WorldWideScience

Sample records for cancer susceptibility loci

  1. Genetic susceptibility loci, pesticide exposure and prostate cancer risk.

    Directory of Open Access Journals (Sweden)

    Stella Koutros

    Full Text Available Uncovering SNP (single nucleotide polymorphisms-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs and 95% confidence intervals (CIs. Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1 SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44-8.15 (P-interaction= 0.003. Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41 (P-interaction= 0.006. In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.

  2. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, w

  3. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci...

  4. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2

    DEFF Research Database (Denmark)

    Ahmed, Shahana; Thomas, Gilles; Ghoussaini, Maya

    2009-01-01

    Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage...

  5. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J

    2013-01-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24...

  6. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  7. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  8. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  9. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer.

    Science.gov (United States)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-04-27

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.

  10. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    Science.gov (United States)

    Couch, Fergus J.; Kuchenbaecker, Karoline B.; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A.; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K.; Arver, Brita; Barile, Monica; Barkardottir, Rosa B.; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W.; Benitez, Javier; Blank, Stephanie V.; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J.; Chung, Wendy K.; Claes, Kathleen B. M.; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C.; Dolcetti, Riccardo; Domchek, Susan M.; Dorfling, Cecilia M.; dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M.; Eccles, Diana M.; Ehrencrona, Hans; Ekici, Arif B.; Eliassen, Heather; Ellis, Steve; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D.; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D.; Ganz, Patricia A.; Gapstur, Susan M.; Garber, Judy; Gaudet, Mia M.; Gayther, Simon A.; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G.; Glendon, Gord; Godwin, Andrew K.; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Greene, Mark H.; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A.; Hamann, Ute; Hansen, Thomas V. O.; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E.; Herzog, Josef; Hogervorst, Frans B. L.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Humphreys, Keith; Hunter, David J.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M.; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y.; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G.; Knight, Julia A.; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L.; Makalic, Enes; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W. M.; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L.; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M.; Muranen, Taru A.; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Nordestgaard, Børge G.; Nussbaum, Robert L.; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Osorio, Ana; Park, Sue K.; Peeters, Petra H.; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M.; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J.; Sanchez, Maria-Jose; Santella, Regina M.; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F.; Sinilnikova, Olga M.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I.; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary B.; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E.; Tollenaar, Robert A. E. M.; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H. M.; van Rensburg, Elizabeth J.; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N.; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R.; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Monteiro, Alvaro A. N.; García-Closas, Montserrat; Easton, Douglas F.; Antoniou, Antonis C.

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10−8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction. PMID:27117709

  11. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer.

    Science.gov (United States)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I; Conti, David V; Schumacher, Fredrick; Han, Ying; Benlloch, Sara; Hazelett, Dennis J; Wang, Zhaoming; Saunders, Ed; Leongamornlert, Daniel; Lindstrom, Sara; Jugurnauth-Little, Sara; Dadaev, Tokhir; Tymrakiewicz, Malgorzata; Stram, Daniel O; Rand, Kristin; Wan, Peggy; Stram, Alex; Sheng, Xin; Pooler, Loreall C; Park, Karen; Xia, Lucy; Tyrer, Jonathan; Kolonel, Laurence N; Le Marchand, Loic; Hoover, Robert N; Machiela, Mitchell J; Yeager, Merideth; Burdette, Laurie; Chung, Charles C; Hutchinson, Amy; Yu, Kai; Goh, Chee; Ahmed, Mahbubl; Govindasami, Koveela; Guy, Michelle; Tammela, Teuvo L J; Auvinen, Anssi; Wahlfors, Tiina; Schleutker, Johanna; Visakorpi, Tapio; Leinonen, Katri A; Xu, Jianfeng; Aly, Markus; Donovan, Jenny; Travis, Ruth C; Key, Tim J; Siddiq, Afshan; Canzian, Federico; Khaw, Kay-Tee; Takahashi, Atsushi; Kubo, Michiaki; Pharoah, Paul; Pashayan, Nora; Weischer, Maren; Nordestgaard, Borge G; Nielsen, Sune F; Klarskov, Peter; Røder, Martin Andreas; Iversen, Peter; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Stanford, Janet L; Kolb, Suzanne; Holt, Sarah; Knudsen, Beatrice; Coll, Antonio Hurtado; Gapstur, Susan M; Diver, W Ryan; Stevens, Victoria L; Maier, Christiane; Luedeke, Manuel; Herkommer, Kathleen; Rinckleb, Antje E; Strom, Sara S; Pettaway, Curtis; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; Cannon-Albright, Lisa; Cybulski, Cezary; Wokołorczyk, Dominika; Kluźniak, Wojciech; Park, Jong; Sellers, Thomas; Lin, Hui-Yi; Isaacs, William B; Partin, Alan W; Brenner, Hermann; Dieffenbach, Aida Karina; Stegmaier, Christa; Chen, Constance; Giovannucci, Edward L; Ma, Jing; Stampfer, Meir; Penney, Kathryn L; Mucci, Lorelei; John, Esther M; Ingles, Sue A; Kittles, Rick A; Murphy, Adam B; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej M; Blot, William; Signorello, Lisa B; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, Cristina; Wu, Suh-Yuh; Hennis, Anselm; Kibel, Adam S; Rybicki, Benjamin A; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Zheng, S Lilly; Batra, Jyotsna; Clements, Judith; Spurdle, Amanda; Teixeira, Manuel R; Paulo, Paula; Maia, Sofia; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Witte, John S; Casey, Graham; Gillanders, Elizabeth M; Seminara, Daniella; Riboli, Elio; Hamdy, Freddie C; Coetzee, Gerhard A; Li, Qiyuan; Freedman, Matthew L; Hunter, David J; Muir, Kenneth; Gronberg, Henrik; Neal, David E; Southey, Melissa; Giles, Graham G; Severi, Gianluca; Cook, Michael B; Nakagawa, Hidewaki; Wiklund, Fredrik; Kraft, Peter; Chanock, Stephen J; Henderson, Brian E; Easton, Douglas F; Eeles, Rosalind A; Haiman, Christopher A

    2014-10-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three new susceptibility loci were identified at association P discover risk loci for disease.

  12. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; Ramus, Susan J; Tyrer, Jonathan

    2015-01-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed ass...

  13. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    Kuchenbaecker, Karoline B.; Ramus, Susan J.; Tyrer, Jonathan; Lee, Andrew; Shen, Howard C.; Beesley, Jonathan; Lawrenson, Kate; McGuffog, Lesley; Healey, Sue; Lee, Janet M.; Spindler, Tassja J.; Lin, Yvonne G.; Pejovic, Tanja; Bean, Yukie; Li, Qiyuan; Coetzee, Simon; Hazelett, Dennis; Miron, Alexander; Southey, Melissa; Terry, Mary Beth; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas V. O.; Jonson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; Barrowdale, Daniel; Dennis, Joe; Benitez, Javier; Osorio, Ana; Garcia, Maria Jose; Komenaka, Ian; Weitzel, Jeffrey N.; Ganschow, Pamela; Peterlongo, Paolo; Bernard, Loris; Viel, Alessandra; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Radice, Paolo; Papi, Laura; Ottini, Laura; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Frost, Debra; Perkins, Jo; Platte, Radka; Ellis, Steve; Godwin, Andrew K.; Schmutzler, Rita Katharina; Meindl, Alfons; Engel, Christoph; Sutter, Christian; Sinilnikova, Olga M.; Damiola, Francesca; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Claes, Kathleen; De Leeneer, Kim; Kirk, Judy; Rodriguez, Gustavo C.; Piedmonte, Marion; O'Malley, David M.; de la Hoya, Miguel; Caldes, Trinidad; Aittomaeki, Kristiina; Nevanlinna, Heli; Collee, J. Margriet; Rookus, Matti A.; Oosterwijk, Jan C.; Tihomirova, Laima; Tung, Nadine; Hamann, Ute; Isaccs, Claudine; Tischkowitz, Marc; Imyanitov, Evgeny N.; Caligo, Maria A.; Campbell, Ian G.; Hogervorst, Frans B. L.; Olah, Edith; Diez, Orland; Blanco, Ignacio; Brunet, Joan; Lazaroso, Conxi; Angel Pujana, Miguel; Jakubowska, Anna; Gronwald, Jacek; Lubinski, Jan; Sukiennicki, Grzegorz; Barkardottir, Rosa B.; Plante, Marie; Simard, Jacques; Soucy, Penny; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Pankratz, Vernon S.; Wang, Xianshu; Lindor, Noralane; Szabo, Csilla I.; Kauff, Noah; Vijai, Joseph; Aghajanian, Carol A.; Pfeiler, Georg; Berger, Andreas; Singer, Christian F.; Tea, Muy-Kheng; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Tchatchou, Sandrine; Andrulis, Irene L.; Glendon, Gord; Toland, Amanda Ewart; Jensen, Uffe Birk; Kruse, Torben A.; Thomassen, Mads; Bojesen, Anders; Zidan, Jamal; Friedman, Eitan; Laitman, Yael; Soller, Maria; Liljegren, Annelie; Arver, Brita; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Rebbeck, Timothy R.; Nathanson, Katherine L.; Domchek, Susan M.; Lu, Karen H.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Fasching, Peter A.; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambrechts, Sandrina; Dicks, Ed; Doherty, Jennifer A.; Wicklund, Kristine G.; Rossing, Mary Anne; Rudolph, Anja; Chang-Claude, Jenny; Wang-Gohrke, Shan; Eilber, Ursula; Moysich, Kirsten B.; Odunsi, Kunle; Sucheston, Lara; Lele, Shashi; Wilkens, Lynne R.; Goodman, Marc T.; Thompson, Pamela J.; Shvetsov, Yurii B.; Runnebaum, Ingo B.; Duerst, Matthias; Hillemanns, Peter; Doerk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Pelttari, Liisa M.; Butzow, Ralf; Modugno, Francesmary; Kelley, Joseph L.; Edwards, Robert P.; Ness, Roberta B.; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Matsuo, Keitaro; Hosono, Satoyo; Orsulic, Sandra; Jensen, Allan; Kjaer, Susanne Kruger; Hogdall, Estrid; Hasmad, Hanis Nazihah; Azmi, Mat Adenan Noor; Teo, Soo-Hwang; Woo, Yin-Ling; Fridley, Brooke L.; Goode, Ellen L.; Cunningham, Julie M.; Vierkant, Robert A.; Bruinsma, Fiona; Giles, Graham G.; Liang, Dong; Hildebrandt, Michelle A. T.; Wu, Xifeng; Levine, Douglas A.; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S.; Schildkraut, Joellen M.; Concannon, Patrick; Weber, Rachel Palmieri; Cramer, Daniel W.; Terry, Kathryn L.; Poole, Elizabeth M.; Tworoger, Shelley S.; Bandera, Elisa V.; Orlow, Irene; Olson, Sara H.; Krakstad, Camilla; Salvesen, Helga B.; Tangen, Ingvild L.; Bjorge, Line; van Altena, Anne M.; Aben, Katja K. H.; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; Kellar, Melissa; Brooks-Wilson, Angela; Kelemen, Linda E.; Cook, Linda S.; Le, Nhu D.; Cybulski, Cezary; Yang, Hannah; Lissowska, Jolanta; Brinton, Louise A.; Wentzensen, Nicolas; Hogdall, Claus; Lundvall, Lene; Nedergaard, Lotte; Baker, Helen; Song, Honglin; Eccles, Diana; McNeish, Ian; Paul, James; Carty, Karen; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S.; Rothstein, Joseph H.; McGuire, Valerie; Sieh, Weiva; Ji, Bu-Tian; Zheng, Wei; Shu, Xiao-Ou; Gao, Yu-Tang; Rosen, Barry; Risch, Harvey A.; McLaughlin, John R.; Narod, Steven A.; Monteiro, Alvaro N.; Chen, Ann; Lin, Hui-Yi; Permuth-Wey, Jenny; Sellers, Thomas A.; Tsai, Ya-Yu; Chen, Zhihua; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Harrington, Patricia; Lee, Alice W.; Wu, Anna H.; Pearce, Celeste L.; Coetzee, Gerry; Pike, Malcolm C.; Dansonka-Mieszkowska, Agnieszka; Timorek, Agnieszka; Rzepecka, Iwona K.; Kupryjanczyk, Jolanta; Freedman, Matt; Noushmehr, Houtan; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Gayther, Simon; Pharoah, Paul P.; Antoniou, Antonis C.; Chenevix-Trench, Georgia

    2015-01-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associ

  14. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.J. Ramus (Susan); J.P. Tyrer (Jonathan); A. Lee (Andrew); H.C. Shen (Howard C.); J. Beesley (Jonathan); K. Lawrenson (Kate); L. McGuffog (Lesley); S. Healey (Sue); J.M. Lee (Janet M.); T.J. Spindler (Tassja J.); Y.G. Lin (Yvonne G.); T. Pejovic (Tanja); Y. Bean (Yukie); Q. Li (Qiyuan); S. Coetzee (Simon); D. Hazelett (Dennis); A. Miron (Alexander); M.C. Southey (Melissa); M.B. Terry (Mary Beth); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); T.V.O. Hansen (Thomas); L. Jønson (Lars); A.-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); D. Barrowdale (Daniel); J. Dennis (Joe); J. Benítez (Javier); A. Osorio (Ana); M.J. Garcia (Maria Jose); I. Komenaka (Ian); J.N. Weitzel (Jeffrey); P. Ganschow (Pamela); P. Peterlongo (Paolo); L. Bernard (Loris); A. Viel (Alessandra); B. Bonnani (Bernardo); B. Peissel (Bernard); S. Manoukian (Siranoush); P. Radice (Paolo); L. Papi (Laura); L. Ottini (Laura); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); D. Frost (Debra); J. Perkins (Jo); R. Platte (Radka); S.D. Ellis (Steve); A.K. Godwin (Andrew K.); R.K. Schmutzler (Rita); A. Meindl (Alfons); C. Engel (Christoph); C. Sutter (Christian); O. Sinilnikova (Olga); F. Damiola (Francesca); S. Mazoyer (Sylvie); D. Stoppa-Lyonnet (Dominique); K.B.M. Claes (Kathleen B.M.); K. De Leeneer (Kim); J. Kirk (Judy); G. Rodriguez (Gustavo); M. Piedmonte (Marion); D.M. O'Malley (David M.); M. de La Hoya (Miguel); T. Caldes (Trinidad); K. Aittomäki (Kristiina); H. Nevanlinna (Heli); J.C. Margriet (J. Collée); M.A. Rookus (Matti); J.C. Oosterwijk (Jan); L. Tihomirova (Laima); N. Tung (Nadine); U. Hamann (Ute); C. Isaccs (Claudine); M. Tischkowitz (Marc); E.N. Imyanitov (Evgeny); M.A. Caligo (Maria); I. Campbell (Ian); F.B.L. Hogervorst (Frans); E. Olah; O. Díez (Orland); I. Blanco (Ignacio); J. Brunet (Joan); C. Lazaro (Conxi); M.A. Pujana (Miguel); A. Jakubowska (Anna); J. Gronwald (Jacek); J. Lubinski (Jan); G. Sukiennicki (Grzegorz); R.B. Barkardottir (Rosa); M. Plante (Marie); J. Simard (Jacques); P. Soucy (Penny); M. Montagna (Marco); S. Tognazzo (Silvia); P.J. Teixeira; V.S. Pankratz (Shane); X. Wang (Xianshu); N.M. Lindor (Noralane); C. Szabo (Csilla); N. Kauff (Noah); J. Vijai (Joseph); C.A. Aghajanian (Carol A.); G. Pfeiler (Georg); A. Berger (Andreas); C.F. Singer (Christian); M.-K. Tea; C. Phelan (Catherine); M.H. Greene (Mark H.); P.L. Mai (Phuong); G. Rennert (Gad); A.-M. Mulligan (Anna-Marie); S. Tchatchou (Sandrine); I.L. Andrulis (Irene); G. Glendon (Gord); A.E. Toland (Amanda); U.B. Jensen (Uffe Birk); T.A. Kruse (Torben); M. Thomassen (Mads); A. Bojesen (Anders); J. Zidan (Jamal); E. Friedman (Eitan); Y. Laitman (Yael); M. Soller (Maria); A. Liljegren (Annelie); B. Arver (Brita Wasteson); Z. Einbeigi (Zakaria); M. Stenmark-Askmalm (Marie); O.I. Olopade (Olufunmilayo I.); R.L. Nussbaum (Robert L.); T.R. Rebbeck (Timothy R.); K.L. Nathanson (Katherine); S.M. Domchek (Susan); K.H. Lu (Karen); B.Y. Karlan (Beth Y.); C. Walsh (Christine); K.J. Lester (Kathryn); R. Hein (Rebecca); A.B. Ekici (Arif); M.W. Beckmann (Matthias W.); P.A. Fasching (Peter); D. Lambrechts (Diether); E. Van Nieuwenhuysen (Els); I. Vergote (Ignace); S. Lambrechts (Sandrina); E. Dicks (Ed); J.A. Doherty (Jennifer A.); K.G. Wicklund (Kristine G.); M.A. Rossing (Mary Anne); A. Rudolph (Anja); J. Chang-Claude (Jenny); S. Wang-Gohrke (Shan); U. Eilber (Ursula); K.B. Moysich (Kirsten B.); K. Odunsi (Kunle); L. Sucheston (Lara); S. Lele (Shashi); L. Wilkens (Lynne); M.T. Goodman (Marc); P.J. Thompson (Pamela J.); Y.B. Shvetsov (Yurii B.); I.B. Runnebaum (Ingo); M. Dürst (Matthias); P. Hillemanns (Peter); T. Dörk (Thilo); N.N. Antonenkova (Natalia); N.V. Bogdanova (Natalia); A. Leminen (Arto); L.M. Pelttari (Liisa); R. Butzow (Ralf); F. Modugno (Francesmary); J.L. Kelley (Joseph L.); R. Edwards (Robert); R.B. Ness (Roberta); A. Du Bois (Andreas); P.U. Heitz; I. Schwaab (Ira); P. Harter (Philipp); K. Matsuo (Keitaro); N. Hosono (Naoya); S. Orsulic (Sandra); A. Jensen (Allan); M. Kjaer (Michael); E. Høgdall (Estrid); H.N. Hasmad (Hanis Nazihah); M.A. Noor Azmi (Mat Adenan); S.-H. Teo; Y.L. Woo (Yin Ling); B.L. Fridley (Brooke); E.L. Goode (Ellen); J.M. Cunningham (Julie); R.A. Vierkant (Robert); F. Bruinsma (Fiona); G.G. Giles (Graham G.); D. Liang (Dong); M.A.T. Hildebrandt (Michelle A.T.); X. Wu (Xifeng); D.A. Levine (Douglas); M. Bisogna (Maria); A. Berchuck (Andrew); E. Iversen (Erik); J.M. Schildkraut (Joellen); P. Concannon (Patrick); R.P. Weber (Rachel Palmieri); D.W. Cramer (Daniel); K.L. Terry (Kathryn); E.M. Poole (Elizabeth); S. Tworoger (Shelley); E.V. Bandera (Elisa); I. Orlow (Irene); S.H. Olson (Sara); C. Krakstad (Camilla); H.B. Salvesen (Helga); I.L. Tangen (Ingvild L.); L. Bjorge (Line); A.M. van Altena (Anne); K.K.H. Aben (Katja); L.A.L.M. Kiemeney (Bart); L.F. Massuger (Leon); M. Kellar (Melissa); A. Brooks-Wilson (Angela); L.E. Kelemen (Linda); L.S. Cook (Linda S.); N.D. Le (Nhu D.); C. Cybulski (Cezary); H. Yang (Hannah); J. Lissowska (Jolanta); L.A. Brinton (Louise); N. Wentzensen (N.); C.K. Høgdall (Claus); L. Lundvall (Lene); L. Nedergaard (Lotte); H. Baker (Helen); H. Song (Honglin); D. Eccles (Diana); I. McNeish (Ian); J. Paul (James); K. Carty (Karen); N. Siddiqui (Nadeem); R. Glasspool (Rosalind); A.S. Whittemore (Alice S.); J.H. Rothstein (Joseph H.); W.P. McGuire; W. Sieh (Weiva); B.-T. Ji (Bu-Tian); W. Zheng (Wei); X.-O. Shu (Xiao-Ou); Y. Gao; B. Rosen (Barry); H. Risch (Harvey); J. McLaughlin (John); S.A. Narod (Steven A.); A.N.A. Monteiro (Alvaro N.); A. Chen (Ann); H.-Y. Lin (Hui-Yi); J. Permuth-Wey (Jenny); T.F. Sellers; Y.-Y. Tsai (Ya-Yu); Z. Chen (Zhihua); A. Ziogas (Argyrios); H. Anton-Culver (Hoda); A. Gentry-Maharaj (Aleksandra); U. Menon (Usha); P. harrington (Patricia); A.W. Lee (Alice W.); A.H. Wu (Anna H.); C.L. Pearce (Celeste); G. Coetzee (Gerry); M.C. Pike (Malcolm C.); A. Dansonka-Mieszkowska (Agnieszka); A. Timorek (Agnieszka); I.K. Rzepecka (Iwona); J. Kupryjanczyk (Jolanta); M. Freedman (Matthew); H. Noushmehr (Houtan); D.F. Easton (Douglas F.); K. Offit (Kenneth); F.J. Couch (Fergus); S.A. Gayther (Simon); P.P.D.P. Pharoah (Paul P.D.P.); A.C. Antoniou (Antonis C.); G. Chenevix-Trench (Georgia)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we ass

  15. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes

    DEFF Research Database (Denmark)

    Broeks, Annegien; Schmidt, Marjanka K; Sherman, Mark E

    2011-01-01

    3803662 (16q12), rs889312 (5q11), rs3817198 (11p15) and rs13387042 (2q35); however, only two of them (16q12 and 2q35) were associated with tumors with the core basal phenotype (P ≤ 0.002). These analyses are consistent with different biological origins of breast cancers, and indicate that tumor......Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes...... were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations...

  16. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes

    DEFF Research Database (Denmark)

    Broeks, Annegien; Schmidt, Marjanka K; Sherman, Mark E

    2011-01-01

    3803662 (16q12), rs889312 (5q11), rs3817198 (11p15) and rs13387042 (2q35); however, only two of them (16q12 and 2q35) were associated with tumors with the core basal phenotype (P = 0.002). These analyses are consistent with different biological origins of breast cancers, and indicate that tumor......Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes...... were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations...

  17. Genome-wide association study of colorectal cancer identifies six new susceptibility loci

    Science.gov (United States)

    Schumacher, Fredrick R.; Schmit, Stephanie L.; Jiao, Shuo; Edlund, Christopher K.; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P.; Harju, John F.; Idos, Gregory E.; Lejbkowicz, Flavio; Manion, Frank J.; McDonnell, Kevin; McNeil, Caroline E.; Melas, Marilena; Rennert, Hedy S.; Shi, Wei; Thomas, Duncan C.; Van Den Berg, David J.; Hutter, Carolyn M.; Aragaki, Aaron K.; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Chanock, Stephen J.; Curtis, Keith R.; Fuchs, Charles S.; Gala, Manish; Giovannucci, Edward L.; Gogarten, Stephanie M.; Hayes, Richard B.; Henderson, Brian; Hunter, David J.; Jackson, Rebecca D.; Kolonel, Laurence N.; Kooperberg, Charles; Küry, Sébastien; LaCroix, Andrea; Laurie, Cathy C.; Laurie, Cecelia A.; Lemire, Mathieu; Levine, David; Ma, Jing; Makar, Karen W.; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M.; Wu, Kana; Kono, Suminori; West, Dee W.; Berndt, Sonja I.; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T.; Chan, Andrew T.; Chang-Claude, Jenny; Coetzee, Gerhard A.; Conti, David V.; Duggan, David; Figueiredo, Jane C.; Fortini, Barbara K.; Gallinger, Steven J.; Gauderman, W. James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M.; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A.; Potter, John D.; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E.; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L.; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W.; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B.; Peters, Ulrike

    2016-01-01

    Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies. PMID:26151821

  18. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  19. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Margriet Collée; W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe Grenaker); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias W.); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine B.); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (G.); M.R. Alonso (M Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprisi

  20. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  1. Genome-wide association study identifies novel breast cancer susceptibility loci

    Science.gov (United States)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  2. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    DEFF Research Database (Denmark)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer...

  3. Genome-wide association study identifies new prostate cancer susceptibility loci

    Science.gov (United States)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan; Jacobs, Kevin B.; Wang, Zhaoming; Lindstrom, Sara; Stevens, Victoria L.; Chen, Constance; Mondul, Alison M.; Travis, Ruth C.; Stram, Daniel O.; Eeles, Rosalind A.; Easton, Douglas F.; Giles, Graham; Hopper, John L.; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Muir, Kenneth; Al Olama, Ali Amin; Kote-Jarai, Zsofia; Guy, Michelle; Severi, Gianluca; Grönberg, Henrik; Isaacs, William B.; Karlsson, Robert; Wiklund, Fredrik; Xu, Jianfeng; Allen, Naomi E.; Andriole, Gerald L.; Barricarte, Aurelio; Boeing, Heiner; Bas Bueno-de-Mesquita, H.; Crawford, E. David; Diver, W. Ryan; Gonzalez, Carlos A.; Gaziano, J. Michael; Giovannucci, Edward L.; Johansson, Mattias; Le Marchand, Loic; Ma, Jing; Sieri, Sabina; Stattin, Pär; Stampfer, Meir J.; Tjonneland, Anne; Vineis, Paolo; Virtamo, Jarmo; Vogel, Ulla; Weinstein, Stephanie J.; Yeager, Meredith; Thun, Michael J.; Kolonel, Laurence N.; Henderson, Brian E.; Albanes, Demetrius; Hayes, Richard B.; Spencer Feigelson, Heather; Riboli, Elio; Hunter, David J.; Chanock, Stephen J.; Haiman, Christopher A.; Kraft, Peter

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have identified at least 30 distinct loci associated with small differences in risk. We conducted a GWAS in 2782 advanced PrCa cases (Gleason grade ≥ 8 or tumor stage C/D) and 4458 controls with 571 243 single nucleotide polymorphisms (SNPs). Based on in silico replication of 4679 SNPs (Stage 1, P < 0.02) in two published GWAS with 7358 PrCa cases and 6732 controls, we identified a new susceptibility locus associated with overall PrCa risk at 2q37.3 (rs2292884, P= 4.3 × 10−8). We also confirmed a locus suggested by an earlier GWAS at 12q13 (rs902774, P= 8.6 × 10−9). The estimated per-allele odds ratios for these loci (1.14 for rs2292884 and 1.17 for rs902774) did not differ between advanced and non-advanced PrCa (case-only test for heterogeneity P= 0.72 and P= 0.61, respectively). Further studies will be needed to assess whether these or other loci are differentially associated with PrCa subtypes. PMID:21743057

  4. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    Science.gov (United States)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I.; Conti, David V.; Schumacher, Fredrick; Han, Ying; Benlloch, Sara; Hazelett, Dennis J.; Wang, Zhaoming; Saunders, Ed; Leongamornlert, Daniel; Lindstrom, Sara; Jugurnauth-Little, Sara; Dadaev, Tokhir; Tymrakiewicz, Malgorzata; Stram, Daniel O.; Rand, Kristin; Wan, Peggy; Stram, Alex; Sheng, Xin; Pooler, Loreall C.; Park, Karen; Xia, Lucy; Tyrer, Jonathan; Kolonel, Laurence N.; Le Marchand, Loic; Hoover, Robert N.; Machiela, Mitchell J.; Yeager, Merideth; Burdette, Laurie; Chung, Charles C.; Hutchinson, Amy; Yu, Kai; Goh, Chee; Ahmed, Mahbubl; Govindasami, Koveela; Guy, Michelle; Tammela, Teuvo L.J.; Auvinen, Anssi; Wahlfors, Tiina; Schleutker, Johanna; Visakorpi, Tapio; Leinonen, Katri A.; Xu, Jianfeng; Aly, Markus; Donovan, Jenny; Travis, Ruth C.; Key, Tim J.; Siddiq, Afshan; Canzian, Federico; Khaw, Kay-Tee; Takahashi, Atsushi; Kubo, Michiaki; Pharoah, Paul; Pashayan, Nora; Weischer, Maren; Nordestgaard, Borge G.; Nielsen, Sune F.; Klarskov, Peter; Røder, Martin Andreas; Iversen, Peter; Thibodeau, Stephen N.; McDonnell, Shannon K; Schaid, Daniel J; Stanford, Janet L.; Kolb, Suzanne; Holt, Sarah; Knudsen, Beatrice; Coll, Antonio Hurtado; Gapstur, Susan M.; Diver, W. Ryan; Stevens, Victoria L.; Maier, Christiane; Luedeke, Manuel; Herkommer, Kathleen; Rinckleb, Antje E.; Strom, Sara S.; Pettaway, Curtis; Yeboah, Edward D.; Tettey, Yao; Biritwum, Richard B.; Adjei, Andrew A.; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P.; Cannon-Albright, Lisa; Cybulski, Cezary; Wokołorczyk, Dominika; Kluźniak, Wojciech; Park, Jong; Sellers, Thomas; Lin, Hui-Yi; Isaacs, William B.; Partin, Alan W.; Brenner, Hermann; Dieffenbach, Aida Karina; Stegmaier, Christa; Chen, Constance; Giovannucci, Edward L.; Ma, Jing; Stampfer, Meir; Penney, Kathryn L.; Mucci, Lorelei; John, Esther M.; Ingles, Sue A.; Kittles, Rick A.; Murphy, Adam B.; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej M.; Blot, William; Signorello, Lisa B.; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, Cristina; Wu, Suh-Yuh; Hennis, Anselm; Kibel, Adam S.; Rybicki, Benjamin A.; Neslund-Dudas, Christine; Hsing, Ann W.; Chu, Lisa; Goodman, Phyllis J.; Klein, Eric A; Zheng, S. Lilly; Batra, Jyotsna; Clements, Judith; Spurdle, Amanda; Teixeira, Manuel R.; Paulo, Paula; Maia, Sofia; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Witte, John S.; Casey, Graham; Gillanders, Elizabeth M.; Seminara, Daniella; Riboli, Elio; Hamdy, Freddie C.; Coetzee, Gerhard A.; Li, Qiyuan; Freedman, Matthew L.; Hunter, David J.; Muir, Kenneth; Gronberg, Henrik; Neal, David E.; Southey, Melissa; Giles, Graham G.; Severi, Gianluca; Cook, Michael B.; Nakagawa, Hidewaki; Wiklund, Fredrik; Kraft, Peter; Chanock, Stephen J.; Henderson, Brian E.; Easton, Douglas F.; Eeles, Rosalind A.; Haiman, Christopher A.

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of >10 million SNPs in 43,303prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three novel susceptibility loci were revealed at P<5×10-8; 15 variants were identified among men of European ancestry, 7 from multiethnic analyses and one was associated with early-onset prostate cancer. These 23 variants, in combination with the known prostate cancer risk variants, explain 33% of the familial risk of the disease in European ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the utility of combining ancestrally diverse populations to discover risk loci for disease. PMID:25217961

  5. Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Science.gov (United States)

    Kuchenbaecker, Karoline B; Ramus, Susan J; Tyrer, Jonathan; Lee, Andrew; Shen, Howard C; Beesley, Jonathan; Lawrenson, Kate; McGuffog, Lesley; Healey, Sue; Lee, Janet M; Spindler, Tassja J; Lin, Yvonne G; Pejovic, Tanja; Bean, Yukie; Li, Qiyuan; Coetzee, Simon; Hazelett, Dennis; Miron, Alexander; Southey, Melissa; Terry, Mary Beth; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; Barrowdale, Daniel; Dennis, Joe; Benitez, Javier; Osorio, Ana; Garcia, Maria Jose; Komenaka, Ian; Weitzel, Jeffrey N; Ganschow, Pamela; Peterlongo, Paolo; Bernard, Loris; Viel, Alessandra; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Radice, Paolo; Papi, Laura; Ottini, Laura; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Frost, Debra; Perkins, Jo; Platte, Radka; Ellis, Steve; Godwin, Andrew K; Schmutzler, Rita Katharina; Meindl, Alfons; Engel, Christoph; Sutter, Christian; Sinilnikova, Olga M; Damiola, Francesca; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Claes, Kathleen; De Leeneer, Kim; Kirk, Judy; Rodriguez, Gustavo C; Piedmonte, Marion; O'Malley, David M; de la Hoya, Miguel; Caldes, Trinidad; Aittomäki, Kristiina; Nevanlinna, Heli; Collée, J Margriet; Rookus, Matti A; Oosterwijk, Jan C; Tihomirova, Laima; Tung, Nadine; Hamann, Ute; Isaccs, Claudine; Tischkowitz, Marc; Imyanitov, Evgeny N; Caligo, Maria A; Campbell, Ian G; Hogervorst, Frans B L; Olah, Edith; Diez, Orland; Blanco, Ignacio; Brunet, Joan; Lazaro, Conxi; Pujana, Miquel Angel; Jakubowska, Anna; Gronwald, Jacek; Lubinski, Jan; Sukiennicki, Grzegorz; Barkardottir, Rosa B; Plante, Marie; Simard, Jacques; Soucy, Penny; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Pankratz, Vernon S; Wang, Xianshu; Lindor, Noralane; Szabo, Csilla I; Kauff, Noah; Vijai, Joseph; Aghajanian, Carol A; Pfeiler, Georg; Berger, Andreas; Singer, Christian F; Tea, Muy-Kheng; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Mulligan, Anna Marie; Tchatchou, Sandrine; Andrulis, Irene L; Glendon, Gord; Toland, Amanda Ewart; Jensen, Uffe Birk; Kruse, Torben A; Thomassen, Mads; Bojesen, Anders; Zidan, Jamal; Friedman, Eitan; Laitman, Yael; Soller, Maria; Liljegren, Annelie; Arver, Brita; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Olopade, Olufunmilayo I; Nussbaum, Robert L; Rebbeck, Timothy R; Nathanson, Katherine L; Domchek, Susan M; Lu, Karen H; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Hein, Alexander; Ekici, Arif B; Beckmann, Matthias W; Fasching, Peter A; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambrechts, Sandrina; Dicks, Ed; Doherty, Jennifer A; Wicklund, Kristine G; Rossing, Mary Anne; Rudolph, Anja; Chang-Claude, Jenny; Wang-Gohrke, Shan; Eilber, Ursula; Moysich, Kirsten B; Odunsi, Kunle; Sucheston, Lara; Lele, Shashi; Wilkens, Lynne R; Goodman, Marc T; Thompson, Pamela J; Shvetsov, Yurii B; Runnebaum, Ingo B; Dürst, Matthias; Hillemanns, Peter; Dörk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Pelttari, Liisa M; Butzow, Ralf; Modugno, Francesmary; Kelley, Joseph L; Edwards, Robert P; Ness, Roberta B; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Matsuo, Keitaro; Hosono, Satoyo; Orsulic, Sandra; Jensen, Allan; Kjaer, Susanne Kruger; Hogdall, Estrid; Hasmad, Hanis Nazihah; Azmi, Mat Adenan Noor; Teo, Soo-Hwang; Woo, Yin-Ling; Fridley, Brooke L; Goode, Ellen L; Cunningham, Julie M; Vierkant, Robert A; Bruinsma, Fiona; Giles, Graham G; Liang, Dong; Hildebrandt, Michelle A T; Wu, Xifeng; Levine, Douglas A; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S; Schildkraut, Joellen M; Concannon, Patrick; Weber, Rachel Palmieri; Cramer, Daniel W; Terry, Kathryn L; Poole, Elizabeth M; Tworoger, Shelley S; Bandera, Elisa V; Orlow, Irene; Olson, Sara H; Krakstad, Camilla; Salvesen, Helga B; Tangen, Ingvild L; Bjorge, Line; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Kellar, Melissa; Brooks-Wilson, Angela; Kelemen, Linda E; Cook, Linda S; Le, Nhu D; Cybulski, Cezary; Yang, Hannah; Lissowska, Jolanta; Brinton, Louise A; Wentzensen, Nicolas; Hogdall, Claus; Lundvall, Lene; Nedergaard, Lotte; Baker, Helen; Song, Honglin; Eccles, Diana; McNeish, Ian; Paul, James; Carty, Karen; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Ji, Bu-Tian; Zheng, Wei; Shu, Xiao-Ou; Gao, Yu-Tang; Rosen, Barry; Risch, Harvey A; McLaughlin, John R; Narod, Steven A; Monteiro, Alvaro N; Chen, Ann; Lin, Hui-Yi; Permuth-Wey, Jenny; Sellers, Thomas A; Tsai, Ya-Yu; Chen, Zhihua; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Harrington, Patricia; Lee, Alice W; Wu, Anna H; Pearce, Celeste L; Coetzee, Gerry; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Timorek, Agnieszka; Rzepecka, Iwona K; Kupryjanczyk, Jolanta; Freedman, Matt; Noushmehr, Houtan; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Gayther, Simon; Pharoah, Paul P; Antoniou, Antonis C; Chenevix-Trench, Georgia

    2015-02-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.

  6. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    F.J. Couch (Fergus); K.B. Kuchenbaecker (Karoline); K. Michailidou (Kyriaki); G.A. Mendoza-Fandino (Gustavo A.); S. Nord (Silje); J. Lilyquist (Janna); C. Olswold (Curtis); B. Hallberg (Boubou); S. Agata (Simona); H. Ahsan (Habibul); K. Aittomäki (Kristiina); C.B. Ambrosone (Christine B.); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); V. Arndt (Volker); B.K. Arun (Banu); B. Arver (Brita Wasteson); M. Barile (Monica); R.B. Barkardottir (Rosa); D. Barrowdale (Daniel); L. Beckmann (Lars); M.W. Beckmann (Matthias); J. Benítez (Javier); S.V. Blank (Stephanie); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); M.K. Bolla (Manjeet); B. Bonnani (Bernardo); H. Brauch (Hiltrud); H. Brenner (Hermann); B. Burwinkel (Barbara); S.S. Buys (Saundra S.); T. Caldes (Trinidad); M.A. Caligo (Maria); F. Canzian (Federico); T.A. Carpenter (Adrian); J. Chang-Claude (Jenny); S.J. Chanock (Stephen J.); W.K. Chung (Wendy K.); K.B.M. Claes (Kathleen B.M.); A. Cox (Angela); S.S. Cross (Simon); J.M. Cunningham (Julie); K. Czene (Kamila); M.B. Daly (Mary B.); F. Damiola (Francesca); H. Darabi (Hatef); M. de La Hoya (Miguel); P. Devilee (Peter); O. Díez (Orland); Y.C. Ding (Yuan); R. Dolcetti (Riccardo); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); I. dos Santos Silva (Isabel); M. Dumont (Martine); A.M. Dunning (Alison); D. Eccles (Diana); H. Ehrencrona (Hans); A.B. Ekici (Arif); H. Eliassen (Heather); S.D. Ellis (Steve); P.A. Fasching (Peter); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); A. Försti (Asta); F. Fostira (Florentia); W.D. Foulkes (William); M.O.W. Friebel (Mark ); E. Friedman (Eitan); D. Frost (Debra); M. Gabrielson (Marike); M. Gammon (Marilie); P.A. Ganz (Patricia A.); S.M. Gapstur (Susan M.); J. Garber (Judy); M.M. Gaudet (Mia); S.A. Gayther (Simon); A-M. Gerdes (Anne-Marie); M. Ghoussaini (Maya); G.G. Giles (Graham); G. Glendon (Gord); A.K. Godwin (Andrew K.); M.S. Goldberg (Mark); D. Goldgar (David); A. González-Neira (Anna); M.H. Greene (Mark H.); J. Gronwald (Jacek); P. Guénel (Pascal); M.J. Gunter (Marc J.); L. Haeberle (Lothar); C.A. Haiman (Christopher A.); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); S. Healey (Sue); T. Heikkinen (Tuomas); B.E. Henderson (Brian); J. Herzog (Josef); F.B.L. Hogervorst (Frans); A. Hollestelle (Antoinette); M.J. Hooning (Maartje); R.N. Hoover (Robert); J.L. Hopper (John); K. Humphreys (Keith); D. Hunter (David); T. Huzarski (Tomasz); E.N. Imyanitov (Evgeny N.); C. Isaacs (Claudine); A. Jakubowska (Anna); M. James (Margaret); R. Janavicius (Ramunas); U.B. Jensen; E.M. John (Esther); M. Jones (Michael); M. Kabisch (Maria); S. Kar (Siddhartha); B.Y. Karlan (Beth Y.); S. Khan (Sofia); K.T. Khaw; M.G. Kibriya (Muhammad); J.A. Knight (Julia); Y.-D. Ko (Yon-Dschun); I. Konstantopoulou (I.); V-M. Kosma (Veli-Matti); V. Kristensen (Vessela); A. Kwong (Ava); Y. Laitman (Yael); D. Lambrechts (Diether); C. Lazaro (Conxi); E. Lee (Eunjung); L. Le Marchand (Loic); K.J. Lester (Kathryn); A. Lindblom (Annika); N.M. Lindor (Noralane); S. Lindstrom (Stephen); J. Liu (Jianjun); J. Long (Jirong); J. Lubinski (Jan); P.L. Mai (Phuong); E. Makalic (Enes); K.E. Malone (Kathleen E.); A. Mannermaa (Arto); S. Manoukian (Siranoush); S. Margolin (Sara); F. Marme (Federick); J.W.M. Martens (John); L. McGuffog (Lesley); A. Meindl (Alfons); A. Miller (Austin); R.L. Milne (Roger); P. Miron (Penelope); M. Montagna (Marco); S. Mazoyer (Sylvie); A.-M. Mulligan (Anna-Marie); T.A. Muranen (Taru); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); B.G. Nordestgaard (Børge); R. Nussbaum (Robert); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); J.E. Olson (Janet); A. Osorio (Ana); S.K. Park (Sue K.); P.H.M. Peeters; B. Peissel (Bernard); P. Peterlongo (Paolo); J. Peto (Julian); C. Phelan (Catherine); R. Pilarski (Robert); B. Poppe (Bruce); K. Pykäs (Katri); P. Radice (Paolo); N. Rahman (Nazneen); J. Rantala (Johanna); C. Rappaport (Christine); G. Rennert (Gad); A.L. Richardson (Andrea); M. Robson (Mark); I. Romieu (Isabelle); A. Rudolph (Anja); E.J.T. Rutgers (Emiel); M.-J. Sanchez (Maria-Jose); R. Santella (Regina); E.J. Sawyer (Elinor); D.F. Schmidt (Daniel); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); F.R. Schumacher (Fredrick); R.J. Scott (Rodney); L. Senter (Leigha); P. Sharma (Priyanka); J. Simard (Jacques); C.F. Singer (Christian); O. Sinilnikova (Olga); P. Soucy (Penny); M.C. Southey (Melissa); D. Steinemann (Doris)

    2016-01-01

    textabstractCommon variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10-8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibili

  7. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    Science.gov (United States)

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer.

  8. Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer.

    Directory of Open Access Journals (Sweden)

    Jirong Long

    Full Text Available Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls. SNP rs9485372, near the TGF-β activated kinase (TAB2 gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8×10(-12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals were 0.89 (0.85-0.94 and 0.80 (0.75-0.86 for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (P = 1.9×10(-6 from the combined analysis of all samples, located in intron 5 of the ESR1 gene, and SNP rs7107217 (P = 4.6×10(-7, located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1, and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively.

  9. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    2011-05-01

    Full Text Available GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls, we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05 with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10(-4 that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17 over the alleles reported in the original GWAS (OR = 1.08. In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry.

  10. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Dadaev, Tokhir; Hazelett, Dennis J

    2015-01-01

    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancest...

  11. Replication of breast cancer susceptibility loci in whites and African Americans using a Bayesian approach.

    Science.gov (United States)

    O'Brien, Katie M; Cole, Stephen R; Poole, Charles; Bensen, Jeannette T; Herring, Amy H; Engel, Lawrence S; Millikan, Robert C

    2014-02-01

    Genome-wide association studies (GWAS) and candidate gene analyses have led to the discovery of several dozen genetic polymorphisms associated with breast cancer susceptibility, many of which are considered well-established risk factors for the disease. Despite attempts to replicate these same variant-disease associations in African Americans, the evaluable populations are often too small to produce precise or consistent results. We estimated the associations between 83 previously identified single nucleotide polymorphisms (SNPs) and breast cancer among Carolina Breast Cancer Study (1993-2001) participants using maximum likelihood, Bayesian, and hierarchical methods. The selected SNPs were previous GWAS hits (n = 22), near-hits (n = 19), otherwise well-established risk loci (n = 5), or located in the same genes as selected variants (n = 37). We successfully replicated 18 GWAS-identified SNPs in whites (n = 2,352) and 10 in African Americans (n = 1,447). SNPs in the fibroblast growth factor receptor 2 gene (FGFR2) and the TOC high mobility group box family member 3 gene (TOX3) were strongly associated with breast cancer in both races. SNPs in the mitochondrial ribosomal protein S30 gene (MRPS30), mitogen-activated protein kinase kinase kinase 1 gene (MAP3K1), zinc finger, MIZ-type containing 1 gene (ZMIZ1), and H19, imprinted maternally expressed transcript gene (H19) were associated with breast cancer in whites, and SNPs in the estrogen receptor 1 gene (ESR1) and H19 gene were associated with breast cancer in African Americans. We provide precise and well-informed race-stratified odds ratios for key breast cancer-related SNPs. Our results demonstrate the utility of Bayesian methods in genetic epidemiology and provide support for their application in small, etiologically driven investigations.

  12. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

    DEFF Research Database (Denmark)

    Eeles, Rosalind A; Olama, Ali Amin Al; Benlloch, Sara

    2013-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the internationa...

  13. BMP2/BMP4 colorectal cancer susceptibility loci in northern and southern European populations.

    Science.gov (United States)

    Fernandez-Rozadilla, Ceres; Palles, Claire; Carvajal-Carmona, Luis; Peterlongo, Paolo; Nici, Carmela; Veneroni, Silvia; Pinheiro, Manuela; Teixeira, Manuel R; Moreno, Victor; Lamas, Maria-Jesus; Baiget, Montserrat; Lopez-Fernandez, L A; Gonzalez, Dolors; Brea-Fernandez, Alejandro; Clofent, Juan; Bujanda, Luis; Bessa, Xavier; Andreu, Montserrat; Xicola, Rosa; Llor, Xavier; Jover, Rodrigo; Castells, Antoni; Castellvi-Bel, Sergi; Carracedo, Angel; Tomlinson, Ian; Ruiz-Ponte, Clara

    2013-02-01

    Genome-wide association studies have successfully identified 20 colorectal cancer susceptibility loci. Amongst these, four of the signals are defined by tagging single nucleotide polymorphisms (SNPs) on regions 14q22.2 (rs4444235 and rs1957636) and 20p12.3 (rs961253 and rs4813802). These markers are located close to two of the genes involved in bone morphogenetic protein (BMP) signaling (BMP4 and BMP2, respectively). By investigating these four SNPs in an initial cohort of Spanish origin, we found substantial evidence that minor allele frequencies (MAFs) may be different in northern and southern European populations. Therefore, we genotyped three additional southern European cohorts comprising a total of 2028 cases and 4273 controls. The meta-analysis results show that only one of the association signals (rs961253) is effectively replicated in the southern European populations, despite adequate power to detect all four. The other three SNPs (rs4444235, rs1957636 and rs4813802) presented discordant results in MAFs and linkage disequilibrium patterns between northern and southern European cohorts. We hypothesize that this lack of replication could be the result of differential tagging of the functional variant in both sets of populations. Were this true, it would have complex consequences in both our ability to understand the nature of the real causative variants, as well as for further study designs.

  14. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    DEFF Research Database (Denmark)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,47...

  15. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    DEFF Research Database (Denmark)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola

    2015-01-01

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further...

  16. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    NARCIS (Netherlands)

    N. Orr (Nick); F. Dudbridge (Frank); N. Dryden (Nicola); S. Maguire (Sarah); D. Novo (Daniela); E. Perrakis (Eleni); N. Johnson (Nichola); M. Ghoussaini (Maya); J. Hopper (John); M.C. Southey (Melissa); C. Apicella (Carmel); J. Stone (Jennifer); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); F.B.L. Hogervorst (Frans); P.A. Fasching (Peter); L. Haeberle (Lothar); A.B. Ekici (Arif); M.W. Beckmann (Matthias W.); L.J. Gibson (Lorna); A. Aitken; H. Warren (Helen); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); B. Burwinkel (Barbara); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Chistof); P. Guénel (Pascal); T. Truong (Thérèse); E. Cordina-Duverger (Emilie); M. Sanchez (Marie); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); P. Menéndez (Primitiva); H. Anton-Culver (Hoda); S.L. Neuhausen (Susan); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); U. Hamann (Ute); H. Brauch (Hiltrud); C. Justenhoven (Christina); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); D. Lambrechts (Diether); M. Moisse (Matthieu); O.A.M. Floris; B. Beuselinck (B.); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); P. Radice (Paolo); P. Peterlongo (Paolo); B. Peissel (Bernard); V. Pensotti (Valeria); F.J. Couch (Fergus); J.E. Olson (Janet); S. Slettedahl (Seth); C. Vachon (Celine); G.G. Giles (Graham G.); R.L. Milne (Roger L.); C.A. McLean (Catriona Ann); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); J. Simard (Jacques); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); V. Kristensen (Vessela); G.G. Alnæs (Grethe Grenaker); S. Nord (Silje); A.-L. Borresen-Dale (Anne-Lise); W. Zheng (Wei); S.L. Deming-Halverson (Sandra); M. Shrubsole (Martha); J. Long (Jirong); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); S. Tchatchou (Sandrine); P. Devilee (Peter); R.A.E.M. Tollenaar (Robertus A. E. M.); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); J. Lissowska (Jolanta); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); D. Klevebring (Daniel); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); C.H.M. van Deurzen (Carolien); M. Kriege (Mieke); P. Hall (Per); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); M. Shah (Mitul); B. Perkins (Barbara); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Ashworth (Alan); A.J. Swerdlow (Anthony ); M. Jones (Michael); M. Schoemaker (Minouk); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Olswold (Curtis); S. Slager (Susan); A.E. Toland (Amanda); D. Yannoukakos (Drakoulis); K.R. Muir (K.); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); K. Matsuo (Keitaro); H. Ito (Hidema); H. Iwata (Hisato); J. Ishiguro (Junko); A.H. Wu (Anna H.); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); S.-H. Teo; C.H. Yip (Cheng Har); P. Kang (Peter); M.K. Ikram (Kamran); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); D. Kang (Daehee); J.-Y. Choi (J.); S.K. Park (Sue); D-Y. Noh (Dong-Young); J.M. Hartman (Joost); X. Miao; W.-Y. Lim (Wei-Yen); S.C. Lee (Soo Chin); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); J-C. Yu (Jyh-Cherng); C-Y. Shen (Chen-Yang); W.J. Blot (William); Q. Cai (Qiuyin); L.B. Signorello (Lisa B.); C. Luccarini (Craig); C. Bayes (Caroline); S. Ahmed (Shahana); M. Maranian (Melanie); S. Healey (Sue); A. González-Neira (Anna); G. Pita (G.); M. Rosario Alonso; N. Álvarez (Nuria); D. Herrero (Daniel); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); D. Hunter (David); S. Lindstrom (Stephen); J. Dennis (Joe); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet); D.F. Easton (Douglas); I. dos Santos Silva (Isabel); O. Fletcher (Olivia); J. Peto (Julian)

    2015-01-01

    textabstractWe recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and

  17. Joint effects of colorectal cancer susceptibility loci, circulating 25-hydroxyvitamin D and risk of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Linda T Hiraki

    Full Text Available Genome wide association studies (GWAS have identified several SNPs associated with colorectal cancer (CRC susceptibility. Vitamin D is also inversely associated with CRC risk.We examined main and joint effects of previously GWAS identified genetic markers of CRC and plasma 25-hydroxyvitamin D (25(OHD on CRC risk in three prospective cohorts: the Nurses' Health Study (NHS, the Health Professionals Follow-up Study (HPFS, and the Physicians' Health Study (PHS. We included 1895 CRC cases and 2806 controls with genomic DNA. We calculated odds ratios and 95% confidence intervals for CRC associated with additive genetic risk scores (GRSs comprised of all CRC SNPs and subsets of these SNPs based on proximity to regions of increased vitamin D receptor binding to vitamin D response elements (VDREs, based on published ChiP-seq data. Among a subset of subjects with additional prediagnostic 25(OHD we tested multiplicative interactions between plasma 25(OHD and GRS's. We used fixed effects models to meta-analyze the three cohorts.The per allele multivariate OR was 1.12 (95% CI, 1.06-1.19 for GRS-proximalVDRE; and 1.10 (95% CI, 1.06-1.14 for GRS-nonproxVDRE. The lowest quartile of plasma 25(OHD compared with the highest, had a multivariate OR of 0.63 (95% CI, 0.48-0.82 for CRC. We did not observe any significant interactions between any GRSs and plasma 25(OHD.We did not observe evidence for the modification of genetic susceptibility for CRC according to vitamin D status, or evidence that the effect of common CRC risk alleles differed according to their proximity to putative VDR binding sites.

  18. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer.

    Science.gov (United States)

    Lesseur, Corina; Diergaarde, Brenda; Olshan, Andrew F; Wünsch-Filho, Victor; Ness, Andrew R; Liu, Geoffrey; Lacko, Martin; Eluf-Neto, José; Franceschi, Silvia; Lagiou, Pagona; Macfarlane, Gary J; Richiardi, Lorenzo; Boccia, Stefania; Polesel, Jerry; Kjaerheim, Kristina; Zaridze, David; Johansson, Mattias; Menezes, Ana M; Curado, Maria Paula; Robinson, Max; Ahrens, Wolfgang; Canova, Cristina; Znaor, Ariana; Castellsagué, Xavier; Conway, David I; Holcátová, Ivana; Mates, Dana; Vilensky, Marta; Healy, Claire M; Szeszenia-Dąbrowska, Neonila; Fabiánová, Eleonóra; Lissowska, Jolanta; Grandis, Jennifer R; Weissler, Mark C; Tajara, Eloiza H; Nunes, Fabio D; de Carvalho, Marcos B; Thomas, Steve; Hung, Rayjean J; Peters, Wilbert H M; Herrero, Rolando; Cadoni, Gabriella; Bueno-de-Mesquita, H Bas; Steffen, Annika; Agudo, Antonio; Shangina, Oxana; Xiao, Xiangjun; Gaborieau, Valérie; Chabrier, Amélie; Anantharaman, Devasena; Boffetta, Paolo; Amos, Christopher I; McKay, James D; Brennan, Paul

    2016-12-01

    We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10(-8)), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10(-9)). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10(-6)) than in HPV-negative (OR = 0.75, P = 0.16) cancers.

  19. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki;

    2016-01-01

    .05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER...

  20. Genome-wide Meta-analyses of Breast, Ovarian and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by At Least Two Cancer Types

    Science.gov (United States)

    Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether

    2016-01-01

    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10−5 in the three-cancer meta-analysis. PMID:27432226

  1. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    DEFF Research Database (Denmark)

    Garcia-Closas, M.; Hall, P.; Nevanlinna, H.

    2008-01-01

    A three-stage genome-wide association study recently identified single nucleotide polymorphisms ( SNPs) in five loci ( fibroblast growth receptor 2 ( FGFR2), trinucleotide repeat containing 9 ( TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte- specific protein 1 ( LSP1......)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival...... related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER- positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs...

  2. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  3. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm WR; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; TAN, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John WM; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dmitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert AEM; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul PDP; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-01-01

    Genome wide association studies (GWAS) and large scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS comprising of 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 controls from 41 studies genotyped on a 200K custom array (iCOGS). Analyses were restricted to women of European ancestry. Genotypes for more than 11M SNPs were generated by imputation using the 1000 Genomes Project reference panel. We identified 15 novel loci associated with breast cancer at P<5×10−8. Combining association analysis with ChIP-Seq data in mammary cell lines and ChIA-PET chromatin interaction data in ENCODE, we identified likely target genes in two regions: SETBP1 on 18q12.3 and RNF115 and PDZK1 on 1q21.1. One association appears to be driven by an amino-acid substitution in EXO1. PMID:25751625

  4. Interactions between breast cancer susceptibility loci and menopausal hormone therapy in relationship to breast cancer in the Breast and Prostate Cancer Cohort Consortium.

    Science.gov (United States)

    Gaudet, Mia M; Barrdahl, Myrto; Lindström, Sara; Travis, Ruth C; Auer, Paul L; Buring, Julie E; Chanock, Stephen J; Eliassen, A Heather; Gapstur, Susan M; Giles, Graham G; Gunter, Marc; Haiman, Christopher; Hunter, David J; Joshi, Amit D; Kaaks, Rudolf; Khaw, Kay-Tee; Lee, I-Min; Le Marchand, Loic; Milne, Roger L; Peeters, Petra H M; Sund, Malin; Tamimi, Rulla; Trichopoulou, Antonia; Weiderpass, Elisabete; Yang, Xiaohong R; Prentice, Ross L; Feigelson, Heather Spencer; Canzian, Federico; Kraft, Peter

    2016-02-01

    Current use of menopausal hormone therapy (MHT) has important implications for postmenopausal breast cancer risk, and observed associations might be modified by known breast cancer susceptibility loci. To provide the most comprehensive assessment of interactions of prospectively collected data on MHT and 17 confirmed susceptibility loci with invasive breast cancer risk, a nested case-control design among eight cohorts within the NCI Breast and Prostate Cancer Cohort Consortium was used. Based on data from 13,304 cases and 15,622 controls, multivariable-adjusted logistic regression analyses were used to estimate odds ratios (OR) and 95 % confidence intervals (CI). Effect modification of current and past use was evaluated on the multiplicative scale. P values breast cancer risk for the TT genotype (OR 1.79, 95 % CI 1.43-2.24; P interaction = 1.2 × 10(-4)) was less than expected on the multiplicative scale. There are no biological implications of the sub-multiplicative interaction between MHT and rs865686. Menopausal hormone therapy is unlikely to have a strong interaction with the common genetic variants associated with invasive breast cancer.

  5. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2.

    Science.gov (United States)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola; Maguire, Sarah; Novo, Daniela; Perrakis, Eleni; Johnson, Nichola; Ghoussaini, Maya; Hopper, John L; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Gibson, Lorna; Aitken, Zoe; Warren, Helen; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Chistof; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Sanchez, Marie; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Maria Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Hamann, Ute; Brauch, Hiltrud; Justenhoven, Christina; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Bogdanova, Natalia; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Chenevix-Trench, Georgia; Beesley, Jonathan; Lambrechts, Diether; Moisse, Matthieu; Floris, Guiseppe; Beuselinck, Benoit; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Pensotti, Valeria; Couch, Fergus J; Olson, Janet E; Slettedahl, Seth; Vachon, Celine; Giles, Graham G; Milne, Roger L; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Kristensen, Vessela; Alnæs, Grethe Grenaker; Nord, Silje; Borresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Van Asperen, Christi J; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Klevebring, Daniel; Hooning, Maartje J; Hollestelle, Antoinette; van Deurzen, Carolien H M; Kriege, Mieke; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Perkins, Barbara J; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Ashworth, Alan; Swerdlow, Anthony; Jones, Michael; Schoemaker, Minouk J; Meindl, Alfons; Schmutzler, Rita K; Olswold, Curtis; Slager, Susan; Toland, Amanda E; Yannoukakos, Drakoulis; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Matsuo, Keitaro; Ito, Hidema; Iwata, Hiroji; Ishiguro, Junko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Teo, Soo Hwang; Yip, Cheng Har; Kang, Peter; Ikram, Mohammad Kamran; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Lee, Soo Chin; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Wu, Pei-Ei; Hou, Ming-Feng; Yu, Jyh-Cherng; Shen, Chen-Yang; Blot, William; Cai, Qiuyin; Signorello, Lisa B; Luccarini, Craig; Bayes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Hunter, David J; Lindstrom, Sara; Dennis, Joe; Michailidou, Kyriaki; Bolla, Manjeet K; Easton, Douglas F; dos Santos Silva, Isabel; Fletcher, Olivia; Peto, Julian

    2015-05-15

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.

  6. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    NARCIS (Netherlands)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindstrom, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomaki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Francoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Mueller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; Silva, Isabel dos Santos; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, JoEllen; Schulz-Wendtland, Ruediger; Wilkens, Lynne R.; Van Den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of E

  7. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    Science.gov (United States)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola; Maguire, Sarah; Novo, Daniela; Perrakis, Eleni; Johnson, Nichola; Ghoussaini, Maya; Hopper, John L.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Schmidt, Marjanka K.; Broeks, Annegien; Van't Veer, Laura J.; Hogervorst, Frans B.; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Gibson, Lorna; Aitken, Zoe; Warren, Helen; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Chistof; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Sanchez, Marie; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Maria Pilar; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L.; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Hamann, Ute; Brauch, Hiltrud; Justenhoven, Christina; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Bogdanova, Natalia; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Beesley, Jonathan; Lambrechts, Diether; Moisse, Matthieu; Floris, Guiseppe; Beuselinck, Benoit; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Pensotti, Valeria; Couch, Fergus J.; Olson, Janet E.; Slettedahl, Seth; Vachon, Celine; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Kristensen, Vessela; Alnæs, Grethe Grenaker; Nord, Silje; Borresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robertus A. E. M.; Seynaeve, Caroline M.; Van Asperen, Christi J.; Garcia-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Klevebring, Daniel; Hooning, Maartje J.; Hollestelle, Antoinette; van Deurzen, Carolien H. M.; Kriege, Mieke; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Perkins, Barbara J.; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Ashworth, Alan; Swerdlow, Anthony; Jones, Michael; Schoemaker, Minouk J.; Meindl, Alfons; Schmutzler, Rita K.; Olswold, Curtis; Slager, Susan; Toland, Amanda E.; Yannoukakos, Drakoulis; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Matsuo, Keitaro; Ito, Hidema; Iwata, Hiroji; Ishiguro, Junko; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Teo, Soo Hwang; Yip, Cheng Har; Kang, Peter; Ikram, Mohammad Kamran; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Lee, Soo Chin; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Wu, Pei-Ei; Hou, Ming-Feng; Yu, Jyh-Cherng; Shen, Chen-Yang; Blot, William; Cai, Qiuyin; Signorello, Lisa B.; Luccarini, Craig; Bayes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S.; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Hunter, David J.; Lindstrom, Sara; Dennis, Joe; Michailidou, Kyriaki; Bolla, Manjeet K.; Easton, Douglas F.; dos Santos Silva, Isabel; Fletcher, Olivia; Peto, Julian

    2015-01-01

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88–0.92]; P-value = 1.58 × 10−25). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08–1.17]; P-value = 7.89 × 10−09) and rs13294895 (OR = 1.09 [1.06–1.12]; P-value = 2.97 × 10−11). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06–1.18]; P-value = 2.77 × 10−05). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis. PMID:25652398

  8. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics.

    Directory of Open Access Journals (Sweden)

    Montserrat Garcia-Closas

    2008-04-01

    Full Text Available A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs in five loci (fibroblast growth receptor 2 (FGFR2, trinucleotide repeat containing 9 (TNRC9, mitogen-activated protein kinase 3 K1 (MAP3K1, 8q24, and lymphocyte-specific protein 1 (LSP1 associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI = 1.31 (1.27-1.36 than ER-negative (1.08 (1.03-1.14 disease (P for heterogeneity = 10(-13. This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5, 10(-8, 0.013, respectively. The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4, respectively. The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312 showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21. rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97. The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding

  9. Association of GWAS-identified lung cancer susceptibility loci with survival length in patients with small-cell lung cancer treated with platinum-based chemotherapy.

    Directory of Open Access Journals (Sweden)

    Dong Li

    Full Text Available Genetic variants have been shown to affect length of survival in cancer patients. This study explored the association between lung cancer susceptibility loci tagged by single-nucleotide polymorphisms (SNPs identified in the genome-wide association studies and length of survival in small-cell lung cancer (SCLC. Eighteen SNPs were genotyped among 874 SCLC patients and Cox proportional hazards regression was used to examine the effects of genotype on survival length under an additive model with age, sex, smoking status and clinical stage as covariates. We identified 3 loci, 20q13.2 (rs4809957G >A, 22q12.2 (rs36600C >T and 5p15.33 (rs401681C >T, significantly associated with the survival time of SCLC patients. The adjusted hazard ratio (HR for patients with the rs4809957 GA or AA genotype was 0.80 (95% CI, 0.66-0.96; P = 0.0187 and 0.73 (95% CI, 0.55-0.96; P = 0.0263 compared with the GG genotype. Using the dominant model, the adjusted HR for patients carrying at least one T allele at rs36600 or rs401681 was 0.78 (95% CI, 0.63-0.96; P = 0.0199 and 1.29 (95% CI, 1.08-1.55; P = 0.0047, respectively, compared with the CC genotype. Stratification analyses showed that the significant associations of these 3 loci were only seen in smokers and male patients. The rs4809957 SNP was only significantly associated with length of survival of patients with extensive-stage but not limited-stage tumor. These results suggest that some of the lung cancer susceptibility loci might also affect the prognosis of SCLC.

  10. Association of eleven common, low-penetrance colorectal cancer susceptibility genetic variants at six risk loci with clinical outcome.

    Directory of Open Access Journals (Sweden)

    Janelle M Hoskins

    Full Text Available BACKGROUND: Low-penetrance genetic variants have been increasingly recognized to influence the risk of tumor development. Risk variants for colorectal cancer (CRC have been mapped to chromosome positions 8q23.3, 8q24, 9p24.1, 10p14, 11q23, 14q22.2, 15q13, 16q22.1, 18q21, 19q13.1 and 20p12.3. In particular, the 8q24 single nucleotide polymorphism (SNP, rs6983267, has reproducibly been associated with the risk of developing CRC. As the CRC risk SNPs may also influence disease outcome, thus in this study, we evaluated whether they influence patient survival. METHODOLOGY/PRINCIPAL FINDINGS: DNA samples from 583 CRC patients enrolled in the prospective, North Carolina Cancer Care Outcomes Research and Surveillance Consortium Study (NC CanCORS were genotyped for 11 CRC susceptibility SNPs at 6 CRC risk loci. Relationships between genotypes and patient survival were examined using Cox regression analysis. In multivariate analysis, patients homozygous for the CRC risk allele of rs7013278 or rs7014346 (both at 8 q24 were only nominally significant for poorer overall survival compared to patients homozygous for the protective allele (hazard ratio = 2.20 and 1.96, respectively; P<0.05. None of these associations, however, remained statistically significant after correction for multiple testing. The other nine susceptibility SNPs tested were not significantly associated with survival. CONCLUSIONS/SIGNIFICANCE: We did not find evidence of association of CRC risk variants with patient survival.

  11. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors.

    Science.gov (United States)

    Nickels, Stefan; Truong, Thérèse; Hein, Rebecca; Stevens, Kristen; Buck, Katharina; Behrens, Sabine; Eilber, Ursula; Schmidt, Martina; Häberle, Lothar; Vrieling, Alina; Gaudet, Mia; Figueroa, Jonine; Schoof, Nils; Spurdle, Amanda B; Rudolph, Anja; Fasching, Peter A; Hopper, John L; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Beckmann, Matthias W; Ekici, Arif B; Fletcher, Olivia; Gibson, Lorna; Silva, Isabel dos Santos; Peto, Julian; Humphreys, Manjeet K; Wang, Jean; Cordina-Duverger, Emilie; Menegaux, Florence; Nordestgaard, Børge G; Bojesen, Stig E; Lanng, Charlotte; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Clarke, Christina A; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Brauch, Hiltrud; Brüning, Thomas; Harth, Volker; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Smeets, Dominiek; Neven, Patrick; Paridaens, Robert; Flesch-Janys, Dieter; Obi, Nadia; Wang-Gohrke, Shan; Couch, Fergus J; Olson, Janet E; Vachon, Celine M; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Offit, Kenneth; John, Esther M; Miron, Alexander; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Chanock, Stephen J; Lissowska, Jolanta; Liu, Jianjun; Cox, Angela; Cramp, Helen; Connley, Dan; Balasubramanian, Sabapathy; Dunning, Alison M; Shah, Mitul; Trentham-Dietz, Amy; Newcomb, Polly; Titus, Linda; Egan, Kathleen; Cahoon, Elizabeth K; Rajaraman, Preetha; Sigurdson, Alice J; Doody, Michele M; Guénel, Pascal; Pharoah, Paul D P; Schmidt, Marjanka K; Hall, Per; Easton, Doug F; Garcia-Closas, Montserrat; Milne, Roger L; Chang-Claude, Jenny

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6)) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4)). Overall, the per-allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01-1.16) in nulliparous women and ranged from 1.03 (0.96-1.10) in parous women with one birth to 1.26 (1.16-1.37) in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85-0.98) in those with an alcohol intake of environmental risk factors.

  12. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    of stage 3, in which we evaluated 1,536 SNPs in 4,574 individuals with prostate cancer (cases) and 4,164 controls. We followed up ten new association signals through genotyping in 51,311 samples in 30 studies from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations...

  13. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have iden...

  14. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24

    DEFF Research Database (Denmark)

    Goode, Ellen L; Chenevix-Trench, Georgia; Song, Honglin;

    2010-01-01

    Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with foll...

  15. Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women.

    Science.gov (United States)

    Wang, Zhaoming; Seow, Wei Jie; Shiraishi, Kouya; Hsiung, Chao A; Matsuo, Keitaro; Liu, Jie; Chen, Kexin; Yamji, Taiki; Yang, Yang; Chang, I-Shou; Wu, Chen; Hong, Yun-Chul; Burdett, Laurie; Wyatt, Kathleen; Chung, Charles C; Li, Shengchao A; Yeager, Meredith; Hutchinson, Amy; Hu, Wei; Caporaso, Neil; Landi, Maria T; Chatterjee, Nilanjan; Song, Minsun; Fraumeni, Joseph F; Kohno, Takashi; Yokota, Jun; Kunitoh, Hideo; Ashikawa, Kyota; Momozawa, Yukihide; Daigo, Yataro; Mitsudomi, Tetsuya; Yatabe, Yasushi; Hida, Toyoaki; Hu, Zhibin; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Yin, Zhihua; Li, Xuelian; Ren, Yangwu; Guan, Peng; Chang, Jiang; Tan, Wen; Chen, Chien-Jen; Chang, Gee-Chen; Tsai, Ying-Huang; Su, Wu-Chou; Chen, Kuan-Yu; Huang, Ming-Shyan; Chen, Yuh-Min; Zheng, Hong; Li, Haixin; Cui, Ping; Guo, Huan; Xu, Ping; Liu, Li; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Park, Jae Yong; Kim, Yeul Hong; Sung, Jae Sook; Park, Kyong Hwa; Kim, Young Tae; Jung, Yoo Jin; Kang, Chang Hyun; Park, In Kyu; Kim, Hee Nam; Jeon, Hyo-Sung; Choi, Jin Eun; Choi, Yi Young; Kim, Jin Hee; Oh, In-Jae; Kim, Young-Chul; Sung, Sook Whan; Kim, Jun Suk; Yoon, Ho-Il; Kweon, Sun-Seog; Shin, Min-Ho; Seow, Adeline; Chen, Ying; Lim, Wei-Yen; Liu, Jianjun; Wong, Maria Pik; Lee, Victor Ho Fun; Bassig, Bryan A; Tucker, Margaret; Berndt, Sonja I; Chow, Wong-Ho; Ji, Bu-Tian; Wang, Junwen; Xu, Jun; Sihoe, Alan Dart Loon; Ho, James C M; Chan, John K C; Wang, Jiu-Cun; Lu, Daru; Zhao, Xueying; Zhao, Zhenhong; Wu, Junjie; Chen, Hongyan; Jin, Li; Wei, Fusheng; Wu, Guoping; An, She-Juan; Zhang, Xu-Chao; Su, Jian; Wu, Yi-Long; Gao, Yu-Tang; Xiang, Yong-Bing; He, Xingzhou; Li, Jihua; Zheng, Wei; Shu, Xiao-Ou; Cai, Qiuyin; Klein, Robert; Pao, William; Lawrence, Charles; Hosgood, H Dean; Hsiao, Chin-Fu; Chien, Li-Hsin; Chen, Ying-Hsiang; Chen, Chung-Hsing; Wang, Wen-Chang; Chen, Chih-Yi; Wang, Chih-Liang; Yu, Chong-Jen; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Li, Yao-Jen; Yang, Tsung-Ying; Lin, Chien-Chung; Yang, Pan-Chyr; Wu, Tangchun; Lin, Dongxin; Zhou, Baosen; Yu, Jinming; Shen, Hongbing; Kubo, Michiaki; Chanock, Stephen J; Rothman, Nathaniel; Lan, Qing

    2016-02-01

    Genome-wide association studies (GWAS) of lung cancer in Asian never-smoking women have previously identified six susceptibility loci associated with lung cancer risk. To further discover new susceptibility loci, we imputed data from four GWAS of Asian non-smoking female lung cancer (6877 cases and 6277 controls) using the 1000 Genomes Project (Phase 1 Release 3) data as the reference and genotyped additional samples (5878 cases and 7046 controls) for possible replication. In our meta-analysis, three new loci achieved genome-wide significance, marked by single nucleotide polymorphism (SNP) rs7741164 at 6p21.1 (per-allele odds ratio (OR) = 1.17; P = 5.8 × 10(-13)), rs72658409 at 9p21.3 (per-allele OR = 0.77; P = 1.41 × 10(-10)) and rs11610143 at 12q13.13 (per-allele OR = 0.89; P = 4.96 × 10(-9)). These findings identified new genetic susceptibility alleles for lung cancer in never-smoking women in Asia and merit follow-up to understand their biological underpinnings.

  16. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors.

    Directory of Open Access Journals (Sweden)

    Stefan Nickels

    Full Text Available Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6 and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4. Overall, the per-allele odds ratio (95% confidence interval for LSP1-rs3817198 was 1.08 (1.01-1.16 in nulliparous women and ranged from 1.03 (0.96-1.10 in parous women with one birth to 1.26 (1.16-1.37 in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85-0.98 in those with an alcohol intake of <20 g/day and 1.45 (1.14-1.85 in those who drank ≥ 20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3 × 10(-5, with a per-allele OR of 1.14 (1.11-1.17 in parous women and 0.98 (0.92-1.05 in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors.

  17. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci

    Science.gov (United States)

    Rothman, Nathaniel; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Malats, Nuria; Wu, Xifeng; Figueroa, Jonine; Real, Francisco X; Van Den Berg, David; Matullo, Giuseppe; Baris, Dalsu; Thun, Michael; Kiemeney, Lambertus A; Vineis, Paolo; De Vivo, Immaculata; Albanes, Demetrius; Purdue, Mark P; Rafnar, Thorunn; Hildebrandt, Michelle A T; Kiltie, Anne E; Cussenot, Olivier; Golka, Klaus; Kumar, Rajiv; Taylor, Jack A; Mayordomo, Jose I; Jacobs, Kevin B; Kogevinas, Manolis; Hutchinson, Amy; Wang, Zhaoming; Fu, Yi-Ping; Prokunina-Olsson, Ludmila; Burdette, Laurie; Yeager, Meredith; Wheeler, William; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Johnson, Alison; Schwenn, Molly; Karagas, Margaret R; Schned, Alan; Andriole, Gerald; Grubb, Robert; Black, Amanda; Jacobs, Eric J; Diver, W Ryan; Gapstur, Susan M; Weinstein, Stephanie J; Virtamo, Jarmo; Cortessis, Victoria K; Gago-Dominguez, Manuela; Pike, Malcolm C; Stern, Mariana C; Yuan, Jian-Min; Hunter, David; McGrath, Monica; Dinney, Colin P; Czerniak, Bogdan; Chen, Meng; Yang, Hushan; Vermeulen, Sita H; Aben, Katja K; Witjes, J Alfred; Makkinje, Remco R; Sulem, Patrick; Besenbacher, Soren; Stefansson, Kari; Riboli, Elio; Brennan, Paul; Panico, Salvatore; Navarro, Carmen; Allen, Naomi E; Bueno-de-Mesquita, H Bas; Trichopoulos, Dimitrios; Caporaso, Neil; Landi, Maria Teresa; Canzian, Federico; Ljungberg, Borje; Tjonneland, Anne; Clavel-Chapelon, Francoise; Bishop, David T; Teo, Mark T W; Knowles, Margaret A; Guarrera, Simonetta; Polidoro, Silvia; Ricceri, Fulvio; Sacerdote, Carlotta; Allione, Alessandra; Cancel-Tassin, Geraldine; Selinski, Silvia; Hengstler, Jan G; Dietrich, Holger; Fletcher, Tony; Rudnai, Peter; Gurzau, Eugen; Koppova, Kvetoslava; Bolick, Sophia C E; Godfrey, Ashley; Xu, Zongli; Sanz-Velez, José I; García-Prats, María D; Sanchez, Manuel; Valdivia, Gabriel; Porru, Stefano; Benhamou, Simone; Hoover, Robert N; Fraumeni, Joseph F; Silverman, Debra T; Chanock, Stephen J

    2010-01-01

    We conducted a multi-stage, genome-wide association study (GWAS) of bladder cancer with a primary scan of 589,299 single nucleotide polymorphisms (SNPs) in 3,532 cases and 5,120 controls of European descent (5 studies) followed by a replication strategy, which included 8,381 cases and 48,275 controls (16 studies). In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1; rs1014971, (P=8×10−12) maps to a non-genic region of chromosome 22q13.1; rs8102137 (P=2×10−11) on 19q12 maps to CCNE1; and rs11892031 (P=1×10−7) maps to the UGT1A cluster on 2q37.1. We confirmed four previous GWAS associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P=4×10−11) and a tag SNP for NAT2 acetylation status (P=4×10−11), as well as demonstrated smoking interactions with both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into mechanisms of carcinogenesis. PMID:20972438

  18. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    NARCIS (Netherlands)

    Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.C.; Chatterjee, N.; Hu, W.; Wong, M.P.; Zheng, W.; Caporaso, N.; Park, J.Y.; Chen, C.J.; Kim, Y.H.; Kim, Y.T.; Landi, M.T.; Shen, H.; Lawrence, C.; Burdett, L.; Yeager, M.; Yuenger, J.; Jacobs, K.B.; Chang, I.S.; Mitsudomi, T.; Kim, H.N.; Chang, G.C.; Bassig, B.A.; Tucker, M.; Wei, F.; Yin, Y.; Wu, C.; An, S.J.; Qian, B.; Lee, V.H.; Lu, D.; Liu, J.; Jeon, H.S.; Hsiao, C.F.; Sung, J.S.; Kim, J.H.; Gao, Y.T.; Tsai, Y.H.; Jung, Y.J.; Guo, H.; Hu, Z.; Hutchinson, A.; Wang, W.C.; Klein, R.; Chung, C.C.; Oh, I.J.; Chen, K.Y.; Berndt, S.I.; He, X.; Wu, W.; Chang, J.; Zhang, X.C.; Huang, M.S.; Zheng, H.; Wang, J.; Zhao, X.; Li, Y.; Choi, J.E.; Su, W.C.; Park, K.H.; Sung, S.W.; Shu, X.O.; Chen, Y.M.; Liu, L.; Kang, C.H.; Hu, L.; Chen, C.H.; Pao, W.; Kim, Y.C.; Yang, T.Y.; Xu, J.; Guan, P.; Tan, W.; Su, J.; Wang, C.L.; Li, H.; Sihoe, A.D.; Zhao, Z.; Chen, Y.; Choi, Y.Y.; Hung, J.Y.; Kim, J.S.; Yoon, H.I.; Cai, Q.; Lin, C.C.; Park, I.K.; Xu, P.; Dong, J.; Kim, C.; He, Q; Perng, R.P.; Kohno, T.; Kweon, S.S.; Chen, C.Y.; Vermeulen, R.; Wu, J.; Lim, W.Y.; Chen, K.C.; Chow, W.H.; Ji, B.T.; Chan, J.K.; Chu, M.; Li, Y.J.; Yokota, J.; Li, J.; Chen, H.; Xiang, Y.B.; Yu, C.J.; Kunitoh, H.; Wu, G.; Jin, L.; Lo, Y.L.; Shiraishi, K.; Chen, Y.H.; Lin, H.C.; Wu, T.; WU, Y.; Yang, P.C.; Zhou, B.; Shin, M.H.; Fraumeni, J.F.; Lin, D.; Chanock, S.J.; Rothman, N.

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland Ch

  19. An investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors

    Science.gov (United States)

    Rudolph, Anja; Milne, Roger L.; Truong, Thérèse; Knight, Julia A.; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Dunning, Alison M.; Shah, Mitul; Munday, Hannah R.; Darabi, Hatef; Eriksson, Mikael; Brand, Judith S.; Olson, Janet; Vachon, Celine M.; Hallberg, Emily; Castelao, J. Esteban; Carracedo, Angel; Torres, Maria; Li, Jingmei; Humphreys, Keith; Cordina-Duverger, Emilie; Menegaux, Florence; Flyger, Henrik; Nordestgaard, Børge G.; Nielsen, Sune F.; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Engelhardt, Ellen G.; Broeks, Annegien; Rutgers, Emiel J.; Glendon, Gord; Mulligan, Anna Marie; Cross, Simon; Reed, Malcolm; Gonzalez-Neira, Anna; Perez, José Ignacio Arias; Provenzano, Elena; Apicella, Carmel; Southey, Melissa C.; Spurdle, Amanda; Investigators, kConFab; Group, AOCS; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; McLean, Catriona; Baglietto, Laura; Chanock, Stephen J.; Lissowska, Jolanta; Sherman, Mark E.; Brüning, Thomas; Hamann, Ute; Ko, Yon-Dschun; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Mannermaa, Arto; Swerdlow, Anthony; Giles, Graham G.; Brenner, Hermann; Fasching, Peter A.; Chenevix-Trench, Georgia; Hopper, John; Benítez, Javier; Cox, Angela; Andrulis, Irene L.; Lambrechts, Diether; Gago-Dominguez, Manuela; Couch, Fergus; Czene, Kamila; Bojesen, Stig E.; Easton, Doug F.; Schmidt, Marjanka K.; Guénel, Pascal; Hall, Per; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Chang-Claude, Jenny

    2014-01-01

    A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (pint) <1.1×10−3. None of the observed interactions was significant after accounting for multiple testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative BC risk in women ≥170cm (OR=1.22, p=0.017), but inversely associated with ER-negative BC risk in women <160cm (OR=0.83, p=0.039, pint=1.9×10−4). The inverse association between rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies (OR=0.85, p=2.0×10−4), and absent in women who had had just one (OR=0.96, p=0.19, pint = 6.1×10−4). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR=0.93, p=2.8×10−5), but no association was observed in current smokers (OR=1.07, p=0.14, pint = 3.4×10−4). In conclusion, recently identified breast cancer susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies. PMID:25227710

  20. A comprehensive analysis of genome-wide association studies to identify prostate cancer susceptibility loci for the Romanian population.

    Science.gov (United States)

    Rădăvoi, George Daniel; Pricop, Cătălin; Jinga, Viorel; Mateş, Dana; Rădoi, Viorica Elena; Jinga, Mariana; Ursu, Radu Ioan; Bratu, Ovidiu Gabriel; Mischianu, Dan Liviu Dorel; Iordache, Paul

    2016-01-01

    The aim of this study is to examine a large dataset of single nucleotide polymorphism known to be associated with prostate cancer from previous genome-wide association studies and create a dataset of single nucleotide polymorphisms that can be used in replication studies for the Romanian population. This study will define a list of markers showing a significant association with this phenotype. We propose the results of this study as a starting point for any Romanian genome-wide association studies researching the genetic susceptibility for prostate cancer.

  1. Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Benlloch, Sara; Antoniou, Antonis C

    2015-01-01

    BACKGROUND: Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. METHODS: We genotyped 2...

  2. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci

    Science.gov (United States)

    Kachuri, Linda; Amos, Christopher I.; McKay, James D.; Johansson, Mattias; Vineis, Paolo; Bueno-de-Mesquita, H.Bas; Boutron-Ruault, Marie-Christine; Johansson, Mikael; Quirós, J.Ramón; Sieri, Sabina; Travis, Ruth C.; Weiderpass, Elisabete; Le Marchand, Loic; Henderson, Brian E.; Wilkens, Lynne; Goodman, Gary E.; Chen, Chu; Doherty, Jennifer A.; Christiani, David C.; Wei, Yongyue; Su, Li; Tworoger, Shelley; Zhang, Xuehong; Kraft, Peter; Zaridze, David; Field, John K.; Marcus, Michael W.; Davies, Michael P.A.; Hyde, Russell; Caporaso, Neil E.; Landi, Maria Teresa; Severi, Gianluca; Giles, Graham G.; Liu, Geoffrey; McLaughlin, John R.; Li, Yafang; Xiao, Xiangjun; Fehringer, Gord; Zong, Xuchen; Denroche, Robert E.; Zuzarte, Philip C.; McPherson, John D.; Brennan, Paul; Hung, Rayjean J.

    2016-01-01

    Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study were identified through a targeted deep sequencing (average depth of coverage greater than 4000×) of 576 individuals. Subsequently, 4652 SNPs, including 1108 novel SNPs, were genotyped in 5164 cases and 5716 controls of European ancestry. After adjusting for known risk loci, rs2736100 and rs401681, we identified a new, independent lung cancer susceptibility variant in LPCAT1: rs139852726 (OR = 0.46, P = 4.73×10–9), and three new adenocarcinoma risk variants in TERT: rs61748181 (OR = 0.53, P = 2.64×10–6), rs112290073 (OR = 1.85, P = 1.27×10–5), rs138895564 (OR = 2.16, P = 2.06×10–5; among young cases, OR = 3.77, P = 8.41×10–4). In addition, we found that rs139852726 (P = 1.44×10–3) was associated with telomere length in a sample of 922 healthy individuals. The gene-based SKAT-O analysis implicated TERT as the most relevant gene in the 5p15.33 region for adenocarcinoma (P = 7.84×10–7) and lung cancer (P = 2.37×10–5) risk. In this largest fine-mapping study to investigate a large number of rare and novel variants within 5p15.33, we identified novel lung and adenocarcinoma susceptibility loci with large effects and provided support for the role of telomere length as the potential underlying mechanism. PMID:26590902

  3. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci.

    Science.gov (United States)

    Kachuri, Linda; Amos, Christopher I; McKay, James D; Johansson, Mattias; Vineis, Paolo; Bueno-de-Mesquita, H Bas; Boutron-Ruault, Marie-Christine; Johansson, Mikael; Quirós, J Ramón; Sieri, Sabina; Travis, Ruth C; Weiderpass, Elisabete; Le Marchand, Loic; Henderson, Brian E; Wilkens, Lynne; Goodman, Gary E; Chen, Chu; Doherty, Jennifer A; Christiani, David C; Wei, Yongyue; Su, Li; Tworoger, Shelley; Zhang, Xuehong; Kraft, Peter; Zaridze, David; Field, John K; Marcus, Michael W; Davies, Michael P A; Hyde, Russell; Caporaso, Neil E; Landi, Maria Teresa; Severi, Gianluca; Giles, Graham G; Liu, Geoffrey; McLaughlin, John R; Li, Yafang; Xiao, Xiangjun; Fehringer, Gord; Zong, Xuchen; Denroche, Robert E; Zuzarte, Philip C; McPherson, John D; Brennan, Paul; Hung, Rayjean J

    2016-01-01

    Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study were identified through a targeted deep sequencing (average depth of coverage greater than 4000×) of 576 individuals. Subsequently, 4652 SNPs, including 1108 novel SNPs, were genotyped in 5164 cases and 5716 controls of European ancestry. After adjusting for known risk loci, rs2736100 and rs401681, we identified a new, independent lung cancer susceptibility variant in LPCAT1: rs139852726 (OR = 0.46, P = 4.73×10(-9)), and three new adenocarcinoma risk variants in TERT: rs61748181 (OR = 0.53, P = 2.64×10(-6)), rs112290073 (OR = 1.85, P = 1.27×10(-5)), rs138895564 (OR = 2.16, P = 2.06×10(-5); among young cases, OR = 3.77, P = 8.41×10(-4)). In addition, we found that rs139852726 (P = 1.44×10(-3)) was associated with telomere length in a sample of 922 healthy individuals. The gene-based SKAT-O analysis implicated TERT as the most relevant gene in the 5p15.33 region for adenocarcinoma (P = 7.84×10(-7)) and lung cancer (P = 2.37×10(-5)) risk. In this largest fine-mapping study to investigate a large number of rare and novel variants within 5p15.33, we identified novel lung and adenocarcinoma susceptibility loci with large effects and provided support for the role of telomere length as the potential underlying mechanism.

  4. Associations of Genetic Variants at Nongenic Susceptibility Loci with Breast Cancer Risk and Heterogeneity by Tumor Subtype in Southern Han Chinese Women

    Directory of Open Access Journals (Sweden)

    Huiying Liang

    2016-01-01

    Full Text Available Current understanding of cancer genomes is mainly “gene centric.” However, GWAS have identified some nongenic breast cancer susceptibility loci. Validation studies showed inconsistent results among different populations. To further explore this inconsistency and to investigate associations by intrinsic subtype (Luminal-A, Luminal-B, ER−&PR−&HER2+, and triple negative among Southern Han Chinese women, we genotyped five nongenic polymorphisms (2q35: rs13387042, 5p12: rs981782 and rs4415084, and 8q24: rs1562430 and rs13281615 using MassARRAY IPLEX platform in 609 patients and 882 controls. Significant associations with breast cancer were observed for rs13387042 and rs4415084 with OR (95% CI per-allele 1.29 (1.00–1.66 and 0.83 (0.71–0.97, respectively. In subtype specific analysis, rs13387042 (per-allele adjusted OR = 1.36, 95% CI = 1.00–1.87 and rs4415084 (per-allele adjusted OR = 0.82, 95% CI = 0.66–1.00 showed slightly significant association with Luminal-A subtype; however, only rs13387042 was associated with ER−&PR−&HER2+ tumors (per-allele adjusted OR = 1.55, 95% CI = 1.00–2.40, and none of them were linked to Luminal-B and triple negative subtype. Collectively, nongenic SNPs were heterogeneous according to the intrinsic subtype. Further studies with larger datasets along with intrinsic subtype categorization should explore and confirm the role of these variants in increasing breast cancer risk.

  5. An investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors

    OpenAIRE

    Rudolph, Anja; Milne, Roger L; Truong, Thérèse; Knight, Julia A; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Alison M Dunning; Shah, Mitul; Munday, Hannah R.; Darabi, Hatef

    2014-01-01

    A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC.

  6. Despite shared susceptibility loci, esophageal squamous cell carcinoma embraces more familial cancer than gastric cardia adenocarcinoma in the Taihang Mountains high-risk region of northern central China

    Institute of Scientific and Technical Information of China (English)

    WEN Deng-gui; YANG Yi; WEN Xiao-duo; SHAN Bao-en

    2013-01-01

    Background In China,esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) share susceptibility loci,but different rates of multiple primary cancer and male/female ratio suggest the proportion of familial cancer is not equal.Methods The percent of cases with a positive family history,median onset age,rate of multiple primary cancer,and male/female ratio associated with upper,middle,lower third ESCC and GCA were compared to reveal the proportion of familial cancer.The 7267 subjects analyzed constituted all ESCC and GCA cases in whom the cancer was resected with cure intention between 1970 and 1994 at the 4th Hospital of Hebei Medical University.Results A positive family history for cancer was most often associated with the multiple primary ESCC and/or GCA cases,e.g.with 42% of the males and 59% of the females.For upper,middle,lower third ESCC and GCA,the percent of cases with a positive family history decreased by 38.5%,26.3%,26.5%,and 11.2% in males (P <0.000) and 25.0%,22.3%,23.9%,and 9.8% in females (P <0.0001).Median onset age increased from 49,52,55,to 56 years old in males and from 50,53,55,to 56 years old in females (both P <0.0001) for upper,middle,lower third ESCC and GCA.Male/female ratio increased from 2.2,2.1,2.2,to 6.2:1 for upper,middle,lower third ESCC and GCA (P<0.0001).For upper,middle,lower third ESCC and GCA,the percent of multiple primary cancers decreased from 21.2%,2.3%,2.2%,to 1.5% in males and from 14.3%,2.4%,3.4%,to 3.1% in females.The preponderance of males,smoking,drinking,or onset-age ≥50 years was significantly higher in GCA than in ESCC,and the difference in the rates of multiple primary cancers between the preponderant and the non-preponderant cases was significant in GCA,but not in ESCC,suggesting non-equal requirement for genetic susceptibility when environmental hazards did not exist.Conclusions The proportion of familial cancer in upper gastrointestinal

  7. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors.

    Science.gov (United States)

    Rudolph, Anja; Milne, Roger L; Truong, Thérèse; Knight, Julia A; Seibold, Petra; Flesch-Janys, Dieter; Behrens, Sabine; Eilber, Ursula; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dunning, Alison M; Shah, Mitul; Munday, Hannah R; Darabi, Hatef; Eriksson, Mikael; Brand, Judith S; Olson, Janet; Vachon, Celine M; Hallberg, Emily; Castelao, J Esteban; Carracedo, Angel; Torres, Maria; Li, Jingmei; Humphreys, Keith; Cordina-Duverger, Emilie; Menegaux, Florence; Flyger, Henrik; Nordestgaard, Børge G; Nielsen, Sune F; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Engelhardt, Ellen G; Broeks, Annegien; Rutgers, Emiel J; Glendon, Gord; Mulligan, Anna Marie; Cross, Simon; Reed, Malcolm; Gonzalez-Neira, Anna; Arias Perez, José Ignacio; Provenzano, Elena; Apicella, Carmel; Southey, Melissa C; Spurdle, Amanda; Häberle, Lothar; Beckmann, Matthias W; Ekici, Arif B; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; McLean, Catriona; Baglietto, Laura; Chanock, Stephen J; Lissowska, Jolanta; Sherman, Mark E; Brüning, Thomas; Hamann, Ute; Ko, Yon-Dschun; Orr, Nick; Schoemaker, Minouk; Ashworth, Alan; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M; Mannermaa, Arto; Swerdlow, Anthony; Giles, Graham G; Brenner, Hermann; Fasching, Peter A; Chenevix-Trench, Georgia; Hopper, John; Benítez, Javier; Cox, Angela; Andrulis, Irene L; Lambrechts, Diether; Gago-Dominguez, Manuela; Couch, Fergus; Czene, Kamila; Bojesen, Stig E; Easton, Doug F; Schmidt, Marjanka K; Guénel, Pascal; Hall, Per; Pharoah, Paul D P; Garcia-Closas, Montserrat; Chang-Claude, Jenny

    2015-03-15

    A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (pint ) factors and the observed potential interactions require confirmation in independent studies.

  8. Commentary on "identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array." COGS-Cancer Research UK GWAS-ELLIPSE (part of GAME-ON) Initiative; Australian Prostate Cancer Bioresource; UK Genetic Prostate Cancer Study Collaborators/British Association

    DEFF Research Database (Denmark)

    Olumi, Aria F; Nordestgaard, Børge G.

    2014-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international...... by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies....

  9. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Kote-Jarai, Zsofia; Schumacher, Fredrick R

    2013-01-01

    Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS inc...

  10. HLA-DP is the cervical cancer susceptibility loci among women infected by high-risk human papillomavirus: potential implication for triage of human papillomavirus-positive women.

    Science.gov (United States)

    Jia, Meiqun; Han, Jing; Hang, Dong; Jiang, Jie; Wang, Minjie; Wei, Baojun; Dai, Juncheng; Zhang, Kai; Guo, Lanwei; Qi, Jun; Ma, Hongxia; Shi, Jufang; Ren, Jiansong; Hu, Zhibin; Dai, Min; Li, Ni

    2016-06-01

    Given that only a small proportion of women infected by high-risk human papillomavirus (hrHPV) develop cervical cancer, it's important to identify biomarkers for distinguishing women with hrHPV positivity who might develop cervical cancer from the transient infections. In this study, we hypothesized that human leukocyte antigens (HLA) susceptibility alleles might contribute to cervical cancer risk among females infected by hrHPV, and interact with hrHPV types. A case-control study with 593 cervical cancer cases and 407 controls (all hrHPV positive) was conducted to evaluate the effect of eight HLA-related single-nucleotide polymorphisms (SNPs) and their interactions with hrHPV types on the risk of cervical cancer. Three HLA-DP SNPs (rs4282438, rs3117027, and rs3077) were found to be significantly associated with risk of cervical cancer (rs4282438: odds ratio (OR) = 0.72, 95 % confidence interval (CI) = 0.56-0.93; rs3117027: OR = 1.41, 95 % CI = 1.10-1.83; and rs3077: OR = 1.37, 95 % CI = 1.04-1.80) among women infected with hrHPV. An additive interaction between HPV16 and rs4282438 for cervical cancer risk was also found (P for interaction = 0.002). Compared with subjects carrying variant genotypes (GG/TG) and non-HPV16 infections, those carrying wild-type genotype (TT) of rs4282438 and HPV16 positive had a 5.22-fold increased risk of cervical cancer (95 % CI = 3.39-8.04). Our study supported that certain HLA-DP alleles in concert with HPV16 could have a predisposition for cervical cancer development, which may be translated for triage of hrHPV-positive women.

  11. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali

    2016-01-01

    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349...

  12. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33

    Science.gov (United States)

    Petersen, Gloria M.; Amundadottir, Laufey; Fuchs, Charles S.; Kraft, Peter; Stolzenberg-Solomon, Rachael Z.; Jacobs, Kevin B.; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Gallinger, Steven; Gross, Myron; Helzlsouer, Kathy; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Li, Donghui; Mandelson, Margaret T.; Olson, Sara H.; Risch, Harvey A.; Zheng, Wei; Albanes, Demetrius; Bamlet, William R.; Berg, Christine D.; Boutron-Ruault, Marie-Christine; Buring, Julie E.; Bracci, Paige M.; Canzian, Federico; Clipp, Sandra; Cotterchio, Michelle; de Andrade, Mariza; Duell, Eric J.; Gaziano, J. Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hassan, Manal; Howard, Barbara; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Kaaks, Rudolf; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; Lynch, Shannon M.; McWilliams, Robert R.; Mendelsohn, Julie B.; Michaud, Dominique S.; Parikh, Hemang; Patel, Alpa V.; Peeters, Petra H.M.; Rajkovic, Aleksandar; Riboli, Elio; Rodriguez, Laudina; Seminara, Daniela; Shu, Xiao-Ou; Thomas, Gilles; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Van Den Eeden, Stephen K.; Virtamo, Jarmo; Wactawski-Wende, Jean; Wang, Zhaoming; Wolpin, Brian M.; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Fraumeni, Joseph F.; Hoover, Robert N.; Hartge, Patricia; Chanock, Stephen J.

    2010-01-01

    We conducted a genome-wide association study (GWAS) of pancreatic cancer in 3,851 cases and 3,934 controls drawn from twelve prospective cohort studies and eight case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P=3.27×10−11; per allele odds ratio, OR 1.26, 95% CI=1.18-1.35) and rs9564966 (P=5.86×10−8; per allele OR 1.21, 95% CI=1.13-1.30) map to a non-genic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2; the strongest signal was rs3790844 (P=2.45×10−10; per allele OR 0.77, 95% CI=0.71-0.84). A single SNP, rs401681 (P=3.66×10−7; per allele OR 1.19, 95% CI=1.11-1.27) maps to the CLPTM1L-TERT locus on 5p15.33, associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies. PMID:20101243

  13. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium.

    NARCIS (Netherlands)

    Truong, T.; Hung, R.J.; Amos, C.I.; Wu, X.; Bickeboller, H.; Rosenberger, A.; Sauter, W.; Illig, T.; Wichmann, H.E.; Risch, A.; Dienemann, H.; Kaaks, R.; Yang, P.; Jiang, R.; Wiencke, J.K.; Wrensch, M.; Hansen, H.; Kelsey, K.T.; Matsuo, K.; Tajima, K.; Schwartz, A.G.; Wenzlaff, A.; Seow, A.; Ying, C.; Staratschek-Jox, A.; Nurnberg, P.; Stoelben, E.; Wolf, J.; Lazarus, P.; Muscat, J.E.; Gallagher, C.J.; Zienolddiny, S.; Haugen, A.; Heijden, H.F. van der; Kiemeney, L.A.L.M.; Isla, D.; Mayordomo, J.I.; Rafnar, T.; Stefansson, K.; Zhang, Z.F.; Chang, S.C.; Kim, J.H.; Hong, Y.C.; Duell, E.J.; Andrew, A.S.; Lejbkowicz, F.; Rennert, G.; Muller, H.; Brenner, H.; Marchand, L. le; Benhamou, S.; Bouchardy, C.; Teare, M.D.; Xue, X.; McLaughlin, J.; Liu, G.; McKay, J.D.; Brennan, P.; Spitz, M.R.

    2010-01-01

    BACKGROUND: Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we cond

  14. Genome-wide search for strabismus susceptibility loci.

    Directory of Open Access Journals (Sweden)

    Fujiwara H

    2003-06-01

    Full Text Available The purpose of this study was to search for chromosomal susceptibility loci for comitant strabismus. Genomic DNA was isolated from 10mL blood taken from each member of 30 nuclear families in which 2 or more siblings are affected by either esotropia or exotropia. A genome-wide search was performed with amplification by polymerase chain reaction of 400 markers in microsatellite regions with approximately 10 cM resolution. For each locus, non-parametric affected sib-pair analysis and non-parametric linkage analysis for multiple pedigrees (Genehunter software, http://linkage.rockefeller.edu/soft/ were used to calculate multipoint lod scores and non-parametric linkage (NPL scores, respectively. In sib-pair analysis, lod scores showed basically flat lines with several peaks of 0.25 on all chromosomes. In non-parametric linkage analysis for multiple pedigrees, NPL scores showed one peak as high as 1.34 on chromosomes 1, 2, 4, 7, 10, 15, and 16, while 2 such peaks were found on chromosomes 3, 9, 11, 12, 18, and 20. Non-parametric linkage analysis for multiple pedigrees of 30 families with comitant strabismus suggested a number of chromosomal susceptibility loci. Our ongoing study involving a larger number of families will refine the accuracy of statistical analysis to pinpoint susceptibility loci for comitant strabismus.

  15. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci.

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo.

  16. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Directory of Open Access Journals (Sweden)

    Chang eShen

    2016-02-01

    Full Text Available Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association studies (GWASs. More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWASs. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo, such as immunoregulatory function, melanocyte regulation and so on. A number of susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in vitiligo development.

  17. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10...

  18. Unmasking risk loci: DNA methylation illuminates the biology of cancer predisposition: analyzing DNA methylation of transcriptional enhancers reveals missed regulatory links between cancer risk loci and genes.

    Science.gov (United States)

    Aran, Dvir; Hellman, Asaf

    2014-02-01

    Paradoxically, DNA sequence polymorphisms in cancer risk loci rarely correlate with the expression of cancer genes. Therefore, the molecular mechanism underlying an individual's susceptibility to cancer has remained largely unknown. However, recent evaluations of the correlations between DNA methylation and gene expression levels across healthy and cancerous genomes have revealed enrichment of disease-related DNA methylation variations within disease-associated risk loci. Moreover, it appears that transcriptional enhancers embedded in cancer risk loci often contain DNA methylation sites that closely define the expression of prominent cancer genes, despite the lack of significant correlations between gene expression levels and the surrounding disease-associated polymorphic sequences. We suggest that DNA methylation variations may obscure the effect of co-residing risk sequence alleles. Analysis of enhancer methylation data may help to reveal the regulatory circuits underlying predisposition to cancers and other common diseases.

  19. Comprehensive SNP scan of DNA repair and DNA damage response genes reveal multiple susceptibility loci conferring risk to tobacco associated leukoplakia and oral cancer.

    Science.gov (United States)

    Mondal, Pinaki; Datta, Sayantan; Maiti, Guru Prasad; Baral, Aradhita; Jha, Ganga Nath; Panda, Chinmay Kumar; Chowdhury, Shantanu; Ghosh, Saurabh; Roy, Bidyut; Roychoudhury, Susanta

    2013-01-01

    Polymorphic variants of DNA repair and damage response genes play major role in carcinogenesis. These variants are suspected as predisposition factors to Oral Squamous Cell Carcinoma (OSCC). For identification of susceptible variants affecting OSCC development in Indian population, the "maximally informative" method of SNP selection from HapMap data to non-HapMap populations was applied. Three hundred twenty-five SNPs from 11 key genes involved in double strand break repair, mismatch repair and DNA damage response pathways were genotyped on a total of 373 OSCC, 253 leukoplakia and 535 unrelated control individuals. The significantly associated SNPs were validated in an additional cohort of 144 OSCC patients and 160 controls. The rs12515548 of MSH3 showed significant association with OSCC both in the discovery and validation phases (discovery P-value: 1.43E-05, replication P-value: 4.84E-03). Two SNPs (rs12360870 of MRE11A, P-value: 2.37E-07 and rs7003908 of PRKDC, P-value: 7.99E-05) were found to be significantly associated only with leukoplakia. Stratification of subjects based on amount of tobacco consumption identified SNPs that were associated with either high or low tobacco exposed group. The study reveals a synergism between associated SNPs and lifestyle factors in predisposition to OSCC and leukoplakia.

  20. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

    Science.gov (United States)

    Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979

  1. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    Science.gov (United States)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Silva, Isabel dos Santos; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Van’t Veer, Laura J; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ~9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10−8). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility. PMID:23535729

  2. Obesity susceptibility loci and uncontrolled eating, emotional eating and cognitive restraint behaviors in men and women

    OpenAIRE

    Cornelis, Marilyn C.; Rimm, Eric B; Curhan, Gary C.; Kraft, Peter; Hunter, David J; Hu, Frank B; Van Dam, Rob M.

    2013-01-01

    Objective: Many confirmed genetic loci for obesity are expressed in regions of the brain that regulate energy intake and reward-seeking behavior. Whether these loci contribute to the development of specific eating behaviors has not been investigated. We examined the relationship between a genetic susceptibility to obesity and cognitive restraint, uncontrolled and emotional eating. Design and Methods Eating behavior and body mass index (BMI) were determined by questionnaires for 1471 men and 2...

  3. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    Science.gov (United States)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H.; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab HH; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda WJH; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M.; Stubhaug, Audun; Nielsen, Christopher S; Männikkä, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn MJM; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno

    2017-01-01

    Migraine is a debilitating neurological disorder affecting around 1 in 7 people worldwide, but its molecular mechanisms remain poorly understood. Some debate exists over whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we performed the largest genetic study of migraine to date, comprising 59,674 cases and 316,078 controls from 22 GWA studies. We identified 44 independent single nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10−8) that map to 38 distinct genomic loci, including 28 loci not previously reported and the first locus identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies. PMID:27322543

  4. Mechanisms of inherited cancer susceptibility

    Institute of Scientific and Technical Information of China (English)

    Shirley HODGSON

    2008-01-01

    A small proportion of many cancers are due to inherited mutations in genes, which result in a high risk to the individual of developing specific cancers. There are several classes of genes that may be involved: tumour suppressor genes, oncogenes, genes encoding proteins involved in DNA repair and cell cycle control, and genes involved in stimulating the angiogenic pathway. Alterations in susceptibility to cancer may also be due to variations in genes involved in carcinogen metabolism. This review discusses examples of some of these genes and the associated clinical conditions caused by the inheritance of mutations in such genes.

  5. Novel genetic loci associated with prostate cancer in the Japanese population

    Institute of Scientific and Technical Information of China (English)

    Yin Sun; Jiaoti Huang

    2011-01-01

    @@ Takata et al.1 recently reported in Nature Genetics that they have identified five nove associated with prostate cancer in the Japanese population.Using most updated Illumina Quad BeadChip to genotype 3001 prostate cancer patients and 5415 control subjects,they identified263 single-nucleotide polymorphisms(SNPs)showing significant association with prostate cancer in Japan.Further analysis indicated that 80 SNPs reside in the previously known regions,and five of them are novel susceptibility loci associated with the prostate cancer.

  6. Multiple susceptibility loci for radiation-induced mammary tumorigenesis in F2[Dahl S x R]-intercross rats.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Although two major breast cancer susceptibility genes, BRCA1 and BRCA2, have been identified accounting for 20% of breast cancer genetic risk, identification of other susceptibility genes accounting for 80% risk remains a challenge due to the complex, multi-factorial nature of breast cancer. Complexity derives from multiple genetic determinants, permutations of gene-environment interactions, along with presumptive low-penetrance of breast cancer predisposing genes, and genetic heterogeneity of human populations. As with other complex diseases, dissection of genetic determinants in animal models provides key insight since genetic heterogeneity and environmental factors can be experimentally controlled, thus facilitating the detection of quantitative trait loci (QTL. We therefore, performed the first genome-wide scan for loci contributing to radiation-induced mammary tumorigenesis in female F2-(Dahl S x R-intercross rats. Tumorigenesis was measured as tumor burden index (TBI after induction of rat mammary tumors at forty days of age via ¹²⁷Cs-radiation. We observed a spectrum of tumor latency, size-progression, and pathology from poorly differentiated ductal adenocarcinoma to fibroadenoma, indicating major effects of gene-environment interactions. We identified two mammary tumorigenesis susceptibility quantitative trait loci (Mts-QTLs with significant linkage: Mts-1 on chromosome-9 (LOD-2.98 and Mts-2 on chromosome-1 (LOD-2.61, as well as two Mts-QTLs with suggestive linkage: Mts-3 on chromosome-5 (LOD-1.93 and Mts-4 on chromosome-18 (LOD-1.54. Interestingly, Chr9-Mts-1, Chr5-Mts-3 and Chr18-Mts-4 QTLs are unique to irradiation-induced mammary tumorigenesis, while Chr1-Mts-2 QTL overlaps with a mammary cancer susceptibility QTL (Mcs 3 reported for 7,12-dimethylbenz-[α]antracene (DMBA-induced mammary tumorigenesis in F2[COP x Wistar-Furth]-intercross rats. Altogether, our results suggest at least three distinct susceptibility QTLs for

  7. Multiple susceptibility loci for radiation-induced mammary tumorigenesis in F2[Dahl S x R]-intercross rats.

    Science.gov (United States)

    Herrera, Victoria L; Ponce, Lorenz R; Ruiz-Opazo, Nelson

    2013-01-01

    Although two major breast cancer susceptibility genes, BRCA1 and BRCA2, have been identified accounting for 20% of breast cancer genetic risk, identification of other susceptibility genes accounting for 80% risk remains a challenge due to the complex, multi-factorial nature of breast cancer. Complexity derives from multiple genetic determinants, permutations of gene-environment interactions, along with presumptive low-penetrance of breast cancer predisposing genes, and genetic heterogeneity of human populations. As with other complex diseases, dissection of genetic determinants in animal models provides key insight since genetic heterogeneity and environmental factors can be experimentally controlled, thus facilitating the detection of quantitative trait loci (QTL). We therefore, performed the first genome-wide scan for loci contributing to radiation-induced mammary tumorigenesis in female F2-(Dahl S x R)-intercross rats. Tumorigenesis was measured as tumor burden index (TBI) after induction of rat mammary tumors at forty days of age via ¹²⁷Cs-radiation. We observed a spectrum of tumor latency, size-progression, and pathology from poorly differentiated ductal adenocarcinoma to fibroadenoma, indicating major effects of gene-environment interactions. We identified two mammary tumorigenesis susceptibility quantitative trait loci (Mts-QTLs) with significant linkage: Mts-1 on chromosome-9 (LOD-2.98) and Mts-2 on chromosome-1 (LOD-2.61), as well as two Mts-QTLs with suggestive linkage: Mts-3 on chromosome-5 (LOD-1.93) and Mts-4 on chromosome-18 (LOD-1.54). Interestingly, Chr9-Mts-1, Chr5-Mts-3 and Chr18-Mts-4 QTLs are unique to irradiation-induced mammary tumorigenesis, while Chr1-Mts-2 QTL overlaps with a mammary cancer susceptibility QTL (Mcs 3) reported for 7,12-dimethylbenz-[α]antracene (DMBA)-induced mammary tumorigenesis in F2[COP x Wistar-Furth]-intercross rats. Altogether, our results suggest at least three distinct susceptibility QTLs for irradiation

  8. Investigation of single nucleotide polymorphism loci susceptible to degradation by ultraviolet light.

    Science.gov (United States)

    Machida, Mitsuyo; Taki, Takashi; Shimada, Ryo; Kibayashi, Kazuhiko

    2016-10-01

    DNA in biological fluids is often degraded by environmental factors. Given that single nucleotide polymorphism (SNP) analyses require shorter amplicons than short tandem repeat (STR) analyses do, their use in human identification using degraded samples has recently attracted attention. Although various SNP loci are used to analyze degraded samples, it is unclear which ones are more appropriate. To characterize and identify SNP loci that are susceptible or resistant to degradation, we artificially degraded DNA, obtained from buccal swabs from 11 volunteers, by exposure to ultraviolet (UV) light for different durations (254 nm for 5, 15, 30, 60, or 120 min) and analyzed the resulting SNP loci. DNA degradation was assessed using gel electrophoresis, STR, and SNP profiling. DNA fragmentation occurred within 5 min of UV irradiation, and successful STR and SNP profiling decreased with increasing duration. However, 73% of SNP loci were still detected correctly in DNA samples irradiated for 120 min, a dose that rendered STR loci undetectable. The unsuccessful SNP typing and the base call failure of nucleotides neighboring the SNPs were traced to rs1031825, and we found that this SNP was susceptible to UV light. When comparing the detection efficiencies of STR and SNP loci, SNP typing was more successful than STR typing, making it effective when using degraded DNA. However, it is important to use rs1031825 with caution when interpreting SNP analyses of degraded DNA.

  9. Identification of multiple independent susceptibility loci in the HLA region in Behcet's disease

    NARCIS (Netherlands)

    Hughes, Travis; Coit, Patrick; Adler, Adam; Yilmaz, Vuslat; Aksu, Kenan; Duzgun, Nursen; Keser, Gokhan; Cefle, Ayse; Yazici, Ayten; Ergen, Andac; Alpsoy, Erkan; Salvarani, Carlo; Casali, Bruno; Koetter, Ina; Gutierrez-Achury, Javier; Wijmenga, Cisca; Direskeneli, Haner; Saruhan-Direskeneli, Guher; Sawalha, Amr H.

    2013-01-01

    Behcet's disease is an inflammatory disease characterized by recurrent oral and genital ulcers and significant organ involvement. Localizing the genetic association between HLA-B*51 and Behcet's disease and exploring additional susceptibility loci in the human leukocyte antigen (HLA) region are comp

  10. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci

    Science.gov (United States)

    Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C.; Simeon, Carmen P.; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A.; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M.; D'alfonso, Sandra; Vonk, Madelon C.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K.; Arnett, Frank; Zhou, Xiaodong; Reveille, John D.; Gorlova, Olga; Koeleman, Bobby P.C.; Radstake, Timothy R.D.J.; Vyse, Timothy; Mayes, Maureen D.; Alarcón-Riquelme, Marta E.; Martin, Javier

    2013-01-01

    Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21 109 (6835 cases and 14 274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10−11, OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10−11, OR = 1.20) and JAZF1 (P = 1.11 × 10−8, OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity. PMID:23740937

  11. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity

    NARCIS (Netherlands)

    Tsoi, Lam C.; Spain, Sarah L.; Knight, Jo; Ellinghaus, Eva; Stuart, Philip E.; Capon, Francesca; Ding, Jun; Li, Yanming; Tejasvi, Trilokraj; Gudjonsson, Johann E.; Kang, Hyun M.; Allen, Michael H.; McManus, Ross; Novelli, Giuseppe; Samuelsson, Lena; Schalkwijk, Joost; Stahle, Mona; Burden, A. David; Smith, Catherine H.; Cork, Michael J.; Estivill, Xavier; Bowcock, Anne M.; Krueger, Gerald G.; Weger, Wolfgang; Worthington, Jane; Tazi-Ahnini, Rachid; Nestle, Frank O.; Hayday, Adrian; Hoffmann, Per; Winkelmann, Juliane; Wijmenga, Cisca; Langford, Cordelia; Edkins, Sarah; Andrews, Robert; Blackburn, Hannah; Strange, Amy; Band, Gavin; Pearson, Richard D.; Vukcevic, Damjan; Spencer, Chris C. A.; Deloukas, Panos; Mrowietz, Ulrich; Schreiber, Stefan; Weidinger, Stephan; Koks, Sulev; Kingo, Kuelli; Esko, Tonu; Metspalu, Andres; Lim, Henry W.; Voorhees, John J.; Weichenthal, Michael; Wichmann, H. Erich; Chandran, Vinod; Rosen, Cheryl F.; Rahman, Proton; Gladman, Dafna D.; Griffiths, Christopher E. M.; Reis, Andre; Kere, Juha; Nair, Rajan P.; Franke, Andre; Barker, Jonathan N. W. N.; Abecasis, Goncalo R.; Elder, James T.; Trembath, Richard C.; Duffin, Kristina Callis; Helms, Cindy; Goldgar, David; Li, Yun; Paschall, Justin; Malloy, Mary J.; Pullinger, Clive R.; Kane, John P.; Gardner, Jennifer; Perlmutter, Amy; Miner, Andrew; Feng, Bing Jian; Hiremagalore, Ravi; Ike, Robert W.; Christophers, Enno; Henseler, Tilo; Ruether, Andreas; Schrodi, Steven J.; Prahalad, Sampath; Guthery, Stephen L.; Fischer, Judith; Liao, Wilson; Kwok, Pui; Menter, Alan; Lathrop, G. Mark; Wise, C.; Begovich, Ann B.; Onoufriadis, Alexandros; Weale, Michael E.; Hofer, Angelika; Salmhofer, Wolfgang; Wolf, Peter; Kainu, Kati; Saarialho-Kere, Ulpu; Suomela, Sari; Badorf, Petra; Hueffmeier, Ulrike; Kurrat, Werner; Kuester, Wolfgang; Lascorz, Jesus; Moessner, Rotraut; Schuermeier-Horst, Funda; Staender, Markward; Traupe, Heiko; Bergboer, Judith G. M.; den Heijer, Martin; van de Kerkhof, Peter C.; Zeeuwen, Patrick L. J. M.; Barnes, Louise; Campbell, Linda E.; Cusack, Caitriona; Coleman, Ciara; Conroy, Judith; Ennis, Sean; Fitzgerald, Oliver; Gallagher, Phil; Irvine, Alan D.; Kirby, Brian; Markham, Trevor; McLean, W. H. Irwin; McPartlin, Joe; Rogers, Sarah F.; Ryan, Anthony W.; Zawirska, Agnieszka; Giardina, Emiliano; Lepre, Tiziana; Perricone, Carlo; Martin-Ezquerra, Gemma; Pujol, Ramon M.; Riveira-Munoz, Eva; Inerot, Annica; Naluai, Asa T.; Mallbris, Lotus; Wolk, Katarina; Leman, Joyce; Barton, Anne; Warren, Richard B.; Young, Helen S.; Ricaño Ponce, Isis; Trynka, Gosia; Pellett, Fawnda J.; Henschel, Andrew; Aurand, Marin; Bebo, Bruce; Gieger, Christian; Illig, Thomas; Moebus, Susanne; Joeckel, Karl-Heinz; Erbe, Raimund; Donnelly, Peter; Peltonen, Leena; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Craddock, Nicholas; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; McCarthy, Mark I.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Samani, Nilesh; Viswanathan, Ananth C.; Wood, Nicholas W.; Bellenguez, Celine; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Su, Zhan; Hunt, Sarah E.; Gwilliam, Rhian; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Perez, Marc L.; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela

    2012-01-01

    To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36

  12. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci.

    Science.gov (United States)

    Martin, Jose-Ezequiel; Assassi, Shervin; Diaz-Gallo, Lina-Marcela; Broen, Jasper C; Simeon, Carmen P; Castellvi, Ivan; Vicente-Rabaneda, Esther; Fonollosa, Vicente; Ortego-Centeno, Norberto; González-Gay, Miguel A; Espinosa, Gerard; Carreira, Patricia; Camps, Mayte; Sabio, Jose M; D'alfonso, Sandra; Vonk, Madelon C; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Kreuter, Alexander; Witte, Torsten; Riemekasten, Gabriella; Hunzelmann, Nicolas; Airo, Paolo; Beretta, Lorenzo; Scorza, Raffaella; Lunardi, Claudio; Van Laar, Jacob; Chee, Meng May; Worthington, Jane; Herrick, Arianne; Denton, Christopher; Fonseca, Carmen; Tan, Filemon K; Arnett, Frank; Zhou, Xiaodong; Reveille, John D; Gorlova, Olga; Koeleman, Bobby P C; Radstake, Timothy R D J; Vyse, Timothy; Mayes, Maureen D; Alarcón-Riquelme, Marta E; Martin, Javier

    2013-10-01

    Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21,109 (6835 cases and 14,274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10(-11), OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10(-11), OR = 1.20) and JAZF1 (P = 1.11 × 10(-8), OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity.

  13. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of Euro

  14. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1

    Science.gov (United States)

    Cai, Qiuyin; Zhang, Ben; Sung, Hyuna; Low, Siew-Kee; Kweon, Sun-Seog; Lu, Wei; Shi, Jiajun; Long, Jirong; Wen, Wanqing; Choi, Ji-Yeob; Noh, Dong-Young; Shen, Chen-Yang; Matsuo, Keitaro; Teo, Soo-Hwang; Kim, Mi Kyung; Khoo, Ui Soon; Iwasaki, Motoki; Hartman, Mikael; Takahashi, Atsushi; Ashikawa, Kyota; Matsuda, Koichi; Shin, Min-Ho; Park, Min Ho; Zheng, Ying; Xiang, Yong-Bing; Ji, Bu-Tian; Park, Sue K.; Wu, Pei-Ei; Hsiung, Chia-Ni; Ito, Hidemi; Kasuga, Yoshio; Kang, Peter; Mariapun, Shivaani; Ahn, Sei Hyun; Kang, Han Sung; Chan, Kelvin Y. K.; Man, Ellen P. S.; Iwata, Hiroji; Tsugane, Shoichiro; Miao, Hui; Liao, Jiemin; Nakamura, Yusuke; Kubo, Michiaki; Delahanty, Ryan J.; Zhang, Yanfeng; Li, Bingshan; Li, Chun; Gao, Yu-Tang; Shu, Xiao-Ou; Kang, Daehee; Zheng, Wei

    2014-01-01

    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified three novel genetic loci associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene, P = 8.82 × 10−9), rs10474352 at 5q14.3 (near the ARRDC3 gene, P = 1.67 × 10−9), and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene, P = 4.25 × 10−8). These associations were replicated in European-ancestry populations including 16,003 cases and 41,335 controls (P = 0.030, 0.004, and 0.010, respectively). Data from the ENCODE project suggest that variants rs4951011 and rs10474352 may be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer. PMID:25038754

  15. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S

    2016-01-01

    changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single......Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular......-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P

  16. Evaluation of two putative susceptibility loci for oral clefts in the Danish population

    DEFF Research Database (Denmark)

    Mitchell, L E; Murray, J C; O'Brien, S;

    2001-01-01

    Previous studies suggest that the risk of nonsyndromic cleft lip with or without cleft palate (CL+/-P) and isolated cleft palate (CP) is influenced by genetic variation at several loci and that the relation between specific genetic variants and disease risk may be modified by environmental factors....... The present study evaluated potential associations between CL+/-P and CP and two putative clefting susceptibility loci, MSX1 and TGFB3, using data from a nationwide case-control study conducted in Denmark from 1991 to 1994. The potential effects of interactions between these genes and two common environmental...

  17. Search for new breast cancer susceptibility genes

    NARCIS (Netherlands)

    Oldenburg, Rogier Abel

    2008-01-01

    This thesis describes the search for new high-risk breast cancer susceptibility genes by linkage analysis. To date 20-25% of familial breast cancer is explained by mutations in the high-risk BRCA1 and BRCA2 breast cancer susceptibility genes. For the remaining families the genetic etiology is unknow

  18. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    Science.gov (United States)

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  19. The localization of type 2 diabetes susceptibility gene loci in northern Chinese Han families

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We conducted a genome-wide scan,in which 358 well distributed fluorescent dye-labe- led microsatellite marker sets were applied in 32 Chinese Han type 2 diabetes families from Northern China to search for the susceptibility gene loci.The data collected from screening all the chromosomes of genome were genotyped by using genescan and genotyping software,then,parametric and non-parametric multipoint test,and affected sib-pair analysis as well,were used to analyze the data.We identified some susceptibility gene loci residing in chromosomes 1,12,18,20,respectively,or precisely,located around D1S214,D1S207,D1S218,D1S235,D12S336,D18S61 and D20S118.The comparison of this result with those from other regions and races reflected the complexity and heterogeneity of type 2 diabetes.

  20. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases......) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P

  1. Whole-genome association studies of alcoholism with loci linked to schizophrenia susceptibility

    OpenAIRE

    Kim Youngchul; Namkung Junghyun; Park Taesung

    2005-01-01

    Abstract Background Alcoholism is a complex disease. There have been many reports on significant comorbidity between alcoholism and schizophrenia. For the genetic study of complex diseases, association analysis has been recommended because of its higher power than that of the linkage analysis for detecting genes with modest effects on disease. Results To identify alcoholism susceptibility loci, we performed genome-wide single-nucleotide polymorphisms (SNP) association tests, which yielded 489...

  2. Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap

    Science.gov (United States)

    Hinks, Anne; Cobb, Joanna; Sudman, Marc; Eyre, Stephen; Martin, Paul; Flynn, Edward; Packham, Jonathon; Barton, Anne; Worthington, Jane; Langefeld, Carl D; Glass, David N; Thompson, Susan D; Thomson, Wendy

    2012-01-01

    Objectives Rheumatoid arthritis (RA) shares some similar clinical and pathological features with juvenile idiopathic arthritis (JIA); indeed, the strategy of investigating whether RA susceptibility loci also confer susceptibility to JIA has already proved highly successful in identifying novel JIA loci. A plethora of newly validated RA loci has been reported in the past year. Therefore, the aim of this study was to investigate these single nucleotide polymorphisms (SNP) to determine if they were also associated with JIA. Methods Thirty-four SNP that showed validated association with RA and had not been investigated previously in the UK JIA cohort were genotyped in JIA cases (n=1242), healthy controls (n=4281), and data were extracted for approximately 5380 UK Caucasian controls from the Wellcome Trust Case–Control Consortium 2. Genotype and allele frequencies were compared between cases with JIA and controls using PLINK. A replication cohort of 813 JIA cases and 3058 controls from the USA was available for validation of any significant findings. Results Thirteen SNP showed significant association (p<0.05) with JIA and for all but one the direction of association was the same as in RA. Of the eight loci that were tested, three showed significant association in the US cohort. Conclusions A novel JIA susceptibility locus was identified, CD247, which represents another JIA susceptibility gene whose protein product is important in T-cell activation and signalling. The authors have also confirmed association of the PTPN2 and IL2RA genes with JIA, both reaching genome-wide significance in the combined analysis. PMID:22294642

  3. ENVIRONMENTAL FACTORS AFFECTING BREAST CANCER SUSCEPTIBILITY

    Science.gov (United States)

    Environmental Factors Affecting Breast Cancer SusceptibilitySuzanne. E. FentonUS EPA, ORD, MD-67 NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711.Breast cancer is still the most common malignancy afflicting women in the Western world. Alt...

  4. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.

    Science.gov (United States)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno

    2016-08-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

  5. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms

    Science.gov (United States)

    Horikoshi, Momoko; Pasquali, Lorenzo; Wiltshire, Steven; Huyghe, Jeroen R.; Mahajan, Anubha; Asimit, Jennifer L.; Ferreira, Teresa; Locke, Adam E.; Robertson, Neil R.; Wang, Xu; Sim, Xueling; Fujita, Hayato; Hara, Kazuo; Young, Robin; Zhang, Weihua; Choi, Sungkyoung; Chen, Han; Kaur, Ismeet; Takeuchi, Fumihiko; Fontanillas, Pierre; Thuillier, Dorothée; Yengo, Loic; Below, Jennifer E.; Tam, Claudia H.T.; Wu, Ying; Abecasis, Gonçalo; Altshuler, David; Bell, Graeme I.; Blangero, John; Burtt, Noél P.; Duggirala, Ravindranath; Florez, Jose C.; Hanis, Craig L.; Seielstad, Mark; Atzmon, Gil; Chan, Juliana C.N.; Ma, Ronald C.W.; Froguel, Philippe; Wilson, James G.; Bharadwaj, Dwaipayan; Dupuis, Josee; Meigs, James B.; Cho, Yoon Shin; Park, Taesung; Kooner, Jaspal S.; Chambers, John C.; Saleheen, Danish; Kadowaki, Takashi; Tai, E. Shyong; Mohlke, Karen L.; Cox, Nancy J.; Ferrer, Jorge; Zeggini, Eleftheria; Kato, Norihiro; Teo, Yik Ying; Boehnke, Michael; McCarthy, Mark I.; Morris, Andrew P.

    2016-01-01

    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci. PMID:26911676

  6. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene

    NARCIS (Netherlands)

    Rafnar, T.; Vermeulen, H.H.M.; Sulem, P.; Thorleifsson, G.; Aben, K.K.H.; Witjes, J.A.; Grotenhuis, A.J.; Verhaegh, G.W.C.T.; Hulsbergen- van de Kaa, C.A.; Besenbacher, S.; Gudbjartsson, D.; Stacey, S.N.; Gudmundsson, J.; Johannsdottir, H.; Bjarnason, H.; Zanon, C.; Helgadottir, H.; Jonasson, J.G.; Tryggvadottir, L.; Jonsson, E.; Geirsson, G.; Nikulasson, S.; Petursdottir, V.; Bishop, D.T.; Chung-Sak, S.; Choudhury, A.; Elliott, F.; Barrett, J.H.; Knowles, M.A.; Verdier, P. de; Ryk, C.; Lindblom, A.; Rudnai, P.; Gurzau, E.; Koppova, K.; Vineis, P.; Polidoro, S.; Guarrera, S.; Sacerdote, C.; Panadero, A.; Sanz-Velez, J.I.; Sanchez, M.; Valdivia, G.; Garcia-Prats, M.D.; Hengstler, J.G.; Selinski, S.; Gerullis, H.; Ovsiannikov, D.; Khezri, A.; Aminsharifi, A.; Malekzadeh, M.; Berg, L.H. van den; Ophoff, R.A.; Veldink, J.H.; Zeegers, M.P.; Kellen, E.; Fostinelli, J.; Andreoli, D.; Arici, C.; Porru, S.; Buntinx, F.; Ghaderi, A.; Golka, K.; Mayordomo, J.I.; Matullo, G.; Kumar, R.; Steineck, G.; Kiltie, A.E.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K.; Kiemeney, L.A.L.M.

    2011-01-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European G

  7. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    OpenAIRE

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wid...

  8. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    OpenAIRE

    Chang eShen; Jing eGao; Yu Jun Sheng; Jinfa eDou; Fusheng eZhou; Xiaodong eZheng; Randy eKo; Xianfa eTang; Caihong Hong Zhu; Xianyong Yong Yin; Liangdan Dan Sun; Yong eCui; Xue Jun Zhang

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association stud...

  9. Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects

    Science.gov (United States)

    Lamb, J; Barnby, G; Bonora, E; Sykes, N; Bacchelli, E; Blasi, F; Maestrini, E; Broxholme, J; Tzenova, J; Weeks, D; Bailey, A; Monaco, A; the, I

    2005-01-01

    Background and methods: Autism is a severe neurodevelopmental disorder, which has a complex genetic predisposition. The ratio of males to females affected by autism is approximately 4:1, suggesting that sex specific factors are involved in its development. We reported previously the results of a genomewide screen for autism susceptibility loci in 83 affected sibling pairs (ASP), and follow up analysis in 152 ASP. Here, we report analysis of an expanded sample of 219 ASP, using sex and parent of origin linkage modelling at loci on chromosomes 2, 7, 9, 15, and 16. Results: The results suggest that linkage to chromosomes 7q and 16p is contributed largely by the male–male ASP (MLS = 2.55 v 0.12, and MLS = 2.48 v 0.00, for the 145 male–male and 74 male–female/female–female ASP on chromosomes 7 and 16 respectively). Conversely linkage to chromosome 15q appears to be attributable to the male–female/female–female ASP (MLS = 2.62 v 0.00, for non-male and male–male ASP respectively). On chromosomes 2 and 9, all ASP contribute to linkage. These data, supported by permutation, suggest a possible sex limited effect of susceptibility loci on chromosomes 7, 15, and 16. Parent of origin linkage modelling indicates two distinct regions of paternal and maternal identity by descent sharing on chromosome 7 (paternal MLS = 1.46 at ∼112 cM, and maternal MLS = 1.83 at ∼135 cM; corresponding maternal and paternal MLS = 0.53 and 0.28 respectively), and maternal specific sharing on chromosome 9 (maternal MLS = 1.99 at ∼30 cM; paternal MLS = 0.02). Conclusion: These data support the possibility of two discrete loci underlying linkage of autism to chromosome 7, and implicate possible parent of origin specific effects in the aetiology of autism. PMID:15689451

  10. A genome-wide association study identifies potential susceptibility loci for Hirschsprung disease.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyun Kim

    Full Text Available Hirschsprung disease (HSCR is a congenital and heterogeneous disorder characterized by the absence of intramural nervous plexuses along variable lengths of the hindgut. Although RET is a well-established risk factor, a recent genome-wide association study (GWAS of HSCR has identified NRG1 as an additional susceptibility locus. To discover additional risk loci, we performed a GWAS of 123 sporadic HSCR patients and 432 unaffected controls using a large-scale platform with coverage of over 1 million polymorphic markers. The result was that our study replicated the findings of RET-CSGALNACT2-RASGEF1A genomic region (rawP = 5.69×10(-19 before a Bonferroni correction; corrP = 4.31×10(-13 after a Bonferroni correction and NRG1 as susceptibility loci. In addition, this study identified SLC6A20 (adjP = 2.71×10(-6, RORA (adjP = 1.26×10(-5, and ABCC9 (adjP = 1.86×10(-5 as new potential susceptibility loci under adjusting the already known loci on the RET-CSGALNACT2-RASGEF1A and NRG1 regions, although none of the SNPs in these genes passed the Bonferroni correction. In further subgroup analysis, the RET-CSGALNACT2-RASGEF1A genomic region was observed to have different significance levels among subgroups: short-segment (S-HSCR, corrP = 1.71×10(-5, long-segment (L-HSCR, corrP = 6.66×10(-4, and total colonic aganglionosis (TCA, corrP>0.05. This differential pattern in the significance level suggests that other genomic loci or mechanisms may affect the length of aganglionosis in HSCR subgroups during enteric nervous system (ENS development. Although functional evaluations are needed, our findings might facilitate improved understanding of the mechanisms of HSCR pathogenesis.

  11. Metabolic polymorphisms and cancer susceptibility.

    Science.gov (United States)

    Smith, G; Stanley, L A; Sim, E; Strange, R C; Wolf, C R

    1995-01-01

    The vast majority of cancers arise as a consequence of exposure to environmental agents that are toxic or mutagenic. In response to this, all higher organisms have evolved complex mechanisms by which they can protect themselves from environmental challenge. In many cases, this involves an adaptive response in which the levels of expression of enzymes active in the metabolism and detoxification of the foreign chemical are induced. The best characterized of these enzyme systems are the cytochrome P450s, the GSTs and the NATs. An unfortunate consequence of many of these reactions, however, is the creation of a toxic or mutagenic reaction product from chemicals that require metabolic activation before realizing their full carcinogenic potential. Altered expression of one or more of these drug metabolizing enzymes can therefore be predicted to have profound toxicological consequences. Genetic polymorphisms with well defined associated phenotypes have now been characterized in P450, GST and NAT genes. Indeed, many of these polymorphisms have been associated with decreased or increased metabolism of many tumour promoters and chemical carcinogens and hence offer protection against or increased susceptibility to many distinct tumour types.

  12. The association of genome-wide significant spirometric loci with chronic obstructive pulmonary disease susceptibility.

    Science.gov (United States)

    Castaldi, Peter J; Cho, Michael H; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lomas, David A; Anderson, Wayne; Beaty, Terri H; Hokanson, John E; Crapo, James D; Laird, Nan; Silverman, Edwin K

    2011-12-01

    Two recent metaanalyses of genome-wide association studies conducted by the CHARGE and SpiroMeta consortia identified novel loci yielding evidence of association at or near genome-wide significance (GWS) with FEV(1) and FEV(1)/FVC. We hypothesized that a subset of these markers would also be associated with chronic obstructive pulmonary disease (COPD) susceptibility. Thirty-two single-nucleotide polymorphisms (SNPs) in or near 17 genes in 11 previously identified GWS spirometric genomic regions were tested for association with COPD status in four COPD case-control study samples (NETT/NAS, the Norway case-control study, ECLIPSE, and the first 1,000 subjects in COPDGene; total sample size, 3,456 cases and 1,906 controls). In addition to testing the 32 spirometric GWS SNPs, we tested a dense panel of imputed HapMap2 SNP markers from the 17 genes located near the 32 GWS SNPs and in a set of 21 well studied COPD candidate genes. Of the previously identified GWS spirometric genomic regions, three loci harbored SNPs associated with COPD susceptibility at a 5% false discovery rate: the 4q24 locus including FLJ20184/INTS12/GSTCD/NPNT, the 6p21 locus including AGER and PPT2, and the 5q33 locus including ADAM19. In conclusion, markers previously associated at or near GWS with spirometric measures were tested for association with COPD status in data from four COPD case-control studies, and three loci showed evidence of association with COPD susceptibility at a 5% false discovery rate.

  13. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers

    DEFF Research Database (Denmark)

    Plant, Darren; Flynn, Edward; Mbarek, Hamdi;

    2010-01-01

    Genetic factors have a substantial role in determining development of rheumatoid arthritis (RA), and are likely to account for 50-60% of disease susceptibility. Genome-wide association studies have identified non-human leucocyte antigen RA susceptibility loci which associate with RA with low-to-m...

  14. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Objectives. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-based case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel art and Falconer methods were used to analyze the segregation ratio and heritability. Polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significartly, OR is 3.905 ( 95 % CI = 1.079 ~ 14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blood relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LOH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome aberrations were observed. Conclusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  15. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Obieaites. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-besed case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel-Gart and Falconer methods were used to analyze the segregation ratio and heritability. Polymemse chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significantly, OR is 3.905(95% CI = 1.079—14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blnod relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LDH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome abermtions were observed.Condusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  16. Investigation of type 1 diabetes and coeliac disease susceptibility loci for association with juvenile idiopathic arthritis

    Science.gov (United States)

    Hinks, Anne; Martin, Paul; Flynn, Edward; Eyre, Steve; Packham, Jon; Barton, Anne; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background There is strong evidence suggesting that juvenile idiopathic arthritis (JIA) shares many susceptibility loci with other autoimmune diseases. Objective To investigate variants robustly associated with type 1 diabetes (T1D) or coeliac disease (CD) for association with JIA. Methods Sixteen single-nucleotide polymorphisms (SNPs) already identified as susceptibility loci for T1D/CD were selected for genotyping in patients with JIA (n=1054) and healthy controls (n=3129). Genotype and allele frequencies were compared using the Cochrane–Armitage trend test implemented in PLINK. Results One SNP in the LPP gene, rs1464510, showed significant association with JIA (ptrend=0.002, OR=1.18, 95% CI 1.06 to 1.30). A second SNP, rs653178 in ATXN2, also showed nominal evidence for association with JIA (ptrend=0.02, OR=1.13, 95% CI 1.02 to 1.25). The SNP, rs17810546, in IL12A showed subtype-specific association with enthesitis-related arthritis (ERA) subtype (ptrend=0.005, OR=1.88, 95% CI 1.2 to 2.94). Conclusions Evidence for a novel JIA susceptibility locus, LPP, is presented. Association at the SH2B3/ATXN2 locus, previously reported to be associated with JIA in a US series, also supports this region as contributing to JIA susceptibility. In addition, a subtype-specific association of IL12A with ERA is identified. All findings will require validation in independent JIA cohorts. PMID:20647273

  17. SUSCEPTIBILITY LOCI FOR UMBILICAL HERNIA IN SWINE DETECTED BY GENOME-WIDE ASSOCIATION.

    Science.gov (United States)

    Liao, X J; Lia, L; Zhang, Z Y; Long, Y; Yang, B; Ruan, G R; Su, Y; Ai, H S; Zhang, W C; Deng, W Y; Xiao, S J; Ren, J; Ding, N S; Huang, L S

    2015-10-01

    Umbilical hernia (UH) is a complex disorder caused by both genetic and environmental factors. UH brings animal welfare problems and severe economic loss to the pig industry. Until now, the genetic basis of UH is poorly understood. The high-density 60K porcine SNP array enables the rapid application of genome-wide association study (GWAS) to identify genetic loci for phenotypic traits at genome wide scale in pigs. The objective of this research was to identify susceptibility loci for swine umbilical hernia using the GWAS approach. We genotyped 478 piglets from 142 families representing three Western commercial breeds with the Illumina PorcineSNP60 BeadChip. Then significant SNPs were detected by GWAS using ROADTRIPS (Robust Association-Detection Test for Related Individuals with Population Substructure) software base on a Bonferroni corrected threshold (P = 1.67E-06) or suggestive threshold (P = 3.34E-05) and false discovery rate (FDR = 0.05). After quality control, 29,924 qualified SNPs and 472 piglets were used for GWAS. Two suggestive loci predisposing to pig UH were identified at 44.25MB on SSC2 (rs81358018, P = 3.34E-06, FDR = 0.049933) and at 45.90MB on SSC17 (rs81479278, P = 3.30E-06, FDR = 0.049933) in Duroc population, respectively. And no SNP was detected to be associated with pig UH at significant level in neither Landrace nor Large White population. Furthermore, we carried out a meta-analysis in the combined pure-breed population containing all the 472 piglets. rs81479278 (P = 1.16E-06, FDR = 0.022475) was identified to associate with pig UH at genome-wide significant level. SRC was characterized as plausible candidate gene for susceptibility to pig UH according to its genomic position and biological functions. To our knowledge, this study gives the first description of GWAS identifying susceptibility loci for umbilical hernia in pigs. Our findings provide deeper insights to the genetic architecture of umbilical hernia in pigs.

  18. Replication of british rheumatoid arthritis susceptibility Loci in two unrelated chinese population groups.

    Science.gov (United States)

    Li, Hua; Hu, Yonghe; Zhang, Tao; Liu, Yang; Wang, Yantang; Yang, Tai; Li, Minhui; Luo, Qiaoli; Cheng, Yu; Zou, Qiang

    2013-01-01

    Previous genome-wide association study by WTCCC identified many susceptibility loci of common autoimmune diseases in British, including rheumatoid arthritis (RA). Because of the genetic heterogeneity of RA, it is necessary to replicate these susceptibility loci in other populations. Here, three SNPs with strong RA association signal in the British were analyzed in Han Chinese, and two SNPs (rs6457617 and rs11761231) were genotyped in the test cohort firstly. The rs6457617 was significantly associated with RA in the test cohort. The individuals bearing the homozygous genotype CC had 0.39-fold risk than these bearing the wild-type genotype TT (P = 0.004, OR 0.39, [95% CI 0.21-0.74]). And the protective effect of allele C was confirmed in another validation cohort with 1514 samples (P genotye CC/TT = 5.9 ×  10(-10), OR 0.34, [95% CI 0.24-0.48]). The rs6457617 can be used as a tagSNP of HLA-DQA1∗03 which encoded MHC-II α chain. Since MHC restriction is important for primary T-cells in positive selection and negative selection stages, MHC protein polymorphisms may be implicated in shaping the T-cell repertoire, including the emergence of a T-cell clone involved in the inflammatory arthritis.

  19. Genome-wide interaction-based association analysis identified multiple new susceptibility Loci for common diseases.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2011-03-01

    Full Text Available Genome-wide interaction-based association (GWIBA analysis has the potential to identify novel susceptibility loci. These interaction effects could be missed with the prevailing approaches in genome-wide association studies (GWAS. However, no convincing loci have been discovered exclusively from GWIBA methods, and the intensive computation involved is a major barrier for application. Here, we developed a fast, multi-thread/parallel program named "pair-wise interaction-based association mapping" (PIAM for exhaustive two-locus searches. With this program, we performed a complete GWIBA analysis on seven diseases with stringent control for false positives, and we validated the results for three of these diseases. We identified one pair-wise interaction between a previously identified locus, C1orf106, and one new locus, TEC, that was specific for Crohn's disease, with a Bonferroni corrected P < 0.05 (P = 0.039. This interaction was replicated with a pair of proxy linked loci (P = 0.013 on an independent dataset. Five other interactions had corrected P < 0.5. We identified the allelic effect of a locus close to SLC7A13 for coronary artery disease. This was replicated with a linked locus on an independent dataset (P = 1.09 × 10⁻⁷. Through a local validation analysis that evaluated association signals, rather than locus-based associations, we found that several other regions showed association/interaction signals with nominal P < 0.05. In conclusion, this study demonstrated that the GWIBA approach was successful for identifying novel loci, and the results provide new insights into the genetic architecture of common diseases. In addition, our PIAM program was capable of handling very large GWAS datasets that are likely to be produced in the future.

  20. Loci controlling lymphocyte production of interferon c after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility.

    Science.gov (United States)

    Lipoldová, Marie; Havelková, Helena; Badalova, Jana; Vojtísková, Jarmila; Quan, Lei; Krulova, Magdaléna; Sohrabi, Yahya; Stassen, Alphons P; Demant, Peter

    2010-02-01

    Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1–Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2pz) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2b) or BALB/ cHeA (H2d) mice, or by ConA. IFNγ production in MLCs of individual (O20 9 OcB-9)F2mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.

  1. Introduction to cancer genetic susceptibility syndromes.

    Science.gov (United States)

    McGee, Rose B; Nichols, Kim E

    2016-12-02

    The last 30 years have witnessed tremendous advances in our understanding of the cancer genetic susceptibility syndromes, including those that predispose to hematopoietic malignancies. The identification and characterization of families affected by these syndromes is enhancing our knowledge of the oncologic and nononcologic manifestations associated with predisposing germ line mutations and providing insights into the underlying disease mechanisms. Here, we provide an overview of the cancer genetic susceptibility syndromes, focusing on aspects relevant to the evaluation of patients with leukemia and lymphoma. Guidance is provided to facilitate recognition of these syndromes by hematologists/oncologists, including descriptions of the family history features, tumor genotype, and physical or developmental findings that should raise concern for an underlying cancer genetic syndrome. The clinical implications and management challenges associated with cancer susceptibility syndromes are also discussed.

  2. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  3. Lack of Association of Caucasian Rheumatoid Arthritis Susceptibility Loci in a Korean Population

    Science.gov (United States)

    Lee, Hye-Soon; Korman, Benjamin D; Le, Julie M; Kastner, Daniel L; Remmers, Elaine F; Gregersen, Peter K; Bae, Sang-Cheol

    2009-01-01

    Objective Recent studies have identified a number of novel rheumatoid arthritis (RA) loci in Caucasian populations. In this study, we sought to determine whether the genetic variants at 4q27, 6q23, CCL21, TRAF1/C5, and CD40 identified in Caucasians are also associated with RA in a Korean case-control collection. We also comprehensively evaluated the genetic variation within PTPN22, a well established autoimmune disease-associated gene. Methods We designed a Sequenom iPlex experiment to thoroughly evaluate the PTPN22 linkage disequilibrium region using tag SNPs and disease-associated SNPs at 5 other previously reported Caucasian RA-associated loci in 1123 RA Korean RA patients and 1008 ethnically matched controls. We also re-sequenced the PTPN22 gene to look for novel coding variants that might be contributing to disease in this population. Results None of the Caucasian RA susceptibility loci contributed significantly to disease in Koreans. Tag SNPs covering the PTPN22 linkage disequilibrium block, while polymorphic, did not reveal any disease association and re-sequencing did not identify any new common coding region variants in this population. The 6q23 and 4q27 SNPs assayed were non-polymorphic in this population and the TRAF1/C5, CD40, and CCL21 SNPs did not show any evidence for association. Conclusions Caucasian and Korean rheumatoid arthritis have different genetic risk factors. While patients of different ethnic groups share the HLA region as a major genetic risk locus, most other genes shown to be significantly associated with disease in Caucasians appear not to play a role in Korean RA. PMID:19180477

  4. The association between candidate migraine susceptibility loci and severe migraine phenotype in a clinical sample

    DEFF Research Database (Denmark)

    Esserlind, Ann-Louise; Christensen, Anne Francke; Steinberg, Stacy

    2016-01-01

    INTRODUCTION: The objective of the study was to follow up and to test whether 12 previously identified migraine-associated single nucleotide polymorphisms were associated as risk factors and/or modifying factors for severe migraine traits in a Danish clinic-based population. METHODS: Semi...... polymorphisms showed nominal association with many lifetime attacks and prolonged migraine attacks. CONCLUSION: Our study supports previously reported findings on the association of several single nucleotide polymorphisms with migraine. It also suggests that the migraine susceptibility loci may be risk factors......-structured migraine interviews, blood sampling and genotyping were performed on 1806 unrelated migraineurs recruited from the Danish Headache Center. Genotyping was also performed on a control group of 6415 people with no history of migraine. Association analyses were carried out using logistic regression and odds...

  5. Identification of new susceptibility loci for IgA nephropathy in Han Chinese.

    Science.gov (United States)

    Li, Ming; Foo, Jia-Nee; Wang, Jin-Quan; Low, Hui-Qi; Tang, Xue-Qing; Toh, Kai-Yee; Yin, Pei-Ran; Khor, Chiea-Chuen; Goh, Yu-Fen; Irwan, Ishak D; Xu, Ri-Cong; Andiappan, Anand K; Bei, Jin-Xin; Rotzschke, Olaf; Chen, Meng-Hua; Cheng, Ching-Yu; Sun, Liang-Dan; Jiang, Geng-Ru; Wong, Tien-Yin; Lin, Hong-Li; Aung, Tin; Liao, Yun-Hua; Saw, Seang-Mei; Ye, Kun; Ebstein, Richard P; Chen, Qin-Kai; Shi, Wei; Chew, Soo-Hong; Chen, Jian; Zhang, Fu-Ren; Li, Sheng-Ping; Xu, Gang; Tai, E Shyong; Wang, Li; Chen, Nan; Zhang, Xue-Jun; Zeng, Yi-Xin; Zhang, Hong; Liu, Zhi-Hong; Yu, Xue-Qing; Liu, Jian-Jun

    2015-06-01

    IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis. Previously identified genome-wide association study (GWAS) loci explain only a fraction of disease risk. To identify novel susceptibility loci in Han Chinese, we conduct a four-stage GWAS comprising 8,313 cases and 19,680 controls. Here, we show novel associations at ST6GAL1 on 3q27.3 (rs7634389, odds ratio (OR)=1.13, P=7.27 × 10(-10)), ACCS on 11p11.2 (rs2074038, OR=1.14, P=3.93 × 10(-9)) and ODF1-KLF10 on 8q22.3 (rs2033562, OR=1.13, P=1.41 × 10(-9)), validate a recently reported association at ITGAX-ITGAM on 16p11.2 (rs7190997, OR=1.22, P=2.26 × 10(-19)), and identify three independent signals within the DEFA locus (rs2738058, P=1.15 × 10(-19); rs12716641, P=9.53 × 10(-9); rs9314614, P=4.25 × 10(-9), multivariate association). The risk variants on 3q27.3 and 11p11.2 show strong association with mRNA expression levels in blood cells while allele frequencies of the risk variants within ST6GAL1, ACCS and DEFA correlate with geographical variation in IgAN prevalence. Our findings expand our understanding on IgAN genetic susceptibility and provide novel biological insights into molecular mechanisms underlying IgAN.

  6. Association study of nicotinic acetylcholine receptor genes identifies a novel lung cancer susceptibility locus near CHRNA1 in African-Americans

    OpenAIRE

    Walsh, Kyle M.; Christopher I Amos; Wenzlaff, Angela S.; Gorlov, Ivan P; Sison, Jennette D.; Wu, Xifeng; Spitz, Margaret R; Hansen, Helen M.; Lu, Emily Y.; Wei, Chongjuan; Zhang, Huifeng; Chen, Wei; Lloyd, Stacy M.; Frazier, Marsha L.; Paige M Bracci

    2012-01-01

    Studies in European and East Asian populations have identified lung cancer susceptibility loci in nicotinic acetylcholine receptor (nAChR) genes on chromosome 15q25.1 which also appear to influence smoking behaviors. We sought to determine if genetic variation in nAChR genes influences lung cancer susceptibly in African-Americans, and evaluated the association of these cancer susceptibility loci with smoking behavior. A total of 1308 African-Americans with lung cancer and 1241 African-America...

  7. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk.

    Science.gov (United States)

    Lindström, Sara; Thompson, Deborah J; Paterson, Andrew D; Li, Jingmei; Gierach, Gretchen L; Scott, Christopher; Stone, Jennifer; Douglas, Julie A; dos-Santos-Silva, Isabel; Fernandez-Navarro, Pablo; Verghase, Jajini; Smith, Paula; Brown, Judith; Luben, Robert; Wareham, Nicholas J; Loos, Ruth J F; Heit, John A; Pankratz, V Shane; Norman, Aaron; Goode, Ellen L; Cunningham, Julie M; deAndrade, Mariza; Vierkant, Robert A; Czene, Kamila; Fasching, Peter A; Baglietto, Laura; Southey, Melissa C; Giles, Graham G; Shah, Kaanan P; Chan, Heang-Ping; Helvie, Mark A; Beck, Andrew H; Knoblauch, Nicholas W; Hazra, Aditi; Hunter, David J; Kraft, Peter; Pollan, Marina; Figueroa, Jonine D; Couch, Fergus J; Hopper, John L; Hall, Per; Easton, Douglas F; Boyd, Norman F; Vachon, Celine M; Tamimi, Rulla M

    2014-10-24

    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5 × 10(-8)) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B and SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23 and TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease-susceptibility loci.

  8. Polygenic susceptibility to testicular cancer

    DEFF Research Database (Denmark)

    Litchfield, Kevin; Mitchell, Jonathan S; Shipley, Janet

    2015-01-01

    BACKGROUND: The increasing incidence of testicular germ cell tumour (TGCT) combined with its strong heritable basis suggests that stratified screening for the early detection of TGCT may be clinically useful. We modelled the efficiency of such a personalised screening approach, based on genetic...... known TGCT susceptibility variants. The diagnostic performance of testicular biopsy and non-invasive semen analysis was also assessed, within a simulated combined screening programme. RESULTS: The area under the curve for the TGCT PRS model was 0.72 with individuals in the top 1% of the PRS having...

  9. Investigation of multiple susceptibility loci for inflammatory bowel disease in an Italian cohort of patients.

    Directory of Open Access Journals (Sweden)

    Anna Latiano

    Full Text Available BACKGROUND: Recent GWAs and meta-analyses have outlined about 100 susceptibility genes/loci for inflammatory bowel diseases (IBD. In this study we aimed to investigate the influence of SNPs tagging the genes/loci PTGER4, TNFSF15, NKX2-3, ZNF365, IFNG, PTPN2, PSMG1, and HLA in a large pediatric- and adult-onset IBD Italian cohort. METHODS: Eight SNPs were assessed in 1,070 Crohn's disease (CD, 1,213 ulcerative colitis (UC, 557 of whom being diagnosed at the age of ≤16 years, and 789 healthy controls. Correlations with sub-phenotypes and major variants of NOD2 gene were investigated. RESULTS: The SNPs tagging the TNFSF15, NKX2-3, ZNF365, and PTPN2 genes were associated with CD (P values ranging from 0.037 to 7×10(-6. The SNPs tagging the PTGER4, NKX2-3, ZNF365, IFNG, PSMG1, and HLA area were associated with UC (P values 0.047 to 4×10(-5. In the pediatric cohort the associations of TNFSF15, NKX2-3 with CD, and PTGER4, NKX2-3, ZNF365, IFNG, PSMG1 with UC, were confirmed. Association with TNFSF15 and pediatric UC was also reported. A correlation with NKX2-3 and need for surgery (P  =  0.038, and with HLA and steroid-responsiveness (P  =  0.024 in UC patients was observed. Moreover, significant association in our CD cohort with TNFSF15 SNP and colonic involvement (P  =  0.021, and with ZNF365 and ileal location (P  =  0.024 was demonstrated. CONCLUSIONS: We confirmed in a large Italian cohort the associations with CD and UC of newly identified genes, both in adult and pediatric cohort of patients, with some influence on sub-phenotypes.

  10. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis

    Science.gov (United States)

    Beecham, Ashley H; Patsopoulos, Nikolaos A; Xifara, Dionysia K; Davis, Mary F; Kemppinen, Anu; Cotsapas, Chris; Shahi, Tejas S; Spencer, Chris; Booth, David; Goris, An; Oturai, Annette; Saarela, Janna; Fontaine, Bertrand; Hemmer, Bernhard; Martin, Claes; Zipp, Frauke; D’alfonso, Sandra; Martinelli-Boneschi, Filippo; Taylor, Bruce; Harbo, Hanne F; Kockum, Ingrid; Hillert, Jan; Olsson, Tomas; Ban, Maria; Oksenberg, Jorge R; Hintzen, Rogier; Barcellos, Lisa F; Agliardi, Cristina; Alfredsson, Lars; Alizadeh, Mehdi; Anderson, Carl; Andrews, Robert; Søndergaard, Helle Bach; Baker, Amie; Band, Gavin; Baranzini, Sergio E; Barizzone, Nadia; Barrett, Jeffrey; Bellenguez, Céline; Bergamaschi, Laura; Bernardinelli, Luisa; Berthele, Achim; Biberacher, Viola; Binder, Thomas M C; Blackburn, Hannah; Bomfim, Izaura L; Brambilla, Paola; Broadley, Simon; Brochet, Bruno; Brundin, Lou; Buck, Dorothea; Butzkueven, Helmut; Caillier, Stacy J; Camu, William; Carpentier, Wassila; Cavalla, Paola; Celius, Elisabeth G; Coman, Irène; Comi, Giancarlo; Corrado, Lucia; Cosemans, Leentje; Cournu-Rebeix, Isabelle; Cree, Bruce A C; Cusi, Daniele; Damotte, Vincent; Defer, Gilles; Delgado, Silvia R; Deloukas, Panos; di Sapio, Alessia; Dilthey, Alexander T; Donnelly, Peter; Dubois, Bénédicte; Duddy, Martin; Edkins, Sarah; Elovaara, Irina; Esposito, Federica; Evangelou, Nikos; Fiddes, Barnaby; Field, Judith; Franke, Andre; Freeman, Colin; Frohlich, Irene Y; Galimberti, Daniela; Gieger, Christian; Gourraud, Pierre-Antoine; Graetz, Christiane; Graham, Andrew; Grummel, Verena; Guaschino, Clara; Hadjixenofontos, Athena; Hakonarson, Hakon; Halfpenny, Christopher; Hall, Gillian; Hall, Per; Hamsten, Anders; Harley, James; Harrower, Timothy; Hawkins, Clive; Hellenthal, Garrett; Hillier, Charles; Hobart, Jeremy; Hoshi, Muni; Hunt, Sarah E; Jagodic, Maja; Jelčić, Ilijas; Jochim, Angela; Kendall, Brian; Kermode, Allan; Kilpatrick, Trevor; Koivisto, Keijo; Konidari, Ioanna; Korn, Thomas; Kronsbein, Helena; Langford, Cordelia; Larsson, Malin; Lathrop, Mark; Lebrun-Frenay, Christine; Lechner-Scott, Jeannette; Lee, Michelle H; Leone, Maurizio A; Leppä, Virpi; Liberatore, Giuseppe; Lie, Benedicte A; Lill, Christina M; Lindén, Magdalena; Link, Jenny; Luessi, Felix; Lycke, Jan; Macciardi, Fabio; Männistö, Satu; Manrique, Clara P; Martin, Roland; Martinelli, Vittorio; Mason, Deborah; Mazibrada, Gordon; McCabe, Cristin; Mero, Inger-Lise; Mescheriakova, Julia; Moutsianas, Loukas; Myhr, Kjell-Morten; Nagels, Guy; Nicholas, Richard; Nilsson, Petra; Piehl, Fredrik; Pirinen, Matti; Price, Siân E; Quach, Hong; Reunanen, Mauri; Robberecht, Wim; Robertson, Neil P; Rodegher, Mariaemma; Rog, David; Salvetti, Marco; Schnetz-Boutaud, Nathalie C; Sellebjerg, Finn; Selter, Rebecca C; Schaefer, Catherine; Shaunak, Sandip; Shen, Ling; Shields, Simon; Siffrin, Volker; Slee, Mark; Sorensen, Per Soelberg; Sorosina, Melissa; Sospedra, Mireia; Spurkland, Anne; Strange, Amy; Sundqvist, Emilie; Thijs, Vincent; Thorpe, John; Ticca, Anna; Tienari, Pentti; van Duijn, Cornelia; Visser, Elizabeth M; Vucic, Steve; Westerlind, Helga; Wiley, James S; Wilkins, Alastair; Wilson, James F; Winkelmann, Juliane; Zajicek, John; Zindler, Eva; Haines, Jonathan L; Pericak-Vance, Margaret A; Ivinson, Adrian J; Stewart, Graeme; Hafler, David; Hauser, Stephen L; Compston, Alastair; McVean, Gil; De Jager, Philip; Sawcer, Stephen; McCauley, Jacob L

    2013-01-01

    Using the ImmunoChip custom genotyping array, we analysed 14,498 multiple sclerosis subjects and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (p-value < 1.0 × 10-4). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802 multiple sclerosis subjects and 26,703 healthy controls. In these 80,094 individuals of European ancestry we identified 48 new susceptibility variants (p-value < 5.0 × 10-8); three found after conditioning on previously identified variants. Thus, there are now 110 established multiple sclerosis risk variants in 103 discrete loci outside of the Major Histocompatibility Complex. With high resolution Bayesian fine-mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalogue of multiple sclerosis risk variants and illustrates the value of fine-mapping in the resolution of GWAS signals. PMID:24076602

  11. A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia

    Science.gov (United States)

    Jorgenson, Eric; Makki, Nadja; Shen, Ling; Chen, David C.; Tian, Chao; Eckalbar, Walter L.; Hinds, David; Ahituv, Nadav; Avins, Andrew

    2015-01-01

    Inguinal hernia repair is one of the most commonly performed operations in the world, yet little is known about the genetic mechanisms that predispose individuals to develop inguinal hernias. We perform a genome-wide association analysis of surgically confirmed inguinal hernias in 72,805 subjects (5,295 cases and 67,510 controls) and confirm top associations in an independent cohort of 92,444 subjects with self-reported hernia repair surgeries (9,701 cases and 82,743 controls). We identify four novel inguinal hernia susceptibility loci in the regions of EFEMP1, WT1, EBF2 and ADAMTS6. Moreover, we observe expression of all four genes in mouse connective tissue and network analyses show an important role for two of these genes (EFEMP1 and WT1) in connective tissue maintenance/homoeostasis. Our findings provide insight into the aetiology of hernia development and highlight genetic pathways for studies of hernia development and its treatment. PMID:26686553

  12. Association of breast cancer risk loci with breast cancer survival

    NARCIS (Netherlands)

    Barrdahl, Myrto; Canzian, Federico; Lindström, Sara; Shui, Irene; Black, Amanda; Hoover, Robert N.; Ziegler, Regina G.; Buring, Julie E.; Chanock, Stephen J.; Diver, W. Ryan; Gapstur, Susan M.; Gaudet, Mia M.; Giles, Graham G.; Haiman, Christopher; Henderson, Brian E.; Hankinson, Susan; Hunter, David J.; Joshi, Amit D.; Kraft, Peter; Lee, I. Min; Le Marchand, Loic; Milne, Roger L.; Southey, Melissa C.; Willett, Walter; Gunter, Marc; Panico, Salvatore; Sund, Malin; Weiderpass, Elisabete; Sánchez, María José; Overvad, Kim; Dossus, Laure; Peeters, Petra H.; Khaw, Kay Tee; Trichopoulos, Dimitrios; Kaaks, Rudolf; Campa, Daniele

    2015-01-01

    The survival of breast cancer patients is largely influenced by tumor characteristics, such as TNM stage, tumor grade and hormone receptor status. However, there is growing evidence that inherited genetic variation might affect the disease prognosis and response to treatment. Several lines of eviden

  13. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.Conclusion:Our results suggest...

  14. Investigating the viability of genetic screening/testing for RA susceptibility using combinations of five confirmed risk loci

    Science.gov (United States)

    McClure, Annie; Lunt, Mark; Eyre, Steve; Ke, Xiayi; Thomson, Wendy; Hinks, Anne; Bowes, John; Gibbons, Laura; Plant, Darren; Wilson, Anthony G.; Marinou, Ioanna; Morgan, Ann W.; Emery, Paul; Steer, Sophia; Hocking, Lynne J.; Reid, David M.; Wordsworth, Paul; Harrison, Pille; Worthington, Jane

    2009-01-01

    Objective. Five loci—the shared epitope (SE) of HLA-DRB1, the PTPN22 gene, a locus on 6q23, the STAT4 gene and a locus mapping to the TRAF1/C5 genetic region—have now been unequivocally confirmed as conferring susceptibility to RA. The largest single effect is conferred by SE. We hypothesized that combinations of susceptibility alleles may increase risk over and above that of any individual locus alone. Methods. We analysed data from 4238 RA cases and 1811 controls, for which genotypes were available at all five loci. Results. Statistical analysis identified eight high-risk combinations conferring an odds ratio >6 compared with carriage of no susceptibility variants and, interestingly, 10% population controls carried a combination conferring high risk. All high-risk combinations included SE, and all but one contained PTPN22. Statistical modelling showed that a model containing only these two loci could achieve comparable sensitivity and specificity to a model including all five. Furthermore, replacing SE (which requires full subtyping at the HLA-DRB1 gene) with DRB1*1/4/10 carriage resulted in little further loss of information (correlation coefficient between models = 0.93). Conclusions. This represents the first exploration of the viability of population screening for RA and identifies several high-risk genetic combinations. However, given the population incidence of RA, genetic screening based on these loci alone is neither sufficiently sensitive nor specific at the current time. PMID:19741008

  15. Large scale association analysis identifies three susceptibility loci for coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Stephanie Saade

    Full Text Available Genome wide association studies (GWAS and their replications that have associated DNA variants with myocardial infarction (MI and/or coronary artery disease (CAD are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3, and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (OR=0.68, p=0.0035, while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (OR=1.33, p=0.0086. Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology.

  16. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    NARCIS (Netherlands)

    Lawrenson, K.; Li, Q.; Kar, S.; Seo, J.H.; Tyrer, J.; Spindler, T.J.; Lee, J. van der; Chen, Y; Karst, A.; Drapkin, R.; Aben, K.K.H.; Anton-Culver, H.; Antonenkova, N.; Baker, H.; Bandera, E.V.; Bean, Y.; Beckmann, M.W.; Berchuck, A.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bruinsma, F.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Chenevix-Trench, G.; Chen, A; Chen, Z.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Dennis, J.; Dicks, E.; Doherty, J.A.; Dork, T.; Bois, A. du; Durst, M.; Eccles, D.; Easton, D.T.; Edwards, R.P.; Eilber, U.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goode, E.L.; Goodman, M.T.; Grownwald, J.; Harrington, P.; Harter, P.; Hasmad, H.N.; Hein, A.; Heitz, F.; Hildebrandt, M.A.; Hillemanns, P.; Hogdall, E.; Hogdall, C.; Hosono, S.; Iversen, E.S.; Jakubowska, A.; James, P.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kjaer, S. Kruger; Kelemen, L.E.; Kellar, M.; Kelley, J.L.; Kiemeney, L.A.; Krakstad, C.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; Nevanlinna, H.; McNeish, I.; Menon, U.; Modugno, F.

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associat

  17. Breast cancer susceptibility variants alter risk in familial ovarian cancer.

    Science.gov (United States)

    Latif, A; McBurney, H J; Roberts, S A; Lalloo, F; Howell, A; Evans, D G; Newman, W G

    2010-12-01

    Recent candidate gene and genome wide association studies have revealed novel loci associated with an increased risk of breast cancer. We evaluated the effect of these breast cancer associated variants on ovarian cancer risk in individuals with familial ovarian cancer both with and without BRCA1 or BRCA2 mutations. A total of 158 unrelated white British women (54 BRCA1/2 mutation positive and 104 BRCA1/2 mutation negative) with familial ovarian cancer were genotyped for FGFR2, TNRC9/TOX3 and CASP8 variants. The p.Asp302His CASP8 variant was associated with reduced ovarian cancer risk in the familial BRCA1/2 mutation negative ovarian cancer cases (P = 0.016). The synonymous TNRC9/TOX3 (Ser51) variant was present at a significantly lower frequency than in patients with familial BRCA1/2 positive breast cancer (P = 0.0002). Our results indicate that variants in CASP8 and TNRC9/TOX3 alter the risk of disease in individuals affected with familial ovarian cancer.

  18. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    K. Gaulton (Kyle); T. Ferreira (Teresa); Y. Lee (Yeji); A. Raimondo (Anne); R. Mägi (Reedik); M.E. Reschen (Michael E.); A. Mahajan (Anubha); A. Locke (Adam); N.W. Rayner (Nigel William); N.R. Robertson (Neil); R.A. Scott (Robert); I. Prokopenko (Inga); L.J. Scott (Laura); T. Green (Todd); T. Sparsø (Thomas); D. Thuillier (Dorothee); L. Yengo (Loic); H. Grallert (Harald); S. Wahl (Simone); M. Frånberg (Mattias); R.J. Strawbridge (Rona); H. Kestler (Hans); H. Chheda (Himanshu); L. Eisele (Lewin); S. Gustafsson (Stefan); V. Steinthorsdottir (Valgerdur); G. Thorleifsson (Gudmar); L. Qi (Lu); L.C. Karssen (Lennart); E.M. van Leeuwen (Elisa); S.M. Willems (Sara); M. Li (Man); H. Chen (Han); C. Fuchsberger (Christian); P. Kwan (Phoenix); C. Ma (Clement); M. Linderman (Michael); Y. Lu (Yingchang); S.K. Thomsen (Soren K.); J.K. Rundle (Jana K.); N.L. Beer (Nicola L.); M. van de Bunt (Martijn); A. Chalisey (Anil); H.M. Kang (Hyun Min); B.F. Voight (Benjamin); G.R. Abecasis (Gonçalo); P. Almgren (Peter); D. Baldassarre (Damiano); B. Balkau (Beverley); R. Benediktsson (Rafn); M. Blüher (Matthias); H. Boeing (Heiner); L.L. Bonnycastle (Lori); E.P. Bottinger (Erwin P.); N.P. Burtt (Noël); J. Carey (Jason); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David J.); A. Crenshaw (Andrew); R.M. van Dam (Rob); A.S.F. Doney (Alex); M. Dorkhan (Mozhgan); T. Edkins (Ted); J.G. Eriksson (Johan G.); T. Esko (Tõnu); E. Eury (Elodie); J. Fadista (João); J. Flannick (Jason); P. Fontanillas (Pierre); C.S. Fox (Caroline); P.W. Franks (Paul W.); K. Gertow (Karl); C. Gieger (Christian); B. Gigante (Bruna); R.F. Gottesman (Rebecca); G.B. Grant (George); N. Grarup (Niels); C.J. Groves (Christopher J.); M. Hassinen (Maija); C.T. Have (Christian T.); C. Herder (Christian); O.L. Holmen (Oddgeir); A.B. Hreidarsson (Astradur); S.E. Humphries (Steve E.); D.J. Hunter (David J.); A.U. Jackson (Anne); A. Jonsson (Anna); M.E. Jørgensen (Marit E.); T. Jørgensen (Torben); W.H.L. Kao (Wen); N.D. Kerrison (Nicola D.); L. Kinnunen (Leena); N. Klopp (Norman); A. Kong (Augustine); P. Kovacs (Peter); P. Kraft (Peter); J. Kravic (Jasmina); C. Langford (Cordelia); K. Leander (Karin); L. Liang (Liming); P. Lichtner (Peter); C.M. Lindgren (Cecilia M.); B. Lindholm (Bengt); A. Linneberg (Allan); C.-T. Liu (Ching-Ti); S. Lobbens (Stéphane); J. Luan (Jian'fan); V. Lyssenko (Valeriya); S. Männistö (Satu); O. McLeod (Olga); J. Meyer (Jobst); E. Mihailov (Evelin); G. Mirza (Ghazala); T.W. Mühleisen (Thomas); M. Müller-Nurasyid (Martina); C. Navarro (Carmen); M.M. Nöthen (Markus); N.N. Oskolkov (Nikolay N.); K.R. Owen (Katharine); D. Palli (Domenico); S. Pechlivanis (Sonali); L. Peltonen (Leena Johanna); J.R.B. Perry (John); C.P. Platou (Carl); M. Roden (Michael); D. Ruderfer (Douglas); D. Rybin (Denis); Y.T. Van Der Schouw (Yvonne T.); B. Sennblad (Bengt); G. Sigurosson (Gunnar); A. Stancáková (Alena); D. Steinbach; P. Storm (Petter); K. Strauch (Konstantin); H.M. Stringham (Heather); Q. Sun; B. Thorand (Barbara); E. Tikkanen (Emmi); A. Tönjes (Anke); J. Trakalo (Joseph); E. Tremoli (Elena); T. Tuomi (Tiinamaija); R. Wennauer (Roman); S. Wiltshire (Steven); A.R. Wood (Andrew); E. Zeggini (Eleftheria); I. Dunham (Ian); E. Birney (Ewan); L. Pasquali (Lorenzo); J. Ferrer (Jorge); R.J.F. Loos (Ruth); J. Dupuis (Josée); J.C. Florez (Jose); E.A. Boerwinkle (Eric); J.S. Pankow (James); C.M. van Duijn (Cock); E.J.G. Sijbrands (Eric); J.B. Meigs (James B.); F.B. Hu (Frank B.); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); T.A. Lakka (Timo); R. Rauramaa (Rainer); M. Stumvoll (Michael); N.L. Pedersen (Nancy L.); L. Lind (Lars); S. Keinanen-Kiukaanniemi (Sirkka); E. Korpi-Hyövälti (Eeva); T. Saaristo (Timo); J. Saltevo (Juha); J. Kuusisto (Johanna); M. Laakso (Markku); A. Metspalu (Andres); R. Erbel (Raimund); K.-H. Jöckel (Karl-Heinz); S. Moebus (Susanne); S. Ripatti (Samuli); V. Salomaa (Veikko); E. Ingelsson (Erik); B.O. Boehm (Bernhard); R.N. Bergman (Richard N.); F.S. Collins (Francis S.); K.L. Mohlke (Karen L.); H. Koistinen (Heikki); J. Tuomilehto (Jaakko); K. Hveem (Kristian); I. Njølstad (Inger); P. Deloukas (Panagiotis); P.J. Donnelly (Peter J.); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. de Faire (Ulf); A. Hamsten (Anders); T. Illig (Thomas); A. Peters (Annette); S. Cauchi (Stephane); R. Sladek (Rob); P. Froguel (Philippe); T. Hansen (Torben); O. Pedersen (Oluf); A.D. Morris (Andrew); C.N.A. Palmer (Collin N. A.); S. Kathiresan (Sekar); O. Melander (Olle); P.M. Nilsson (Peter M.); L. Groop (Leif); I. Barroso (Inês); C. Langenberg (Claudia); N.J. Wareham (Nicholas J.); C.A. O'Callaghan (Christopher A.); A.L. Gloyn (Anna); D. Altshuler (David); M. Boehnke (Michael); T.M. Teslovich (Tanya M.); M.I. McCarthy (Mark); A.P. Morris (Andrew)

    2015-01-01

    textabstractWe performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each

  19. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; William Rayner, N; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct si

  20. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21

    NARCIS (Netherlands)

    Zhang, Mingfeng; Wang, Zhaoming; Obazee, Ofure; Jia, Jinping; Childs, Erica J; Hoskins, Jason; Figlioli, Gisella; Mocci, Evelina; Collins, Irene; Chung, Charles C; Hautman, Christopher; Arslan, Alan A; Beane-Freeman, Laura; Bracci, Paige M; Buring, Julie; Duell, Eric J; Gallinger, Steven; Giles, Graham G; Goodman, Gary E; Goodman, Phyllis J; Kamineni, Aruna; Kolonel, Laurence N; Kulke, Matthew H; Malats, Núria; Olson, Sara H; Sesso, Howard D; Visvanathan, Kala; White, Emily; Zheng, Wei; Abnet, Christian C; Albanes, Demetrius; Andreotti, Gabriella; Brais, Lauren; Bueno-de-Mesquita, H Bas; Basso, Daniela; Berndt, Sonja I; Boutron-Ruault, Marie-Christine; Bijlsma, Maarten F; Brenner, Hermann; Burdette, Laurie; Campa, Daniele; Caporaso, Neil E; Capurso, Gabriele; Cavestro, Giulia Martina; Cotterchio, Michelle; Costello, Eithne; Elena, Joanne; Boggi, Ugo; Gaziano, J Michael; Gazouli, Maria; Giovannucci, Edward L; Goggins, Michael; Gross, Myron; Haiman, Christopher A; Hassan, Manal; Helzlsouer, Kathy J; Hu, Nan; Hunter, David J; Iskierka-Jazdzewska, Elzbieta; Jenab, Mazda; Kaaks, Rudolf; Key, Timothy J; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Krogh, Vittorio; Kupcinskas, Juozas; Kurtz, Robert C; Landi, Maria T; Landi, Stefano; Le Marchand, Loic; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Neale, Rachel E; Oberg, Ann L; Panico, Salvatore; Patel, Alpa V; Peeters, Petra H M; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Purdue, Mark; Quiros, J Ramón; Riboli, Elio; Rothman, Nathaniel; Scarpa, Aldo; Scelo, Ghislaine; Shu, Xiao-Ou; Silverman, Debra T; Soucek, Pavel; Strobel, Oliver; Sund, Malin; Małecka-Panas, Ewa; Taylor, Philip R; Tavano, Francesca; Travis, Ruth C; Thornquist, Mark; Tjønneland, Anne; Tobias, Geoffrey S; Trichopoulos, Dimitrios; Vashist, Yogesh; Vodicka, Pavel; Wactawski-Wende, Jean; Wentzensen, Nicolas; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Kooperberg, Charles; Risch, Harvey A; Jacobs, Eric J; Li, Donghui; Fuchs, Charles; Hoover, Robert; Hartge, Patricia; Chanock, Stephen J; Petersen, Gloria M; Stolzenberg-Solomon, Rachael S; Wolpin, Brian M; Kraft, Peter; Klein, Alison P; Canzian, Federico; Amundadottir, Laufey T

    2016-01-01

    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis usin

  1. 11q13 is a Susceptibility Locus for Hormone Receptor Positive Breast Cancer

    DEFF Research Database (Denmark)

    Lambrechts, Diether; Truong, Therese; Justenhoven, Christina

    2012-01-01

    A recent two-stage genome-wide association study (GWAS) identified five novel breast cancer susceptibility loci on chromosomes 9, 10 and 11. To provide more reliable estimates of the relative risk associated with these loci and investigate possible heterogeneity by subtype of breast cancer, we...... genotyped the variants rs2380205, rs1011970, rs704010, rs614367, rs10995190 in 39 studies from the Breast Cancer Association Consortium (BCAC), involving 49,608 cases and 48,772 controls of predominantly European ancestry. Four of the variants showed clear evidence of association (P = 3 × 10-9) and weak...... evidence was observed for rs2380205 (P = 0.06). The strongest evidence was obtained for rs614367, located on 11q13 (per-allele odds ratio 1.21, P = 4 × 10-39). The association for rs614367 was specific to estrogen receptor (ER)-positive disease and strongest for ER plus progesterone receptor (PR...

  2. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    Energy Technology Data Exchange (ETDEWEB)

    Severson, D.W.; Thathy, V.; Mori, A. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-04-01

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI], is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.

  3. High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    Science.gov (United States)

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-01-01

    Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596

  4. A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy

    Science.gov (United States)

    Wang, Zhenzhen; Sun, Yonghu; Fu, Xi'an; Yu, Gongqi; Wang, Chuan; Bao, Fangfang; Yue, Zhenhua; Li, Jianke; Sun, Lele; Irwanto, Astrid; Yu, Yongxiang; Chen, Mingfei; Mi, Zihao; Wang, Honglei; Huai, Pengcheng; Li, Yi; Du, Tiantian; Yu, Wenjun; Xia, Yang; Xiao, Hailu; You, Jiabao; Li, Jinghui; Yang, Qing; Wang, Na; Shang, Panpan; Niu, Guiye; Chi, Xiaojun; Wang, Xiuhuan; Cao, Jing; Cheng, Xiujun; Liu, Hong; Liu, Jianjun; Zhang, Furen

    2016-01-01

    Leprosy, a chronic infectious disease, results from the uncultivable pathogen Mycobacterium leprae (M. leprae), and usually progresses to peripheral neuropathy and permanent progressive deformity if not treated. Previously published genetic studies have identified 18 gene/loci significantly associated with leprosy at the genome-wide significant level. However as a complex disease, only a small proportion of leprosy risk could be explained by those gene/loci. To further identify more susceptibility gene/loci, we hereby performed a three-stage GWAS comprising 8,156 leprosy patients and 15,610 controls of Chinese ancestry. Four novel loci were identified including rs6807915 on 3p25.2 (P=1.94 × 10−8, OR=0.89), rs4720118 on 7p14.3 (P=3.85 × 10−10, OR=1.16), rs55894533 on 8p23.1 (P=5.07 × 10−11, OR=1.15) and rs10100465 on 8q24.11 (P=2.85 × 10−11, OR=0.85). Altogether, these findings have provided new insight and significantly expanded our understanding of the genetic basis of leprosy. PMID:27976721

  5. Evaluation of Genome Wide Association Study Associated Type 2 Diabetes Susceptibility Loci in Sub Saharan Africans

    Science.gov (United States)

    Adeyemo, Adebowale A.; Tekola-Ayele, Fasil; Doumatey, Ayo P.; Bentley, Amy R.; Chen, Guanjie; Huang, Hanxia; Zhou, Jie; Shriner, Daniel; Fasanmade, Olufemi; Okafor, Godfrey; Eghan, Benjamin; Agyenim-Boateng, Kofi; Adeleye, Jokotade; Balogun, Williams; Elkahloun, Abdel; Chandrasekharappa, Settara; Owusu, Samuel; Amoah, Albert; Acheampong, Joseph; Johnson, Thomas; Oli, Johnnie; Adebamowo, Clement; Collins, Francis; Dunston, Georgia; Rotimi, Charles N.

    2015-01-01

    Genome wide association studies (GWAS) for type 2 diabetes (T2D) undertaken in European and Asian ancestry populations have yielded dozens of robustly associated loci. However, the genomics of T2D remains largely understudied in sub-Saharan Africa (SSA), where rates of T2D are increasing dramatically and where the environmental background is quite different than in these previous studies. Here, we evaluate 106 reported T2D GWAS loci in continental Africans. We tested each of these SNPs, and SNPs in linkage disequilibrium (LD) with these index SNPs, for an association with T2D in order to assess transferability and to fine map the loci leveraging the generally reduced LD of African genomes. The study included 1775 unrelated Africans (1035 T2D cases, 740 controls; mean age 54 years; 59% female) enrolled in Nigeria, Ghana, and Kenya as part of the Africa America Diabetes Mellitus (AADM) study. All samples were genotyped on the Affymetrix Axiom PanAFR SNP array. Forty-one of the tested loci showed transferability to this African sample (p < 0.05, same direction of effect), 11 at the exact reported SNP and 30 others at SNPs in LD with the reported SNP (after adjustment for the number of tested SNPs). TCF7L2 SNP rs7903146 was the most significant locus in this study (p = 1.61 × 10−8). Most of the loci that showed transferability were successfully fine-mapped, i.e., localized to smaller haplotypes than in the original reports. The findings indicate that the genetic architecture of T2D in SSA is characterized by several risk loci shared with non-African ancestral populations and that data from African populations may facilitate fine mapping of risk loci. The study provides an important resource for meta-analysis of African ancestry populations and transferability of novel loci. PMID:26635871

  6. High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    OpenAIRE

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E. M.; Huizinga, Tom W J; Wijmenga, Cisca

    2012-01-01

    Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 ...

  7. CTLA-4 polymorphisms associate with breast cancer susceptibility in Asians: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Zhiming Dai

    2017-01-01

    Full Text Available Previous studies have investigated the association between cytotoxic T-lymphocyte antigen-4 (CTLA-4 polymorphisms and breast cancer susceptibility, but the results remained inconsistent. Therefore, we evaluated the relationship between four common CTLA-4 polymorphisms and breast cancer risk by a meta-analysis, aiming to derive a comprehensive and precise conclusion. We searched EMBASE, Pubmed, Web of Science, CNKI, and Wanfang databases until July 18th, 2016. Finally, ten eligible studies involving 4,544 breast cancer patients and 4,515 cancer-free controls were included; all these studies were from Asia. Odds ratio (OR and 95% confidence interval (CI were used to evaluate the breast cancer risk in five genetic models. The results indicated that the CTLA-4 +49A>G (rs231775 polymorphism had a significant association with decreased breast cancer risk in allelic, homozygous, dominant and recessive models. Also, the +6230G>A (rs3087243 polymorphism reduced breast cancer risk especially in the Chinese population under homozygous and recessive models. In contrast, the −1661A>G (rs4553808 polymorphism increased breast cancer risk in allelic, heterozygous and dominant models, whereas −1722 T>C (rs733618 did not relate to breast cancer risk. In conclusion, CTLA-4 polymorphisms significantly associate with breast cancer susceptibility in Asian populations, and different gene loci may have different effects on breast cancer development. Further large-scale studies including multi-racial populations are required to confirm our findings.

  8. CTLA-4 polymorphisms associate with breast cancer susceptibility in Asians: a meta-analysis

    Science.gov (United States)

    Liu, Xinghan; Lin, Shuai; Yang, Pengtao; Liu, Kang; Zheng, Yi; Xu, Peng; Liu, Meng; Yang, Xuewen

    2017-01-01

    Previous studies have investigated the association between cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphisms and breast cancer susceptibility, but the results remained inconsistent. Therefore, we evaluated the relationship between four common CTLA-4 polymorphisms and breast cancer risk by a meta-analysis, aiming to derive a comprehensive and precise conclusion. We searched EMBASE, Pubmed, Web of Science, CNKI, and Wanfang databases until July 18th, 2016. Finally, ten eligible studies involving 4,544 breast cancer patients and 4,515 cancer-free controls were included; all these studies were from Asia. Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the breast cancer risk in five genetic models. The results indicated that the CTLA-4 +49A>G (rs231775) polymorphism had a significant association with decreased breast cancer risk in allelic, homozygous, dominant and recessive models. Also, the +6230G>A (rs3087243) polymorphism reduced breast cancer risk especially in the Chinese population under homozygous and recessive models. In contrast, the −1661A>G (rs4553808) polymorphism increased breast cancer risk in allelic, heterozygous and dominant models, whereas −1722 T>C (rs733618) did not relate to breast cancer risk. In conclusion, CTLA-4 polymorphisms significantly associate with breast cancer susceptibility in Asian populations, and different gene loci may have different effects on breast cancer development. Further large-scale studies including multi-racial populations are required to confirm our findings. PMID:28097051

  9. Evaluation of shared genetic susceptibility loci between autoimmune diseases and schizophrenia based on genome-wide association studies

    DEFF Research Database (Denmark)

    Hoeffding, Louise K; Rosengren, Anders; Thygesen, Johan H;

    2016-01-01

    BACKGROUND: Epidemiological studies have documented higher than expected comorbidity (or, in some cases, inverse comorbidity) between schizophrenia and several autoimmune disorders. It remains unknown whether this comorbidity reflects shared genetic susceptibility loci. AIMS: The present study...... aimed to investigate whether verified genome wide significant variants of autoimmune disorders confer risk of schizophrenia, which could suggest a common genetic basis. METHODS: Seven hundred and fourteen genome wide significant risk variants of 25 autoimmune disorders were extracted from the NHGRI GWAS...... catalogue and examined for association to schizophrenia in the Psychiatric Genomics Consortium schizophrenia GWAS samples (36,989 cases and 113,075 controls). RESULTS: Two independent loci at 4q24 and 6p21.32-33 originally identified from GWAS of autoimmune diseases were found genome wide associated...

  10. Novel genetic susceptibility loci for diabetic end-stage renal disease identified through robust naive Bayes classification

    DEFF Research Database (Denmark)

    Sambo, Francesco; Malovini, Alberto; Sandholm, Niina;

    2014-01-01

    .05), and rs12137135 upstream of WNT4 was associated with ESRD in Steno. CONCLUSIONS/INTERPRETATION: This study supports the previously identified findings on the RGMA/MCTP2 region and suggests novel susceptibility loci for ESRD. This highlights the importance of applying complementary statistical methods...... in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD. METHODS: We exploited a novel algorithm, 'Bag of Naive Bayes', whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate...... of Kidneys in Diabetes UK collection (UK-Republic of Ireland) and the Genetics of Kidneys in Diabetes US Study (GoKinD US). RESULTS: Five genetic loci (WNT4/ZBTB40-rs12137135, RGMA/MCTP2-rs17709344, MAPRE1P2-rs1670754, SEMA6D/SLC24A5-rs12917114 and SIK1-rs2838302) were associated with ESRD in the Finn...

  11. Large-scale association analyses identifies 13 new susceptibility loci for coronary artery disease

    Science.gov (United States)

    Schunkert, Heribert; König, Inke R.; Kathiresan, Sekar; Reilly, Muredach P.; Assimes, Themistocles L.; Holm, Hilma; Preuss, Michael; Stewart, Alexandre F. R.; Barbalic, Maja; Gieger, Christian; Absher, Devin; Aherrahrou, Zouhair; Allayee, Hooman; Altshuler, David; Anand, Sonia S.; Andersen, Karl; Anderson, Jeffrey L.; Ardissino, Diego; Ball, Stephen G.; Balmforth, Anthony J.; Barnes, Timothy A.; Becker, Diane M.; Becker, Lewis C.; Berger, Klaus; Bis, Joshua C.; Boekholdt, S. Matthijs; Boerwinkle, Eric; Braund, Peter S.; Brown, Morris J.; Burnett, Mary Susan; Buysschaert, Ian; Carlquist, Cardiogenics, John F.; Chen, Li; Cichon, Sven; Codd, Veryan; Davies, Robert W.; Dedoussis, George; Dehghan, Abbas; Demissie, Serkalem; Devaney, Joseph M.; Do, Ron; Doering, Angela; Eifert, Sandra; El Mokhtari, Nour Eddine; Ellis, Stephen G.; Elosua, Roberto; Engert, James C.; Epstein, Stephen E.; Faire, Ulf de; Fischer, Marcus; Folsom, Aaron R.; Freyer, Jennifer; Gigante, Bruna; Girelli, Domenico; Gretarsdottir, Solveig; Gudnason, Vilmundur; Gulcher, Jeffrey R.; Halperin, Eran; Hammond, Naomi; Hazen, Stanley L.; Hofman, Albert; Horne, Benjamin D.; Illig, Thomas; Iribarren, Carlos; Jones, Gregory T.; Jukema, J.Wouter; Kaiser, Michael A.; Kaplan, Lee M.; Kastelein, John J.P.; Khaw, Kay-Tee; Knowles, Joshua W.; Kolovou, Genovefa; Kong, Augustine; Laaksonen, Reijo; Lambrechts, Diether; Leander, Karin; Lettre, Guillaume; Li, Mingyao; Lieb, Wolfgang; Linsel-Nitschke, Patrick; Loley, Christina; Lotery, Andrew J.; Mannucci, Pier M.; Maouche, Seraya; Martinelli, Nicola; McKeown, Pascal P.; Meisinger, Christa; Meitinger, Thomas; Melander, Olle; Merlini, Pier Angelica; Mooser, Vincent; Morgan, Thomas; Mühleisen, Thomas W.; Muhlestein, Joseph B.; Münzel, Thomas; Musunuru, Kiran; Nahrstaedt, Janja; Nelson, Christopher P.; Nöthen, Markus M.; Olivieri, Oliviero; Patel, Riyaz S.; Patterson, Chris C.; Peters, Annette; Peyvandi, Flora; Qu, Liming; Quyyumi, Arshed A.; Rader, Daniel J.; Rallidis, Loukianos S.; Rice, Catherine; Rosendaal, Frits R.; Rubin, Diana; Salomaa, Veikko; Sampietro, M. Lourdes; Sandhu, Manj S.; Schadt, Eric; Schäfer, Arne; Schillert, Arne; Schreiber, Stefan; Schrezenmeir, Jürgen; Schwartz, Stephen M.; Siscovick, David S.; Sivananthan, Mohan; Sivapalaratnam, Suthesh; Smith, Albert; Smith, Tamara B.; Snoep, Jaapjan D.; Soranzo, Nicole; Spertus, John A.; Stark, Klaus; Stirrups, Kathy; Stoll, Monika; Tang, W. H. Wilson; Tennstedt, Stephanie; Thorgeirsson, Gudmundur; Thorleifsson, Gudmar; Tomaszewski, Maciej; Uitterlinden, Andre G.; van Rij, Andre M.; Voight, Benjamin F.; Wareham, Nick J.; Wells, George A.; Wichmann, H.-Erich; Wild, Philipp S.; Willenborg, Christina; Witteman, Jaqueline C. M.; Wright, Benjamin J.; Ye, Shu; Zeller, Tanja; Ziegler, Andreas; Cambien, Francois; Goodall, Alison H.; Cupples, L. Adrienne; Quertermous, Thomas; März, Winfried; Hengstenberg, Christian; Blankenberg, Stefan; Ouwehand, Willem H.; Hall, Alistair S.; Deloukas, Panos; Thompson, John R.; Stefansson, Kari; Roberts, Robert; Thorsteinsdottir, Unnur; O’Donnell, Christopher J.; McPherson, Ruth; Erdmann, Jeanette; Samani, Nilesh J.

    2011-01-01

    We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 cases and 64,762 controls of European descent, followed by genotyping of top association signals in 60,738 additional individuals. This genomic analysis identified 13 novel loci harboring one or more SNPs that were associated with CAD at P<5×10−8 and confirmed the association of 10 of 12 previously reported CAD loci. The 13 novel loci displayed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6 to 17 percent increase in the risk of CAD per allele. Notably, only three of the novel loci displayed significant association with traditional CAD risk factors, while the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the novel CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits. PMID:21378990

  12. Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the Gliogene Consortium

    DEFF Research Database (Denmark)

    Shete, Sanjay; Lau, Ching C; Houlston, Richard S;

    2011-01-01

    -fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge...... nonparametric (model-free) methods. After removal of high linkage disequilibrium single-nucleotide polymorphism, we obtained a maximum nonparametric linkage score (NPL) of 3.39 (P = 0.0005) at 17q12-21.32 and the Z-score of 4.20 (P = 0.000007). To replicate our findings, we genotyped 29 independent U...

  13. Identification of novel RA susceptibility loci at chromosomes 10p15, 12q13 and 22q13

    Science.gov (United States)

    Barton, Anne; Thomson, Wendy; Ke, Xiayi; Eyre, Steve; Hinks, Anne; Bowes, John; Plant, Darren; Gibbons, Laura J; Wilson, Anthony G; Bax, Deborah E; Morgan, Ann W; Emery, Paul; Steer, Sophia; Hocking, Lynne; Reid, David M; Wordsworth, Paul; Harrison, Pille; Worthington, Jane

    2009-01-01

    The WTCCC study identified 49 single nucleotide polymorphisms (SNPs) putatively associated with RA at p=1×10-4-1×10-5 (Tier 3). Here, we show that 3 of these SNPs, mapping to chromosome 10p15 (rs4750316), 12q13 (rs1678542) and 22q13 (rs3218253), are also associated (trend p = 4×10-5, p=4×10-4 and p=4×10-4, respectively) in a validation study of 4,106 RA cases and an expanded reference group of 11,238 subjects, confirming them as true susceptibility loci in Caucasians. PMID:18794857

  14. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases.......5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry....... and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according...

  15. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    DEFF Research Database (Denmark)

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire;

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We...

  16. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N. Timpson (Nicholas); S.F. Grant; V.W.V. Jaddoe (Vincent W. V.); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation sc

  17. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire; van der Valk, Ralf J P; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M; Cousminer, Diana L; Marsh, Julie A; Lehtimäki, Terho; Curtin, John A; Vioque, Jesus; Ahluwalia, Tarunveer S; Myhre, Ronny; Price, Thomas S; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M A; Hirschhorn, Joel N; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A; Lewin, Alexandra M; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E; McMahon, George; Mentch, Frank D; Middeldorp, Christel M; Murray, Clare S; Pahkala, Katja; Pers, Tune H; Pfäffle, Roland; Postma, Dirkje S; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M T; Torrent, Maties; Uitterlinden, André G; van Meurs, Joyce B; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S; Dedoussis, George V; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R; Custovic, Adnan; Raitakari, Olli T; Pennell, Craig E; Widén, Elisabeth; Boomsma, Dorret I; Koppelman, Gerard H; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M; Smith, George Davey; Sørensen, Thorkild I A; Timpson, Nicholas J; Grant, Struan F A; Jaddoe, Vincent W V

    2015-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We in

  18. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    NARCIS (Netherlands)

    Eyre, Steve; Bowes, John; Diogo, Dorothee; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E. M.; Huizinga, Tom W. J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I. W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E.; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S.; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Arlsetig, Lisbeth; Martin, Javier; Rantapaa-Dahlqvist, Solbritt; Plenge, Robert M.; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K.; Worthington, Jane

    2012-01-01

    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data

  19. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    DEFF Research Database (Denmark)

    Mitchell, Jonathan S; Li, Ni; Weinhold, Niels;

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a ...

  20. A genome-wide association study in chronic obstructive pulmonary disease (COPD: identification of two major susceptibility loci.

    Directory of Open Access Journals (Sweden)

    Sreekumar G Pillai

    2009-03-01

    in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429. The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.

  1. An investigation of genome-wide studies reported susceptibility loci for ulcerative colitis shows limited replication in north Indians.

    Directory of Open Access Journals (Sweden)

    Garima Juyal

    Full Text Available Genome-Wide Association studies (GWAS of both Crohn's Disease (CD and Ulcerative Colitis (UC have unearthed over 40 risk conferring variants. Recently, a meta-analysis on UC revealed several loci, most of which were either previously associated with UC or CD susceptibility in populations of European origin. In this study, we attempted to replicate these findings in an ethnically distinct north Indian UC cohort. 648 UC cases and 850 controls were genotyped using Infinium Human 660W-quad. Out of 59 meta-analysis index SNPs, six were not in the SNP array used in the study. Of the remaining 53 SNPs, four were found monomorphic. Association (p<0.05 at 25 SNPs was observed, of which 15 were CD specific. Only five SNPs namely rs2395185 (HLA-DRA, rs3024505 (IL10, rs6426833 (RNF186, rs3763313 (BTNL2 and rs2066843 (NOD2 retained significance after Bonferroni correction. These results (i reveal limited replication of Caucasian based meta-analysis results; (ii reiterate overlapping molecular mechanism(s in UC and CD; (iii indicate differences in genetic architecture between populations; and (iv suggest that resources such as HapMap need to be extended to cover diverse ethnic populations. They also suggest a systematic GWAS in this terrain may be insightful for identifying population specific IBD risk conferring loci and thus enable cross-ethnicity fine mapping of disease loci.

  2. Commentary on "identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array." Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth-Little S, Dadaev T, Neal DE, Hamdy FC, Donovan JL, Muir K, Giles GG, Severi G, Wiklund F, Gronberg H, Haiman CA, Schumacher F, Henderson BE, Le Marchand L, Lindstrom S, Kraft P, Hunter DJ, Gapstur S, Chanock SJ, Berndt SI, Albanes D, Andriole G, Schleutker J, Weischer M, Canzian F, Riboli E, Key TJ, Travis RC, Campa D, Ingles SA, John EM, Hayes RB, Pharoah PD, Pashayan N, Khaw KT, Stanford JL, Ostrander EA, Signorello LB, Thibodeau SN, Schaid D, Maier C, Vogel W, Kibel AS, Cybulski C, Lubinski J, Cannon-Albright L, Brenner H, Park JY, Kaneva R, Batra J, Spurdle AB, Clements JA, Teixeira MR, Dicks E, Lee A, Dunning AM, Baynes C, Conroy D, Maranian MJ, Ahmed S, Govindasami K, Guy M, Wilkinson RA, Sawyer EJ, Morgan A, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As NJ, Woodhouse CJ, Thompson A, Dudderidge T, Ogden C, Cooper CS, Lophatananon A, Cox A, Southey MC, Hopper JL, English DR, Aly M, Adolfsson J, Xu J, Zheng SL, Yeager M, Kaaks R, Diver WR, Gaudet MM, Stern MC, Corral R, Joshi AD, Shahabi A, Wahlfors T, Tammela TL, Auvinen A, Virtamo J, Klarskov P, Nordestgaard BG, Røder MA, Nielsen SF, Bojesen SE, Siddiq A, Fitzgerald LM, Kolb S, Kwon EM, Karyadi DM, Blot WJ, Zheng W, Cai Q, McDonnell SK, Rinckleb AE, Drake B, Colditz G, Wokolorczyk D, Stephenson RA, Teerlink C, Muller H, Rothenbacher D, Sellers TA, Lin HY, Slavov C, Mitev V, Lose F, Srinivasan S, Maia S, Paulo P, Lange E, Cooney KA, Antoniou AC, Vincent D, Bacot F, Tessier DC; COGS-Cancer Research UK GWAS-ELLIPSE (part of GAME-ON) Initiative; Australian Prostate Cancer Bioresource; UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons' Section of Oncology; UK ProtecT (Prostate testing for cancer and Treatment

    Science.gov (United States)

    Olumi, Aria F

    2014-02-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P<5×10(-8)). More than 70 prostate cancer susceptibility loci, explaining ~30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies.

  3. Comprehensive assessment of rheumatoid arthritis susceptibility loci in a large psoriatic arthritis cohort.

    LENUS (Irish Health Repository)

    Bowes, John

    2012-08-01

    A number of rheumatoid arthritis (RA) susceptibility genes have been identified in recent years. Given the overlap in phenotypic expression of synovial joint inflammation between RA and psoriatic arthritis (PsA), the authors explored whether RA susceptibility genes are also associated with PsA.

  4. Susceptibility genetic variants associated with early-onset colorectal cancer.

    Science.gov (United States)

    Giráldez, María Dolores; López-Dóriga, Adriana; Bujanda, Luis; Abulí, Anna; Bessa, Xavier; Fernández-Rozadilla, Ceres; Muñoz, Jenifer; Cuatrecasas, Miriam; Jover, Rodrigo; Xicola, Rosa M; Llor, Xavier; Piqué, Josep M; Carracedo, Angel; Ruiz-Ponte, Clara; Cosme, Angel; Enríquez-Navascués, José María; Moreno, Victor; Andreu, Montserrat; Castells, Antoni; Balaguer, Francesc; Castellví-Bel, Sergi

    2012-03-01

    Colorectal cancer (CRC) is the second most common cancer in Western countries. Hereditary forms only correspond to 5% of CRC burden. Recently, genome-wide association studies have identified common low-penetrant CRC genetic susceptibility loci. Early-onset CRC (CRC65 years old) (n = 1264). CRC susceptibility variants at 8q23.3 (rs16892766), 8q24.21 (rs6983267), 10p14 (rs10795668), 11q23.1 (rs3802842), 15q13.3 (rs4779584), 18q21 (rs4939827), 14q22.2 (rs4444235), 16q22.1 (rs9929218), 19q13.1 (rs10411210) and 20p12.3 (rs961253) were genotyped in all DNA samples. A genotype-phenotype correlation with clinical and pathological characteristics in both groups was performed. Risk allele carriers for rs3802842 [Odds ratio (OR) = 1.5, 95% confidence interval (CI) 1.1-2.05, P = 0.0096, dominant model) and rs4779584 (OR = 1.39, 95% CI 1.02-1.9, P = 0.0396, dominant model) were more frequent in the CRC<50 group, whereas homozygotes for rs10795668 risk allele were also more frequent in the early-onset CRC (P = 0.02, codominant model). Regarding early-onset cases, 14q22 (rs4444235), 11q23 (rs3802842) and 20p12 (rs961253) variants were more associated with family history of CRC or tumors of the Lynch syndrome spectrum excluding CRC. In our entire cohort, sum of risk alleles was significantly higher in patients with a CRC family history (OR = 1.40, 95% CI 1.06-1.85, P = 0.01). In conclusion, variants at 10p14 (rs10795668), 11q23.1 (rs3802842) and 15q13.3 (rs4779584) may have a predominant role in predisposition to early-onset CRC. Association of CRC susceptibility variants with some patient's familiar and personal features could be relevant for screening and surveillance strategies in this high-risk group and it should be explored in further studies.

  5. Identifying breast cancer risk loci by global differential allele-specific expression (DASE analysis in mammary epithelial transcriptome

    Directory of Open Access Journals (Sweden)

    Gao Chuan

    2012-10-01

    Full Text Available Abstract Background The significant mortality associated with breast cancer (BCa suggests a need to improve current research strategies to identify new genes that predispose women to breast cancer. Differential allele-specific expression (DASE has been shown to contribute to phenotypic variables in humans and recently to the pathogenesis of cancer. We previously reported that nonsense-mediated mRNA decay (NMD could lead to DASE of BRCA1/2, which is associated with elevated susceptibility to breast cancer. In addition to truncation mutations, multiple genetic and epigenetic factors can contribute to DASE, and we propose that DASE is a functional index for cis-acting regulatory variants and pathogenic mutations, and that global analysis of DASE in breast cancer precursor tissues can be used to identify novel causative alleles for breast cancer susceptibility. Results To test our hypothesis, we employed the Illumina® Omni1-Quad BeadChip in paired genomic DNA (gDNA and double-stranded cDNA (ds-cDNA samples prepared from eight BCa patient-derived normal mammary epithelial lines (HMEC. We filtered original array data according to heterozygous genotype calls and calculated DASE values using the Log ratio of cDNA allele intensity, which was normalized to the corresponding gDNA. We developed two statistical methods, SNP- and gene-based approaches, which allowed us to identify a list of 60 candidate DASE loci (DASE ≥ 2.00, P ≤ 0.01, FDR ≤ 0.05 by both methods. Ingenuity Pathway Analysis of DASE loci revealed one major breast cancer-relevant interaction network, which includes two known cancer causative genes, ZNF331 (DASE = 2.31, P = 0.0018, FDR = 0.040 and USP6 (DASE = 4.80, P = 0.0013, FDR = 0.013, and a breast cancer causative gene, DMBT1 (DASE=2.03, P = 0.0017, FDR = 0.014. Sequence analysis of a 5′ RACE product of DMBT1 demonstrated that rs2981745, a putative breast cancer risk locus, appears to be one of the causal variants leading to DASE

  6. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries.

    Science.gov (United States)

    Williams, Hywel J; Craddock, Nicholas; Russo, Giancarlo; Hamshere, Marian L; Moskvina, Valentina; Dwyer, Sarah; Smith, Rhodri L; Green, Elaine; Grozeva, Detelina; Holmans, Peter; Owen, Michael J; O'Donovan, Michael C

    2011-01-15

    Recent findings from genetic epidemiology and from genome-wide association studies point strongly to a partial overlap in the genes that contribute susceptibility to schizophrenia and bipolar disorder (BD). Previous data have also directly implicated one of the best supported schizophrenia-associated loci, zinc finger binding protein 804A (ZNF804A), as showing trans-disorder effects, and the same is true for one of the best supported bipolar loci, calcium channel, voltage-dependent, L type, alpha 1C subunit (CACNA1C) which has also been associated with schizophrenia. We have undertaken a cross-phenotype study based upon the remaining variants that show genome-wide evidence for association in large schizophrenia and BD meta-analyses. These comprise in schizophrenia, SNPs in or in the vicinity of transcription factor 4 (TCF4), neurogranin (NRGN) and an extended region covering the MHC locus on chromosome 6. For BD, the strongly supported variants are in the vicinity of ankyrin 3, node of Ranvier (ANK3) and polybromo-1 (PBRM1). Using data sets entirely independent of their original discoveries, we observed strong evidence that the PBRM1 locus is also associated with schizophrenia (P = 0.00015) and nominally significant evidence (P < 0.05) that the NRGN and the extended MHC region are associated with BD. Moreover, considering this highly restricted set of loci as a group, the evidence for trans-disorder effects is compelling (P = 4.7 × 10(-5)). Including earlier reported data for trans-disorder effects for ZNF804A and CACNA1C, six out of eight of the most robustly associated loci for either disorder show trans-disorder effects.

  7. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    DEFF Research Database (Denmark)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct...... signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping...... implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele...

  8. [Identifying different susceptibility loci associated with early onset diabetes and cardiovascular disease in Mexican families].

    Science.gov (United States)

    Canizales-Quinteros, Samuel; Huertas-Vázquez, Adriana; Riba-Ramírez, Laura; Monroy-Guzmán, Adriana; Domínguez-López, Aarón; Romero-Hidalgo, Sandra; Aguilar-Salinas, Carlos; Rodríguez-Torres, Maribel; Ramírez-Jiménez, Salvador; Tusié-Luna, María Teresa

    2005-01-01

    Coronary artery disease and diabetes mellitus are among the primary mortality and morbidity causes in Mexico. Genetic factors play a fundamental role in the development of these entities. In the past few years due to the recognition and study of families with monogenic forms of diabetes and dislipidemias associated with development of atherosclerosis, several genes and loci have been associated with these conditions through genetic linkage studies. These studies have provided evidence of the genetic heterogeneity that exists and the type of genes involved in different ethnic groups. The study of Mexican families with early-onset diabetes and combined familial hyperlipidemia showed the participation of different genetic loci associated with these conditions in the Mexican population. These findings show the value of gene mapping strategies in the identification of the genetic component in these entities in our population.

  9. Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer Risk

    Directory of Open Access Journals (Sweden)

    Holger Heyn

    2014-04-01

    Full Text Available Epigenetic regulation and, in particular, DNA methylation have been linked to the underlying genetic sequence. DNA methylation quantitative trait loci (meQTL have been identified through significant associations between the genetic and epigenetic codes in physiological and pathological contexts. We propose that interrogating the interplay between polymorphic alleles and DNA methylation is a powerful method for improving our interpretation of risk alleles identified in genome-wide association studies that otherwise lack mechanistic explanation. We integrated patient cancer risk genotype data and genome-scale DNA methylation profiles of 3,649 primary human tumors, representing 13 solid cancer types. We provide a comprehensive meQTL catalog containing DNA methylation associations for 21% of interrogated cancer risk polymorphisms. Differentially methylated loci harbor previously reported and as-yet-unidentified cancer genes. We suggest that such regulation at the DNA level can provide a considerable amount of new information about the biology of cancer-risk alleles.

  10. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map.

    Science.gov (United States)

    Barba, Paola; Cadle-Davidson, Lance; Harriman, James; Glaubitz, Jeffrey C; Brooks, Siraprapa; Hyma, Katie; Reisch, Bruce

    2014-01-01

    Improved efficacy and durability of powdery mildew resistance can be enhanced via knowledge of the genetics of resistance and susceptibility coupled with the development of high-resolution maps to facilitate the stacking of multiple resistance genes and other desirable traits. We studied the inheritance of powdery mildew (Erysiphe necator) resistance and susceptibility of wild Vitis rupestris B38 and cultivated V. vinifera 'Chardonnay', finding evidence for quantitative variation. Molecular markers were identified using genotyping-by-sequencing, resulting in 16,833 single nucleotide polymorphisms (SNPs) based on alignment to the V. vinifera 'PN40024' reference genome sequence. With an average density of 36 SNPs/Mbp and uniform coverage of the genome, this 17K set was used to identify 11 SNPs on chromosome 7 associated with a resistance locus from V. rupestris B38 and ten SNPs on chromosome 9 associated with a locus for susceptibility from 'Chardonnay' using single marker association and linkage disequilibrium analysis. Linkage maps for V. rupestris B38 (1,146 SNPs) and 'Chardonnay' (1,215 SNPs) were constructed and used to corroborate the 'Chardonnay' locus named Sen1 (Susceptibility to Erysiphe necator 1), providing the first insight into the genetics of susceptibility to powdery mildew from V. vinifera. The identification of markers associated with a susceptibility locus in a V. vinifera background can be used for negative selection among breeding progenies. This work improves our understanding of the nature of powdery mildew resistance in V. rupestris B38 and 'Chardonnay', while applying next-generation sequencing tools to advance grapevine genomics and breeding.

  11. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  12. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Science.gov (United States)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-12-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.

  13. A genome-wide association study identifies novel and functionally related susceptibility loci for Kawasaki Disease

    NARCIS (Netherlands)

    Burgner, D.; Davila, S.; Breunis, W.B.; Ng, S.B.; Li, Y.; Bonnard, C.; Ling, L.; Wright, V.J.; Thalamuthu, A.; Odam, M.; Shimizu, C.; Burns, J.C.; Levin, M.; Kuijpers, T.W.; Hibberd, M.L.

    2009-01-01

    Kawasaki disease (KD) is a pediatric vasculitis that damages the coronary arteries in 25% of untreated and approximately 5% of treated children. Epidemiologic data suggest that KD is triggered by unidentified infection(s) in genetically susceptible children. To investigate genetic determinants of KD

  14. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci

    NARCIS (Netherlands)

    Crockford, GP; Linger, R; Hockley, S; Dudakia, D; Johnson, L; Huddart, R; Tucker, K; Friedlander, M; Phillips, KA; Hogg, D; Jewett, MAS; Lohynska, R; Daugaard, G; Richard, S; Chompret, A; Bonaiti-Pellie, C; Heidenreich, A; Albers, P; Olah, E; Geczi, L; Bodrogi, [No Value; Ormiston, WJ; Daly, PA; Guilford, P; Fossa, SD; Heimdal, K; Tjulandin, SA; Liubchenko, L; Stoll, H; Weber, W; Forman, D; Oliver, T; Einhorn, L; McMaster, M; Kramer, J; Greene, MH; Weber, BL; Nathanson, KL; Cortessis, [No Value; Easton, DF; Bishop, DT; Stratton, MR; Rapley, EA

    2006-01-01

    A family history of disease is a strong risk factor for testicular germ cell tumour (TGCT). In order to identify the location of putative TGCT susceptibility gene(s) we conducted a linkage search in 237 pedigrees with two or more cases of TGCT. One hundred and seventy-nine pedigrees were evaluated g

  15. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population.

    Science.gov (United States)

    Hirota, Tomomitsu; Takahashi, Atsushi; Kubo, Michiaki; Tsunoda, Tatsuhiko; Tomita, Kaori; Sakashita, Masafumi; Yamada, Takechiyo; Fujieda, Shigeharu; Tanaka, Shota; Doi, Satoru; Miyatake, Akihiko; Enomoto, Tadao; Nishiyama, Chiharu; Nakano, Nobuhiro; Maeda, Keiko; Okumura, Ko; Ogawa, Hideoki; Ikeda, Shigaku; Noguchi, Emiko; Sakamoto, Tohru; Hizawa, Nobuyuki; Ebe, Koji; Saeki, Hidehisa; Sasaki, Takashi; Ebihara, Tamotsu; Amagai, Masayuki; Takeuchi, Satoshi; Furue, Masutaka; Nakamura, Yusuke; Tamari, Mayumi

    2012-11-01

    Atopic dermatitis is a common inflammatory skin disease caused by interaction of genetic and environmental factors. On the basis of data from a genome-wide association study (GWAS) and a validation study comprising a total of 3,328 subjects with atopic dermatitis and 14,992 controls in the Japanese population, we report here 8 new susceptibility loci: IL1RL1-IL18R1-IL18RAP (P(combined) = 8.36 × 10(-18)), the major histocompatibility complex (MHC) region (P = 8.38 × 10(-20)), OR10A3-NLRP10 (P = 1.54 × 10(-22)), GLB1 (P = 2.77 × 10(-16)), CCDC80 (P = 1.56 × 10(-19)), CARD11 (P = 7.83 × 10(-9)), ZNF365 (P = 5.85 × 10(-20)) and CYP24A1-PFDN4 (P = 1.65 × 10(-8)). We also replicated the associations of the FLG, C11orf30, TMEM232-SLC25A46, TNFRSF6B-ZGPAT, OVOL1, ACTL9 and KIF3A-IL13 loci that were previously reported in GWAS of European and Chinese individuals and a meta-analysis of GWAS for atopic dermatitis. These findings advance the understanding of the genetic basis of atopic dermatitis.

  16. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease

    Science.gov (United States)

    Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Harold, Denise; Naj, Adam C; Sims, Rebecca; Bellenguez, Céline; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Gerrish, Amy; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Choi, Seung-Hoan; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Ramirez, Alfredo; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Morón, Francisco J; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Green, Robert; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; St George-Hyslop, Peter; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petroula; Collinge, John; Sorbi, Sandro; Sanchez-Garcia, Florentino; Fox, Nick C; Hardy, John; Deniz Naranjo, Maria Candida; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Matthews, Fiona; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O’Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Wang, Li-san; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Jones, Lesley; Haines, Jonathan L; Holmans, Peter A; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broeckhoven, Christine; Moskvina, Valentina; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D; Amouyel, Philippe

    2013-01-01

    Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease. PMID:24162737

  17. Susceptibility loci associated with specific and shared subtypes of lymphoid malignancies.

    Directory of Open Access Journals (Sweden)

    Joseph Vijai

    Full Text Available The genetics of lymphoma susceptibility reflect the marked heterogeneity of diseases that comprise this broad phenotype. However, multiple subtypes of lymphoma are observed in some families, suggesting shared pathways of genetic predisposition to these pathologically distinct entities. Using a two-stage GWAS, we tested 530,583 SNPs in 944 cases of lymphoma, including 282 familial cases, and 4,044 public shared controls, followed by genotyping of 50 SNPs in 1,245 cases and 2,596 controls. A novel region on 11q12.1 showed association with combined lymphoma (LYM subtypes. SNPs in this region included rs12289961 near LPXN, (P(LYM = 3.89×10(-8, OR = 1.29 and rs948562 (P(LYM = 5.85×10(-7, OR = 1.29. A SNP in a novel non-HLA region on 6p23 (rs707824, P(NHL = 5.72×10(-7 was suggestive of an association conferring susceptibility to lymphoma. Four SNPs, all in a previously reported HLA region, 6p21.32, showed genome-wide significant associations with follicular lymphoma. The most significant association with follicular lymphoma was for rs4530903 (P(FL = 2.69×10(-12, OR = 1.93. Three novel SNPs near the HLA locus, rs9268853, rs2647046, and rs2621416, demonstrated additional variation contributing toward genetic susceptibility to FL associated with this region. Genes implicated by GWAS were also found to be cis-eQTLs in lymphoblastoid cell lines; candidate genes in these regions have been implicated in hematopoiesis and immune function. These results, showing novel susceptibility regions and allelic heterogeneity, point to the existence of pathways of susceptibility to both shared as well as specific subtypes of lymphoid malignancy.

  18. Novel Association Between Immune-Mediated Susceptibility Loci and Persistent Autoantibody Positivity in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Brorsson, Caroline A; Onengut, Suna; Chen, Wei-Min

    2015-01-01

    ), tissue transglutaminase, and 21-hydroxylase was tested using a linear mixed-model regression approach to simultaneously control for population structure and family relatedness. Four loci were associated with autoantibody positivity at genome-wide significance. Positivity for GADA was associated with 3q28......Islet autoantibodies detected at disease onset in patients with type 1 diabetes are signs of an autoimmune destruction of the insulin-producing β-cells. To further investigate the genetic determinants of autoantibody positivity, we performed dense immune-focused genotyping on the Immunochip array...... and tested for association with seven disease-specific autoantibodies in a large cross-sectional cohort of 6,160 type 1 diabetes-affected siblings. The genetic association with positivity for GAD autoantibodies (GADAs), IA2 antigen (IA-2A), zinc transporter 8, thyroid peroxidase, gastric parietal cells (PCAs...

  19. Genome-wide association study for ovarian cancer susceptibility using pooled DNA

    DEFF Research Database (Denmark)

    Lu, Yi; Chen, Xiaoqing; Beesley, Jonathan;

    2012-01-01

    Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used...... in a much larger stage 2 set of 4,651 cases and 6,966 controls from the Ovarian Cancer Association Consortium. Given that most of the top 20 SNPs from pooling were validated in the same samples by individual genotyping, the lack of replication is likely to be due to the relatively small sample size in our...... stage 1 GWAS rather than due to problems with the pooling approach. We conclude that there are unlikely to be any moderate or large effects on ovarian cancer risk untagged by less dense arrays. However, our study lacked power to make clear statements on the existence of hitherto untagged small...

  20. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions assoc...

  1. Functional annotations of diabetes nephropathy susceptibility loci through analysis of genome-wide renal gene expression in rat models of diabetes mellitus

    DEFF Research Database (Denmark)

    Hu, Yaomin; Kaisaki, Pamela J; Argoud, Karène;

    2009-01-01

    to hyperglycaemia and renal structural changes of positional candidate genes at selected diabetic nephropathy (DN) susceptibility loci. METHODS: Both Affymetrix and Illumina technologies were used to identify significant quantitative changes in the abundance of over 15,000 transcripts in kidney of models...... number of protein coding sequences of unknown function which can be considered as functional and, when they map to DN loci, positional candidates for DN. Further expression analysis of rat orthologs of human DN positional candidate genes provided functional annotations of known and novel genes...... that are responsive to hyperglycaemia and may contribute to renal functional and/or structural alterations. CONCLUSION: Combining transcriptomics in animal models and comparative genomics provides important information to improve functional annotations of disease susceptibility loci in humans and experimental support...

  2. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder.

    Science.gov (United States)

    Ikeda, M; Takahashi, A; Kamatani, Y; Okahisa, Y; Kunugi, H; Mori, N; Sasaki, T; Ohmori, T; Okamoto, Y; Kawasaki, H; Shimodera, S; Kato, T; Yoneda, H; Yoshimura, R; Iyo, M; Matsuda, K; Akiyama, M; Ashikawa, K; Kashiwase, K; Tokunaga, K; Kondo, K; Saito, T; Shimasaki, A; Kawase, K; Kitajima, T; Matsuo, K; Itokawa, M; Someya, T; Inada, T; Hashimoto, R; Inoue, T; Akiyama, K; Tanii, H; Arai, H; Kanba, S; Ozaki, N; Kusumi, I; Yoshikawa, T; Kubo, M; Iwata, N

    2017-01-24

    Genome-wide association studies (GWASs) have identified several susceptibility loci for bipolar disorder (BD) and shown that the genetic architecture of BD can be explained by polygenicity, with numerous variants contributing to BD. In the present GWAS (Phase I/II), which included 2964 BD and 61 887 control subjects from the Japanese population, we detected a novel susceptibility locus at 11q12.2 (rs28456, P=6.4 × 10(-9)), a region known to contain regulatory genes for plasma lipid levels (FADS1/2/3). A subsequent meta-analysis of Phase I/II and the Psychiatric GWAS Consortium for BD (PGC-BD) identified another novel BD gene, NFIX (Pbest=5.8 × 10(-10)), and supported three regions previously implicated in BD susceptibility: MAD1L1 (Pbest=1.9 × 10(-9)), TRANK1 (Pbest=2.1 × 10(-9)) and ODZ4 (Pbest=3.3 × 10(-9)). Polygenicity of BD within Japanese and trans-European-Japanese populations was assessed with risk profile score analysis. We detected higher scores in BD cases both within (Phase I/II) and across populations (Phase I/II and PGC-BD). These were defined by (1) Phase II as discovery and Phase I as target, or vice versa (for 'within Japanese comparisons', Pbest~10(-29), R(2)~2%), and (2) European PGC-BD as discovery and Japanese BD (Phase I/II) as target (for 'trans-European-Japanese comparison,' Pbest~10(-13), R(2)~0.27%). This 'trans population' effect was supported by estimation of the genetic correlation using the effect size based on each population (liability estimates~0.7). These results indicate that (1) two novel and three previously implicated loci are significantly associated with BD and that (2) BD 'risk' effect are shared between Japanese and European populations.Molecular Psychiatry advance online publication, 24 January 2017; doi:10.1038/mp.2016.259.

  3. A genome-wide association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3)

    NARCIS (Netherlands)

    Enciso-Mora, Victor; Broderick, Peter; Ma, Yussanne; Jarrett, Ruth F.; Hjalgrim, Henrik; Hemminki, Kari; van den Berg, Anke; Olver, Bianca; Lloyd, Amy; Dobbins, Sara E.; Lightfoot, Tracy; van Leeuwen, Flora E.; Foersti, Asta; Diepstra, Arjan; Broeks, Annegien; Vijayakrishnan, Jayaram; Shield, Lesley; Lake, Annette; Montgomery, Dorothy; Roman, Eve; Engert, Andreas; von Strandmann, Elke Pogge; Reiners, Katrin S.; Nolte, Ilja M.; Smedby, Karin E.; Adami, Hans-Olov; Russell, Nicola S.; Glimelius, Bengt; Hamilton-Dutoit, Stephen; de Bruin, Marieke; Ryder, Lars P.; Molin, Daniel; Sorensen, Karina Meden; Chang, Ellen T.; Taylor, Malcolm; Cooke, Rosie; Hofstra, Robert; Westers, Helga; van Wezel, Tom; van Eijk, Ronald; Ashworth, Alan; Rostgaard, Klaus; Melbye, Mads; Swerdlow, Anthony J.; Houlston, Richard S.

    2010-01-01

    To identify susceptibility loci for classical Hodgkin's lymphoma (cHL), we conducted a genome-wide association study of 589 individuals with cHL (cases) and 5,199 controls with validation in four independent samples totaling 2,057 cases and 3,416 controls. We identified three new susceptibility loci

  4. Identification of genomic loci associated with Rhodococcus equi susceptibility in foals.

    Directory of Open Access Journals (Sweden)

    Cole M McQueen

    Full Text Available Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined. Here, we performed independent single nucleotide polymorphism (SNP- and copy number variant (CNV-based genome-wide association studies to identify genomic loci associated with R. equi pneumonia in foals. Foals at a large Quarter Horse breeding farm were categorized into 3 groups: 1 foals with R. equi pneumonia (clinical group [N = 43]; 2 foals with ultrasonographic evidence of pulmonary lesions that never developed clinical signs of pneumonia (subclinical group [N = 156]; and, 3 foals without clinical signs or ultrasonographic evidence of pneumonia (unaffected group [N = 49]. From each group, 24 foals were randomly selected and used for independent SNP- and CNV-based genome-wide association studies (GWAS. The SNP-based GWAS identified a region on chromosome 26 that had moderate evidence of association with R. equi pneumonia when comparing clinical and subclinical foals. A joint analysis including all study foals revealed a 3- to 4-fold increase in odds of disease for a homozygous SNP within the associated region when comparing the clinical group with either of the other 2 groups of foals or their combination. The region contains the transient receptor potential cation channel, subfamily M, member 2 (TRPM2 gene, which is involved in neutrophil function. No associations were identified in the CNV-based GWAS. Collectively, these data identify a region on chromosome 26 associated with R. equi pneumonia in foals, providing evidence that genetic factors may indeed contribute to this important disease of foals.

  5. New susceptibility loci associated with kidney disease in type 1 diabetes

    DEFF Research Database (Denmark)

    Sandholm, Niina; Salem, Rany M; McKnight, Amy Jayne

    2012-01-01

    Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion...... of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular...... mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2...

  6. Identifying putative breast cancer-associated long intergenic non-coding RNA loci by high density SNP array analysis

    Directory of Open Access Journals (Sweden)

    Zhengyu eJiang

    2012-12-01

    Full Text Available Recent high-throughput transcript discoveries have yielded a growing recognition of long intergenic non-coding RNAs (lincRNAs, a class of arbitrarily defined transcripts (>200 nt that are primarily produced from the intergenic space. LincRNAs have been increasingly acknowledged for their expressional dynamics and likely functional associations with cancers. However, differential gene dosage of lincRNA genes between cancer genomes is less studied. By using the high-density Human Omni5-Quad BeadChips (Illumina, we investigated genomic copy number aberrations in a set of seven tumor-normal paired primary human mammary epithelial cells (HMECs established from patients with invasive ductal carcinoma. This Beadchip platform includes a total of 2,435,915 SNP loci dispersed at an average interval of ~700 nt throughout the intergenic region of the human genome. We mapped annotated or putative lincRNA genes to a subset of 332,539 SNP loci, which were included in our analysis for lincRNA-associated copy number variations (CNV. We have identified 122 lincRNAs, which were affected by somatic CNV with overlapped aberrations ranging from 0.14% to 100% in length. LincRNA-associated aberrations were detected predominantly with copy number losses and preferential clustering to the ends of chromosomes. Interestingly, lincRNA genes appear to be much less susceptible to CNV in comparison to both protein-coding and intergenic regions (CNV affected segments in percentage: 1.8%, 37.5% and 60.6%, respectively. In summary, our study established a novel approach utilizing high-resolution SNP array to identify lincRNA candidates, which could functionally link to tumorigenesis, and provide new strategies for the diagnosis and treatment of breast cancer.

  7. New susceptibility loci associated with kidney disease in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Niina Sandholm

    2012-09-01

    Full Text Available Diabetic kidney disease, or diabetic nephropathy (DN, is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D. Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 × 10(-8 and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 × 10(-9. Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1 pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7, a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.

  8. New Susceptibility Loci Associated with Kidney Disease in Type 1 Diabetes

    Science.gov (United States)

    Forsblom, Carol; Isakova, Tamara; McKay, Gareth J.; Williams, Winfred W.; Sadlier, Denise M.; Mäkinen, Ville-Petteri; Swan, Elizabeth J.; Palmer, Cameron; Boright, Andrew P.; Ahlqvist, Emma; Deshmukh, Harshal A.; Keller, Benjamin J.; Huang, Huateng; Ahola, Aila J.; Fagerholm, Emma; Gordin, Daniel; Harjutsalo, Valma; He, Bing; Heikkilä, Outi; Hietala, Kustaa; Kytö, Janne; Lahermo, Päivi; Lehto, Markku; Lithovius, Raija; Österholm, Anne-May; Parkkonen, Maija; Pitkäniemi, Janne; Rosengård-Bärlund, Milla; Saraheimo, Markku; Sarti, Cinzia; Söderlund, Jenny; Soro-Paavonen, Aino; Syreeni, Anna; Thorn, Lena M.; Tikkanen, Heikki; Tolonen, Nina; Tryggvason, Karl; Tuomilehto, Jaakko; Wadén, Johan; Gill, Geoffrey V.; Prior, Sarah; Guiducci, Candace; Mirel, Daniel B.; Taylor, Andrew; Hosseini, S. Mohsen; Parving, Hans-Henrik; Rossing, Peter; Tarnow, Lise; Ladenvall, Claes; Alhenc-Gelas, François; Lefebvre, Pierre; Rigalleau, Vincent; Roussel, Ronan; Tregouet, David-Alexandre; Maestroni, Anna; Maestroni, Silvia; Falhammar, Henrik; Gu, Tianwei; Möllsten, Anna; Cimponeriu, Danut; Ioana, Mihai; Mota, Maria; Mota, Eugen; Serafinceanu, Cristian; Stavarachi, Monica; Hanson, Robert L.; Nelson, Robert G.; Kretzler, Matthias; Colhoun, Helen M.; Panduru, Nicolae Mircea; Gu, Harvest F.; Brismar, Kerstin; Zerbini, Gianpaolo; Hadjadj, Samy; Marre, Michel; Groop, Leif; Lajer, Maria; Bull, Shelley B.; Waggott, Daryl; Paterson, Andrew D.; Savage, David A.; Bain, Stephen C.; Martin, Finian; Hirschhorn, Joel N.; Godson, Catherine; Florez, Jose C.; Groop, Per-Henrik; Maxwell, Alexander P.

    2012-01-01

    Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ∼2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2×10−8) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0×10−9). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1×10−7), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN. PMID:23028342

  9. The Role of MicroRNAs in Cancer Susceptibility

    Directory of Open Access Journals (Sweden)

    Rodolfo Iuliano

    2013-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are germline variations interspersed in the human genome. These subtle changes of DNA sequence can influence the susceptibility to various pathologies including cancer. The functional meaning of SNPs is not always clear, being, the majority of them, localized in noncoding regions. The discovery of microRNAs, tiny noncoding RNAs able to bind the 3′ untranslated region (UTR of target genes and to consequently downregulate their expression, has provided a functional explanation of how some SNPs positioned in noncoding regions contribute to cancer susceptibility. In this paper we summarize the current knowledge of the effect on cancer susceptibility of SNPs included in regions related with miRNA-dependent pathways. Hereditary cancer comes up from mutations that occur in high-penetrant predisposing tumor genes. However, a considerable part of inherited cancers arises from multiple low-penetrant predisposing gene variants that influence the behavior of cancer insurgence. Despite the established significance of such polymorphic variants in cancer predisposition, sometimes their functional role remains unknown. The discovery of a new group of genes called microRNAs (miRNAs opened an avenue for the functional interpretation of polymorphisms involved in cancer predisposition.

  10. CHEK2 1100delC and polygenic susceptibility to breast cancer and colorectal cancer

    NARCIS (Netherlands)

    M. Wasielewski (Marijke)

    2009-01-01

    textabstractApproximately 15-25% of breast cancers are identified in women with a family history of breast cancer. Yet, germline mutations in the currently known breast cancer susceptibility genes account for only one-third of familial breast cancer cases. In 2002, our research group had identified

  11. Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript.

    Science.gov (United States)

    Kote-Jarai, Z; Amin Al Olama, A; Leongamornlert, D; Tymrakiewicz, M; Saunders, E; Guy, M; Giles, G G; Severi, G; Southey, M; Hopper, J L; Sit, K C; Harris, J M; Batra, J; Spurdle, A B; Clements, J A; Hamdy, F; Neal, D; Donovan, J; Muir, K; Pharoah, P D P; Chanock, S J; Brown, N; Benlloch, S; Castro, E; Mahmud, N; O'Brien, L; Hall, A; Sawyer, E; Wilkinson, R; Easton, D F; Eeles, R A

    2011-06-01

    Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10(-22)). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10(-34)). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.

  12. The MTAP-CDKN2A Locus Confers Susceptibility to a Naturally Occurring Canine Cancer

    Science.gov (United States)

    Shearin, Abigail L.; Hedan, Benoit; Cadieu, Edouard; Erich, Suzanne A.; Schmidt, Emmett V.; Faden, Daniel L.; Cullen, John; Abadie, Jerome; Kwon, Erika M.; Gröne, Andrea; Devauchelle, Patrick; Rimbault, Maud; Karyadi, Danielle M.; Lynch, Mary; Galibert, Francis; Breen, Matthew; Rutteman, Gerard R.; André, Catherine; Parker, Heidi G.; Ostrander, Elaine A.

    2012-01-01

    Background Advantages offered by canine population substructure, combined with clinical presentations similar to human disorders, makes the dog an attractive system for studies of cancer genetics. Cancers that have been difficult to study in human families or populations are of particular interest. Histiocytic sarcoma is a rare and poorly understood neoplasm in humans that occurs in 15–25% of Bernese Mountain Dogs (BMD). Methods Genomic DNA was collected from affected and unaffected BMD in North America (NA) and Europe. Both independent and combined genome wide association studies (GWAS) were used to identify cancer-associated loci. Fine mapping and sequencing narrowed the primary locus to a single gene region. Results Both populations shared the same primary locus, which features a single haplotype spanning MTAP and part of CDKN2A and is present in 96% of affected BMD. The haplotype is within the region homologous to human chromosome 9p21, which has been implicated in several types of cancer. Conclusions We present the first GWAS for HS in any species. The data identify an associated haplotype in the highly cited tumor suppressor locus near CDKN2A. These data demonstrate the power of studying distinctive malignancies in highly predisposed dog breeds. Impact Here, we establish a naturally-occurring model of cancer susceptibility due to CDKN2 dysregulation, thus providing insight regarding this cancer-associated, complex, and poorly understood genomic region. PMID:22623710

  13. Association of Type 2 Diabetes Susceptibility Variants With Advanced Prostate Cancer Risk in the Breast and Prostate Cancer Cohort Consortium

    Science.gov (United States)

    Machiela, Mitchell J.; Lindström, Sara; Allen, Naomi E.; Haiman, Christopher A.; Albanes, Demetrius; Barricarte, Aurelio; Berndt, Sonja I.; Bueno-de-Mesquita, H. Bas; Chanock, Stephen; Gaziano, J. Michael; Gapstur, Susan M.; Giovannucci, Edward; Henderson, Brian E.; Jacobs, Eric J.; Kolonel, Laurence N.; Krogh, Vittorio; Ma, Jing; Stampfer, Meir J.; Stevens, Victoria L.; Stram, Daniel O.; Tjønneland, Anne; Travis, Ruth; Willett, Walter C.; Hunter, David J.; Le Marchand, Loic; Kraft, Peter

    2012-01-01

    Observational studies have found an inverse association between type 2 diabetes (T2D) and prostate cancer (PCa), and genome-wide association studies have found common variants near 3 loci associated with both diseases. The authors examined whether a genetic background that favors T2D is associated with risk of advanced PCa. Data from the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium, a genome-wide association study of 2,782 advanced PCa cases and 4,458 controls, were used to evaluate whether individual single nucleotide polymorphisms or aggregations of these 36 T2D susceptibility loci are associated with PCa. Ten T2D markers near 9 loci (NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, FTO, and HNF1B) were nominally associated with PCa (P < 0.05); the association for single nucleotide polymorphism rs757210 at the HNF1B locus was significant when multiple comparisons were accounted for (adjusted P = 0.001). Genetic risk scores weighted by the T2D log odds ratio and multilocus kernel tests also indicated a significant relation between T2D variants and PCa risk. A mediation analysis of 9,065 PCa cases and 9,526 controls failed to produce evidence that diabetes mediates the association of the HNF1B locus with PCa risk. These data suggest a shared genetic component between T2D and PCa and add to the evidence for an interrelation between these diseases. PMID:23193118

  14. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    NARCIS (Netherlands)

    F.J. Couch (Fergus); X. Wang (Xing); L. McGuffog (Lesley); A. Lee; C. Olswold (Curtis); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); Z. Fredericksen (Zachary); D. Barrowdale (Daniel); J. Dennis (Joe); M.M. Gaudet (Mia); E. Dicks (Ed); M. Kosel (Matthew); S. Healey (Sue); O. Sinilnikova (Olga); F. Bacot (Francois); D. Vincent (Daniel); F.B.L. Hogervorst (Frans); S. Peock (Susan); D. Stoppa-Lyonnet (Dominique); A. Jakubowska (Anna); P. Radice (Paolo); R.K. Schmutzler (Rita); S.M. Domchek (Susan); M. Piedmonte (Marion); C.F. Singer (Christian); E. Friedman (Eitan); M. Thomassen (Mads); T.V.O. Hansen (Thomas); S.L. Neuhausen (Susan); C. Szabo (Csilla); I. Blanco (Ignacio); M.H. Greene (Mark); B. Karlan; J. Garber; C. Phelan (Catherine); J.N. Weitzel (Jeffrey); M. Montagna (Marco); E. Olah; I.L. Andrulis (Irene); A.K. Godwin (Andrew); D. Yannoukakos (Drakoulis); D. Goldgar (David); T. Caldes (Trinidad); H. Nevanlinna (Heli); A. Osorio (Ana); M.-B. Terry (Mary-Beth); M.B. Daly (Mary); E.J. van Rensburg (Elizabeth); U. Hamann (Ute); S.J. Ramus (Susan); A. Ewart-Toland (Amanda); M.A. Caligo (Maria); O.I. Olopade (Olofunmilayo); N. Tung (Nadine); K. Claes (Kathleen); M.S. Beattie (Mary); M.C. Southey (Melissa); E.N. Imyanitov (Evgeny); M. Tischkowitz (Marc); R. Janavicius (Ramunas); E.M. John (Esther); A. Kwong (Ava); O. Diez (Orland); J. Balmana (Judith); R.B. Barkardottir (Rosa); B.K. Arun (Banu); G. Rennert (Gad); S.-H. Teo; P.A. Ganz (Patricia); I. Campbell (Ian); A.H. van der Hout (Annemarie); C.H.M. van Deurzen (Carolien); C.M. Seynaeve (Caroline); E.B. Gómez García (Encarna); F.E. van Leeuwen (F.); H. Meijers-Heijboer (Hanne); J.J. Gille (Johan); M.G.E.M. Ausems (Margreet); M.J. Blok (Marinus); M.J. Ligtenberg (Marjolijn); M.A. Rookus (Matti); P. Devilee (Peter); S. Verhoef; T.A.M. van Os (Theo); J.T. Wijnen (Juul); D. Frost (Debra); S. Ellis (Steve); E. Fineberg (Elena); R. Platte (Radka); D.G. Evans (Gareth); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); D. Eccles (Diana); J. Cook (Jackie); C. Brewer (C.); F. Douglas (Fiona); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); L. Side (Lucy); A. Donaldson (Alan); C. Houghton (Catherine); M.T. Rogers (Mark); H. Dorkins (Huw); J. Eason (Jacqueline); H. Gregory (Helen); E. McCann (Emma); A. Murray (Alexandra); A. Calender (Alain); A. Hardouin (Agnès); P. Berthet (Pascaline); C.D. Delnatte (Capucine); C. Nogues (Catherine); C. Lasset (Christine); C. Houdayer (Claude); D. Leroux (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); H. Sobol (Hagay); I. Coupier (Isabelle); L. Vénat-Bouvet (Laurence); L. Castera (Laurent); M. Gauthier-Villars (Marion); M. Léone (Mélanie); P. Pujol (Pascal); S. Mazoyer (Sylvie); Y.-J. Bignon (Yves-Jean); E. Złowocka-Perłowska (Elzbieta); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); A.B. Spurdle (Amanda); A. Viel (Alessandra); B. Peissel (Bernard); B. Bonnani (Bernardo); G. Melloni (Giulia); L. Ottini (Laura); L. Papi (Laura); L. Varesco (Liliana); M.G. Tibiletti (Maria Grazia); P. Peterlongo (Paolo); S. Volorio (Sara); S. Manoukian (Siranoush); V. Pensotti (Valeria); N. Arnold (Norbert); C. Engel (Christoph); H. Deissler (Helmut); D. Gadzicki (Dorothea); P.A. Gehrig (Paola A.); K. Kast (Karin); K. Rhiem (Kerstin); A. Meindl (Alfons); D. Niederacher (Dieter); N. Ditsch (Nina); H. Plendl (Hansjoerg); S. Preisler-Adams (Sabine); S. Engert (Stefanie); C. Sutter (Christian); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); B.H.F. Weber (Bernhard); B. Arver (Brita Wasteson); M. Stenmark-Askmalm (M.); N. Loman (Niklas); R. Rosenquist (R.); Z. Einbeigi (Zakaria); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); S.V. Blank (Stephanie); D.E. Cohn (David); G.C. Rodriguez (Gustavo); L. Small (Laurie); M. Friedlander (Michael); V.L. Bae-Jump (Victoria L.); A. Fink-Retter (Anneliese); C. Rappaport (Christine); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; N.M. Lindor (Noralane); B. Kaufman (Bella); S. Shimon Paluch (Shani); Y. Laitman (Yael); A.-B. Skytte (Anne-Bine); A-M. Gerdes (Anne-Marie); I.S. Pedersen (Inge Sokilde); S.T. Moeller (Sanne Traasdahl); T.A. Kruse (Torben); U.B. Jensen; J. Vijai (Joseph); K. Sarrel (Kara); M. Robson (Mark); N. Kauff (Noah); A.M. Mulligan (Anna Marie); G. Glendon (Gord); H. Ozcelik (Hilmi); B. Ejlertsen (Bent); F.C. Nielsen (Finn); L. Jønson (Lars); M.K. Andersen (Mette); Y.C. Ding (Yuan); L. Steele (Linda); L. Foretova (Lenka); A. Teulé (A.); C. Lazaro (Conxi); J. Brunet (Joan); M.A. Pujana (Miguel); P.L. Mai (Phuong); J.T. Loud (Jennifer); C.S. Walsh (Christine); K.J. Lester (Kathryn); S. Orsulic (Sandra); S. Narod (Steven); J. Herzog (Josef); S.R. Sand (Sharon); S. Tognazzo (Silvia); S. Agata (Simona); T. Vaszko (Tibor); J. Weaver (JoEllen); A. Stavropoulou (Alexandra); S.S. Buys (Saundra); A. Romero (Alfonso); M. de La Hoya (Miguel); K. Aittomäki (Kristiina); T.A. Muranen (Taru); M. Duran; W.K. Chung (Wendy); A. Lasa (Adriana); C.M. Dorfling (Cecelia); A. Miron (Alexander); J. Benítez (Javier); L. Senter (Leigha); D. Huo (Dezheng); S. Chan (Salina); A. Sokolenko (Anna); J. Chiquette (Jocelyne); L. Tihomirova (Laima); M.O.W. Friebel (Mark ); B.A. Agnarsson (Bjarni); K.H. Lu (Karen); F. Lejbkowicz (Flavio); P.A. James (Paul ); A.S. Hall (Alistair); A.M. Dunning (Alison); Y. Tessier (Yann); J. Cunningham (Jane); S. Slager (Susan); C. Wang (Chen); S. Hart (Stewart); K. Stevens (Kristen); J. Simard (Jacques); T. Pastinen (Tomi); V.S. Pankratz (Shane); K. Offit (Kenneth); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); H. Thorne (Heather); E. Niedermayr (Eveline); Å. Borg (Åke); H. Olsson; H. Jernström (H.); K. Henriksson (Karin); K. Harbst (Katja); M. Soller (Maria); U. Kristoffersson (Ulf); A. Öfverholm (Anna); M. Nordling (Margareta); P. Karlsson (Per); A. von Wachenfeldt (Anna); A. Liljegren (Annelie); A. Lindblom (Annika); G.B. Bustinza; J. Rantala (Johanna); B. Melin (Beatrice); C.E. Ardnor (Christina Edwinsdotter); M. Emanuelsson (Monica); H. Ehrencrona (Hans); M.H. Pigg (Maritta ); S. Liedgren (Sigrun); M.A. Rookus (M.); S. Verhoef (S.); F.E. van Leeuwen (F.); M.K. Schmidt (Marjanka); J.L. de Lange (J.); J.M. Collee (Margriet); A.M.W. van den Ouweland (Ans); M.J. Hooning (Maartje); C.J. van Asperen (Christi); J.T. Wijnen (Juul); R.A.E.M. Tollenaar (Rob); P. Devilee (Peter); T.C.T.E.F. van Cronenburg; C.M. Kets; A.R. Mensenkamp (Arjen); R.B. van der Luijt (Rob); C.M. Aalfs (Cora); T.A.M. van Os (Theo); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); E.B. Gomez Garcia (Encarna); J.C. Oosterwijk (Jan); M.J. Mourits; G.H. de Bock (Geertruida); S.D. Ellis (Steve); E. Fineberg (Elena); Z. Miedzybrodzka (Zosia); L. Jeffers (Lisa); T.J. Cole (Trevor); K.-R. Ong (Kai-Ren); J. Hoffman (Jonathan); M. James (Margaret); J. Paterson (Joan); A. Taylor (Amy); A. Murray (Anna); M.J. Kennedy (John); D.E. Barton (David); M.E. Porteous (Mary); S. Drummond (Sarah); C. Brewer (Carole); E. Kivuva (Emma); A. Searle (Anne); S. Goodman (Selina); R. Davidson (Rosemarie); V. Murday (Victoria); N. Bradshaw (Nicola); L. Snadden (Lesley); M. Longmuir (Mark); C. Watt (Catherine); S. Gibson (Sarah); E. Haque (Eshika); E. Tobias (Ed); A. Duncan (Alexis); L. Izatt (Louise); C. Jacobs (Chris); C. Langman (Caroline); A.F. Brady (Angela); S.A. Melville (Scott); K. Randhawa (Kashmir); J. Barwell (Julian); G. Serra-Feliu (Gemma); I.O. Ellis (Ian); F. Lalloo (Fiona); J. Taylor (James); A. Male (Alison); C. Berlin (Cheryl); R. Collier (Rebecca); F. Douglas (Fiona); O. Claber (Oonagh); I. Jobson (Irene); L.J. Walker (Lisa); D. McLeod (Diane); D. Halliday (Dorothy); S. Durell (Sarah); B. Stayner (Barbara); S. Shanley (Susan); N. Rahman (Nazneen); R. Houlston (Richard); A. Stormorken (Astrid); E. Bancroft (Elizabeth); E. Page (Elizabeth); A. Ardern-Jones (Audrey); K. Kohut (Kelly); J. Wiggins (Jennifer); E. Castro (Elena); S.R. Killick; S. Martin (Sue); D. Rea (Dan); A. Kulkarni (Anjana); O. Quarrell (Oliver); C. Bardsley (Cathryn); S. Goff (Sheila); G. Brice (Glen); L. Winchester (Lizzie); C. Eddy (Charlotte); V. Tripathi (Vishakha); V. Attard (Virginia); A. Lehmann (Anna); A. Lucassen (Anneke); G. Crawford (Gabe); D. McBride (Donna); S. Smalley (Sarah); S. Mazoyer (Sylvie); F. Damiola (Francesca); L. Barjhoux (Laure); C. Verny-Pierre (Carole); S. Giraud (Sophie); D. Stoppa-Lyonnet (Dominique); B. Buecher (Bruno); V. Moncoutier (Virginie); M. Belotti (Muriel); C. Tirapo (Carole); A. de Pauw (Antoine); B. Bressac-de Paillerets (Brigitte); O. Caron (Olivier); Y.-J. Bignon (Yves-Jean); N. Uhrhammer (Nancy); V. Bonadona (Valérie); S. Handallou (Sandrine); A. hardouin (Agnès); H. Sobol (Hagay); V. Bourdon (Violaine); T. Noguchi (Tetsuro); A. Remenieras (Audrey); F. Eisinger (François); J.-P. Peyrat; J. Fournier (Joëlle); F. Révillion (Françoise); P. Vennin (Philippe); C. Adenis (Claude); R. Lidereau (Rosette); L. Demange (Liliane); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); E. Barouk-Simonet (Emmanuelle); F. Bonnet (Françoise); V. Bubien (Virginie); N. Sevenet (Nicolas); M. Longy (Michel); C. Toulas (Christine); R. Guimbaud (Rosine); L. Gladieff (Laurence); V. Feillel (Viviane); H. Dreyfus (Hélène); C. Rebischung (Christine); M. Peysselon (Magalie); F. Coron (Fanny); L. Faivre (Laurence); M. Lebrun (Marine); C. Kientz (Caroline); S.F. Ferrer; M. Frenay (Marc); I. Mortemousque (Isabelle); F. Coulet (Florence); C. Colas (Chrystelle); F. Soubrier; J. Sokolowska (Johanna); M. Bronner (Myriam); H. Lynch (Henry); C.L. Snyder (Carrie); M. Angelakos (Maggie); J. Maskiell (Judi); G.S. Dite (Gillian)

    2013-01-01

    textabstractBRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), w

  15. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    NARCIS (Netherlands)

    Couch, Fergus J.; Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, Francois; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Toland, Amanda Ewart; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmana, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Garcia, Encarna B. Gomez; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnes; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Leone, Melanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Zlowocka-Perlowska, Elzbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Paluch, Shani Shimon; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jonson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teule, Alex; Lazaro, Conxi; Brunet, Joan; Angel Pujana, Miquel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomaki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a furthe

  16. Hereditary Breast Cancer: The Era of New Susceptibility Genes

    Directory of Open Access Journals (Sweden)

    Paraskevi Apostolou

    2013-01-01

    Full Text Available Breast cancer is the most common malignancy among females. 5%–10% of breast cancer cases are hereditary and are caused by pathogenic mutations in the considered reference BRCA1 and BRCA2 genes. As sequencing technologies evolve, more susceptible genes have been discovered and BRCA1 and BRCA2 predisposition seems to be only a part of the story. These new findings include rare germline mutations in other high penetrant genes, the most important of which include TP53 mutations in Li-Fraumeni syndrome, STK11 mutations in Peutz-Jeghers syndrome, and PTEN mutations in Cowden syndrome. Furthermore, more frequent, but less penetrant, mutations have been identified in families with breast cancer clustering, in moderate or low penetrant genes, such as CHEK2, ATM, PALB2, and BRIP1. This paper will summarize all current data on new findings in breast cancer susceptibility genes.

  17. Common non-synonymous SNPs associated with breast cancer susceptibility

    DEFF Research Database (Denmark)

    Milne, Roger L; Burwinkel, Barbara; Michailidou, Kyriaki

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsS...

  18. Identification of novel susceptibility Loci for kawasaki disease in a Han chinese population by a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Fuu-Jen Tsai

    Full Text Available Kawasaki disease (KD is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit gene: rs1873668 (p = 9.52×10⁻⁵, rs4243399 (p = 9.93×10⁻⁵, and rs16849083 (p = 9.93×10⁻⁵. We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1 gene (rs149481, p(best = 4.61×10⁻⁵. Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667 clustered in an area containing immunoglobulin heavy chain variable regions genes, with p(best-values between 2.08×10⁻⁵ and 8.93×10⁻⁶, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD.

  19. Subtle variations in Pten dose determine cancer susceptibility.

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-05-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.

  20. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Antoniou, Antonis C; Kuchenbaecker, Karoline B

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers...... for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer....

  1. Cyclooxygenase 2 genotypes influence prostate cancer susceptibility in Japanese Men.

    Science.gov (United States)

    Sugie, Satoru; Tsukino, Hiromasa; Mukai, Shoichiro; Akioka, Takahiro; Shibata, Norihiko; Nagano, Masafumi; Kamoto, Toshiyuki

    2014-03-01

    This study aims to evaluate the relationship between the cyclooxygenase 2 (COX2) G1195A (rs689465) polymorphism and the risk of prostate cancer in a Japanese population and the associations between COX2 polymorphisms and clinicopathological characteristics, including Gleason grade and prostate-specific antigen (PSA) grade. We recruited 134 patients with prostate cancer and 86 healthy controls matched for age and smoking status. The COX2 G1195A polymorphism status was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Genotype distributions (p = 0.028) and allelic frequencies (p = 0.014) differed significantly between prostate cancer and control groups in terms of the COX2 G1195A polymorphism (Pearson's χ (2) test). Logistic regression analysis of case and control outcomes showed an odds ratio between the GG and AA genotypes of 3.15 (95% confidence interval = 1.27-8.08, p = 0.014), indicating an increased risk of prostate cancer associated with the AA genotype. Subset analysis revealed no significant associations between this polymorphism and clinicopathological characteristics of prostate cancer. This study demonstrated a relationship between the COX2 G1195A variant and prostate cancer risk. This polymorphism may merit further investigation as a potential genomic marker for the early detection of prostate cancer. Our results support the hypothesis that rs689465 influences susceptibility to prostate cancer; however, prostate cancer progression was not associated with rs689465 in a Japanese population.

  2. Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Kelemen, Linda E; Wang, Qinggang;

    2011-01-01

    BACKGROUND: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI=1.0-1.4, P(trend) = 0.01) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1.......0-1.2, P(trend) = 0.11). There was no evidence for statistical heterogeneity in ORs across the studies. CONCLUSIONS: Although rs2660753 is a strong prostate cancer susceptibility polymorphism, the association with another hormonally related cancer, invasive EOC, is not supported by this replication study...

  3. Brief Report: Identification of BACH2 and RAD51B as Rheumatoid Arthritis Susceptibility Loci in a Meta-Analysis of Genome-Wide Data

    Science.gov (United States)

    McAllister, Kate; Yarwood, Annie; Bowes, John; Orozco, Gisela; Viatte, Sebastian; Diogo, Dorothée; Hocking, Lynne J; Steer, Sophia; Wordsworth, Paul; Wilson, A G; Morgan, Ann W; Kremer, Joel M; Pappas, Dimitrios; Gregersen, Peter; Klareskog, Lars; Plenge, Robert; Barton, Anne; Greenberg, Jeffrey; Worthington, Jane; Eyre, Stephen

    2013-01-01

    Objective A recent high-density fine-mapping (ImmunoChip) study of genetic associations in rheumatoid arthritis (RA) identified 14 risk loci with validated genome-wide significance, as well as a number of loci showing associations suggestive of significance (P = 5 × 10−5 < 5 × 10−8), but these have yet to be replicated. The aim of this study was to determine whether these potentially significant loci are involved in the pathogenesis of RA, and to explore whether any of the loci are associated with a specific RA serotype. Methods A total of 16 single-nucleotide polymorphisms (SNPs) were selected for genotyping and association analyses in 2 independent validation cohorts, comprising 6,106 RA cases and 4,290 controls. A meta-analysis of the data from the original ImmunoChip discovery cohort and from both validation cohorts was carried out, for a combined total of 17,581 RA cases and 20,160 controls. In addition, stratified analysis of patient subsets, defined according to their anti–cyclic citrullinated peptide (anti-CCP) antibody status, was performed. Results A significant association with RA risk (P < 0.05) was replicated for 6 of the SNPs assessed in the validation cohorts. All SNPs in the validation study had odds ratios (ORs) for RA susceptibility in the same direction as those in the ImmunoChip discovery study. One SNP, rs72928038, mapping to an intron of BACH2, achieved genome-wide significance in the meta-analysis (P = 1.2 × 10−8, OR 1.12), and a second SNP, rs911263, mapping to an intron of RAD51B, was significantly associated in the anti-CCP–positive RA subgroup (P = 4 × 10−8, OR 0.89), confirming that both are RA susceptibility loci. Conclusion This study provides robust evidence for an association of RA susceptibility with genes involved in B cell differentiation (BACH2) and DNA repair (RAD51B). The finding that the RAD51B gene exhibited different associations based on serologic subtype adds to the expanding knowledge base in defining

  4. Evaluation of breast cancer susceptibility using improved genetic algorithms to generate genotype SNP barcodes.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2013-01-01

    Genetic association is a challenging task for the identification and characterization of genes that increase the susceptibility to common complex multifactorial diseases. To fully execute genetic studies of complex diseases, modern geneticists face the challenge of detecting interactions between loci. A genetic algorithm (GA) is developed to detect the association of genotype frequencies of cancer cases and noncancer cases based on statistical analysis. An improved genetic algorithm (IGA) is proposed to improve the reliability of the GA method for high-dimensional SNP-SNP interactions. The strategy offers the top five results to the random population process, in which they guide the GA toward a significant search course. The IGA increases the likelihood of quickly detecting the maximum ratio difference between cancer cases and noncancer cases. The study systematically evaluates the joint effect of 23 SNP combinations of six steroid hormone metabolisms, and signaling-related genes involved in breast carcinogenesis pathways were systematically evaluated, with IGA successfully detecting significant ratio differences between breast cancer cases and noncancer cases. The possible breast cancer risks were subsequently analyzed by odds-ratio (OR) and risk-ratio analysis. The estimated OR of the best SNP barcode is significantly higher than 1 (between 1.15 and 7.01) for specific combinations of two to 13 SNPs. Analysis results support that the IGA provides higher ratio difference values than the GA between breast cancer cases and noncancer cases over 3-SNP to 13-SNP interactions. A more specific SNP-SNP interaction profile for the risk of breast cancer is also provided.

  5. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region

    OpenAIRE

    Barrett, Jeffrey C.; Lee, James C.; Lees, Charles W.; Prescott, Natalie J.; Anderson, Carl A.; Phillips, Anne; Wesley, Emma; Parnell, Kirstie; Zhang, Hu; DRUMMOND, HAZEL; Elaine R Nimmo; Massey, Dunecan; Blaszczyk, Kasia; Elliott, Timothy; Cotterill, Lynn

    2009-01-01

    Ulcerative colitis is a common form of inflammatory bowel disease with a complex etiology. As part of the Wellcome Trust Case Control Consortium 2, we performed a genome-wide association scan for ulcerative colitis in 2,361 cases and 5,417 controls. Loci showing evidence of association at P < 1 x 10(-5) were followed up by genotyping in an independent set of 2,321 cases and 4,818 controls. We find genome-wide significant evidence of association at three new loci, each containing at least o...

  6. Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Kelemen, Linda E; Wang, Qinggang;

    2011-01-01

    BACKGROUND: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI=1.0-1.4, P(trend) = 0.01) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1...

  7. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Hatagima Ana

    2002-01-01

    Full Text Available Epidemiological studies have estimated that approximately 80% of all cancers are related to environmental factors. Individual cancer susceptibility can be the result of several host factors, including differences in metabolism, DNA repair, altered expression of tumor suppressor genes and proto-oncogenes, and nutritional status. Xenobiotic metabolism is the principal mechanism for maintaining homeostasis during the body's exposure to xenobiotics. The balance of xenobiotic absorption and elimination rates in metabolism can be important in the prevention of DNA damage by chemical carcinogens. Thus the ability to metabolize and eliminate xenobiotics can be considered one of the body's first protective mechanisms. Variability in individual metabolism has been related to the enzymatic polymorphisms involved in activation and detoxification of chemical carcinogens. This paper is a contemporary literature review on genetic polymorphisms involved in the metabolism of endocrine disruptors potentially related to cancer development.

  8. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Ana Hatagima

    2002-04-01

    Full Text Available Epidemiological studies have estimated that approximately 80% of all cancers are related to environmental factors. Individual cancer susceptibility can be the result of several host factors, including differences in metabolism, DNA repair, altered expression of tumor suppressor genes and proto-oncogenes, and nutritional status. Xenobiotic metabolism is the principal mechanism for maintaining homeostasis during the body's exposure to xenobiotics. The balance of xenobiotic absorption and elimination rates in metabolism can be important in the prevention of DNA damage by chemical carcinogens. Thus the ability to metabolize and eliminate xenobiotics can be considered one of the body's first protective mechanisms. Variability in individual metabolism has been related to the enzymatic polymorphisms involved in activation and detoxification of chemical carcinogens. This paper is a contemporary literature review on genetic polymorphisms involved in the metabolism of endocrine disruptors potentially related to cancer development.

  9. Subtle variations in Pten dose determine cancer susceptibility

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-01-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG)1. It has been hypothesized that subtle variations in TSG expression can promote cancer development2,3. However, this hypothesis has not yet been definitively supported in vivo. PTEN is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes4. Here, we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosis. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner. PMID:20400965

  10. Five endometrial cancer risk loci identified through genome-wide association analysis

    Science.gov (United States)

    O’Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica MJ; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Consortium, CHIBCHA; Jun Li, Mulin; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-01-01

    We conducted a meta-analysis of three endometrial cancer GWAS and two replication phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five novel risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1 near SIVA1). A second independent 8q24.21 signal (rs17232730) was found. Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r2=0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103-T endometrial cancer protective allele suppressed gene expression in vitro suggesting that regulation of KLF5 expression, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer. PMID:27135401

  11. Five endometrial cancer risk loci identified through genome-wide association analysis.

    Science.gov (United States)

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.

  12. SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hye-Jung; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2006-07-13

    Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.

  13. Identification and characterization of locus specific methylation patterns within novel loci undergoing hypermethylation during breast cancer pathogenesis

    DEFF Research Database (Denmark)

    Wojdacz, Tomasz K; Windeløv, Johanne Agerlin; Thestrup, Britta Boserup;

    2014-01-01

    biomarkers for early cancer detection and stratification of patients. METHODS: We used ultrahigh-resolution microarrays to compare genomewide methylation patterns of breast carcinomas (n = 20) and nonmalignant breast tissue (n = 5). Biomarker properties of a subset of discovered differentially methylated....... Analysis of the screening results showed that all DMRs tested displayed significant gains of methylation in the cancer tissue compared to the levels in control tissue. Interestingly, we observed two types of locus-specific methylation, with loci undergoing either predominantly full or heterogeneous...... methylation during carcinogenesis. Almost all tested DMRs (17 of 19) displayed low-level methylation in nonmalignant breast tissue, independently of locus-specific methylation patterns in cases. CONCLUSIONS: Specific loci can undergo either heterogeneous or full methylation during carcinogenesis, and loci...

  14. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia;

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...... was performed with Merlin software package for linkage analysis using variance components approach for quantitative trait loci mapping. We identified a strong linkage peak at the end of chromosome 7 (7q36 at 186 cM) with a lod score of 4.06 which overlaps with that reported by a large multicenter study...

  15. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    Science.gov (United States)

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  16. Mapping Interactive Cancer Susceptibility Genes in Prostate Cancer

    Science.gov (United States)

    2007-04-01

    further analysis around this FHIT marker. Under the assumption of a recessive model, we attempted to narrow the disease interval by examining key meiotic ...examining key meiotic recombinants. A and B, physical map illustrating marker and FHIT exon locations. Solid bar, FHIT gene boundary; vertical bars, exons 5...gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 1996;84

  17. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma.

    Science.gov (United States)

    Hysi, Pirro G; Cheng, Ching-Yu; Springelkamp, Henriët; Macgregor, Stuart; Bailey, Jessica N Cooke; Wojciechowski, Robert; Vitart, Veronique; Nag, Abhishek; Hewitt, Alex W; Höhn, René; Venturini, Cristina; Mirshahi, Alireza; Ramdas, Wishal D; Thorleifsson, Gudmar; Vithana, Eranga; Khor, Chiea-Chuen; Stefansson, Arni B; Liao, Jiemin; Haines, Jonathan L; Amin, Najaf; Wang, Ya Xing; Wild, Philipp S; Ozel, Ayse B; Li, Jun Z; Fleck, Brian W; Zeller, Tanja; Staffieri, Sandra E; Teo, Yik-Ying; Cuellar-Partida, Gabriel; Luo, Xiaoyan; Allingham, R Rand; Richards, Julia E; Senft, Andrea; Karssen, Lennart C; Zheng, Yingfeng; Bellenguez, Céline; Xu, Liang; Iglesias, Adriana I; Wilson, James F; Kang, Jae H; van Leeuwen, Elisabeth M; Jonsson, Vesteinn; Thorsteinsdottir, Unnur; Despriet, Dominiek D G; Ennis, Sarah; Moroi, Sayoko E; Martin, Nicholas G; Jansonius, Nomdo M; Yazar, Seyhan; Tai, E-Shyong; Amouyel, Philippe; Kirwan, James; van Koolwijk, Leonieke M E; Hauser, Michael A; Jonasson, Fridbert; Leo, Paul; Loomis, Stephanie J; Fogarty, Rhys; Rivadeneira, Fernando; Kearns, Lisa; Lackner, Karl J; de Jong, Paulus T V M; Simpson, Claire L; Pennell, Craig E; Oostra, Ben A; Uitterlinden, André G; Saw, Seang-Mei; Lotery, Andrew J; Bailey-Wilson, Joan E; Hofman, Albert; Vingerling, Johannes R; Maubaret, Cécilia; Pfeiffer, Norbert; Wolfs, Roger C W; Lemij, Hans G; Young, Terri L; Pasquale, Louis R; Delcourt, Cécile; Spector, Timothy D; Klaver, Caroline C W; Small, Kerrin S; Burdon, Kathryn P; Stefansson, Kari; Wong, Tien-Yin; Viswanathan, Ananth; Mackey, David A; Craig, Jamie E; Wiggs, Janey L; van Duijn, Cornelia M; Hammond, Christopher J; Aung, Tin

    2014-10-01

    Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multi-ancestry participants for IOP. We confirm genetic association of known loci for IOP and primary open-angle glaucoma (POAG) and identify four new IOP-associated loci located on chromosome 3q25.31 within the FNDC3B gene (P = 4.19 × 10(-8) for rs6445055), two on chromosome 9 (P = 2.80 × 10(-11) for rs2472493 near ABCA1 and P = 6.39 × 10(-11) for rs8176693 within ABO) and one on chromosome 11p11.2 (best P = 1.04 × 10(-11) for rs747782). Separate meta-analyses of 4 independent POAG cohorts, totaling 4,284 cases and 95,560 controls, showed that 3 of these loci for IOP were also associated with POAG.

  18. Combining Telomerase Reverse Transcriptase Genetic Variant rs2736100 with Epidemiologic Factors in the Prediction of Lung Cancer Susceptibility.

    Science.gov (United States)

    Wang, Xu; Ma, Kewei; Chi, Lumei; Cui, Jiuwei; Jin, Lina; Hu, Ji-Fan; Li, Wei

    2016-01-01

    Genetic variants from a considerable number of susceptibility loci have been identified in association with cancer risk, but their interaction with epidemiologic factors in lung cancer remains to be defined. We sought to establish a forecasting model for identifying individuals with high-risk of lung cancer by combing gene single-nucleotide polymorphisms with epidemiologic factors. Genotyping and clinical data from 500 lung cancer cases and 500 controls were used for developing the logistic regression model. We found that lung cancer was associated with telomerase reverse transcriptase (TERT) rs2736100 single-nucleotide polymorphism. The TERT rs2736100 model was still significantly associated with lung cancer risk when combined with environmental and lifestyle factors, including lower education, lower BMI, COPD history, heavy cigarettes smoking, heavy cooking emission, and dietary factors (over-consumption of meat and deficiency in fish/shrimp, vegetables, dairy products, and soybean products). These data suggest that combining TERT SNP and epidemiologic factors may be a useful approach to discriminate high and low-risk individuals for lung cancer.

  19. Genetic susceptibility for specific cancers. Medical liability of the clinician.

    Science.gov (United States)

    Severin, M J

    1999-12-01

    The use of genetic profiling techniques to detect individuals with an increased susceptibility to heritable cancers has provoked recent legal interest in the duties of the attending physician and in the rights of patients and their families. In the current study specific prima facie and recently litigated cases are presented and explored to delineate the issues facing physicians and to illustrate the prerogatives of patients who are caught up in a heritable cancer enigma. Various courts have attempted to answer questions involving lawsuits in which incidents of breast/ovarian carcinoma and colon carcinoma have provoked claims of negligence against health care providers. Health care workers involved in the care of these patients have specific duties to these individuals. It would appear that physicians are being forced to assume the additional duty of delving into a patient's family history of cancer through multiple generations. This duty is followed by a responsibility to provide detailed counseling to those patients in whom such activity impacts the diagnosis and management of familial cancer.

  20. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Science.gov (United States)

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  1. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    Directory of Open Access Journals (Sweden)

    Fergus J Couch

    Full Text Available BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer, with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8, HR = 1.14, 95% CI: 1.09-1.20. In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8, HR = 1.27, 95% CI: 1.17-1.38 and 4q32.3 (rs4691139, P = 3.4 × 10(-8, HR = 1.20, 95% CI: 1.17-1.38. The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4. These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.

  2. Common alleles in candidate susceptibility genes associated with risk and development of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Notaridou, Maria; Quaye, Lydia; Dafou, Dimitra;

    2011-01-01

    Common germline genetic variation in the population is associated with susceptibility to epithelial ovarian cancer. Microcell-mediated chromosome transfer and expression microarray analysis identified nine genes associated with functional suppression of tumorogenicity in ovarian cancer cell lines...

  3. Follow-up of potential novel Graves' disease susceptibility loci, identified in the UK WTCCC genome-wide nonsynonymous SNP study.

    Science.gov (United States)

    Newby, Paul R; Pickles, Oliver J; Mazumdar, Samaresh; Brand, Oliver J; Carr-Smith, Jaqueline D; Pearce, Simon H S; Franklyn, Jayne A; Evans, David M; Simmonds, Matthew J; Gough, Stephen C L

    2010-09-01

    A recent association scan using a genome-wide set of nonsynonymous coding single-nucleotide polymorphisms (nsSNPs) conducted in four diseases including Graves' disease (GD), identified nine novel possible regions of association with GD. We used a case-control approach in an attempt to replicate association of these nine regions in an independent collection of 1578 British GD patients and 1946 matched Caucasian controls. Although none of these loci showed evidence of association with GD in the independent data set, when combined with the original Wellcome Trust Case-Control Consortium study group, minor differences in allele frequencies (P>or=10(-3)) remained in the combined collection of 5924 subjects for four of the nsSNPs, present within HDLBP, TEKT1, JSRP1 and UTX. An additional 29 Tag SNPs were screened within these four gene regions to determine if further associations could be detected. Similarly, minor differences only (P=0.042-0.002) were detected in two HDLBP and two TEKT1 Tag SNPs in the combined UK GD collection. In conclusion, it is unlikely that the SNPs selected in this replication study have a significant effect on the risk of GD in the United Kingdom. Our study confirms the need for large data sets and stringent analysis criteria when searching for susceptibility loci in common diseases.

  4. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Cheng

    2009-05-01

    Full Text Available The prevalence of obesity (body mass index (BMI > or =30 kg/m(2 is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20% and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (rho = -0.042, P = 1.6x10(-7. In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = -3.94; and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = -4.62. Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46. Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.

  5. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X.

    Science.gov (United States)

    Cheng, Ching-Yu; Kao, W H Linda; Patterson, Nick; Tandon, Arti; Haiman, Christopher A; Harris, Tamara B; Xing, Chao; John, Esther M; Ambrosone, Christine B; Brancati, Frederick L; Coresh, Josef; Press, Michael F; Parekh, Rulan S; Klag, Michael J; Meoni, Lucy A; Hsueh, Wen-Chi; Fejerman, Laura; Pawlikowska, Ludmila; Freedman, Matthew L; Jandorf, Lina H; Bandera, Elisa V; Ciupak, Gregory L; Nalls, Michael A; Akylbekova, Ermeg L; Orwoll, Eric S; Leak, Tennille S; Miljkovic, Iva; Li, Rongling; Ursin, Giske; Bernstein, Leslie; Ardlie, Kristin; Taylor, Herman A; Boerwinckle, Eric; Zmuda, Joseph M; Henderson, Brian E; Wilson, James G; Reich, David

    2009-05-01

    The prevalence of obesity (body mass index (BMI) > or =30 kg/m(2)) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (rho = -0.042, P = 1.6x10(-7)). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = -3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = -4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.

  6. Genetic susceptibility variants associated with colorectal cancer prognosis.

    Science.gov (United States)

    Abulí, Anna; Lozano, Juan José; Rodríguez-Soler, María; Jover, Rodrigo; Bessa, Xavier; Muñoz, Jenifer; Esteban-Jurado, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Ruiz-Ponte, Clara; Cubiella, Joaquín; Balaguer, Francesc; Bujanda, Luis; Reñé, Josep M; Clofent, Juan; Morillas, Juan Diego; Nicolás-Pérez, David; Xicola, Rosa M; Llor, Xavier; Piqué, Josep M; Andreu, Montserrat; Castells, Antoni; Castellví-Bel, Sergi

    2013-10-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death among men and women in Western countries. Once a tumour develops, a differentiated prognosis could be determined by lifestyle habits or inherited and somatic genetic factors. Finding such prognostic factors will be helpful in order to identify cases with a shorter survival or at a higher risk of recurrence that may benefit from more intensive treatment and follow-up surveillance. Sixteen CRC genetic susceptibility variants were directly genotyped in a cohort of 1235 CRC patients recruited by the EPICOLON Spanish consortium. Univariate Cox and multivariate regression analyses were performed taking as primary outcomes overall survival (OS), disease-free survival and recurrence-free interval. Genetic variants rs9929218 at 16q22.1 and rs10795668 at 10p14 may have an effect on OS. The G allele of rs9929218 was linked with a better OS [GG genotype, genotypic model: hazard ratio (HR) = 0.65, 95% confidence interval (CI) 0.45-0.93, P = 0.0179; GG/GA genotypes, dominant model: HR = 0.66, 95% CI 0.47-0.94, P = 0.0202]. Likewise, the G allele of rs10795668 was associated with better clinical outcome (GG genotype, genotypic model: HR = 0.73, 95% CI 0.53-1.01, P = 0.0570; GA genotype, genotypic model: HR = 0.66, 95% CI 0.47-0.92, P = 0.0137; GG/GA genotypes, dominant model: HR = 0.68, 95% CI 0.50-0.94, P = 0.0194). In conclusion, CRC susceptibility variants rs9929218 and rs10795668 may exert some influence in modulating patient's survival and they deserve to be further tested in additional CRC cohorts in order to confirm their potential as prognosis or predictive biomarkers.

  7. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus

    DEFF Research Database (Denmark)

    Stevens, Kristen N; Fredericksen, Zachary; Vachon, Celine M

    2012-01-01

    The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone recepto...

  8. Sequence divergence of Mus spretus and Mus musculus across a skin cancer susceptibility locus

    Directory of Open Access Journals (Sweden)

    Balmain Allan

    2008-12-01

    Full Text Available Abstract Background Mus spretus diverged from Mus musculus over one million years ago. These mice are genetically and phenotypically divergent. Despite the value of utilizing M. musculus and M. spretus for quantitative trait locus (QTL mapping, relatively little genomic information on M. spretus exists, and most of the available sequence and polymorphic data is for one strain of M. spretus, Spret/Ei. In previous work, we mapped fifteen loci for skin cancer susceptibility using four different M. spretus by M. musculus F1 backcrosses. One locus, skin tumor susceptibility 5 (Skts5 on chromosome 12, shows strong linkage in one cross. Results To identify potential candidate genes for Skts5, we sequenced 65 named and unnamed genes and coding elements mapping to the peak linkage area in outbred spretus, Spret/EiJ, FVB/NJ, and NIH/Ola. We identified polymorphisms in 62 of 65 genes including 122 amino acid substitutions. To look for polymorphisms consistent with the linkage data, we sequenced exons with amino acid polymorphisms in two additional M. spretus strains and one additional M. musculus strain generating 40.1 kb of sequence data. Eight candidate variants were identified that fit with the linkage data. To determine the degree of variation across M. spretus, we conducted phylogenetic analyses. The relatedness of the M. spretus strains at this locus is consistent with the proximity of region of ascertainment of the ancestral mice. Conclusion Our analyses suggest that, if Skts5 on chromosome 12 is representative of other regions in the genome, then published genomic data for Spret/EiJ are likely to be of high utility for genomic studies in other M. spretus strains.

  9. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  10. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer

    Science.gov (United States)

    Ha, Ngoc-Han; Long, Jirong; Cai, Qiuyin; Shu, Xiao Ou

    2016-01-01

    Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies. PMID:27656887

  11. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Kylie L Gorringe

    Full Text Available Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  12. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Science.gov (United States)

    Gorringe, Kylie L; George, Joshy; Anglesio, Michael S; Ramakrishna, Manasa; Etemadmoghadam, Dariush; Cowin, Prue; Sridhar, Anita; Williams, Louise H; Boyle, Samantha E; Yanaihara, Nozomu; Okamoto, Aikou; Urashima, Mitsuyoshi; Smyth, Gordon K; Campbell, Ian G; Bowtell, David D L

    2010-09-10

    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  13. Mucin 1 Gene (MUC1 and Gastric-Cancer Susceptibility

    Directory of Open Access Journals (Sweden)

    Norihisa Saeki

    2014-05-01

    Full Text Available Gastric cancer (GC is one of the major malignant diseases worldwide, especially in Asia. It is classified into intestinal and diffuse types. While the intestinal-type GC (IGC is almost certainly caused by Helicobacter pylori (HP infection, its role in the diffuse-type GC (DGC appears limited. Recently, genome-wide association studies (GWAS on Japanese and Chinese populations identified chromosome 1q22 as a GC susceptibility locus which harbors mucin 1 gene (MUC1 encoding a cell membrane-bound mucin protein. MUC1 has been known as an oncogene with an anti-apoptotic function in cancer cells; however, in normal gastric mucosa, it is anticipated that the mucin 1 protein has a role in protecting gastric epithelial cells from a variety of external insults which cause inflammation and carcinogenesis. HP infection is the most definite insult leading to GC, and a protective function of mucin 1 protein has been suggested by studies on Muc1 knocked-out mice.

  14. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley;

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer......), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303......, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also...

  15. Caspase 9 promoter polymorphisms confer increased susceptibility to breast cancer.

    Science.gov (United States)

    Theodoropoulos, George E; Michalopoulos, Nikolaos V; Pantou, Malena P; Kontogianni, Panagiota; Gazouli, Maria; Karantanos, Theodoros; Lymperi, Maria; Zografos, George C

    2012-10-01

    Caspases (CASPs), play a crucial role in the development and progression of cancer. We evaluated the association between two polymorphisms (rs4645978 and rs4645981) of the CASP9 gene and the risk of breast cancer (BC). Genotypes and allelic frequencies for the two polymorphisms were determined in 261 patients with breast cancer and 480 healthy controls. Polymerase chain reaction-restriction fragment length polymorphisms were used, and statistical significance was determined by the χ(2) test. Carriers of the rs4645978G allele (AG and GG genotypes) were at higher risk for BC than individuals with other genotypes (odds ratio (OR) 1.59, 95% confidence interval (CI) 1.07-2.37, P = 0.022). The rs4645978GG genotype, in particular, was associated with the highest risk for BC development (OR 2.25, 95% CI 1.45-3.49, P = 0.0003). Similarly, individuals with at least one rs4645981T allele were at a significantly increased risk of developing BC compared with those harboring the CC genotype (OR 2.75, 95% CI 1.99-3.78, P < 0.0001), and the risk of BC increased with increasing numbers of rs4645981T alleles (OR 2.66, 95% CI 1.91-3.69, P < 0.0001 for the CT genotype; OR 3.95, 95% CI 1.58-9.88, P = 0.004 for the TT genotype). The CASP9 promoter polymorphisms rs4645978 and rs4645981 are associated with BC susceptibility and suggest that CASP9 transcriptional regulation is an important factor during BC development.

  16. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Ramus, Susan J; Antoniou, Antonis C; Kuchenbaecker, Karoline B; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Sinilnikova, Olga M; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Złowocka, Elżbieta; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Tejada, Maria-Isabel; Hamann, Ute; Rookus, Matti; van Leeuwen, Flora E; Aalfs, Cora M; Meijers-Heijboer, Hanne E J; van Asperen, Christi J; van Roozendaal, K E P; Hoogerbrugge, Nicoline; Collée, J Margriet; Kriege, Mieke; van der Luijt, Rob B; Peock, Susan; Frost, Debra; Ellis, Steve D; Platte, Radka; Fineberg, Elena; Evans, D Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J; Walker, Lisa; Porteous, Mary E; Kennedy, M John; Pathak, Harsh; Godwin, Andrew K; Stoppa-Lyonnet, Dominique; Caux-Moncoutier, Virginie; de Pauw, Antoine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Léoné, Mélanie; Calender, Alain; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bignon, Yves-Jean; Uhrhammer, Nancy; Faivre, Laurence; Loustalot, Catherine; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy K; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Tea, Muy-Kheng; Pfeiler, Georg; Fink-Retter, Anneliese; Hansen, Thomas v O; Ejlertsen, Bent; Johannsson, Oskar Th; Offit, Kenneth; Kirchhoff, Tomas; Gaudet, Mia M; Vijai, Joseph; Robson, Mark; Piedmonte, Marion; Phillips, Kelly-Anne; Van Le, Linda; Hoffman, James S; Ewart Toland, Amanda; Montagna, Marco; Tognazzo, Silvia; Imyanitov, Evgeny; Issacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Iganacio; Tornero, Eva; Navarro, Matilde; Moysich, Kirsten B; Karlan, Beth Y; Gross, Jenny; Olah, Edith; Vaszko, Tibor; Teo, Soo-Hwang; Ganz, Patricia A; Beattie, Mary S; Dorfling, Cecelia M; van Rensburg, Elizabeth J; Diez, Orland; Kwong, Ava; Schmutzler, Rita K; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schäfer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Plante, Marie; Spurdle, Amanda B; Neuhausen, Susan L; Ding, Yuan Chun; Wang, Xianshu; Lindor, Noralane; Fredericksen, Zachary; Pankratz, V Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H; Mai, Phuong L; Andrulis, Irene L; Glendon, Gord; Ozcelik, Hilmi; Pharoah, Paul D P; Gayther, Simon A; Simard, Jacques; Easton, Douglas F; Couch, Fergus J; Chenevix-Trench, Georgia

    2012-04-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Four single-nucleotide polymorphisms (SNPs), rs10088218 (at 8q24), rs2665390 (at 3q25), rs717852 (at 2q31), and rs9303542 (at 17q21), were genotyped in 12,599 BRCA1 and 7,132 BRCA2 carriers, including 2,678 ovarian cancer cases. Associations were evaluated within a retrospective cohort approach. All four loci were associated with ovarian cancer risk in BRCA2 carriers; rs10088218 per-allele hazard ratio (HR) = 0.81 (95% CI: 0.67-0.98) P-trend = 0.033, rs2665390 HR = 1.48 (95% CI: 1.21-1.83) P-trend = 1.8 × 10(-4), rs717852 HR = 1.25 (95% CI: 1.10-1.42) P-trend = 6.6 × 10(-4), rs9303542 HR = 1.16 (95% CI: 1.02-1.33) P-trend = 0.026. Two loci were associated with ovarian cancer risk in BRCA1 carriers; rs10088218 per-allele HR = 0.89 (95% CI: 0.81-0.99) P-trend = 0.029, rs2665390 HR = 1.25 (95% CI: 1.10-1.42) P-trend = 6.1 × 10(-4). The HR estimates for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer.

  17. Polymorphisms at p53, p73, and MDM2 loci modulate the risk of tobacco associated leukoplakia and oral cancer.

    Science.gov (United States)

    Misra, Chaitali; Majumder, Mousumi; Bajaj, Swati; Ghosh, Saurabh; Roy, Bidyut; Roychoudhury, Susanta

    2009-09-01

    Polymorphisms at loci controlling cellular processes such as cell cycle, DNA repair, and apoptosis may modulate the risk of cancer. We examined the association of two linked polymorphisms (G4C14-A4T14) at p73 and one polymorphism (309G > T) at MDM2 promoter with the risk of leukoplakia and oral cancer. The p73 and MDM2 genotypes were determined in 197 leukoplakia patients, 310 oral cancer patients and in 348 healthy control subjects. The p73 GC/AT genotype increased the risk of leukoplakia (OR = 1.6, 95% CI = 1.1-2.3) and oral cancer (OR = 2.4, 95% CI = 1.7-3.3) but the 309G > T MDM2 polymorphism independently could not modify the risk of any of the diseases. Stratification of the study population into subgroups with different tobacco habits showed that the risk of the oral cancer is not modified further for the individuals carrying p73 risk genotype. However, leukoplakia patients with smokeless tobacco habit showed increased risk with combined GC/AT and AT/AT (OR = 3.0, 95% CI = 1.3-7.0) genotypes. A combined analysis was done with our previous published data on p53 codon 72 pro/arg polymorphism. Analysis of pair wise genotype combinations revealed increase in risk for specific p73-MDM2 and p73-p53 genotype combinations. Finally, the combined three loci analyses revealed that the presence of at least one risk allele at all three loci increases the risk of both leukoplakia and oral cancer.

  18. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23

    NARCIS (Netherlands)

    Wu, Xifeng; Scelo, Ghislaine; Purdue, Mark P.; Rothman, Nathaniel; Johansson, Mattias; Ye, Yuanqing; Wang, Zhaoming; Zelenika, Diana; Moore, Lee E.; Wood, Christopher G.; Prokhortchouk, Egor; Gaborieau, Valerie; Jacobs, Kevin B.; Chow, Wong-Ho; Toro, Jorge R.; Zaridze, David; Lin, Jie; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Jinga, Viorel; Bencko, Vladimir; Slamova, Alena; Holcatova, Ivana; Navratilova, Marie; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S.; Davis, Faith G.; Schwartz, Kendra L.; Banks, Rosamonde E.; Selby, Peter J.; Harnden, Patricia; Berg, Christine D.; Hsing, Ann W.; Grubb, Robert L.; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J.; Ramon Quiros, Jose; Sanchez, Maria-Jose; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E.; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Borje; Overvad, Kim; Tjonneland, Anne; Romieu, Isabelle; Riboli, Elio; Stevens, Victoria L.; Thun, Michael J.; Diver, W. Ryan; Gapstur, Susan M.; Pharoah, Paul D.; Easton, Douglas F.; Albanes, Demetrius; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Fletcher, Tony; Koppova, Kvetoslava; Cussenot, Olivier; Cancel-Tassin, Geraldine; Benhamou, Simone; Hildebrandt, Michelle A.; Pu, Xia; Foglio, Mario; Lechner, Doris; Hutchinson, Amy; Yeager, Meredith; Fraumeni, Joseph F.; Lathrop, Mark; Skryabin, Konstantin G.; McKay, James D.; Gu, Jian; Brennan, Paul; Chanock, Stephen J.

    2012-01-01

    Renal cell carcinoma (RCC) is the most lethal urologic cancer. Only two common susceptibility loci for RCC have been confirmed to date. To identify additional RCC common susceptibility loci, we conducted an independent genome- wide association study (GWAS). We analyzed 533 191 single nucleotide poly

  19. Murine lupus susceptibility locus Sle1a requires the expression of two sub-loci to induce inflammatory T cells.

    Science.gov (United States)

    Cuda, C M; Zeumer, L; Sobel, E S; Croker, B P; Morel, L

    2010-10-01

    The NZM2410-derived Sle1a lupus susceptibility locus induces activated autoreactive CD4(+) T cells and reduces the number and function of Foxp3(+) regulatory T cells (Tregs). In this study, we first showed that Sle1a contributes to autoimmunity by increasing antinuclear antibody production when expressed on either NZB or NZW heterozygous genomes, and by enhancing the chronic graft versus host disease response indicating an expansion of the autoreactive B-cell pool. Screening two non-overlapping recombinants, the Sle1a.1 and Sle1a.2 intervals that cover the entire Sle1a locus, revealed that both Sle1a.1 and Sle1a.2 were necessary for the full Sle1a phenotype. Sle1a.1, and to a lesser extent Sle1a.2, significantly affected CD4(+) T-cell activation as well as Treg differentiation and function. Sle1a.2 also increased the production of autoreactive B cells. As the Sle1a.1 and Sle1a.2 intervals contain only 1 and 15 known genes, respectively, this study considerably reduces the number of candidate genes responsible for the production of autoreactive T cells. These results also show that the Sle1 locus is an excellent model for the genetic architecture of lupus, in which a major obligate phenotype results from the coexpression of multiple genetic variants with individual weak effects.

  20. Low-risk susceptibility alleles in 40 human breast cancer cell lines

    NARCIS (Netherlands)

    M. Riaz (Muhammad); F. Elstrodt (Fons); A. Hollestelle (Antoinette); A. Dehghan (Abbas); J.G.M. Klijn (Jan); M. Schutte (Mieke)

    2009-01-01

    textabstractBackground: Low-risk breast cancer susceptibility alleles or SNPs confer only modest breast cancer risks ranging from just over 1.0 to 1.3 fold. Yet, they are common among most populations and therefore are involved in the development of essentially all breast cancers. The mechanism by w

  1. Methylenetetrahydrofolate Reductase Genotypes, Dietary Habits and Susceptibility to Stomach Cancer

    Institute of Scientific and Technical Information of China (English)

    ChangmingGao; TakezakiToshiro; JianzhongWu; JianhuoDing; YantingLiu; SupingLi; PingSu; XuHu; TianliongXu; HamajimaNobuyuki; TajimaKazuo

    2004-01-01

    OBJECTIVE To study the relation among methylenetetrahydrofolate reductase (MTHFR) C677T genotypes, dietary habits and the risk of stomach cancer (SC).METHODS A case-control study was conducted with 107 cases of SC and 200 population-based controls in Chuzhou district, Huaian, Jiangsu province, China. The epidemiological data were collected, and DNA of peripheral blood leukocytes was obtained from all of the subjects..MTHFR genotypes were detected by PCR-RFLP. RESULTS (1) The prevalence of the MTHFR C/T or T/T genotypes was found to be significantly different between controls (68.5%) and SC cases (79.4%,P=0.0416), the increased risk had an adjusted OR of 1.79 (95%C1:1.01-3.19). (2) Among subjects who had a low intake of garlic or Chinese onion, MTHFR C/T or T/T genotypes significantly increased the risk of developing SC. Among non-tea drinkers or among subjects who had a frequent intakeof meat, the carriers of the MTHFR C/T or T/T genotypes had a higher risk of SC than individuals with the C/C type MTHFR. CONCLUSION The polymorphism of MTHFR C677T was associated with increased risk of developing SC, and that individuals with differing genotypes may have different susceptibilities to SC, based on their exposure level to environmental factors.

  2. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene.

    Science.gov (United States)

    Rafnar, Thorunn; Vermeulen, Sita H; Sulem, Patrick; Thorleifsson, Gudmar; Aben, Katja K; Witjes, J Alfred; Grotenhuis, Anne J; Verhaegh, Gerald W; Hulsbergen-van de Kaa, Christina A; Besenbacher, Soren; Gudbjartsson, Daniel; Stacey, Simon N; Gudmundsson, Julius; Johannsdottir, Hrefna; Bjarnason, Hjordis; Zanon, Carlo; Helgadottir, Hafdis; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Jonsson, Eirikur; Geirsson, Gudmundur; Nikulasson, Sigfus; Petursdottir, Vigdis; Bishop, D Timothy; Chung-Sak, Sei; Choudhury, Ananya; Elliott, Faye; Barrett, Jennifer H; Knowles, Margaret A; de Verdier, Petra J; Ryk, Charlotta; Lindblom, Annika; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Vineis, Paolo; Polidoro, Silvia; Guarrera, Simonetta; Sacerdote, Carlotta; Panadero, Angeles; Sanz-Velez, José I; Sanchez, Manuel; Valdivia, Gabriel; Garcia-Prats, Maria D; Hengstler, Jan G; Selinski, Silvia; Gerullis, Holger; Ovsiannikov, Daniel; Khezri, Abdolaziz; Aminsharifi, Alireza; Malekzadeh, Mahyar; van den Berg, Leonard H; Ophoff, Roel A; Veldink, Jan H; Zeegers, Maurice P; Kellen, Eliane; Fostinelli, Jacopo; Andreoli, Daniele; Arici, Cecilia; Porru, Stefano; Buntinx, Frank; Ghaderi, Abbas; Golka, Klaus; Mayordomo, José I; Matullo, Giuseppe; Kumar, Rajiv; Steineck, Gunnar; Kiltie, Anne E; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; Kiemeney, Lambertus A

    2011-11-01

    Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European GWAS. The discovery sample set consisted of 1631 cases and 3822 controls from the Netherlands and 603 cases and 37 781 controls from Iceland. For follow-up, we used 3790 cases and 7507 controls from 13 sample sets of European and Iranian ancestry. Based on the discovery analysis, we followed up signals in the urea transporter (UT) gene SLC14A. The strongest signal at this locus was represented by a SNP in intron 3, rs17674580, that reached genome-wide significance in the overall analysis of the discovery and follow-up groups: odds ratio = 1.17, P = 7.6 × 10(-11). SLC14A1 codes for UTs that define the Kidd blood group and are crucial for the maintenance of a constant urea concentration gradient in the renal medulla and, through this, the kidney's ability to concentrate urine. It is speculated that rs17674580, or other sequence variants in LD with it, indirectly modifies UBC risk by affecting urine production. If confirmed, this would support the 'urogenous contact hypothesis' that urine production and voiding frequency modify the risk of UBC.

  3. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers.

    Directory of Open Access Journals (Sweden)

    Gordan Lauc

    Full Text Available Glycosylation of immunoglobulin G (IgG influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative measurements of N-glycosylation using ultra-performance liquid chromatography (UPLC in 2,247 individuals from four European discovery populations. In parallel, we measured IgG N-glycans using MALDI-TOF mass spectrometry (MS in a replication cohort of 1,848 Europeans. Meta-analysis of genome-wide association study (GWAS results identified 9 genome-wide significant loci (P<2.27 × 10(-9 in the discovery analysis and two of the same loci (B4GALT1 and MGAT3 in the replication cohort. Four loci contained genes encoding glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and MGAT3, while the remaining 5 contained genes that have not been previously implicated in protein glycosylation (IKZF1, IL6ST-ANKRD55, ABCF2-SMARCD3, SUV420H1, and SMARCB1-DERL3. However, most of them have been strongly associated with autoimmune and inflammatory conditions (e.g., systemic lupus erythematosus, rheumatoid arthritis, ulcerative colitis, Crohn's disease, diabetes type 1, multiple sclerosis, Graves' disease, celiac disease, nodular sclerosis and/or haematological cancers (acute lymphoblastic leukaemia, Hodgkin lymphoma, and multiple myeloma. Follow-up functional experiments in haplodeficient Ikzf1 knock-out mice showed the same general pattern of changes in IgG glycosylation as identified in the meta-analysis. As IKZF1 was associated with multiple IgG N-glycan traits, we explored biomarker potential of affected N-glycans in 101 cases with SLE and 183 matched controls and demonstrated substantial discriminative power in a ROC-curve analysis (area under the curve = 0.842. Our study shows that it is possible to identify new loci that control glycosylation of a single plasma protein

  4. Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1.

    Directory of Open Access Journals (Sweden)

    Juliane Winkelmann

    2011-07-01

    Full Text Available Restless legs syndrome (RLS is a sensorimotor disorder with an age-dependent prevalence of up to 10% in the general population above 65 years of age. Affected individuals suffer from uncomfortable sensations and an urge to move in the lower limbs that occurs mainly in resting situations during the evening or at night. Moving the legs or walking leads to an improvement of symptoms. Concomitantly, patients report sleep disturbances with consequences such as reduced daytime functioning. We conducted a genome-wide association study (GWA for RLS in 922 cases and 1,526 controls (using 301,406 SNPs followed by a replication of 76 candidate SNPs in 3,935 cases and 5,754 controls, all of European ancestry. Herein, we identified six RLS susceptibility loci of genome-wide significance, two of them novel: an intergenic region on chromosome 2p14 (rs6747972, P = 9.03 × 10(-11, OR = 1.23 and a locus on 16q12.1 (rs3104767, P = 9.4 × 10(-19, OR = 1.35 in a linkage disequilibrium block of 140 kb containing the 5'-end of TOX3 and the adjacent non-coding RNA BC034767.

  5. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3.

    Science.gov (United States)

    Purdue, Mark P; Johansson, Mattias; Zelenika, Diana; Toro, Jorge R; Scelo, Ghislaine; Moore, Lee E; Prokhortchouk, Egor; Wu, Xifeng; Kiemeney, Lambertus A; Gaborieau, Valerie; Jacobs, Kevin B; Chow, Wong-Ho; Zaridze, David; Matveev, Vsevolod; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Péter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S; Davis, Faith G; Schwartz, Kendra L; Banks, Rosamonde E; Selby, Peter J; Harnden, Patricia; Berg, Christine D; Hsing, Ann W; Grubb, Robert L; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Françoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J; Quirós, José Ramón; Sanchez, Maria-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Börje; Overvad, Kim; Tjønneland, Anne; Romieu, Isabelle; Riboli, Elio; Mukeria, Anush; Shangina, Oxana; Stevens, Victoria L; Thun, Michael J; Diver, W Ryan; Gapstur, Susan M; Pharoah, Paul D; Easton, Douglas F; Albanes, Demetrius; Weinstein, Stephanie J; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Njølstad, Inger; Tell, Grethe S; Stoltenberg, Camilla; Kumar, Rajiv; Koppova, Kvetoslava; Cussenot, Olivier; Benhamou, Simone; Oosterwijk, Egbert; Vermeulen, Sita H; Aben, Katja K H; van der Marel, Saskia L; Ye, Yuanqing; Wood, Christopher G; Pu, Xia; Mazur, Alexander M; Boulygina, Eugenia S; Chekanov, Nikolai N; Foglio, Mario; Lechner, Doris; Gut, Ivo; Heath, Simon; Blanche, Hélène; Hutchinson, Amy; Thomas, Gilles; Wang, Zhaoming; Yeager, Meredith; Fraumeni, Joseph F; Skryabin, Konstantin G; McKay, James D; Rothman, Nathaniel; Chanock, Stephen J; Lathrop, Mark; Brennan, Paul

    2011-01-01

    We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 affected individuals (cases) and 8,505 controls of European background from 11 studies and followed up 6 SNPs in 3 replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and 11q13.3 were associated with RCC susceptibility below genome-wide significance. Two correlated variants (r² = 0.99 in controls), rs11894252 (P = 1.8 × 10⁻⁸) and rs7579899 (P = 2.3 × 10⁻⁹), map to EPAS1 on 2p21, which encodes hypoxia-inducible-factor-2 alpha, a transcription factor previously implicated in RCC. The second locus, rs7105934, at 11q13.3, contains no characterized genes (P = 7.8 × 10⁻¹⁴). In addition, we observed a promising association on 12q24.31 for rs4765623, which maps to SCARB1, the scavenger receptor class B, member 1 gene (P = 2.6 × 10⁻⁸). Our study reports previously unidentified genomic regions associated with RCC risk that may lead to new etiological insights.

  6. Identification of a breast cancer susceptibility locus at 4q31.22 using a genome-wide association study paradigm.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available More than 40 single nucleotide polymorphisms (SNPs for breast cancer susceptibility were identified by genome-wide association studies (GWASs. However, additional SNPs likely contribute to breast cancer susceptibility and overall genetic risk, prompting this investigation for additional variants. Six putative breast cancer susceptibility SNPs identified in a two-stage GWAS that we reported earlier were replicated in a follow-up stage 3 study using an independent set of breast cancer cases and controls from Canada, with an overall cumulative sample size of 7,219 subjects across all three stages. The study design also encompassed the 11 variants from GWASs previously reported by various consortia between the years 2007-2009 to (i enable comparisons of effect sizes, and (ii identify putative prognostic variants across studies. All SNP associations reported with breast cancer were also adjusted for body mass index (BMI. We report a strong association with 4q31.22-rs1429142 (combined per allele odds ratio and 95% confidence interval = 1.28 [1.17-1.41] and P combined = 1.5×10(-7, when adjusted for BMI. Ten of the 11 breast cancer susceptibility loci reported by consortia also showed associations in our predominantly Caucasian study population, and the associations were independent of BMI; four FGFR2 SNPs and TNRC9-rs3803662 were among the most notable associations. Since the original report by Garcia-Closas et al. 2008, this is the second study to confirm the association of 8q24.21-rs13281615 with breast cancer outcomes.

  7. Application of fuzzy consensus for oral pre-cancer and cancer susceptibility assessment

    Directory of Open Access Journals (Sweden)

    Satarupa Banerjee

    2016-11-01

    Full Text Available Health questionnaire data assessment conventionally relies upon statistical analysis in understanding disease susceptibility using discrete numbers and fails to reflect physician’s perspectives and missing narratives in data, which play subtle roles in disease prediction. In addressing such limitations, the present study applies fuzzy consensus in oral health and habit questionnaire data for a selected Indian population in the context of assessing susceptibility to oral pre-cancer and cancer. Methodically collected data were initially divided into age based small subgroups and fuzzy membership function was assigned to each. The methodology further proposed the susceptibility to oral precancers (viz. leukoplakia, oral submucous fibrosis and squamous cell carcinoma in patients considering a fuzzy rulebase through If-Then rules with certain conditions. Incorporation of similarity measures using the Jaccard index was used during conversion into the linguistic output of fuzzy set to predict the disease outcome in a more accurate manner and associated condition of the relevant features. It is also expected that this analytical approach will be effective in devising strategies for policy making through real-life questionnaire data handling.

  8. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies

    Indian Academy of Sciences (India)

    N. Johns; B. H. Tan; M. Macmillan; T. S. Solheim; J. A. Ross; V. E. Baracos; S. Damaraju; K. C. H. Fearon

    2014-12-01

    Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986–2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and

  9. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies.

    Science.gov (United States)

    Johns, N; Tan, B H; MacMillan, M; Solheim, T S; Ross, J A; Baracos, V E; Damaraju, S; Fearon, K C H

    2014-12-01

    Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986-2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and

  10. A risk evaluation model of cervical cancer based on etiology and human leukocyte antigen allele susceptibility

    Directory of Open Access Journals (Sweden)

    Bicheng Hu

    2014-11-01

    Conclusions: This model, based on etiology and HLA allele susceptibility, can estimate the risk of cervical cancer in chronic cervicitis patients after HPV infection. It combines genetic and environmental factors and significantly enhances the accuracy of risk evaluation for cervical cancer. This model could be used to select patients for intervention therapy and to guide patient classification management.

  11. Fine-mapping of the 1p11.2 breast cancer susceptibility locus

    NARCIS (Netherlands)

    Horne, H.N. (Hisani N.); Chung, C.C. (Charles C.); Zhang, H. (Han); Yu, K. (Kai); Prokunina-Olsson, L. (Ludmila); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet K.); Q. Wang (Qing); J. Dennis (Joe); J.L. Hopper (John); M.C. Southey (Melissa); M.K. Schmidt (Marjanka); A. Broeks (Annegien); K.R. Muir (K.); A. Lophatananon (Artitaya); P.A. Fasching (Peter); M.W. Beckmann (Matthias); O. Fletcher (Olivia); Johnson, N. (Nichola); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); Burwinkel, B. (Barbara); Marme, F. (Frederik); P. Guénel (Pascal); T. Truong (Thérèse); S.E. Bojesen (Stig); H. Flyger (Henrik); J. Benítez (Javier); A. González-Neira (Anna); H. Anton-Culver (Hoda); S.L. Neuhausen (Susan); Brenner, H. (Hermann); V. Arndt (Volker); A. Meindl (Alfons); R.K. Schmutzler (Rita); H. Brauch (Hiltrud); U. Hamann (Ute); H. Nevanlinna (Heli); S. Khan (Sofia); K. Matsuo (Keitaro); H. Iwata (Hiroji); T. Dörk (Thilo); N.V. Bogdanova (Natalia); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V-M. Kosma (Veli-Matti); G. Chenevix-Trench (Georgia); A.H. Wu (Anna); Ven Den Berg, D. (David); A. Smeets (Ann); H. Zhao (Hui); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Radice (Paolo); M. Barile (Monica); F.J. Couch (Fergus); Vachon, C. (Celine); Giles, G.G. (Graham G.); R.L. Milne (Roger); C.A. Haiman (Christopher A.); L. Le Marchand (Loic); M.S. Goldberg (Mark); S.-H. Teo; N.A.M. Taib (Nur Aishah Mohd); V. Kristensen (Vessela); Borresen-Dale, A.-L. (Anne-Lise); W. Zheng (Wei); M. Shrubsole (Martha); R. Winqvist (Robert); A. Jukkola-Vuorinen (Arja); I.L. Andrulis (Irene); J.A. Knight (Julia); P. Devilee (Peter); C.M. Seynaeve (Caroline); M. García-Closas (Montserrat); K. Czene (Kamila); H. Darabi (Hatef); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Li (Jingmei); W. Lu (Wei); X.-O. Shu (Xiao-Ou); A. Cox (Angela); S.S. Cross (Simon); W.J. Blot (William); Q. Cai (Qiuyin); M. Shah (Mitul); C. Luccarini (Craig); Baynes, C. (Caroline); P. harrington (Patricia); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); J.M. Hartman (Joost); Chia, K.S. (Kee Seng); M. Kabisch (Maria); D. Torres (Diana); A. Jakubowska (Anna); J. Lubinski (Jan); S. Sangrajrang (Suleeporn); P. Brennan (Paul); S. Slager (Susan); D. Yannoukakos (Drakoulis); C.-Y. Shen (Chen-Yang); M.-F. Hou (Ming-Feng); A.J. Swerdlow (Anthony ); N. Orr (Nick); J. Simard (Jacques); P. Hall (Per); P.D.P. Pharoah (Paul); D.F. Easton (Douglas F.); Chanock, S.J. (Stephen J.); A.M. Dunning (Alison); J.D. Figueroa (Jonine)

    2016-01-01

    textabstractThe Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132)

  12. DNA repair genotypes and phenotypes and cancer susceptibility

    Institute of Scientific and Technical Information of China (English)

    Qingyi Wei

    2008-01-01

    @@ The role of DNA repair in the etiology of cancers has been well illustrated in several hereditary syndromes, in which an inherited defect in DNA repair and related biological processes is associated with extraordinarily high incidence of cancer.

  13. Rare variants in XRCC2 as breast cancer susceptibility alleles

    NARCIS (Netherlands)

    Hilbers, F.S.; Wijnen, J.T.; Hoogerbrugge-van der Linden, N.; Oosterwijk, J.C.; Collee, M.J.; Peterlongo, P.; Radice, P.; Manoukian, S.; Feroce, I.; Capra, F.; Couch, F.J.; Wang, X.; Guidugli, L.; Offit, K.; Shah, S.; Campbell, I.G.; Thompson, E.R.; James, P.A.; Trainer, A.H.; Gracia, J.; Benitez, J.; Asperen, C.J. van; Devilee, P.

    2012-01-01

    BACKGROUND: Recently, rare germline variants in XRCC2 were detected in non-BRCA1/2 familial breast cancer cases, and a significant association with breast cancer was reported. However, the breast cancer risk associated with these variants needs further evaluation. METHODS: The coding regions and exo

  14. Interactions Between Genetic Variants and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium

    NARCIS (Netherlands)

    Campa, Daniele; Kaaks, Rudolf; Le Marchand, Loic; Haiman, Christopher A.; Travis, Ruth C.; Berg, Christine D.; Buring, Julie E.; Chanock, Stephen J.; Diver, W. Ryan; Dostal, Lucie; Fournier, Agnes; Hankinson, Susan E.; Henderson, Brian E.; Hoover, Robert N.; Isaacs, Claudine; Johansson, Mattias; Kolonel, Laurence N.; Kraft, Peter; Lee, I-Min; McCarty, Catherine A.; Overvad, Kim; Panico, Salvatore; Peeters, Petra H. M.; Riboli, Elio; Jose Sanchez, Maria; Schumacher, Fredrick R.; Skeie, Guri; Stram, Daniel O.; Thun, Michael J.; Trichopoulos, Dimitrios; Zhang, Shumin; Ziegler, Regina G.; Hunter, David J.; Lindstroem, Sara; Canzian, Federico

    2011-01-01

    Background Recently, several genome-wide association studies have identified various genetic susceptibility loci for breast cancer. Relatively little is known about the possible interactions between these loci and the established risk factors for breast cancer. Methods To assess interactions between

  15. American Society of Clinical Oncology Policy Statement Update: Genetic and Genomic Testing for Cancer Susceptibility.

    Science.gov (United States)

    Robson, Mark E; Bradbury, Angela R; Arun, Banu; Domchek, Susan M; Ford, James M; Hampel, Heather L; Lipkin, Stephen M; Syngal, Sapna; Wollins, Dana S; Lindor, Noralane M

    2015-11-01

    The American Society of Clinical Oncology (ASCO) has long affirmed that the recognition and management of individuals with an inherited susceptibility to cancer are core elements of oncology care. ASCO released its first statement on genetic testing in 1996 and updated that statement in 2003 and 2010 in response to developments in the field. In 2014, the Cancer Prevention and Ethics Committees of ASCO commissioned another update to reflect the impact of advances in this area on oncology practice. In particular, there was an interest in addressing the opportunities and challenges arising from the application of massively parallel sequencing-also known as next-generation sequencing-to cancer susceptibility testing. This technology introduces a new level of complexity into the practice of cancer risk assessment and management, requiring renewed effort on the part of ASCO to ensure that those providing care to patients with cancer receive the necessary education to use this new technology in the most effective, beneficial manner. The purpose of this statement is to explore the challenges of new and emerging technologies in cancer genetics and provide recommendations to ensure their optimal deployment in oncology practice. Specifically, the statement makes recommendations in the following areas: germline implications of somatic mutation profiling, multigene panel testing for cancer susceptibility, quality assurance in genetic testing, education of oncology professionals, and access to cancer genetic services.

  16. Molecular epidemiology of and genetic susceptibility to esophageal cancer.

    Science.gov (United States)

    Bajpai, Manisha; Das, Kiron M; Lefferts, Joel; Lisovsky, Mikhail; Mashimo, Hiroshi; Phillips, Wayne A; Srivastava, Amitabh; To, Henry

    2014-09-01

    The following, from the 12th OESO World Conference: Cancers of the Esophagus, includes commentaries on clonal evolution in Barrett's carcinogenesis; biomarkers for early detection of esophageal cancer; the role of the methylguanine methyl transferase biomarker in the management of adenocarcinoma; and the discovery of high-risk genes in families.

  17. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Kjaer, Susanne Krüger;

    2009-01-01

    , three SNPs (rs2107425 in MRPL23, rs7313833 in PTHLH, rs3803662 in TNRC9) were weakly associated with ovarian cancer risk and one SNP (rs4954956 in NXPH2) was associated with serous ovarian cancer in non-Hispanic white subjects (P-trend ....01-1.13, P-trend = 0.02 for all types of ovarian cancer and OR 1.14 95% CI 1.07-1.22, P-trend = 0.00017 for serous ovarian cancer]. In conclusion, we found that rs4954956 was associated with increased ovarian cancer risk, particularly for serous ovarian cancer. However, none of the six confirmed breast...... cancer susceptibility variants we tested was associated with ovarian cancer risk. Further work will be needed to identify the causal variant associated with rs4954956 or elucidate its function....

  18. Genetic variants on 3q21 and in the Sp8 transcription factor gene (SP8 as susceptibility loci for psychotic disorders: a genetic association study.

    Directory of Open Access Journals (Sweden)

    Kenji Kondo

    Full Text Available BACKGROUND: Recent genome-wide association studies (GWASs investigating bipolar disorder (BD have detected a number of susceptibility genes. These studies have also provided novel insight into shared genetic components between BD and schizophrenia (SCZ, two major psychotic disorders. To examine the replication of the risk variants for BD and the pleiotropic effect of the variants associated with BD, we conducted a genetic association study of single nucleotide polymorphisms (SNPs that were selected based upon previous BD GWASs, which targeted psychotic disorders (BD and SCZ in the Japanese population. METHODS: Forty-eight SNPs were selected based upon previous GWASs. A two-stage analysis was conducted using first-set screening (for all SNPs: BD = 1,012, SCZ = 1,032 and control = 993 and second-set replication samples (for significant SNPs in the screening analysis: BD = 821, SCZ = 1,808 and control = 2,149. We assessed allelic association between BD, SCZ, psychosis (BD+SCZ and the SNPs selected for the analysis. RESULTS: Eight SNPs revealed nominal association signals for all comparisons (Puncorrected<0.05. Among these SNPs, the top two SNPs (associated with psychosis: Pcorrected = 0.048 and 0.037 for rs2251219 and rs2709722, respectively were further assessed in the second-set samples, and we replicated the signals from the initial screening analysis (associated with psychosis: Pcorrected = 0.0070 and 0.033 for rs2251219 and rs2709722, respectively. The meta-analysis between the current and previous GWAS results showed that rs2251219 in Polybromo1 (PBRM1 was significant on genome-wide association level (P = 5×10(-8 only for BD (P = 9.4×10(-9 and psychosis (P = 2.0×10(-10. Although the association of rs2709722 in Sp8 transcription factor (SP8 was suggestive in the Asian population (P = 2.1×10(-7 for psychosis, this signal weakened when the samples size was increased by including data from a

  19. Genetic Variants on 3q21 and in the Sp8 Transcription Factor Gene (SP8) as Susceptibility Loci for Psychotic Disorders: A Genetic Association Study

    Science.gov (United States)

    Kondo, Kenji; Ikeda, Masashi; Kajio, Yusuke; Saito, Takeo; Iwayama, Yoshimi; Aleksic, Branko; Yamada, Kazuo; Toyota, Tomoko; Hattori, Eiji; Ujike, Hiroshi; Inada, Toshiya; Kunugi, Hiroshi; Kato, Tadafumi; Yoshikawa, Takeo; Ozaki, Norio; Iwata, Nakao

    2013-01-01

    Background Recent genome-wide association studies (GWASs) investigating bipolar disorder (BD) have detected a number of susceptibility genes. These studies have also provided novel insight into shared genetic components between BD and schizophrenia (SCZ), two major psychotic disorders. To examine the replication of the risk variants for BD and the pleiotropic effect of the variants associated with BD, we conducted a genetic association study of single nucleotide polymorphisms (SNPs) that were selected based upon previous BD GWASs, which targeted psychotic disorders (BD and SCZ) in the Japanese population. Methods Forty-eight SNPs were selected based upon previous GWASs. A two-stage analysis was conducted using first-set screening (for all SNPs: BD = 1,012, SCZ = 1,032 and control = 993) and second-set replication samples (for significant SNPs in the screening analysis: BD = 821, SCZ = 1,808 and control = 2,149). We assessed allelic association between BD, SCZ, psychosis (BD+SCZ) and the SNPs selected for the analysis. Results Eight SNPs revealed nominal association signals for all comparisons (Puncorrected<0.05). Among these SNPs, the top two SNPs (associated with psychosis: Pcorrected = 0.048 and 0.037 for rs2251219 and rs2709722, respectively) were further assessed in the second-set samples, and we replicated the signals from the initial screening analysis (associated with psychosis: Pcorrected = 0.0070 and 0.033 for rs2251219 and rs2709722, respectively). The meta-analysis between the current and previous GWAS results showed that rs2251219 in Polybromo1 (PBRM1) was significant on genome-wide association level (P = 5×10−8) only for BD (P = 9.4×10−9) and psychosis (P = 2.0×10−10). Although the association of rs2709722 in Sp8 transcription factor (SP8) was suggestive in the Asian population (P = 2.1×10−7 for psychosis), this signal weakened when the samples size was increased by including data from a

  20. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency.

    Directory of Open Access Journals (Sweden)

    Ricardo C Ferreira

    2012-01-01

    Full Text Available Selective IgA deficiency (IgAD; serum IgA<0.07 g/l is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10(-57; OR = 2.80 resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10(-17; OR = 4.28 and the DRB1*1501 (combined P = 2.24×10(-35; OR = 0.13 alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to

  1. Genetic Analysis with the Immunochip Platform in Behçet Disease. Identification of Residues Associated in the HLA Class I Region and New Susceptibility Loci

    Science.gov (United States)

    Montes-Cano, Marco-Antonio; García-Lozano, José-Raúl; Conde-Jaldón, Marta; Ortego-Centeno, Norberto; Castillo, María Jesús; Sánchez-Bursón, Juan; Juliá, María Rosa; Solans, Roser; Blanco, Ricardo; Barnosi-Marín, Ana-Celia; Gómez de la Torre, Ricardo; Fanlo, Patricia; Rodríguez-Carballeira, Mónica; Camps, Teresa; Castañeda, Santos; Alegre-Sancho, Juan-Jose; Martín, Javier; González-Escribano, María Francisca

    2016-01-01

    Behcet's disease (BD) is an immuno-mediated vasculitis in which knowledge of its etiology and genetic basis is limited. To improve the current knowledge, a genetic analysis performed with the Immunochip platform was carried out in a population from Spain. A discovery cohort comprising 278 BD cases and 1,517 unaffected controls were genotyped using the Immunochip platform. The validation step was performed on an independent replication cohort composed of 130 BD cases and 600 additional controls. The strongest association signals were observed in the HLA class I region, being HLA-B*51 the highest peak (overall P = 6.82E-32, OR = 3.82). A step-wise conditional logistic regression with classical alleles identified HLA-B*57 and HLA-A*03 as additional independent markers. The amino acid model that best explained the association, includes the position 97 of the HLA-B molecule and the position 66 of the HLA-A. Among the non-HLA loci, the most significant in the discovery analysis were: IL23R (rs10889664: P = 3.81E-12, OR = 2.00), the JRKL/CNTN5 region (rs2848479: P = 5.00E-08, OR = 1.68) and IL12A (rs1874886: P = 6.67E-08, OR = 1.72), which were confirmed in the validation phase (JRKL/CNTN5 rs2848479: P = 3.29E-10, OR = 1.66; IL12A rs1874886: P = 1.62E-08, OR = 1.61). Our results confirm HLA-B*51 as a primary-association marker in predisposition to BD and suggest additional independent signals within the class I region, specifically in the genes HLA-A and HLA-B. Regarding the non-HLA genes, in addition to IL-23R, previously reported in our population; IL12A, described in other populations, was found to be a BD susceptibility factor also in Spaniards; finally, a new associated locus was found in the JRKL/CNTN5 region. PMID:27548383

  2. SNP-SNP interactions in breast cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Wang Yuanyuan

    2006-05-01

    Full Text Available Abstract Background Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2 are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. Methods In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR principle. Results None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082A], cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val], cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln], and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val] pathways. Conclusion The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their

  3. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33

    Science.gov (United States)

    Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C.; Sampson, Joshua N.; Hoskins, Jason W.; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S.; Abnet, Christian C.; Adjei, Andrew A.; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E.; Ambrosone, Christine B.; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L.; Arici, Cecilia; Arslan, Alan A.; Austin, Melissa A.; Baris, Dalsu; Barkauskas, Donald A.; Bassig, Bryan A.; Beane Freeman, Laura E.; Berg, Christine D.; Berndt, Sonja I.; Bertazzi, Pier Alberto; Biritwum, Richard B.; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Brennan, Paul; Brinton, Louise A.; Brotzman, Michelle; Bueno-de-Mesquita, H. Bas; Buring, Julie E.; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E.; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P.; Chu, Lisa W.; Clavel-Chapelon, Francoise; Colditz, Graham A.; Colt, Joanne S.; Conti, David; Cook, Michael B.; Cortessis, Victoria K.; Crawford, E. David; Cussenot, Olivier; Davis, Faith G.; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P.; Di Stefano, Anna Luisa; Diver, W. Ryan; Duell, Eric J.; Elena, Joanne W.; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D.; Flanagan, Adrienne M.; Fraumeni, Joseph F.; Freedman, Neal D.; Fridley, Brooke L.; Fuchs, Charles S.; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M.; Gaziano, J. Michael; Gerhard, Daniela S.; Giffen, Carol A.; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M.; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H.; Gross, Myron; Grossman, H. Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B.; He, Qincheng; Helman, Lee; Henderson, Brian E.; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hosgood, H. Dean; Hsiao, Chin-Fu; Hsing, Ann W.; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J.; Inskip, Peter D.; Ito, Hidemi; Jacobs, Eric J.; Jacobs, Kevin B.; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M.; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M.; Klein, Alison P.; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N.; Kooperberg, Charles; Kratz, Christian P.; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C.; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C.; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P.; Le Marchand, Loic; Lerner, Seth P.; Li, Donghui; Liao, Linda M.; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S.; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A.; McKean-Cowdin, Roberta; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Meltzer, Paul S.; Mensah, James E.; Miao, Xiaoping; Michaud, Dominique S.; Mondul, Alison M.; Moore, Lee E.; Muir, Kenneth; Niwa, Shelley; Olson, Sara H.; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V.; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H. M.; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Picci, Piero; Pike, Malcolm C.; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A.; Rodabough, Rebecca J.; Rothman, Nathaniel; Ruder, Avima M.; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R.; Schwartz, Ann G.; Schwartz, Kendra L.; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D.; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T.; Simon, Matthias; Southey, Melissa C.; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael Z.; Stram, Daniel O.; Strom, Sara S.; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R.; Tettey, Yao; Thomas, David M.; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S.; Toro, Jorge R.; Travis, Ruth C.; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A.; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K.; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S.; Weiderpass, Elisabete; Weinstein, Stephanie J.; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolk, Alicja; Wolpin, Brian M.; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P.; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D.; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A.; Kraft, Peter; Chanock, Stephen J.; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T.

    2014-01-01

    Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10−39; Region 3: rs2853677, P = 3.30 × 10−36 and PConditional = 2.36 × 10−8; Region 4: rs2736098, P = 3.87 × 10−12 and PConditional = 5.19 × 10−6, Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10−6; and Region 6: rs10069690, P = 7.49 × 10−15 and PConditional = 5.35 × 10−7) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10−18 and PConditional = 7.06 × 10−16). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. PMID:25027329

  4. Breast Cancer Susceptibility Genes in High Risk Women

    Science.gov (United States)

    2005-12-01

    232-7. 32. Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus [see comments]. Arthritis...duplicates do not have identical genotype and the cause for the discordancy ( systematic or isolated) will be determined. A second level of QC is provided...AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiology

  5. CHRNA5 polymorphism and susceptibility to lung cancer in a Chinese population

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2013-01-01

    Full Text Available Polymorphisms in the nicotinic acetylcholine receptor subunit CHRNA5 gene have been associated with lung cancer positive susceptibility in European and American populations. In the present hospital-based, case-control study, we determined whether polymorphism in rs503464 of CHRNA5 is associated with lung cancer risk in Chinese individuals. A single nucleotide polymorphism in CHRNA5 rs503464, c.-166T>A (hereafter T>A, was identified using TaqMan-MGB probes with sequencing via PCR in 600 lung cancer cases and 600 healthy individuals. Genotype frequencies for rs503464 (T>A were in Hardy-Weinberg equilibrium for the control population. However, genotype frequencies were significantly different between cases and controls (P A at rs503464 of CHRNA5 may be associated with reduced risk of lung cancer, thus representing a susceptibility allele in Chinese individuals.

  6. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility

    OpenAIRE

    Trubicka Joanna; Grabowska-Kłujszo Ewa; Suchy Janina; Masojć Bartłomiej; Serrano-Fernandez Pablo; Kurzawski Grzegorz; Cybulski Cezary; Górski Bohdan; Huzarski Tomasz; Byrski Tomasz; Gronwald Jacek; Złowocka Elżbieta; Kładny Józef; Banaszkiewicz Zbigniew; Wiśniowski Rafał

    2010-01-01

    Abstract Background CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs), it represents an attractive candidate gene for studies into colorectal cancer susceptibility. Methods We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be ...

  7. Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis

    Science.gov (United States)

    Closa, Adria; Cordero, David; Sanz-Pamplona, Rebeca; Solé, Xavier; Crous-Bou, Marta; Paré-Brunet, Laia; Berenguer, Antoni; Guino, Elisabet; Lopez-Doriga, Adriana; Guardiola, Jordi; Biondo, Sebastiano; Salazar, Ramon; Moreno, Victor

    2014-01-01

    In this study, we aim to identify the genes responsible for colorectal cancer risk behind the loci identified in genome-wide association studies (GWAS). These genes may be candidate targets for developing new strategies for prevention or therapy. We analyzed the association of genotypes for 26 GWAS single nucleotide polymorphisms (SNPs) with the expression of genes within a 2 Mb region (cis-eQTLs). Affymetrix Human Genome U219 expression arrays were used to assess gene expression in two series of samples, one of healthy colonic mucosa (n = 47) and other of normal mucosa adjacent to colon cancer (n = 97, total 144). Paired tumor tissues (n = 97) were also analyzed but did not provide additional findings. Partial Pearson correlation (r), adjusted for sample type, was used for the analysis. We have found Bonferroni-significant cis-eQTLs in three loci: rs3802842 in 11q23.1 associated to C11orf53, COLCA1 (C11orf92) and COLCA2 (C11orf93; r = 0.60); rs7136702 in 12q13.12 associated to DIP2B (r = 0.63) and rs5934683 in Xp22.3 associated to SHROOM2 and GPR143 (r = 0.47). For loci in chromosomes 11 and 12, we have found other SNPs in linkage disequilibrium that are more strongly associated with the expression of the identified genes and are better functional candidates: rs7130173 for 11q23.1 (r = 0.66) and rs61927768 for 12q13.12 (r = 0.86). These SNPs are located in DNA regions that may harbor enhancers or transcription factor binding sites. The analysis of trans-eQTLs has identified additional genes in these loci that may have common regulatory mechanisms as shown by the analysis of protein–protein interaction networks. PMID:24760461

  8. Replication of five prostate cancer loci identified in an Asian population – Results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3)

    Science.gov (United States)

    Lindstrom, Sara; Schumacher, Fredrick R.; Campa, Daniele; Albanes, Demetrius; Andriole, Gerald; Berndt, Sonja I.; Bueno-de-Mesquita, H. Bas; Chanock, Stephen J.; Diver, W. Ryan; Ganziano, J. Michael; Gapstur, Susan M.; Giovannucci, Edward; Haiman, Christopher A.; Henderson, Brian; Hunter, David J; Johansson, Mattias; Kolonel, Laurence N.; Le Marchand, Loic; Ma, Jing; Stampfer, Meir; Stevens, Victoria L.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Willett, Walter C.; Yeager, Meredith; Hsing, Ann W.; Kraft, Peter

    2011-01-01

    Background A recent Genome-Wide Association Study (GWAS) of prostate cancer in a Japanese population identified five novel regions not previously discovered in other ethnicities. In this study, we attempt to replicate these five loci in a series of nested prostate cancer case-control studies of European ancestry. Methods We genotyped five SNPs: rs13385191 (chromosome 2p24), rs12653946 (5p15), rs1983891 (6p21), rs339331 (6p22) and rs9600079 (13q22), in 7,956 prostate cancer cases and 8,148 controls from a series of nested case-control studies within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We tested each SNP for association with prostate cancer risk and assessed if associations differed with respect to disease severity and age of onset. Results Four SNPs (rs13385191, rs12653946, rs1983891 and rs339331) were significantly associated with prostate cancer risk (p-values ranging from 0.01 to 1.1×10-5). Allele frequencies and odds ratios were overall lower in our population of European descent compared to the discovery Asian population. SNP rs13385191 (C2orf43) was only associated with low-stage disease (p=0.009, case-only test). No other SNP showed association with disease severity or age of onset. We did not replicate the 13q22 SNP, rs9600079 (p=0.62). Conclusions Four SNPs associated with prostate cancer risk in an Asian population are also associated with prostate cancer risk in men of European descent. Impact This study illustrates the importance of evaluation of prostate cancer risk markers across ethnic groups. PMID:22056501

  9. Inherited Susceptibility to Breast Cancer in Healthy Women: Mutation in Breast Cancer Genes, Immune Surveillance, and Psychological Distress

    Science.gov (United States)

    2005-10-01

    hypotheses were investigated: Hypothesis 1: Women with family histories of breast cancer are more emotionally distressed than women at normal risk... emotionally distressed than women at normal risk, particularly after notification that they carry a mutation in a primary susceptibility gene. o Healthy...Valdimarsdottir HB, Montgomery GH, Bovbjerg DH. Heightened cortisol responses to daily stress in working women at familial risk for breast cancer. Biological

  10. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2

    DEFF Research Database (Denmark)

    Song, Honglin; Ramus, Susan J; Tyrer, Jonathan

    2009-01-01

    Epithelial ovarian cancer has a major heritable component, but the known susceptibility genes explain less than half the excess familial risk. We performed a genome-wide association study (GWAS) to identify common ovarian cancer susceptibility alleles. We evaluated 507,094 SNPs genotyped in 1,817...

  11. 9q31.2-rs865686 as a susceptibility locus for estrogen receptor-positive breast cancer

    DEFF Research Database (Denmark)

    Warren, Helen; Dudbridge, Frank; Fletcher, Olivia

    2012-01-01

    Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686).......Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686)....

  12. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41.

    Science.gov (United States)

    Bigot, Pierre; Colli, Leandro M; Machiela, Mitchell J; Jessop, Lea; Myers, Timothy A; Carrouget, Julie; Wagner, Sarah; Roberson, David; Eymerit, Caroline; Henrion, Daniel; Chanock, Stephen J

    2016-07-07

    Genome-wide association studies have identified multiple renal cell carcinoma (RCC) susceptibility loci. Here, we use regional imputation and bioinformatics analysis of the 12p12.1 locus to identify the single-nucleotide polymorphism (SNP) rs7132434 as a potential functional variant. Luciferase assays demonstrate allele-specific regulatory activity and, together with data from electromobility shift assays, suggest allele-specific differences at rs7132434 for AP-1 transcription factor binding. In an analysis of The Cancer Genome Atlas data, SNPs highly correlated with rs7132434 show allele-specific differences in BHLHE41 expression (trend P value=6.3 × 10(-7)). Cells overexpressing BHLHE41 produce larger mouse xenograft tumours, while RNA-seq analysis reveals that constitutively increased BHLHE41 induces expression of IL-11. We conclude that the RCC risk allele at 12p12.1 maps to rs7132434, a functional variant in an enhancer that upregulates BHLHE41 expression which, in turn, induces IL-11, a member of the IL-6 cytokine family.

  13. ABRAXAS (FAM175A) and Breast Cancer Susceptibility: No Evidence of Association in the Breast Cancer Family Registry

    Science.gov (United States)

    Renault, Anne-Laure; Lesueur, Fabienne; Coulombe, Yan; Gobeil, Stéphane; Soucy, Penny; Hamdi, Yosr; Desjardins, Sylvie; Le Calvez-Kelm, Florence; Vallée, Maxime; Voegele, Catherine; Hopper, John L.; Andrulis, Irene L.; Southey, Melissa C.; John, Esther M.; Masson, Jean-Yves; Tavtigian, Sean V.; Simard, Jacques

    2016-01-01

    Approximately half of the familial aggregation of breast cancer remains unexplained. This proportion is less for early-onset disease where familial aggregation is greater, suggesting that other susceptibility genes remain to be discovered. The majority of known breast cancer susceptibility genes are involved in the DNA double-strand break repair pathway. ABRAXAS is involved in this pathway and mutations in this gene impair BRCA1 recruitment to DNA damage foci and increase cell sensitivity to ionizing radiation. Moreover, a recurrent germline mutation was reported in Finnish high-risk breast cancer families. To determine if ABRAXAS could be a breast cancer susceptibility gene in other populations, we conducted a population-based case-control mutation screening study of the coding exons and exon/intron boundaries of ABRAXAS in the Breast Cancer Family Registry. In addition to the common variant p.Asp373Asn, sixteen distinct rare variants were identified. Although no significant difference in allele frequencies between cases and controls was observed for the identified variants, two variants, p.Gly39Val and p.Thr141Ile, were shown to diminish phosphorylation of gamma-H2AX in MCF7 human breast adenocarcinoma cells, an important biomarker of DNA double-strand breaks. Overall, likely damaging or neutral variants were evenly represented among cases and controls suggesting that rare variants in ABRAXAS may explain only a small proportion of hereditary breast cancer. PMID:27270457

  14. Analysis of a p53 Mutation Associated with Cancer Susceptibility for Biochemistry and Genetic Laboratory Courses

    Science.gov (United States)

    Soto-Cruz, Isabel; Legorreta-Herrera, Martha

    2009-01-01

    We have devised and implemented a module for an upper division undergraduate laboratory based on the amplification and analysis of a p53 polymorphism associated with cancer susceptibility. First, students collected a drop of peripheral blood cells using a sterile sting and then used FTA cards to extract the genomic DNA. The p53 region is then PCR…

  15. The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility.

    Science.gov (United States)

    Keimling, Marlen; Deniz, Miriam; Varga, Dominic; Stahl, Andreea; Schrezenmeier, Hubert; Kreienberg, Rolf; Hoffmann, Isabell; König, Jochem; Wiesmüller, Lisa

    2012-05-01

    Most presently known breast cancer susceptibility genes have been linked to DSB repair. To identify novel markers that may serve as indicators for breast cancer risk, we performed DSB repair analyses using a case-control design. Thus, we examined 35 women with defined familial history of breast and/or ovarian cancer (first case group), 175 patients with breast cancer (second case group), and 245 healthy women without previous cancer or family history of breast cancer (control group). We analyzed DSB repair in peripheral blood lymphocytes (PBLs) by a GFP-based test system using 3 pathway-specific substrates. We found increases of microhomology-mediated nonhomologous end joining (mmNHEJ) and nonconservative single-strand annealing (SSA) in women with familial risk vs. controls (P=0.0001-0.0022) and patients with breast cancer vs. controls (P=0.0004-0.0042). Young age (DSB repair activities in PBLs as method to estimate breast cancer susceptibility beyond limitations of genotyping and to predict responsiveness to therapeutics targeting DSB repair-dysfunctional tumors.

  16. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium

    Science.gov (United States)

    Milne, Roger L.; Herranz, Jesús; Michailidou, Kyriaki; Dennis, Joe; Tyrer, Jonathan P.; Zamora, M. Pilar; Arias-Perez, José Ignacio; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Wang, Qin; Bolla, Manjeet K.; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Li, Jingmei; Anton-Culver, Hoda; Neuhausen, Susan L.; Ziogas, Argyrios; Clarke, Christina A.; Hopper, John L.; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Chenevix-Trench, Georgia; Swerdlow, Anthony; Ashworth, Alan; Orr, Nicholas; Schoemaker, Minouk; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Wang, Xianshu; Olson, Janet E.; Vachon, Celine; Purrington, Kristen; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Dunning, Alison M.; Shah, Mitul; Guénel, Pascal; Truong, Thérèse; Sanchez, Marie; Mulot, Claire; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J.; Hollestelle, Antoinette; Collée, J. Margriet; Jager, Agnes; Cox, Angela; Brock, Ian W.; Reed, Malcolm W.R.; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Dumont, Martine; Soucy, Penny; Dörk, Thilo; Bogdanova, Natalia V.; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Fasching, Peter A.; Häberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; dos Santos Silva, Isabel; Peto, Julian; Radice, Paolo; Peterlongo, Paolo; Peissel, Bernard; Mariani, Paolo; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Marme, Federik; Burwinkel, Barbara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børresen-Dale, Anne-Lise; García-Closas, Montserrat; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Rutgers, Emiel J.; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Couch, Fergus J.; Toland, Amanda E.; Yannoukakos, Drakoulis; Pharoah, Paul D.P.; Hall, Per; Benítez, Javier; Malats, Núria; Easton, Douglas F.

    2014-01-01

    Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70 917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46 450 breast cancer cases and 42 461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P 10−10). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome. PMID:24242184

  17. Genetic Susceptibility to Estrogen-Induced Mammary Cancers

    Science.gov (United States)

    2000-11-01

    mammary glands were reflected in mammary histology. (A and E) Thin sections from Fig. 3. E2 induced pituitary growth and hyperprolactinemia similarly in...with E2 5 (33%) exhibited a normal DNA profile where the great for 12 wk induced pituitary growth and hyperprolactinemia in majority of cells displayed...etal. , " terone, or PRL. Hyperprolactinemia has been shown to be sufficient to induce mammary cancer in certain strains of mouse 1 , (29-31) and rat

  18. Follow-up of loci from the International Genomics of Alzheimer's Disease Project identifies TRIP4 as a novel susceptibility gene

    NARCIS (Netherlands)

    A. Ruiz (A.); S. Heilmann (S.); T. Becker (Tim); I. Hernández (Isabel); H. Wagner (Hermann); K.M. Thelen (Karin ); A. Mauleón (A.); M. Rosende-Roca (M.); C. Bellenguez (Céline); J.C. Bis (Joshua); D. Harold (Denise); A. Gerrish (Amy); R. Sims (Rebecca); O. Sotolongo-Grau (O.); L. Espinosa (Lluis); M. Alegret (M.); J.L. Arrieta (J.); A. Lacour (A.); I. Leber (Isabelle); J. Becker (Jessica); A. Lafuente (A.); S. Ruiz (S.); L. Vargas (L.); P.M. Rodríguez; G. Ortega (G.); M.A. Dominguez; R. Mayeux (Richard); J.L. Haines (Jonathan); M.A. Pericak-Vance (Margaret); L.A. Farrer (Lindsay); G.D. Schellenberg (Gerard); V. Chouraki (Vincent); L.J. Launer (Lenore); C.M. van Duijn (Cock); S. Seshadri (Sudha); C. Antúnez (C.); M.M.B. Breteler (Monique); M. Serrano-Ríos (Manuel); F. Jessen; L. Tárraga (L.); M.M. Nöthen (Markus); W. Maier (Wolfgang); M. Boada (Mercè); M.J. Ramírez (María)

    2014-01-01

    textabstractTo follow-up loci discovered by the International Genomics of Alzheimer's Disease Project, we attempted independent replication of 19 single nucleotide polymorphisms (SNPs) in a large Spanish sample (Fundació ACE data set; 1808 patients and 2564 controls). Our results corroborate associa

  19. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3

    NARCIS (Netherlands)

    Purdue, Mark P.; Johansson, Mattias; Zelenika, Diana; Toro, Jorge R.; Scelo, Ghislaine; Moore, Lee E.; Prokhortchouk, Egor; Wu, Xifeng; Kiemeney, Lambertus A.; Gaborieau, Valerie; Jacobs, Kevin B.; Chow, Wong-Ho; Zaridze, David; Matveev, Vsevolod; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S.; Davis, Faith G.; Schwartz, Kendra L.; Banks, Rosamonde E.; Selby, Peter J.; Harnden, Patricia; Berg, Christine D.; Hsing, Ann W.; Grubb, Robert L.; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J.; Quiros, Jose Ramon; Sanchez, Maria-Jose; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E.; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Borje; Overvad, Kim; Tjonneland, Anne; Romieu, Isabelle; Riboli, Elio; Mukeria, Anush; Shangina, Oxana; Stevens, Victoria L.; Thun, Michael J.; Diver, W. Ryan; Gapstur, Susan M.; Pharoah, Paul D.; Easton, Douglas F.; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Njolstad, Inger; Tell, Grethe S.; Stoltenberg, Camilla; Kumar, Rajiv; Koppova, Kvetoslava; Cussenot, Olivier; Benhamou, Simone; Oosterwijk, Egbert; Vermeulen, Sita H.; Aben, Katja K. H.; van der Marel, Saskia L.; Ye, Yuanqing; Wood, Christopher G.; Pu, Xia; Mazur, Alexander M.; Boulygina, Eugenia S.; Chekanov, Nikolai N.; Foglio, Mario; Lechner, Doris; Gut, Ivo; Heath, Simon; Blanche, Helene; Hutchinson, Amy; Thomas, Gilles; Wang, Zhaoming; Yeager, Meredith; Fraumeni, Joseph F.; Skryabin, Konstantin G.; McKay, James D.; Rothman, Nathaniel; Chanock, Stephen J.; Lathrop, Mark; Brennan, Paul

    2011-01-01

    We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 affected individuals (cases) and 8,505 controls of European background from 11 studies and followed up 6 SNPs in 3 replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and

  20. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Zeggini, Eleftheria; Scott, Laura J; Saxena, Richa;

    2008-01-01

    Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published...

  1. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Tyrer, Jonathan P; Kar, Siddhartha;

    2015-01-01

    PURPOSE: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. EXPERIMENTAL DESIGN: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment...... for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent first-line treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥ 4 cycles of paclitaxel and carboplatin...... at standard doses. We evaluated the top SNPs in 4,434 EOC patients, including patients from The Cancer Genome Atlas. In addition, we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. RESULTS: Five SNPs were significantly...

  2. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    NARCIS (Netherlands)

    Garcia-Closas, Montserrat; Couch, Fergus J.; Lindstrom, Sara; Michailidouo, Kyriaki; Schmidt, Marjanka K.; Brook, Mark N.; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S.; Le Marchand, Loic; Buring, Julie E.; Eccles, Diana; Miron, Penelope; Fasching, Peter A.; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K.; Nevanlinna, Heli; Giles, Graham G.; Cox, Angela; Hopper, John L.; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J.; Schoof, Nils; Bojesen, Stig E.; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L.; Guenel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J.; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S.; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Doerk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H.; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C.; Park, Daniel J.; Hammet, Fleur; Stone, Jennifer; Van't Veer, Laura J.; Rutgers, Emiel J.; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G.; Ekici, Arif B.; Beckmann, Matthias W.; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlins, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Borge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Arias Perez, Jose Ignacio; Menendez, Primitiva; Mueller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N.; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Balleine, Rosemary; Tseng, Chiu-Chen; Van den Berg, David; Stram, Daniel O.; Neven, Patrick; Dieudonne, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E.; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A.; Feng, Ye; Henderson, Brian E.; Schumacher, Fredrick; Bogdanova, Natalia V.; Labreche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkas, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A. E. M.; Seynaeve, Caroline M.; Kriege, Mieke; Hooning, Maartje J.; van den Ouweland, Ans M. W.; van Deurzen, Carolien H. M.; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P.; Cross, Simon S.; Reed, Malcolm W. R.; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Peiei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C.; Gonzalez-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B.; Bandera, Elisa V.; John, Esther M.; Chen, Gary K.; Hu, Jennifer J.; Rodriguez-Gil, Jorge L.; Bernstein, Leslie; Press, Michael F.; Ziegler, Regina G.; Millikan, Robert M.; Deming-Halverson, Sandra L.; Nyante, Sarah; Ingles, Sue A.; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Mueller-Myhsok, Bertram; Schmutzler, Rita K.; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G.; Montgomery, Grant W.; Slamon, Dennis J.; Rauh, Claudia; Lux, Michael P.; Jud, Sebastian M.; Bruning, Thomas; Weaver, JoEllen; Harma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H.; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Francoise; Kolonel, Laurence N.; Chen, Constance; Beck, Andy; Hankinson, Susan E.; Berg, Christine D.; Hoover, Robert N.; Lissowska, Jolanta; Figueroa, Jonine D.; Chasman, Daniel I.; Gaudet, Mia M.; Diver, W. Ryan; Willett, Walter C.; Hunter, David J.; Simard, Jacques; Benitez, Javier; Dunning, Alison M.; Sherman, Mark E.; Chenevix-Trench, Georgia; Chanock, Stephen J.; Hall, Per; Pharoah, Paul D. P.; Vachon, Celine; Easton, Douglas F.; Haiman, Christopher A.; Kraft, Peter

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differe

  3. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    DEFF Research Database (Denmark)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including diff...

  4. Relationship between Polymorphism of Nicotinic Acetylcholine Receptor Gene CHRNA3 and Susceptibility of Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Shen Bo; Shi Meiqi; Mei Jinfeng; Hong Zhuan; Cao Guochun; Lu Jianwei; Feng Jifeng

    2013-01-01

    Objective:To investigate the relationship between polymorphism of nicotinic acetylcholine receptor gene CHRNA3 and susceptibility of lung cancer. Methods:Sixty hundred patients with lung cancer and 600 healthy people were respectively selected. TaqMan-MGB probe technique was applied to detect rs3743073 (T > G) genotypes at SNPs site on CHRNA3. The difference of genotype distribution among groups was compared, and its relationship with lung cancer was also investigated. Results:There was statistical signiifcance regarding the distributions of CHRNA3 rs3743073 (T>G) genotype and allele frequencies in patients with lung cancer and healthy people (P Conclusion:The risk of developing lung cancer in patients with rs3743073G mutant genotypes of CHRNA3 gene is increased markedly, especially in those more than 60 years old, males and smoking ones.

  5. Modification of lung cancer susceptibility by green tea extract as measured by the comet assay.

    Science.gov (United States)

    Zhang, Huifeng; Spitz, Margaret R; Tomlinson, Gail E; Schabath, Matthew B; Minna, John D; Wu, Xifeng

    2002-01-01

    Green tea is widely consumed throughout the world and is known to possess various beneficial properties that may affect carcinogen metabolism, free radical scavenging, or formation of DNA adducts. Therefore, it is plausible that green tea extract may modify BPDE-induced DNA damage. In this report, we utilized the comet assay to (1) evaluate BPDE-induced DNA damage as a potential marker of cancer susceptibility and (2) assess the ability of green tea to modify BPDE-induced DNA damage. DNA damage in individual comet cells was quantified by (1) visually measuring the proportion of cells exhibiting migration versus those without and (2) the length of damaged DNA migration (comet tail). We detected a dose-response between BDPE concentration and mean comet tail length in EBV-immortalized lymphoblastiod (lymphoid) cell lines. As the concentration of BPDE increased from 0.5 to 3 microM, the length of the mean comet tail length increased proportionally in the 3590P (derived from a healthy subject) and 3640P (derived from a patient with head and neck cancer) cell lines. In separate experiments using lymphoid cells from 21 lung cancer cases and 12 healthy subjects, the mean comet tail length was significantly higher in the lung cancer cases (80.19 +/- 15.55) versus the healthy subjects (59.94 +/- 14.23) (P green tea extract was added in conjunction with BPDE, there was a notable reduction of the mean comet tail length (13.29 +/- 0.97) as compared to BPDE treatment alone (80.19 +/- 15.55) (P lung cancer cases. There were no statistical differences between the baseline (no treatments) (12.74 +/- 0.63) and the green tea extract treatment (13.06 +/- 0.97) (P = 0.21). These data suggest the modification of lung cancer susceptibility by the green tea extract. Similar results were observed for the percentage of induced comet cells and the statistical trends were similar for the 12 healthy subjects. This preliminary study demonstrated that the detection of BPDE-induced DNA damage via

  6. Multicenter dizygotic twin cohort study confirms two linkage susceptibility loci for body mass index at 3q29 and 7q36 and identifies three further potential novel loci

    DEFF Research Database (Denmark)

    Kettunen, J; Perola, M; Martin, N G;

    2009-01-01

    with an approximately 10-cM microsatellite marker map. Variance components linkage analysis was carried out with age, sex and country of origin as covariates. SUBJECTS: The GenomEUtwin consortium consists of twin cohorts from eight countries (Australia, Denmark, the Netherlands, Finland, Italy, Norway, Sweden...... and the United Kingdom) with a total data collection of more than 500,000 monozygotic and dizygotic (DZ) twin pairs. Variance due to early-life events and the environment is reduced within twin pairs, which makes DZ pairs highly valuable for linkage studies of complex traits. This study totaled 4401 European.......6 and 2.4, respectively). Two individual cohorts showed strong evidence independently for three additional loci: 16q23 (MLOD=3.7) and 2p24 (MLOD=3.4) in the Dutch cohort and 20q13 (MLOD=3.2) in the Finnish cohort. CONCLUSION: Linkage analysis of the combined data in this large twin cohort study provided...

  7. Polymorphism of the DNA repair gene XPA and susceptibility to lung cancer

    Institute of Scientific and Technical Information of China (English)

    Jinfu Zhu; Zhibin Hu; Hongxia Ma; Xiang Huo; Lin Xu; Jiannong Zhou; Hongbing Shen; Yijiang Chen

    2005-01-01

    Objective: To study the relationship between one polymorphism in the promoter of the DNA repair gene XPA and the susceptibility to lung cancer. Methods: Genotypes were determined by the PCR-restriction fragment length polymorphism (PCR-RFLP)method in 310 histologically-confirmed lung cancer cases and 341 age and sex frequency-matched cancer-free controls. Results: The XPA A23G genotype frequencies were 27.1% (AA), 42.9% (AG), and 30.0% (GG) in case patients and 21.1% (AA), 52.8% (AG),and 26.1% (GG) in control subjects. Multivariate logistic regression analysis revealed that individuals carrying at least one 23G variant allele (AG + GG genotypes) had a significantly decreased risk for lung cancer (adjusted OR = 0.66; 95% CI = 0.44- 0.98) compared with the wild-type genotype (23AA). Stratified analysis showed that the protective effect was more evident in subjects with a family history of cancer. Conclusion: These results suggest that the XPA A23G polymorphism may have a role in lung cancer susceptibility in this study population.

  8. Psychological impact of genetic testing for cancer susceptibility: an update of the literature.

    Science.gov (United States)

    Meiser, Bettina

    2005-12-01

    This article presents an overview of the rapidly evolving body of literature on the psychological impact of genetic testing for hereditary breast/ovarian cancer susceptibility, hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP). Uptake of genetic testing for BRCA1/2 and HNPCC-related mutations is more consistently related to psychological factors, rather than sociodemographic variables. Most studies on the psychological impact of genetic testing amongst individuals who have never been affected by cancer demonstrate that non-carriers derive significant psychological benefits from genetic testing, while no adverse effects have been observed amongst carriers. These benefits are more clear-cut for HNPCC, compared to hereditary breast/ovarian cancer, reflecting differences in risk management options. The few studies available on individuals affected with cancer indicate that the impact of genetic testing is mediated and amplified by their former experience of cancer. Future directions and challenges of research in this area are reviewed. In particular, more empirical data are needed on the broader impact of genetic testing on those with inconclusive results or results of uncertain significance. As genetic testing is becoming available for other types of familial cancer, additional investigations will be needed as there is evidence to suggest that the impact of genetic testing may be unique to each type of familial cancer.

  9. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility.

    Science.gov (United States)

    Hosgood, H Dean; Cawthon, Richard; He, Xingzhou; Chanock, Stephen; Lan, Qing

    2009-11-01

    Telomeres are responsible for the protection of the chromosome ends and shortened telomere length has been associated with risk of multiple cancers. Genetic variation in telomere-related genes may alter cancer risk associated with telomere length. Using lung cancer cases (n=120) and population-based controls (n=110) from Xuanwei, China, we analyzed telomere length separately and in conjunction with single nucleotide polymorphisms in the telomere maintenance genes POT1, TERT, and TERF2, which we have previously reported were associated with risk of lung cancer in this study. POT1 rs10244817, TERT rs2075786, and TERF2 rs251796 were significantly associated with lung cancer (p(trend)telomere length was not significantly associated with risk of lung cancer (OR=1.58; 95% CI=0.79-3.18) when compared to the longest tertile of telomere length. When stratified by genotype, there was a suggestion of a dose-response relationship between tertiles of telomere length and risk of lung cancer among the POT1 rs10244817 common variant carriers (OR (95% CI)=1.33 (0.47-3.75), 3.30 (1.14-9.56), respectively) but not among variant genotype carriers (p(interaction)=0.05). Our findings provide evidence that telomere length and genetic variation in telomere maintenance genes may be associated with risk of lung cancer susceptibility and warrant replication in larger studies.

  10. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus

    Science.gov (United States)

    Horne, Hisani N.; Chung, Charles C.; Zhang, Han; Yu, Kai; Prokunina-Olsson, Ludmila; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J.; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L.; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K.; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Iwata, Hiroji; Dörk, Thilo; Bogdanova, Natalia V.; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Chenevix-Trench, Georgia; Wu, Anna H.; ven den Berg, David; Smeets, Ann; Zhao, Hui; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J.; Vachon, Celine; Giles, Graham G.; Milne, Roger L.; Haiman, Christopher A.; Marchand, Loic Le; Goldberg, Mark S.; Teo, Soo H.; Taib, Nur A. M.; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Shrubsole, Martha; Winqvist, Robert; Jukkola-Vuorinen, Arja; Andrulis, Irene L.; Knight, Julia A.; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; Martens, John W. M.; Li, Jingmei; Lu, Wei; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S.; Blot, William; Cai, Qiuyin; Shah, Mitul; Luccarini, Craig; Baynes, Caroline; Harrington, Patricia; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Slager, Susan; Yannoukakos, Drakoulis; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Hall, Per; Pharoah, Paul D. P.

    2016-01-01

    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799–121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000–120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08–1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive. PMID:27556229

  11. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus.

    Science.gov (United States)

    Horne, Hisani N; Chung, Charles C; Zhang, Han; Yu, Kai; Prokunina-Olsson, Ludmila; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Iwata, Hiroji; Dörk, Thilo; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Chenevix-Trench, Georgia; Wu, Anna H; Ven den Berg, David; Smeets, Ann; Zhao, Hui; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J; Vachon, Celine; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Marchand, Loic Le; Goldberg, Mark S; Teo, Soo H; Taib, Nur A M; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Shrubsole, Martha; Winqvist, Robert; Jukkola-Vuorinen, Arja; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; Martens, John W M; Li, Jingmei; Lu, Wei; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Shah, Mitul; Luccarini, Craig; Baynes, Caroline; Harrington, Patricia; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Slager, Susan; Yannoukakos, Drakoulis; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Hall, Per; Pharoah, Paul D P; Easton, Douglas F; Chanock, Stephen J; Dunning, Alison M; Figueroa, Jonine D

    2016-01-01

    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.

  12. Mutations in BRCA1 and BRCA2 in breast cancer families: Are there more breast cancer-susceptibility genes?

    Energy Technology Data Exchange (ETDEWEB)

    Serova, O.M.; Mazoyer, S.; Putet, N. [CNRS, Lyon (France)] [and others

    1997-03-01

    To estimate the proportion of breast cancer families due to BRCA1 or BRCA2, we performed mutation screening of the entire coding regions of both genes supplemented with linkage analysis of 31 families, 8 containing male breast cancers and 23 site-specific female breast cancer. A combination of protein-truncation test and SSCP or heteroduplex analyses was used for mutation screening complemented, where possible, by the analysis of expression level of BRCA1 and BRCA2 alleles. Six of the eight families with male breast cancer revealed frameshift mutations, two in BRCA1 and four in BRCA2. Although most families with female site-specific breast cancers were thought to be due to mutations in either BRCA1 or BRCA2, we identified only eight mutations in our series of 23 site-specific female breast cancer families (34%), four in BRCA1 and four in BRCA2. According to the posterior probabilities calculated for mutation-negative families, based on linkage data and mutation screening results, we would expect 8-10 site-specific female breast cancer families of our series to be due to neither BRCA1 nor BRCA2. Thus, our results suggest the existence of at least one more major breast cancer-susceptibility gene. 24 refs., 1 fig., 3 tabs.

  13. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    Directory of Open Access Journals (Sweden)

    Pina Julieta

    2009-09-01

    Full Text Available Abstract Background MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. Methods We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH. Results Using unconditional logistic regression we found that MLH3 (L844P, G>A polymorphism GA (Leu/Pro and AA (Pro/Pro genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95 (p = 0.03 and OR = 0.62 (0.41-0.94 (p = 0.03, respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83, p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49, p = 0.01], GG/AA [OR = 2.11 (1.12-3,98, p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15, p = 0.02] all associated with an increased risk for breast cancer. Conclusion It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results.

  14. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes: Findings from the Ovarian Cancer Association Consortium

    NARCIS (Netherlands)

    Johnatty, S.E.; Tyrer, J.P.; Kar, S.; Beesley, J.; Lu, Y.; Gao, B.; Fasching, P.A.; Hein, A.; Ekici, A.B.; Beckmann, M.W.; Lambrechts, D.; Nieuwenhuysen, E. Van; Vergote, I.; Lambrechts, S.; Rossing, M.A.; Doherty, J.A.; Chang-Claude, J.; Modugno, F.; Ness, R.B.; Moysich, K.B.; Levine, D.A.; Kiemeney, L.A.L.M.; Massuger, L.F.A.G.; Gronwald, J.; Lubinski, J.; Jakubowska, A.; Cybulski, C.; Brinton, L.; Lissowska, J.; Wentzensen, N.; Song, H.; Rhenius, V.; Campbell, I.; Eccles, D.; Sieh, W.; Whittemore, A.S.; McGuire, V.; Rothstein, J.H.; Sutphen, R.; Anton-Culver, H.; Ziogas, A.; Gayther, S.A.; Gentry-Maharaj, A.; Menon, U.; Ramus, S.J.; Pearce, C.L.; Pike, M.C.; Stram, D.O.; Wu, A.H.; Kupryjanczyk, J.; Dansonka-Mieszkowska, A.; Rzepecka, I.K.; Spiewankiewicz, B.; Goodman, M.T.; Wilkens, L.R.; Carney, M.E.; Thompson, P.J.; Heitz, F.; Bois, A. du; Schwaab, I.; Harter, P.; Pisterer, J.; Hillemanns, P.; Karlan, B.Y.; Walsh, C.; Lester, J.; Orsulic, S.; Winham, S.J.; Earp, M.; Larson, M.C.; Fogarty, Z.C.; Hogdall, E.; Jensen, A.; Kjaer, S.K.; Fridley, B.L.; Cunningham, J.M.; Vierkant, R.A.; Schildkraut, J.M.; Iversen, E.S.; Terry, K.L.; Cramer, D.W; Bandera, E.V.; Orlow, I.; Pejovic, T.; Bean, Y.; Hogdall, C.; Lundvall, L.; McNeish, I.; Paul, J.; Carty, K.; Siddiqui, N.; Glasspool, R.; Sellers, T.; Kennedy, C.; Chiew, Y.E.; Berchuck, A.; MacGregor, S.; Pharoah, P.D.; Goode, E.L.; Defazio, A.

    2015-01-01

    PURPOSE: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. EXPERIMENTAL DESIGN: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment for pro

  15. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.

    Science.gov (United States)

    Zeggini, Eleftheria; Scott, Laura J; Saxena, Richa; Voight, Benjamin F; Marchini, Jonathan L; Hu, Tianle; de Bakker, Paul I W; Abecasis, Gonçalo R; Almgren, Peter; Andersen, Gitte; Ardlie, Kristin; Boström, Kristina Bengtsson; Bergman, Richard N; Bonnycastle, Lori L; Borch-Johnsen, Knut; Burtt, Noël P; Chen, Hong; Chines, Peter S; Daly, Mark J; Deodhar, Parimal; Ding, Chia-Jen; Doney, Alex S F; Duren, William L; Elliott, Katherine S; Erdos, Michael R; Frayling, Timothy M; Freathy, Rachel M; Gianniny, Lauren; Grallert, Harald; Grarup, Niels; Groves, Christopher J; Guiducci, Candace; Hansen, Torben; Herder, Christian; Hitman, Graham A; Hughes, Thomas E; Isomaa, Bo; Jackson, Anne U; Jørgensen, Torben; Kong, Augustine; Kubalanza, Kari; Kuruvilla, Finny G; Kuusisto, Johanna; Langenberg, Claudia; Lango, Hana; Lauritzen, Torsten; Li, Yun; Lindgren, Cecilia M; Lyssenko, Valeriya; Marvelle, Amanda F; Meisinger, Christa; Midthjell, Kristian; Mohlke, Karen L; Morken, Mario A; Morris, Andrew D; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R; Palmer, Colin N A; Payne, Felicity; Perry, John R B; Pettersen, Elin; Platou, Carl; Prokopenko, Inga; Qi, Lu; Qin, Li; Rayner, Nigel W; Rees, Matthew; Roix, Jeffrey J; Sandbaek, Anelli; Shields, Beverley; Sjögren, Marketa; Steinthorsdottir, Valgerdur; Stringham, Heather M; Swift, Amy J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Timpson, Nicholas J; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Walker, Mark; Watanabe, Richard M; Weedon, Michael N; Willer, Cristen J; Illig, Thomas; Hveem, Kristian; Hu, Frank B; Laakso, Markku; Stefansson, Kari; Pedersen, Oluf; Wareham, Nicholas J; Barroso, Inês; Hattersley, Andrew T; Collins, Francis S; Groop, Leif; McCarthy, Mark I; Boehnke, Michael; Altshuler, David

    2008-05-01

    Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.

  16. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility

    Science.gov (United States)

    2010-01-01

    Background CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs), it represents an attractive candidate gene for studies into colorectal cancer susceptibility. Methods We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be associated with altered enzymatic activity. Using the three SNPs, eight different haplotypes were constructed. The haplotype frequencies were estimated in cases and controls and then compared. The odds ratio for each tumour type, associated with each haplotype was estimated, with reference to the most common haplotype observed in the controls. Results The three SNPs rs10012, rs1056827 and rs1056836 alone did not provide any significant evidence of association with colorectal cancer risk. Haplotypes of rs1056827 and rs10012 or rs1056827 and rs1056836 revealed an association with colorectal cancer which was significantly stronger in the homozygous carriers. One haplotype was under represented in the colorectal cancer patient group compared to the control population suggesting a protective effect. Conclusion Genetic variants within the CYP1B1 that are associated with altered function appear to influence susceptibility to a colorectal cancer in Poland. Three haplotypes were associated with altered cancer risk; one conferred protection and two were associated with an increased risk of disease. These observations should be confirmed in other populations. PMID:20701755

  17. CHRNA5 polymorphism and susceptibility to lung cancer in a Chinese population

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Jiangsu Cancer Hospital, Department of Medical Oncology, Nanjing, Jiangsu Province (China); Zhu, Qun [Second Affiliated Hospital, Nanjing Medical University, Department of Endocrinology, Nanjing, Jiangsu Province (China); Zheng, Ma-Qing [College of Pharmacy, Nanjing University of Technology, Nanjing, Jiangsu Province (China); Chen, Jia; Shi, Mei-Qi; Feng, Ji-Feng [Jiangsu Cancer Hospital, Department of Medical Oncology, Nanjing, Jiangsu Province (China)

    2013-01-11

    Polymorphisms in the nicotinic acetylcholine receptor subunit CHRNA5 gene have been associated with lung cancer positive susceptibility in European and American populations. In the present hospital-based, case-control study, we determined whether polymorphism in rs503464 of CHRNA5 is associated with lung cancer risk in Chinese individuals. A single nucleotide polymorphism in CHRNA5 rs503464, c.-166T>A (hereafter T>A), was identified using TaqMan-MGB probes with sequencing via PCR in 600 lung cancer cases and 600 healthy individuals. Genotype frequencies for rs503464 (T>A) were in Hardy-Weinberg equilibrium for the control population. However, genotype frequencies were significantly different between cases and controls (P < 0.05), while allele frequencies were not significantly different between groups. Compared to homozygous genotypes (TT or AA), the risk of lung cancer in those with the heterozygous genotype (TA) was significantly lower (OR = 0.611, 95%CI = 0.486-0.768, P = 0.001). Using genotype AA as a reference, the risk of lung cancer for those with genotype TA was increased 1.5 times (OR = 1.496, 95%CI = 1.120-1.997, P = 0.006). However, no difference in risk was observed between T allele carriers and A allele carriers (OR = 0.914, 95%CI = 0.779-1.073, P = 0.270). Stratification analysis showed that the protective effect of TA was more pronounced in those younger than 60 years, nonsmokers, or those without a family history of cancer, as well as in patients with adenocarcinoma or squamous cell carcinoma in clinical stages III or IV (P < 0.05). Therefore, the heterozygous genotype c.-166T>A at rs503464 of CHRNA5 may be associated with reduced risk of lung cancer, thus representing a susceptibility allele in Chinese individuals.

  18. Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Trubicka Joanna

    2010-08-01

    Full Text Available Abstract Background CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs, it represents an attractive candidate gene for studies into colorectal cancer susceptibility. Methods We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be associated with altered enzymatic activity. Using the three SNPs, eight different haplotypes were constructed. The haplotype frequencies were estimated in cases and controls and then compared. The odds ratio for each tumour type, associated with each haplotype was estimated, with reference to the most common haplotype observed in the controls. Results The three SNPs rs10012, rs1056827 and rs1056836 alone did not provide any significant evidence of association with colorectal cancer risk. Haplotypes of rs1056827 and rs10012 or rs1056827 and rs1056836 revealed an association with colorectal cancer which was significantly stronger in the homozygous carriers. One haplotype was under represented in the colorectal cancer patient group compared to the control population suggesting a protective effect. Conclusion Genetic variants within the CYP1B1 that are associated with altered function appear to influence susceptibility to a colorectal cancer in Poland. Three haplotypes were associated with altered cancer risk; one conferred protection and two were associated with an increased risk of disease. These observations should be confirmed in other populations.

  19. 9q31.2-rs865686 as a susceptibility locus for estrogen receptor-positive breast cancer: Evidence from the Breast Cancer Association Consortium

    NARCIS (Netherlands)

    H. Warren (Helen); F. Dudbridge (Frank); O. Fletcher (Olivia); N. Orr (Nick); N. Johnson (Nichola); J.L. Hopper (John); C. Apicella (Carmel); M.C. Southey (Melissa); M. Mahmoodi (Maryam); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Cornelissen (Sten); L.M. Braaf (Linde); K.R. Muir (Kenneth); A. Lophatananon (Artitaya); A. Chaiwerawattana (Arkom); S. Wiangnon (Surapon); P.A. Fasching (Peter); M.W. Beckmann (Matthias); A.B. Ekici (Arif); R. Schulz-Wendtland (Rüdiger); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); B. Burwinkel (Barbara); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Christof); P. Guénel (Pascal); T. Truong (Thérèse); P. Laurent-Puig (Pierre); C. Mulot (Claire); S.E. Bojesen (Stig); S.F. Nielsen (Sune); H. Flyger (Henrik); B.G. Nordestgaard (Børge); R.L. Milne (Roger); J. Benítez (Javier); J.I. Arias Pérez (José Ignacio); M.P. Zamora (Pilar); H. Anton-Culver (Hoda); A. Ziogas (Argyrios); L. Bernstein (Leslie); C.C. Dur (Christina Clarke); H. Brenner (Hermann); H. Müller (Heike); V. Arndt (Volker); A. Langheinz (Anne); A. Meindl (Alfons); M. Golatta (Michael); C.R. Bartram (Claus); R.K. Schmutzler (Rita); H. Brauch (Hiltrud); C. Justenhoven (Christina); T. Brüning (Thomas); J. Chang-Claude (Jenny); S. Wang-Gohrke (Shan); U. Eilber (Ursula); T. Dörk (Thilo); P. Schürmann (Peter); M. Bremer (Michael); P. Hillemanns (Peter); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); N.N. Antonenkova (Natalia); Y.I. Rogov (Yuri); M. Bermisheva (Marina); D. Prokofyeva (Darya); G. Zinnatullina (Guzel); E.K. Khusnutdinova (Elza); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V-M. Kosma (Veli-Matti); J. Hartikainen (Jaana); V. Kataja (Vesa); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); X. Chen (Xiaoqing); D. Lambrechts (Diether); A. Smeets (Ann); R. Paridaens (Robert); C. Weltens (Caroline); D. Flesch-Janys (Dieter); K. Buck (Katharina); T.W. Behrens (Timothy); P. Peterlongo (Paolo); L. Bernard (Loris); S. Manoukian (Siranoush); P. Radice (Paolo); F.J. Couch (Fergus); C. Vachon (Celine); X. Wang (Xing); J.E. Olson (Janet); G.G. Giles (Graham); L. Baglietto (Laura); C.A. McLean (Cariona); G. Severi (Gianluca); E.M. John (Esther); A. Miron (Alexander); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); I.L. Andrulis (Irene); J.A. Knight (Julia); A.M. Mulligan (Anna Marie); N. Weerasooriya (Nayana); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); J.W.M. Martens (John); C.M. Seynaeve (Caroline); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); A. Jager (Agnes); M.M.A. Tilanus-Linthorst (Madeleine); P. Hall (Per); K. Czene (Kamila); J. Liu (Jianjun); J. Li (Jingmei); A. Cox (Angela); S.S. Cross (Simon); I.W. Brock (Ian); M.W.R. Reed (Malcolm); P.D.P. Pharoah (Paul); F. Blows (Fiona); A.M. Dunning (Alison); M. Ghoussaini (Maya); A. Ashworth (Alan); A.J. Swerdlow (Anthony ); M. Jones (Marta); M. Schoemaker (Minouk); D.F. Easton (Douglas); M.K. Humphreys (Manjeet); Q. Wang (Qing); J. Peto (Julian); I. dos Santos Silva (Isabel)

    2012-01-01

    textabstractBackground: Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686). Methods: To further investigate the rs865686-breast cancer association, we conducted a replication study within the Breast Cancer Association Consortium, which

  20. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development.

    Science.gov (United States)

    Theodoropoulos, George E; Saridakis, Vasilios; Karantanos, Theodoros; Michalopoulos, Nikolaos V; Zagouri, Flora; Kontogianni, Panagiota; Lymperi, Maria; Gazouli, Maria; Zografos, George C

    2012-08-01

    Toll-like receptor (TLR) activation may be an important event in tumor cell immune evasion. TLR2 and TLR4 gene polymorphisms have been related to increased susceptibility to cancer development in various organs. 261 patients and 480 health individuals were investigated for genotype and allelic frequencies of a 22-bp nucleotide deletion (-196 to -174del) in the promoter of TLR2 gene as well as two polymorphisms causing amino acid substitutions (Asp299Gly and Thr399Ile) in TLR4 gene. As far as (-196 to -174del) in TLR2 gene is concerned ins/del and del/del genotypes and del allele were significantly more frequent in breast cancer patients compared to healthy controls. Considering Asp299Gly replacement of TLR4 gene, Gly carriers (Asp/Gly & Gly/Gly genotype) and Gly allele were overrepresented among the breast cancer cases. The -174 to -196del of TLR2 gene and Asp299Gly of TLR4 gene polymorphisms may confer an increased susceptibility to breast cancer development.

  1. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A J; Schmid, T E; Marchetti, F

    2004-06-15

    Some chemotherapy regimens include agents that are mutagenic or clastogenic in model systems. This raises concerns that cancer survivors, who were treated before or during their reproductive years, may be at increased risks for abnormal reproductive outcomes. However, the available data from offspring of cancer survivors are limited, representing diverse cancers, therapies, time-to-pregnancies, and reproductive outcomes. Rodent breeding data after paternal exposures to individual chemotherapeutic agents illustrate the complexity of factors that influence the risk for transmitted genetic damage including agent, dose, endpoint, and the germ-cell susceptibility profiles that vary across agents. Direct measurements of chromosomal abnormalities in sperm of mice and humans by sperm FISH have corroborated the differences in germ-cell susceptibilities. The available evidence suggests that the risk of producing chromosomally defective sperm is highest during the first few weeks after the end of chemotherapy, and decays with time. Thus, sperm samples provided immediately after the initiation of cancer therapies may contain treatment-induced genetic defects that will jeopardize the genetic health of offspring.

  2. Experience with breast cancer, pre-screening perceived susceptibility and the psychological impact of screening

    DEFF Research Database (Denmark)

    Absetz, Pilvikki; Aro, Arja R; Sutton, Stephen R

    2003-01-01

    This prospective study examined whether the psychological impact of organized mammography screening is influenced by women's pre-existing experience with breast cancer and perceived susceptibility (PS) to the disease. From a target population of 16,886, a random sample of women with a normal...... responded to the follow-ups. Psychological impact was measured as anxiety (STAI-S), depression (BDI), health-related concerns (IAS), and breast cancer-specific beliefs and concerns. Data was analyzed with repeated measures analyses of variance, with estimates of effect size based on Eta-squared. Women...... normal mammograms. Experience and PS did not influence responses to different screening findings. Of the finding groups, false positives experienced most adverse effects: their risk perception increased and they reported most post-screening breast cancer-specific concerns. Furthermore, they became more...

  3. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium.

    Science.gov (United States)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B; Behrens, Sabine; Goode, Ellen L; Bolla, Manjeet K; Dennis, Joe; Dunning, Alison M; Easton, Douglas F; Wang, Qin; Benitez, Javier; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Fasching, Peter A; Haeberle, Lothar; Peto, Julian; Dos-Santos-Silva, Isabel; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marmé, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Nielsen, Sune F; Nordestgaard, Børge G; González-Neira, Anna; Menéndez, Primitiva; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Fagerholm, Rainer; Dörk, Thilo; Bogdanova, Natalia V; Mannermaa, Arto; Hartikainen, Jaana M; Van Dijck, Laurien; Smeets, Ann; Flesch-Janys, Dieter; Eilber, Ursula; Radice, Paolo; Peterlongo, Paolo; Couch, Fergus J; Hallberg, Emily; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Schumacher, Fredrick; Simard, Jacques; Goldberg, Mark S; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Winqvist, Robert; Grip, Mervi; Andrulis, Irene L; Glendon, Gord; García-Closas, Montserrat; Figueroa, Jonine; Czene, Kamila; Brand, Judith S; Darabi, Hatef; Eriksson, Mikael; Hall, Per; Li, Jingmei; Cox, Angela; Cross, Simon S; Pharoah, Paul D P; Shah, Mitul; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Ademuyiwa, Foluso; Ambrosone, Christine B; Swerdlow, Anthony; Jones, Michael; Chang-Claude, Jenny

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113 matched normal tissue samples. SNP rs1905339 (A>G) in the STAT3 region was associated with an increased breast cancer risk (per allele odds ratio 1.05, 95 % confidence interval 1.03-1.08; p value = 1.4 × 10(-6)). The association did not differ significantly by ER status. On the gene level, in addition to TGFBR2 and CCND1, IL5 and GM-CSF showed the strongest associations with overall breast cancer risk (p value = 1.0 × 10(-3) and 7.0 × 10(-3), respectively). Furthermore, STAT3 and IL5 but not GM-CSF were differentially expressed between breast tumor tissue and normal tissue (p value = 2.5 × 10(-3), 4.5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry.

  4. Clinical application of micronucleus test: a case-control study on the prediction of breast cancer risk/susceptibility.

    Science.gov (United States)

    Bolognesi, Claudia; Bruzzi, Paolo; Gismondi, Viviana; Volpi, Samantha; Viassolo, Valeria; Pedemonte, Simona; Varesco, Liliana

    2014-01-01

    The micronucleus test is a well-established DNA damage assay in human monitoring. The test was proposed as a promising marker of cancer risk/susceptibility mainly on the basis of studies on breast cancer. Our recent meta-analysis showed that the association between micronuclei frequency, either at baseline or after irradiation, and breast cancer risk or susceptibility, has been evaluated in few studies of small size, with inconsistent results. The aim of the present study is to investigate the role of micronucleus assay in evaluating individual breast cancer susceptibility. Two-hundred and twenty untreated breast cancer patients and 295 female controls were enrolled in the study. All women were characterized for cancer family history and 155 subjects were evaluated for the presence of BRCA mutations. Micronuclei frequency was evaluated at baseline and after irradiation with 1-Gy gamma rays from a 137Cs source. The results show a non significant increase of frequency of micronucleated binucleated lymphocytes in cancer patients compared with the controls at baseline (Mean (S.E.): 16.8 (0.7) vs 15.7 (0.5), but not after irradiation (Mean (S.E.): 145.8 (3.0) vs 154.0 (2.6)). Neither a family history of breast cancer nor the presence of a pathogenic mutation in BRCA1/2 genes were associated with an increased micronuclei frequency. Our results do not support a significant role of micronucleus frequency as a biomarker of breast cancer risk/susceptibility.

  5. P2X7 receptor-deficient mice are susceptible to bone cancer pain

    DEFF Research Database (Denmark)

    Hansen, RR; Nielsen, CK; Nasser, A;

    2011-01-01

    The purinergic P2X7 receptor is implicated in both neuropathic and inflammatory pain, and has been suggested as a possible target in pain treatment. However, the specific role of the P2X7 receptor in bone cancer pain is unknown. We demonstrated that BALB/cJ P2X7 receptor knockout (P2X7R KO) mice...... were susceptible to bone cancer pain and moreover had an earlier onset of pain-related behaviours compared with cancer-bearing, wild-type mice. Furthermore, acute treatment with the selective P2X7 receptor antagonist, A-438079, failed to alleviate pain-related behaviours in models of bone cancer pain...... of the P2X7R KO mouse. Further experiments are needed to elucidate the exact role of the P2X7 receptors in bone cancer pain. Pain-related behaviours had an earlier onset in bone cancer-bearing, P2X7 receptor-deficient mice, and treatment with A-438079 failed to alleviate pain-related behaviours....

  6. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Kui; Zhou, Bin; Wang, Yanyun; Rao, Li; Zhang, Lin

    2013-03-01

    Growing studies revealed the association between polymorphisms in Toll-like receptor 4 (TLR4) and susceptibility to cancer, however, the results remained inconsistent. To assess the effect of six selected SNPs (rs1927914, rs4986790, rs4986791, rs11536889, rs1927911 and rs2149356) in TLR4 on cancer, we conducted a meta-analysis, up to February 2012, 22 case-control studies were available. Summary odds ratios (OR) and corresponding 95% confidence intervals (CIs) for polymorphisms in TLR4 and cancer risk were estimated. Our meta-analysis identified that two SNPs (rs4986790 and rs4986791) in TLR4 were associated with increased cancer risk (for rs4986790: OR=1.24, 95% CI=1.01-1.52 in dominant model; OR=1.24, 95% CI=1.02-1.52 in overdominant model; for rs4986791: OR=1.81, 95% CI=1.18-2.77 in allele comparison; OR=1.79, 95% CI=1.15-2.80 in dominant model; OR=1.70, 95% CI=1.09-2.67 in overdominant model) and one SNP (rs1927911) in TLR4 was associated with decreased cancer risk (for rs1927911: OR=0.63, 95% CI=0.41-0.99 in allele comparison; OR=0.57, 95% CI=0.35-0.95 in dominant model; OR=0.67, 95% CI=0.46-0.97 in codominant model). Moreover, in terms of stratified analyses by cancer type for SNP rs4986790, significantly elevated risk was observed to be associated with G allele in gastric cancer and 'other cancers'. These findings indicate that polymorphisms in TLR4 may play a role, although modest, in cancer development.

  7. XPG Gene Polymorphisms Contribute to Colorectal Cancer Susceptibility: A Two-Stage Case-Control Study

    Science.gov (United States)

    Hua, Rui-Xi; Zhuo, Zhen-Jian; Zhu, Jinhong; Zhang, Shao-Dan; Xue, Wen-Qiong; Zhang, Jiang-Bo; Xu, Hong-Mei; Li, Xi-Zhao; Zhang, Pei-Fen; He, Jing; Jia, Wei-Hua

    2016-01-01

    Previous studies have reported that xeroderma pigmentosum group G (XPG) gene polymorphisms may modulate colorectal cancer (CRC) susceptibility. In this study, we performed a two-stage case-control study to comprehensively investigate the associations of five polymorphisms in the XPG gene with CRC risk in 1,901 cases and 1,976 controls from Southern China, including rs2094258 C>T, rs751402 C>T, rs2296147 T>C, rs1047768 T>C and rs873601 G>A. After combining data from two stages, we found that three of the studied polymorphisms (rs2094258 C>T, rs751402 C>T, and rs873601 G>A) were significantly associated with CRC susceptibility. After adjustment for age and gender, multivariate logistic regression analysis indicated that carriers of the rs2094258 T alleles had an increased CRC risk [CT vs. CC: adjusted odds ratio (OR)=1.17, 95% confidence interval (CI)=1.01-1.36; TT vs. CC: adjusted OR=1.49, 95% CI=1.18-1.89; TT vs. CT/CC: adjusted OR=1.38, 95% CI=1.10-1.72]. Likely, rs873601 A allele also conferred increased CRC susceptibility. In contrast, a protective association was identified between rs751402 C>T polymorphism and the risk of CRC. In summary, our results indicated that these three polymorphisms were found to associate with CRC susceptibility in a Southern Chinese population.

  8. Genetic Polymorphisms of TGFB1, TGFBR1, SNAI1 and TWIST1 Are Associated with Endometrial Cancer Susceptibility in Chinese Han Women

    Science.gov (United States)

    Yang, Li; Wang, Ya-Jun; Zheng, Li-Yuan; Jia, Yu-Mian; Chen, Yi-Lin; Chen, Lan; Liu, Dong-Ge; Li, Xiang-Hong; Guo, Hong-Yan; Sun, Ying-Li; Tian, Xin-Xia; Fang, Wei-Gang

    2016-01-01

    Endometrial cancer (EC) is a complex disease involving multiple gene-gene and gene–environment interactions. TGF-β signaling plays pivotal roles in EC development. This study aimed to investigate whether the genetic polymorphisms of TGF-β signaling related genes TGFB1, TGFBR1, SNAI1 and TWIST1 contribute to EC susceptibility. Using the TaqMan Genotyping Assay, 19 tagging-SNPs of these four genes were genotyped in 516 EC cases and 707 controls among Chinese Han women. Logistic regression (LR) showed that the genetic variants of TGFB1 rs1800469, TGFBR1 rs6478974 and rs10733710, TWIST1 rs4721745 were associated with decreased EC risk, and these four loci showed a dose-dependent effect (Ptrend menarche-first full term pregnancy intervals (˃11 years) and BMI˂24 (aOR = 0.39, 95% CI = 0.17–0.90, P = 0.0275). These results suggest that polymorphisms in TGFB1, TGFBR1, SNAI1 and TWIST1 may modulate EC susceptibility, both separately and corporately. PMID:27171242

  9. Protein-protein interaction and pathway analyses of top schizophrenia genes reveal schizophrenia susceptibility genes converge on common molecular networks and enrichment of nucleosome (chromatin) assembly genes in schizophrenia susceptibility loci.

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Jia, Peilin; Li, Ming; Su, Bing; Zhao, Zhongming; Gan, Lin

    2014-01-01

    Recent genome-wide association studies have identified many promising schizophrenia candidate genes and demonstrated that common polygenic variation contributes to schizophrenia risk. However, whether these genes represent perturbations to a common but limited set of underlying molecular processes (pathways) that modulate risk to schizophrenia remains elusive, and it is not known whether these genes converge on common biological pathways (networks) or represent different pathways. In addition, the theoretical and genetic mechanisms underlying the strong genetic heterogeneity of schizophrenia remain largely unknown. Using 4 well-defined data sets that contain top schizophrenia susceptibility genes and applying protein-protein interaction (PPI) network analysis, we investigated the interactions among proteins encoded by top schizophrenia susceptibility genes. We found proteins encoded by top schizophrenia susceptibility genes formed a highly significant interconnected network, and, compared with random networks, these PPI networks are statistically highly significant for both direct connectivity and indirect connectivity. We further validated these results using empirical functional data (transcriptome data from a clinical sample). These highly significant findings indicate that top schizophrenia susceptibility genes encode proteins that significantly directly interacted and formed a densely interconnected network, suggesting perturbations of common underlying molecular processes or pathways that modulate risk to schizophrenia. Our findings that schizophrenia susceptibility genes encode a highly interconnected protein network may also provide a novel explanation for the observed genetic heterogeneity of schizophrenia, ie, mutation in any member of this molecular network will lead to same functional consequences that eventually contribute to risk of schizophrenia.

  10. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors

    DEFF Research Database (Denmark)

    Nickels, Stefan; Truong, Thérèse; Hein, Rebecca

    2013-01-01

    ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6)) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4)). Overall...

  11. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors

    DEFF Research Database (Denmark)

    Rudolph, Anja; Milne, Roger L; Truong, Thérèse

    2015-01-01

    estimator. Six SNPs showed interactions with associated p-values (pint ) testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy...

  12. HapMap-based study of the DNA repair gene ERCC2 and lung cancer susceptibility in a Chinese population

    DEFF Research Database (Denmark)

    Yin, Jiaoyang; Vogel, Ulla Birgitte; Ma, Yegang

    2009-01-01

    (NER) pathway. To elucidate whether common ERCC2 variants are associated with lung cancer susceptibility, we conducted a case–control study consisting of 339 cases with primary lung cancer and 358 controls matched on age, gender and ethnicity in a Chinese population. Six haplotype tagging single...

  13. Bacteria causing bacteremia in pediatric cancer patients presenting with febrile neutropenia-species distribution and susceptibility patterns

    NARCIS (Netherlands)

    Miedema, Karin G. E.; Winter, Rik H. L. J.; Ammann, Roland A.; Droz, Sara; Spanjaard, Lodewijk; de Bont, Eveline S. J. M.; Kamps, Willem A.; van de Wetering, Marianne D.; Tissing, Wim J. E.

    2013-01-01

    Infections are a major cause of morbidity and mortality in pediatric cancer patients. The aim of this study was to establish the microbiological spectrum and the susceptibility patterns of bacteremia-causing bacteria in pediatric cancer patients with febrile neutropenia in relation to the use of pro

  14. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  15. Association between CYP1B1 Gene Polymorphisms and Risk Factors and Susceptibility to Laryngeal Cancer

    OpenAIRE

    Yu, Peng-Ju; Chen, Wei-Guan; Feng, Quan-Lin; Chen, Wei; Jiang, Man-Jie; Li, Ze-Qing

    2015-01-01

    Background The aim of this study was to investigate the association between polymorphism of the cytochrome P450 1B1 (CYP1B1) gene, a metabolic enzyme gene, and the susceptibility to laryngeal cancer among the Chinese Han population. Material/Methods In a case-control study, we investigated polymorphisms in the CYP1B1 gene (rs10012, rs1056827, and rs1056836) with a real-time quantitative polymerase chain reaction (PCR) assay (TaqMan). The study was conducted with 300 Chinese Han patients with ...

  16. A splicing variant of TERT identified by GWAS interacts with menopausal estrogen therapy in risk of ovarian cancer

    DEFF Research Database (Denmark)

    Lee, Alice W; Bomkamp, Ashley; Bandera, Elisa V;

    2016-01-01

    Menopausal estrogen-alone therapy (ET) is a well-established risk factor for serous and endometrioid ovarian cancer. Genetics also plays a role in ovarian cancer, which is partly attributable to 18 confirmed ovarian cancer susceptibility loci identified by genome-wide association studies. The int......Menopausal estrogen-alone therapy (ET) is a well-established risk factor for serous and endometrioid ovarian cancer. Genetics also plays a role in ovarian cancer, which is partly attributable to 18 confirmed ovarian cancer susceptibility loci identified by genome-wide association studies...

  17. Probability theory-based SNP association study method for identifying susceptibility loci and genetic disease models in human case-control data.

    Science.gov (United States)

    Yuan, Xiguo; Zhang, Junying; Wang, Yue

    2010-12-01

    One of the most challenging points in studying human common complex diseases is to search for both strong and weak susceptibility single-nucleotide polymorphisms (SNPs) and identify forms of genetic disease models. Currently, a number of methods have been proposed for this purpose. Many of them have not been validated through applications into various genome datasets, so their abilities are not clear in real practice. In this paper, we present a novel SNP association study method based on probability theory, called ProbSNP. The method firstly detects SNPs by evaluating their joint probabilities in combining with disease status and selects those with the lowest joint probabilities as susceptibility ones, and then identifies some forms of genetic disease models through testing multiple-locus interactions among the selected SNPs. The joint probabilities of combined SNPs are estimated by establishing Gaussian distribution probability density functions, in which the related parameters (i.e., mean value and standard deviation) are evaluated based on allele and haplotype frequencies. Finally, we test and validate the method using various genome datasets. We find that ProbSNP has shown remarkable success in the applications to both simulated genome data and real genome-wide data.

  18. Increased radiosensitivity as an indicator of genes conferring breast cancer susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Varga, D.; Kreienberg, R.; Deissler, H.; Sauer, G. [Dept. of Gynecology and Obstetrics, Univ. of Ulm Medical School (Germany); Vogel, W.; Bender, A.; Surowy, H.; Maier, C. [Dept. of Genetics, Univ. of Ulm Medical School (Germany)

    2007-12-15

    Purpose: This paper briefly summarizes the research on increased radiosensitivity in breast cancer patients measured by the micronucleus test (MNT) and its association to genetic variants in DNA repair genes. More preliminary data are presented on the distribution of chromosomes and chromosome fragments in micronuclei (MN) in order to gain more information on clastogenic and aneugenic effects and better understand the phenotype of increased radiosensitivity. Material and Methods: Reports of relevant studies obtained from a search of PubMed and studies referenced in those reports were reviewed. In four patients with high MN frequency (three cancer patients, one control) and four probands with low MN frequency, the presence of chromosome fragments or whole chromosomes in MN was determined by fluorescence in situ hybridization analysis for chromosomes 1, 7, and 17. Results: An increased MN frequency in breast cancer patients compared to controls has consistently been reported with high significance. Higher MN frequencies were observed in 20-50% of breast cancer patients. Chromosomal fragments of chromosome 17, but not of chromosomes 1 and 7 were more frequent in the probands with high MN frequency than in those with low frequency (p = 0.045). Conclusion: The MNT detects a cellular phenotype common to a portion of sporadic breast cancer patients. This phenotype is very likely to be genetically determined. For the genetic dissection of breast cancer susceptibility this phenotype may turn out to be more efficient than breast cancer itself. Additional parameters which can be measured simultaneously with the MN frequency may be able to further enhance its usefulness. (orig.)

  19. Pleiotropy of cancer susceptibility variants on the risk of non-Hodgkin lymphoma: the PAGE consortium.

    Directory of Open Access Journals (Sweden)

    Unhee Lim

    Full Text Available BACKGROUND: Risk of non-Hodgkin lymphoma (NHL is higher among individuals with a family history or a prior diagnosis of other cancers. Genome-wide association studies (GWAS have suggested that some genetic susceptibility variants are associated with multiple complex traits (pleiotropy. OBJECTIVE: We investigated whether common risk variants identified in cancer GWAS may also increase the risk of developing NHL as the first primary cancer. METHODS: As part of the Population Architecture using Genomics and Epidemiology (PAGE consortium, 113 cancer risk variants were analyzed in 1,441 NHL cases and 24,183 controls from three studies (BioVU, Multiethnic Cohort Study, Women's Health Initiative for their association with the risk of overall NHL and common subtypes [diffuse large B-cell lymphoma (DLBCL, follicular lymphoma (FL, chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL] using an additive genetic model adjusted for age, sex and ethnicity. Study-specific results for each variant were meta-analyzed across studies. RESULTS: The analysis of NHL subtype-specific GWAS SNPs and overall NHL suggested a shared genetic susceptibility between FL and DLBCL, particularly involving variants in the major histocompatibility complex region (rs6457327 in 6p21.33: FL OR=1.29, p=0.013; DLBCL OR=1.23, p=0.013; NHL OR=1.22, p=5.9 × E-05. In the pleiotropy analysis, six risk variants for other cancers were associated with NHL risk, including variants for lung (rs401681 in TERT: OR per C allele=0.89, p=3.7 × E-03; rs4975616 in TERT: OR per A allele=0.90, p=0.01; rs3131379 in MSH5: OR per T allele=1.16, p=0.03, prostate (rs7679673 in TET2: OR per C allele=0.89, p=5.7 × E-03; rs10993994 in MSMB: OR per T allele=1.09, p=0.04, and breast (rs3817198 in LSP1: OR per C allele=1.12, p=0.01 cancers, but none of these associations remained significant after multiple test correction. CONCLUSION: This study does not support strong pleiotropic effects of non

  20. Replication and Relevance of Multiple Susceptibility Loci Discovered from Genome Wide Association Studies for Type 2 Diabetes in an Indian Population.

    Directory of Open Access Journals (Sweden)

    Nagaraja M Phani

    Full Text Available Several genetic variants for type 2 diabetes (T2D have been identified through genome wide association studies (GWAS from Caucasian population; however replication studies were not consistent across various ethnicities. Objective of the current study is to examine the possible correlation of 9 most significant GWAS single nucleotide polymorphisms (SNPs for T2D susceptibility as well as the interactive effect of these variants on the risk of T2D in an Indian population.Case-control cohorts of 1156 individuals were genotyped for 9 SNPs from an Indian population. Association analyses were performed using logistic regression after adjusting for covariates. Multifactor dimensionality reduction (MDR analysis was adopted to determine gene-gene interactions and discriminatory power of combined SNP effect was assessed by grouping individuals based on the number of risk alleles and by calculating area under the receiver-operator characteristic curve (AUC.We confirm the association of TCF7L2 (rs7903146 and SLC30A8 (rs13266634 with T2D. MDR analysis showed statistically significant interactions among four SNPs of SLC30A8 (rs13266634, IGF2BP2 (rs4402960, HHEX (rs1111875 and CDKN2A (rs10811661 genes. Cumulative analysis showed an increase in odds ratio against the baseline group of individuals carrying 5 to 6 risk alleles and discriminatory power of genetic test based on 9 variants showed higher AUC value when analyzed along with body mass index (BMI.These results provide a strong evidence for independent association between T2D and SNPs for in TCF7L2 and SLC30A8. MDR analysis demonstrates that independently non-significant variants may interact with one another resulting in increased disease susceptibility in the population tested.

  1. FOXP3 Transcription Factor: A Candidate Marker for Susceptibility and Prognosis in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Leandra Fiori Lopes

    2014-01-01

    Full Text Available Triple negative breast cancer (TNBC is a relevant subgroup of neoplasia which presents negative phenotype of estrogen and progesterone receptors and has no overexpression of the human epidermal growth factor 2 (HER2. FOXP3 (forkhead transcription factor 3 is a marker of regulatory T cells (Tregs, whose expression may be increased in tumor cells. This study aimed to investigate a polymorphism (rs3761548 and the protein expression of FOXP3 for a possible involvement in TNBC susceptibility and prognosis. Genetic polymorphism was evaluated in 50 patients and in 115 controls by allele-specific PCR (polymerase chain reaction. Protein expression was evaluated in 38 patients by immunohistochemistry. It was observed a positive association for homozygous AA (OR = 3.78; 95% CI = 1.02–14.06 in relation to TNBC susceptibility. Most of the patients (83% showed a strong staining for FOXP3 protein in the tumor cells. In relation to FOXP3-positive infiltrate, 47% and 58% of patients had a moderate or intense intratumoral and peritumoral mononuclear infiltrate cells, respectively. Tumor size was positively correlated to intratumoral FOXP3-positive infiltrate (P=0.026. In conclusion, since FOXP3 was positively associated with TNBC susceptibility and prognosis, it seems to be a promising candidate for further investigation in larger TNBC samples.

  2. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: Implications for risk prediction

    NARCIS (Netherlands)

    A.C. Antoniou (Antonis); J. Beesley (Jonathan); L. McGuffog (Lesley); O. Sinilnikova (Olga); S. Healey (Sue); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); R. Rebbeck (Timothy); J.N. Weitzel (Jeffrey); H. Lynch (Henry); C. Isaacs (Claudine); P.A. Ganz (Patricia); G. Tomlinson (Gail); O.I. Olopade (Olofunmilayo); F.J. Couch (Fergus); X. Wang (Xing); N.M. Lindor (Noralane); V.S. Pankratz (Shane); P. Radice (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); M. Barile (Monica); A. Viel (Alessandra); A. Allavena (Anna); V. Dall'Olio (Valentina); P. Peterlongo (Paolo); C. Szabo (Csilla); M. Zikan (Michal); K. Claes (Kathleen); B. Poppe (Bruce); L. Foretova (Lenka); P.L. Mai (Phuong); M.H. Greene (Mark); G. Rennert (Gad); F. Lejbkowicz (Flavio); G. Glendon (Gord); H. Ozcelik (Hilmi); I.L. Andrulis (Irene); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); L. Sunde (Lone); D. Cruger (Dorthe); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); B. Kaufman (Bella); Y. Laitman (Yael); R. Milgrom (Roni); M. Dubrovsky (Maya); S. Cohen (Shimrit); Å. Borg (Åke); H. Jernström (H.); A. Lindblom (Annika); J. Rantala (Johanna); M. Stenmark-Askmalm (M.); B. Melin (Beatrice); K.L. Nathanson (Katherine); S.M. Domchek (Susan); A. Jakubowska (Anna); J. Lubinski (Jan); T. Huzarski (Tomasz); A. Osorio (Ana); A. Lasa (Adriana); M. Durán (Mercedes); M.I. Tejada; J. Godino (Javier); J. Benitez (Javier); U. Hamann (Ute); M. Kriege (Mieke); N. Hoogerbrugge (Nicoline); R.B. van der Luijt (Rob); C.J. van Asperen (Christi); P. Devilee (Peter); E.J. Meijers-Heijboer (Hanne); M.J. Blok (Marinus); C.M. Aalfs (Cora); F.B.L. Hogervorst (Frans); M.A. Rookus (Matti); M. Cook (Margaret); C.T. Oliver (Clare); D. Frost (Debra); D. Conroy (Don); D.G. Evans (Gareth); F. Lalloo (Fiona); G. Pichert (Gabriella); R. Davidson (Rosemarie); T.J. Cole (Trevor); J. Paterson (Joan); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); M.E. Porteous (Mary); L.J. Walker (Lisa); M.J. Kennedy (John); H. Dorkins (Huw); S. Peock (Susan); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); A. de Pauw (Antoine); S. Mazoyer (Sylvie); V. Bonadona (Valérie); C. Lasset (Christine); H. Dreyfus (Hélène); D. Leroux (Dominique); A. hardouin (Agnès); P. Berthet (Pascaline); L. Faivre (Laurence); C. Loustalot (Catherine); T. Noguchi (Tetsuro); H. Sobol (Hagay); E. Rouleau (Etienne); C. Nogues (Catherine); M. Frenay (Marc); L. Vénat-Bouvet (Laurence); J. Hopper (John); M.J. Daly (Mark); M-B. Terry (Mary-beth); E.M. John (Esther); S.S. Buys (Saundra); Y. Yassin (Yosuf); A. Miron (Alexander); D. Goldgar (David); C.F. Singer (Christian); C. Dressler (Catherina); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); T.V.O. Hansen (Thomas); L. Jnson (Lars); B.A. Agnarsson (Bjarni); T. Kircchoff (Tomas); K. Offit (Kenneth); V. Devlin (Vincent); A. Dutra-Clarke (Ana); M. Piedmonte (Marion); G.C. Rodriguez (Gustavo); K. Wakeley (Katie); J.F. Boggess (John); J. Basil (Jack); P.E. Schwartz (Peter); S.V. Blank (Stephanie); A.E. Toland (Amanda); M. Montagna (Marco); C. Casella (Cinzia); E.N. Imyanitov (Evgeny); L. Tihomirova (Laima); I. Blanco (Ignacio); C. Lazaro (Conxi); S.J. Ramus (Susan); L. Sucheston (Lara); B.Y. Karlan (Beth); J. Gross (Jenny); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C. Engel (Christoph); A. Meindl (Alfons); M. Lochmann (Magdalena); N. Arnold (Norbert); S. Heidemann (Simone); R. Varon-Mateeva (Raymonda); D. Niederacher (Dieter); C. Sutter (Christian); H. Deissler (Helmut); D. Gadzicki (Dorothea); S. Preisler-Adams (Sabine); K. Kast (Karin); I. Schönbuchner (Ines); T. Caldes (Trinidad); M. de La Hoya (Miguel); K. Aittomäki (Kristiina); H. Nevanlinna (Heli); J. Simard (Jacques); A.B. Spurdle (Amanda); H. Holland (Helene); G. Chenevix-Trench (Georgia); R. Platte (Radka); D.F. Easton (Douglas)

    2010-01-01

    textabstractThe known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10,

  3. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Beesley, Jonathan; McGuffog, Lesley;

    2010-01-01

    The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs650495...

  4. Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers : Implications for Risk Prediction

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Beesley, Jonathan; McGuffog, Lesley; Sinilnikova, Olga M.; Healey, Sue; Neuhausen, Susan L.; Ding, Yuan Chun; Rebbeck, Timothy R.; Weitzel, Jeffrey N.; Lynch, Henry T.; Isaacs, Claudine; Ganz, Patricia A.; Tomlinson, Gail; Olopade, Olufunmilayo I.; Couch, Fergus J.; Wang, Xianshu; Lindor, Noralane M.; Pankratz, Vernon S.; Radice, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Barile, Monica; Viel, Alessandra; Allavena, Anna; Dall'Olio, Valentina; Peterlongo, Paolo; Szabo, Csilla I.; Zikan, Michal; Claes, Kathleen; Poppe, Bruce; Foretova, Lenka; Mai, Phuong L.; Greene, Mark H.; Rennert, Gad; Lejbkowicz, Flavio; Glendon, Gord; Ozcelik, Hilmi; Andrulis, Irene L.; Thomassen, Mads; Gerdes, Anne-Marie; Sunde, Lone; Cruger, Dorthe; Jensen, Uffe Birk; Caligo, Maria; Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Milgrom, Roni; Dubrovsky, Maya; Cohen, Shimrit; Borg, Ake; Jernstroem, Helena; Lindblom, Annika; Rantala, Johanna; Stenmark-Askmalm, Marie; Melin, Beatrice; Nathanson, Kate; Domchek, Susan; Jakubowska, Ania; Lubinski, Jan; Huzarski, Tomasz; Osorio, Ana; Lasa, Adriana; Duran, Mercedes; Tejada, Maria-Isabel; Godino, Javier; Benitez, Javier; Hamann, Ute; Kriege, Mieke; Hoogerbrugge, Nicoline; van der Luijt, Rob B.; van Asperen, Christi J.; Devilee, Peter; Meijers-Heijboer, E. J.; Blok, Marinus J.; Aalfs, Cora M.; Hogervorst, Frans; Rookus, Matti; Cook, Margaret; Oliver, Clare; Frost, Debra; Conroy, Don; Evans, D. Gareth; Lalloo, Fiona; Pichert, Gabriella; Davidson, Rosemarie; Cole, Trevor; Cook, Jackie; Paterson, Joan; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary E.; Walker, Lisa; Kennedy, M. John; Dorkins, Huw; Peock, Susan; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; de Pauw, Antoine; Mazoyer, Sylvie; Bonadona, Valerie; Lasset, Christine; Dreyfus, Helene; Leroux, Dominique; Hardouin, Agnes; Berthet, Pascaline; Faivre, Laurence; Loustalot, Catherine; Noguchi, Tetsuro; Sobol, Hagay; Rouleau, Etienne; Nogues, Catherine; Frenay, Marc; Venat-Bouvet, Laurence; Hopper, John L.; Daly, Mary B.; Terry, Mary B.; John, Esther M.; Buys, Saundra S.; Yassin, Yosuf; Miron, Alexander; Goldgar, David; Singer, Christian F.; Dressler, Anne Catharina; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Hansen, Thomas V. O.; Jnson, Lars; Agnarsson, Bjarni A.; Kirchhoff, Tomas; Offit, Kenneth; Devlin, Vincent; Dutra-Clarke, Ana; Piedmonte, Marion; Rodriguez, Gustavo C.; Wakeley, Katie; Boggess, John F.; Basil, Jack; Schwartz, Peter E.; Blank, Stephanie V.; Toland, Amanda Ewart; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny; Tihomirova, Laima; Blanco, Ignacio; Lazaro, Conxi; Ramus, Susan J.; Sucheston, Lara; Karlan, Beth Y.; Gross, Jenny; Schmutzler, Rita; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Lochmann, Magdalena; Arnold, Norbert; Heidemann, Simone; Varon-Mateeva, Raymonda; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Dorothea; Preisler-Adams, Sabine; Kast, Karin; Schoenbuchner, Ines; Caldes, Trinidad; de la Hoya, Miguel; Aittomaeki, Kristiina; Nevanlinna, Heli; Simard, Jacques; Spurdle, Amanda B.; Holland, Helene; Chen, Xiaoqing; Platte, Radka; Chenevix-Trench, Georgia; Easton, Douglas F.

    2010-01-01

    The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 i

  5. Construction of label-free electrochemical immunosensor on mesoporous carbon nanospheres for breast cancer susceptibility gene

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Haixia; Zhang, Yong; Wu, Dan; Ma, Hongmin; Li, Xiaojing; Li, Yan; Wang, Huan; Li, He; Du, Bin [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin, E-mail: sdjndxwq@163.com [Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2013-04-03

    Highlights: ► The immunosensor is designed to determine breast cancer susceptibility gene. ► Mesoporous carbon nanospheres (MCN) have great adsorption capacity. ► MCN could enhance the electroactivity of toluidine blue. ► Room temperature ionic liquid should increase the electrochemical signal. -- Abstract: In this contribution, mesoporous carbon nanospheres (MCN) were used to fabricate a label-free electrochemical immunosensor for breast cancer susceptibility gene (BRCAl). The detection platform was constructed by conjugation of anti-BRCA1 on glassy carbon electrodes which were modified by mesoporous carbon nanospheres–toluidine blue nanocomposite (MCN–TB)/room temperature ionic-liquid (RTIL) composited film. TB was adsorbed onto MCN and acted as a redox probe. The electroactivity of TB was greatly enhanced in the presence of MCN. The good conductivity of MCN and BMIM·BF{sub 4} could promote the electron transfer and thus enhance the detection sensitivity. Moreover, the large surface area of MCN and the protein-binding properties of BMIM·BF{sub 4} could greatly increase the antibody loading. The specific antibody–antigen immunoreaction on the electrode surface resulted in a decrease of amperometric signal of the electrode. Under optimized conditions, the amperometric signal decreased linearly with BRCAl concentration in the range of 0.01–15 ng mL{sup −1} with a low detection limit of 3.97 pg mL{sup −1}. The immunosensor exhibits high sensitivity, good selectivity and stability.

  6. Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility

    DEFF Research Database (Denmark)

    Permuth, Jennifer B; Reid, Brett; Earp, Madalene

    2016-01-01

    RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single nucleo......, including rs1127313 (G/A), a SNP in the 3' untranslated region. In summary, germline variation involving RNA editing genes may influence EOC susceptibility, warranting further investigation of inherited and acquired alterations affecting RNA editing.......RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single...... nucleotide polymorphisms (SNPs) in ADAR genes modify EOC susceptibility, potentially by altering ovarian tissue gene expression. Using directly genotyped and imputed data from 10,891 invasive EOC cases and 21,693 controls, we evaluated the associations of 5,303 SNPs in ADAD1, ADAR, ADAR2, ADAR3, and SND1...

  7. Bacteriological profile and antibiotic susceptibility patterns of clinical isolates in a tertiary care cancer center

    Directory of Open Access Journals (Sweden)

    Vivek Bhat

    2016-01-01

    Full Text Available Introduction: This increased risk of bacterial infections in the cancer patient is further compounded by the rising trends of antibiotic resistance in commonly implicated organisms. In the Indian setting this is particularly true in case of Gram negative bacilli such as Escherichia coli, Klebsiella pneumoniae and Acinetobacter spp. Increasing resistance among Gram positive organisms is also a matter of concern. The aim of this study was to document the common organisms isolated from bacterial infections in cancer patients and describe their antibiotic susceptibilities. Methods: We conducted a 6 month study of all isolates from blood, urine, skin/soft tissue and respiratory samples of patients received from medical and surgical oncology units in our hospital. All samples were processed as per standard microbiology laboratory operating procedures. Isolates were identified to species level and susceptibility tests were performed as per Clinical Laboratory Standards Institute (CLSI guidelines -2012. Results: A total of 285 specimens from medical oncology (114 and surgical oncology services (171 were cultured. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus and Acinetobacter spp. were most commonly encountered. More than half of the Acinetobacter strains were resistant to carbapenems. Resistance in Klebsiella pneumoniae to cephalosporins, fluoroquinolones and carbapenems was >50%. Of the Staphylococcus aureus isolates 41.67% were methicillin resistant. Conclusion: There is, in general, a high level of antibiotic resistance among gram negative bacilli, particularly E. coli, Klebsiella pneumoniae and Acinetobacter spp. Resistance among Gram positives is not as acute, although the MRSA incidence is increasing.

  8. Seeking genetic susceptibility variants for colorectal cancer: the EPICOLON consortium experience.

    Science.gov (United States)

    Castellví-Bel, Sergi; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Abulí, Anna; Muñoz, Jenifer; Bessa, Xavier; Brea-Fernández, Alejandro; Ferro, Marta; Giráldez, María Dolores; Xicola, Rosa M; Llor, Xavier; Jover, Rodrigo; Piqué, Josep M; Andreu, Montserrat; Castells, Antoni; Carracedo, Angel

    2012-03-01

    The EPICOLON consortium was initiated in 1999 by the Gastrointestinal Oncology Group of the Spanish Gastroenterology Association. It recruited consecutive, unselected, population-based colorectal cancer (CRC) cases and control subjects matched by age and gender without personal or familial history of cancer all over Spain with the main goal of gaining knowledge in Lynch syndrome and familial CRC. This epidemiological, prospective and multicentre study collected extensive clinical data and biological samples from ∼2000 CRC cases and 2000 controls in Phases 1 and 2 involving 25 and 14 participating hospitals, respectively. Genetic susceptibility projects in EPICOLON have included candidate-gene approaches evaluating single-nucleotide polymorphisms/genes from the historical category (linked to CRC risk by previous studies), from human syntenic CRC susceptibility regions identified in mouse, from the CRC carcinogenesis-related pathways Wnt and BMP, from regions 9q22 and 3q22 with positive linkage in CRC families, and from the mucin gene family. This consortium has also participated actively in the identification 5 of the 16 common, low-penetrance CRC genetic variants identified so far by genome-wide association studies. Finishing their own pangenomic study and performing whole-exome sequencing in selected CRC samples are among EPICOLON future research prospects.

  9. MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer.

    Science.gov (United States)

    Nasti, Tahseen H; Timares, Laura

    2015-01-01

    Skin pigmentation is due to the accumulation of two types of melanin granules in the keratinocytes. Besides being the most potent blocker of ultraviolet radiation, the role of melanin in photoprotection is complex. This is because one type of melanin called eumelanin is UV absorbent, whereas the other, pheomelanin, is photounstable and may even promote carcinogenesis. Skin hyperpigmentation may be caused by stress or exposure to sunlight, which stimulates the release of α-melanocyte stimulating hormone (α-MSH) from damaged keratinocytes. Melanocortin 1 receptor (MC1R) is a key signaling molecule on melanocytes that responds to α-MSH by inducing expression of enzymes responsible for eumelanin synthesis. Persons with red hair have mutations in the MC1R causing its inactivation; this leads to a paucity of eumelanin production and makes red-heads more susceptible to skin cancer. Apart from its effects on melanin production, the α-MSH/MC1R signaling is also a potent anti-inflammatory pathway and has been shown to promote antimelanoma immunity. This review will focus on the role of MC1R in terms of its regulation of melanogenesis and influence on the immune system with respect to skin cancer susceptibility.

  10. Risk perceptions, worry, and attitudes about genetic testing for breast cancer susceptibility.

    Science.gov (United States)

    Cameron, Linda D; Reeve, Jeanne

    2006-01-01

    This study assessed the unique associations of risk perceptions and worry with attitudes about genetic testing for breast cancer susceptibility. Women (general practitioner clinic attenders, university students, and first-degree relatives of breast cancer survivors; N = 303) read information about genetic testing and completed measures assessing perceived cancer risk, cancer worry, and genetic testing attitudes and beliefs. Worry was associated with greater interest in genetic testing, stronger beliefs that testing has detrimental emotional consequences, and positive beliefs about benefits of testing and risk-reducing surgeries. Perceived risk was unrelated to interest and associated with more skeptical beliefs about emotional consequences and benefits of testing and risk-reducing surgeries. At low worry levels, testing interest increased with more positive beliefs about testing benefits; at high worry levels, interest was high regardless of benefits beliefs. The findings support Leventhal's Common-Sense Model of self-regulation delineating interactive influences of risk-related cognitions and emotions on information processing and behavior.

  11. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females

    Directory of Open Access Journals (Sweden)

    Alaa Mohammed Ali

    2016-01-01

    Full Text Available We investigated three common polymorphisms (SNPs in the XRCC3 gene (rs861539, rs1799794, and rs1799796 in 143 Saudi females suffering from breast cancer (median age = 51.4 years and 145 age matched normal healthy controls. DNA was extracted from whole blood and genotyping was conducted using PCR-RFLP. rs1799794 showed significant association, where AA and AA+AG occurred at a significantly higher frequency in the cancer patients compared to the control group (OR: 28.1; 95% CI: 3.76–21.12; χ2: 22.82; pT and rs1799796 A>G did not show a significant difference when the results in the patients and controls were compared. However, the frequency of rs1799796 differed significantly in patients with different age of diagnosis, tumor grade, and ER and HER2 status. The wild type A allele occurred at a higher frequency in the ER− and HER2− group. Our results among Saudis suggest that some variations in XRCC3 may contribute to breast cancer susceptibility. In conclusion, the results obtained during this study suggest that rs1799794 in XRCC3 shows strong association with breast cancer development in Saudi females.

  12. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  13. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.

    Science.gov (United States)

    Hsu, Yi-Hsiang; Zillikens, M Carola; Wilson, Scott G; Farber, Charles R; Demissie, Serkalem; Soranzo, Nicole; Bianchi, Estelle N; Grundberg, Elin; Liang, Liming; Richards, J Brent; Estrada, Karol; Zhou, Yanhua; van Nas, Atila; Moffatt, Miriam F; Zhai, Guangju; Hofman, Albert; van Meurs, Joyce B; Pols, Huibert A P; Price, Roger I; Nilsson, Olle; Pastinen, Tomi; Cupples, L Adrienne; Lusis, Aldons J; Schadt, Eric E; Ferrari, Serge; Uitterlinden, André G; Rivadeneira, Fernando; Spector, Timothy D; Karasik, David; Kiel, Douglas P

    2010-06-10

    Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8)), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13); SOX6, p = 6.4x10(-10)) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the

  14. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Hsu

    2010-06-01

    Full Text Available Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD at the lumbar spine (LS and femoral neck (FN, as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW. A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8, 2q11.2 (TBC1D8, and 18q11.2 (OSBPL1A, and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13; SOX6, p = 6.4x10(-10 associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant

  15. A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in European American and African American families with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Wilson Alexander F

    2010-06-01

    Full Text Available Abstract Background The inability of aspirin (ASA to adequately suppress platelet aggregation is associated with future risk of coronary artery disease (CAD. Heritability studies of agonist-induced platelet function phenotypes suggest that genetic variation may be responsible for ASA responsiveness. In this study, we leverage independent information from genome-wide linkage and association data to determine loci controlling platelet phenotypes before and after treatment with ASA. Methods Clinical data on 37 agonist-induced platelet function phenotypes were evaluated before and after a 2-week trial of ASA (81 mg/day in 1231 European American and 846 African American healthy subjects with a family history of premature CAD. Principal component analysis was performed to minimize the number of independent factors underlying the covariance of these various phenotypes. Multi-point sib-pair based linkage analysis was performed using a microsatellite marker set, and single-SNP association tests were performed using markers from the Illumina 1 M genotyping chip from deCODE Genetics, Inc. All analyses were performed separately within each ethnic group. Results Several genomic regions appear to be linked to ASA response factors: a 10 cM region in African Americans on chromosome 5q11.2 had several STRs with suggestive (p-value -4 and significant (p-value -5 linkage to post aspirin platelet response to ADP, and ten additional factors had suggestive evidence for linkage (p-value -4 to thirteen genomic regions. All but one of these factors were aspirin response variables. While the strength of genome-wide SNP association signals for factors showing evidence for linkage is limited, especially at the strict thresholds of genome-wide criteria (N = 9 SNPs for 11 factors, more signals were considered significant when the association signal was weighted by evidence for linkage (N = 30 SNPs. Conclusions Our study supports the hypothesis that platelet phenotypes in

  16. Association of Environmental Arsenic Exposure, Genetic Polymorphisms of Susceptible Genes, and Skin Cancers in Taiwan

    Directory of Open Access Journals (Sweden)

    Ling-I Hsu

    2015-01-01

    Full Text Available Deficiency in the capability of xenobiotic detoxification and arsenic methylation may be correlated with individual susceptibility to arsenic-related skin cancers. We hypothesized that glutathione S-transferase (GST M1, T1, and P1, reactive oxygen species (ROS related metabolic genes (NQO1, EPHX1, and HO-1, and DNA repair genes (XRCC1, XPD, hOGG1, and ATM together may play a role in arsenic-induced skin carcinogenesis. We conducted a case-control study consisting of 70 pathologically confirmed skin cancer patients and 210 age and gender matched participants with genotyping of 12 selected polymorphisms. The skin cancer risks were estimated by odds ratio (OR and 95% confidence interval (CI using logistic regression. EPHX1 Tyr113His, XPD C156A, and GSTT1 null genotypes were associated with skin cancer risk (OR = 2.99, 95% CI = 1.01–8.83; OR = 2.04, 95% CI = 0.99–4.27; OR = 1.74, 95% CI = 1.00–3.02, resp.. However, none of these polymorphisms showed significant association after considering arsenic exposure status. Individuals carrying three risk polymorphisms of EPHX1 Tyr113His, XPD C156A, and GSTs presented a 400% increased skin cancer risk when compared to those with less than or equal to one polymorphism. In conclusion, GSTs, EPHX1, and XPD are potential genetic factors for arsenic-induced skin cancers. The roles of these genes for arsenic-induced skin carcinogenesis need to be further evaluated.

  17. Gene-centric meta-analyses for central adiposity traits in up to 57 412 individuals of European descent confirm known loci and reveal several novel associations

    NARCIS (Netherlands)

    Yoneyama, Sachiko; Guo, Yiran; Lanktree, Matthew B.; Barnes, Michael R.; Elbers, Clara C.; Karczewski, Konrad J.; Padmanabhan, Sandosh; Bauer, Florianne; Baumert, Jens; Beitelshees, Amber; Berenson, Gerald S.; Boer, Jolanda M. A.; Burke, Gregory; Cade, Brian; Chen, Wei; Cooper-Dehoff, Rhonda M.; Gaunt, Tom R.; Gieger, Christian; Gong, Yan; Gorski, Mathias; Heard-Costa, Nancy; Johnson, Toby; Lamonte, Michael J.; Mcdonough, Caitrin; Monda, Keri L.; Onland-Moret, N. Charlotte; Nelson, Christopher P.; O'Connell, Jeffrey R.; Ordovas, Jose; Peter, Inga; Peters, Annette; Shaffer, Jonathan; Shen, Haiqinq; Smith, Erin; Speilotes, Liz; Thomas, Fridtjof; Thorand, Barbara; Verschuren, W. M. Monique; Anand, Sonia S.; Dominiczak, Anna; Davidson, Karina W.; Hegele, Robert A.; Heid, Iris; Hofker, Marten H.; Huggins, Gordon S.; Illig, Thomas; Johnson, Julie A.; Kirkland, Susan; Koenig, Wolfgang; Langaee, Taimour Y.; Mccaffery, Jeanne; Melander, Olle; Mitchell, Braxton D.; Munroe, Patricia; Murray, Sarah S.; Papanicolaou, George; Redline, Susan; Reilly, Muredach; Samani, Nilesh J.; Schork, Nicholas J.; Van der Schouw, Yvonne T.; Shimbo, Daichi; Shuldiner, Alan R.; Tobin, Martin D.; Wijmenga, Cisca; Yusuf, Salim; Hakonarson, Hakon; Lange, Leslie A.; Demerath, Ellen W.; Fox, Caroline S.; North, Kari E.; Reiner, Alex P.; Keating, Brendan; Taylor, Kira C.

    2014-01-01

    Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to d

  18. Genetic susceptibility and environmental factors of esophageal cancer in Xi'an

    Institute of Scientific and Technical Information of China (English)

    An-Hui Wang; Chang-Sheng Sun; Liang-Shou Li; Jiu-Yi Huang; Qing-Shu Chen; De-Zhong Xu

    2004-01-01

    AIM: To analyse the role of genetic susceptibility and environmental factors in the process of esophageal cancer (EC) formation in Xi'an, China.METHODS: A hospital based case-control study, combined with molecular epidemiological method, was carried out. A total of 127 EC cases and 101 controls were interviewed with questionnaires containing demographic items, habit of tobacco smoking, alcohol drinking, and family history of EC.Polymorphism of CYP1A1 and GSTM1 of 127 EC cases and 101 controls were detected by PCR method. The interactions between genetic susceptibility and environmental factors were also discussed.RESULTS: Tobacco smoking, alcohol drinking and a family history of EC were risk factors for EC with an OR of 2.04(95% CI 1.15-3.60), 3.45(95% CI 1.74-6.91), 3.14 (95%CI 1.28-7.94), respectively. Individuals carrying CYP1A1 Val/Valgenotype compared to those with CYP1A1 Ile/Ile genotype had an increased risk for EC (OR 3.35, 95% CI 1.49-7.61). GSTM1 deletion genotype was a risk factor for EC (OR1.81, 95% CI 1.03-3.18). Gene-environment interaction analysis showed that CYP1A1 Val/Valgenotype, GSTM1 deletion genotype had synergetic interactions with tobacco smoking, alcohol drinking and family history of EC.CONCLUSION: Tobacco smoking, alcohol drinking and a family history of EC are risk factors for EC. CYP1A1 Val/'Va/and GSTM1 deletion genotypes are genetic susceptibility biomarkers for EC. There are synergic interactions between genetic susceptibility and environmental factors.

  19. GSTT1 Null Genotype Significantly Increases the Susceptibility to Urinary System Cancer: Evidences from 63,876 Subjects.

    Science.gov (United States)

    Wang, Ying; He, Jing; Ma, Tian-Jiao; Lei, Wei; Li, Feng; Shen, Han; Shen, Zhen-Ya

    2016-01-01

    GSTT1 gene plays an important role in detoxification and clearance of reactive oxygen species(ROS). A null variant in this gene has been demonstrated to confer cancer susceptibility. Although many studies have demonstrated the association between GSTT1 null polymorphism and urinary system cancer susceptibility, several publications reported opposite conclusions. For better understanding the effects of this polymorphism on the risk of urinary system cancer, a updated meta-analysis was performed with a total of 26,666 cases and 37,210 controls extracted from 117 studies, by following the latest meta-analysis guidelines (PRISMA). The results suggested that the GSTT1 null genotype was significantly associated with an increased risk of urinary system cancer (OR=1.13, 95%CI=1.05-1.22). Furthermore, stratified analyses by the type of cancer, ethnicity, source of control and quality score presented a significantly increased risk associated with GSTT1 null genotype in bladder and prostate cancer subgroup, Caucasians and Indians subgroup, population-based(PB) subgroup, medium quality and low quality subgroup. Overall, our meta-analysis suggested that GSTT1 null genotype is a potential cancer susceptibility variant. Well-designed and large-cohort studies are needed to confirm the association between GSTT1 null genotype and urinary system cancer risk.

  20. GSTT1 Null Genotype Significantly Increases the Susceptibility to Urinary System Cancer: Evidences from 63,876 Subjects

    Science.gov (United States)

    Wang, Ying; He, Jing; Ma, Tian-Jiao; Lei, Wei; Li, Feng; Shen, Han; Shen, Zhen-Ya

    2016-01-01

    GSTT1 gene plays an important role in detoxification and clearance of reactive oxygen species(ROS). A null variant in this gene has been demonstrated to confer cancer susceptibility. Although many studies have demonstrated the association between GSTT1 null polymorphism and urinary system cancer susceptibility, several publications reported opposite conclusions. For better understanding the effects of this polymorphism on the risk of urinary system cancer, a updated meta-analysis was performed with a total of 26,666 cases and 37,210 controls extracted from 117 studies, by following the latest meta-analysis guidelines (PRISMA). The results suggested that the GSTT1 null genotype was significantly associated with an increased risk of urinary system cancer (OR=1.13, 95%CI=1.05-1.22). Furthermore, stratified analyses by the type of cancer, ethnicity, source of control and quality score presented a significantly increased risk associated with GSTT1 null genotype in bladder and prostate cancer subgroup, Caucasians and Indians subgroup, population-based(PB) subgroup, medium quality and low quality subgroup. Overall, our meta-analysis suggested that GSTT1 null genotype is a potential cancer susceptibility variant. Well-designed and large-cohort studies are needed to confirm the association between GSTT1 null genotype and urinary system cancer risk.

  1. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Science.gov (United States)

    Milne, Roger L; Burwinkel, Barbara; Michailidou, Kyriaki; Arias-Perez, Jose-Ignacio; Zamora, M Pilar; Menéndez-Rodríguez, Primitiva; Hardisson, David; Mendiola, Marta; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Dennis, Joe; Wang, Qin; Bolla, Manjeet K; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk; Ko, Yon-Dschun; Brauch, Hiltrud; Hamann, Ute; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Li, Jingmei; Brand, Judith S; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lambrechts, Diether; Peuteman, Gilian; Christiaens, Marie-Rose; Smeets, Ann; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katazyna; Hartman, Mikael; Hui, Miao; Yen Lim, Wei; Wan Chan, Ching; Marme, Federick; Yang, Rongxi; Bugert, Peter; Lindblom, Annika; Margolin, Sara; García-Closas, Montserrat; Chanock, Stephen J; Lissowska, Jolanta; Figueroa, Jonine D; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Hooning, Maartje J; Kriege, Mieke; van den Ouweland, Ans M W; Koppert, Linetta B; Fletcher, Olivia; Johnson, Nichola; dos-Santos-Silva, Isabel; Peto, Julian; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha J; Long, Jirong; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Cornelissen, Sten; Braaf, Linde; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Simard, Jacques; Dumont, Martine; Goldberg, Mark S; Labrèche, France; Fasching, Peter A; Hein, Alexander; Ekici, Arif B; Beckmann, Matthias W; Radice, Paolo; Peterlongo, Paolo; Azzollini, Jacopo; Barile, Monica; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Hopper, John L; Schmidt, Daniel F; Makalic, Enes; Southey, Melissa C; Hwang Teo, Soo; Har Yip, Cheng; Sivanandan, Kavitta; Tay, Wan-Ting; Shen, Chen-Yang; Hsiung, Chia-Ni; Yu, Jyh-Cherng; Hou, Ming-Feng; Guénel, Pascal; Truong, Therese; Sanchez, Marie; Mulot, Claire; Blot, William; Cai, Qiuyin; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Bogdanova, Natalia; Dörk, Thilo; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Zhang, Ben; Couch, Fergus J; Toland, Amanda E; Yannoukakos, Drakoulis; Sangrajrang, Suleeporn; McKay, James; Wang, Xianshu; Olson, Janet E; Vachon, Celine; Purrington, Kristen; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Ahmed, Shahana; Shah, Mitul; Pharoah, Paul D P; Hall, Per; Giles, Graham G; Benítez, Javier; Dunning, Alison M; Chenevix-Trench, Georgia; Easton, Douglas F

    2014-11-15

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.

  2. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium

    Science.gov (United States)

    Milne, Roger L.; Burwinkel, Barbara; Michailidou, Kyriaki; Arias-Perez, Jose-Ignacio; Zamora, M. Pilar; Menéndez-Rodríguez, Primitiva; Hardisson, David; Mendiola, Marta; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Dennis, Joe; Wang, Qin; Bolla, Manjeet K.; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk; Ko, Yon-Dschun; Brauch, Hiltrud; Hamann, Ute; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Tchatchou, Sandrine; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Li, Jingmei; Brand, Judith S.; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Lambrechts, Diether; Peuteman, Gilian; Christiaens, Marie-Rose; Smeets, Ann; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katazyna; Hartman, Mikael; Hui, Miao; Yen Lim, Wei; Wan Chan, Ching; Marme, Federick; Yang, Rongxi; Bugert, Peter; Lindblom, Annika; Margolin, Sara; García-Closas, Montserrat; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik; Hooning, Maartje J.; Kriege, Mieke; van den Ouweland, Ans M.W.; Koppert, Linetta B.; Fletcher, Olivia; Johnson, Nichola; dos-Santos-Silva, Isabel; Peto, Julian; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha J.; Long, Jirong; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Cox, Angela; Cross, Simon S.; Reed, Malcolm W.R.; Schmidt, Marjanka K.; Broeks, Annegien; Cornelissen, Sten; Braaf, Linde; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Noh, Dong-Young; Simard, Jacques; Dumont, Martine; Goldberg, Mark S.; Labrèche, France; Fasching, Peter A.; Hein, Alexander; Ekici, Arif B.; Beckmann, Matthias W.; Radice, Paolo; Peterlongo, Paolo; Azzollini, Jacopo; Barile, Monica; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Miller, Nicola; Hopper, John L.; Schmidt, Daniel F.; Makalic, Enes; Southey, Melissa C.; Hwang Teo, Soo; Har Yip, Cheng; Sivanandan, Kavitta; Tay, Wan-Ting; Shen, Chen-Yang; Hsiung, Chia-Ni; Yu, Jyh-Cherng; Hou, Ming-Feng; Guénel, Pascal; Truong, Therese; Sanchez, Marie; Mulot, Claire; Blot, William; Cai, Qiuyin; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Wu, Anna H.; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O.; Bogdanova, Natalia; Dörk, Thilo; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Zhang, Ben; Couch, Fergus J.; Toland, Amanda E.; Yannoukakos, Drakoulis; Sangrajrang, Suleeporn; McKay, James; Wang, Xianshu; Olson, Janet E.; Vachon, Celine; Purrington, Kristen; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Devilee, Peter; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Czene, Kamila; Eriksson, Mikael; Humphreys, Keith; Darabi, Hatef; Ahmed, Shahana; Shah, Mitul; Pharoah, Paul D.P.; Hall, Per; Giles, Graham G.; Benítez, Javier; Dunning, Alison M.; Chenevix-Trench, Georgia; Easton, Douglas F.; Berchuck, Andrew; Eeles, Rosalind A.; Olama, Ali Amin Al; Kote-Jarai, Zsofia; Benlloch, Sara; Antoniou, Antonis; McGuffog, Lesley; Offit, Ken; Lee, Andrew; Dicks, Ed; Luccarini, Craig; Tessier, Daniel C.; Bacot, Francois; Vincent, Daniel; LaBoissière, Sylvie; Robidoux, Frederic; Nielsen, Sune F.; Cunningham, Julie M.; Windebank, Sharon A.; Hilker, Christopher A.; Meyer, Jeffrey; Angelakos, Maggie; Maskiell, Judi; van der Schoot, Ellen; Rutgers, Emiel; Verhoef, Senno; Hogervorst, Frans; Boonyawongviroj, Prat; Siriwanarungsan, Pornthep; Schrauder, Michael; Rübner, Matthias; Oeser, Sonja; Landrith, Silke; Williams, Eileen; Ryder-Mills, Elaine; Sargus, Kara; McInerney, Niall; Colleran, Gabrielle; Rowan, Andrew; Jones, Angela; Sohn, Christof; Schneeweiß, Andeas; Bugert, Peter; Álvarez, Núria; Lacey, James; Wang, Sophia; Ma, Huiyan; Lu, Yani; Deapen, Dennis; Pinder, Rich; Lee, Eunjung; Schumacher, Fred; Horn-Ross, Pam; Reynolds, Peggy; Nelson, David; Ziegler, Hartwig; Wolf, Sonja; Hermann, Volker; Lo, Wing-Yee; Justenhoven, Christina; Baisch, Christian; Fischer, Hans-Peter; Brüning, Thomas; Pesch, Beate; Rabstein, Sylvia; Lotz, Anne; Harth, Volker; Heikkinen, Tuomas; Erkkilä, Irja; Aaltonen, Kirsimari; von Smitten, Karl; Antonenkova, Natalia; Hillemanns, Peter; Christiansen, Hans; Myöhänen, Eija; Kemiläinen, Helena; Thorne, Heather; Niedermayr, Eveline; Bowtell, D; Chenevix-Trench, G; deFazio, A; Gertig, D; Green, A; Webb, P; Green, A.; Parsons, P.; Hayward, N.; Webb, P.; Whiteman, D.; Fung, Annie; Yashiki, June; Peuteman, Gilian; Smeets, Dominiek; Brussel, Thomas Van; Corthouts, Kathleen; Obi, Nadia; Heinz, Judith; Behrens, Sabine; Eilber, Ursula; Celik, Muhabbet; Olchers, Til; Manoukian, Siranoush; Peissel, Bernard; Scuvera, Giulietta; Zaffaroni, Daniela; Bonanni, Bernardo; Feroce, Irene; Maniscalco, Angela; Rossi, Alessandra; Bernard, Loris; Tranchant, Martine; Valois, Marie-France; Turgeon, Annie; Heguy, Lea; Sze Yee, Phuah; Kang, Peter; Nee, Kang In; Mariapun, Shivaani; Sook-Yee, Yoon; Lee, Daphne; Ching, Teh Yew; Taib, Nur Aishah Mohd; Otsukka, Meeri; Mononen, Kari; Selander, Teresa; Weerasooriya, Nayana; staff, OFBCR; Krol-Warmerdam, E.; Molenaar, J.; Blom, J.; Brinton, Louise; Szeszenia-Dabrowska, Neonila; Peplonska, Beata; Zatonski, Witold; Chao, Pei; Stagner, Michael; Bos, Petra; Blom, Jannet; Crepin, Ellen; Nieuwlaat, Anja; Heemskerk, Annette; Higham, Sue; Cross, Simon; Cramp, Helen; Connley, Dan; Balasubramanian, Sabapathy; Brock, Ian; Luccarini, Craig; Conroy, Don; Baynes, Caroline; Chua, Kimberley

    2014-01-01

    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04–1.10, P = 2.9 × 10−6], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03–1.07, P = 1.7 × 10−6) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07–1.12, P = 5.1 × 10−17). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05–1.10, P = 1.0 × 10−8); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04–1.07, P = 2.0 × 10−10). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act

  3. Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification

    Science.gov (United States)

    Chen, Liming; Jenjaroenpun, Piroon; Pillai, Andrea Mun Ching; Ivshina, Anna V.; Ow, Ghim Siong; Efthimios, Motakis; Zhiqun, Tang; Lee, Song-Choon; Rogers, Keith; Ward, Jerrold M.; Mori, Seiichi; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.; Ban, Kenneth Hon-Kim; Kuznetsov, Vladimir A.; Thiery, Jean Paul

    2017-01-01

    Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers. PMID:28251929

  4. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD.

    Directory of Open Access Journals (Sweden)

    Nancy L Saccone

    2010-08-01

    Full Text Available Recently, genetic association findings for nicotine dependence, smoking behavior, and smoking-related diseases converged to implicate the chromosome 15q25.1 region, which includes the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit genes. In particular, association with the nonsynonymous CHRNA5 SNP rs16969968 and correlates has been replicated in several independent studies. Extensive genotyping of this region has suggested additional statistically distinct signals for nicotine dependence, tagged by rs578776 and rs588765. One goal of the Consortium for the Genetic Analysis of Smoking Phenotypes (CGASP is to elucidate the associations among these markers and dichotomous smoking quantity (heavy versus light smoking, lung cancer, and chronic obstructive pulmonary disease (COPD. We performed a meta-analysis across 34 datasets of European-ancestry subjects, including 38,617 smokers who were assessed for cigarettes-per-day, 7,700 lung cancer cases and 5,914 lung-cancer-free controls (all smokers, and 2,614 COPD cases and 3,568 COPD-free controls (all smokers. We demonstrate statistically independent associations of rs16969968 and rs588765 with smoking (mutually adjusted p-values<10(-35 and <10(-8 respectively. Because the risk alleles at these loci are negatively correlated, their association with smoking is stronger in the joint model than when each SNP is analyzed alone. Rs578776 also demonstrates association with smoking after adjustment for rs16969968 (p<10(-6. In models adjusting for cigarettes-per-day, we confirm the association between rs16969968 and lung cancer (p<10(-20 and observe a nominally significant association with COPD (p = 0.01; the other loci are not significantly associated with either lung cancer or COPD after adjusting for rs16969968. This study provides strong evidence that multiple statistically distinct loci in this region affect smoking behavior. This study is also the first report of association between rs588765

  5. Association study of prostate cancer susceptibility variants with risks of invasive ovarian, breast, and colorectal cancer

    DEFF Research Database (Denmark)

    Song, H.; Koessler, T.; Ahmed, S.

    2008-01-01

    test of association was a comparison of genotype frequencies between cases and controls, and a test for trend stratified by study where appropriate. Genotype-specific odds ratios (OR) were estimated by logistic regression. SNP rs2660753 (chromosome 3p12) showed evidence of association with ovarian...... cancer [per minor allele OR, 1.19; 95% confidence interval (95% CI), 1.04-1.37; P(trend) = 0.012]. This association was stronger for the serous histologic subtype (OR, 1.29; 95% CI, 1.09-1.53; P = 0.003). SNP rs7931342 (chromosome 11q13) showed some evidence of association with breast cancer (per minor...

  6. Prostate Cancer Susceptibility in Men of African Ancestry at 8q24.

    Science.gov (United States)

    Han, Ying; Rand, Kristin A; Hazelett, Dennis J; Ingles, Sue A; Kittles, Rick A; Strom, Sara S; Rybicki, Benjamin A; Nemesure, Barbara; Isaacs, William B; Stanford, Janet L; Zheng, Wei; Schumacher, Fredrick R; Berndt, Sonja I; Wang, Zhaoming; Xu, Jianfeng; Rohland, Nadin; Reich, David; Tandon, Arti; Pasaniuc, Bogdan; Allen, Alex; Quinque, Dominique; Mallick, Swapan; Notani, Dimple; Rosenfeld, Michael G; Jayani, Ranveer Singh; Kolb, Suzanne; Gapstur, Susan M; Stevens, Victoria L; Pettaway, Curtis A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; John, Esther M; Murphy, Adam B; Signorello, Lisa B; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anslem J M; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Zheng, S Lilly; Witte, John S; Casey, Graham; Lubwama, Alex; Pooler, Loreall C; Sheng, Xin; Coetzee, Gerhard A; Cook, Michael B; Chanock, Stephen J; Stram, Daniel O; Watya, Stephen; Blot, William J; Conti, David V; Henderson, Brian E; Haiman, Christopher A

    2016-07-01

    The 8q24 region harbors multiple risk variants for distinct cancers, including >8 for prostate cancer. In this study, we conducted fine mapping of the 8q24 risk region (127.8-128.8Mb) in search of novel associations with common and rare variation in 4853 prostate cancer case patients and 4678 control subjects of African ancestry. All statistical tests were two-sided. We identified three independent associations at P values of less than 5.00×10(-8), all of which were replicated in studies from Ghana and Uganda (combined sample = 5869 case patients, 5615 control subjects; rs114798100: risk allele frequency [RAF] = 0.04, per-allele odds ratio [OR] = 2.31, 95% confidence interval [CI] = 2.04 to 2.61, P = 2.38×10(-40); rs72725879: RAF = 0.33, OR = 1.37, 95% CI = 1.30 to 1.45, P = 3.04×10(-27); and rs111906932: RAF = 0.03, OR = 1.79, 95% CI = 1.53 to 2.08, P = 1.39×10(-13)). Risk variants rs114798100 and rs111906923 are only found in men of African ancestry, with rs111906923 representing a novel association signal. The three variants are located within or near a number of prostate cancer-associated long noncoding RNAs (lncRNAs), including PRNCR1, PCAT1, and PCAT2. These findings highlight ancestry-specific risk variation and implicate prostate-specific lncRNAs at the 8q24 prostate cancer susceptibility region.

  7. Interactions between environmental factors and melatonin receptor type 1A polymorphism in relation to oral cancer susceptibility and clinicopathologic development.

    Directory of Open Access Journals (Sweden)

    Feng-Yan Lin

    Full Text Available The purpose of this study was to explore the combined effect of melatonin receptor type 1A (MTNR1A gene polymorphisms and exposure to environmental carcinogens on the susceptibility and clinicopathological characteristics of oral cancer.Three polymorphisms of the MTNR1A gene from 618 patients with oral cancer and 560 non-cancer controls were analyzed by real-time polymerase chain reaction (PCR. The CTA haplotype of the studied MTNR1A polymorphisms (rs2119882, rs13140012, rs6553010 was related to a higher risk of oral cancer. Moreover, MTNR1A gene polymorphisms exhibited synergistic effects of environmental factors (betel quid and tobacco use on the susceptibility of oral cancer. Finally, oral-cancer patients with betel quid-chewing habit who had T/T allele of MTNR1A rs13140012 were at higher risk for developing an advanced clinical stage and lymph node metastasis.These results support gene-environment interactions of MTNR1A polymorphisms with smoking and betel quid-chewing habits possibly altering oral-cancer susceptibility and metastasis.

  8. Known susceptibility SNPs for sporadic prostate cancer show a similar association with "hereditary" prostate cancer

    NARCIS (Netherlands)

    Cremers, R.G.H.M.; Galesloot, T.E.; Aben, K.K.H.; Oort, I.M. van; Vasen, H.F.A.; Vermeulen, S.; Kiemeney, L.A.L.M.

    2015-01-01

    BACKGROUND: More than 70 single nucleotide polymorphisms (SNPs) have been reported to be associated with prostate cancer (PC) risk; these were mainly identified in the general population with predominantly sporadic PC (SPC). Previous studies have suggested similar associations between a selection of

  9. Bioinformatics Analysis for Coding SNPs of the HLADQA1 Gene Involved in Susceptibility to Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    Yanyun Li; Jun Xing; Linsheng Zhao; Yanni Li; Yuchuan Wang; Weiming Zhang

    2006-01-01

    OBJECTIVE To analyze coding SNPs of the HLA-DQA1 gene involved in susceptibility for cervical cancer by a bioinformatics approach, and to choose some SNPs that may have an association with cervical cancer.METHODS By a SNPper tool we extracted SNPs from a public database (dbSNP), exporting them in FASTA formats suitable for subsequent use.Then we used PARSESNP as a tool for the analysis of the cSNPs.RESULTS In the cSNPs of the HLA-DQA1 gene, we find that rs9272693and rs9272703, are made up of missense mutations which convert a codon for one amino acid into a codon for a different amino acid. We chose a PSSM Difference >10 as a lower level for the scores of changes predicted to be deldterious.CONCLUSION We used a bioinformatics approach for cSNPs analysis of the HLA-DQA1 gene. This method can select the variants in a conserved region, and give a PSSM Difference score. But the results need to be verified in cervical cancer patients and a control population.

  10. The relationship between polymorphisms of xenobiotic metabolizing enzymes and susceptibility to cancer.

    Science.gov (United States)

    Vineis, Paolo

    2002-12-27

    Although it is well established that highly penetrant genes explain less than 5% of all cancers, it is much less clear what proportion is attributable to low penetrant genes and their interactions with environmental exposures. It was possible to estimate indirectly the fraction of lung and bladder cancers attributable to known genetic polymorphisms, on the basis of an extensive review of the literature, and of the pooled analyses of approximately 15000 healthy subjects in three continents. The emerging picture is one of considerable homogeneity within ethnic group, and heterogeneity among ethnic groups. By combining relative risks and genotype frequencies we have computed theoretical attributable risks for lung and bladder cancers and the CYP1A1 Msp1, CYP1A1 Exon 7, GSTM1 and NAT2*5 genotypes, among Caucasians and among Asians. Such attributable risks are probably overestimated, since: (a) they include the interaction with carcinogenic exposures, in the absence of which genetic polymorphisms per se are not effective; (b) they do not reflect the combination of different genotypes. However, our calculations suggest that attributable risks due to genetic susceptibility are much lower than those related to smoking or other environmental risk factors, and that Asians seem to carry higher risks than Caucasians. In addition, a theoretical approach to the problem of gene-environment interactions at low levels of exposure is offered.

  11. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression

    DEFF Research Database (Denmark)

    Wyszynski, Asaf; Hong, Chi-Chen; Lam, Kristin

    2016-01-01

    Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q...

  12. Meta-analysis of mismatch repair polymorphisms within the cogent consortium for colorectal cancer susceptibility.

    Science.gov (United States)

    Picelli, Simone; Lorenzo Bermejo, Justo; Chang-Claude, Jenny; Hoffmeister, Michael; Fernández-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellví-Bel, Sergi; Naccarati, Alessio; Pardini, Barbara; Vodickova, Ludmila; Müller, Heiko; Talseth-Palmer, Bente A; Stibbard, Geoffrey; Peterlongo, Paolo; Nici, Carmela; Veneroni, Silvia; Li, Li; Casey, Graham; Tenesa, Albert; Farrington, Susan M; Tomlinson, Ian; Moreno, Victor; van Wezel, Tom; Wijnen, Juul; Dunlop, Malcolm; Radice, Paolo; Scott, Rodney J; Vodicka, Pavel; Ruiz-Ponte, Clara; Brenner, Hermann; Buch, Stephan; Völzke, Henry; Hampe, Jochen; Schafmayer, Clemens; Lindblom, Annika

    2013-01-01

    In the last four years, Genome-Wide Association Studies (GWAS) have identified sixteen low-penetrance polymorphisms on fourteen different loci associated with colorectal cancer (CRC). Due to the low risks conferred by known common variants, most of the 35% broad-sense heritability estimated by twin studies remains unexplained. Recently our group performed a case-control study for eight Single Nucleotide Polymorphisms (SNPs) in 4 CRC genes. The present investigation is a follow-up of that study. We have genotyped six SNPs that showed a positive association and carried out a meta-analysis based on eight additional studies comprising in total more than 8000 cases and 6000 controls. The estimated recessive odds ratio for one of the SNPs, rs3219489 (MUTYH Q338H), decreased from 1.52 in the original Swedish study, to 1.18 in the Swedish replication, and to 1.08 in the initial meta-analysis. Since the corresponding summary probability value was 0.06, we decided to retrieve additional information for this polymorphism. The incorporation of six further studies resulted in around 13000 cases and 13000 controls. The newly updated OR was 1.03. The results from the present large, multicenter study illustrate the possibility of decreasing effect sizes with increasing samples sizes. Phenotypic heterogeneity, differential environmental exposures, and population specific linkage disequilibrium patterns may explain the observed difference of genetic effects between Sweden and the other investigated cohorts.

  13. IL-1α -889 C/T polymorphism and cancer susceptibility: a meta-analysis.

    Science.gov (United States)

    Cheng, Daye; Hao, Yiwen; Zhou, Wenling

    2014-01-01

    The -889 C/T polymorphism in the interleukin-1α (IL-1α) gene has been implicated in the risk of cancer, but the results are inconclusive. The present meta-analysis aimed to investigate the association between the -889 C/T polymorphism and cancer risk. A literature search in PubMed, Embase™, Web of Science™, Science Direct(®), SpringerLink, EBSCO, Wanfang, and Chinese National Knowledge Infrastructure (CNKI) databases was carried out to identify studies investigating the association between IL-1α -889 C/T polymorphism and cancer risk. The odds ratio (OR) with 95% confidence interval (CI) were used to assess the strength of association. A total of 20 publications, involving 6,782 cases and 7,767 controls, were included in this meta-analysis. Combined analysis revealed a significant association between -889 C/T polymorphism and cancer risk under an allele model (OR =1.12, 95% CI =1.02-1.24, P=0.02), recessive model (OR =1.34, 95% CI =1.06-1.68, P=0.01), and homozygous comparison (OR =1.38, 95% CI =1.10-1.74, P<0.01). Subgroup analysis by ethnicity showed there was significant association between cancer risk and IL-1α -889C/T polymorphism in Asian populations under a recessive model (OR =2.57, 95% CI =1.11-5.98, P=0.03) and homozygous comparison (OR =2.60, 95% CI =1.12-6.04, P=0.03). Moreover, a subgroup analysis was conducted by source of control, and a statistically increased cancer risk was found in the hospital-based group, under a recessive model (OR =1.62, 95% CI =1.03-2.56, P=0.04) and homozygous comparison (OR =1.67, 95% CI =1.04-2.68, P=0.03). This meta-analysis suggests that IL-1α -889 C/T polymorphism contributes to cancer susceptibility. Further large and well-designed studies are needed to confirm this association.

  14. IL-1α -889 C/T polymorphism and cancer susceptibility: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Cheng D

    2014-11-01

    Full Text Available Daye Cheng, Yiwen Hao, Wenling Zhou Department of Transfusion, First Hospital of China Medical University, Shenyang, People's Republic of China Abstract: The -889 C/T polymorphism in the interleukin-1α (IL-1α gene has been implicated in the risk of cancer, but the results are inconclusive. The present meta-analysis aimed to investigate the association between the -889 C/T polymorphism and cancer risk. A literature search in PubMed, Embase™, Web of Science™, Science Direct®, SpringerLink, EBSCO, Wanfang, and Chinese National Knowledge Infrastructure (CNKI databases was carried out to identify studies investigating the association between IL-1α -889 C/T polymorphism and cancer risk. The odds ratio (OR with 95% confidence interval (CI were used to assess the strength of association. A total of 20 publications, involving 6,782 cases and 7,767 controls, were included in this meta-analysis. Combined analysis revealed a significant association between -889 C/T polymorphism and cancer risk under an allele model (OR =1.12, 95% CI =1.02–1.24, P=0.02, recessive model (OR =1.34, 95% CI =1.06–1.68, P=0.01, and homozygous comparison (OR =1.38, 95% CI =1.10–1.74, P<0.01. Subgroup analysis by ethnicity showed there was significant association between cancer risk and IL-1a -889C/T polymorphism in Asian populations under a recessive model (OR =2.57, 95% CI =1.11–5.98, P=0.03 and homozygous comparison (OR =2.60, 95% CI =1.12–6.04, P=0.03. Moreover, a subgroup analysis was conducted by source of control, and a statistically increased cancer risk was found in the hospital-based group, under a recessive model (OR =1.62, 95% CI =1.03–2.56, P=0.04 and homozygous comparison (OR =1.67, 95% CI =1.04–2.68, P=0.03. This meta-analysis suggests that IL-1α -889 C/T polymorphism contributes to cancer susceptibility. Further large and well-designed studies are needed to confirm this association. Keywords: neoplasma, biomarker, cytokine, systematic review

  15. Cervical Cancer Genetic Susceptibility: A Systematic Review and Meta-Analyses of Recent Evidence

    Science.gov (United States)

    Martínez-Nava, Gabriela A.; Fernández-Niño, Julián A.; Madrid-Marina, Vicente; Torres-Poveda, Kirvis

    2016-01-01

    Introduction Cervical cancer (CC) has one of the highest mortality rates among women worldwide. Several efforts have been made to identify the genetic susceptibility factors underlying CC development. However, only a few polymorphisms have shown consistency among studies. Materials and Methods We conducted a systematic review of all recent case-control studies focused on the evaluation of single nucleotide polymorphisms (SNPs) and CC risk, stringently following the “PRISMA” statement recommendations. The MEDLINE data base was used for the search. A total of 100 case-control studies were included in the meta-analysis. Polymorphisms that had more than two reports were meta-analyzed by fixed or random models according to the heterogeneity presented among studies. Results We found significant negative association between the dominant inheritance model of p21 rs1801270 polymorphism (C/A+A/A) and CC (pooled OR = 0.76; 95%CI: 0.63–0.91; p<0.01). We also found a negative association with the rs2048718 BRIP1 polymorphism dominant inheritance model (T/C+C/C) and CC (pooled OR = 0.83; 95%CI: 0.70–0.98; p = 0.03), as well as with the rs11079454 BRIP1 polymorphism recessive inheritance model and CC (pooled OR = 0.79; 95%CI: 0.63–0.99; p = 0.04). Interestingly, we observed a strong tendency of the meta-analyzed studies to be of Asiatic origin (67%). We also found a significant low representation of African populations (4%). Conclusions Our results provide evidence of the negative association of p21 rs1801270 polymorphism, as well as BRIP1 rs2048718 and rs11079454 polymorphisms, with CC risk. This study suggests the urgent need for more replication studies focused on GWAS identified CC susceptibility variants, in order to reveal the most informative genetic susceptibility markers for CC across different populations. PMID:27415837

  16. An Integrated Genome-Wide Systems Genetics Screen for Breast Cancer Metastasis Susceptibility Genes.

    Directory of Open Access Journals (Sweden)

    Ling Bai

    2016-04-01

    Full Text Available Metastasis remains the primary cause of patient morbidity and mortality in solid tumors and is due to the action of a large number of tumor-autonomous and non-autonomous factors. Here we report the results of a genome-wide integrated strategy to identify novel metastasis susceptibility candidate genes and molecular pathways in breast cancer metastasis. This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant. Moreover, the analysis identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy. Further explorations implementing this strategy may therefore provide a variety of information for clinical applications in the control and treatment of advanced neoplastic disease.

  17. Antibacterial susceptibility of bacteria isolated from burns and wounds of cancer patients

    Directory of Open Access Journals (Sweden)

    Sulaiman A. Alharbi

    2014-01-01

    Full Text Available In this study 540 burns and wound swabs were collected from cancer patients of some Egyptian hospitals. The single infection was detected from 210, and 70 cases among wounded and burned patients, while mixed infection was 30 and 45, respectively. We recovered where 60 isolates of Pseudomonas aeruginosa, 60 isolates of Staphylococcus aureus, 7 isolates of Staphylococcus epidermidis, 4 isolates of Streptococcus pyogenes, 25 isolates of Escherichia coli, 23 isolates of Klebsiella pneumoniae and 27 isolates of Proteus vulgaris from 355 burn and surgical wound infections . All bacterial isolates showed high resistance to the commonly used β-lactams (amoxycillin, cefaclor, ampicillin, vancomycin, amoxicillin/clavulonic, and low resistance to imepenim and ciprofloxacin. Plasmid analysis of six multidrug resistant and two susceptible bacterial isolates revealed the same plasmid pattern. This indicated that R-factor is not responsible for the resistance phenomenon among the isolated opportunistic bacteria. The effect of ultraviolet radiation on the isolated bacteria was studied.

  18. A Review of Whole-Exome Sequencing Efforts Toward Hereditary Breast Cancer Susceptibility Gene Discovery.

    Science.gov (United States)

    Chandler, Madison R; Bilgili, Erin P; Merner, Nancy D

    2016-09-01

    Inherited genetic risk factors contribute toward breast cancer (BC) onset. BC risk variants can be divided into three categories of penetrance (high, moderate, and low) that reflect the probability of developing the disease. Traditional BC susceptibility gene discovery approaches that searched for high- and moderate-risk variants in familial BC cases have had limited success; to date, these risk variants explain only ∼30% of familial BC cases. Next-generation sequencing technologies can be used to search for novel high and moderate BC risk variants, and this manuscript reviews 12 familial BC whole-exome sequencing efforts. Study design, filtering strategies, and segregation and validation analyses are discussed. Overall, only a modest number of novel BC risk genes were identified, and 90% and 97% of the exome-sequenced families and cases, respectively, had no BC risk variants reported. It is important to learn from these studies and consider alternate strategies in order to make further advances. The discovery of new BC susceptibility genes is critical for improved risk assessment and to provide insight toward disease mechanisms for the development of more effective therapies.

  19. Association between the APC gene D1822V variant and the genetic susceptibility of colorectal cancer.

    Science.gov (United States)

    Feng, Maohui; Fang, Xiping; Yang, Qian; Ouyang, Gang; Chen, Daping; Ma, Xiang; Li, Huachi; Xie, Wei

    2014-07-01

    Adenomatous polyposis coli (APC) gene polymorphisms are believed to contribute to tumor susceptibility. However, the association between genetic variants (A/T) in the APC gene D1822V polymorphism and colorectal cancer (CRC) susceptibility remains unknown. To determine this association, a case-control study was performed. The genotype of the APC gene D1822V variants was analyzed by DNA sequencing in blood samples collected from 196 patients with CRC and 279 healthy subjects. There were no significant associations between the case and control groups in the distribution of AT [odds ratio (OR), 0.604; 95% confidence interval (CI), 0.355-1.029) and TT genotypes (OR, 0.438; 95% CI, 0.045-4.247) relative to the AA genotype. The ratio of the T allele was significantly lower (P=0.047) in the case group compared with the control group (OR, 0.611; 95% CI, 0.374-0.997), indicating that the T allele conferred a protective effect in CRC. The frequency of the AT genotype among the subjects diagnosed at >45 years of age was lower than those diagnosed at a younger age (P<0.05). The present study demonstrates that the T allele of the D1822V polymorphism may exert a protective effect against CRC, however, these findings require further validation in a larger sample size.

  20. Clustering of sebaceous gland carcinoma, papillary thyroid carcinoma and breast cancer in a woman as a new cancer susceptibility disorder: a case report

    Directory of Open Access Journals (Sweden)

    Newman Brian D

    2009-07-01

    Full Text Available Abstract Introduction Multiple distinct tumors arising in a single individual or within members of a family raise the suspicion of a genetic susceptibility disorder. Case presentation We present the case of a 52-year-old Caucasian woman diagnosed with sebaceous gland carcinoma of the eyelid, followed several years later with subsequent diagnoses of breast cancer and papillary carcinoma of the thyroid. Although the patient was also exposed to radiation from a pipe used in the oil field industry, the constellation of neoplasms in this patient suggests the manifestation of a known hereditary susceptibility cancer syndrome. However, testing for the most likely candidates such as Muir-Torre and Cowden syndrome proved negative. Conclusion We propose that our patient's clustering of neoplasms either represents a novel cancer susceptibility disorder, of which sebaceous gland carcinoma is a characteristic feature, or is a variant of the Muir-Torre syndrome.

  1. Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31

    DEFF Research Database (Denmark)

    Permuth-Wey, Jennifer; Lawrenson, Kate; Shen, Howard C

    2013-01-01

    Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. Most identified common susceptibility variants lie in non-protein-coding sequences. We hypothesized that variants in the 3' untranslated region at putative microRNA (miRNA)-binding sites represent fu...

  2. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry

    DEFF Research Database (Denmark)

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki

    2016-01-01

    PURPOSE: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. METHODS: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D suscept...

  3. A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis.

    Directory of Open Access Journals (Sweden)

    Luis M Real

    Full Text Available BACKGROUND: Non-hereditary colorectal cancer (CRC is a complex disorder resulting from the combination of genetic and non-genetic factors. Genome-wide association studies (GWAS are useful for identifying such genetic susceptibility factors. However, the single loci so far associated with CRC only represent a fraction of the genetic risk for CRC development in the general population. Therefore, many other genetic risk variants alone and in combination must still remain to be discovered. The aim of this work was to search for genetic risk factors for CRC, by performing single-locus and two-locus GWAS in the Spanish population. RESULTS: A total of 801 controls and 500 CRC cases were included in the discovery GWAS dataset. 77 single nucleotide polymorphisms (SNPs from single-locus and 243 SNPs from two-locus association analyses were selected for replication in 423 additional CRC cases and 1382 controls. In the meta-analysis, one SNP, rs3987 at 4q26, reached GWAS significant p-value (p = 4.02×10(-8, and one SNP pair, rs1100508 CG and rs8111948 AA, showed a trend for two-locus association (p = 4.35×10(-11. Additionally, our GWAS confirmed the previously reported association with CRC of five SNPs located at 3q36.2 (rs10936599, 8q24 (rs10505477, 8q24.21(rs6983267, 11q13.4 (rs3824999 and 14q22.2 (rs4444235. CONCLUSIONS: Our GWAS for CRC patients from Spain confirmed some previously reported associations for CRC and yielded a novel candidate risk SNP, located at 4q26. Epistasis analyses also yielded several novel candidate susceptibility pairs that need to be validated in independent analyses.

  4. Polymorphisms and Plasma Levels of Tissue Inhibitor of Metalloproteinase-3: Impact on Genetic Susceptibility and Clinical Outcome of Oral Cancer.

    Science.gov (United States)

    Su, Chun-Wen; Huang, Yi-Wen; Chen, Mu-Kuan; Su, Shih-Chi; Yang, Shun-Fa; Lin, Chiao-Wen

    2015-11-01

    Oral cancer, the fourth most common cancer among men in Taiwan, is associated with environmental carcinogens. Tissue inhibitor of metalloproteinase-3 (TIMP3), a member of the TIMP family, is the only protein that binds to the extracellular matrix for suppressing cancer cell growth, angiogenesis, migration, and invasion. The association of TIMP3 polymorphism with oral cancer susceptibility, however, has not yet been reported. In this study, 1947 participants-1200 healthy male controls and 747 male patients with oral cancer-were recruited. Allelic discrimination of TIMP3 -1296 T > C (rs9619311), TIMP3 C > T (rs9862), and TIMP3 C > T (rs11547635) polymorphisms were assessed through real-time polymerase chain reaction. The authors discovered that individuals carrying the polymorphic rs9862 allele are more susceptible to oral cancer [odds ratio (OR), 1.5; 95% confidence interval (CI), 1.2-1.9; adjusted OR (AOR), 1.6; 95% CI, 1.2-2.1] after adjustment for betel quid chewing, alcohol, and tobacco consumption. Among 601 betel quid chewers, the TIMP3 polymorphism rs9862 T/T carriers had a 32.2-fold (95% CI, 20.2-51.3) increased oral cancer risk compared with those carrying C/C and not chewing betel quid. In addition, the authors observed a significant association between rs9862 variants and large tumors (OR, 1.5; 95% CI, 1.0-2.3) development. Moreover, TIMP3 plasma levels significantly increased in oral cancer patients who have large tumor or carry T allele rs9862 polymorphism. In conclusion, these results suggest that gene-environment interactions between the TIMP3 rs9862 polymorphisms and betel quid may alter oral cancer susceptibility and tumor growth in Taiwanese men.

  5. Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer susceptibility and aggressiveness

    Directory of Open Access Journals (Sweden)

    Helal Ahmed N

    2010-06-01

    Full Text Available Abstract Background Interleukin-8 (IL-8/CXCL-8 is a prototype of the ELR+CXC chemokines that play an important role in the promotion and progression of many human cancers including breast cancer. We have recently showed the implication of polymorphism (-251 T/A of IL-8 gene in the susceptibility and prognosis of breast carcinoma. IL-8 acts through its CXCR1 and CXCR2 receptors. CXCR2, expressed on the endothelial cells, is the receptor involved in mediating the angiogenic effects of ELR+CXC chemokines and in particular IL-8. In the current study, we investigated the susceptibility and prognostic implications of the genetic variation in CXCR2 in breast carcinoma. We also confirmed the implication of IL-8 (-251 T/A polymorphism in a larger cohort. Finally, we combined the IL-8 and CXCR2 variant alleles and analyzed their effects in breast cancer risk and prognosis. Methods We used the allele-specific polymerase chain reaction to characterize the variation of IL-8 and CXCR2 for 409 unrelated Tunisian patients with breast carcinoma and 301 healthy control subjects. To estimate the relative risks, Odds ratios and 95% confidence intervals were calculated using unconditional logistic regression after adjusting for the known risk factors for breast cancer. Associations of the genetic marker with the rates of breast carcinoma-specific overall survival and disease-free survival were assessed using univariate and multivariate analyses. Results A highly significant association was found between the homozygous CXCR2 (+ 1208 TT genotype (adjusted OR = 2.89; P = 0.008 and breast carcinoma. A significantly increased risk of breast carcinoma was associated with IL-8 (-251 A allele (adjusted OR = 1.86; P = 0.001. The presence of two higher risk genotypes (the TA and TT in IL-8, and the TT in CXCR2 significantly increased the risk of developing breast carcinoma (adjusted OR = 4.15; P = 0.0004. The CXCR2 (+ 1208 T allele manifested a significant association with an

  6. Green tea consumption, genetic susceptibility, PAH-rich smoky coal, and the risk of lung cancer.

    Science.gov (United States)

    Bonner, Matthew R; Rothman, Nathaniel; Mumford, Judy L; He, Xingzhou; Shen, Min; Welch, Robert; Yeager, Meredith; Chanock, Stephen; Caporaso, Neil; Lan, Qing

    2005-04-04

    Experimental evidence suggests that green tea (Camellia sinesis) may reduce the risk of lung cancer through several hypothesized mechanisms including scavenging oxidative radicals, inhibition of tumor initiation, and modulation of detoxification enzymes. However, epidemiologic results have not been consistent as to the relationship between green tea consumption and lung caner prevention. We employed a population-based case-control study of 122 cases and 122 controls to investigate the effect that green tea consumption may have on the risk of lung cancer and whether polymorphisms in 8-oxoguanine-DNA glycosylase (OGG1), glutathione-S-transferase M1 (GSTM1), and aldo-keto reductase 1C3 (AKR1C3) modify such an association. Daily green tea consumption was associated with a non-significant reduction in lung cancer risk. However, the effect of smoky coal exposure was higher for non-drinkers (odds ratio (OR)=4.93; 95% confidence interval (95% CI)=1.27-19.13) than for drinkers (OR=1.88; 95% CI=1.01-3.48). Further, among individuals with the OGG1 Cys(326) allele, daily consumption was associated with a 72% reduction (95% CI=0.09-0.94). Among GSTM1 null homozygotes, those who consumed green tea daily had a non-significant reduction in risk compared with non-consumers. Green tea consumption had no effect among OGG1 Ser(326) homozygotes or GSTM1 carriers. In addition, AKR1C3 genotype did not modulate the effect of green tea consumption. The chemopreventive effects of green tea in this population may be restricted to individuals who are particularly susceptible to oxidative stress and oxidative DNA damage.

  7. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    OpenAIRE

    2014-01-01

    This is the final version of the article. It was first published by BioMed Central at http://www.breast-cancer-research.com/content/16/6/3416 Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loc...

  8. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer.

    Directory of Open Access Journals (Sweden)

    Joanna Zhuang

    2012-02-01

    Full Text Available Aberrant DNA methylation is an important cancer hallmark, yet the dynamics of DNA methylation changes in human carcinogenesis remain largely unexplored. Moreover, the role of DNA methylation for prediction of clinical outcome is still uncertain and confined to specific cancers. Here we perform the most comprehensive study of DNA methylation changes throughout human carcinogenesis, analysing 27,578 CpGs in each of 1,475 samples, ranging from normal cells in advance of non-invasive neoplastic transformation to non-invasive and invasive cancers and metastatic tissue. We demonstrate that hypermethylation at stem cell PolyComb Group Target genes (PCGTs occurs in cytologically normal cells three years in advance of the first morphological neoplastic changes, while hypomethylation occurs preferentially at CpGs which are heavily Methylated in Embryonic Stem Cells (MESCs and increases significantly with cancer invasion in both the epithelial and stromal tumour compartments. In contrast to PCGT hypermethylation, MESC hypomethylation progresses significantly from primary to metastatic cancer and defines a poor prognostic signature in four different gynaecological cancers. Finally, we associate expression of TET enzymes, which are involved in active DNA demethylation, to MESC hypomethylation in cancer. These findings have major implications for cancer and embryonic stem cell biology and establish the importance of systemic DNA hypomethylation for predicting prognosis in a wide range of different cancers.

  9. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5 on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer.

  10. Susceptibility loci of ankylosing spondylitis in patients with psoriatic arthritis%关节病型银屑病与强直性脊柱炎易感基因关联研究

    Institute of Scientific and Technical Information of China (English)

    杨青; 刘红; 付希安; 于永翔; 于功奇; 屈丽娜; 张福仁

    2016-01-01

    目的::对关节病型银屑病与强直性脊柱炎的易感基因进行关联分析,以期发现共同的易感基因。方法:以379例关节病型银屑病( PsA)、595例寻常型银屑病( PsV)及806例健康对照为样本,以Sequenom MassARRAY系统为平台,对全基因组关联研究发现的强直性脊柱炎的9个易感基因SNP位点进行基因分型和数据分析。结果: ERAP1基因(rs27037,P=6.66×10-5,OR:1.43)、21q22.2(rs2242944,P=1.07×10-3,OR:0.73)及IL23R基因(rs1004819,P=4.58×10-3,OR:1.28)与PsA相关。ERAP1( rs27037,P=1.56×10-4,OR:1.35)与PsV相关。 ERAP1基因对于PsA和PsV的患病风险无差异。 IL23R基因( rs1004819)及21q22.2( rs2242944)在PsA和PsV患病风险上存在中等程度的异质性(I2值分别为57.41和71.20),但P值无明显差异(>0.05)。IL23R基因(rs11209032,P=1.57×10-3,OR:1.52)与PsA脊柱炎相关。结论: ERAP1基因、21q22.2区域及IL23R基因是PsA与强直性脊柱炎共有的易感基因。%Objective:To determine the susceptibility loci of ankylosing spondylitis found by GWAS in pa ̄tients with psoriatic arthritis ( PsA) . Methods:Nine susceptibility SNPs of ankylosing spondylitis were geno ̄typed in 379 patients with PsA, 595 patients with psoriasis vulgaris ( PsV) and 806 healthy controls by Se ̄quenom MassARRAY. Results: ERAP1 ( rs27037, P = 6. 66 × 10-5 , OR:1. 43 ) , chromosome 21q22. 2 (rs2242944, P=1.07×10-3, OR:0.73)and IL23R (rs1004819, P=4.58×10-3,OR:1.28)were significant association with susceptibility of PsA. ERAP1 (rs27037, P=1.56×10-4,OR:1.35) associated with PsV. There was no heterogeneity of ERAP1( rs27037) between PsA and PsV groups and there was a heterogeneity of chromosome 21q22.2 ( rs2242944) and IL23R ( rs1004819) between them. IL23R( rs11209032) was found to be associated with axial PsA (P=1.57×10-3,OR:1.52). Conclusion: ERAP1, 21q22.2 domain and IL23R are common susceptibility genes of both PsA and ankylosing spondylitis.

  11. Genetic linkage analysis supports the presence of two susceptibility loci for alcoholism and heavy drinking on chromosome 1p22.1-11.2 and 1q21.3-24.2

    Directory of Open Access Journals (Sweden)

    Curtis David

    2005-03-01

    Full Text Available Abstract Background In order to confirm a previous finding of linkage to alcoholism on chromosome 1 we have carried out a genetic linkage study. Methods DNA from eighteen families, densely affected by alcoholism, was used to genotype a set of polymorphic microsatellite markers at loci approximately 10 centimorgans apart spanning the short arm and part of the long arm of chromosome 1. Linkage analyses were performed using the classical lod score and a model-free method. Three different definitions of affection status were defined, these were 1. Heavy Drinking (HD where affected subjects drank more than the Royal College of Psychiatrists recommended weekly amount. 2. The Research Diagnostic Criteria for alcoholism (RDCA 3. Alcohol Dependence Syndrome (ADS as defined by Edwards and Gross (1976 and now incorporated into ICD10 and DSMIV. Results Linkage analyses with the markers D1S1588, D1S2134, D1S1675 covering the cytogenetic region 1p22.1-11.2 all gave positive two point and multipoint lods with a maximum lod of 1.8 at D1S1588 (1p22.1 for the RDCA definition of alcoholism. Another lod of 1.8 was found with D1S1653 in the region 1q21.3-24.2 using the HD affection model. Conclusion These results both support the presence of linkage in the 1p22.1-11.2 region which was previously implicated by the USA Collaborative Study of the Genetics of Alcoholism (COGA study and also suggest the presence of another susceptibility locus at 1q21.3-24.2.

  12. The role of the breast cancer susceptibility gene 1 (BRCA1 in sporadic epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Mueller Christopher R

    2003-10-01

    Full Text Available Abstract Mutations within the BRCA1 tumor suppressor gene occur frequently in familial epithelial ovarian carcinomas but they are a rare event in the much more prevalent sporadic form of the disease. However, decreased BRCA1 expression occurs frequently in sporadic tumors, and the magnitude of this decrease has been correlated with increased disease progression. The near absence of somatic mutations consequently suggests that there are alternative mechanisms that may contribute to the observed loss of BRCA1 in sporadic tumors. Indeed, both allelic loss at the BRCA1 locus and epigenetic hypermethylation of the BRCA1 promoter play an important role in BRCA1 down-regulation; yet these mechanisms alone or in combination do not always account for the reduced BRCA1 expression. Alternatively, misregulation of specific upstream factors that control BRCA1 transcription may be a crucial means by which BRCA1 is lost. Therefore, determining how regulators of BRCA1 expression may be co-opted during sporadic ovarian tumorigenesis will lead to a better understanding of ovarian cancer etiology and it may help foster the future development of novel therapeutic strategies aimed at halting ovarian tumor progression.

  13. Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Saunders, Edward J; Leongamornlert, Daniel A

    2013-01-01

    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that...

  14. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.L. Neuhausen (Susan); M. Robson (Mark); D. Barrowdale (Daniel); L. McGuffog (Lesley); A.M. Mulligan (Anna Marie); I.L. Andrulis (Irene); A.B. Spurdle (Amanda); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); C. Engel (Christoph); B. Wapenschmidt (Barbara); H. Nevanlinna (Heli); M. Thomassen (Mads); M.C. Southey (Melissa); P. Radice (Paolo); S.J. Ramus (Susan); S.M. Domchek (Susan); K.L. Nathanson (Katherine); A. Lee (Andrew); S. Healey (Sue); R. Nussbaum (Robert); R. Rebbeck (Timothy); B.K. Arun (Banu); M. James (Margaret); B. Karlan; K.J. Lester (Kathryn); I. Cass (Ilana); M.B. Terry (Mary Beth); M.J. Daly (Mark); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); T. v O Hansen (Thomas); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); F. Nielsen (Finn); J. Dennis (Joe); J.M. Cunningham (Julie); S. Hart (Stewart); S. Slager (Susan); A. Osorio (Ana); J. Benítez (Javier); M. Duran (Mercedes); J.N. Weitzel (Jeffrey); I. Tafur (Isaac); M. Hander (Mary); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); G. Roversi (Gaia); G. Scuvera (Giulietta); B. Bonnani (Bernardo); P. Mariani (Paolo); S. Volorio (Sara); R. Dolcetti (Riccardo); L. Varesco (Liliana); L. Papi (Laura); M.G. Tibiletti (Maria Grazia); G. Giannini (Giuseppe); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); U. Hamann (Ute); A. Donaldson (Alan); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); F. Douglas (Fiona); A. Brady (A.); J. Cook (Jackie); M. Tischkowitz (Marc); L. Adlard; J. Barwell (Julian); K. Ong; L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Eeles (Ros); R. Davidson (Rosemarie); S. Hodgson (Shirley); S.D. Ellis (Steve); A.K. Godwin (Andrew); K. Rhiem (Kerstin); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); D. Steinemann (Doris); N. Bogdanova-Markov (Nadja); K. Kast (Karin); R. Varon-Mateeva (Raymonda); S. Wang-Gohrke (Shan); P.A. Gehrig (Paola A.); B. Markiefka (Birgid); B. Buecher (Bruno); C. Lefol (Cédrick); D. Stoppa-Lyonnet (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); L. Barjhoux (Laure); L. Faivre (Laurence); M. Longy (Michel); N. Sevenet (Nicolas); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); V. Bonadona (Valérie); V. Caux-Moncoutier (Virginie); C. Isaacs (Claudine); T. Van Maerken (Tom); K.B.M. Claes (Kathleen B.M.); M. Piedmonte (Marion); L. Andrews (Lesley); J. Hays (John); G.C. Rodriguez (Gustavo); T. Caldes (Trinidad); M. de La Hoya (Miguel); S. Khan (Sofia); F.B.L. Hogervorst (Frans); C.M. Aalfs (Cora); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); J.T. Wijnen (Juul); K.E. van Roozendaal (Kees); A.R. Mensenkamp (Arjen); A.M.W. van den Ouweland (Ans); C.H.M. van Deurzen (Carolien); R.B. van der Luijt (Rob); E. Olah; O. Díez (Orland); C. Lazaro (Conxi); I. Blanco (Ignacio); A. Teulé (A.); M. Menéndez (Mireia); A. Jakubowska (Anna); J. Lubinski (Jan); C. Cybulski (Cezary); J. Gronwald (Jacek); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Arason (Adalgeir); C. Maugard; P. Soucy (Penny); M. Montagna (Marco); S. Agata (Simona); P.J. Teixeira; C. Olswold (Curtis); N.M. Lindor (Noralane); V.S. Pankratz (Shane); B. Hallberg (Boubou); X. Wang (Xianshu); C. Szabo (Csilla); J. Vijai (Joseph); L. Jacobs (Lauren); M. Corines (Marina); A. Lincoln (Anne); A. Berger (Andreas); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; C. Phelan (Catherine); P.L. Mai (Phuong); M.H. Greene (Mark); G. Rennert (Gad); E.N. Imyanitov (Evgeny); G. Glendon (Gord); A.E. Toland (Amanda); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); R. Berger (Raanan); Y. Laitman (Yael); J. Rantala (Johanna); B. Arver (Brita Wasteson); N. Loman (Niklas); Å. Borg (Åke); H. Ehrencrona (Hans); O.I. Olopade (Olofunmilayo); J. Simard (Jacques); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); F.J. Couch (Fergus); A.C. Antoniou (Antonis C.); CIMBA; EMBRACE Study; Breast Cancer Family; GEMO Study Collaborators; HEBON; KConFab Investigators

    2014-01-01

    textabstractIntroduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 muta

  15. Evidence for susceptibility genes to familial Wilms tumour in addition to WT1, FWT1 and FWT2

    Science.gov (United States)

    Rapley, E A; Barfoot, R; Bonaïti-Pellié, C; Chompret, A; Foulkes, W; Perusinghe, N; Reeve, A; Royer-Pokora, B; Schumacher, V; Shelling, A; Skeen, J; Tourreil, S de; Weirich, A; Pritchard-Jones, K; Stratton, M R; Rahman, N

    2000-01-01

    Three loci have been implicated in familial Wilms tumour: WT1 located on chromosome 11p13, FWT1 on 17q12-q21, and FWT2 on 19q13. Two out of 19 Wilms tumour families evaluated showed strong evidence against linkage at all three loci. Both of these families contained at least three cases of Wilms tumour indicating that they were highly likely to be due to genetic susceptibility and therefore that one or more additional familial Wilms tumour susceptibility genes remain to be found. © 2000 Cancer Research Campaign PMID:10901367

  16. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    DEFF Research Database (Denmark)

    Speliotes, Elizabeth K; Willer, Cristen J; Berndt, Sonja I

    2010-01-01

    in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators...

  17. Fine-scale mapping of the 4q24 locus identifies two independent loci associated with breast cancer risk

    DEFF Research Database (Denmark)

    Guo, Xingyi; Long, Jirong; Zeng, Chenjie

    2015-01-01

    BACKGROUND: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. METHODS: We conducted a fine-mapping analysis in 55,540 breast...... was associated with level of expression of TET2 in breast normal and tumor tissue. CONCLUSION: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. IMPACT: Fine...... cancer cases and 51,168 controls from the Breast Cancer Association Consortium. RESULTS: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10(-4); OR, 1.04; 95% confidence interval (CI), 1.02-1.07] and rs...

  18. Glutathione Levels and Susceptibility to Chemically Induced Injury in Two Human Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Lawrence H. Lash

    2015-06-01

    Full Text Available More aggressive prostate cancer cells (PCCs are often resistant to chemotherapy. Differences exist in redox status and mitochondrial metabolism that may help explain this phenomenon. Two human PCC lines, PC-3 cells (more aggressive and LNCaP cells (less aggressive, were compared with regard to cellular glutathione (GSH levels, susceptibility to either oxidants or GSH depletors, and expression of several proteins involved in apoptosis and stress response to test the hypothesis that more aggressive PCCs exhibit higher GSH concentrations and are relatively resistant to cytotoxicity. PC-3 cells exhibited 4.2-fold higher GSH concentration than LNCaP cells but only modest differences in acute cytotoxicity were observed at certain time points. However, only LNCaP cells underwent diamide-induced apoptosis. PC-3 cells exhibited higher levels of Bax and caspase-8 cleavage product but lower levels of Bcl-2 than LNCaP cells. However, LNCaP cells exhibited higher expression of Fas receptor (FasR but also higher levels of several stress response and antioxidant proteins than PC-3 cells. LNCaP cells also exhibited higher levels of several mitochondrial antioxidant systems, suggesting a compensatory response. Thus, significant differences in redox status and expression of proteins involved in apoptosis and stress response may contribute to PCC aggressiveness.

  19. Association of XPC Gene Polymorphisms with Susceptibility to Prostate Cancer: Evidence from 3,936 Subjects

    Science.gov (United States)

    Zou, Yan-Feng; Tao, Jin-Hui; Ye, Qian-Ling; Pan, Hai-Feng; Pan, Fa-Ming; Su, Hong

    2013-01-01

    Aim: Polymorphisms of xeroderma pigmentosum complementation group C (XPC) are thought to have significant effects on prostate cancer (PCa) risk. The aim of our study was to evaluate the impact of XPC gene polymorphisms on PCa risk by using a meta-analysis. Methods: Data were collected from the following electronic databases: PubMed, EMBASE, Elsevier Science Direct, Cochrane Library, and CNKI, with the last report up to April 30, 2013. Odds ratios with 95% confidence intervals were used to assess the strength of the association. Results: A total of five separate case–control studies (1966 cases and 1970 controls) were included in this meta-analysis. Meta-analysis was performed for the rs2228001 and PAT+/−polymorphisms. We did not detect a significant association between rs2228001 polymorphism and PCa (p>0.05). Similar results were found in stratification analyses by ethnicity and tumor stage. We detected a significant association of PAT+/−polymorphism with PCa (p0.05). Conclusion: These analyses suggest that XPC gene PAT+/−polymorphism, but not rs2228001, likely contributes to susceptibility to PCa. PMID:24093803

  20. Significant association among the Fas -670 A/G (rs1800682) polymorphism and esophageal cancer, hepatocellular carcinoma, and prostate cancer susceptibility: a meta-analysis.

    Science.gov (United States)

    Liu, Tao; Zuo, Li; Li, Lin; Yin, Lei; Liang, Kai; Yu, Hongyuan; Ren, Hui; Zhou, Wen; Jing, Hongwei; Liu, Yang; Kong, Chuize

    2014-11-01

    The Fas gene plays a key role in regulation of apoptotic cell death, and corruption of this signaling pathway has been shown to participate in immune escape and tumorgenesis. Single-nucleotide polymorphism in the promoter of Fas gene at position -670 A/G may affect its expression and play an important role in the pathology of many kinds of cancer. The association between Fas -670 A/G polymorphism and cancer risk is still controversial and ambiguous. Therefore, we conducted a meta-analysis of the currently literature to clarify this relationship. We conducted a search in the PubMed, EMbase, CNKI, and WanFang databases, covering all papers published by May 5, 2014. Overall, 59 case-control studies with 17,035 cases and 23,155 controls were retrieved based on the search criteria for cancer susceptibility related to -670 A/G polymorphism in Fas gene. Odds ratios (OR) and 95% confidence intervals (CI) revealed association strengths. Although no significant relationship was detected between Fas -670 A/G polymorphism and whole cancer risk, in the ethnicity subgroup, significant associations were found in three types of cancer: prostate cancer (OR = 1.06, 95% CI = 1.01-1.11 for A-allele vs. G-allele); hepatocellular carcinoma (OR = 0.89, 95% CI = 0.80-0.99 for AG vs. GG); esophageal cancer (OR = 0.95, 95% CI = 0.92-0.99 for AA + AG vs. GG). Moreover, lower cancer risk was found in smokers carried A-allele, when compared to smokers carried the GG genotype. The Fas -670 A/G polymorphism may be associated with esophageal cancer, hepatocellular carcinoma, and prostate cancer susceptibility from our meta-analysis. Studies with larger samples and gene-environment interactions are warranted to understand the role of Fas -670 A/G polymorphism for cancer risk.

  1. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot".

    Directory of Open Access Journals (Sweden)

    Sharon E Johnatty

    2010-07-01

    Full Text Available We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC. In the discovery stage, cases with epithelial ovarian cancer (n=675 and controls (n=1,162 were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs-PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616-were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-alleleor=0.5. However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele=0.03. Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04-1.24 p=0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus.

  2. Susceptibility to Melaleuca alternifolia (tea tree) oil of yeasts isolated from the mouths of patients with advanced cancer.

    Science.gov (United States)

    Bagg, Jeremy; Jackson, Margaret S; Petrina Sweeney, M; Ramage, Gordon; Davies, Andrew N

    2006-05-01

    Yeasts that are resistant to azole antifungal drugs are increasingly isolated from the mouths of cancer patients suffering from oral fungal infections. Tea tree oil is an agent possessing antimicrobial properties that may prove useful in the prevention and management of infections caused by these organisms. In this study, 301 yeasts isolated from the mouths of 199 patients suffering from advanced cancer were examined by an in vitro agar dilution assay for susceptibility to tea tree oil. All of the isolates tested were susceptible, including 41 that were known to be resistant to both fluconazole and itraconazole. Clinical studies of tea tree oil as an agent for the prevention and treatment of oral fungal infections in immunocompromised patients merit consideration.

  3. Speciation and antifungal susceptibility of esophageal candidiasis in cancer patients in a tertiary care hospital in South India

    Directory of Open Access Journals (Sweden)

    J. Abirami Lakshmy

    2016-01-01

    Full Text Available Esophageal candidiasis is the most common opportunistic infection in patients with altered immunity such as Human Immunodeficiency Virus (HIV infection, cancer patients on chemotherapy and radiotherapy. Neutropenia, irradiation and chemotherapy will facilitate deeper m