and nodal involvement. Methods: From January 2002 to December 2011, 227 consecutive patients were enrolled in this study. They were divided into two groups: the “no recurrence” group and the “recurrence” group. Recurrence-free survival was analyzed by multivariable Cox regression analysis, stratified by tumor staging, chemotherapy, and lymphatic invasion. Results: IVI, tumor necrosis, tumor diameter more than 5 cm, and nodal involvement were identified as independent prognostic factors of tumor recurrence. The hazard ratio (HR of patients with IVI was 2.1 times higher than that of patients without IVI (95% confident interval [CI]: 1.4–3.2 (P = 0.001.The HR of patients with tumor necrosis was 2.1 times higher than that of patients without tumor necrosis (95% CI: 1.3–3.4 (P = 0.001. Patients who had a maximum tumor diameter greater than 5 cm had significantly higher risk of recurrence than

  16. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer

    International Nuclear Information System (INIS)

    Dayan, Dan; Salo, Tuula; Salo, Sirpa; Nyberg, Pia; Nurmenniemi, Sini; Costea, Daniela Elena; Vered, Marilena

    2012-01-01

    We characterized tumor microenvironment (TME) components of mobile tongue (MT) cancer patients in terms of overall inflammatory infiltrate, focusing on the protumorigenic/anti-inflammatory phenotypes and on cancer-associated fibroblasts (CAFs) in order to determine their interrelations and associations with clinical outcomes. In addition, by culturing tongue carcinoma cells (HSC-3) on a three-dimensional myoma organotypic model that mimics TME, we attempted to investigate the possible existence of a molecular crosstalk between cancer cells and TME components. Analysis of 64 cases of MT cancer patients revealed that the overall density of the inflammatory infiltrate was inversely correlated to the density of CAFs (P = 0.01), but that the cumulative density of the protumorigenic/anti-inflammatory phenotypes, including regulatory T cells (Tregs, Foxp3+), tumor-associated macrophages (TAM2, CD163+), and potentially Tregs-inducing immune cells (CD80+), was directly correlated with the density of CAFs (P = 0.01). The hazard ratio (HR) for recurrence in a TME rich in CD163+ Foxp3+ CD80+ was 2.9 (95% CI 1.03–8.6, P = 0.043 compared with low in CD163+ Foxp3+ CD80+). The HR for recurrence in a TME rich in CAFs was 4.1 (95% confidence interval [CI] 1.3–12.8, P = 0.012 compared with low in CAFs). In vitro studies showed cancer-derived exosomes, epithelial–mesenchymal transition process, fibroblast-to-CAF-like cell transdifferentiation, and reciprocal interrelations between different cytokines suggesting the presence of molecular crosstalk between cancer cells and TME components. Collectively, these results highlighted the emerging need of new therapies targeting this crosstalk between the cancer cells and TME components in MT cancer

  17. Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors.

    Science.gov (United States)

    Dondossola, Eleonora; Dobroff, Andrey S; Marchiò, Serena; Cardó-Vila, Marina; Hosoya, Hitomi; Libutti, Steven K; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-23

    Circulating cancer cells can putatively colonize distant organs to form metastases or to reinfiltrate primary tumors themselves through a process termed "tumor self-seeding." Here we exploit this biological attribute to deliver tumor necrosis factor alpha (TNF), a potent antitumor cytokine, directly to primary and metastatic tumors in a mechanism that we have defined as "tumor self-targeting." For this purpose, we genetically engineered mouse mammary adenocarcinoma (TSA), melanoma (B16-F10), and Lewis lung carcinoma cells to produce and release murine TNF. In a series of intervention trials, systemic administration of TNF-expressing tumor cells was associated with reduced growth of both primary tumors and metastatic colonies in immunocompetent mice. We show that these malignant cells home to tumors, locally release TNF, damage neovascular endothelium, and induce massive cancer cell apoptosis. We also demonstrate that such tumor-cell-mediated delivery avoids or minimizes common side effects often associated with TNF-based therapy, such as acute inflammation and weight loss. Our study provides proof of concept that genetically modified circulating tumor cells may serve as targeted vectors to deliver anticancer agents. In a clinical context, this unique paradigm represents a personalized approach to be translated into applications potentially using patient-derived circulating tumor cells as self-targeted vectors for drug delivery.

  18. Anti-tumor effects of 125I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice

    International Nuclear Information System (INIS)

    Xiao Zhongdi; Liang Chunlin; Zhang Guoli; Jing Yue; Zhang Yucheng; Gai Baodong

    2011-01-01

    Objective: To study the anti-tumor effects of 125 I radioactive particles implantation on transplantated tumor model of human breast cancer cells in nude mice and clarify their anti-tumor mechanisms. Methods 120 nude mice transplantated with human breast cancer cells MCF-7 were randomly divided into 3 groups (n=40): 125 I radioactive particles implanted group, non-radioactive particles implanted group and non-particles implanted group. The articles were implanted into mice according to Pairs system principle. The expressions of Fas mRNA and protein and the activaties of caspase-3 and caspase-8 enzyme were detected by RT-PCR and Western blotting. The changes of cell cycle were detected by flow cytometry. Results: Compared with non-radioactive particles implanted group and non-particles implanted group, the size of cancer tissues in 125 I radioactive particles implanted group was reduced significantly (P 0 /G 1 phase was significantly increased (P 125 I radioactive particles into transplantated tumor model of human breast cancer cells can kill tumor cells, inhibit the growth cycle of tumor cells and induce the apoptosis of tumor cells in nude mice. (authors)

  19. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-01-01

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  20. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  1. Chemo-radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy

    International Nuclear Information System (INIS)

    Tanio, Yoshiro; Watanabe, Masatoshi; Inoue, Tamotsu

    1990-01-01

    New cell lines of small cell lung cancer (SCLC) were established from specimens of untreated primary tumors biopsied by diagnostic bronchofiberscopy. The advantage of this method was ease of obtaining specimens from lung tumors. Establishment of cell lines was successful with 4 of 13 specimens (30%). Clinical responses of the tumors showed considerable variation, but were well correlated with the in vitro sensitivity of the respective cell lines to chemotherapeutic drugs and irradiation. One of the cell lines was resistant to all drugs tested and irradiation, while another was sensitive to all of them. Although the acquired resistance of SCLC is the biggest problem in treatment, the natural resistance to therapy is another significant problem. Either acquired or natural, resistance mechanisms of SCLC may be elucidated by the use of such cell lines derived from untreated tumors. This method and these SCLC cell lines are expected to be useful for the serial study of biologic and genetic changes of untreated and pre-treated tumors, or primary and secondary tumors. (author)

  2. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells.

    Science.gov (United States)

    Baghdadi, Muhammad; Wada, Haruka; Nakanishi, Sayaka; Abe, Hirotake; Han, Nanumi; Putra, Wira Eka; Endo, Daisuke; Watari, Hidemichi; Sakuragi, Noriaki; Hida, Yasuhiro; Kaga, Kichizo; Miyagi, Yohei; Yokose, Tomoyuki; Takano, Atsushi; Daigo, Yataro; Seino, Ken-Ichiro

    2016-10-15

    The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance local immunosuppression and to promote the survival of chemoresistant cancer cells by activating AKT signaling. Targeting IL34 in chemoresistant tumors resulted in a remarkable inhibition of tumor growth when accompanied with chemotherapy. Our results define a pathogenic role for IL34 in mediating immunosuppression and chemoresistance and identify it as a tractable target for anticancer therapy. Cancer Res; 76(20); 6030-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    Science.gov (United States)

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  4. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    Science.gov (United States)

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P CD4 + T cells and TNM stage ( P cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  5. Prognostic impact of cytological fluid tumor markers in non-small cell lung cancer.

    Science.gov (United States)

    Cho, Arthur; Hur, Jin; Hong, Yoo Jin; Lee, Hye-Jeong; Kim, Young Jin; Hong, Sae Rom; Suh, Young Joo; Im, Dong Jin; Kim, Yun Jung; Lee, Jae Seok; Shim, Hyo Sup; Choi, Byoung Wook

    2016-03-01

    The serum tumor markers CYFRA 21-1, carcinoembryonic antigen (CEA), and squamous cell carcinoma antigen (SCCA) are useful in diagnosis and prognosis of non-small cell lung cancer (NSCLC). Cytologic tumor markers obtained during needle aspiration biopsies (NAB) of lung lesions are useful for NSCLC diagnosis. This study investigated the incremental prognostic value of cytologic tumor markers compared to serum tumor markers. This prospective study included 253 patients diagnosed with NSCLC by NAB with cytologic tumor marker analysis. Levels of cytologic CYFRA 21-1, CEA, SCCA, and their serum counterparts were followed up for survival analysis. Optimal cutoff values for each tumor marker were obtained for overall survival (OS) and progression-free survival (PFS) analyses. All patients were followed up for a median of 22.8 months. Using cutoff values of 0.44 ng/ml for C-SCCA, 2.0 ng/ml for S-SCCA, and 3.3 ng/ml for S-CYFRA, a multivariate analysis revealed that high S-SCCA (hazard ratio, HR, 1.84) and high C-SCCA (HR, 1.63) were independent predictive factors of OS. The 3-year overall survival rate was 55 vs. 80 % for high and low C-SCCA, respectively. Cytologic tumor marker level detection is easily obtainable and provides prognostic information for NSCLC. Cytologic tumor markers provide comparable prognostic information relative to serum tumor markers, with C-SCCA acting as a strong prognostic factor of overall survival and PFS.

  6. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.

    Science.gov (United States)

    Priceman, Saul J; Gerdts, Ethan A; Tilakawardane, Dileshni; Kennewick, Kelly T; Murad, John P; Park, Anthony K; Jeang, Brook; Yamaguchi, Yukiko; Yang, Xin; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E; Wu, Anna M; Brown, Christine E; Forman, Stephen J

    2018-01-01

    Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.

  7. A New Size-based Platform for Circulating Tumor Cell Detection in Colorectal Cancer Patients.

    Science.gov (United States)

    Oh, Bo Young; Kim, Jhingook; Lee, Woo Yong; Kim, Hee Cheol

    2017-09-01

    Circulating tumor cells (CTCs) might play a significant role in cancer progression and metastasis. However, the ability to detect CTCs is limited, especially in cells undergoing epithelial-mesenchymal transition. In this study, we evaluated a new size-based CTC detection platform and its clinical efficacy in colorectal cancer. Blood samples were obtained from 76 patients with colorectal cancer and 20 healthy control subjects for CTC analysis. CTCs were enriched using a high-density microporous chip filter and were detected using a 4-color staining protocol including 4',6-diamidino-2-phenylindole (DAPI) for nucleated cells, CD45 monoclonal antibody (mAb) as a leukocyte marker, and epithelial cell adhesion molecule (EpCAM) mAb or cytokeratin (CK) mAb as an epithelial cell marker. CTC positivity was defined as DAPI-positive (DAPI + )/CD45 - /EpCAM + or CK + cells and clinical outcomes of patients were analyzed according to CTC counts. CTCs were detected in 50 patients using this size-based filtration platform. CTC + patients were more frequently identified with a high level of carcinoembryonic antigen and advanced stage cancer (P = .038 and P = .017, respectively). CTC counts for patients with stage IV cancer (12.47 ± 24.00) were significantly higher than those for patients with cancers that were stage I to III (2.84 ± 5.29; P = .005) and healthy control subjects (0.25 ± 0.55; P colorectal cancer patients. Our results suggest that this new size-based platform has potential for determining prognosis and therapeutic response in colorectal cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Tumor-cytolytic human macrophages cultured as nonadherent cells: potential for the adoptive immunotherapy of cancer.

    Science.gov (United States)

    Helinski, E H; Hurley, E L; Streck, R J; Bielat, K L; Pauly, J L

    1990-01-01

    Tumor-cytolytic lymphokine (e.g., interleukin-2; IL-2)-activated killer cells are currently being evaluated in IL-2/LAK cell adoptive immunotherapy regimens for the treatment of cancer. Monocyte-derived macrophages (M phi) are also known to be efficient tumor killer cells; accordingly, M phi that have been activated in vitro may also be of therapeutic merit. However, attempts to cultivate M phi for morphological and functional studies have often been compromised because M phi adhere rapidly and tenaciously to cultureware. Studies that we have conducted to address this problem have proven successful in developing procedures for the long-term cultivation of non-adherent immunocompetent M phi in serum-free medium using petri dishes containing a thin Teflon liner. The utility of this technology is documented by the results of studies presented herein in which light and scanning electron microscopy was used to analyze tumor-cytolytic human M phi. In these experiments, we demonstrated that nonadherent immunocompetent human M phi can be prepared for detailed examinations of their pleomorphic membrane architecture. Moreover, nonadherent human M phi could readily be collected for preparing conjugates of M phi and tumor cells. It is anticipated that this technology should prove useful for future structure-function studies defining the topographical location and spatial distribution of antigens and receptors on M phi membrane ultrastructures, particularly the microvilli-like projections that bridge together an immunocompetent effector M phi and target cell (e.g., tumor cells and microbial pathogens) and which provide the physical interaction required for the initial phases of a cellular immune response that includes antigen recognition and cell-to-cell adhesion.

  9. Squamous cell cancer (image)

    Science.gov (United States)

    Squamous cell cancer involves cancerous changes to the cells of the middle portion of the epidermal skin layer. It is ... malignant tumor, and is more aggressive than basal cell cancer, but still may be relatively slow-growing. It ...

  10. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells

    OpenAIRE

    Baghdadi, Muhammad; Wada, Haruka; Nakanishi, Sayaka; Abe, Hirotake; Han, Nanumi; Putra, Wira Eka; Endo, Daisuke; Watari, Hidemichi; Sakuragi, Noriaki; Hida, Yasuhiro; Kaga, Kichizo; Miyagi, Yohei; Yokose, Tomoyuki; Takano, Atsushi; Daigo, Yataro

    2016-01-01

    The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance lo...

  11. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  12. A Cancer Cell-Activatable Aptamer-Reporter System for One-Step Assay of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Zihua Zeng

    2014-01-01

    Full Text Available The current antibody-mediated numeration assays of circulating tumor cells (CTCs require multiple steps and are time-consuming. To overcome these technical limitations, a cancer cell-activatable aptamer-reporter was formulated by conjugating a biomarker-specific aptamer sequence with paired fluorochrome-quencher molecules. In contrast to the antibody probes, the intact aptamer-reporter was optically silent in the absence of cells of interest. However, when used in an assay, the aptamer selectively targeted cancer cells through interaction with a specific surface biomarker, which triggered internalization of the aptamer-reporter and, subsequently, into cell lysosomes. Rapid lysosomal degradation of the aptamer-reporter resulted in separation of the paired fluorochrome-quencher molecules. The released fluorochrome emitted bright fluorescent signals exclusively within the targeted cancer cells, with no background noise in the assay. Thus, the assays could be completed in a single step within minutes. By using this one-step assay, CTCs in whole blood and marrow aspirate samples of patients with lymphoma tumors were selectively highlighted and rapidly detected with no off-target signals from background blood cells. The development of the cancer cell-activatable aptamer-reporter system allows for the possibility of a simple and robust point-of-care test for CTC detection, which is currently unavailable.

  13. Poor Prognosis Indicated by Venous Circulating Tumor Cell Clusters in Early-Stage Lung Cancers.

    Science.gov (United States)

    Murlidhar, Vasudha; Reddy, Rishindra M; Fouladdel, Shamileh; Zhao, Lili; Ishikawa, Martin K; Grabauskiene, Svetlana; Zhang, Zhuo; Lin, Jules; Chang, Andrew C; Carrott, Philip; Lynch, William R; Orringer, Mark B; Kumar-Sinha, Chandan; Palanisamy, Nallasivam; Beer, David G; Wicha, Max S; Ramnath, Nithya; Azizi, Ebrahim; Nagrath, Sunitha

    2017-09-15

    Early detection of metastasis can be aided by circulating tumor cells (CTC), which also show potential to predict early relapse. Because of the limited CTC numbers in peripheral blood in early stages, we investigated CTCs in pulmonary vein blood accessed during surgical resection of tumors. Pulmonary vein (PV) and peripheral vein (Pe) blood specimens from patients with lung cancer were drawn during the perioperative period and assessed for CTC burden using a microfluidic device. From 108 blood samples analyzed from 36 patients, PV had significantly higher number of CTCs compared with preoperative Pe ( P ontology analysis revealed enrichment of cell migration and immune-related pathways in CTC clusters, suggesting survival advantage of clusters in circulation. Clusters display characteristics of therapeutic resistance, indicating the aggressive nature of these cells. Thus, CTCs isolated from early stages of lung cancer are predictive of poor prognosis and can be interrogated to determine biomarkers predictive of recurrence. Cancer Res; 77(18); 5194-206. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

    Science.gov (United States)

    Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D

    2017-01-05

    The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1-SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study

  15. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells

    Science.gov (United States)

    ZHAO, LU; ZHAO, YUE; SCHWARZ, BETTINA; MYSLIWIETZ, JOSEF; HARTIG, ROLAND; CAMAJ, PETER; BAO, QI; JAUCH, KARL-WALTER; GUBA, MAKUS; ELLWART, JOACHIM WALTER; NELSON, PETER JON; BRUNS, CHRISTIANE JOSEPHINE

    2016-01-01

    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multi-drug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density. PMID:27177126

  16. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    The Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell tumors. That is, the tumors originate in the sperm forming cells in the testicles ( ...

  17. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy

    Science.gov (United States)

    Mehran, Reza; Nilsson, Monique; Khajavi, Mehrdad; Du, Zhiqiang; Cascone, Tina; Wu, Hua Kang; Cortes, Andrea; Xu, Li; Zurita, Amado; Schier, Robert; Riedel, Bernhard; El-Zein, Randa; Heymach, John V.

    2014-01-01

    Circulating endothelial cells (CEC) are derived from multiple sources including bone marrow (circulating endothelial progenitors [CEP]) and established vasculature (mature CEC). Although CEC have shown promise as a biomarker for cancer patients, their utility has been limited in part by the lack of specificity for tumor vasculature and the different non-malignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor vs non-malignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM+ endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTEC were present in esophageal cancer and non-small cell lung cancer (NSCLC) patients (N=40) and their levels decreased after surgical resection. These results demonstrate that CTEC are detectable in preclinical cancer models and cancer patients. Further, they suggest that CTEC offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity. PMID:24626092

  18. Prognostic Significance of Progesterone Receptor–Positive Tumor Cells Within Immunohistochemically Defined Luminal A Breast Cancer

    Science.gov (United States)

    Prat, Aleix; Cheang, Maggie Chon U.; Martín, Miguel; Parker, Joel S.; Carrasco, Eva; Caballero, Rosalía; Tyldesley, Scott; Gelmon, Karen; Bernard, Philip S.; Nielsen, Torsten O.; Perou, Charles M.

    2013-01-01

    Purpose Current immunohistochemical (IHC)-based definitions of luminal A and B breast cancers are imperfect when compared with multigene expression-based assays. In this study, we sought to improve the IHC subtyping by examining the pathologic and gene expression characteristics of genomically defined luminal A and B subtypes. Patients and Methods Gene expression and pathologic features were collected from primary tumors across five independent cohorts: British Columbia Cancer Agency (BCCA) tamoxifen-treated only, Grupo Español de Investigación en Cáncer de Mama 9906 trial, BCCA no systemic treatment cohort, PAM50 microarray training data set, and a combined publicly available microarray data set. Optimal cutoffs of percentage of progesterone receptor (PR) –positive tumor cells to predict survival were derived and independently tested. Multivariable Cox models were used to test the prognostic significance. Results Clinicopathologic comparisons among luminal A and B subtypes consistently identified higher rates of PR positivity, human epidermal growth factor receptor 2 (HER2) negativity, and histologic grade 1 in luminal A tumors. Quantitative PR gene and protein expression were also found to be significantly higher in luminal A tumors. An empiric cutoff of more than 20% of PR-positive tumor cells was statistically chosen and proved significant for predicting survival differences within IHC-defined luminal A tumors independently of endocrine therapy administration. Finally, no additional prognostic value within hormonal receptor (HR) –positive/HER2-negative disease was observed with the use of the IHC4 score when intrinsic IHC-based subtypes were used that included the more than 20% PR-positive tumor cells and vice versa. Conclusion Semiquantitative IHC expression of PR adds prognostic value within the current IHC-based luminal A definition by improving the identification of good outcome breast cancers. The new proposed IHC-based definition of luminal A

  19. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization

    International Nuclear Information System (INIS)

    Jang, Ji-Young; Lee, Jong-Kuen; Jeon, Yoon-Kyung; Kim, Chul-Woo

    2013-01-01

    Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-β) and low (TNF-α) expression in M2 macrophages, and molecules in NF-κB pathway (IKKα and Iκ-B) were evaluated by RT-qPCR or western blot. EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-β and increased TNF-α. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKKα suppression and concomitant I-κB accumulation; increase of IL-6 and TGF-β; and, decrease of TNF-α. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-κB pathway elicited by EGCG-treated exosomes. Our data demonstrate that EGCG up-regulates miR-16 in

  20. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  1. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  2. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  3. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer

    Science.gov (United States)

    Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.

    2018-01-01

    ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300

  4. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    Science.gov (United States)

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.

  5. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    International Nuclear Information System (INIS)

    Olsson, Eleonor; Lövgren, Kristina; Fernö, Mårten; Grabau, Dorthe; Borg, Åke; Hegardt, Cecilia; Honeth, Gabriella; Bendahl, Pär-Ola; Saal, Lao H; Gruvberger-Saal, Sofia; Ringnér, Markus; Vallon-Christersson, Johan; Jönsson, Göran; Holm, Karolina

    2011-01-01

    The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44 + /CD24 - phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to

  6. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    Directory of Open Access Journals (Sweden)

    Vallon-Christersson Johan

    2011-09-01

    Full Text Available Abstract Background The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. Methods We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Results Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44+/CD24- phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. Conclusions We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in

  7. Merkel cell polyomavirus detection in Merkel cell cancer tumors in Northern Germany using PCR and protein expression.

    Science.gov (United States)

    Leitz, Miriam; Stieler, Kristin; Grundhoff, Adam; Moll, Ingrid; Brandner, Johanna M; Fischer, Nicole

    2014-10-01

    Merkel cell carcinoma is a highly malignant skin cancer which predominantly occurs in elderly and immunocompromised persons. The identification of the Merkel cell polyomavirus (MCPyV) has inaugurated a new understanding of Merkel cell carcinoma pathogenesis. The frequent detection of the virus in Merkel cell carcinoma tissue (70-90%), its monoclonal integration in the tumor cells and the expression of viral oncogenes highly suggest that MCPyV is causally linked to the pathogenesis of the majority of Merkel cell cancer (MCC) cases. Using qualitative and quantitative PCR together with immunohistochemical staining this study aimed at characterizing the presence of MCPyV sequences and viral early gene expression in a cohort of MCC cases (n = 32) selected in Northern Germany. 40-57% of the cases were identified as MCPyV positive with 40.6% of the cases positive by immunohistochemical staining and 51.6-57.6% positive by PCR. Interestingly, in the majority (64%) of LT-Antigen positive tumors only 25-50% of tumor cells express LT-Antigen. These data are in accord with published studies describing heterogeneity in MCPyV viral loads and suggest that detection of MCPyV in Merkel cell carcinoma by PCR should be undertaken using multiple primer pairs. © 2013 Wiley Periodicals, Inc.

  8. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.

    Science.gov (United States)

    Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali

    2016-09-07

    Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Transformation of Epithelial Ovarian Cancer Stemlike Cells into Mesenchymal Lineage via EMT Results in Cellular Heterogeneity and Supports Tumor Engraftment

    Science.gov (United States)

    Jiang, Hua; Lin, Xiaolong; Liu, Yingtao; Gong, Wenjia; Ma, Xiaoling; Yu, Yinhua; Xie, Yi; Sun, Xiaoxi; Feng, Youji; Janzen, Viktor; Chen, Tong

    2012-01-01

    Ovarian cancers are heterogeneous and contain stemlike cells that are able to self-renew and are responsible for sustained tumor growth. Metastasis in the peritoneal cavity occurs more frequently in ovarian cancer than in other malignancies, but the underlying mechanism remains largely unknown. We have identified that ovarian cancer stemlike cells (CSCs), which were defined as side population (SP) cells, were present in patients’ ascitic fluid and mesenchymally transformed cell lines, ES-2 and HO-8910PM. SP cells, which were sorted from both cell lines and implanted into immunocompromised mice, were localized to the xenografted tumor boundary. In addition, SP cells exhibited an epithelial phenotype and showed a distinct gene expression profile with reduced expression of cell adhesion molecules (CAMs), indicating that SP cells exert an important role in ovarian cancer progression on the basis of their delicate interaction with the surrounding microenvironment and anatomical localization in tumors. In contrast, non-SP cells exhibited a more mesenchymal phenotype and showed more increased invasive potential than SP cells. This heterogeneity was observed as an endogenous transformation via the epithelial–mesenchymal transition (EMT) process. Inhibition of the EMT process by Snail1 silencing reduced the SP cell frequency, and affected their invasive capacity and engraftment. These findings illustrate the interplay between epithelial ovarian CSCs and the EMT, and exert a link to explain tumor heterogeneity and its necessity for ovarian cancer maintenance, metastasis and progression. PMID:22801793

  10. Novel near-diploid ovarian cancer cell line derived from a highly aneuploid metastatic ovarian tumor.

    Directory of Open Access Journals (Sweden)

    Ester Rozenblum

    Full Text Available A new ovarian near-diploid cell line, OVDM1, was derived from a highly aneuploid serous ovarian metastatic adenocarcinoma. A metastatic tumor was obtained from a 47-year-old Ashkenazi Jewish patient three years after the first surgery removed the primary tumor, both ovaries, and the remaining reproductive organs. OVDM1 was characterized by cell morphology, genotyping, tumorigenic assay, mycoplasma testing, spectral karyotyping (SKY, and molecular profiling of the whole genome by aCGH and gene expression microarray. Targeted sequencing of a panel of cancer-related genes was also performed. Hierarchical clustering of gene expression data clearly confirmed the ovarian origin of the cell line. OVDM1 has a near-diploid karyotype with a low-level aneuploidy, but samples of the original metastatic tumor were grossly aneuploid. A number of single nucleotide variations (SNVs/mutations were detected in OVDM1 and the metastatic tumor samples. Some of them were cancer-related according to COSMIC and HGMD databases (no founder mutations in BRCA1 and BRCA2 have been found. A large number of focal copy number alterations (FCNAs were detected, including homozygous deletions (HDs targeting WWOX and GATA4. Progression of OVDM1 from early to late passages was accompanied by preservation of the near-diploid status, acquisition of only few additional large chromosomal rearrangements and more than 100 new small FCNAs. Most of newly acquired FCNAs seem to be related to localized but massive DNA fragmentation (chromothripsis-like rearrangements. Newly developed near-diploid OVDM1 cell line offers an opportunity to evaluate tumorigenesis pathways/events in a minor clone of metastatic ovarian adenocarcinoma as well as mechanisms of chromothripsis.

  11. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  12. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  13. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    Science.gov (United States)

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  14. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression.

    Science.gov (United States)

    Fornari, Chiara; Balbo, Gianfranco; Halawani, Sami M; Ba-Rukab, Omar; Ahmad, Ab Rahman; Calogero, Raffaele A; Cordero, Francesca; Beccuti, Marco

    2015-01-01

    Nowadays multidisciplinary approaches combining mathematical models with experimental assays are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory. More generally, to acquire new insights on a biological system it is necessary to have an accurate description of the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this context, the identification of the parameters influencing model dynamics can be advantageous to increase model accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the availability and quality of experimental data, and the dimension of the parameter space. The study of a new model on the CSC-based tumor progression has been the motivation to design a new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the parameters which influence the tumor growth. The

  15. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  16. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    International Nuclear Information System (INIS)

    Costa, Vera L; Henrique, Rui; Ribeiro, Franclim R; Pinto, Mafalda; Oliveira, Jorge; Lobo, Francisco; Teixeira, Manuel R; Jerónimo, Carmen

    2007-01-01

    Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP) in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC), 13 papillary (pRCC), 10 chromophobe (chRCC), and 10 oncocytomas) and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007), PTGS2 (p = 0.002), and RASSF1A (p = 0.0001). CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively), whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004). RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035). In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031) and nuclear grade (p = 0.022), respectively. The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses

  17. Gene profiling and circulating tumor cells as biomarker to prognostic of patients with locoregional breast cancer.

    Science.gov (United States)

    Kuniyoshi, Renata K; Gehrke, Flávia de Sousa; Alves, Beatriz C A; Vilas-Bôas, Viviane; Coló, Anna E; Sousa, Naiara; Nunes, João; Fonseca, Fernando L A; Del Giglio, Auro

    2015-09-01

    The gene profile of primary tumors, as well as the identification of circulating tumor cells (CTCs), can provide important prognostic and predictive information. In this study, our objective was to perform tumor gene profiling (TGP) in combination with CTC characterization in women with nonmetastatic breast cancer. Biological samples (from peripheral blood and tumors) from 167 patients diagnosed with stage I, II, and III mammary carcinoma, who were also referred for adjuvant/neoadjuvant chemotherapy, were assessed for the following parameters: (a) the presence of CTCs identified by the expression of CK-19 and c-erbB-2 in the peripheral blood mononuclear cell (PBMC) fraction by quantitative reverse transcription PCR (RT-PCR) and (b) the TGP, which was determined by analyzing the expression of 21 genes in paraffin-embedded tissue samples by quantitative multiplex RT-PCR with the Plexor® system. We observed a statistically significant correlation between the progression-free interval (PFI) and the clinical stage (p = 0.000701), the TGP score (p = 0.006538), and the presence of hormone receptors in the tumor (p = 0.0432). We observed no correlation between the PFI and the presence or absence of CK-19 or HER2 expression in the PBMC fraction prior to the start of treatment or in the two following readouts. Multivariate analysis revealed that only the TGP score significantly correlated with the PFI (p = 0.029247). The TGP is an important prognostic variable for patients with locoregional breast cancer. The presence of CTCs adds no prognostic value to the information already provided by the TGP.

  18. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues.

    Science.gov (United States)

    Majzner, Robbie G; Simon, Jason S; Grosso, Joseph F; Martinez, Daniel; Pawel, Bruce R; Santi, Mariarita; Merchant, Melinda S; Geoerger, Birgit; Hezam, Imene; Marty, Virginie; Vielh, Phillippe; Daugaard, Mads; Sorensen, Poul H; Mackall, Crystal L; Maris, John M

    2017-10-01

    Programmed death 1 (PD-1) signaling in the tumor microenvironment dampens immune responses to cancer, and blocking this axis induces antitumor effects in several malignancies. Clinical studies of PD-1 blockade are only now being initiated in pediatric patients, and little is known regarding programmed death-ligand 1 (PD-L1) expression in common childhood cancers. The authors characterized PD-L1 expression and tumor-associated immune cells (TAICs) (lymphocytes and macrophages) in common pediatric cancers. Whole slide sections and tissue microarrays were evaluated by immunohistochemistry for PD-L1 expression and for the presence of TAICs. TAICs were also screened for PD-L1 expression. Thirty-nine of 451 evaluable tumors (9%) expressed PD-L1 in at least 1% of tumor cells. The highest frequency histotypes comprised Burkitt lymphoma (80%; 8 of 10 tumors), glioblastoma multiforme (36%; 5 of 14 tumors), and neuroblastoma (14%; 17 of 118 tumors). PD-L1 staining was associated with inferior survival among patients with neuroblastoma (P = .004). Seventy-four percent of tumors contained lymphocytes and/or macrophages. Macrophages were significantly more likely to be identified in PD-L1-positive versus PD-L1-negative tumors (P cancers exhibit PD-L1 expression, whereas a much larger fraction demonstrates infiltration with tumor-associated lymphocytes. PD-L1 expression may be a biomarker for poor outcome in neuroblastoma. Further preclinical and clinical investigation will define the predictive nature of PD-L1 expression in childhood cancers both at diagnosis and after exposure to chemoradiotherapy. Cancer 2017;123:3807-3815. © 2017 American Cancer Society. © 2017 American Cancer Society.

  19. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  20. Homeostatic T Cell Expansion to Induce Anti-Tumor Autoimmunity in Breast Cancer

    National Research Council Canada - National Science Library

    Baccala, Roberto

    2007-01-01

    ... that (a) homeostatic T-cell proliferation consistently elicits anti-tumor responses; (b) irradiation is more effective than Tcell depletion by antibodies in inducing anti-tumor responses mediated by homeostatic T-cell proliferation...

  1. Circulating Tumor Cells and Cardiac Metastasis from Esophageal Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Francesca Consoli

    2011-05-01

    Full Text Available We report the case of a 67-year-old man affected by metastatic esophageal cancer. The patient developed a symptomatic heart metastasis presenting as mimicking ST-segment elevation myocardial infarction. Cardiac magnetic resonance imaging (MRI documented the presence of a mass in the apex and septum of the left ventriculum. The dissemination of cancer was confirmed by the detection of circulating tumor cells (CTCs in the peripheral blood, measured by the CellSearch System (Veridex, LLC, Raritan, N.J., USA. The blood sample drawn at cardiac disease progression revealed the presence of 2 CTCs per 7.5 ml of blood. This report highlights the potential role of CTCs as markers of metastatic spread.

  2. Canonical and Non-Canonical NF-κB Signaling Promotes Breast Cancer Tumor-Initiating Cells

    Science.gov (United States)

    Kendellen, Megan F.; Bradford, Jennifer W.; Lawrence, Cortney L.; Clark, Kelly S.; Baldwin, Albert S.

    2014-01-01

    Tumor-initiating cells (TICs) are a sub-population of cells that exhibit a robust ability to self-renew and contribute to the formation of primary tumors, the relapse of previously treated tumors, and the development of metastases. TICs have been identified in various tumors, including those of the breast, and are particularly enriched in the basal-like and claudin-low subtypes of breast cancer. The signaling pathways that contribute to the function and maintenance of TICs are under intense study. We explored the potential involvement of the NF-κB family of transcription factors in TICs in cell lines that are representative of basal-like and claudin-low breast cancer. NF-κB was found to be activated in breast cancer cells that form tumorspheres efficiently. Moreover, both canonical and non-canonical NF-κB signaling is required for these cells to self-renew in vitro and to form xenograft tumors efficiently in vivo using limiting dilutions of cells. Consistent with this, canonical and non-canonical NF-κB signaling is activated in TICs isolated from breast cancer cell lines. Experimental results indicate that NF-κB promotes the function of TICs by stimulating epithelial-to-mesenchymal transition (EMT) and by upregulating the expression of the inflammatory cytokines IL-1β and IL-6. The results suggest the use of NF-κB inhibitors for clinical therapy of certain breast cancers. PMID:23474754

  3. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    Science.gov (United States)

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  4. Circulating tumor cells in patients with breast cancer: monitoring chemotherapy success.

    Science.gov (United States)

    Ušiaková, Zuzana; Mikulová, Veronika; Pintérová, Daniela; Brychta, Milan; Valchář, Josef; Kubecová, Martina; Tesařová, Petra; Bobek, Vladimír; Kološtová, Katarína

    2014-01-01

    Circulating tumor cells (CTCs) are an independent prognostic factor for patients with metastatic breast cancer (MBC). However, the role of CTCs in early breast cancer management is not yet clearly defined. The aim of this study was to assess the CTC-positivity rate in patients undergoing chemotherapy depending on breast cancer stage in the adjuvant and neoadjuvant setting. We evaluated the ability to confirm therapy response by CTC analysis. CTCs isolated from blood by means of immunomagnetic separation were further characterized by means of reverse transcriptase - polymerase chain reaction (RT-PCR) for epithelial cell adhesion molecule (EPCAM), mucin 1 (MUC1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2) transcripts with the AdnaTest™. This prospective study included 179 patients; altogether 419 blood samples were evaluated. Patients with primary tumors were divided into neoadjuvant (n=38), and adjuvant (n=100) groups. Forty-one patients with MBC were evaluated under palliative treatment. CTC positivity was described in 35% of patients with early breast cancer without detected metastases before neoadjuvant chemotherapy; similarly, a 26% positivity rate was found in the adjuvant group. In patients with MBC, we detected CTCs in 43% of them. After completing the therapy, the CTC positivity rate decreased to 5% in the neoadjuvant group, to 13% in the adjuvant group and to 12% in the MBC group. CTC positivity after the therapy may classify a subgroup of patients at high risk of developing metastatic disease. This was even true when a patient was evaluated as being CTC-negative before chemotherapy. The multivariate analysis evaluating the correlation of CTC positivity with clinicopathological characteristics such as tumor size, nodal involvement, hormone receptor status, HER2 expression and number of metastatic sites revealed no statistically significant relationships. CTC status may have a significant impact on early BC management

  5. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4

    OpenAIRE

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A.L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.

    2016-01-01

    Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but ...

  6. The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability

    DEFF Research Database (Denmark)

    la Cour, Jonas; Høj, Berit Rahbek; Mollerup, Jens

    2008-01-01

    microarrays we analysed the expression of ALG-2 in 7371 tumor tissue samples of various origin as well as in 749 normal tissue samples. Most notably, ALG-2 was upregulated in mesenchymal tumors. No correlation was found between ALG-2 staining intensity and survival of patients with lung, breast or colon...... cancer. siRNA mediated ALG-2 downregulation led to a significant reduction in viability of HeLa cells indicating that ALG-2 may contribute to tumor development and expansion....

  7. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    International Nuclear Information System (INIS)

    Negraes, Priscilla D; Favaro, Francine P; Camargo, João Lauro V; Oliveira, Maria Luiza CS; Goldberg, José; Rainho, Cláudia A; Salvadori, Daisy MF

    2008-01-01

    Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. A set of 4 genes, including CDH1 (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and RASSF1A (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF1A gene, respectively, in relation to the control group. Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a

  8. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  9. Impact of endoscopic stent insertion on detection of viable circulating tumor cells from obstructive colorectal cancer.

    Science.gov (United States)

    Yamashita, Shinya; Tanemura, Masahiro; Sawada, Genta; Moon, Jeongho; Shimizu, Yosuke; Yamaguchi, Toshiki; Kuwai, Toshio; Urata, Yasuo; Kuraoka, Kazuya; Hatanaka, Nobutaka; Yamashita, Yoshinori; Taniyama, Kiyomi

    2018-01-01

    The placement of a self-expanding metallic stent (SEMS) in obstructive colorectal cancer (OCRC) is acknowledged to be a safe and effective procedure for the relief of obstruction. However, there is concern that shear forces acting on the tumor during stent expansion may release cancer cells into the circulation, resulting in a poor prognosis. The aim of the present study was to determine whether colonic stent insertion increases viable circulating tumor cells (v-CTCs). A telomerase-specific replication-selective adenovirus-expressing GFP (TelomeScanF35) detection system was used to detect v-CTCs in 8 OCRC patients with a SEMS before and after stent insertion and after surgical resection. In 7 patients, a SEMS was inserted as a bridge to surgery (BTS), and in one patient, a SEMS was inserted for palliation. Surgical resection (R0) was performed in 7 patients. Four patients had no v-CTCs before SEMS placement, two of four measurable patients had an increased number of v-CTCs after SEMS placement (1-3 v-CTCs), and one of two patients with increased v-CTCs developed distant lymphatic metastasis despite curative resection. Four patients had v-CTCs (1-19 cells) before SEMS placement, and two of these four patients had an increase in the number of v-CTCs (20-21 cells) after SEMS placement, while one of the four patients died early with distant metastasis. The present study demonstrated that endoscopic stent insertion for OCRC may result in tumor cell dissemination into the peripheral circulation and may induce distant metastases.

  10. Bladder cancers respond to intravesical instillation of HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Mossberg, Ann-Kristin; Wullt, Björn; Gustafsson, Lotta; Månsson, Wiking; Ljunggren, Eva; Svanborg, Catharina

    2007-09-15

    We studied if bladder cancers respond to HAMLET (human alpha-lactalbumin made lethal to tumor cells) to establish if intravesical HAMLET application might be used to selectively remove cancer cells in vivo. Patients with nonmuscle invasive transitional cell carcinomas were included. Nine patients received 5 daily intravesical instillations of HAMLET (25 mg/ml) during the week before scheduled surgery. HAMLET stimulated a rapid increase in the shedding of tumor cells into the urine, daily, during the 5 days of instillation. The effect was specific for HAMLET, as intravesical instillation of NaCl, PBS or native alpha-lactalbumin did not increase cell shedding. Most of the shed cells were dead and an apoptotic response was detected in 6 of 9 patients, using the TUNEL assay. At surgery, morphological changes in the exophytic tumors were documented by endoscopic photography and a reduction in tumor size or change in tumor character was detected in 8 of 9 patients. TUNEL staining was positive in biopsies from the remaining tumor in 4 patients but adjacent healthy tissue showed no evidence of apoptosis and no toxic response. The results suggest that HAMLET exerts a direct and selective effect on bladder cancer tissue in vivo and that local HAMLET administration might be of value in the future treatment of bladder cancers. (c) 2007 Wiley-Liss, Inc.

  11. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses.

    Directory of Open Access Journals (Sweden)

    Li-Xin Wang

    Full Text Available Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC, a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS, acute myeloid leukemia (AML and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8(+, but not CD4(+ T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy.

  12. Low Dose Decitabine Treatment Induces CD80 Expression in Cancer Cells and Stimulates Tumor Specific Cytotoxic T Lymphocyte Responses

    Science.gov (United States)

    Zhou, Ji-Hao; Yao, Yu-Shi; Li, Yong-Hui; Xu, Yi-Han; Li, Jing-Xin; Gao, Xiao-Ning; Zhou, Min-Hang; Jiang, Meng-Meng; Gao, Li; Ding, Yi; Lu, Xue-Chun; Shi, Jin-Long; Luo, Xu-Feng; Wang, Jia; Wang, Li-Li; Qu, Chunfeng; Bai, Xue-Feng; Yu, Li

    2013-01-01

    Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC), a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL) response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight) once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8+, but not CD4+ T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy. PMID:23671644

  13. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses.

    Science.gov (United States)

    Wang, Li-Xin; Mei, Zhen-Yang; Zhou, Ji-Hao; Yao, Yu-Shi; Li, Yong-Hui; Xu, Yi-Han; Li, Jing-Xin; Gao, Xiao-Ning; Zhou, Min-Hang; Jiang, Meng-Meng; Gao, Li; Ding, Yi; Lu, Xue-Chun; Shi, Jin-Long; Luo, Xu-Feng; Wang, Jia; Wang, Li-Li; Qu, Chunfeng; Bai, Xue-Feng; Yu, Li

    2013-01-01

    Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC), a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL) response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight) once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8(+), but not CD4(+) T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy.

  14. Perioperative Search for Circulating Tumor Cells in Patients Undergoing Prostate Brachytherapy for Clinically Nonmetastatic Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Hideyasu Tsumura

    2017-01-01

    Full Text Available Despite the absence of local prostate cancer recurrence, some patients develop distant metastases after prostate brachytherapy. We evaluate whether prostate brachytherapy procedures have a potential risk for hematogenous spillage of prostate cancer cells. Fifty-nine patients who were undergoing high-dose-rate (HDR or low-dose-rate (LDR brachytherapy participated in this prospective study. Thirty patients with high-risk or locally advanced cancer were treated with HDR brachytherapy after neoadjuvant androgen deprivation therapy (ADT. Twenty-nine patients with clinically localized cancer were treated with LDR brachytherapy without neoadjuvant ADT. Samples of peripheral blood were drawn in the operating room before insertion of needles (preoperative and again immediately after the surgical manipulation (intraoperative. Blood samples of 7.5 mL were analyzed for circulating tumor cells (CTCs using the CellSearch System. While no preoperative samples showed CTCs (0%, they were detected in intraoperative samples in 7 of the 59 patients (11.8%; preoperative vs. intraoperative, p = 0.012. Positive CTC status did not correlate with perioperative variables, including prostate-specific antigen (PSA at diagnosis, use of neoadjuvant ADT, type of brachytherapy, Gleason score, and biopsy positive core rate. We detected CTCs from samples immediately after the surgical manipulation. Further study is needed to evaluate whether those CTCs actually can survive and proliferate at distant sites.

  15. Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine.

    Science.gov (United States)

    Aldarouish, Mohanad; Wang, Huzhan; Zhou, Meng; Hu, Hong-Ming; Wang, Li-Xin

    2015-04-16

    Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub

  16. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Yao Wei

    2016-06-01

    Full Text Available Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7 with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.

  17. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening.

    Science.gov (United States)

    Christensen, Anne G; Ehmsen, Sidse; Terp, Mikkel G; Batra, Richa; Alcaraz, Nicolas; Baumbach, Jan; Noer, Julie B; Moreira, José; Leth-Larsen, Rikke; Larsen, Martin R; Ditzel, Henrik J

    2017-08-01

    A limited number of cancer cells within a tumor are thought to have self-renewing and tumor-initiating capabilities that produce the remaining cancer cells in a heterogeneous tumor mass. Elucidation of central pathways preferentially used by tumor-initiating cells/cancer stem cells (CSCs) may allow their exploitation as potential cancer therapy targets. We used single cell cloning to isolate and characterize four isogenic cell clones from a triple-negative breast cancer cell line; two exhibited mesenchymal-like and two epithelial-like characteristics. Within these pairs, one, but not the other, resulted in tumors in immunodeficient NOD/Shi-scid/IL-2 Rγ null mice and efficiently formed mammospheres. Quantitative proteomics and phosphoproteomics were used to map signaling pathways associated with the tumor-initiating ability. Signaling associated with apoptosis was suppressed in tumor-initiating versus nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed significantly lower apoptosis in tumor-initiating versus nontumorigenic cells. Moreover, central pathways, including β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signaling, exhibited increased activation in the tumor-initiating cells. To evaluate the CSC model as a tool for drug screening, we assessed the effect of separately blocking NF-κB and Wnt/β-catenin signaling and found markedly reduced mammosphere formation, particularly for tumor-initiating cells. Similar reduction was also observed using patient-derived primary cancer cells. Furthermore, blocking NF-κB signaling in mice transplanted with tumor-initiating cells significantly reduced tumor outgrowth. Our study demonstrates that suppressed apoptosis, activation

  18. Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis.

    Science.gov (United States)

    Bidard, François-Clément; Michiels, Stefan; Riethdorf, Sabine; Mueller, Volkmar; Esserman, Laura J; Lucci, Anthony; Naume, Bjørn; Horiguchi, Jun; Gisbert-Criado, Rafael; Sleijfer, Stefan; Toi, Masakazu; Garcia-Saenz, Jose A; Hartkopf, Andreas; Generali, Daniele; Rothé, Françoise; Smerage, Jeffrey; Muinelo-Romay, Laura; Stebbing, Justin; Viens, Patrice; Magbanua, Mark Jesus M; Hall, Carolyn S; Engebraaten, Olav; Takata, Daisuke; Vidal-Martínez, José; Onstenk, Wendy; Fujisawa, Noriyoshi; Diaz-Rubio, Eduardo; Taran, Florin-Andrei; Cappelletti, Maria Rosa; Ignatiadis, Michail; Proudhon, Charlotte; Wolf, Denise M; Bauldry, Jessica B; Borgen, Elin; Nagaoka, Rin; Carañana, Vicente; Kraan, Jaco; Maestro, Marisa; Brucker, Sara Yvonne; Weber, Karsten; Reyal, Fabien; Amara, Dominic; Karhade, Mandar G; Mathiesen, Randi R; Tokiniwa, Hideaki; Llombart-Cussac, Antonio; Meddis, Alessandra; Blanche, Paul; d'Hollander, Koenraad; Cottu, Paul; Park, John W; Loibl, Sibylle; Latouche, Aurélien; Pierga, Jean-Yves; Pantel, Klaus

    2018-04-12

    We conducted a meta-analysis in nonmetastatic breast cancer patients treated by neoadjuvant chemotherapy (NCT) to assess the clinical validity of circulating tumor cell (CTC) detection as a prognostic marker. We collected individual patient data from 21 studies in which CTC detection by CellSearch was performed in early breast cancer patients treated with NCT. The primary end point was overall survival, analyzed according to CTC detection, using Cox regression models stratified by study. Secondary end points included distant disease-free survival, locoregional relapse-free interval, and pathological complete response. All statistical tests were two-sided. Data from patients were collected before NCT (n = 1574) and before surgery (n = 1200). CTC detection revealed one or more CTCs in 25.2% of patients before NCT; this was associated with tumor size (P < .001). The number of CTCs detected had a detrimental and decremental impact on overall survival (P < .001), distant disease-free survival (P < .001), and locoregional relapse-free interval (P < .001), but not on pathological complete response. Patients with one, two, three to four, and five or more CTCs before NCT displayed hazard ratios of death of 1.09 (95% confidence interval [CI] = 0.65 to 1.69), 2.63 (95% CI = 1.42 to 4.54), 3.83 (95% CI = 2.08 to 6.66), and 6.25 (95% CI = 4.34 to 9.09), respectively. In 861 patients with full data available, adding CTC detection before NCT increased the prognostic ability of multivariable prognostic models for overall survival (P < .001), distant disease-free survival (P < .001), and locoregional relapse-free interval (P = .008). CTC count is an independent and quantitative prognostic factor in early breast cancer patients treated by NCT. It complements current prognostic models based on tumor characteristics and response to therapy.

  19. Quantification of Tumor Volume Changes During Radiotherapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Fox, Jana; Ford, Eric; Redmond, Kristin; Zhou, Jessica; Wong, John; Song, Danny Y.

    2009-01-01

    Purpose: Dose escalation for lung cancer is limited by normal tissue toxicity. We evaluated sequential computed tomography (CT) scans to assess the possibility of adaptively reducing treatment volumes by quantifying the tumor volume reduction occurring during a course of radiotherapy (RT). Methods and Materials: A total of 22 patients underwent RT for Stage I-III non-small-cell lung cancer with conventional fractionation; 15 received concurrent chemotherapy. Two repeat CT scans were performed at a nominal dose of 30 Gy and 50 Gy. Respiration-correlated four-dimensional CT scans were used for evaluation of respiratory effects in 17 patients. The gross tumor volume (GTV) was delineated on simulation and all individual phases of the repeat CT scans. Parenchymal tumor was evaluated unless the nodal volume was larger or was the primary. Subsequent image sets were spatially co-registered with the simulation data for evaluation. Results: The median GTV reduction was 24.7% (range, -0.3% to 61.7%; p 100 cm 3 vs. 3 , and hilar and/or mediastinal involvement vs. purely parenchymal or pleural lesions. A tendency toward a greater volume reduction with increasing dose was seen, although this did not reach statistical significance. Conclusion: The results of this study have demonstrated significant alterations in the GTV seen on repeat CT scans during RT. These observations raise the possibility of using an adaptive approach toward RT of non-small-cell lung cancer to minimize the dose to normal structures and more safely increase the dose directed at the target tissues.

  20. Tumor-Volume Simulation During Radiotherapy for Head-and-Neck Cancer Using a Four-Level Cell Population Model

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V.; Dong Lei; Palta, Jantinder R.; Amdur, Robert J.

    2009-01-01

    Purpose: To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. Methods: The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. Results: We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Conclusions: Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  1. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    Directory of Open Access Journals (Sweden)

    Natalie Turner

    2014-03-01

    Full Text Available Circulating tumor cell (CTC count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach.

  2. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    Science.gov (United States)

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  3. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    Science.gov (United States)

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  4. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    International Nuclear Information System (INIS)

    Mack, Hildegard I.D.; Munger, Karl

    2013-01-01

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer

  5. Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model

    Directory of Open Access Journals (Sweden)

    Hyejin Choi

    2015-02-01

    Full Text Available Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments.

  6. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.

    Science.gov (United States)

    Tang, Shu; Xiang, Tong; Huang, Shuo; Zhou, Jie; Wang, Zhongyu; Xie, Rongkai; Long, Haixia; Zhu, Bo

    2016-06-28

    Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Dendritic Cell-Based Adjuvant Vaccination Targeting Wilms’ Tumor 1 in Patients with Advanced Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Shigetaka Shimodaira

    2015-12-01

    Full Text Available Despite significant recent advances in the development of immune checkpoint inhibitors, the treatment of advanced colorectal cancer involving metastasis to distant organs remains challenging. We conducted a phase I study to investigate the safety and immunogenicity of Wilms’ tumor (WT1 class I/II peptides-pulsed dendritic cell DC vaccination for patients with advanced colorectal cancer. Standard treatment comprising surgical resection and chemotherapy was followed by one course of seven biweekly administrations of 1–2 × 107 DCs with 1–2 KE of OK-432 (streptococcal preparation in three patients. Clinical efficacy was confirmed based on WT1 expression using immunohistochemistry on paraffin-embedded tissues and immune monitoring using tetramer analysis and enzyme-linked immunosorbent spot (ELISPOT assays. WT1 expression with human leukocyte antigen (HLA-class I molecules was detected in surgical resected tissues. Adverse reactions to DC vaccinations were tolerable under an adjuvant setting. WT1-specific cytotoxic T cells were detected by both modified WT1-peptide/HLA-A*24:02 tetramer analysis and/or interferon-γ-producing cells through the use of ELISPOT assays after the first DC vaccination. Immunity acquired from DC vaccination persisted for two years with prolonged disease-free and overall survival. The present study indicated that DC vaccination targeting WT1 demonstrated the safety and immunogenicity as an adjuvant therapy in patients with resectable advanced colorectal cancer.

  8. Circulating tumor cell detection: A direct comparison between negative and unbiased enrichment in lung cancer.

    Science.gov (United States)

    Xu, Yan; Liu, Biao; Ding, Fengan; Zhou, Xiaodie; Tu, Pin; Yu, Bo; He, Yan; Huang, Peilin

    2017-06-01

    Circulating tumor cells (CTCs), isolated as a 'liquid biopsy', may provide important diagnostic and prognostic information. Therefore, rapid, reliable and unbiased detection of CTCs are required for routine clinical analyses. It was demonstrated that negative enrichment, an epithelial marker-independent technique for isolating CTCs, exhibits a better efficiency in the detection of CTCs compared with positive enrichment techniques that only use specific anti-epithelial cell adhesion molecules. However, negative enrichment techniques incur significant cell loss during the isolation procedure, and as it is a method that uses only one type of antibody, it is inherently biased. The detection procedure and identification of cell types also relies on skilled and experienced technicians. In the present study, the detection sensitivity of using negative enrichment and a previously described unbiased detection method was compared. The results revealed that unbiased detection methods may efficiently detect >90% of cancer cells in blood samples containing CTCs. By contrast, only 40-60% of CTCs were detected by negative enrichment. Additionally, CTCs were identified in >65% of patients with stage I/II lung cancer. This simple yet efficient approach may achieve a high level of sensitivity. It demonstrates a potential for the large-scale clinical implementation of CTC-based diagnostic and prognostic strategies.

  9. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer.

    Science.gov (United States)

    Pailler, Emma; Adam, Julien; Barthélémy, Amélie; Oulhen, Marianne; Auger, Nathalie; Valent, Alexander; Borget, Isabelle; Planchard, David; Taylor, Melissa; André, Fabrice; Soria, Jean Charles; Vielh, Philippe; Besse, Benjamin; Farace, Françoise

    2013-06-20

    The diagnostic test for ALK rearrangement in non-small-cell lung cancer (NSCLC) for crizotinib treatment is currently done on tumor biopsies or fine-needle aspirations. We evaluated whether ALK rearrangement diagnosis could be performed by using circulating tumor cells (CTCs). The presence of an ALK rearrangement was examined in CTCs of 18 ALK-positive and 14 ALK-negative patients by using a filtration enrichment technique and filter-adapted fluorescent in situ hybridization (FA-FISH), a FISH method optimized for filters. ALK-rearrangement patterns were determined in CTCs and compared with those present in tumor biopsies. ALK-rearranged CTCs and tumor specimens were characterized for epithelial (cytokeratins, E-cadherin) and mesenchymal (vimentin, N-cadherin) marker expression. ALK-rearranged CTCs were monitored in five patients treated with crizotinib. All ALK-positive patients had four or more ALK-rearranged CTCs per 1 mL of blood (median, nine CTCs per 1 mL; range, four to 34 CTCs per 1 mL). No or only one ALK-rearranged CTC (median, one per 1 mL; range, zero to one per 1 mL) was detected in ALK-negative patients. ALK-rearranged CTCs harbored a unique (3'5') split pattern, and heterogeneous patterns (3'5', only 3') of splits were present in tumors. ALK-rearranged CTCs expressed a mesenchymal phenotype contrasting with heterogeneous epithelial and mesenchymal marker expressions in tumors. Variations in ALK-rearranged CTC levels were detected in patients being treated with crizotinib. ALK rearrangement can be detected in CTCs of patients with ALK-positive NSCLC by using a filtration technique and FA-FISH, enabling both diagnostic testing and monitoring of crizotinib treatment. Our results suggest that CTCs harboring a unique ALK rearrangement and mesenchymal phenotype may arise from clonal selection of tumor cells that have acquired the potential to drive metastatic progression of ALK-positive NSCLC.

  10. Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Fatma Ashour

    2018-06-01

    Full Text Available Background and Objectives: Breast cancer (BC is classified according to estrogen receptor (ER status into ER+ and ER− tumors. ER+ tumors have a worse response to chemotherapy compared to ER− tumors. BCL-2, TP53, BAX and NF-ΚB are involved in drug resistance in the ER+ tumors. Recently it was shown that Cancer Stem Cells (CSCs play an important role in drug resistance. In this study we tested the hypothesis that CSCs of the ER+ tumors resist drug through the overexpression of BCL-2, TP53, BAX and NF-ΚB. Methods: CSCs were isolated by anoikis resistance assay from MCF7 (ER+ and MDA-MB-231 (ER− cell lines. Isolated CSCs were treated with doxorubicin (DOX and the mRNA expression levels of BCL-2, TP53, BAX and NFKB were investigated by quantitative real time PCR (qPCR with and without treatment. Results: BCL-2, BAX and NF-ΚB showed decreased expression in MCF7 bulk cancer cells after DOX treatment whereas only BCL-2 and BAX showed decreased expression in MDA-MB-231 bulk cancer cells. Interestingly TP53 was the only gene showed a considerable increase in its expression in CSCs of the ER+ MCF7 cell line compared to bulk cancer cells. Moreover, TP53 was the only gene showing exceptionally higher level of expression in MCF7-CSCs compared to MDA-MB-231-CSCs. Conclusion: Our results suggest that CSCs in the ER+ cells escape the effect of DOX treatment by the elevation of p53 expression. Keywords: Breast cancer, Cancer Stem Cells, Drug resistance, Estrogen receptors

  11. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Science.gov (United States)

    Monteagudo, Ángel; Santos, José

    2015-01-01

    Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA) being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC) and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  12. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Directory of Open Access Journals (Sweden)

    Ángel Monteagudo

    Full Text Available Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  13. Tumor suppressor KAI1 affects integrin αvβ3-mediated ovarian cancer cell adhesion, motility, and proliferation

    International Nuclear Information System (INIS)

    Ruseva, Zlatna; Geiger, Pamina Xenia Charlotte; Hutzler, Peter; Kotzsch, Matthias; Luber, Birgit; Schmitt, Manfred; Gross, Eva; Reuning, Ute

    2009-01-01

    The tetraspanin KAI1 had been described as a metastasis suppressor in many different cancer types, a function for which associations of KAI1 with adhesion and signaling receptors of the integrin superfamily likely play a role. In ovarian cancer, integrin αvβ3 correlates with tumor progression and its elevation in vitro provoked enhanced cell adhesion accompanied by significant increases in cell motility and proliferation in the presence of its major ligand vitronectin. In the present study, we characterized integrin αvβ3-mediated tumor biological effects as a function of cellular KAI1 restoration and proved for the first time that KAI1, besides its already known physical crosstalk with β1-integrins, also colocalizes with integrin αvβ3. Functionally, elevated KAI1 levels drastically increased integrin αvβ3/vitronectin-dependent ovarian cancer cell adhesion. Since an intermediate level of cell adhesive strength is required for optimal cell migration, we next studied ovarian cancer cell motility as a function of KAI1 restoration. By time lapse video microscopy, we found impaired integrin αvβ3/vitronectin-mediated cell migration most probably due to strongly enhanced cellular immobilization onto the adhesion-supporting matrix. Moreover, KAI1 reexpression significantly diminished cell proliferation. These data strongly indicate that KAI1 may suppress ovarian cancer progression by inhibiting integrin αvβ3/vitronectin-provoked tumor cell motility and proliferation as important hallmarks of the oncogenic process.

  14. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  15. The Potential of Circulating Tumor Cells in Personalized Management of Breast Cancer: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Fatemeh Khatami

    2017-03-01

    Full Text Available Circulating tumor cells (CTCs recognition and characterization in the peripheral blood of patients with breast cancer have proven practical and predictive value in different studies. However, the clinical significance of CTCs enumeration and molecular characterization in thepersonalization of breast cancer diagnosis and treatment remains under the debate. A literature search in PubMed, Web of Science and Scopus was performed from October 1990 to June 2016 for studies which evaluating CTCs and its association with clinical and pathological characteristics and medical outcome in the field of breast cancer personalization for both diagnosis and treatment categories. The treatment outcomes were progression-free survival (PFS and overall survival (OS or relapse in different patients. Sixty-nine studies met the inclusion criteria. The sample size varies from 1 to 2026. Median follow-up was 15 months (range 3-27. Different molecular techniques have been applied toresearch, but they mostly are based on CTCs enrichment and then detection by using FDA-approved Cell SearchTM. By far the most studies define CTCs as cytokeratins (CK positive and CD45 negative cells. Despite the differences in methodology, twenty-eight studies for breast cancer diagnosis and prognosis were mainly focused on CTCs isolation and enumeration.Forty-threeresearches were about CTCs count and exact molecular characterization. In the way of precision treatment, CTCs detection before starting the first-line of therapy or during therapy in breast cancer patients is extremely valuable, but in the way of precision medicine it should be supported with some molecular characteristics of CTCs like CTCs phenotypic changes, gene expression analysis of CTCs and molecular characteristics of CTCs.

  16. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype.

    Science.gov (United States)

    Sánchez-Vega, Francisco; Gotea, Valer; Margolin, Gennady; Elnitski, Laura

    2015-01-01

    The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking. We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define CIMP+ and CIMP- samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate accurate pan-cancer separation of the 12 CIMP+/- subpopulations, based on their average levels of methylation. Tumor samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing consistent associations with CIMP+/- status include genes involved in DNA repair, chromatin remodeling genes, and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall survival in several cancer types, highlight the importance of the CIMP+/- designation for individual tumor evaluation and personalized medicine. We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which protects against known biases that have hindered

  17. Anti-tumor effect of bisphosphonate (YM529 on non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Date Hiroshi

    2007-01-01

    Full Text Available Abstract Background YM529 is a newly developed nitrogen-containing bisphosphonate (BP classified as a third-generation BP that shows a 100-fold greater potency against bone resorption than pamidronate, a second-generation BP. This agent is, therefore expected to be extremely useful clinically for the treatment of osteoporosis and hypercalcemia. Recently, YM529 as well as other third-generation BPs have also been shown to exert anti-tumor effects against various types of cancer cells both in vitro or/and in vivo. In this study, we investigate the anti-tumor effect of YM529 on non-small cell lung cancer (NSCLC. Methods Direct anti-tumor effect of YM529 against 8 NSCLC cell lines (adenocarcinoma: H23, H1299, NCI-H1819, NCI-H2009, H44, A549, adenosquamous cell carcinoma: NCI-H125, squamous cell carcinoma: NCI-H157 were measured by MTS assay and calculated inhibition concentration 50 % (IC50 values. YM529 induced apoptosis of NCI-H1819 was examined by DNA fragmentation of 2 % agarose gel electrophoresis and flowcytometric analysis (sub-G1 method. We examined where YM529 given effect to apoptosis of NSCLC cells in signaling pathway of the mevalonate pathway by western blotting analysis. Results We found that there was direct anti-tumor effect of YM529 on 8 NSCLC cell lines in a dose-dependent manner and their IC50 values were 2.1 to 7.9 μM and YM529 induced apoptosis and G1 arrest cell cycle with dose-dependent manner and YM529 caused down regulation of phospholyration of ERK1/2 in signaling pathways of NSCLC cell line (NCI-H1819. Conclusion Our study demonstrate that YM529 showed direct anti-tumor effect on NSCLC cell lines in vitro, which supports the possibility that third-generation BPs including YM529 can be one of therapeutic options for NSCLC.

  18. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  19. Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden

    International Nuclear Information System (INIS)

    Abubaker, Khalid; Luwor, Rodney B; Zhu, Hongjian; McNally, Orla; Quinn, Michael A; Burns, Christopher J; Thompson, Erik W; Findlay, Jock K; Ahmed, Nuzhat

    2014-01-01

    Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts

  20. The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Dai, Fuqiang; Liu, Lunxu; Che, Guowei; Yu, Nanbin; Pu, Qiang; Zhang, Shangfu; Ma, Junliang; Ma, Lin; You, Zongbing

    2010-01-01

    Tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells, and infiltrating immune cells. Tumor-associated immune cells may inhibit or promote tumor growth and progression. This study was conducted to determine whether the number and microlocalization of macrophages, mature dendritic cells and cytotoxic T cells in non-small cell lung cancer are associated with patient's survival time. Ninety-nine patients with non-small cell lung cancer (NSCLC) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical staining for CD68 (marker for macrophages), CD83 (marker for mature dendritic cells), and CD8 (marker for cytotoxic T cells) was performed and evaluated in a blinded fashion. The numbers of immune cells in tumor islets and stroma, tumor islets, or tumor stroma were counted under a microscope. Correlation of the cell numbers and patient's survival time was analyzed using the Statistical Package for the Social Sciences (version 13.0). The numbers of macrophages, mature dendritic cells and cytotoxic T cells were significantly more in the tumor stroma than in the tumor islets. The number of macrophages in the tumor islets was positively associated with patient's survival time, whereas the number of macrophages in the tumor stroma was negatively associated with patient's survival time in both univariate and multivariate analyses. The number of mature dendritic cells in the tumor islets and stroma, tumor islets only, or tumor stroma only was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets and stroma was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets only or stroma

  1. Immunotherapy with Dendritic Cells Modified with Tumor-Associated Antigen Gene Demonstrates Enhanced Antitumor Effect Against Lung Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-04-01

    Full Text Available BACKGROUND: Immunotherapy using dendritic cell (DC vaccine has the potential to overcome the bottleneck of cancer therapy. METHODS: We engineered Lewis lung cancer cells (LLCs and bone marrow–derived DCs to express tumor-associated antigen (TAA ovalbumin (OVA via lentiviral vector plasmid encoding OVA gene. We then tested the antitumor effect of modified DCs both in vitro and in vivo. RESULTS: The results demonstrated that in vitro modified DCs could dramatically enhance T-cell proliferation (P < .01 and killing of LLCs than control groups (P < .05. Moreover, modified DCs could reduce tumor size and prolong the survival of LLC tumor-bearing mice than control groups (P < .01 and P < .01, respectively. Mechanistically, modified DCs demonstrated enhanced homing to T-cell–rich compartments and triggered more naive T cells to become cytotoxic T lymphocytes, which exhibited significant infiltration into the tumors. Interestingly, modified DCs also markedly reduced tumor cells harboring stem cell markers in mice (P < .05, suggesting the potential role on cancer stem-like cells. CONCLUSION: These findings suggested that DCs bioengineered with TAA could enhance antitumor effect and therefore represent a novel anticancer strategy that is worth further exploration.

  2. The role of preoperative serum cancer antigen 125 in malignant ovarian germ cell tumors

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2018-04-01

    Full Text Available Objective: To determine the role of preoperative serum cancer antigen 125 (CA 125 in malignant ovarian germ cell tumors (MOGCTs. Materials and methods: Using information from medical databases of Asan Medical Center (Seoul, Korea, we investigated 161 patients with histologically diagnosed MOGCTs and whose preoperative serum CA 125 had been checked. We determined the optimal cutoff value of CA 125 as > 249.5 U/mL in MOGCTs using a receiver operating characteristic curve. Results: The median patient age was 24 years (range, 6–52 years. The most common histologic type was immature teratoma. Most patients had stage I disease. Thirty-two patients (19.9% had elevated preoperative serum CA 125 levels over 249.5 U/mL. On univariate analysis, tumor size, advanced stage, the presence of ascites, ovarian surface involvement, and tumor rupture were significantly associated with elevated preoperative CA 125 levels (>249.5 U/mL. In the median follow-up time of 87 months (range, 9–271 months, 14 patients had a recurrence, and 5 died of the disease. Patients with an elevated serum preoperative CA 125 level (>249.5 U/mL had poorer disease-free survival, but this was not statistically significant. However, elevated preoperative CA 125 (>249.5 U/mL was significantly associated with poorer overall survival. Conclusions: Elevated preoperative serum CA 125 may have prognostic value in patients with MOGCTs. Keywords: CA-125 antigen, Ovarian germ cell cancer, Prognosis

  3. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways?

    International Nuclear Information System (INIS)

    Burdick, Monica M.; Henson, Karissa A.; Delgadillo, Luis F.; Choi, Young Eun; Goetz, Douglas J.; Tees, David F. J.; Benencia, Fabian

    2012-01-01

    Although significant progress has been made in the fight against cancer, successful treatment strategies have yet to be developed to combat those tumors that have metastasized to distant organs. Poor characterization of the molecular mechanisms of cancer spread is a major impediment to designing predictive diagnostics and effective clinical interventions against late stage disease. In hematogenous metastasis, it is widely suspected that circulating tumor cells (CTCs) express specific adhesion molecules that actively initiate contact with the vascular endothelium lining the vessel walls of the target organ. This “tethering” is mediated by ligands expressed by CTCs that bind to E-selectin expressed by endothelial cells. However, it is currently unknown whether expression of functional E-selectin ligands on CTCs is related to cancer stem cell regulatory or maintenance pathways, particularly epithelial-to-mesenchymal transition and the reverse, mesenchymal-to-epithelial transition. In this hypothesis and theory article, we explore the potential roles of these mechanisms on the dynamic regulation of selectin ligands mediating CTC trafficking during metastasis.

  4. CD163+ Tumor-Associated Macrophages Correlated with Poor Prognosis and Cancer Stem Cells in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ke-Fei He

    2014-01-01

    Full Text Available Tumor-associated macrophages (TAMs play an important role in the progression and prognostication of numerous cancers. However, the role and clinical significance of TAM markers in oral squamous cell carcinoma (OSCC has not been elucidated. The present study was designed to investigate the correlation between the expression of TAM markers and pathological features in OSCC by tissue microarray. Tissue microarrays containing 16 normal oral mucosa, 6 oral epithelial dysplasia, and 43 OSCC specimens were studied by immunohistochemistry. We observed that the protein expression of the TAM markers CD68 and CD163 as well as the cancer stem cell (CSC markers ALDH1, CD44, and SOX2 increased successively from the normal oral mucosa to OSCC. The expressions of CD68 and CD163 were significantly associated with lymph node status, and SOX2 was significantly correlated with pathological grade and lymph node status, whereas ALDH1 was correlated with tumor stage. Furthermore, CD68 was significantly correlated with CD163, SOX2, and ALDH1 (P<0.05. Kaplan-Meier analysis revealed that OSCC patients overexpressing CD163 had significantly worse overall survival (P<0.05. TAM markers are associated with cancer stem cell marker and OSCC overall survival, suggesting their potential prognostic value in OSCC.

  5. Overexpression of Pokemon in non-small cell lung cancer and foreshowing tumor biological behavior as well as clinical results.

    Science.gov (United States)

    Zhao, Zhi-Hong; Wang, Sheng-Fa; Yu, Liang; Wang, Ju; Chang, Hao; Yan, Wei-Li; Zhang, Jian; Fu, Kai

    2008-10-01

    Transcription factor Pokemon, a central regulation gene of the important tumor suppressor alternative reading frame (ARF), exerted its activity by acting upstream of many tumor-suppressing genes and proto-oncogenes. Its expression in non-small cell lung cancer (NSCLC) and its clinical significance remains unclear. The aim of this study was to investigate the expression of Pokemon in non-small cell lung cancer and to explore its correlation with the clinical pathological characteristics and its influence on patients' prognosis. Observe the expression of Pokemon in NSCLC and investigate its mechanism and clinical significance. Determine the expression of Pokemon in human NSCLC cell lines as well as 55 cases of NSCLC tumor tissues, tumor adjacent tissues and surrounding tissues by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, and analyze the relationship between Pokemon expression in NSCLC tumor tissues and clinicopathological features. Determine 62 NSCLC tumor tissues (5 years ago) and p14(ARF) expression with immunohistochemical technique, discuss the correlation between them and assess the effect of Pokemon on prognosis of patients with lung cancer. Pokemon mRNA and protein took on high expression in lung cancer cell lines, and the expression difference between cancer tissues, tumor adjacent tissues and surrounding tissues had statistical significance (PPokemon expression and p14(ARF) expression were negatively correlated (r=-0.287). The expression of Pokemon was determined not to be associated with the patient's sex, age, smoking condition, tumor differentiation degree, histology and lymph node metastasis condition. However, its relationship with TNM staging was established (PPokemon expression was significantly higher than that of those with positive Pokemon expression (P=0.004), therefore, the expression of Pokemon is believed to be an independent factor affecting prognosis (P=0.034). There was high expression of Pokemon in NSCLC

  6. High Densities of Tumor-Associated Plasma Cells Predict Improved Prognosis in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Joe Yeong

    2018-05-01

    Full Text Available Breast cancer is the most common malignancy affecting women, but the heterogeneity of the condition is a significant obstacle to effective treatment. Triple negative breast cancers (TNBCs do not express HER2 or the receptors for estrogen or progesterone, and so often have a poor prognosis. Tumor-infiltrating T cells have been well-characterized in TNBC, and increased numbers are associated with better outcomes; however, the potential roles of B cells and plasma cells have been large. Here, we conducted a retrospective correlative study on the expression of B cell/plasma cell-related genes, and the abundance and localization of B cells and plasma cells within TNBCs, and clinical outcome. We analyzed 269 TNBC samples and used immunohistochemistry to quantify tumor-infiltrating B cells and plasma cells, coupled with NanoString measurement of expression of immunoglobulin metagenes. Multivariate analysis revealed that patients bearing TNBCs with above-median densities of CD38+ plasma cells had significantly better disease-free survival (DFS (HR = 0.44; 95% CI 0.26–0.77; p = 0.004 but not overall survival (OS, after adjusting for the effects of known prognostic factors. In contrast, TNBCs with higher immunoglobulin gene expression exhibited improved prognosis (OS p = 0.029 and DFS p = 0.005. The presence of B cells and plasma cells was positively correlated (p < 0.0001, R = 0.558, while immunoglobulin gene IGKC, IGHM, and IGHG1 mRNA expression correlated specifically with the density of CD38+ plasma cells (IGKC p < 0.0001, R = 0.647; IGHM p < 0.0001, R = 0.580; IGHG1 p < 0.0001, R = 0.655. Interestingly, after adjusting the multivariate analysis for the effect of intratumoral CD38+ plasma cell density, the expression levels of all three genes lost significant prognostic value, suggesting a biologically important role of plasma cells. Last but not least, the addition of intratumoral CD38+ plasma cell

  7. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Science.gov (United States)

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  8. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer

    NARCIS (Netherlands)

    Cohen, Steven J.; Punt, Cornelis J. A.; Iannotti, Nicholas; Saidman, Bruce H.; Sabbath, Kert D.; Gabrail, Nashat Y.; Picus, Joel; Morse, Michael; Mitchell, Edith; Miller, M. Craig; Doyle, Gerald V.; Tissing, Henk; Terstappen, Leon W. M. M.; Meropol, Neal J.

    2008-01-01

    As treatment options expand for metastatic colorectal cancer (mCRC), a blood marker with a prognostic and predictive role could guide treatment. We tested the hypothesis that circulating tumor cells (CTCs) could predict clinical outcome in patients with mCRC. In a prospective multicenter study, CTCs

  9. DETECTION OF OCCULT LYMPH NODE TUMOR CELLS IN NODE-NEGATIVE GASTRIC CANCER PATIENTS.

    Science.gov (United States)

    Pereira, Marina Alessandra; Ramos, Marcus Fernando Kodama Pertille; Dias, Andre Roncon; Yagi, Osmar Kenji; Faraj, Sheila Friedrich; Zilberstein, Bruno; Cecconello, Ivan; Mello, Evandro Sobroza de; Ribeiro, Ulysses

    2017-01-01

    The presence of lymph nodes metastasis is one of the most important prognostic indicators in gastric cancer. The micrometastases have been studied as prognostic factor in gastric cancer, which are related to decrease overall survival and increased risk of recurrence. However, their identification is limited by conventional methodology, since they can be overlooked after routine staining. To investigate the presence of occult tumor cells using cytokeratin (CK) AE1/AE3 immunostaining in gastric cancer patients histologically lymph node negative (pN0) by H&E. Forty patients (T1-T4N0) submitted to a potentially curative gastrectomy with D2 lymphadenectomy were evaluated. The results for metastases, micrometastases and isolated tumor cells were also associated to clinicopathological characteristics and their impact on stage grouping. Tumor deposits within lymph nodes were defined according to the tumor-node-metastases guidelines (7th TNM). A total of 1439 lymph nodes were obtained (~36 per patient). Tumor cells were detected by immunohistochemistry in 24 lymph nodes from 12 patients (30%). Neoplasic cells were detected as a single or cluster tumor cells. Tumor (p=0.002), venous (p=0.016), lymphatic (p=0.006) and perineural invasions (p=0.04), as well as peritumoral lymphocytic response (p=0.012) were correlated to CK-positive immunostaining tumor cells in originally negative lymph nodes by H&E. The histologic stage of two patients was upstaged from stage IB to stage IIA. Four of the 28 CK-negative patients (14.3%) and three among 12 CK-positive patients (25%) had disease recurrence (p=0.65). The CK-immunostaining is an effective method for detecting occult tumor cells in lymph nodes and may be recommended to precisely determine tumor stage. It may be useful as supplement to H&E routine to provide better pathological staging. A presença de metástase em linfonodos é um dos indicadores prognósticos mais importantes no câncer gástrico. As micrometástases têm sido

  10. Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer.

    Science.gov (United States)

    Giessler, Klara M; Kleinheinz, Kortine; Huebschmann, Daniel; Balasubramanian, Gnana Prakash; Dubash, Taronish D; Dieter, Sebastian M; Siegl, Christine; Herbst, Friederike; Weber, Sarah; Hoffmann, Christopher M; Fronza, Raffaele; Buchhalter, Ivo; Paramasivam, Nagarajan; Eils, Roland; Schmidt, Manfred; von Kalle, Christof; Schneider, Martin; Ulrich, Alexis; Scholl, Claudia; Fröhling, Stefan; Weichert, Wilko; Brors, Benedikt; Schlesner, Matthias; Ball, Claudia R; Glimm, Hanno

    2017-07-03

    A hierarchically organized cell compartment drives colorectal cancer (CRC) progression. Genetic barcoding allows monitoring of the clonal output of tumorigenic cells without prospective isolation. In this study, we asked whether tumor clone-initiating cells (TcICs) were genetically heterogeneous and whether differences in self-renewal and activation reflected differential kinetics among individual subclones or functional hierarchies within subclones. Monitoring genomic subclone kinetics in three patient tumors and corresponding serial xenografts and spheroids by high-coverage whole-genome sequencing, clustering of genetic aberrations, subclone combinatorics, and mutational signature analysis revealed at least two to four genetic subclones per sample. Long-term growth in serial xenografts and spheroids was driven by multiple genomic subclones with profoundly differing growth dynamics and hence different quantitative contributions over time. Strikingly, genetic barcoding demonstrated stable functional heterogeneity of CRC TcICs during serial xenografting despite near-complete changes in genomic subclone contribution. This demonstrates that functional heterogeneity is, at least frequently, present within genomic subclones and independent of mutational subclone differences. © 2017 Giessler et al.

  11. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model.

    Directory of Open Access Journals (Sweden)

    Thorsten Frenzel

    Full Text Available Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities.The biological data gained during these experiments were fed into our previously developed computer model "Cancer and Treatment Simulation Tool" (CaTSiT to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model.According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels' geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor's therapeutic susceptibility and its metastatic spreading behavior.Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry of the primary tumor.

  12. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  13. Enrichment and Molecular Analysis of Breast Cancer Disseminated Tumor Cells from Bone Marrow Using Microfiltration.

    Directory of Open Access Journals (Sweden)

    Sreeraj G Pillai

    Full Text Available Molecular characterization of disseminated tumor cells (DTCs in the bone marrow (BM of breast cancer (BC patients has been hindered by their rarity. To enrich for these cells using an antigen-independent methodology, we have evaluated a size-based microfiltration device in combination with several downstream biomarker assays.BM aspirates were collected from healthy volunteers or BC patients. Healthy BM was mixed with a specified number of BC cells to calculate recovery and fold enrichment by microfiltration. Specimens were pre-filtered using a 70 μm mesh sieve and the effluent filtered through CellSieve microfilters. Captured cells were analyzed by immunocytochemistry (ICC, FISH for HER-2/neu gene amplification status, and RNA in situ hybridization (RISH. Cells eluted from the filter were used for RNA isolation and subsequent qRT-PCR analysis for DTC biomarker gene expression.Filtering an average of 14×106 nucleated BM cells yielded approximately 17-21×103 residual BM cells. In the BC cell spiking experiments, an average of 87% (range 84-92% of tumor cells were recovered with approximately 170- to 400-fold enrichment. Captured BC cells from patients co-stained for cytokeratin and EpCAM, but not CD45 by ICC. RNA yields from 4 ml of patient BM after filtration averaged 135ng per 10 million BM cells filtered with an average RNA Integrity Number (RIN of 5.3. DTC-associated gene expression was detected by both qRT-PCR and RISH in filtered spiked or BC patient specimens but, not in control filtered normal BM.We have tested a microfiltration technique for enrichment of BM DTCs. DTC capture efficiency was shown to range from 84.3% to 92.1% with up to 400-fold enrichment using model BC cell lines. In patients, recovered DTCs can be identified and distinguished from normal BM cells using multiple antibody-, DNA-, and RNA-based biomarker assays.

  14. Effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice.

    Science.gov (United States)

    Song, Lin; Zhou, Xin; Jia, Hong-Jun; Du, Mei; Zhang, Jin-Ling; Li, Liang

    2016-08-01

    To study the effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice. BABL/c nude mice were selected as experimental animals and gastric cancer tumor-bearing mice model were established by subcutaneous injection of gastric cancer cells, randomly divided into different intervention groups. hGC-MSCs group were given different amounts of gastric cancer cells for subcutaneous injection, PBS group was given equal volume of PBS for subcutaneous injection. Then tumor tissue volume were determined, tumor-bearing mice were killed and tumor tissues were collected, mRNA expression of proliferation, invasion, EMT-related molecules were determined. 4, 8, 12, 16, 20 d after intervention, tumor tissue volume of hGC-MSCs group were significantly higher than those of PBS group and the more the number of hGC-MSCs, the higher the tumor tissue volume; mRNA contents of Ki-67, PCNA, Bcl-2, MMP-2, MMP-7, MMP-9, MMP-14, N-cadherin, vimentin, Snail and Twist in tumor tissue of hGC-MSCs group were higher than those of PBS group, and mRNA contents of Bax, TIMP1, TIMP2 and E-cadherin were lower than those of PBS group. hGC-MSCs from human gastric cancer tissue can promote the tumor growth in gastric cancer tumor-bearing mice, and the molecular mechanism includes promoting cell proliferation, invasion and epithelial-mesenchymal transition. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  15. Circulating tumor cells predict survival benefit from chemotherapy in patients with lung cancer.

    Science.gov (United States)

    Wu, Zhuo-Xuan; Liu, Zhen; Jiang, Han-Ling; Pan, Hong-Ming; Han, Wei-Dong

    2016-10-11

    This meta-analysis was to explore the clinical significance of circulating tumor cells (CTCs) in predicting the tumor response to chemotherapy and prognosis of patients with lung cancer. We searched PubMed, Embase, Cochrane Database, Web of Science and reference lists of relevant articles. Our meta-analysis was performed by Stata software, version 12.0, with a random effects model. Risk ratio (RR), hazard ratio (HR) and 95% confidence intervals (CI) were used as effect measures. 8 studies, including 453 patients, were eligible for analyses. We showed that the disease control rate (DCR) in CTCs-negative patients was significantly higher than CTCs-positive patients at baseline (RR = 2.56, 95%CI [1.36, 4.82], p chemotherapy (RR = 9.08, CI [3.44, 23.98], p chemotherapy had a worse disease progression than those with CTC-positive to negative or persistently negative (RR = 8.52, CI [1.66, 43.83], p chemotherapy also indicated poor overall survival (OS) (baseline: HR = 3.43, CI [2.21, 5.33], pchemotherapy: HR = 3.16, CI [2.23, 4.48], p chemotherapy: HR = 3.78, CI [2.33, 6.13], p chemotherapy and poor prognosis in patients with lung cancer.

  16. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    International Nuclear Information System (INIS)

    Chvetsov, A; Schwartz, J; Mayr, N; Yartsev, S

    2014-01-01

    Purpose: To show that a distribution of cell surviving fractions S 2 in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S 2 and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S 2 for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S 2 reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S 2 can be reconstructed from the tumor volume variation curves measured

  17. MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kazuyo [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Hirohashi, Yoshihiko, E-mail: hirohash@sapmed.ac.jp [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Kuroda, Takafumi [Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Takaya, Akari; Kubo, Terufumi; Kanaseki, Takayuki; Tsukahara, Tomohide [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Hasegawa, Tadashi [Department of Surgical Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Saito, Tsuyoshi [Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Sato, Noriyuki [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan); Torigoe, Toshihiko, E-mail: torigoe@sapmed.ac.jp [Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556 (Japan)

    2016-04-15

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH{sup high}) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver and kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH{sup high} population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs.

  18. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    Directory of Open Access Journals (Sweden)

    Abhirami A Ananth

    Full Text Available Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA-dopachrome tautomerase (AdDCT and resection resulting in major surgical stress (abdominal nephrectomy, we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.

  19. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis

    Science.gov (United States)

    Herrera, Victoria LM; Colby, Aaron H; Tan, Glaiza AL; Moran, Ann M; O’Brien, Michael J; Colson, Yolonda L; Ruiz-Opazo, Nelson; Grinstaff, Mark W

    2016-01-01

    Aim: To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. Methods & materials: A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. Results: The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. Conclusion: eNPs are a promising tool for the detection and treatment of PPC. PMID:27078118

  20. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    Science.gov (United States)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  1. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model

    International Nuclear Information System (INIS)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-01-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer

  2. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    International Nuclear Information System (INIS)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  3. Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence

    Directory of Open Access Journals (Sweden)

    Luciana O. Almeida

    2017-05-01

    Full Text Available Adenoid cystic carcinoma (ACC is an uncommon malignancy of the salivary glands that is characterized by local recurrence and distant metastasis due to its resistance to conventional therapy. Platinum-based therapies have been extensively explored as a treatment for ACC, but they show little effectiveness. Studies have shown that a specific group of tumor cells, harboring characteristics of cancer stem cells (CSCs, are involved in chemoresistance of myeloid leukemias, breast, colorectal and pancreatic carcinomas. Therapeutic strategies that target CSCs improve the survival of patients by decreasing the rates of tumor relapse, and epigenetic drugs, such as histone deacetylase inhibitors (HDACi, have shown promising results in targeting CSCs. In this study, we investigated the effect of the HDACi Suberoylanilide hydroxamic acid (Vorinostat, and cisplatin, alone or in combination, on CSCs and non-CSCs from ACC. We used CSCs as a biological marker for tumor resistance to therapy in patient-derived xenograft (PDX samples and ACC primary cells. We found that cisplatin reduced tumor viability, but enriched the population of CSCs. Systemic administration of Vorinostat reduced the number of detectable CSCs in vivo and in vitro, and a low dose of Vorinostat decreased tumor cell viability. However, the combination of Vorinostat and cisplatin was extremely effective in depleting CSCs and reducing tumor viability in all ACC primary cells by activating cellular senescence. These observations suggest that HDACi and intercalating agents act more efficiently in combination to destroy tumor cells and their stem cells.

  4. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer.

    Science.gov (United States)

    Pailler, E; Auger, N; Lindsay, C R; Vielh, P; Islas-Morris-Hernandez, A; Borget, I; Ngo-Camus, M; Planchard, D; Soria, J-C; Besse, B; Farace, F

    2015-07-01

    Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24-55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7-11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene

  5. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer

    Science.gov (United States)

    Schneck, Helen; Gierke, Berthold; Uppenkamp, Frauke; Behrens, Bianca; Niederacher, Dieter; Stoecklein, Nikolas H.; Templin, Markus F.; Pawlak, Michael; Fehm, Tanja; Neubauer, Hans

    2015-01-01

    Circulating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far–including the gold standard CellSearch—rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing epithelial-to-mesenchymal transition (EMT). Here we present an enrichment strategy combining different antibodies specific for surface proteins and extracellular matrix (ECM) components to capture an EpCAMlow/neg cell line and EpCAMneg CTCs from blood samples of breast cancer patients depleted for EpCAM-positive cells. The expression of respective proteins (Trop2, CD49f, c-Met, CK8, CD44, ADAM8, CD146, TEM8, CD47) was verified by immunofluorescence on EpCAMpos (e.g. MCF7, SKBR3) and EpCAMlow/neg (MDA-MB-231) breast cancer cell lines. To test antibodies and ECM proteins (e.g. hyaluronic acid (HA), collagen I, laminin) for capturing EpCAMneg cells, the capture molecules were first spotted in a single- and multi-array format onto aldehyde-coated glass slides. Tumor cell adhesion of EpCAMpos/neg cell lines was then determined and visualized by Coomassie/MitoTracker staining. In consequence, marginal binding of EpCAMlow/neg MDA-MB-231 cells to EpCAM-antibodies could be observed. However, efficient adhesion/capturing of EpCAMlow/neg cells could be achieved via HA and immobilized antibodies against CD49f and Trop2. Optimal capture conditions were then applied to immunomagnetic beads to detect EpCAMneg CTCs from clinical samples. Captured CTCs were verified/quantified by immunofluorescence staining for anti-pan-Cytokeratin (CK)-FITC/anti-CD45 AF647/DAPI. In total, in 20 out of 29 EpCAM-depleted fractions (69%) from 25 metastatic breast cancer patients additional EpCAMneg CTCs could be identified [range of 1–24 CTCs per sample] applying Trop2, CD49f, c-Met, CK8 and/or HA magnetic enrichment. Ep

  6. Prognostic value of tumor-to-blood standardized uptake ratio in patients with resectable non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Hyeon; Pak, Kyoung June; Kim, In Joo [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan(Korea, Republic of); Kim, Bum Soo; Kim, Seong Jang [Dept. of Nuclear Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of)

    2017-09-15

    Previously published studies showed that the standard tumor-to-blood standardized uptake value (SUV) ratio (SUR) was a more accurate prognostic method than tumor maximum standardized uptake value (SUVmax). This study evaluated and compared prognostic value of positron emission tomography (PET) parameters and normalized value of PET parameters by blood pool SUV in non-small-cell lung cancer (NSCLC) patients who received curative surgery.

  7. Prognostic value of tumor-to-blood standardized uptake ratio in patients with resectable non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Shin, Seung Hyeon; Pak, Kyoung June; Kim, In Joo; Kim, Bum Soo; Kim, Seong Jang

    2017-01-01

    Previously published studies showed that the standard tumor-to-blood standardized uptake value (SUV) ratio (SUR) was a more accurate prognostic method than tumor maximum standardized uptake value (SUVmax). This study evaluated and compared prognostic value of positron emission tomography (PET) parameters and normalized value of PET parameters by blood pool SUV in non-small-cell lung cancer (NSCLC) patients who received curative surgery

  8. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  9. Assessment of serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer after DC-CIK combined with intravenous chemotherapy

    Directory of Open Access Journals (Sweden)

    Lei-Fan Li

    2016-12-01

    Full Text Available Objective: To study the effect of DC-CIK combined with intravenous chemotherapy on serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer. Methods: A total of 79 patients with advanced colon cancer conservatively treated in our hospital between May 2012 and October 2015 were retrospectively studied and divided into DC-CIK group and intravenous chemotherapy group according to different therapeutic regimens, DC-CIK group received DC-CIK combined with intravenous chemotherapy and intravenous chemotherapy group received conventional intravenous chemotherapy. After three cycles of chemotherapy, the content of tumor markers in serum, expression levels of apoptotic molecules in tumor lesions as well as immune function indexes were determined. Results: After 3 cycles of chemotherapy, CEA, CA199, CA242, HIF-1α, IL-4, IL-5 and IL-10 content in serum of DC-CIK group were significantly lower than those of intravenous chemotherapy group; p53, FAM96B, PTEN, PHLPP, ASPP2 and RASSF10 mRNA content in tumor lesions of DC-CIK group were significantly higher than those of intravenous chemotherapy group; the fluorescence intensity of CD3, CD4 and CD56 on peripheral blood mononuclear cell surface of DC-CIK group were significantly higher than those of intravenous chemotherapy group while the fluorescence intensity of CD8 and CD25 were significantly lower than those of intravenous chemotherapy group; IL-2 and IFN-γ content in serum of DC-CIK group were significantly higher than those of intravenous chemotherapy group while IL-4, IL-5 and IL-10 content were significantly lower than those of intravenous chemotherapy group. Conclusions: DC-CIK combined with intravenous chemotherapy has better effect on killing colon cancer cells and inducing colon cancer cell apoptosis than conventional intravenous chemotherapy, and can also improve the body's anti-tumor immune response.

  10. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells

    International Nuclear Information System (INIS)

    Amaral, Camila L.; Freitas, Lidia B.; Tamura, Rodrigo E.; Tavares, Mariana R.; Pavan, Isadora C. B.; Bajgelman, Marcio C.; Simabuco, Fernando M.

    2016-01-01

    The S6 Kinase (S6K) proteins are some of the main downstream effectors of the mammalian Target Of Rapamycin (mTOR) and act as key regulators of protein synthesis and cell growth. S6K is overexpressed in a variety of human tumors and is correlated to poor prognosis in prostate cancer. Due to the current urgency to identify factors involved in prostate cancer progression, we aimed to reveal the cellular functions of three S6K isoforms–p70-S6K1, p85-S6K1 and p54-S6K2–in prostate cancer, as well as their potential as therapeutic targets. In this study we performed S6K knockdown and overexpression and investigated its role in prostate cancer cell proliferation, colony formation, viability, migration and resistance to docetaxel treatment. In addition, we measured tumor growth in Nude mice injected with PC3 cells overexpressing S6K isoforms and tested the efficacy of a new available S6K1 inhibitor in vitro. S6Ks overexpression enhanced PC3-luc cell line viability, migration, resistance to docetaxel and tumor formation in Nude mice. Only S6K2 knockdown rendered prostate cancer cells more sensitive to docetaxel. S6K1 inhibitor PF-4708671 was particularly effective for reducing migration and proliferation of PC3 cell line. These findings demonstrate that S6Ks play an important role in prostate cancer progression, enhancing cell viability, migration and chemotherapy resistance, and place both S6K1 and S6K2 as a potential targets in advanced prostate cancer. We also provide evidence that S6K1 inhibitor PF-4708671 may be considered as a potential drug for prostate cancer treatment. The online version of this article (doi:10.1186/s12885-016-2629-y) contains supplementary material, which is available to authorized users

  11. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Ranganatha R Somasagara

    Full Text Available The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties.Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB fruits in leukaemia (CEM and breast cancer (T47D cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated.The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  12. Tumor cavitation in patients with stage III non-small-cell lung cancer undergoing concurrent chemoradiotherapy: incidence and outcomes.

    Science.gov (United States)

    Phernambucq, Erik C J; Hartemink, Koen J; Smit, Egbert F; Paul, Marinus A; Postmus, Pieter E; Comans, Emile F I; Senan, Suresh

    2012-08-01

    Commonly reported complications after concurrent chemoradiotherapy (CCRT) in patients with stage III non-small-cell lung cancer (NSCLC) include febrile neutropenia, radiation esophagitis, and pneumonitis. We studied the incidence of tumor cavitation and/or "tumor abscess" after CCRT in a single-institutional cohort. Between 2003 and 2010, 87 patients with stage III NSCLC underwent cisplatin-based CCRT and all subsequent follow-up at the VU University Medical Center. Diagnostic and radiotherapy planning computed tomography scans were reviewed for tumor cavitation, which was defined as a nonbronchial air-containing cavity located within the primary tumor. Pulmonary toxicities scored as Common Toxicity Criteria v3.0 of grade III or more, occurring within 90 days after end of radiotherapy, were analyzed. In the entire cohort, tumor cavitation was observed on computed tomography scans of 16 patients (18%). The histology in cavitated tumors was squamous cell (n = 14), large cell (n = 1), or adenocarcinoma (n = 1). Twenty patients (23%) experienced pulmonary toxicity of grade III or more, other than radiation pneumonitis. Eight patients with a tumor cavitation (seven squamous cell carcinoma) developed severe pulmonary complications; tumor abscess (n = 5), fatal hemorrhage (n = 2), and fatal embolism (n = 1). Two patients with a tumor abscess required open-window thoracostomy post-CCRT. The median overall survival for patients with or without tumor cavitation were 9.9 and 16.3 months, respectively (p = 0.09). With CCRT, acute pulmonary toxicity of grade III or more developed in 50% of patients with stage III NSCLC, who also had radiological features of tumor cavitation. The optimal treatment of patients with this presentation is unclear given the high risk of a tumor abscess.

  13. T Cell-Tumor Interaction Directs the Development of Immunotherapies in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    A. E. Albers

    2010-01-01

    Full Text Available The competent immune system controls disease effectively due to induction, function, and regulation of effector lymphocytes. Immunosurveillance is exerted mostly by cytotoxic T-lymphocytes (CTLs while specific immune suppression is associated with tumor malignancy and progression. In squamous cell carcinoma of the head and neck, the presence, activity, but also suppression of tumor-specific CTL have been demonstrated. Functional CTL may exert a selection pressure on the tumor cells that consecutively escape by a combination of molecular and cellular evasion mechanisms. Certain of these mechanisms target antitumor effector cells directly or indirectly by affecting cells that regulate CTL function. This results in the dysfunction or apoptosis of lymphocytes and dysregulated lymphocyte homeostasis. Another important tumor-escape mechanism is to avoid recognition by dysregulation of antigen processing and presentation. Thus, both induction of functional CTL and susceptibility of the tumor and its microenvironment to become T cell targets should be considered in CTL-based immunotherapy.

  14. Activin pathway enhances colorectal cancer stem cell self-renew and tumor progression.

    Science.gov (United States)

    Liu, Rui; Wang, Jun-Hua; Xu, Chengxiong; Sun, Bo; Kang, Sa-Ouk

    2016-10-28

    Activin belongs to transforming growth factor (TGF)-β super family of growth and differentiation factors and activin pathway participated in broad range of cell process. Studies elaborated activin pathway maintain pluripotency in human stem cells and suggest that the function of activin/nodal signaling in self-renew would be conserved across embryonic and adult stem cells. In this study, we tried to determine the effect of activin signaling pathway in regulation of cancer stem cells as a potential target for cancer therapy in clinical trials. A population of colorectal cancer cells was selected by the treatment of activin A. This population of cell possessed stem cell character with sphere formation ability. We demonstrated activin pathway enhanced the colorectal cancer stem cells self-renew and contribute to colorectal cancer progression in vivo. Targeting activin pathway potentially provide effective strategy for colorectal cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

    Science.gov (United States)

    Shmelkov, Sergey V.; Butler, Jason M.; Hooper, Andrea T.; Hormigo, Adilia; Kushner, Jared; Milde, Till; St. Clair, Ryan; Baljevic, Muhamed; White, Ian; Jin, David K.; Chadburn, Amy; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; D’Angelica, Michael; Kemeny, Nancy; Lyden, David; Rafii, Shahin

    2008-01-01

    Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic

  16. Aminopeptidase A initiates tumorigenesis and enhances tumor cell stemness via TWIST1 upregulation in colorectal cancer

    OpenAIRE

    Chuang, Hui-Yu; Jiang, Jeng-Kae; Yang, Muh-Hwa; Wang, Hsei-Wei; Li, Ming-Chun; Tsai, Chan-Yen; Jhang, Yau-Yun; Huang, Jason C.

    2017-01-01

    Metastasis accounts for the high mortality rate associated with colorectal cancer (CRC), but metastasis regulators are not fully understood. To identify a novel gene involved in tumor metastasis, we used oligonucleotide microarrays, transcriptome distance analyses, and machine learning algorithms to determine links between primary and metastatic colorectal cancers. Aminopeptidase A (APA; also known as ENPEP) was selected as our focus because its relationship with colorectal cancer requires cl...

  17. Application of detecting cerebrospinal fluid circulating tumor cells in the diagnosis of meningeal metastasis of non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Rong JIANG

    2014-08-01

    Full Text Available Objective To observe a new technology for the detection and enumeration of cerebrospinal fluid (CSF circulating tumor cells (CTCs in the diagnosis of non-small cell lung cancer (NSCLC with meningeal metastasis (MM.  Methods Five cases of NSCLC with MM that were diagnosed by CSF cytology were selected, and 20 ml CSF samples were obtained by lumbar puncture for every patient. The tumor marker immunostaining-fluorescence in situ hybridization (TM-iFISH technology was adapted to detect enrichment and enumeration of circulating tumor cells in 7.50 ml CSF samples; CSF cytology was checked in 10 ml CSF samples; CSF tumor markers were detected in 2.50 ml CSF samples. All of 5 cases were examined by MRI enhancement scan.  Results TM-iFISH detection found circulating tumor cells numbers ranging 18-1823/7.50 ml. Only 2 cases of patients with CSF cytology examination showed the tumor cells. The results of CSF tumor markers in all samples were higher than normal serum tumor markers detection results. The enhanced MRI scan of 5 cases revealed typical signs of MM.  Conclusions The TM-iFISH test showed certain advantages in the detection of malignant tumor cells in CSF. This technology may be a new method of detection and enumeration of tumor cells in CSF, but more studies are needed to prove its sensitivity and specificity. doi: 10.3969/j.issn.1672-6731.2014.08.011

  18. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    Science.gov (United States)

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  19. Assessing Clinical Outcomes in Colorectal Cancer with Assays for Invasive Circulating Tumor Cells.

    Science.gov (United States)

    Zhang, Yue; Zarrabi, Kevin; Hou, Wei; Madajewicz, Stefan; Choi, Minsig; Zucker, Stanley; Chen, Wen-Tien

    2018-06-06

    Colorectal carcinoma (CRC) is the second leading cause of cancer-related mortality. The goals of this study are to evaluate the association between levels of invasive circulating tumor cells (iCTCs) with CRC outcomes and to explore the molecular characteristics of iCTCs. Peripheral blood from 93 patients with Stage I⁻IV CRC was obtained and assessed for the detection and characterization of iCTCs using a functional collagen-based adhesion matrix (CAM) invasion assay. Patients were followed and assessed for overall survival. Tumor cells isolated by CAM were characterized using cell culture and microarray analyses. Of 93 patients, 88 (95%) had detectable iCTCs, ranging over 0⁻470 iCTCs/mL. Patients with Stage I⁻IV disease exhibited median counts of 0.0 iCTCs/mL ( n = 6), 13.0 iCTCs/mL ( n = 12), 41.0 iCTCs/mL ( n = 12), and 133.0 iCTCs/mL ( n = 58), respectively ( p < 0.001). Kaplan⁻Meier curve analysis demonstrated a significant survival benefit in patients with low iCTC counts compared with in patients with high iCTC counts (log-rank p < 0.001). Multivariable Cox model analysis revealed that iCTC count was an independent prognostic factor of overall survival ( p = 0.009). Disease stage ( p = 0.01, hazard ratio 1.66; 95% confidence interval: 1.12⁻2.47) and surgical intervention ( p = 0.03, HR 0.37; 95% CI: 0.15⁻0.92) were also independent prognostic factors. Gene expression analysis demonstrated the expression of both endothelial and tumor progenitor cell biomarkers in iCTCs. CAM-based invasion assay shows a high detection sensitivity of iCTCs that inversely correlated with overall survival in CRC patients. Functional and gene expression analyses showed the phenotypic mosaics of iCTCs, mimicking the survival capability of circulating endothelial cells in the blood stream.

  20. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  1. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Iván González-Chavarría

    Full Text Available Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.

  2. Widespread molecular patterns associated with drug sensitivity in breast cancer cell lines, with implications for human tumors.

    Directory of Open Access Journals (Sweden)

    Chad J Creighton

    Full Text Available BACKGROUND: Recent landmark studies have profiled cancer cell lines for molecular features, along with measuring the corresponding growth inhibitory effects for specific drug compounds. These data present a tool for determining which subsets of human cancer might be more responsive to particular drugs. To this end, the NCI-DREAM-sponsored DREAM7: Drug Sensitivity Prediction Challenge (sub-challenge 1 set out to predict the sensitivities of 18 breast cancer cell lines to 31 previously untested compounds, on the basis of molecular profiling data and a training subset of cell lines. METHODS AND RESULTS: With 47 teams submitting blinded predictions, team Creighton scored third in terms of overall accuracy. Team Creighton's method was simple and straightforward, incorporated multiple expression data types (RNA-seq, gene array, RPPA, and incorporated all profiled features (not only the "best" predictive ones. As an extension of the approach, cell line data, from public datasets of expression profiling coupled with drug sensitivities (Barretina, Garnett, Heiser were used to "predict" the drug sensitivities in human breast tumors (using data from The Cancer Genome Atlas. Drug sensitivity correlations within human breast tumors showed differences by expression-based subtype, with many associations in line with the expected (e.g. Lapatinib sensitivity in HER2-enriched cancers and others inviting further study (e.g. relative resistance to PI3K inhibitors in basal-like cancers. CONCLUSIONS: Molecular patterns associated with drug sensitivity are widespread, with potentially hundreds of genes that could be incorporated into making predictions, as well as offering biological clues as to the mechanisms involved. Applying the cell line patterns to human tumor data may help generate hypotheses on what tumor subsets might be more responsive to therapies, where multiple cell line datasets representing various drugs may be used, in order to assess consistency of

  3. Mincle, an Innate Immune Receptor, Is Expressed in Urothelial Cancer Cells of Papillomavirus-Associated Urothelial Tumors of Cattle.

    Directory of Open Access Journals (Sweden)

    Sante Roperto

    Full Text Available Mincle, macrophage-inducible C-type lectin, is a member of C-type lectin receptors. It plays an important role in anti-mycobacterial and anti-fungal immunity. Furthermore it senses dead cells through its primary ligand SAP130.We examined ten urothelial tumors of the urinary bladder of cattle. Eight of them expressed E5 cDNA of bovine papillomaviruses type 2 (BPV-2 and type 13 (BPV-13 that belong to Deltapapillomavirus genus. Two of them were not examined for detection of E5 cDNA. Mincle expression appeared to occur in urothelial neoplastic cells only. No mincle expression was detected in urothelial cells from healthy cattle. Mincle expression was characterized by a membranous pattern in papillary urothelial cancers; isolated and/or clustered urothelial cells showing a strong cytoplasmic immunoreactivity were primarily seen in invasive urothelial cancers.This is the first study about the expression of mincle in veterinary oncology and the first report which describes the expression of functional mincle receptor in neoplastic cells in medical literature. As it has been shown that urothelial cancer cells have the ability to function as antigen-presenting cells (APCs, it is conceivable that mincle expression is involved in the presentation of cancer cell antigens to cells of the immune system. Furthermore, since expression of mincle contributes to the control of Mycobacterium bovis BCG infection, this study has exciting clinical implications in comparative medicine keeping in mind that Bacillus Calmette-Guérin (BCG immunotherapy is currently the most effective treatment of non-muscle invasive bladder cancer in man. Mincle expression in urothelial tumor cells warrants further study to better understand the role, if any, of this receptor in bladder cancer. Future studies will provide insights in the role of mincle receptor of urothelial cancer cells in antitumor immunotherapy.

  4. Treatment outcomes of female germ cell tumors: The Egyptian National Cancer Institute experience

    International Nuclear Information System (INIS)

    Saber, M.M.; Zeeneldin, A.A.; El Gammal, M.M.; Salem, S.E.; Darweesh, A.D.; Abdelaziz, A.A.; Monir, M.

    2014-01-01

    Introduction: Female germ cell tumors (GCTS) are rare tumors that carry a good prognosis. Aim: To report the experience of the Egyptian National Cancer Institute (ENCI) in managing female GCTs. Methods: This retrospective study included 19 females with ovarian GCTs presenting to the ENCI between 2006 and 2010. Results: The median age was 23 years. Ovaries were the primary site in all patients. Dysgerminoma and teratoma were the predominant pathologies followed by mixed GCT in females. Unilateral ovariectomy or ovarian tumorectomy were the classic surgical procedures with R0 resection being feasible in most cases. Surveillance was adopted in six patients with stage I disease. Chemotherapy was administered in 63% of ovarian GCTs with BEP being the commonest regimen with reasonable tolerability and good response rates. The median OS and EFS were not reached. The projected 5-year OS rate was 93.8%. Both OS and EFS were better in patients responding to chemotherapy than non-responders (p< 0.002). Stage of disease did not significantly affect OS or EFS. Conclusions: Female GCTs rarely affect Egyptian females. They have good prognosis.

  5. Assessing tumor treatment response and prognosis in non-small cell lung cancer with perfusion CT

    International Nuclear Information System (INIS)

    Wang Jianwei; Wu Ning; Song Ying

    2010-01-01

    Objective: To prospectively investigate whether any of the perfusion parameters would predict early tumor response to chemotherapy and/or radiotherapy and prognosis in non-small cell lung cancer (NSCLC). Methods: In a prospective series, Perfusion CT were performed in 152 patients suspected lung cancer with 16-slice or 8-slice multislice CT. Contrast medium (50 ml) was injected at a rate of 4 ml/s with a power injector. The scanning delay was 10 seconds and the scanning time was 50 seconds. Among 152 patients, 123 patients were proved lung cancer by pathology. With the perfusion 3.0 software, the parameters including blood flow (BF), blood volume (BV), mean transit time (MTT) and capillary permeability surface area product (PS) were calculated. The perfusion image quality was evaluated on a 4-1eveal scale. The treatment response after chemotherapy and (or) radiotherapy was assessed with Response Evaluation Criteria in Solid Tumors (RECIST), and then the relationship between perfusion parameters with early tumor response to chemotherapy and (or) radiotherapy was evaluated. Student t test and Kaplan-Meier estimates were used for data analysis. Results: In 84 patients (68.3%), the perfusion image quality was staged level 2 (moderate) and level 3 (good). Among them, 35 patients with NSCLC were assessed with RECIST after chemotherapy and (or) radiotherapy. In these 35 patients, The BF of responders and nonresponders was (81.0 ± 33.6)and (56.3 ± 23.1) ml · min -1 ·100 g -1 , respectively, which was significantly different(t=2.393, P=0.023). The median PFS of low-BF group (BF ≤ 80 ml · min -1 · 100 g -1 ) and high-BF group (BF>80 ml · min -1 · 100 g -1 ) was 11.8 and 8.0 months respectively (P>0.05), and the median PFS of low-BV group (BF ≤ 6 ml/100 g -1 ) and high-BV group (BF>6 ml/100 g -1 ) was 9.2 and 8.0 months respectively(P>0.05), both of them were not significantly different. Conclusion: NSCLC in high perfusion are relatively sensitive to chemotherapy

  6. Low Tumor Infiltrating Mast Cell Density Confers Prognostic Benefit and Reflects Immunoactivation in Colorectal Cancer.

    Science.gov (United States)

    Mao, Yihao; Feng, Qingyang; Zheng, Peng; Yang, Liangliang; Zhu, Dexiang; Chang, Wenju; Ji, Meiling; He, Guodong; Xu, Jianmin

    2018-06-06

    The role of mast cells (MCs) in colorectal cancer (CRC) progression was controversial. Thus, this study was designed to evaluate the prognostic value of MCs as well as their correlation with immune microenvironment. A retrospective cohort of CRC patients of stage I-IV was enrolled in this study. 854 consecutive patients were divided into training set (427 patients) and validation set (427 patients) randomly. The findings were further validated in a GEO cohort, GSE39582 (556 patients). The mast cell density (MCD) was measured by immunohistochemical staining of tryptase or by CIBERSORT algorithm. Low MCD predicted prolonged overall survival (OS) in training and validation set. Moreover, MCD was identified as an independent prognostic indicator in both sets. Better stratification for CRC prognosis can be achieved by building a MCD based nomogram. The prognostic role of MCD was further validated in GSE39582. In addition, MCD predicted improved survival in stage II and III CRC patients receiving adjuvant chemotherapy (ACT). Multiple immune pathways were enriched in low MCD group while cytokines/chemokines promoting anti-tumor immunity were highly expressed in such group. Furthermore, MCD was negatively correlated with CD8+ T cells infiltration. In conclusion, MCD was identified as an independent prognostic factor, as well as a potential biomarker for ACT benefit in stage II and III CRC. Better stratification of CRC prognosis could be achieved by building a MCD based nomogram. Moreover, immunoactivation in low MCD tumors may contributed to improved prognosis. This article is protected by copyright. All rights reserved. © 2018 UICC.

  7. Reciprocal influence of B cells and tumor macro and microenvironments in the ApcMin/+ model of colorectal cancer.

    Science.gov (United States)

    Mion, Francesca; Vetrano, Stefania; Tonon, Silvia; Valeri, Viviana; Piontini, Andrea; Burocchi, Alessia; Petti, Luciana; Frossi, Barbara; Gulino, Alessandro; Tripodo, Claudio; Colombo, Mario P; Pucillo, Carlo E

    2017-01-01

    One of the most fascinating aspects of the immune system is its dynamism, meant as the ability to change and readapt according to the organism needs. Following an insult, we assist to the spontaneous organization of different immune cells which cooperate, locally and at distance, to build up an appropriate response. Throughout tumor progression, adaptations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion and metastasis to distal organs, but also to dramatic changes in the activity and composition of the immune system. In this work, we show the changes of the B-cell arm of the immune system following tumor progression in the Apc Min/+ model of colorectal cancer. Tumor macroenvironment leads to an increased proportion of total and IL-10-competent B cells in draining LNs while activates a differentiation route that leads to the expansion of IgA + lymphocytes in the spleen and peritoneum. Importantly, serum IgA levels were significantly higher in Apc Min/+ than Wt mice. The peculiar involvement of IgA response in the adenomatous transformation had correlates in the gut-mucosal compartment where IgA-positive elements increased from normal mucosa to areas of low grade dysplasia while decreasing upon overt carcinomatous transformation. Altogether, our findings provide a snapshot of the tumor education of B lymphocytes in the Apc Min/+ model of colorectal cancer. Understanding how tumor macroenvironment affects the differentiation, function and distribution of B lymphocytes is pivotal to the generation of specific therapies, targeted to switching B cells to an anti-, rather than pro-, tumoral phenotype.

  8. Prognostic value of tumor burden measurement using the number of tumors in non-surgical patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhang, Hao; Wroblewski, Kristen; Pu, Yonglin

    2012-01-01

    Background: No study to test the feasibility and prognostic value of the number of primary tumors, the number of positive lymph nodes, and the total number of tumors in the whole body as tumor burden measurements on FDG PET/CT imaging has been reported. Purpose: To determine whether the number of tumors seen in 18F-FDG PET scans can be a prognostic factor in non-surgical patients with non-small cell lung cancer (NSCLC). Material and Methods: One hundred and forty patients with histologically proven NSCLC and baseline 18F-FDG PET scan before therapy were identified in this retrospective analysis. The total number of tumors (TTn) in the whole body, the number of primary tumors (Tn), positive lymph nodes (Nn), and distant metastases (Mn), along with the maximum standardized uptake values (SUVmax) of the tumors were measured. Inter-observer variability of the total number of tumors, counted by two radiologists, was assessed. Survival analyses were performed to determine the prognostic value of the number of tumors. Results: Concordance correlation coefficients for the TTn, Tn, Nn, and Mn were all greater than 0.85. TTn and Nn were strong prognostic factors of NSCLC patients' overall survival (OS). In univariate Cox regression models, gender, stage, TTn, Nn, and Mn were statistically significant factors (P = 0.016, 0.032, 4. Conclusion: Measuring the number of tumors on FDG PET imaging is easy to perform with minimal inter-observer variability. The total number of tumors and number of nodal metastases, as metabolic tumor burden measurements in 18F-FDG PET/CT, are prognostic markers independent of clinical stage, age, gender, and SUV measurement in non-surgical patients with NSCLC

  9. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties.

    Directory of Open Access Journals (Sweden)

    Pegah Ghiabi

    Full Text Available Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.

  10. PD-L1 Expression of Tumor Cells, Macrophages, and Immune Cells in Non-Small Cell Lung Cancer Patients with Malignant Pleural Effusion.

    Science.gov (United States)

    Tseng, Yen-Han; Ho, Hsiang-Ling; Lai, Chiung-Ru; Luo, Yung-Hung; Tseng, Yen-Chiang; Whang-Peng, Jacqueline; Lin, Yi-Hsuan; Chou, Teh-Ying; Chen, Yuh-Min

    2018-03-01

    Whether immunohistochemical staining of programmed death ligand 1 (PD-L1) on cells of pleural effusion could be used to predict response to immunotherapy treatment has not been reported. We retrospectively enrolled patients who had undergone malignant pleural effusion drainage and had effusion cell block specimens from 2014 to 2016. Immunohistochemical staining for PD-L1 was performed with tumor cells, immune cells, and macrophages of all cell block specimens. Immunoactivity was scored as 0 for absence of staining and 1+ for faint, 2+ for moderate, and 3+ for intense membranous staining. Patients' clinicopathological characteristics were also collected. PD-L1 expression of pleural effusion tumor cells was associated with the PD-L1 expression of macrophages (p = 0.003) and immune cells (p pleural effusion tumor cells and macrophages. The low intensity of PD-L1 expression in immune cells is associated with the poor survival of patients with lung cancer with malignant pleural effusion. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    Science.gov (United States)

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  12. Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype.

    Science.gov (United States)

    Borgoni, Simone; Iannello, Andrea; Cutrupi, Santina; Allavena, Paola; D'Incalci, Maurizio; Novelli, Francesco; Cappello, Paola

    2018-01-01

    Pancreatic Ductal Adenocarcinoma (PDA) is characterized by a complex tumor microenvironment that supports its progression, aggressiveness and resistance to therapies. The delicate interplay between cancer and immune cells creates the conditions for PDA development, particularly due to the functional suppression of T cell anti-tumor effector activity. However, some of the mechanisms involved in this process are still poorly understood. In this study, we analyze whether the functional and epigenetic profile of T cells that infiltrate PDA is modulated by the microenvironment, and in particular by tumor-associated macrophages (TAMs). CD4 and CD8 T cells obtained from mice orthotopically injected with syngeneic PDA cells, and untreated or treated with Trabectedin, a cytotoxic drug that specifically targets TAMs, were sorted and analyzed by flow cytometry and characterized for their epigenetic profile. Assessment of cytokine production and the epigenetic profile of genes coding for IL10, T-bet and PD1 revealed that T cells that infiltrated PDA displayed activated Il10 promoter and repressed T-bet activity, in agreement with their regulatory phenotype (IL10 high /IFNγ low , PD1 high ). By contrast, in Trabectedin-treated mice, PDA-infiltrating T cells displayed repressed Il10 and Pdcd1 and activated T-bet promoter activity, in accordance with their anti-tumor effector phenotype (IL10 low /IFNγ high ), indicating a key role of TAMs in orchestrating functions of PDA-infiltrating T cells by modulating their epigenetic profile towards a pro-tumoral phenotype. These results suggest the targeting of TAMs as an efficient strategy to obtain an appropriate T cell anti-tumor immune response and open new potential combinations for PDA treatment.

  13. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    Science.gov (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Differential effects of drugs targeting cancer stem cell (CSC and non-CSC populations on lung primary tumors and metastasis.

    Directory of Open Access Journals (Sweden)

    Leyre Larzabal

    Full Text Available Cancer stem cells (CSCs are thought to be responsible for tumor initiation and recurrence after chemotherapy. Targeting CSCs and non-CSCs with specific compounds may be an effective approach to reduce lung cancer growth and metastasis. The aim of this study was to investigate the effect of salinomycin, a selective inhibitor of CSCs, with or without combination with paclitaxel, in a metastatic model. To evaluate the effect of these drugs in metastasis and tumor microenvironment we took advantage of the immunocompetent and highly metastatic LLC mouse model. Aldefluor assays were used to analyze the ALDH+/- populations in murine LLC and human H460 and H1299 lung cancer cells. Salinomycin reduced the proportion of ALDH+ CSCs in LLC cells, whereas paclitaxel increased such population. The same effect was observed for the H460 and H1299 cell lines. Salinomycin reduced the tumorsphere formation capacity of LLC by more than 7-fold, but paclitaxel showed no effect. In in vivo experiments, paclitaxel reduced primary tumor volume but increased the number of metastatic nodules (p<0.05, whereas salinomycin had no effect on primary tumors but reduced lung metastasis (p<0.05. Combination of both drugs did not improve the effect of single therapies. ALDH1A1, SOX2, CXCR4 and SDF-1 mRNA levels were higher in metastatic lesions than in primary tumors, and were significantly elevated in both locations by paclitaxel treatment. On the contrary, such levels were reduced (or in some cases did not change when mice were administered with salinomycin. The number of F4/80+ and CD11b+ cells was also reduced upon administration of both drugs, but particularly in metastasis. These results show that salinomycin targets ALDH+ lung CSCs, which has important therapeutic effects in vivo by reducing metastatic lesions. In contrast, paclitaxel (although reducing primary tumor growth promotes the selection of ALDH+ cells that likely modify the lung microenvironment to foster

  15. Application of detecting cerebrospinal fluid circulating tumor cells in the diagnosis of meningeal metastasis of non-small cell lung cancer

    OpenAIRE

    Rong JIANG; Chun-hua MA; Zi-long ZHU; Jin-duo LI; Bin WANG; Li-wei SUN; Yuan LÜ

    2014-01-01

    Objective To observe a new technology for the detection and enumeration of cerebrospinal fluid (CSF) circulating tumor cells (CTCs) in the diagnosis of non-small cell lung cancer (NSCLC) with meningeal metastasis (MM).  Methods Five cases of NSCLC with MM that were diagnosed by CSF cytology were selected, and 20 ml CSF samples were obtained by lumbar puncture for every patient. The tumor marker immunostaining-fluorescence in situ hybridization (TM-iFISH) technology was adapted to detect...

  16. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.

    Science.gov (United States)

    Iliopoulos, Dimitrios; Hirsch, Heather A; Struhl, Kevin

    2011-05-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy resistant subpopulation of cancer stem cells (CSC) in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when combined with a four-fold reduced dose of doxorubicin that is not effective as a monotherapy. Finally, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the CSC hypothesis for cancer relapse, an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings, and for reducing the chemotherapy dose in cancer patients.

  17. Molecular detection of peripheral blood breast cancer mRNA transcripts as a surrogate biomarker for circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Adriana Lasa

    Full Text Available Circulating tumor cells (CTCs are becoming a scientifically recognized indicator of primary tumors and/or metastasis. These cells can now be accurately detected and characterized as the result of technological advances. We analyzed the presence of CTCs in the peripheral blood of patients with metastatic breast cancer by real-time reverse-transcription PCR (RT-qPCR using a panel of selected genes. The analysis of a single marker, without an EpCAM based enrichment approach, allowed the positive identification of 35% of the metastatic breast cancer patients. The analysis of five genes (SCGB2, TFF1, TFF3, Muc1, KRT20 performed in all the samples increased the detection to 61%. We describe a sensitive, reproducible and easy to implement approach to characterize CTC in patients with metastasic breast cancer.

  18. Predictive factors for the presence of tumor cells in bone marrow and peripheral blood in breast cancer patients.

    Science.gov (United States)

    Cabinakova, M; Mikulova, V; Malickova, K; Vrana, D; Pavlista, D; Petruzelka, L; Zima, T; Tesarova, P

    2015-01-01

    Simultaneous detection of disseminated tumor cells (DTCs) and circulating tumor cells (CTCs) was shown to be associated with an especially poor prognosis and increased incidence of disease-related deaths in non-metastatic breast cancer patients. We analyzed the occurance of DTCs and CTCs in patients with primary breast cancer and evaluated the correlation of their presence with other prognostic markers and investigated the changes in DTCs/CTCs number at different time points during treatment.Blood of 50 patients with primary breast cancer were used for immunomagnetic separation and detection of circulating tumor cells using the commercial available system the AdnaTest Breast Cancer™ (AdnaGen GmbH, Langenhagen, Germany). Bone marrow aspirates from 50 patients were analyzed for DTCs by immunocytochemistry using the pan-cytokeratin antibody conjugated with FITC (Monoclonal Anti-Cytokeratin antibody F3418, Sigma Aldrich).DTCs were identified in 30% (15/50) and CTCs in 22% (11/50) of patients. We found that DTC positivity could point to a significantly high risk of larger primary tumor size (p-value 0.011) and significantly higher risk of lymph node involvement (p-value 0.002). For CTC positivity, no such relationship was proven. DTCs have shown significantly higher prevalence in ER/PR-negative females and in HER2-positive cases. CTCs were equally prevalent in patients with the presence and absence of standard prognostic and predictive markers such as ER, PR and HER2. We found no correlation between CTCs and DTCs findings (r = -0.097, p = 0.504). We used DTCs/CTCs analysis for therapy monitoring in a small group of 29 patients, who underwent neoadjuvant chemotherapy (NACT). We find out no significant correlation between DTCs/CTCs detection and the primary tumor response to NACT. A pathologic complete response (pCR) was achieved by 31% (9/29) of the patients in our study, however, no association was observed between pCR and the detection of DTCs after NACT

  19. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer.

    Science.gov (United States)

    Bradaric, Michael J; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L; Yu, Yi; Abramowicz, Jacques S; Bahr, Janice M; Luborsky, Judith L

    2013-01-01

    Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.

  20. [Circulating tumor cells: cornerstone of personalized medicine].

    Science.gov (United States)

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  1. Radiation-Induced Thymidine Phosphorylase Upregulation in Rectal Cancer Is Mediated by Tumor-Associated Macrophages by Monocyte Chemoattractant Protein-1 From Cancer Cells

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Li Ge; Song, Kyoung-Sub; Kim, Jin-Man; Kim, Jun-Sang; Kim, Jong-Seok; Yun, Eun-Jin; Park, Jong-Il; Park, Hae-Duck; Hwang, Byung-Doo; Lim, Kyu; Yoon, Wan-Hee

    2009-01-01

    Purpose: The mechanisms of thymidine phosphorylase (TP) regulation induced by radiation therapy (XRT) in various tumors are poorly understood. We investigated the effect and mechanisms of preoperative XRT on TP expression in rectal cancer tissues. Methods and Materials: TP expression and CD68 and monocyte chemoattractant protein-1 (MCP-1) levels in rectal cancer tissues and cancer cell lines were evaluated before and after XRT in Western blotting, immunohistochemistry, enzyme-linked immunoassay, and reverse transcription-polymerase chain reaction studies. Isolated peripheral blood monocytes were used in the study of chemotaxis under the influence of MCP-1 released by irradiated colon cancer cells. Results: Expression of TP was significantly elevated by 9 Gy of XRT in most rectal cancer tissues but not by higher doses of XRT. In keeping with the close correlation of the increase in both TP expression and the number of tumor-associated macrophages (TAMs), anti-TP immunoreactivity was found in the CD68-positive TAMs and not the neoplastic cells. Expression of MCP-1 was increased in most cases after XRT, and this increase was strongly correlated with TP expression. However, this increase in MCP-1 expression occurred in tumor cells and not stromal cells. The XRT upregulated MCP-1 mRNA and also triggered the release of MCP-1 protein from cultured colon cancer cells. The supernatant of irradiated colon cancer cells showed strong chemotactic activity for monocyte migration, but this activity was completely abolished by neutralizing antibody. Conclusions: Use of XRT induces MCP-1 expression in cancer cells, which causes circulating monocytes to be recruited into TAMs, which then upregulate TP expression in rectal cancer tissues

  2. Identification of Luminal Breast Cancers that Establish a Tumor Supportive Macroenvironment Defined by Pro-Angiogenic Platelets and Bone Marrow Derived Cells

    Science.gov (United States)

    Kuznetsov, Hanna S.; Marsh, Timothy; Markens, Beth A.; Castaño, Zafira; Greene-Colozzi, April; Hay, Samantha A.; Brown, Victoria E.; Richardson, Andrea L.; Signoretti, Sabina; Battinelli, Elisabeth M.; McAllister, Sandra S.

    2012-01-01

    Breast cancer recurrence rates vary following treatment, suggesting that tumor cells disseminate early from primary sites but remain indolent indefinitely before progressing to symptomatic disease. The reasons why some indolent disseminated tumors erupt into overt disease are unknown. We discovered a novel process by which certain luminal breast cancer cells and patient tumor specimens (LBC “instigators”) establish a systemic macroenvironment that supports outgrowth of otherwise-indolent disseminated tumors (“responders”). Instigating LBCs secrete cytokines that are absorbed by platelets, which are recruited to responding tumor sites where they aid vessel formation. Instigator-activated bone marrow cells (BMCs) enrich responding tumor cell expression of CD24, an adhesion molecule for platelets, and provide a source of VEGFR2+ tumor vessel cells. This cascade results in growth of responder adenocarcinomas and is abolished when platelet activation is inhibited by aspirin. These findings highlight the macroenvironment as an important component of disease progression that can be exploited therapeutically. PMID:22896036

  3. The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1

    International Nuclear Information System (INIS)

    Yang, Min; Jiang, Nan; Cao, Qi-wei; Ma, Mao-qiang; Sun, Qing

    2016-01-01

    Gastric cancer is the most common digestive malignant tumor worldwide and the underlying mechanisms are not fully understood. The E3 ligase UBR5 (also known as EDD1) is essentially involved in diverse types of cancer. Here we aimed to study the functions of UBR5 in human gastric cancer. We first analyzed the mRNA and protein levels of UBR5 in human gastric cancer tissues and the results showed that UBR5 was markedly increased in gastric cancer tissues compared with normal gastric mucosa or matched non-cancer gastric tissues. The relationship between UBR5 and survival of gastric cancer patients was analyzed and we found that high UBR5 expression was associated with poor overall and disease-free survival. We further tried to investigate the effects of UBR5 on gastric cancer cell growth in vitro and in vivo. Therefore, we knocked down UBR5 with lentivirus-mediated shRNA and found that UBR5 knockdown repressed in vitro proliferation and colony formation of gastric cancer cells AGS, MG803 and MNK1. In vivo xenograft experiment also demonstrated that UBR5 knockdown inhibited AGS growth. Finally, we explored the mechanism by which UBR5 contributed to the growth of gastric cancer cells. We found that UBR5 bound the tumor suppressor gastrokine 1 (GKN1) and increased its ubiquitination to reduce the protein stability of GKN1. GKN1 knockdown with lentivirus-mediated shRNA increased the in vitro colony formation and in vivo growth of AGS cells, and UBR5 knockdown was unable to affect the colony formation and in vivo growth of AGS cells when GKN1 was knocked down, indicating that GKN1 contributed to the effects of UBR5 in human gastric cancer cells. Taken together, UBR5 plays an essential role in gastric cancer and may be a potential diagnosis and treatment target for gastric cancer. - Highlights: • UBR5 expression is up-regulated in human gastric cancer. • UBR5 overexpression predicts poor survival. • UBR5 regulates gastric cancer growth in vitro and in vivo.

  4. The effects of single-walled carbon nanotubes on cancer cell migration using a pancreatic tumor model

    Science.gov (United States)

    Layton, Elivia; McNamar, Rachel; Hasanjee, Aamr M.; McNair, Cayman; Stevens, Brianna; Vaughan, Melville; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Non-invasive laser immunotherapy (NLIT) is a viable alternative to traditional cancer treatment because it combines the photothermal and immunological effects of non-invasive laser irradiation and single-walled carbon nanotubes (SWNT) with an immunoadjuvant, glycated chitosan (GC). This combination forms SWNT-GC, a photosensitive immunoadjuvant, which creates a tumor-specific immunity that targets both the primary tumor and any metastasis. It is known that NLIT induces anti-tumor as well as anti-metastatic immune responses, but its immunological mechanism is not clear. The objective of this study is to clarify the role of SWNT-GC in cancer cell migration. Panc02 (non-metastatic) and Panc02-H7 (metastatic) pancreatic cancer cells were used in two-dimensional elastomer plug assays to observe the restriction of cell migration induced by SWNT, GC, and SWNT-GC individually. To replicate a three-dimensional in vivo study, a similar assay was repeated using embedded collagen lattices. Both the 2D and the 3D studies confirmed previous results indicating that GC inhibits cancer cell motility. The 2D and 3D studies also showed that SWNT-GC inhibited the migration of cancer cells, but a discrepancy was observed regarding the effect of SWNT alone. The 2D model concluded that SWNT inhibited migration while the 3D model determined that SWNT promoted migration. The results of this study will guide future work to determine the mechanism behind NLIT, including how metastases are eradicated and how the tumor specific immunity is created.

  5. Impaired Tumor-infiltrating T Cells in Patients with COPD Impacts Lung Cancer Response to PD-1 Blockade.

    Science.gov (United States)

    Biton, Jérôme; Ouakrim, Hanane; Dechartres, Agnès; Alifano, Marco; Mansuet-Lupo, Audrey; Si, Han; Halpin, Rebecca; Creasy, Todd; Bantsimba-Malanda, Claudie; Arrondeau, Jennifer; Goldwasser, François; Boudou-Rouquette, Pascaline; Fournel, Ludovic; Roche, Nicolas; Burgel, Pierre-Régis; Goc, Jeremy; Devi-Marulkar, Priyanka; Germain, Claire; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Damotte, Diane

    2018-03-08

    Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. To study the impact of COPD on the immune contexture of non-small cell lung cancer (NSCLC). We performed in depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patients' survival (n=435). Tumor-infiltrating T lymphocyte (TILs) exhaustion by flow cytometry (n=50) was also investigated. The effectiveness of an anti-PD-1 treatment (nivolumab) was evaluated in 39 advanced-stage NSCLC patients. All data were analyzed according to patients' COPD status. Measurments and Main Results: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 advanced-stage NSCLC patients treated by an anti-PD-1 antibody showed longer progression free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. COPD is associated with an increased sensitivity of CD8 TILs to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.

  6. Lentivirus mediated RNA interference of EMMPRIN (CD147) gene inhibits the proliferation, matrigel invasion and tumor formation of breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Wang, Rong; Li, Hongjiang; Lv, Qing; Meng, Wentong; Yang, Xiaoqin

    2016-07-08

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.

  7. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  8. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  9. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer

    International Nuclear Information System (INIS)

    Qiu, Meiting; Bao, Wei; Wang, Jingyun; Yang, Tingting; He, Xiaoying; Liao, Yun; Wan, Xiaoping

    2014-01-01

    Increasing evidence suggests that forkhead box A1 (FOXA1) is frequently dysregulated in many types of human cancers. However, the exact function and mechanism of FOXA1 in human endometrial cancer (EC) remains unclear. FOXA1 expression, androgen receptor (AR) expression, and the relationships of these two markers with clinicopathological factors were determined by immunohistochemistry analysis. FOXA1 and AR were up-regulated by transient transfection with plasmids, and were down-regulated by transfection with siRNA or short hairpin RNA (shRNA). The effects of FOXA1 depletion and FOXA1 overexpression on AR-mediated transcription as well as Notch pathway and their impact on EC cell proliferation were examined by qRT-PCR, western blotting, co-immunoprecipitation, ChIP-PCR, MTT, colony-formation, and xenograft tumor–formation assays. We found that the expression of FOXA1 and AR in ECs was significantly higher than that in a typical hyperplasia and normal tissues. FOXA1 expression was significantly correlated with AR expression in clinical tissues. High FOXA1 levels positively correlated with pathological grade and depth of myometrial invasion in EC. High AR levels also positively correlated with pathological grade in EC. Moreover, the expression of XBP1, MYC, ZBTB16, and UHRF1, which are downstream targets of AR, was promoted by FOXA1 up-regulation or inhibited by FOXA1 down-regulation. Co-immunoprecipitation showed that FOXA1 interacted with AR in EC cells. ChIP-PCR assays showed that FOXA1 and AR could directly bind to the promoter and enhancer regions upstream of MYC. Mechanistic investigation revealed that over-expression of Notch1 and Hes1 proteins by FOXA1 could be reversed by AR depletion. In addition, we showed that down-regulation of AR attenuated FOXA1-up-regulated cell proliferation. However, AR didn’t influence the promotion effect of FOXA1 on cell migration and invasion. In vivo xenograft model, FOXA1 knockdown reduced the rate of tumor growth. These

  10. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells.

    Science.gov (United States)

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-08-01

    Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  12. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castrationresistant prostate cancer: a report from the PETRUS prospective study

    Science.gov (United States)

    Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise

    2016-01-01

    Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs. Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients. PMID:27391263

  13. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castration-resistant prostate cancer: A report from the PETRUS prospective study.

    Science.gov (United States)

    Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise

    2016-08-23

    Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs.Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients.

  14. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2013-01-01

    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  15. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    Science.gov (United States)

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  16. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a “Watch-and-Wait” Approach to Cancer

    Science.gov (United States)

    Li, Shengwen Calvin; Vu, Long T.; Luo, Jane Jianying; Zhong, Jiang F.; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G.; Kabeer, Mustafa H.

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open up new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME-driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cell-specific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a “watch-and-wait” approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology – a balance that needs to be maintained for the “watch-and-wait” approach to cancer. Thus, this review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. PMID:28270089

  17. The Notch ligand delta-like 3 promotes tumor growth and inhibits Notch signaling in lung cancer cells in mice

    International Nuclear Information System (INIS)

    Deng, San-Ming; Yan, Xian-Chun; Liang, Liang; Wang, Li; Liu, Yuan; Duan, Juan-Li; Yang, Zi-Yan; Chang, Tian-Fang; Ruan, Bai; Zheng, Qi-Jun; Han, Hua

    2017-01-01

    Although it has been suggested that Dll3, one of the Notch ligands, promotes the proliferation and inhibits the apoptosis of cancer cells, the role of Dll3 in cancers remains unclear. In this study, we found that in the murine Lewis lung carcinoma (LLC) cells, the level of Dll3 mRNA changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with tumor necrosis factor (TNF)-α. Dll3 was also expressed at higher level in human lung carcinoma tissues than in the para-carcinoma tissues. Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro, and enhanced tumor growth when inoculated in vivo in mice. The Dll3-mediated proliferation could be due to increased Akt phosphorylation in LLC cells, because an Akt inhibitor counteracted Dll3-induced proliferation. Moreover, Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling. - Highlights: • The level of Dll3 in Lewis lung carcinoma changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with TNF-α. • The Dll3 was rarely detectable in the para-carcinoma tissues, but positive in 82.1% of NSCLC tissues from 84 patients. • Overexpression of Dll3 in LLC cells promoted tumor growth but did not remarkably alter TME after inoculated in mice. • Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro in an Akt-dependent way. • Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling.

  18. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry

    Science.gov (United States)

    Hwu, Derrick; Boutrus, Steven; Greiner, Cherry; Dimeo, Theresa; Kuperwasser, Charlotte; Georgakoudi, Irene

    2011-04-01

    The identification of breast cancer patients who will ultimately progress to metastatic disease is of significant clinical importance. The quantification and assessment of circulating tumor cells (CTCs) has been proposed as one strategy to monitor treatment effectiveness and disease prognosis. However, CTCs have been an elusive population of cells to study because of their small number and difficulties associated with isolation protocols. In vivo flow cytometry (IVFC) can overcome these limitations and provide insights in the role these cells play during primary and metastatic tumor growth. In this study, we used two-color IVFC to examine, for up to ten weeks following orthotopic implantation, changes in the number of circulating human breast cells expressing GFP and a population of circulating hematopoietic cells with strong autofluorescence. We found that the number of detected CTCs in combination with the number of red autofluorescent cells (650 to 690 nm) during the first seven days following implantation was predictive in development of tumor formation and metastasis eight weeks later. These results suggest that the combined detection of these two cell populations could offer a novel approach in the monitoring and prognosis of breast cancer progression, which in turn could aid significantly in their effective treatment.

  19. JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice.

    Science.gov (United States)

    Song, Xinxin; Zhu, Shan; Xie, Yangchun; Liu, Jiao; Sun, Lingyi; Zeng, Dexing; Wang, Pengcheng; Ma, Xiaochao; Kroemer, Guido; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2018-04-01

    Maintenance of acid-base homeostasis is required for normal physiology, metabolism, and development. It is not clear how cell death is activated in response to changes in pH. We performed a screen to identify agents that induce cell death in a pH-dependent manner (we call this alkaliptosis) in pancreatic ductal adenocarcinoma cancer (PDAC) cells and tested their effects in mice. We screened a library of 254 compounds that interact with G-protein-coupled receptors (GPCRs) to identify those with cytotoxic activity against a human PDAC cell line (PANC1). We evaluated the ability of JTC801, which binds the opiod receptor and has analgesic effects, to stimulate cell death in human PDAC cell lines (PANC1, MiaPaCa2, CFPAC1, PANC2.03, BxPc3, and CAPAN2), mouse pancreatic cancer-associated stellate cell lines, primary human pancreatic ductal epithelial cells, and 60 cancer cell lines (the NCI-60 panel). Genes encoding proteins in cell death and GPCR signaling pathways, as well as those that regulate nuclear factor-κB (NF-κB) activity, were knocked out, knocked down, or expressed from transgenes in cancer cell lines. JTC801 was administered by gavage to mice with xenograft tumors, C57BL/6 mice with orthographic pancreatic tumors grown from Pdx1-Cre;KRas G12D/+ ;Tp53 R172H/+ (KPC) cells, mice with metastases following tail-vein injection of KPC cells, and Pdx-1-Cre;Kras G12D/+ mice crossed with Hmgb1 flox/flox mice (KCH mice). Pancreata were collected from mice and analyzed for tumor growth and by histology and immunohistochemistry. We compared gene and protein expression levels between human pancreatic cancer tissues and patient survival times using online R2 genomic or immunohistochemistry analyses. Exposure of human PDAC cell lines (PANC1 and MiaPaCa2) to JTC801 did not induce molecular markers of apoptosis (cleavage of caspase 3 or poly [ADP ribose] polymerase [PARP]), necroptosis (interaction between receptor-interacting serine-threonine kinase 3 [RIPK3] and mixed

  20. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Science.gov (United States)

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Expression of FK506 binding protein 65 (FKBP65) is decreased in epithelial ovarian cancer cells compared to benign tumor cells and to ovarian epithelium

    DEFF Research Database (Denmark)

    Henriksen, Rudi; Sørensen, Flemming Brandt; Orntoft, Torben Falck

    2011-01-01

    to be followed by a strongly increased risk of ovarian cysts. We performed the present study to reveal how FKBP65 is expressed in the ovary and in ovarian tumors and to see if this expression might be related to ovarian tumor development, a relationship we have found in colorectal cancer. Biopsies from...... prospectively collected samples from ovaries and benign, borderline, and invasive ovarian tumors were analyzed for expression of FKBP65 by immunohistochemistry. The expression was compared to survival and several clinicopathological parameters. FKBP65 is strongly expressed in ovarian epithelium and in benign...... ovarian tumor cells. In the ovary, a positive staining was also found in endothelial cells of blood vessels. In non-invasive and in invasive malignant tumor cells, a decreased staining was observed, which was not correlated to stage, histology, or survival. A significant inversed correlation to expression...

  2. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  3. Impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    Science.gov (United States)

    Chen, Zhe (Jay); Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-01-01

    Previous studies have shown that the procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations depends strongly on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al. (Int. J. Radiat. Oncol. Biol. Phys. 41, 1069–1077–1998) was used to characterize the edema evolutions observed previously during clinical PIB for prostate cancer. The concept of biologically effective dose (BED), taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not taken into account appropriately, can increase the cell survival and decrease the probability of local control of PIB. The edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life for radioactive decay and decreasing energy of the photons energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days

  4. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    International Nuclear Information System (INIS)

    Chen Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-01-01

    Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131 Cs, 125 I and 103 Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125 I sources was less affected by edema than PIB using 131 Cs or 103 Pd sources due to the long radioactive decay half-life of 125 I. The effect of edema on PIB using 131 Cs or 103 Pd was similar. The effect of edema on 103 Pd PIB was slightly greater, even though the decay half-life of 103 Pd (17 days) is

  5. Controlling micro- and nano-environment of tumor and stem cells for novel research and therapy of brain cancer

    Science.gov (United States)

    Smith, Christopher Lloyd

    The use of modern technologies in cancer research has engendered a great deal of excitement. Many of these advanced approaches involve in-depth mathematical analyses of the inner working of cells, via genomic and proteomic analyses. However these techniques may not be ideal for the study of complex cell phenotypes and behaviors. This dissertation explores cancer and potential therapies through phenotypic analysis of cell behaviors, an alternative approach. We employ this experimental framework to study brain cancer (glioma), a particularly formidable example of this diverse ailment. Through the application of micro- and nanotechnology, we carefully control the surrounding environments of cells to understand their responses to various cues and to manipulate their behaviors. Subsequently we obtain clinically relevant information that allows better understanding of glioma, and enhancement of potential therapies. We first aim to address brain tumor dispersal, through analysis of cell migration. Utilizing nanometer-scale topographic models of the extracellular matrix, we study the migratory response of glioma cells to various stimuli in vitro. Second, we implement knowledge gained from these investigations to define characteristics of tumor progression in patients, and to develop treatments inhibiting cell migration. Next we use microfluidic and nanotopographic models to study the behaviors of stem cells in vitro. Here we attempt to improve their abilities to deliver therapeutic proteins to cancer, an innovative treatment approach. We analyze the multi-step process by which adipose-derived stem cells naturally home to tumor sites, and identify numerous environmental perturbations to enhance this behavior. Finally, we attempt to demonstrate that these cell culture-based manipulations can enhance the localization of adipose stem cells to glioma in vivo using animal models. Throughout this work we utilize environmental cues to analyze and induce particular behaviors in

  6. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  7. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.

    Science.gov (United States)

    Hege, Kristen M; Bergsland, Emily K; Fisher, George A; Nemunaitis, John J; Warren, Robert S; McArthur, James G; Lin, Andy A; Schlom, Jeffrey; June, Carl H; Sherwin, Stephen A

    2017-01-01

    T cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s. Patients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 10 10 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72. Fourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111 Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72

  8. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone.

    Science.gov (United States)

    Xu, Menglin; Wang, Xiangdong

    2017-08-01

    Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.

  9. Prognostic significance of axillary dissection in breast cancer patients with micrometastases or isolated tumor cells in sentinel nodes

    DEFF Research Database (Denmark)

    Tvedskov, Tove Filtenborg; Jensen, Maj-Britt; Ejlertsen, Bent

    2015-01-01

    We estimated the impact of axillary lymph node dissection (ALND) on the risk of axillary recurrence (AR) and overall survival (OS) in breast cancer patients with micrometastases or isolated tumor cells (ITC) in sentinel nodes. We used the Danish Breast Cancer Cooperative Group (DBCG) database...... to identify patients with micrometastases or ITC in sentinel nodes following surgery for primary breast cancer between 2002 and 2008. A Cox proportional hazard regression model was developed to assess the hazard ratios (HR) for AR and OS between patients with and without ALND. We identified 2074 patients...... and 2.21 (95 % CI 0.54-8.95, P = 0.27), in patients with ITC after a median follow-up of 6 years and 3 months. There was no significant difference in overall survival between patients with and without ALND, when adjusting for age, co-morbidity, tumor size, histology type, malignancy grade...

  10. A Paracrine Role for IL6 in Prostate Cancer Patients: Lack of Production by Primary or Metastatic Tumor Cells

    Science.gov (United States)

    Yu, Shu-Han; Zheng, Qizhi; Esopi, David; Macgregor-Das, Anne; Luo, Jun; Antonarakis, Emmanuel S.; Drake, Charles G.; Vessella, Robert; Morrissey, Colm; De Marzo, Angelo M.; Sfanos, Karen S.

    2015-01-01

    Correlative human studies suggest that the pleiotropic cytokine interleukin-6 (IL6) contributes to the development and/or progression of prostate cancer. However, the source of IL6 production in the prostate microenvironment in patients has yet to be determined. The cellular origin of IL6 in primary and metastatic prostate cancer was examined in formalin-fixed, paraffin-embedded (FFPE) tissues using a highly sensitive and specific chromogenic in situ hybridization (CISH) assay that underwent extensive analytical validation. Quantitative RT-PCR (q-RT-PCR) showed that benign prostate tissues often had higher expression of IL6 mRNA than matched tumor specimens. CISH analysis further indicated that both primary and metastatic prostate adenocarcinoma cells do not express IL6 mRNA. IL6 expression was highly heterogeneous across specimens and was nearly exclusively restricted to the prostate stromal compartment – including endothelial cells and macrophages among other cell types. The number of IL6-expressing cells correlated positively with the presence of acute inflammation. In metastatic disease, tumor cells were negative in all lesions examined and IL6 expression was restricted to endothelial cells within the vasculature of bone metastases. Finally, IL6 was not detected in any cells in soft tissue metastases. These data suggest that, in prostate cancer patients, paracrine rather than autocrine IL6 production is likely associated with any role for the cytokine in disease progression. PMID:26048576

  11. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  12. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts

    International Nuclear Information System (INIS)

    Mediavilla-Varela, Melanie; Boateng, Kingsley; Noyes, David; Antonia, Scott J.

    2016-01-01

    Anti-fibrotic drugs such as pirfenidone have been developed for the treatment of idiopathic pulmonary fibrosis. Because activated fibroblasts in inflammatory conditions have similar characteristics as cancer-associated fibroblasts (CAFs) and CAFs contribute actively to the malignant phenotype, we believe that anti-fibrotic drugs have the potential to be repurposed as anti-cancer drugs. The effects of pirfenidone alone and in combination with cisplatin on human patient-derived CAF cell lines and non-small cell lung cancer (NSCLC) cell lines were examined. The impact on cell death in vitro as well as tumor growth in a mouse model was determined. Annexin V/PI staining and Western blot analysis were used to characterize cell death. Synergy was assessed with the combination index method using Calcusyn software. Pirfenidone alone induced apoptotic cell death in lung CAFs at a high concentration (1.5 mg/mL). However, co-culture in vitro experiments and co-implantation in vivo experiments showed that the combination of low doses of cisplatin (10 μM) and low doses of pirfenidone (0.5 mg/mL), in both CAFs and tumors, lead to increased cell death and decreased tumor progression, respectively. Furthermore, the combination of cisplatin and pirfenidone in NSCLC cells (A549 and H157 cells) leads to increased apoptosis and synergistic cell death. Our studies reveal for the first time that the combination of cisplatin and pirfenidone is active in preclinical models of NSCLC and therefore may be a new therapeutic approach in this disease. The online version of this article (doi:10.1186/s12885-016-2162-z) contains supplementary material, which is available to authorized users

  13. Mel-18 controls the enrichment of tumor-initiating cells in SP fraction in mouse breast cancer.

    Science.gov (United States)

    Janakiraman, Harinarayanan; Nobukiyo, Asako; Inoue, Hiroko; Kanno, Masamoto

    2011-06-01

    Side population (SP) cell analysis has been used to identify and isolate a minor population of cells with stem cell properties in normal tissues and in many cancers including breast cancer cells. However, the molecular mechanisms that operate in tumor-initiating cells (TICs) in SP fraction remain unclear. The Polycomb group genes, including Bmi1 and Mel-18, have been implicated in the maintenance of hematopoietic stem cells (HSCs) and suggested to be oncogenic and tumor suppressive, respectively, in breast cancer. In this study, we determined the critical role of Mel-18 in the enrichment mechanisms of TICs with the SP phenotype in a mouse breast cancer cell line, MMK3, that was established from a breast cancer developed spontaneously in Mel-18+/- mice. The Mel-18 protein expression level significantly correlates to the percentage of SP fraction in the mouse breast cancer cell line MMK3 series. The comparison between MMK3V3 (V3) cells containing one copy of the Mel-18 gene and MMK3S2 (S2) cells having twice the amount of Mel-18 expression clearly demonstrates the above relationship. Similar results obtained with the percentage of ALDH+ cells in V3 and S2 further confirmed the correlation between protein expression level of Mel-18 and the TICs. More importantly, transplantation of SP and non-SP cells of V3 and S2 cells into the NOD/SCID mice clearly showed that the heterozygous level of Mel-18 leads to the disappearance of enrichment of TICs into SP fraction in vivo. Stem cell pathway focused gene expression profiling of V3 and S2 cells revealed that the genes Abcg2, Aldh1a1 and Dhh were highly down-regulated in V3 compared to S2. These results indicate that the precise Mel-18 expression level controls TIC enrichment mechanisms through the regulation of channel molecule of Abcg2 and functional TIC marker of Aldhlal. In conclusion, our findings revealed the significance of fine-tuning mechanisms for Mel-18 protein expression level in the maintenance of TIC into SP

  14. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Khamis, Z.I.; Sang, Q.A.; Sahab, Z.J.

    2012-01-01

    Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome

  15. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2012-01-01

    Full Text Available Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.

  16. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  18. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, A; Schwartz, J; Mayr, N [University of Washington, Seattle, WA (United States); Yartsev, S [London Health Sciences Centre, London, Ontario (Canada)

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume

  19. The PSA−/lo prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration

    Science.gov (United States)

    Qin, Jichao; Liu, Xin; Laffin, Brian; Chen, Xin; Choy, Grace; Jeter, Collene; Calhoun-Davis, Tammy; Li, Hangwen; Palapattu, Ganesh S.; Pang, Shen; Lin, Kevin; Huang, Jiaoti; Ivanov, Ivan; Li, Wei; Suraneni, Mahipal V.; Tang, Dean G.

    2012-01-01

    SUMMARY Prostate cancer (PCa) is heterogeneous and contains both differentiated and undifferentiated tumor cells, but the relative functional contribution of these two cell populations remains unclear. Here we report distinct molecular, cellular, and tumor-propagating properties of PCa cells that express high (PSA+) and low (PSA−/lo) levels of the differentiation marker PSA. PSA−/lo PCa cells are quiescent and refractory to stresses including androgen deprivation, exhibit high clonogenic potential, and possess long-term tumor-propagating capacity. They preferentially express stem cell genes and can undergo asymmetric cell division generating PSA+ cells. Importantly, PSA−/lo PCa cells can initiate robust tumor development and resist androgen ablation in castrated hosts, and harbor highly tumorigenic castration-resistant PCa cells that can be prospectively enriched using ALDH+CD44+α2β1+ phenotype. In contrast, PSA+ PCa cells possess more limited tumor-propagating capacity, undergo symmetric division and are sensitive to castration. Together, our study suggests PSA−/lo cells may represent a critical source of castration-resistant PCa cells. PMID:22560078

  20. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes?

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-02-01

    Full Text Available Precision medicine and personalized medicine are based on the development of biomarkers, and liquid biopsy has been reported to be able to detect biomarkers that carry information on tumor development and progression. Compared with traditional ‘solid biopsy’, which cannot always be performed to determine tumor dynamics, liquid biopsy has notable advantages in that it is a noninvasive modality that can provide diagnostic and prognostic information prior to treatment, during treatment and during progression. In this review, we describe the source, characteristics, technology for detection and current situation of circulating tumor cells, circulating free DNA and exosomes used for diagnosis, recurrence monitoring, prognosis assessment and medication planning.

  1. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  2. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  3. Clinical significance of circulating tumor cells (CTCs) with respect to optimal cut-off value and tumor markers in advanced/metastatic breast cancer.

    Science.gov (United States)

    Shiomi-Mouri, Yukako; Kousaka, Junko; Ando, Takahito; Tetsuka, Rie; Nakano, Shogo; Yoshida, Miwa; Fujii, Kimihito; Akizuki, Miwa; Imai, Tsuneo; Fukutomi, Takashi; Kobayashi, Katsumasa

    2016-01-01

    Although carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3) are useful tumor markers (TMs) in metastatic breast cancer (MBC), circulating tumor cells (CTCs) are also detected in patients with advanced or metastatic breast cancer. We analyzed CTCs in MBC patients in order to establish the optimal cut-off value, to evaluate the prognostic utility of CTC count, and to clarify whether CTC count could provide information in addition to CEA and CA15-3. We studied 98 MBC patients enrolled between June 2007 and March 2013. To quantify CTCs, 7.5 ml of blood was collected and CEA and CA15-3 were measured simultaneously. CTCs were counted using the CellSearch™ System. The CTC count was dichotomized as 0 (CTC-negative) or ≥1 (CTC-positive). The clinical significance of CTCs was evaluated in terms of its relationship with levels of CEA and CA15-3. Associations between qualitative variables were evaluated using the chi-square test. In order to evaluate the predictive value of CTCs for advanced or metastatic breast cancer, multivariate Cox proportional hazards modeling was used to calculate hazard ratios. With a CTC cut-off value of 1, there were 53 (54.1 %) CTC-negative patients and 45 (45.9 %) CTC-positive patients. Patients in the CTC-positive group had worse survival than those in the CTC-negative group (p CEA and CA15-3.

  4. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    International Nuclear Information System (INIS)

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian; Xu, Dawei; Jia, Jihui

    2011-01-01

    Highlights: ► JMJD2B is required for cell proliferation and in vivo tumorigenesis. ► JMJD2B depletion induces apoptosis and/or cell cycle arrest. ► JMJD2B depletion activates DNA damage response and enhances p53 stabilization. ► JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21 CIP1 proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  5. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Xu, Dawei, E-mail: Dawei.Xu@ki.se [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Department of Medicine, Division of Hematology, Karolinska University Hospital, Solna and Karolinska Institutet, Stockholm (Sweden); Jia, Jihui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer JMJD2B is required for cell proliferation and in vivo tumorigenesis. Black-Right-Pointing-Pointer JMJD2B depletion induces apoptosis and/or cell cycle arrest. Black-Right-Pointing-Pointer JMJD2B depletion activates DNA damage response and enhances p53 stabilization. Black-Right-Pointing-Pointer JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21{sup CIP1} proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  6. Systemic inflammation, nutritional status and tumor immune microenvironment determine outcome of resected non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Marco Alifano

    Full Text Available BACKGROUND: Hypothesizing that nutritional status, systemic inflammation and tumoral immune microenvironment play a role as determinants of lung cancer evolution, the purpose of this study was to assess their respective impact on long-term survival in resected non-small cell lung cancers (NSCLC. METHODS AND FINDINGS: Clinical, pathological and laboratory data of 303 patients surgically treated for NSCLC were retrospectively analyzed. C-reactive protein (CRP and prealbumin levels were recorded, and tumoral infiltration by CD8+ lymphocytes and mature dendritic cells was assessed. We observed that factors related to nutritional status, systemic inflammation and tumoral immune microenvironment were correlated; significant correlations were also found between these factors and other relevant clinical-pathological parameters. With respect to outcome, at univariate analysis we found statistically significant associations between survival and the following variables: Karnofsky index, American Society of Anesthesiologists (ASA class, CRP levels, prealbumin concentrations, extent of resection, pathologic stage, pT and pN parameters, presence of vascular emboli, and tumoral infiltration by either CD8+ lymphocytes or mature dendritic cells and, among adenocarcinoma type, tumor grade (all p285 mg/L prealbumin levels and high (>96/mm2 CD8+ cell count had a 5-year survival rate of 80% [60.9-91.1] as compared to 18% [7.9-35.6] in patients with an opposite pattern of values. When stages I-II were considered alone, the prognostic significance of these factors was even more pronounced. CONCLUSIONS: Our data show that nutrition, systemic inflammation and tumoral immune contexture are prognostic determinants that, taken together, may predict outcome.

  7. Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Erridge, Sara C.; Seppenwoolde, Yvette; Muller, Sara H.; Herk, Marcel van; Jaeger, Katrien de; Belderbos, Jose S.A.; Boersma, Liesbeth J.; Lebesque, Joos V.

    2003-01-01

    Purpose: To investigate patient set-up, tumor movement and shrinkage during 3D conformal radiotherapy for non-small cell lung cancer. Materials and methods: In 97 patients, electronic portal images (EPIs) were acquired and corrected for set-up using an off-line correction protocol based on a shrinking action level. For 25 selected patients, the orthogonal EPIs (taken at random points in the breathing cycle) throughout the 6-7 week course of treatment were assessed to establish the tumor position in each image using both an overlay and a delineation technique. The range of movement in each direction was calculated. The position of the tumor in the digitally reconstructed radiograph (DRR) was compared to the average position of the lesion in the EPIs. In addition, tumor shrinkage was assessed. Results: The mean overall set-up errors after correction were 0, 0.6 and 0.2 mm in the x (left-right), y (cranial-caudal) and z (anterior-posterior) directions, respectively. After correction, the standard deviations (SDs) of systematic errors were 1.4, 1.5 and 1.3 mm and the SDs of random errors were 2.9, 3.1 and 2.0 mm in the x-, y- and z-directions, respectively. Without correction, 41% of patients had a set-up error of more than 5 mm vector length, but with the set-up correction protocol this percentage was reduced to 1%. The mean amplitude of tumor motion was 7.3 (SD 2.7), 12.5 (SD 7.3) and 9.4 mm (SD 5.2) in the x-, y- and z-directions, respectively. Tumor motion was greatest in the y-direction and in particular for lower lobe tumors. In 40% of the patients, the projected area of the tumor regressed by more than 20% during treatment in at least one projection. In 16 patients it was possible to define the position of the center of the tumor in the DRR. There was a mean difference of 6 mm vector length between the tumor position in the DRR and the average position in the portal images. Conclusions: The application of the correction protocol resulted in a significant

  8. Kidney cancer progression linked to shifts in tumor metabolism

    Science.gov (United States)

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  9. Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells.

    Science.gov (United States)

    Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A

    2017-10-31

    Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.

  10. Renal Cell Regulation and Cancer: Tumor Suppressor Networks and the Primary Cilium

    NARCIS (Netherlands)

    Klasson, TD

    2017-01-01

    Cancer affects a large number of people the world over. Cancer is a class of extremely complex diseases that arise from malfunctions in otherwise vital cellular processes, especially those that govern aspects of cellular functions like proliferation, apoptosis or the cell cycle. These processes are

  11. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    Science.gov (United States)

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  12. Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Yahalom, J; Biran, S; Fuks, Z; Vlodavsky, I [Hadassah University Hospital, Jerusalem (Israel). Dept. of Radiation and Clinical Oncology; Eldor, A [Hadassah University Hospital, Jerusalem (Israel). Dept. of Hematology

    1985-04-01

    Dissemination of neoplastic cells within the body involves invasion of blood vessels by tumor cells. This requires adhesion of blood-borne cells to the luminal surface of the vascular endothelium, invasion through the endothelial cell layer and local dissolution of the subendothelial basement membrane. The authors studied the interaction of platelets and tumor cells with cultured vascular endothelial cells and their secreted basement membrane-like extracellular matrix (ECM). Interaction of platelets with this ECM was associated with platelet activation, aggregation and degradation of heparan sulfate in the ECM by means of the platelet heparitinase. Biochemical and scanning electron microscopy (SEM) studies have demonstrated that platelets may detect even minor gaps between adjacent endothelial cells and degrade the ECM heparan sulfate. Platelets were also shown to recruit lymphoma cells into minor gaps in the vascular endothelium. It is suggested that the platelet heparitinase is involved in the impairment of the integrity of the vessel wall and thus play a role in tumor cell metastasis.

  13. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Elmpt, Wouter van; Das, Marco; Hüllner, Martin; Sharifi, Hoda; Zegers, Catharina M.L.; Reymen, Bart; Lambin, Philippe; Wildberger, Joachim E.; Troost, Esther G.C.; Veit-Haibach, Patrick; De Ruysscher, Dirk

    2013-01-01

    Purpose: Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. Methods: Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (⩾50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. Results: DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. Conclusions: No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging

  14. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    Science.gov (United States)

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  15. Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition.An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay.Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl indoline (BSI, Compound #38 significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities.This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be developed as anti-EMT and

  16. Sensitive and Specific Biomimetic Lipid Coated Microfluidics to Isolate Viable Circulating Tumor Cells and Microemboli for Cancer Detection.

    Directory of Open Access Journals (Sweden)

    Jia-Yang Chen

    Full Text Available Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB "smart coating" to capture viable circulating tumor cells (CTCs and circulating tumor microemboli (CTM directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.

  17. The efficacy of lapatinib in metastatic breast cancer with HER2 non-amplified primary tumors and EGFR positive circulating tumor cells: a proof-of-concept study.

    Directory of Open Access Journals (Sweden)

    Justin Stebbing

    Full Text Available Analysis of circulating tumor cells (CTCs provides real-time measures of cancer sub-populations with potential for CTC-directed therapeutics. We examined whether lapatinib which binds both HER2 and EGFR could induce depletion of the EGFR-positive pool of CTCs, which may in turn lead to clinical benefits.Patients with metastatic breast cancer and HER2 non-amplified primary tumors with EGFR-positive CTCs were recruited and lapatinib 1500 mg daily was administered, in a standard two step phase 2 trial.There were no responses leading to termination at the first analysis with 16 patients recruited out of 43 screened. In 6 out of 14 (43% individuals eligible for the efficacy analysis, a decrease in CTCs was observed with most of these having a greater decrease in their EGFR-positive CTC pool.This is one of the first studies of CTC-directed therapeutics and suggests that lapatinib monotherapy is not having any demonstrable clinical effects by reducing the EGFR-positive pool of CTCs in HER2 non-amplified primary tumors. Our attempt to expand the pool of patients eligible for a targeted therapy was unsuccessful; the role of clonal populations in cancer biology and therapeutic strategies to control them will require extensive evaluation in years to come.Clinical trials.gov NCT00820924.

  18. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.

    Science.gov (United States)

    Hyun, Kyung-A; Kwon, Kiho; Han, Hyunju; Kim, Seung-Il; Jung, Hyo-Il

    2013-02-15

    Circulating tumor cells (CTCs) are dissociated from primary tumor and circulate in peripheral blood. They are regarded as the genesis of metastasis. Isolation and enumeration of CTCs serve as valuable tools for cancer prognosis and diagnosis. However, the rarity and heterogeneity of CTCs in blood makes it difficult to separate intact CTCs without loss. In this paper, we introduce a parallel multi-orifice flow fractionation (p-MOFF) device in which a series of contraction/expansion microchannels are placed parallel on a chip forming four identical channels. CTCs were continuously isolated from the whole blood of breast cancer patients by hydrodynamic forces and cell size differences. Blood samples from 24 breast cancer patients were analyzed (half were from metastatic breast cancer patients and the rest were from adjuvant breast cancer patients). The number of isolated CTCs varied from 0 to 21 in 7.5 ml of blood. Because our devices do not require any labeling processes (e.g., EpCAM antibody), heterogeneous CTCs can be isolated regardless of EpCAM expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Cancer stemness and metastatic potential of the novel tumor cell line K3: an inner mutated cell of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Qian, Hui; Ding, Xiaoqing; Zhang, Jiao; Mao, Fei; Sun, Zixuan; Jia, Haoyuan; Yin, Lei; Wang, Mei; Zhang, Xu; Zhang, Bin; Yan, Yongmin; Zhu, Wei; Xu, Wenrong

    2017-06-13

    Mesenchymal stem cells (MSCs) transplantation has been used for therapeutic applications in various diseases. Here we report MSCs can malignantly transform in vivo. The novel neoplasm was found on the tail of female rat after injection with male rat bone marrow-derived MSCs (rBM-MSCs) and the new tumor cell line, K3, was isolated from the neoplasm. The K3 cells expressed surface antigens and pluripotent genes similar to those of rBM-MSCs and presented tumor cell features. Moreover, the K3 cells contained side population cells (SP) like cancer stem cells (CSCs), which might contribute to K3 heterogeneity and tumorigenic capacity. To investigate the metastatic potential of K3 cells, we established the nude mouse models of liver and lung metastases and isolated the corresponding metastatic cell lines K3-F4 and K3-B6. Both K3-F4 and K3-B6 cell lines with higher metastatic potential acquired more mesenchymal and stemness-related features. Epithelial-mesenchymal transition is a potential mechanism of K3-F4 and K3-B6 formation.

  20. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    Science.gov (United States)

    ... Cell Tumors Treatment Testicular Cancer Treatment Age and gender can affect the risk of extragonadal germ cell ... Headache. Change in bowel habits. Feeling very tired. Trouble walking. Trouble in seeing or moving the eyes. ...

  1. General Information about Extragonadal Germ Cell Tumors

    Science.gov (United States)

    ... Cell Tumors Treatment Testicular Cancer Treatment Age and gender can affect the risk of extragonadal germ cell ... Headache. Change in bowel habits. Feeling very tired. Trouble walking. Trouble in seeing or moving the eyes. ...

  2. Tumor infiltrating BRAFV600E-specific CD4 T cells correlated with complete clinical response in melanoma. | Office of Cancer Genomics

    Science.gov (United States)

    T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who obtained a complete response following adoptive transfer of tumor infiltrating lymphocytes (TIL).

  3. Tumor cell expression of CD163 is associated to postoperative radiotherapy and poor prognosis in patients with breast cancer treated with breast-conserving surgery.

    Science.gov (United States)

    Garvin, Stina; Oda, Husam; Arnesson, Lars-Gunnar; Lindström, Annelie; Shabo, Ivan

    2018-05-03

    Cancer cell fusion with macrophages results in highly tumorigenic hybrids that acquire genetic and phenotypic characteristics from both maternal cells. Macrophage traits, exemplified by CD163 expression, in tumor cells are associated with advanced stages and poor prognosis in breast cancer (BC). In vitro data suggest that cancer cells expressing CD163 acquire radioresistance. Tissue microarray was constructed from primary BC obtained from 83 patients treated with breast-conserving surgery, 50% having received postoperative radiotherapy (RT) and none of the patients had lymph node or distant metastasis. Immunostaining of CD163 in cancer cells and macrophage infiltration (MI) in tumor stroma were evaluated. Macrophage:MCF-7 hybrids were generated by spontaneous in vitro cell fusion. After irradiation (0, 2.5 and 5 Gy γ-radiation), both hybrids and their maternal MCF-7 cells were examined by clonogenic survival. CD163-expression by cancer cells was significantly associated with MI and clinicopathological data. Patients with CD163-positive tumors had significantly shorter disease-free survival (DFS) after RT. In vitro generated macrophage:MCF-7 hybrids developed radioresistance and exhibited better survival and colony forming ability after radiation compared to maternal MCF-7 cancer cells. Our results suggest that macrophage phenotype in tumor cells results in radioresistance in breast cancer and shorter DFS after radiotherapy.

  4. Diagnostic value of circulating tumor cell detection in bladder and urothelial cancer: systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Msaouel, Pavlos; Koutsilieris, Michael

    2011-01-01

    The diagnostic value and prognostic significance of circulating tumor cell (CTC) detection in patients with bladder cancer is controversial. We performed a meta-analysis to consolidate current evidence regarding the use of CTC detection assays to diagnose bladder and other urothelial cancers and the association of CTC positivity with advanced, remote disease. Studies that investigated the presence of CTCs in the peripheral blood of patients with bladder cancer and/or urothelial cancer were identified and reviewed. Sensitivities, specificities, and positive (LR+) and negative likelihood ratios (LR-) of CTC detection in individual studies were calculated and meta-analyzed by random effects model. Overall odds ratio of CTC positivity in patients with advanced disease versus those with organ-confined cancer was also calculated. Overall sensitivity of CTC detection assays was 35.1% (95%CI, 32.4-38%); specificity, LR+, and LR- was 89.4% (95%CI, 87.2-91.3%), 3.77 (95%CI, 1.95-7.30) and 0.72 (95%CI, 0.64-0.81). CTC-positive patients were significantly more likely to have advanced (stage III-IV) disease compared with CTC-negative patients (OR, 5.05; 95%CI, 2.49-10.26). CTC evaluation can confirm tumor diagnosis and identify patients with advanced bladder cancer. However, due to the low overall sensitivity, CTC detection assays should not be used as initial screening tests

  5. Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer

    Directory of Open Access Journals (Sweden)

    Hatoh Shinji

    2009-03-01

    Full Text Available Abstract Background UbcH10 participates in proper metaphase to anaphase transition, and abrogation of UbcH10 results in the premature separation of sister chromatids. To assess the potential role of UbcH10 in colon cancer progression, we analyzed the clinicopathological relevance of UbcH10 in colon cancer. Methods We firstly screened the expression profile of UbcH10 in various types of cancer tissues as well as cell lines. Thereafter, using the colon cancer cells line, we manipulated the expression of UbcH10 and evaluated the cell cycle profile and cellular proliferations. Furthermore, the clinicopathological significance of UbcH10 was immunohistologically evaluated in patients with colon cancer. Statistical analysis was performed using the student's t-test and Chi-square test. Results Using the colon cancer cells, depletion of UbcH10 resulted in suppression of cellular growth whereas overexpression of UbcH10 promoted the cellular growth and oncogenic cellular growth. Mitotic population was markedly alternated by the manipulation of UbcH10 expression. Immunohistochemical analysis indicated that UbcH10 was significantly higher in colon cancer tissue compared with normal colon epithelia. Furthermore, the clinicopathological evaluation revealed that UbcH10 was associated with high-grade histological tumors. Conclusion The results show the clinicopathological significance of UbcH10 in the progression of colon cancer. Thus UbcH10 may act as a novel biomarker in patients with colon cancer.

  6. Radiation related basic cancer research : research for radiation induced tumor cell killing

    International Nuclear Information System (INIS)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy

  7. Radiation related basic cancer research : research for radiation induced tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy.

  8. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines

    International Nuclear Information System (INIS)

    Junnila, Siina; Kokkola, Arto; Karjalainen-Lindsberg, Marja-Liisa; Puolakkainen, Pauli; Monni, Outi

    2010-01-01

    Gastric cancer is one of the most common malignancies worldwide and the second most common cause of cancer related death. Gene copy number alterations play an important role in the development of gastric cancer and a change in gene copy number is one of the main mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. To highlight genes of potential biological and clinical relevance in gastric cancer, we carried out a systematic array-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines and validated the results using an affinity capture based transcript analysis (TRAC assay) and real-time qRT-PCR. Integrated microarray analysis revealed altogether 256 genes that were located in recurrent regions of gains or losses and had at least a 2-fold copy number- associated change in their gene expression. The expression levels of 13 of these genes, ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, MMP9, PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric samples using either the qRT-PCR or TRAC assay. All of these 13 genes were differentially expressed between cancerous samples and nonmalignant tissues (p < 0.05) and the association between copy number and gene expression changes was validated for nine (69.2%) of these genes (p < 0.05). In conclusion, integrated gene expression and copy number microarray analysis highlighted genes that may be critically important for gastric carcinogenesis. TRAC and qRT-PCR analyses validated the microarray results and therefore the role of these genes as potential biomarkers for gastric cancer

  9. Sentinel Lymph Node Biopsy and Isolated Tumor Cells in Invasive Lobular Versus Ductal Breast Cancer.

    Science.gov (United States)

    Truin, Wilfred; Roumen, Rudi M; Siesling, Sabine; van der Heiden-van der Loo, Margriet; Lobbezoo, Dorien J; Tjan-Heijnen, Vivianne C; Voogd, Adri C

    2016-08-01

    Sentinel lymph node (SLN) biopsy is the standard of care for axillary staging in invasive breast cancer. The introduction of SLN biopsy with an extensive pathology examination, in addition to the introduction of the 2002 TNM classification, led to different axillary classification outcomes. We evaluated the effect of axillary staging procedures and subsequent axillary nodal status in patients with invasive lobular carcinoma (ILC) versus invasive ductal carcinoma (IDC) from 1998 to 2013. The use of SLN biopsy and the nodal status distribution were analyzed in patients with stage T1-T2 ILC and IDC. Logistic regression analysis was performed to determine the independent effect of histologic type on the probability of the presence of isolated tumor cells (ITCs), micrometastases, and macrometastases. A total of 89,971 women were diagnosed, 10,146 with ILC (11%) and 79,825 with IDC (89%). The patients who had undergone SLN biopsy were more frequently diagnosed with ITCs than were those who had undergone axillary lymph node dissection only (odds ratio, 8.8; 95% confidence interval, 7.0-11.2). In 2013, the proportion of patients with ITCs in the axillary nodes was 8% in those with ILC and 4.4% in those with IDC. Patients with ILC were significantly more likely to have ITCs in their axillary lymph nodes than were patients with IDC (odds ratio, 1.8; 95% confidence interval, 1.6-2.0). With the introduction of SLN biopsy and the renewed 2002 TNM classification, patients with ILC have been more frequently diagnosed with ITCs than have patients with IDC. The clinical consequence of this finding must be established from further research. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  11. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.

    Science.gov (United States)

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M; Stein, Jenna; Dransfield, Daniel T; Zarrella, Bianca; Growdon, Whitfield B; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R

    2018-05-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn + cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo , depleting STn + tumor cells. In summary, STn + cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn + CSC and STn + non-CSC populations.

  12. Genome organization factor determines the few cells that make a tumor grow | Center for Cancer Research

    Science.gov (United States)

    In the September 30, 2016, issue of the journal Science, scientists led by former CCR postdoctoral fellow Paola Scaffidi report that an essential DNA-packing protein called linker histone H1.0 is present in varying levels in the cells of tumors, and plays an important role in determining which cells have the capacity to sustain the tumor’s growth.  Learn more...

  13. Molecular Checkpoint Decisions Made by Subverted Vascular Niche Transform Indolent Tumor Cells into Chemoresistant Cancer Stem Cells.

    Science.gov (United States)

    Cao, Zhongwei; Scandura, Joseph M; Inghirami, Giorgio G; Shido, Koji; Ding, Bi-Sen; Rafii, Shahin

    2017-01-09

    Tumor-associated endothelial cells (TECs) regulate tumor cell aggressiveness. However, the core mechanism by which TECs confer stem cell-like activity to indolent tumors is unknown. Here, we used in vivo murine and human tumor models to identify the tumor-suppressive checkpoint role of TEC-expressed insulin growth factor (IGF) binding protein-7 (IGFBP7/angiomodulin). During tumorigenesis, IGFBP7 blocks IGF1 and inhibits expansion and aggresiveness of tumor stem-like cells (TSCs) expressing IGF1 receptor (IGF1R). However, chemotherapy triggers TECs to suppress IGFBP7, and this stimulates IGF1R + TSCs to express FGF4, inducing a feedforward FGFR1-ETS2 angiocrine cascade that obviates TEC IGFBP7. Thus, loss of IGFBP7 and upregulation of IGF1 activates the FGF4-FGFR1-ETS2 pathway in TECs and converts naive tumor cells to chemoresistant TSCs, thereby facilitating their invasiveness and progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  15. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... the reader will gain: The review focuses on strategies that exploit characteristic features of solid tumors, such as abnormal vasculature, overexpression of receptors and enzymes, as well as acidic and thiolytic characteristics of the tumor microenvironment. Take home message: It is concluded that the design...