Sample records for cancer stem-like glioblastoma

  1. Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy.

    Directory of Open Access Journals (Sweden)

    Peter C Huszthy

    Full Text Available BACKGROUND: Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model. METHODOLOGY/PRINCIPAL FINDINGS: We used a rodent xenograft model that recapitulates the invasive and angiogenic features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP and vesicular stomatitis virus glycoprotein (VSV-G pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast, pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene herpes simplex virus thymidine kinase (HSV-1-tk fused to eGFP, both lentiviral vectors mediated a complete remission of solid tumors as seen on MRI resulting in a highly significant survival benefit (p<0.001 compared to control groups. In all recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even enhance and prolong the therapeutic effect. CONCLUSIONS/SIGNIFICANCE: In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of glioma in patients. The inefficient gene delivery

  2. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells (United States)

    Liu, P; Brown, S; Goktug, T; Channathodiyil, P; Kannappan, V; Hugnot, J-P; Guichet, P-O; Bian, X; Armesilla, A L; Darling, J L; Wang, W


    Background: Glioblastoma multiforme (GBM) cells are resistant to anticancer drugs. Cancer stem cells (CSCs) are a key mediator of chemoresistance. We have reported that disulfiram (DS), an aldehyde dehydrogenase (ALDH) inhibitor, targets breast CSC-like cells. In this study, the effect of DS and combination of DS and gemcitabine (dFdC) on GBM cells and GBM stem-like cells was investigated. Methods: 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI)-isobologram, western blot, luciferase reporter gene assay, electrophoretic mobility-shift assay and ALDH analysis were used in this study. Results: Disulfiram is cytotoxic in GBM cell lines in a copper (Cu)-dependent manner. Disulfiram/copper enhances the cytotoxicity of dFdC. Combination index-isobologram analysis indicates a synergistic effect between DS/Cu and dFdC. Disulfiram/copper induces reactive oxygen species (ROS), activates JNK and p38 pathways and inhibits nuclear factor-kappa B activity in GBM cell lines. Disulfiram/copper may trigger intrinsic apoptotic pathway via modulation of the Bcl2 family. Disulfiram/copper abolishes stem-like cell population in GBM cell lines. Conclusion: Our findings indicate that the cytotoxicity of DS/Cu and the enhancing effect of DS/Cu on the cytotoxicity of dFdC in GBM stem-like cells may be caused by induction of ROS and inhibition of both ALDH and the NFkB pathway. Both DS and dFdC can traverse the blood–brain barrier. Further study may lead them into GBM chemotherapy. PMID:23033007

  3. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. (United States)

    Wu, Jianing; Ji, Zhiyong; Liu, Huailei; Liu, Yaohua; Han, Dayong; Shi, Chen; Shi, Changbin; Wang, Chunlei; Yang, Guang; Chen, Xiaofeng; Shen, Chen; Li, Huadong; Bi, Yunke; Zhang, Dongzhi; Zhao, Shiguang


    Notch signaling has been demonstrated to have a central role in cancer stem-like cells (CSLCs) in glioblastoma multiforme (GBM). We have recently demonstrated the inhibitory effect of arsenic trioxide (ATO) on CSLCs in glioblastoma cell lines. In this study we used neurosphere recovery assay that measured neurosphere formation at three time points to assess the capacity of the culture to repopulate after ATO treatment. Our results provided strong evidence that ATO depleted CSLCs in GBM, and inhibited neurosphere recovery and secondary neurosphere formation. ATO inhibited the phosphorylation and activation of AKT and STAT3 through Notch signaling blockade. These data show that the ATO is a promising new approach to decrease glioblastoma proliferation and recurrence by downregulation of Notch pathway.

  4. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells

    DEFF Research Database (Denmark)

    Schonberg, David L; Miller, Tyler E; Wu, Qiulian;


    Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progeni......Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue......-specific progenitors. Direct interrogation of iron uptake demonstrated that CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin, two core iron regulators......, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable...

  5. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression. (United States)

    Okada, Masashi; Sato, Atsushi; Shibuya, Keita; Watanabe, Eriko; Seino, Shizuka; Suzuki, Shuhei; Seino, Manabu; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi


    While elimination of the cancer stem cell population is increasingly recognized as a key to successful treatment of cancer, the high resistance of cancer stem cells to conventional chemoradiotherapy remains a therapeutic challenge. O6-methylguanine DNA methyltransferase (MGMT), which is frequently expressed in cancer stem cells of glioblastoma, has been implicated in their resistance to temozolomide, the first-line chemotherapeutic agent against newly diagnosed glioblastoma. However, much remains unknown about the molecular regulation that underlies MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. Here, we identified JNK as a novel player in the control of MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. We showed that inhibition of JNK, either pharmacologically or by RNA interference, in stem-like glioblastoma cells derived directly from glioblastoma tissues reduces their MGMT expression and temozolomide resistance. Importantly, sensitization of stem-like glioblastoma cells to temozolomide by JNK inhibition was dependent on MGMT expression, implying that JNK controls temozolomide resistance of stem-like glioblastoma cells through MGMT expression. Our findings suggest that concurrent use of JNK inhibitors with temozolomide may be a rational therapeutic approach to effectively target the cancer stem cell population in the treatment of glioblastoma.

  6. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. (United States)

    Zhu, Thant S; Costello, Mark A; Talsma, Caroline E; Flack, Callie G; Crowley, Jessica G; Hamm, Lisa L; He, Xiaobing; Hervey-Jumper, Shawn L; Heth, Jason A; Muraszko, Karin M; DiMeco, Francesco; Vescovi, Angelo L; Fan, Xing


    One important function of endothelial cells in glioblastoma multiforme (GBM) is to create a niche that helps promote self-renewal of cancer stem-like cells (CSLC). However, the underlying molecular mechanism for this endothelial function is not known. Since activation of NOTCH signaling has been found to be required for propagation of GBM CSLCs, we hypothesized that the GBM endothelium may provide the source of NOTCH ligands. Here, we report a corroboration of this concept with a demonstration that NOTCH ligands are expressed in endothelial cells adjacent to NESTIN and NOTCH receptor-positive cancer cells in primary GBMs. Coculturing human brain microvascular endothelial cells (hBMEC) or NOTCH ligand with GBM neurospheres promoted GBM cell growth and increased CSLC self-renewal. Notably, RNAi-mediated knockdown of NOTCH ligands in hBMECs abrogated their ability to induce CSLC self-renewal and GBM tumor growth, both in vitro and in vivo. Thus, our findings establish that NOTCH activation in GBM CSLCs is driven by juxtacrine signaling between tumor cells and their surrounding endothelial cells in the tumor microenvironment, suggesting that targeting both CSLCs and their niche may provide a novel strategy to deplete CSLCs and improve GBM treatment.

  7. EGFR Amplification and Glioblastoma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Katrin Liffers


    Full Text Available Glioblastoma (GBM, the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells. GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM.

  8. Characterization of glioma stem-like cells from human glioblastomas. (United States)

    Yamamuro, Shun; Okamoto, Yutaka; Sano, Emiko; Ochiai, Yushi; Ogino, Akiyoshi; Ohta, Takashi; Hara, Hiroyuki; Ueda, Takuya; Nakayama, Tomohiro; Yoshino, Atsuo; Katayama, Yoichi


    Glioma stem-like cells (GSCs) could have potential for tumorigenesis, treatment resistance, and tumor recurrence (GSC hypothesis). However, the mechanisms underlying such potential has remained elusive and few ultrastructural features of the cells have been reported in detail. We therefore undertook observations of the antigenic characteristics and ultrastructural features of GSCs isolated from human glioblastomas. Tumor spheres formed by variable numbers of cells, exhibiting a variable appearance in both their size and shape, were frequently seen in GSCs expressing the stem cell surface markers CD133 and CD15. Increased cell nucleus atypia, mitochondria, rough endoplasmic reticulum, coated vesicles, and microvilli, were noted in the GSCs. Furthermore, cells at division phases and different phases of the apoptotic process were occasionally observed. These findings could imply that GSCs have certain relations with human neural stem cells (NSCs) but are primitively different from undifferentiated NSCs. The data may provide support for the GSC hypothesis, and also facilitate the establishment of future glioblastoma treatments targeting GSCs.

  9. Glioblastoma stem-like cells give rise to tumour endothelium

    NARCIS (Netherlands)

    R. Wang; K. Chadalavada; J. Wilshire; U. Kowalik; K.E. Hovinga; A. Geber; B. Fligelman; M. Leversha; C. Brennan; V. Tabar


    Glioblastoma (GBM) is among the most aggressive of human cancers(1). A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia(2). Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poo

  10. Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. (United States)

    Séhédic, Delphine; Cikankowitz, Annabelle; Hindré, François; Davodeau, François; Garcion, Emmanuel


    Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.

  11. Comparative expression study of the endo-G protein coupled receptor (GPCR repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Marie Fève

    Full Text Available Glioblastomas (GBMs are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs, a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs, U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs. The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs. Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.

  12. Polysome Profiling Links Translational Control to the Radioresponse of Glioblastoma Stem-like Cells. (United States)

    Wahba, Amy; Rath, Barbara H; Bisht, Kheem; Camphausen, Kevin; Tofilon, Philip J


    Changes in polysome-bound mRNA (translatome) are correlated closely with changes in the proteome in cells. Therefore, to better understand the processes mediating the response of glioblastoma to ionizing radiation (IR), we used polysome profiling to define the IR-induced translatomes of a set of human glioblastoma stem-like cell (GSC) lines. Although cell line specificity accounted for the largest proportion of genes within each translatome, there were also genes that were common to the GSC lines. In particular, analyses of the IR-induced common translatome identified components of the DNA damage response, consistent with a role for the translational control of gene expression in cellular radioresponse. Moreover, translatome analyses suggested that IR enhanced cap-dependent translation processes, an effect corroborated by the finding of increased eIF4F-cap complex formation detected after irradiation in all GSC lines. Translatome analyses also predicted that Golgi function was affected by IR. Accordingly, Golgi dispersal was detected after irradiation of each of the GSC lines. In addition to the common responses seen, translatome analyses predicted cell line-specific changes in mitochondria, as substantiated by changes in mitochondrial mass and DNA content. Together, these results suggest that analysis of radiation-induced translatomes can provide new molecular insights concerning the radiation response of cancer cells. More specifically, they suggest that the translational control of gene expression may provide a source of molecular targets for glioblastoma radiosensitization. Cancer Res; 76(10); 3078-87. ©2016 AACR.

  13. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030 were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP. MicroRNA-4284 (miR-4284 was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK/stress-activated protein kinase (SAPK, resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an

  14. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells.

    Directory of Open Access Journals (Sweden)

    Maria Zeniou

    Full Text Available Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM, the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.

  15. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. (United States)

    Zeniou, Maria; Fève, Marie; Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude


    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.

  16. Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Stobbe Olsen, Marie-Louise;


    Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. Despite recent treatment progress, most patients succumb to their disease within 2 years of diagnosis. Current research has highlighted the importance of a subpopulation of cells, assigned brain...... cancer stem-like cells (bCSC), to play a pivotal role in GBM malignancy. bCSC are identified by their resemblance to normal neural stem cells (NSC), and it is speculated that the bCSC have to be targeted in order to improve treatment outcome for GBM patients. One hallmark of GBM is aberrant expression...... and activation of the epidermal growth factor receptor (EGFR) and expression of a deletion variant EGFRvIII. In the normal brain, EGFR is expressed in neurogenic areas where also NSC are located and it has been shown that EGFR is involved in regulation of NSC proliferation, migration, and differentiation...

  17. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Kobayashi, Alisa [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Maeda, Takeshi [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Fu, Qibin [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Oikawa, Masakazu [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yang, Gen, E-mail: [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Konishi, Teruaki, E-mail: [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Uchihori, Yukio [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); and others


    Highlights: • Existence of radiation induced bystander effects (RIBE) between cancer stem-like cells (CSCs) and non stem-like cancer cells (NSCCs) in human fibrosarcoma HT1080 cells. • Existence of significant difference in generation and response of bystander signals between CSCs and NSCCs. • CSCs are significantly less sensitive to NO scavenger than that of NSCCs in terms of DNA double strand breaks induced by RIBE. - Abstract: Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  18. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi


    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  19. FoxM1 Drives a Feed-forward STAT3-activation Signaling Loop that Promotes the Self-renewal and Tumorigenicity of Glioblastoma Stem-like Cells (United States)

    Gong, Ai-hua; Wei, Ping; Zhang, Sicong; Yao, Jun; Yuan, Ying; Zhou, Ai-dong; Lang, Frederick F.; Heimberger, Amy B.; Rao, Ganesh; Huang, Suyun


    The growth factor PDGF controls the development of glioblastoma (GBM) but its contribution to the function of GBM stem-like cells (GSC) has been little studied. Here we report that the transcription factor FoxM1 promotes PDGFA-STAT3 signaling to drive GSC self-renewal and tumorigenicity. In GBM we found a positive correlation between expression of FoxM1 and PDGF-A. In GSC and mouse neural stem cells, FoxM1 bound to the PDGF-A promoter to upregulate PDGF-A expression, acting to maintain the stem-like qualities of GSC in part through this mechanism. Analysis of the human cancer genomic database TCGA revealed that GBM express higher levels of STAT3, a PDGF-A effector signaling molecule, as compared with normal brain. FoxM1 regulated STAT3 transcription through interactions with the β-catenin/TCF4 complex. FoxM1 deficiency inhibited PDGF-A and STAT3 expression in neural stem cells and GSC, abolishing their stem-like and tumorigenic properties. Further mechanistic investigations defined a FoxM1-PDGFA-STAT3 feed-forward pathway that was sufficient to confer stem-like properties to glioma cells. Collectively, our findings showed how FoxM1 activates expression of PDGF-A and STAT3 in a pathway required to maintain the self-renewal and tumorigenicity of glioma stem-like cells. PMID:25832656

  20. Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Peng Cheng


    Full Text Available Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs were recently identified: mesenchymal (MES and proneural (PN. To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers.

  1. Podocalyxin-like protein is expressed in glioblastoma multiforme stem-like cells and is associated with poor outcome.

    Directory of Open Access Journals (Sweden)

    Zev A Binder

    Full Text Available Glioblastoma multiforme (GBM is the most common primary malignant adult brain tumor and is associated with poor survival. Recently, stem-like cell populations have been identified in numerous malignancies including GBM. To identify genes whose expression is changed with differentiation, we compared transcript profiles from a GBM oncosphere line before and after differentiation. Bioinformatic analysis of the gene expression profiles identified podocalyxin-like protein (PODXL, a protein highly expressed in human embryonic stem cells, as a potential marker of undifferentiated GBM stem-like cells. The loss of PODXL expression upon differentiation of GBM stem-like cell lines was confirmed by quantitative real-time PCR and flow cytometry. Analytical flow cytometry of numerous GBM oncosphere lines demonstrated PODXL expression in all lines examined. Knockdown studies and flow cytometric cell sorting experiments demonstrated that PODXL is involved in GBM stem-like cell proliferation and oncosphere formation. Compared to PODXL-negative cells, PODXL-positive cells had increased expression of the progenitor/stem cell markers Musashi1, SOX2, and BMI1. Finally, PODXL expression directly correlated with increasing glioma grade and was a marker for poor outcome in patients with GBM. In summary, we have demonstrated that PODXL is expressed in GBM stem-like cells and is involved in cell proliferation and oncosphere formation. Moreover, high PODXL expression correlates with increasing glioma grade and decreased overall survival in patients with GBM.

  2. The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Muhammad Jamal


    Full Text Available Brain tumor xenografts initiated from glioblastoma (GBM CD133+ tumor stem-like cells (TSCs are composed of TSC and non-TSC subpopulations, simulating the phenotypic heterogeneity of GBMs in situ. Given that the discrepancies between the radiosensitivity of GBM cells in vitro and the treatment response of patients suggest a role for the microenvironment in GBM radioresistance, we compared the response of TSCs and non-TSCs irradiated under in vitro and orthotopic conditions. As a measure of radioresponse determined at the individual cell level, γH2AX and 53BP1 foci were quantified in CD133+ cells and their differentiated (CD133- progeny. Under in vitro conditions, no difference was detected between CD133+ and CD133- cells in foci induction or dispersal after irradiation. However, irradiation of orthotopic xenografts initiated from TSCs resulted in the induction of fewer γH2AX and 53BP1 foci in CD133+ cells compared to their CD133- counterparts within the same tumor. Xenograft irradiation resulted in a tumor growth delay of approximately 7 days with a corresponding increase in the percentage of CD133+ cells at 7 days after radiation, which persisted to the onset of neurologic symptoms. These results suggest that, although the radioresponse of TSCs and non-TSCs does not differ under in vitro growth conditions, CD133+ cells are relatively radioresistant under intracerebral growth conditions. Whereas these findings are consistent with the suspected role for TSCs as a determinant of GBM radioresistance, these data also illustrate the dependence of the cellular radioresistance on the brain microenvironment.

  3. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. (United States)

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Fortner, Karen A; Viapiano, Mariano S; Jaworski, Diane M


    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth.

  4. Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. (United States)

    Sanvoranart, Tanwarat; Supokawej, Aungkura; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Poungvarin, Niphon; Sathornsumetee, Sith; Issaragrisil, Surapol


    Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.

  5. Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells. (United States)

    Hira, Vashendriya V V; Verbovšek, Urška; Breznik, Barbara; Srdič, Matic; Novinec, Marko; Kakar, Hala; Wormer, Jill; der Swaan, Britt Van; Lenarčič, Brigita; Juliano, Luiz; Mehta, Shwetal; Van Noorden, Cornelis J F; Lah, Tamara T


    Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.

  6. Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice. (United States)

    Kozlowska, Anna K; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid


    Based on data obtained from oral, pancreatic and lung cancers, glioblastoma, and melanoma, we have established that natural killer (NK) cells target cancer stem-like cells (CSCs). CSCs displaying low MHC class I, CD54, and PD-L1 are killed by cytotoxic NK cells and are differentiated by split anergized NK cells through both membrane bound and secreted forms of TNF-α and IFN-γ. NK cells select and differentiate both healthy and transformed stem-like cells, resulting in target cell maturation and shaping of their microenvironment. In our recent studies, we have observed that oral, pancreatic, and melanoma CSCs were capable of forming large tumors in humanized bone marrow, liver, thymus (hu-BLT) mice with fully reconstituted human immune system. In addition, major human immune subsets including NK cells, T cells, B cells, and monocytes were present in the spleen, bone marrow, peripheral blood, and tumor microenvironment. Similar to our previously published in vitro data, CSCs differentiated with split anergized NK cells prior to implantation in mice formed smaller tumors. Intravenous injection of functionally potent osteoclast-expanded NK cells inhibited tumor growth through differentiation of CSCs in humanized mice. In this review, we present current approaches, advances, and existing limitations in studying interactions of the immune system with the tumor, in particular NK cells with CSCs, using in vivo preclinical hu-BLT mouse model. In addition, we discuss the use of osteoclast-expanded NK cells in targeting cancer stem-like tumors in humanized mice-a strategy that provides a much-needed platform to develop effective cancer immunotherapies.

  7. HSP DNAJB8 Controls Tumor-Initiating Ability in Renal Cancer Stem-like Cells

    NARCIS (Netherlands)

    Nishizawa, Satoshi; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Takahashi, Akari; Tamura, Yasuaki; Mori, Takashi; Kanaseki, Takayuki; Kamiguchi, Kenjiro; Asanuma, Hiroko; Morita, Rena; Sokolovskaya, Alice; Matsuzaki, Junichi; Yamada, Ren; Fujii, Reona; Kampinga, Harm H.; Kondo, Toru; Hasegawa, Tadashi; Hara, Isao; Sato, Noriyuki


    Cancer stem-like cells (CSC) are a small population of cancer cells with superior tumor initiating, self-renewal, and differentiation properties. In this study, we show that the cancer-testis antigen and HSP40 family member DNAJB8 contributes to the CSC phenotype in renal cell carcinoma (RCC). DNAJB

  8. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rae-Kwon; Uddin, Nizam [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Hyun, Jin-Won [College of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju-si 690-756 (Korea, Republic of); Kim, Changil [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Suh, Yongjoon, E-mail: [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae, E-mail: [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)


    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  9. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480. (United States)

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko


    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  10. Isolation and Identification of Cancer Stem-Like Cells from Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Jun Dou; Kai Hu; Ning Gu; Meng Pan; Ping Wen; Yating Li; Quan Tang; Lili Chu; Fengshu Zhao; Chuilian Jiang; Weihua Hu


    In current study, cancer stem-like cells in the murine melanoma B16F10 cells were investigated. CD phenotypes of the B16F10 cells were analyzed by flow cytometry, and the specific CD phenotype cells from the B16F10 cells were isolated by MACS. Then we used colony formation assay in soft agar media, the cell growth assay in serum-free culture media as well as the tumorigenicity investigation of the specific CD phenotype cells in C57BL/6 mice,respectively, to identify cancer stem-like cells in the B16F10 cells. The results showed that the B16F10 cells could form spherical clones in serum-free culture media, and the rate of clonegenesis of CD133+, CD44+ and CD44+CD133+ cells was higher than that of CD133-, CD44- and CD44+CD133- cells in soft agar media, respectively.The tumorigenic potential of CD133+, CD44+, CD44+CD133+ cells and CD44+CD133+CD24+ cells was stronger than that of CD133-, CD44-, CD44+CD133- cells and CD44+CD133+CD24- cells in mice, respectively. In conclusion, the CD44+CD133+CD24+ cells have some biological properties of cancer stem-like cells or are highly similar to the characteristics of cancer stem cells (CSC). These results provide an important method for identifying cancer stem-like cells in B16F10 cells and for further cancer target therapy.

  11. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Nora D Mineva

    Full Text Available Inflammatory Breast Cancer (IBC is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration

  12. Activation of c-MET induces a stem-like phenotype in human prostate cancer.

    Directory of Open Access Journals (Sweden)

    Geert J L H van Leenders

    Full Text Available Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'. We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.

  13. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway. (United States)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young


    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer.

  14. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P


    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  15. Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia.

    Directory of Open Access Journals (Sweden)

    Christoph P Hofstetter

    Full Text Available PURPOSE: The hypoxic microenvironment of glioblastoma multiforme (GBM is thought to increase resistance to cancer therapies. Recent evidence suggests that hypoxia induces protein phosphatase 2A (PP2A, a regulator of cell cycle and cell death. The effects of PP2A on GBM tumor cell proliferation and survival during hypoxic conditions have not been studied. EXPERIMENTAL DESIGN: Expression of PP2A subunits and HIF-α proteins was measured in 65 high-grade astrocytoma and 18 non-neoplastic surgical brain specimens by western blotting. PP2A activity was measured by an immunoprecipitation assay. For in vitro experiments, GBM-derived tumor stem cell-like cells (TSCs were exposed to severe hypoxia produced by either CoCl₂ or 1% O₂. PP2A activity was inhibited either by okadaic acid or by shRNA depletion of the PP2A C subunit. Effects of PP2A activity on cell cycle progression and cell survival during hypoxic conditions were assessed using flow cytometry. RESULTS: In our patient cohort, PP2A activity was positively correlated with HIF-1∝ protein expression (P = 0.002. Patients with PP2A activity levels above 160 pMP had significantly worse survival compared to patients with levels below this threshold (P = 0.002. PP2A activity was an independent predictor of survival on multivariable analysis (P = 0.009. In our in vitro experiments, we confirmed that severe hypoxia induces PP2A activity in TSCs 6 hours after onset of exposure. PP2A activity mediated G1/S phase growth inhibition and reduced cellular ATP consumption in hypoxic TSCs. Conversely, inhibition of PP2A activity led to increased cell proliferation, exhaustion of intracellular ATP, and accelerated P53-independent cell death of hypoxic TSCs. CONCLUSIONS: Our results suggest that PP2A activity predicts poor survival in GBM. PP2A appears to reduce the metabolic demand of hypoxic TSCs and enhances tumor cell survival. Modulation of PP2A may be a potential target for cancer therapy.

  16. Notch signals in the endothelium and cancer "stem-like" cells: opportunities for cancer therapy

    Directory of Open Access Journals (Sweden)

    Gu Jian-Wei


    Full Text Available Abstract Anti-angiogenesis agents and the identification of cancer stem-like cells (CSC are opening new avenues for targeted cancer therapy. Recent evidence indicates that angiogenesis regulatory pathways and developmental pathways that control CSC fate are intimately connected, and that endothelial cells are a key component of the CSC niche. Numerous anti-angiogenic therapies developed so far target the VEGF pathway. However, VEGF-targeted therapy is hindered by clinical resistance and side effects, and new approaches are needed. One such approach may be direct targeting of tumor endothelial cell fate determination. Interfering with tumor endothelial cells growth and survival could inhibit not only angiogenesis but also the self-replication of CSC, which relies on signals from surrounding endothelial cells in the tumor microenvironment. The Notch pathway is central to controlling cell fate both during angiogenesis and in CSC from several tumors. A number of investigational Notch inhibitors are being developed. Understanding how Notch interacts with other factors that control endothelial cell functions and angiogenesis in cancers could pave the way to innovative therapeutic strategies that simultaneously target angiogenesis and CSC.

  17. Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo


    Full Text Available Androgen deprivation therapy (ADT has been the standard care for patients with advanced prostate cancer (PC since the 1940s. Although ADT shows clear benefits for many patients, castration-resistant prostate cancer (CRPC inevitably occurs. In fact, with the two recent FDA-approved second-generation anti-androgens abiraterone and enzalutamide, resistance develops rapidly in patients with CRPC, despite their initial effectiveness. The lack of effective therapeutic solutions towards CRPC largely reflects our limited understanding of the underlying mechanisms responsible for CRPC development. While persistent androgen receptor (AR signaling under castration levels of serum testosterone (<50 ng/mL contributes to resistance to ADT, it is also clear that CRPC evolves via complex mechanisms. Nevertheless, the physiological impact of individual mechanisms and whether these mechanisms function in a cohesive manner in promoting CRPC are elusive. In spite of these uncertainties, emerging evidence supports a critical role of prostate cancer stem-like cells (PCSLCs in stimulating CRPC evolution and resistance to abiraterone and enzalutamide. In this review, we will discuss the recent evidence supporting the involvement of PCSLC in CRPC acquisition as well as the pathways and factors contributing to PCSLC expansion in response to ADT.

  18. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Toledo


    Full Text Available To identify therapeutic targets for glioblastoma (GBM, we performed genome-wide CRISPR-Cas9 knockout (KO screens in patient-derived GBM stem-like cells (GSCs and human neural stem/progenitors (NSCs, non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers. In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.

  19. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. (United States)

    Toledo, Chad M; Ding, Yu; Hoellerbauer, Pia; Davis, Ryan J; Basom, Ryan; Girard, Emily J; Lee, Eunjee; Corrin, Philip; Hart, Traver; Bolouri, Hamid; Davison, Jerry; Zhang, Qing; Hardcastle, Justin; Aronow, Bruce J; Plaisier, Christopher L; Baliga, Nitin S; Moffat, Jason; Lin, Qi; Li, Xiao-Nan; Nam, Do-Hyun; Lee, Jeongwu; Pollard, Steven M; Zhu, Jun; Delrow, Jeffery J; Clurman, Bruce E; Olson, James M; Paddison, Patrick J


    To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.

  20. Drug delivery using nanoparticles for cancer stem-like cell targeting

    Directory of Open Access Journals (Sweden)

    Bing eLu


    Full Text Available The theory of cancer stem-like cell (or cancer stem cell, CSC has been established to explain how tumor heterogeneity arises and contributes to tumor progression in diverse cancer types. CSCs are believed to drive tumor growth and elicit resistance to conventional therapeutics. Therefore, CSCs are becoming novel target in both medical researches and clinical studies. Emerging evidences showed that nanoparticles effectively inhibit many types of CSCs by targeting various specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133 and signaling pathways (Notch, Hedgehog, and TGF-β, which are critically involved in CSC function and maintenance. In this review, we briefly summarize the current status of CSC research and review a number of state-of-the-art nanomedicine approaches targeting CSC. In addition, we discuss emerging therapeutic strategies using epigenetic drugs to eliminate CSCs and inhibit cancer cell reprogramming.

  1. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Samantha Wei-Man Lun; Siu-Tim Cheung; Kwok-Wai Lo


    Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cels. These cancer stem-like cels (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed.

  2. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. (United States)

    Kim, Ji Young; Cho, Youngkwan; Oh, Eunhye; Lee, Nahyun; An, Hyunsook; Sung, Daeil; Cho, Tae-Min; Seo, Jae Hong


    HER2-positive breast tumors are known to harbor cancer stem-like cell populations and are associated with an aggressive tumor phenotype and poor clinical outcomes. Disulfiram (DSF), an anti-alcoholism drug, is known to elicit cytotoxicity in many cancer cell types in the presence of copper (Cu). The objective of the present study was to investigate the mechanism of action responsible for the induction of apoptosis by DSF/Cu and its effect on cancer stem cell properties in HER2-positive breast cancers in vitro and in vivo. DSF/Cu treatment induced apoptosis, associated with a marked decrease in HER2, truncated p95HER2, phospho-HER2, HER3, phospho-HER3 and phospho-Akt levels, and p27 nuclear accumulation. This was accompanied by the eradication of cancer stem-like populations, concomitant with the suppression of aldehyde dehydrogenase 1 (ALDH1) activity and mammosphere formation. DSF administration resulted in a significant reduction in tumor growth and an enhancement of apoptosis, as well as HER2 intracellular domain (ICD) and ALDH1A1 downregulation. Our results demonstrate that DSF/Cu induces apoptosis and eliminates cancer stem-like cells via the suppression of HER2/Akt signaling, suggesting that DSF may be potentially effective for the treatment of HER2-positive cancers.

  3. Generation of Novel Thyroid Cancer Stem-Like Cell Clones: Effects of Resveratrol and Valproic Acid. (United States)

    Hardin, Heather; Yu, Xiao-Min; Harrison, April D; Larrain, Carolina; Zhang, Ranran; Chen, Jidong; Chen, Herbert; Lloyd, Ricardo V


    Anaplastic thyroid cancer is an aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Cancer stem-like cells (CSCs) represent a small fraction of cells in the cancer that are resistant to chemotherapy and radiation therapy and are responsible for tumor reoccurrence and metastasis. We characterized CSCs in thyroid carcinomas and generated clones of CSC lines. Our study showed that anaplastic thyroid cancers had significantly more CSCs than well-differentiated thyroid cancers. We also showed that Aldefluor-positive cells revealed significantly higher expression of stem cell markers, self-renewal properties, thyrosphere formation, and enhanced tumorigenicity. In vivo passaging of Aldefluor-positive cells resulted in the growth of larger, more aggressive tumors. We isolated and generated two clonal spheroid CSC lines derived from anaplastic thyroid cancer that were even more enriched with stem cell markers and more tumorigenic than the freshly isolated Aldefluor-positive cells. Resveratrol and valproic acid treatment of one of the CSC lines resulted in a significant decrease in stem cell markers, Aldefluor expression, proliferation, and invasiveness, with an increase in apoptosis and thyroid differentiation markers, suggesting that these cell lines may be useful for discovering new adjuvant therapies for aggressive thyroid cancers. For the first time, we have two thyroid CSC lines that will be useful tools for the study of thyroid CSC targeted therapies.

  4. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  5. Identification of T cell target antigens in glioblastoma stem-like cells using an integrated proteomics-based approach in patient specimens. (United States)

    Rapp, Carmen; Warta, Rolf; Stamova, Slava; Nowrouzi, Ali; Geisenberger, Christoph; Gal, Zoltan; Roesch, Saskia; Dettling, Steffen; Juenger, Simone; Bucur, Mariana; Jungk, Christine; DaoTrong, Philip; Ahmadi, Rezvan; Sahm, Felix; Reuss, David; Fermi, Valentina; Herpel, Esther; Eckstein, Volker; Grabe, Niels; Schramm, Christoph; Weigand, Markus A; Debus, Juergen; von Deimling, Andreas; Unterberg, Andreas; Abdollahi, Amir; Beckhove, Philipp; Herold-Mende, Christel


    Glioblastoma (GBM) is a highly aggressive brain tumor and still remains incurable. Among others, an immature subpopulation of self-renewing and therapy-resistant tumor cells-often referred to as glioblastoma stem-like cells (GSCs)-has been shown to contribute to disease recurrence. To target these cells personalized immunotherapy has gained a lot of interest, e.g. by reactivating pre-existing anti-tumor immune responses against GSC antigens. To identify T cell targets commonly presented by GSCs and their differentiated counterpart, we used a proteomics-based separation of GSC proteins in combination with a T cell activation assay. Altogether, 713 proteins were identified by LC-ESI-MS/MS mass spectrometry. After a thorough filtering process, 32 proteins were chosen for further analyses. Immunogenicity of corresponding peptides was tested ex vivo. A considerable number of these antigens induced T cell responses in GBM patients but not in healthy donors. Moreover, most of them were overexpressed in primary GBM and also highly expressed in recurrent GBM tissues. Interestingly, expression of the most frequent T cell target antigens could also be confirmed in quiescent, slow-cycling GSCs isolated in high purity by the DEPArray technology. Finally, for a subset of these T cell target antigens, an association between expression levels and higher T cell infiltration as well as an increased expression of positive immune modulators was observed. In summary, we identified novel immunogenic proteins, which frequently induce tumor-specific T cell responses in GBM patients and were also detected in vitro in therapy-resistant quiescent, slow-cycling GSCs. Stable expression of these T cell targets in primary and recurrent GBM support their suitability for future clinical use.

  6. Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. (United States)

    Lin, Xian; Sun, Baocun; Zhu, Dongwang; Zhao, Xiulan; Sun, Ran; Zhang, Yanhui; Zhang, Danfang; Dong, Xueyi; Gu, Qiang; Li, Yanlei; Liu, Fang


    Sphere formation in conditioned serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem-like cells, also known as tumor-initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem-like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4(high) B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial-mesenchymal transition (EMT)-associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE-cadherin and the overexpression of E-cadherin was observed in human melanoma A375 and MUM-2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ-secretase inhibitor, DAPT. Mechanistically, the re-overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE-cadherin expression and a decrease in E-cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.

  7. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches

    Directory of Open Access Journals (Sweden)

    Marco Mineo


    Full Text Available Long non-coding RNAs (lncRNAs have an undefined role in the pathobiology of glioblastoma multiforme (GBM. These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2 as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.

  8. The long non-coding RNA – HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches (United States)

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K.; Lyons, Shawn M.; Ivanov, Pavel; Ansari, Khairul I.; Nakano, Ichiro; Chiocca, E. Antonio; Godlewski, Jakub; Bronisz, Agnieszka


    Long-non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia inducible lncRNA, up-regulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal and hypoxia-dependent molecular reprogramming. Amongst the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Down-regulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome/targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. PMID:27264189

  9. Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype

    Directory of Open Access Journals (Sweden)

    Berry Nicholas B


    Full Text Available Abstract Aggressive epithelial ovarian cancer (EOC is genetically and epigenetically distinct from normal ovarian surface epithelial cells (OSE and early neoplasia. Co-expression of epithelial and mesenchymal markers in EOC suggests an involvement of epithelial-mesenchymal transition (EMT in cancer initiation and progression. This phenomenon is often associated with acquisition of a stem cell-like phenotype and chemoresistance that correlate with the specific gene expression patterns accompanying transformation, revealing a plasticity of the ovarian cancer cell genome during disease progression. Differential gene expressions between normal and transformed cells reflect the varying mechanisms of regulation including genetic changes like rearrangements within the genome, as well as epigenetic changes such as global genomic hypomethylation with localized promoter CpG island hypermethylation. The similarity of gene expression between ovarian cancer cells and the stem-like ovarian cancer initiating cells (OCIC are surprisingly also correlated with epigenetic mechanisms of gene regulation in normal stem cells. Both normal and cancer stem cells maintain genetic flexibility by co-placement of activating and/or repressive epigenetic modifications on histone H3. The co-occupancy of such opposing histone marks is believed to maintain gene flexibility and such bivalent histones have been described as being poised for transcriptional activation or epigenetic silencing. The involvement of both-microRNA (miRNA mediated epigenetic regulation, as well as epigenetic-induced changes in miRNA expression further highlight an additional complexity in cancer stem cell epigenomics. Recent advances in array-based whole-genome/epigenome analyses will continue to further unravel the genomes and epigenomes of cancer and cancer stem cells. In order to illuminate phenotypic signatures that delineate ovarian cancer from their associated cancer stem cells, a priority must lie

  10. Accumulation efficiency of cancer stem-like cells post {gamma}-ray and proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Quan Yi; WangWeikang; Fu Qibin; Mei Tao; Wu Jingwen; Li Jia [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Yang, Gen, E-mail: [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wang Yugang [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)


    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with {gamma}-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133{sup +} protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with {gamma}-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and {gamma}-rays can significantly accumulate the CD133{sup +} CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  11. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI


    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  12. Isolation and characterization of cancer stem-like cells from MHCC97H Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Shanyong Yi; Kejun Nan; Aihua Yuan; Chuangxin Lu


    Objective:To identify and isolate CD133 positive cancer stem-like cells (CD133+ cells) from the highly invasive human hepatocellular carcinoma cell line(MHCC97H), and examine their potential for clonogenicity and tumorigenicity. Methods: CD133+ and CD133- cells were isolated from MHCC97H cell line by magnetic bead cell sorting(MACS), and the potentials of CD133+ cells for colony formation and tumorigenicity were evaluated by soft agar cloning and tumor formation following nude mice inoculation. Results:CD133+ cells represent a minority(0.5-2.0%) of the tumor cell population with a greater colony-forming efficiency and greater tumor production ability. The colony-forming efficiency of CD133+ cells in soft agar was significantly higher than CD133- cells(36.8±1.4 vs 12.9±0.8, P<0.05).After 6 weeks, 3/5 mice inoculated with 1 × 103 CD133+ cells, 4/5 with 1 × 104 CD133+ cells and 5/5 with 1 × 105 CD133+ cells developed detectable tumors at the injection site, while only one tumor was found in mice treated with same numbers of CD133- cells. Conclusion: CD133 may be a hallmark of liver cancer stem cells (CSC) in human hepatocellular carcinoma(HCC), because the CD133+ cells identified and isolated with anti-CD133 labeled magnetic beads from MHCC97H cell line exhibit high potentials for clonogenicity and tumorigenicity. These CD133+ cells might contribute to hepatocarcinogenesis, as well as the growth and recurrence of human HCC, and therefore may be a useful target for anti-cancer therapy.

  13. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling



    Androgen depletion is a key strategy for treating human prostate cancer, but the presence of hormone-independent cells escaping treatment remains a major therapeutic challenge. Here, we identify a minor subset of stem-like human prostate tumour-initiating cells (TICs) that do not express prostate cancer markers, such as androgen receptor or prostate specific antigen. These TICs possess stem cell characteristics and multipotency as demonstrated by in vitro sphere-formation and in vivo tumour-i...

  14. Antiproliferative Effect of Androgen Receptor Inhibition in Mesenchymal Stem-Like Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Aiyu Zhu


    Full Text Available Background/Aims: Androgen receptor (AR, a steroid hormone receptor, has recently emerged as prognostic and treatment-predictive marker in breast cancer. Previous studies have shown that AR is widely expressed in up to one-third of triple-negative breast cancer (TNBC. However, the role of AR in TNBC is still not fully understood, especially in mesenchymal stem-like (MSL TNBC cells. Methods: MSL TNBC MDA-MB-231 and Hs578T breast cancer cells were exposed to various concentration of agonist 5-α-dihydrotestosterone (DHT or nonsteroidal antagonist bicalutamide or untreated. The effects of AR on cell viability and apoptosis were determined by MTT assay, cell counting, flow cytometry analysis and protein expression of p53, p73, p21 and Cyclin D1 were analyzed by western blotting. The bindings of AR to p73 and p21 promoter were detected by ChIP assay. MDA-MB-231 cells were transplanted into nude mice and the tumor growth curves were determined and expression of AR, p73 and p21 were detected by Immunohistochemistry (IHC staining after treatment of DHT or bicalutamide. Results: We demonstrate that AR agonist DHT induces MSL TNBC breast cancer cells proliferation and inhibits apoptosis in vitro. Similarly, activated AR significantly increases viability of MDA-MB-231 xenografts in vivo. On the contrary, AR antagonist, bicalutamide, causes apoptosis and exerts inhibitory effects on the growth of breast cancer. Moreover, DHT-dependent activation of AR involves regulation in the cell cycle related genes, including p73, p21 and Cyclin D1. Further investigations indicate the modulation of AR on p73 and p21 mediated by direct binding of AR to their promoters, and DHT could make these binding more effectively. Conclusions: Our study demonstrates the tumorigenesis role of AR and the inhibitory effect of bicalutamide in AR-positive MSL TNBC both in vitro and in vivo, suggesting that AR inhibition could be a potential therapeutic approach for AR-positive TNBC

  15. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells. (United States)

    Rao, Wei; Wang, Hai; Han, Jianfeng; Zhao, Shuting; Dumbleton, Jenna; Agarwal, Pranay; Zhang, Wujie; Zhao, Gang; Yu, Jianhua; Zynger, Debra L; Lu, Xiongbin; He, Xiaoming


    Tumor reinitiating cancer stem-like cells are responsible for cancer recurrence associated with conventional chemotherapy. We developed a doxorubicin-encapsulated polymeric nanoparticle surface-decorated with chitosan that can specifically target the CD44 receptors of these cells. This nanoparticle system was engineered to release the doxorubicin in acidic environments, which occurs when the nanoparticles are localized in the acidic tumor microenvironment and when they are internalized and localized in the cellular endosomes/lysosomes. This nanoparticle design strategy increases the cytotoxicity of the doxorubicin by six times in comparison to the use of free doxorubicin for eliminating CD44(+) cancer stem-like cells residing in 3D mammary tumor spheroids (i.e., mammospheres). We further show these nanoparticles reduced the size of tumors in an orthotopic xenograft tumor model with no evident systemic toxicity. The development of nanoparticle system to target cancer stem-like cells with low systemic toxicity provides a new treatment arsenal for improving the survival of cancer patients.

  16. LGR5 positivity defines stem-like cells in colorectal cancer

    NARCIS (Netherlands)

    Hirsch, Daniela; Barker, Nick; McNeil, Nicole; Hu, Yue; Camps, Jordi; McKinnon, Katherine; Clevers, Hans; Ried, Thomas; Gaiser, Timo


    Like normal colorectal epithelium, colorectal carcinomas (CRCs) are organized hierarchically and include populations of cells with stem-like properties. Leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) is associated with these stem cells in normal colorectal epithelium; however, th

  17. Angiogenesis-independent tumor growth mediated by stem-like cancer cells.

    NARCIS (Netherlands)

    Sakariassen, P.; Prestegarden, L.; Wang, J.; Skaftnesmo, K.O.; Mahesparan, R.; Molthoff, C.F.M.; Sminia, P.; Sundlisaeter, E.; Misra, A.; Tysnes, B.B.; Chekenya, M.; Peters, H.; Lende, G.; Kalland, K.H.; Oyan, A.M.; Petersen, K.; Jonassen, I.; Kogel, A.J. van der; Feuerstein, B.G.; Terzis, A.J.; Bjerkvig, R.; Enger, P.O.


    In this work, highly infiltrative brain tumors with a stem-like phenotype were established by xenotransplantation of human brain tumors in immunodeficient nude rats. These tumors coopted the host vasculature and presented as an aggressive disease without signs of angiogenesis. The malignant cells ex

  18. Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature. (United States)

    Ferletta, Maria; Grawé, Jan; Hellmén, Eva


    We have investigated the presence of tentative stem-like cells in the canine mammary tumor cell line CMT-U229. This cell line is established from an atypical benign mixed mammary tumor, which has the property of forming duct-like structures in collagen gels. Stem cells in mammary glands are located in the epithelium; therefore we thought that the CMT-U229 cell line would be suitable for detection of tentative cancer stem-like cells. Side population (SP) analyses by flow cytometry were performed with cells that formed spheroids and with cells that did not. Flow cytometric, single sorted cells were expanded and re-cultured as spheroids. The spheroids were paraffin embedded and characterized by immunohistochemistry. SP analyses showed that spheroid forming cells (retenate) as well as single cells (filtrate) contained SP cells. Sca1 positive cells were single cell sorted and thereafter the SP population increased with repeated SP analyses. The SP cells were positively labeled with the cell surface-markers CD44 and CD49f (integrin alpha6); however the expression of CD24 was low or negative. The spheroids expressed the transcription factor and stem cell marker Sox2, as well as Oct4. Interestingly, only peripheral cells of the spheroids and single cells were positive for Oct4 expression. SP cells are suggested to correspond to stem cells and in this study, we have enriched for tentative tumor stem-like cells derived from a canine mammary tumor. All the used markers indicate that the studied CMT-U229 cell line contains SP cells, which in particular have cancer stem-like cell characteristics.

  19. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer. (United States)

    Feng, Long; Wu, Jian-Bing; Yi, Feng-Ming


    Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.

  20. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia


    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  1. Osteopontin Overexpression Induced Tumor Progression and Chemoresistance to Oxaliplatin through Induction of Stem-Like Properties in Human Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Lui Ng


    Full Text Available Colorectal cancer (CRC is one of the most common and fatal malignancies worldwide. The poor prognosis of colorectal cancer patients is due to development of chemoresistance and cancer metastasis. Recently osteopontin (OPN has been associated with stem-like properties in colorectal cancer. This study further examined the clinicopathological significance of OPN in CRC and its effect on chemoresistance and transcription of stem cell markers. We examined the transcription level of OPN in 84 CRC patients and correlated the expression with their clinicopathological parameters. The associations of OPN overexpression with transcription of stem cell markers and response to chemotherapy in DLD1-OPN overexpressing clones and CRC patients were also investigated. Our results showed that OPN was significantly overexpressed in CRC, and its overexpression correlated with tumor stage and poor prognosis. Overexpression of CRC induced OCT4 and SOX2 expression in vitro and correlated with SOX2 overexpression in CRC patients. In addition, DLD1-OPN overexpressing cells showed enhanced ability to survive upon oxaliplatin treatment, and OPN expression was higher in CRC patients who were resistant to oxaliplatin-involved chemotherapy treatment. Thus, CRC cells overexpressing OPN demonstrated stem-like properties and OPN inhibition is a potential therapeutic approach to combat CRC progression and chemoresistance.

  2. Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition. (United States)

    Zhang, Jie; Wang, Wenjing; Qian, Lin; Zhang, Qiuwan; Lai, Dongmei; Qi, Cong


    Ovarian cancer is the most frequent cause of cancer-related death among all gynecological cancers. Increasing evidence suggests that human ovarian cancer stem-like cells could be enriched under serum-free culture conditions. In the present study, SKOV3 ovarian epithelial cancer cells were cultured for sphere cells. Ursolic acid (UA) with triterpenoid compounds exist widely in food, medicinal herbs and other plants. Evidence shows that UA has anticancer activities in human ovarian cancer cells, but he role of UA in ovarian cancer stem cells (CSCs) remains unknown. The aim of the present study was to investigate the anticancer effects of UA in combination with cisplatin in ovarian CSCs (in vitro and in vivo), along with the molecular mechanism of action. Treatment with UA at various concentrations was examined in combination with cisplatin in human ovarian CSCs. MTT assay and flow cytometry were used for cell viability and apoptosis analysis, and qRT-PCR for stem cell markers and epithelial-mesenchymal transition (EMT) markers for mRNA expression. Transwell assay was employed to observe the migration and invasion of SKOV3 cells and SKOV3 sphere cells after treatment. Moreover, athymic BALB/c-nu nude mice were injected with SKOV3 sphere cells to obtain a xenograft model for in vivo studies. The results showed that CSCs possessed mesenchymal characteristics and EMT ability, and the growth of SKOV3 and sphere cells was significantly inhibited by UA. Transplanted tumors were significantly reduced after injection of UA and UA plus cisplatin. Furthermore, we found that UA could play a role in enhancing the sensitivity of CSCs to cisplatin resistance. Our findings suggested that UA is involved in EMT mechanism to affect the proliferation and apoptosis of human ovarian cancer stem-like cells and it is a potent anti-ovarian cancer agent.

  3. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells


    Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong,; Maawy, Ali; Hassanein, Mohamed K.; Uehara, Fuminari; MIWA, SHINJI; Yano, Shuya; Momiyama, Masashi; Suetsugu, Atsushi; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M.


    The XPA1 human pancreatic cancer cell line is dimorphic, with spindle stem-like cells and round non-stem cells. We report here the in vitro IC50 values of stem-like and non-stem XPA1 human pancreatic cells cells for: (1) 5-fluorouracil (5-FU), (2) cisplatinum (CDDP), (3) gemcitabine (GEM), and (4) tumor-targeting Salmonella typhimurium A1-R (A1-R). IC50 values of stem-like XPA1 cells were significantly higher than those of non-stem XPA1 cells for 5-FU (P = 0.007) and CDDP (P = 0.012). In cont...


    Directory of Open Access Journals (Sweden)

    Roberto eWurth


    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  5. Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer. (United States)

    Bao, Bin; Ali, Shadan; Ahmad, Aamir; Li, Yiwei; Banerjee, Sanjeev; Kong, Dejuan; Aboukameel, Amro; Mohammad, Ramzi; Van Buren, Eric; Azmi, Asfar S; Sarkar, Fazlul H


    Pancreatic cancer (PC) is one of the most deadly cancers. The higher mortality is in part due to treatment resistance and early onset of metastasis. The existence of cancer-stem-like cells (CSLCs) has been widely accepted to be responsible for tumor aggressiveness in PC. Emerging evidence suggests that CSLCs have the capacity for increased cell growth, cell migration/invasion, metastasis, and treatment resistance, which leads to poor clinical outcome. However, the molecular role of CSLCs in tumor development and progression is poorly understood. Therefore, mechanistic understanding, and targeted killing of CSLCs may provide a newer therapeutic strategy for the treatment of PC. It has been well accepted that microRNAs (miRNAs) play critical roles during tumor development and progression through deregulation of multiple genes. Moreover, deregulated expression of miRNAs may also play a key role in the regulation of CSLC characteristics and functions. Here we show that isolated CD44(+)/CD133(+)/EpCAM(+) cells (triple-marker-positive cells) from human PC cell lines, MiaPaCa-2 and L3.6pl cells, display aggressive characteristics, such as increased cell growth, clonogenicity, cell migration, and self-renewal capacity, which is consistent with overexpression of CSLC signatures/markers. We also found deregulated expression of over 400 miRNAs, including let-7, miR-30, miR-125b, and miR-335, in CSLCs. As a proof-of-concept, knockdown of miR-125b resulted in the inhibition of tumor cell aggressiveness of CSLCs (triple-marker-positive cells), consistent with the downregulation of CD44, EpCAM, EZH2, and snail. These results clearly suggest the importance of miRNAs in the regulation of CSLC characteristics, and may serve as novel targets for therapy.

  6. Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Wang K


    Full Text Available Ke Wang1,*, Lina Liu2,*, Tao Zhang1, Yong-liang Zhu3, Fuming Qiu4, Xian-guo Wu1, Xiao-lei Wang1, Fu-qiang Hu5, Jian Huang1,41Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine; 2Department of Pharmacy, Second Affiliated Hospital (Binjiang Branch, Zhejiang University School of Medicine; 3Department of Gastroenterology; 4Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine; 5College of Pharmaceutical Science, Zhejiang University, Hangzhou, China, , *These authors contributed equally to this workPurpose: The failure of cancer treatments is partly due to the enrichment of cancer stem-like cells (CSLCs that are resistant to conventional chemotherapy. A novel micelle formulation of oxaliplatin (OXA encapsulated in chitosan vesicle was developed. The authors postulate that micelle encapsulation of OXA would eliminate both CSLCs and bulk cancer cells in colorectal cancer (CRC.Experimental design: In this study, using stearic acid-g-chitosan oligosaccharide (CSO-SA polymeric micelles as a drug-delivery system, OXA-loaded CSO-SA micelles (CSO-SA/OXA were prepared. Intracellular uptake of CSO-SA/OXA micelles was assessed by confocal microscope. The effects of free OXA, the empty carrier, and CSO-SA/OXA micelles were tested using human CRC cell lines in vitro and in vivo.Results: The micelles showed excellent internalization ability that increased OXA accumulation both in CRC cells and tissues. Furthermore, CSO-SA/OXA micelles could either increase the cytotoxicity of OXA against the bulk cancer cells or reverse chemoresistance of CSLC subpopulations in vitro. Intravenous administration of CSO-SA/OXA micelles effectively suppressed the tumor growth and reduced CD133+/CD24+ cell (putative CRC CSLC markers compared with free OXA

  7. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway. (United States)

    Han, Dan; Wu, Gang; Chang, Chan; Zhu, Fang; Xiao, Yin; Li, Qiuhui; Zhang, Tao; Zhang, Liling


    Disulfiram (DSF), an anti-alcoholism drug, has been reported as an inhibitor of NF-κB. NF-κB is involved in epithelial-mesenchymal transition (EMT) and self-renewal of breast cancer stem cells (CSCs). In this study, we treated MCF-7 and MDA-MB-231 breast cancer cells with TGF-β to induce EMT and cancer stem-like features and studied whether DSF can reverse this process. We found that DSF inhibited TGF-β induced EMT in breast cancer cells in a dose-dependent manner. Also, DSF inhibited EMT-associated stem-like features, migration and invasion of tumor cells as well as tumor growth in xenograft model. The activation of NF-κB was linked with EMT and stem-like cells. We conclude that DSF can suppress NF-κB activity and downregulate ERK/NF-κB/Snail pathway, leading to reverse EMT and stem-like features. Our data suggest that DSF inhibits EMT and stem-like properties in breast cancer cells associated with inhibition of the ERK/NF-κB/Snail pathway.

  8. The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells. (United States)

    Castro-Vega, Luis Jaime; Jouravleva, Karina; Ortiz-Montero, Paola; Liu, Win-Yan; Galeano, Jorge Luis; Romero, Martha; Popova, Tatiana; Bacchetti, Silvia; Vernot, Jean Paul; Londoño-Vallejo, Arturo


    There is a well-established association between aging and the onset of metastasis. Although the mechanisms through which age impinges upon the malignant phenotype remain uncharacterized, the role of a senescent microenvironment has been emphasized. We reported previously that human epithelial cells that undergo telomere-driven chromosome instability (T-CIN) display global microRNA (miR) deregulation and develop migration and invasion capacities. Here, we show that post-crisis cells are not able to form tumors unless a senescent microenvironment is provided. The characterization of cell lines established from such tumors revealed that these cells have acquired cell autonomous tumorigenicity, giving rise to heterogeneous tumors. Further experiments demonstrate that explanted cells, while displaying differences in cell differentiation markers, are all endowed of enhanced stem cell properties including self-renewal and multilineage differentiation capacity. Treatments of T-CIN+ cells with senescence-conditioned media induce sphere formation exclusively in cells with senescence-associated tumorigenicity, a capacity that depends on miR-145 repression. These results indicate that the senescent microenvironment, while promoting further transdifferentiations in cells with genome instability, is able to propel the progression of premalignant cells towards a malignant, cell stem-like state.

  9. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis. (United States)

    Yang, Nan; Jiang, Yao; Zhang, Huifeng; Sun, Bo; Hou, Chunying; Zheng, Ji; Liu, Yanyong; Zuo, Pingping


    Lung cancer is the major cause of cancer related lethality worldwide, and metastasis to distant organs is the pivotal cause of death for the vast majority of lung cancer patients. Accumulated evidence indicates that lung cancer stem-like cells (CSLCs) play important roles in metastagenesis, and these circulating CSLCs may be important targets to inhibit the subsequent metastasis. The present study was aimed at establishing CSLC-targeting polylactic acid (PLA) encapsulated docetaxel nanoparticles for antimetastatic therapy. Cyclic binding peptides were screened on CSLCs in vitro and the peptide CVKTPAQSC exhibiting high specific binding ability to pulmonary adenocarcinoma tissue was subsequently conjugated to the nanoparticles loaded with docetaxel (NDTX). Antimetastatic effect of CSLC-targeting nanoparticles loaded with docetaxel (TNDTX) was evaluated in a nude mouse model of liver metastasis. Results showed that, in the absence of targeting peptide, NDTX hardly exhibited any antimetastatic effect. However, TNDTX treatment significantly decreased the metastatic tumor area in the nude mouse liver. Histopathological and serological results also confirmed the antimetastatic efficacy of TNDTX. To our knowledge, this is the first report on establishing a CSLC-based strategy for lung cancer metastatic treatment, and we hope this will offer a potential therapeutic approach for management of metastatic lung cancer.

  10. Autocrine Secretion of Progastrin Promotes the Survival and Self-Renewal of Colon Cancer Stem-like Cells. (United States)

    Giraud, Julie; Failla, Laura M; Pascussi, Jean-Marc; Lagerqvist, Ebba L; Ollier, Jérémy; Finetti, Pascal; Bertucci, François; Ya, Chu; Gasmi, Imène; Bourgaux, Jean-François; Prudhomme, Michel; Mazard, Thibault; Ait-Arsa, Imade; Houhou, Leila; Birnbaum, Daniel; Pélegrin, André; Vincent, Charles; Ryall, James G; Joubert, Dominique; Pannequin, Julie; Hollande, Frédéric


    Subpopulations of cancer stem-like cells (CSC) are thought to drive tumor progression and posttreatment recurrence in multiple solid tumors. However, the mechanisms that maintain stable proportions of self-renewing CSC within heterogeneous tumors under homeostatic conditions remain poorly understood. Progastrin is a secreted peptide that exhibits tumor-forming potential in colorectal cancer, where it regulates pathways known to modulate colon CSC behaviors. In this study, we investigated the role of progastrin in regulating CSC phenotype in advanced colorectal cancer. Progastrin expression and secretion were highly enriched in colon CSC isolated from human colorectal cancer cell lines and colon tumor biopsies. Progastrin expression promoted CSC self-renewal and survival, whereas its depletion by RNA interference-mediated or antibody-mediated strategies altered the homeostatic proportions of CSC cells within heterogeneous colorectal cancer tumors. Progastrin downregulation also decreased the frequency of ALDH(high) cells, impairing their tumor-initiating potential, and inhibited the high glycolytic activity of ALDH(high) CSC to limit their self-renewal capability. Taken together, our results show how colorectal CSC maintain their tumor-initiating and self-renewal capabilities by secreting progastrin, thereby contributing to the tumor microenvironment to support malignancy. Cancer Res; 76(12); 3618-28. ©2016 AACR.

  11. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan


    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  12. Blockade of Rho-associated protein kinase (ROCK) inhibits the contractility and invasion potential of cancer stem like cells. (United States)

    Srinivasan, Srisathya; Ashok, Vandhana; Mohanty, Sagarajit; Das, Alakesh; Das, Sreya; Kumar, Sushant; Sen, Shamik; Purwar, Rahul


    Recent studies have implicated the roles of cancer stem like cells (CSCs) in cancer metastasis. However, very limited knowledge exists at the molecular and cellular level to target CSCs for prevention of cancer metastasis. In this study, we examined the roles of contractile dynamics of CSCs in cell invasion and delineated the underlying molecular mechanisms of their distinct cell invasion potential. Using de-adhesion assay and atomic force microscopy, we show that CSCs derived from melanoma and breast cancer cell lines exhibit increased contractility compared to non-CSCs across all tumor types. In addition, CSCs possess increased ECM remodeling capacity as quantified by collagen degradation assay. More importantly, pharmacological blockade of Rho-associated protein kinase completely abolished the contractility and collagen degradation capacity of both CSCs and non-CSCs. In conclusion, our study demonstrates the importance of cell contractility in regulating invasiveness of CSCs and suggests that pharmacological targeting of ROCK pathway represents a novel strategy for targeting both CSCs and bulk population for the treatment of cancer metastasis.

  13. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. (United States)

    Wei, Ming-Feng; Chen, Min-Wei; Chen, Ke-Cheng; Lou, Pei-Jen; Lin, Susan Yun-Fan; Hung, Shih-Chieh; Hsiao, Michael; Yao, Cheng-Jung; Shieh, Ming-Jium


    Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported. In this study, CSCs were isolated from colorectal cancer cells using PROM1/CD133 (prominin 1) expression, which is a surface marker commonly found on stem cells of various tissues. We demonstrated that PpIX-mediated PDT induced the formation of autophagosomes in PROM1/CD133(+) cells, accompanied by the upregulation of autophagy-related proteins ATG3, ATG5, ATG7, and ATG12. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of the ATG5 gene substantially triggered apoptosis of PROM1/CD133(+) cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. In conclusion, our results revealed a protective role played by autophagy against PDT in CSCs and indicated that targeting autophagy could be used to elevate the PDT sensitivity of CSCs. These findings would aid in the development of novel therapeutic approaches for CSC treatment.

  14. Kinomic and phospho-proteomic analysis of breast cancer stem-like cells

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Christensen, Anne Geske Lindhard; Ehmsen, Sidse

    /CD24-/low compartment of human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. From a triple-negative breast cancer cell line we isolated and cloned CD44hi single-cells that exhibited functional heterogeneity...

  15. Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohishi


    Full Text Available Bladder cancer (BC, the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC and non-muscle-invasive bladder cancer (NMIBC. MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases. Evidence suggests that MIBC comprises a small population of cancer stem cells (CSCs, which may be resistant to these treatments and may be able to form new tumors in the bladder or other organs. Therefore, the unambiguous identification of bladder CSCs and the development of targeted therapies are urgently needed. Nevertheless, it remains unclear where bladder CSCs originate and how they are generated. We review recent studies on bladder CSCs, specifically focusing on their proposed origin and the possible therapeutic options based on the CSC theory.

  16. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Martins-Neves Sara R


    Full Text Available Abstract Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.

  17. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Jennifer L., E-mail:; Krauss, Stefan [Cellular and Genetic Therapy, Department of Microbiology, Cancer Stem Cell Innovation Center (CAST), Oslo University Hospital, Rikshospitalet, Oslo (Norway)


    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics.

  18. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone

    Institute of Scientific and Technical Information of China (English)

    LING Li-jun; WANG Feng; WANG Shui; LIU Xiao-an; SHEN En-chao; DING Qiang; LU Chao; XU Jian; CAO Qin-hong; ZHU Hai-qing


    Background A satisfactory animal model of breast cancer metastasizing to bone is unavailable. In this study, we used human breast cancer stem-like cells and human bone to build a novel "human-source" model of human breast cancer skeletal metastasis.Methods Human breast cancer stem-like cells, the CD44+/CD24-/lower subpopulation, was separated and cultured. Before injection with the stem-like cells, mice were implanted with human bone in the right or left dorsal flanks. Animals in Groups A, B, and C were injected with 1x105, 1x106 human breast cancer stem-like cells, and 1x106 parental MDA-MB-231 cells, respectively. A positive control group (D) without implantation of human bone was also injected with 1x106 MDA-MB-231 cells. Immunohistochemistry was performed for determination of CD34, CD105, smooth muscle antibody, CD44, CD24, cytokine, CXC chemokine receptor-4 (CXCR4), and osteopontin (OPN). mRNA levels of CD44, CD24, CXCR4, and OPN in bone metastasis tissues were analyzed by real-time quantitative polymerase chain reaction (PCR). Results Our results demonstrated that cells in implanted human bones of group B, which received 1x106 cancer stem-like cells, stained strongly positive for CD44, CXCR4, and OPN, whereas those of other groups showed no or minimum staining. Moreover, group B had the highest incidence of human bone metastasis (77.8%, P=0.0230) and no accompaniment of other tissue metastasis. The real-time PCR showed an increase of CD44, CXCR4, and OPN mRNA in metastatic bone tissues in group B compared with those of groups C and D, however the expression of CD24 mRNA in group B were the lowest. Conclusions In the novel "human source" model of breast cancer, breast cancer stem-like cells demonstrated a higher human bone-seeking ability. Its mechanism might be related to the higher expressions of CD44, CXCR4, and OPN, and the lower expression of CD24 in breast cancer stem-like cells.

  19. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E


    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  20. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits. (United States)

    Vyas, Avani R; Moura, Michelle B; Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V


    Preventive and therapeutic efficiencies of dietary sulforaphane (SFN) against human prostate cancer have been demonstrated in vivo, but the underlying mechanism(s) by which this occurs is poorly understood. Here, we show that the prostate cancer stem cell (pCSC)-like traits, such as accelerated activity of aldehyde dehydrogenase 1 (ALDH1), enrichment of CD49f+ fraction, and sphere forming efficiency, are attenuated by SFN treatment. Interestingly, the expression of c-Myc, an oncogenic transcription factor that is frequently deregulated in prostate cancer cells, was markedly suppressed by SFN both in vitro and in vivo. This is biologically relevant, because the lessening of pCSC-like phenotypes mediated by SFN was attenuated when c-Myc was overexpressed. Naturally occurring thio, sulfinyl, and sulfonyl analogs of SFN were also effective in causing suppression of c-Myc protein level. However, basal glycolysis, a basic metabolic pathway that can also be promoted by c-Myc overexpression, was not largely suppressed by SFN, implying that, in addition to c-Myc, there might be another SFN-sensitive cellular factor, which is not directly involved in basal glycolysis, but cooperates with c-Myc to sustain pCSC-like phenotypes. Our study suggests that oncogenic c-Myc is a target of SFN to prevent and eliminate the onset of human prostate cancer. J. Cell. Biochem. 117: 2482-2495, 2016. © 2016 Wiley Periodicals, Inc.

  1. Activation of c-MET induces a Stem-Like phenotype in human prostate cancer

    NARCIS (Netherlands)

    G.J.H.L. Leenders (Geert); R. Sookhlall (Rajesh); W.J. Teubel (Wilma); C.M.A. Ridder (Corrina); S. Reneman (Suzanne); A. Sacchetti (Andrea); K.J. Vissers (Kees); W.M. van Weerden (Wytske); G.W. Jenster (Guido)


    textabstractProstate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model) or represent

  2. Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling. (United States)

    Peng, Dongjun; Tanikawa, Takashi; Li, Wei; Zhao, Lili; Vatan, Linda; Szeliga, Wojciech; Wan, Shanshan; Wei, Shuang; Wang, Yin; Liu, Yan; Staroslawska, Elzbieta; Szubstarski, Franciszek; Rolinski, Jacek; Grywalska, Ewelina; Stanisławek, Andrzej; Polkowski, Wojciech; Kurylcio, Andrzej; Kleer, Celina; Chang, Alfred E; Wicha, Max; Sabel, Michael; Zou, Weiping; Kryczek, Ilona


    Myeloid-derived suppressor cells (MDSC) contribute to immune suppression in cancer, but the mechanisms through which they drive metastatic progression are not fully understood. In this study, we show how MDSC convey stem-like qualities to breast cancer cells that coordinately help enable immune suppression and escape. We found that MDSC promoted tumor formation by enhancing breast cancer cell stem-like properties as well as by suppressing T-cell activation. Mechanistic investigations indicated that these effects relied upon cross-talk between the STAT3 and NOTCH pathways in cancer cells, with MDSC inducing IL6-dependent phosphorylation of STAT3 and activating NOTCH through nitric oxide leading to prolonged STAT3 activation. In clinical specimens of breast cancer, the presence of MDSC correlated with the presence of cancer stem-like cells (CSC) and independently predicted poor survival outcomes. Collectively, our work revealed an immune-associated mechanism that extrinsically confers cancer cell stemness properties and affects patient outcome. We suggest that targeting STAT3-NOTCH cross-talk between MDSC and CSC could offer a unique locus to improve cancer treatment, by coordinately targeting a coupled mechanism that enables cancer stemness and immune escape. Cancer Res; 76(11); 3156-65. ©2016 AACR.

  3. A novel model for evaluating therapies targeting human tumor vasculature and human cancer stem-like cells. (United States)

    Burgos-Ojeda, Daniela; McLean, Karen; Bai, Shoumei; Pulaski, Heather; Gong, Yusong; Silva, Ines; Skorecki, Karl; Tzukerman, Maty; Buckanovich, Ronald J


    Human tumor vessels express tumor vascular markers (TVM), proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately, preclinical in vivo studies testing anti-human TVM therapies have been difficult to do due to a lack of in vivo models with confirmed expression of human TVMs. We therefore evaluated TVM expression in a human embryonic stem cell-derived teratoma (hESCT) tumor model previously shown to have human vessels. We now report that in the presence of tumor cells, hESCT tumor vessels express human TVMs. The addition of mouse embryonic fibroblasts and human tumor endothelial cells significantly increases the number of human tumor vessels. TVM induction is mostly tumor-type-specific with ovarian cancer cells inducing primarily ovarian TVMs, whereas breast cancer cells induce breast cancer specific TVMs. We show the use of this model to test an anti-human specific TVM immunotherapeutics; anti-human Thy1 TVM immunotherapy results in central tumor necrosis and a three-fold reduction in human tumor vascular density. Finally, we tested the ability of the hESCT model, with human tumor vascular niche, to enhance the engraftment rate of primary human ovarian cancer stem-like cells (CSC). ALDH(+) CSC from patients (n = 6) engrafted in hESCT within 4 to 12 weeks whereas none engrafted in the flank. ALDH(-) ovarian cancer cells showed no engraftment in the hESCT or flank (n = 3). Thus, this model represents a useful tool to test anti-human TVM therapy and evaluate in vivo human CSC tumor biology.

  4. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. (United States)

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A


    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.

  5. Notch inhibition suppresses nasopharyngeal carcinoma by depleting cancer stem-like side population cells. (United States)

    Yu, Shudong; Zhang, Ruxin; Liu, Fenye; Wang, Hong; Wu, Jing; Wang, Yanqing


    The cancer stem cell (CSC) is responsible for the initiation, proliferation and radiation resistance. Side population (SP) cells are a rare subset of cells enriched with CSCs. The targeting of key signaling pathways that are active in CSCs is a therapeutic approach to treating cancer. Notch signaling is important for the self-renewal and maintenance of stem cells. Our previous studies demonstrated that downregulation of Notch signaling could enhance radiosensitivity of nasopharyngeal carcinoma (NPC) cells. In this study, we found that Notch signaling was highly activated in SP cells compared with that of non-SP (NSP) cells of NPC. Therefore, Notch inhibition could reduce the proportion of SP cells. As SP cells decreased, proliferation, anti-apoptosis and tumorigenesis were also decreased. This study shows that Notch inhibition may be a promising clinical approach in CSC-targeting therapy for NPC.

  6. Ginsenoside Rh2 Inhibits Cancer Stem-Like Cells in Skin Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Shunli Liu


    Full Text Available Background/Aims: Treatments targeting cancer stem cells (CSCs are most effective cancer therapy, whereas determination of CSCs is challenging. We have recently reported that Lgr5-positive cells are cancer stem cells (CSCs in human skin squamous cell carcinoma (SCC. Ginsenoside Rh2 (GRh2 has been shown to significantly inhibit growth of some types of cancers, whereas its effects on the SCC have not been examined. Methods: Here, we transduced human SCC cells with lentivirus carrying GFP reporter under Lgr5 promoter. The transduced SCC cells were treated with different doses of GRh2, and then analyzed cell viability by CCK-8 assay and MTT assay. The effects of GRh2 on Lgr5-positive CSCs were determined by fow cytometry and by tumor sphere formation. Autophagy-associated protein and β-catenin were measured by Western blot. Expression of short hairpin small interfering RNA (shRNA for Atg7 and β-catenin were used to inhibit autophagy and β-catenin signaling pathway, respectively, as loss-of-function experiments. Results: We found that GRh2 dose-dependently reduced SCC viability, possibly through reduced the number of Lgr5-positive CSCs. GRh2 increased autophagy and reduced β-catenin signaling in SCC cells. Inhibition of autophagy abolished the effects of GRh2 on β-catenin and cell viability, while increasing β-catenin abolished the effects of GRh2 on autophagy and cell viability. Conclusion: Taken together, our data suggest that GRh2 inhibited SCC growth, possibly through reduced the number of Lgr5-positive CSCs. This may be conducted through an interaction between autophagy and β-catenin signaling.

  7. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. (United States)

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke


    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  8. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis (United States)

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik


    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.

  9. The nutritional phenome of EMT-induced cancer stem-like cells (United States)

    Cuyàs, Elisabet; Corominas-Faja, Bruna; Menendez, Javier A.


    The metabolic features of cancer stem (CS) cells and the effects of specific nutrients or metabolites on CS cells remain mostly unexplored. A preliminary study to delineate the nutritional phenome of CS cells exploited the landmark observation that upon experimental induction into an epithelial-to-mesenchymal (EMT) transition, the proportion of CS-like cells drastically increases within a breast cancer cell population. EMT-induced CS-like cells (HMLERshEcad) and isogenic parental cells (HMLERshCntrol) were simultaneously screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput metabolic phenotyping platform comprising >350 wells that were pre-loaded with different carbohydrates/starches, alcohols, fatty acids, ketones, carboxylic acids, amino acids, and bi-amino acids. The generation of “phenetic maps” of the carbon and nitrogen utilization patterns revealed that the acquisition of a CS-like cellular state provided an enhanced ability to utilize additional catabolic fuels, especially under starvation conditions. Crucially, the acquisition of cancer stemness activated a metabolic infrastructure that enabled the vectorial transfer of high-energy nutrients such as glycolysis end products (pyruvate, lactate) and bona fide ketone bodies (β-hydroxybutyrate) from the extracellular microenvironment to support mitochondrial energy production in CS-like cells. Metabolic reprogramming may thus constitute an efficient adaptive strategy through which CS-like cells would rapidly obtain an advantage in hostile conditions such as nutrient starvation following the inhibition of tumor angiogenesis. By understanding how specific nutrients could bioenergetically boost EMT-CS-like phenotypes, “smart foods” or systemic “metabolic nichotherapies” may be tailored to specific nutritional CSC phenomes, whereas high-resolution heavy isotope-labeled nutrient tracking may be developed to monitor the spatiotemporal distribution and

  10. Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1. (United States)

    Francipane, Maria Giovanna; Lagasse, Eric


    Metastatic colorectal cancer (CRC) is incurable for most patients. Since mammalian target of rapamycin (mTOR) has been suggested as a crucial modulator of tumor biology, we aimed at evaluating the effectiveness of mTOR targeting for CRC therapy. To this purpose, we analyzed mTOR expression and the effect of mTOR inhibition in cancer stem-like cells isolated from three human metastatic CRCs (CoCSCs). CoCSCs exhibited a strong mTOR complex 2 (mTORC2) expression, and a rare expression of mTOR complex 1 (mTORC1). This latter correlated with differentiation, being expressed in CoCSC-derived xenografts. We indicate Serum/glucocorticoid-regulated kinase 1 (SGK1) as the possible main mTORC2 effector in CoCSCs, as highlighted by the negative effect on cancer properties following its knockdown. mTOR inhibitors affected CoCSCs differently, resulting in proliferation, autophagy as well as apoptosis induction. The apoptosis-inducing mTOR inhibitor Torin-1 hindered growth, motility, invasion, and survival of CoCSCs in vitro, and suppressed tumor growth in vivo with a concomitant reduction in vessel formation. Torin-1 also affected the expression of markers for cell proliferation, angio-/lympho-genesis, and stemness in vivo, including Ki67, DLL1, DLL4, Notch, Lgr5, and CD44. Importantly, Torin-1 did not affect the survival of normal colon stem cells in vivo, suggesting its selectivity towards cancer cells. Thus, we propose Torin-1 as a powerful drug candidate for metastatic CRC therapy.

  11. Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype. (United States)

    Cufí, Sílvia; Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Martin-Castillo, Begoña; Vellon, Luciano; Menendez, Javier A


    The molecular mechanisms used by breast cancer stem cells (BCSCs) to survive and/or maintain their undifferentiated CD44(+) CD24(-/low ) mesenchymal-like antigenic state remains largely unexplored. Autophagy, a key homeostatic process of cytoplasmic degradation and recycling evolved to respond to stress conditions, might be causally fundamental in the biology of BCSCs. Stable & specific knockdown of autophagy-regulatory genes by lentiviral-delivered small hairpin (sh) RNA drastically decreased the number of JIMT-1 epithelial BC cells bearing CD44(+) CD24(-/low) cell-surface antigens from ~75% in parental and control (-) shRNA-transduced cells to 26% and 7% in ATG8/LC3 shRNA- and ATG12 shRNA-transduced cells, respectively. Autophagy inhibition notably enhanced transcriptional activation of CD24 gene, potentiating the epithelial-like phenotype of CD44(+) CD24(+) cells versus the mesenchymal CD44(+) CD24(-/low ) progeny. EMT-focused Real Time RT-PCR profiling revealed that genetic ablation of autophagy transcriptionally repressed the gene coding for the mesenchymal filament vimentin (VIM). shRNA-driven silencing of the ATG12 gene and disabling the final step in the autophagy pathway by the antimalarial drug chloroquine both prevented TGFb1-induced accumulation of vimentin in JIMT-1 cells. Knockdown of autophagy-specific genes was sufficient also to increase by up to 11-times the number of CD24(+) cells in MDA-MB-231 cells, a BC model of mesenchymal origin that is virtually composed of CD44(+) CD24(-/low ) cells. Chloroquine treatment augmented the number of CD24(+) cells and concomitantly reduced constitutive overexpression of vimentin in MDA-MB-231 cells. This is the first report demonstrating that autophagy is mechanistically linked to the maintenance of tumor cells expressing high levels of CD44 and low levels of CD24, which are typical of BCSCs.

  12. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro. (United States)

    Chen, Xu; Hu, Chuanzhen; Zhang, Weibin; Shen, Yuhui; Wang, Jun; Hu, Fangqiong; Yu, Pei


    Metformin is an oral drug that has been widely used to treat type 2 diabetes mellitus. Interestingly, accumulated evidence indicate that metformin may reduce the risk of cancer in patients with type 2 diabetes and inhibit tumor cell growth and survival in numerous malignancies, including osteosarcoma (OS) cells. In the present study, we aimed to investigate the effects of metformin on the proliferation, migration, invasion, and sphere formation in OS MG63 cells in vitro. Metformin suppressed OS MG63 cell proliferation in a dose- and time-dependent manner and markedly blocked anti-metastatic potentials, migration, and invasion, by downregulating matrix metalloproteinase 2 (MMP2) and MMP9. Besides, we established OS cancer stem-like cell (CSC) model with sarcosphere formation assay and demonstrated that metformin posed damage on CSCs in OS by inhibiting sphere formation and by inducing their stemness loss. The stemness of CSCs in OS such as self-renewal and differentiation potentials was both impaired with a significant decrease of Oct-4 and Nanog activation. Consistent with this, the positive rates of CD90, CD133, and stage-specific embryonic antigen-4 (SSEA-4) were all observed with reductions in response to metformin exposure. In addition, Western blot showed that metformin activated AMPKα at Tyr172, followed by a downregulated phosphorylation of mammalian target of rapamycin (mTOR)/S6 and feedback activation of p-AKT Ser(473) in both OS MG63 cells and CSCs. This indicates that AMPK/mTOR/S6 signaling pathway might be involved in the growth inhibition of both OS MG63 cells and CSCs. These results suggest that metformin, a potential anti-neoplastic agent, might make it a novel therapeutic choice for the treatment of OS in the future.

  13. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    Directory of Open Access Journals (Sweden)

    Sarah E Mathis

    Full Text Available Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID, which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1 and a 5-month female (patient 2, affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity

  14. γ-Secretase Inhibitor, DAPT Inhibits Self-renewal and Stemness Maintenance of Ovarian Cancer Stem-like Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    Li-yu Jiang; Xiao-lei Zhang; Ping Du; Jian-hua Zheng


    Objective: The Notch signaling pathway plays an important role in the stem cell signaling network and contributes to tumorigenesis. However, the functions of Notch signaling in ovarian cancer stem cells (OCSCs) are not well understood. We aimed to investigate the effects of Notch blockade on self-renewal and stemness maintenance of OCSCs. Methods: Ovarian cancer stem-like cells were enriched from ovarian cancer cell lines in serum-free medium. A y-secretase inhibitor, (DAPT), was used to block Notch signaling. MTT assays were performed to assess self-renewal and proliferation inhibition, flow cytometry was performed to analyze cell surface marker and immunofluorescence,Western Blot and Real-time RT-PCR assays were performed to detect Oct4 and Sox2 protein and mRNA expression of the Ovarian cancer stem-like cells treated with DAPT. Results: Notch blockade markedly inhibits self-renewal and proliferation of ovarian cancer stem-like cells,significantly downregulates the expression of OCSCs-specific surface markers, and reduces protein and mRNA expression of Oct4 and Sox2 in OCSC-like cells. Conclusion: Our results suggest that Notch signaling is not only critical for the self-renewal and proliferation of OCSCs, but also for the stemness maintenance of OCSCs. The γ-secretase inhibitor is a promising treatment targeting OCSCs.

  15. In vitro identification and characterization of CD133(pos cancer stem-like cells in anaplastic thyroid carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Giovanni Zito

    they might represent putative thyroid cancer stem-like cells. Our in vitro findings might provide new insights for novel therapeutic approaches.

  16. Analysis of microRNA expression in canine mammary cancer stem-like cells indicates epigenetic regulation of transforming growth factor-beta signaling. (United States)

    Rybicka, A; Mucha, J; Majchrzak, K; Taciak, B; Hellmen, E; Motyl, T; Krol, M


    Cancer stem cells (CSCs) display both unique self-renewal ability as well as the ability to differentiate into many kinds of cancer cells. They are supposed to be responsible for cancer initiation, recurrence and drug resistance. Despite the fact that a variety of methods are currently employed in order to target CSCs, little is known about the regulation of their phenotype and biology by miRNAs. The aim of our study was to assess miRNA expression in canine mammary cancer stem-like cells (expressing stem cell antigen 1, Sca-1; CD44 and EpCAM) sorted from canine mammary tumour cell lines (CMT-U27, CMT-309 and P114). In order to prove their stem-like phenotype, we conducted a colony formation assay that confirmed their ability to form colonies from a single cell. Profiles of miRNA expression were investigated using Agilent custom-designed microarrays. The results were further validated by real-time rt-PCR analysis of expression of randomly selected miRNAs. Target genes were indicated and analysed using Kioto Encyclopedia of Genes and Genomes (KEGG) and BioCarta databases. The results revealed 24 down-regulated and nine up-regulated miRNAs in cancer stem-like cells compared to differentiated tumour cells. According to KEGG and BioCarta databases, target genes (n=240) of significantly down-regulated miRNAs were involved in transforming growth factor-beta signaling, mitogen-activated protein kinases (MAPK) signaling pathway, anaplastic lymphoma receptor tyrosine kinase (ALK) and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A) pathways. The analysis of single-gene overlapping with different pathways showed that the most important genes were: TGFBR1, TGFBR2, SOS1, CHUK, PDGFRA, SMAD2, MEF2A, MEF2C and MEF2D. All of them are involved in tumor necrosis factor-beta signaling and may indicate its important role in cancer stem cell biology. Increased expression of TGFBR2, SMAD2, MEF2A and MEF2D in canine mammary cancer stem-like cells was further

  17. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ping, Yu; Liu, Shasha [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); School of Life Sciences, Zhengzhou University, Zhengzhou 450000 (China); Shi, Xiaojuan; Li, Lifeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Liping [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Huang, Lan [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Zhang, Bin [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Sun, Yan [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences (China); and others


    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  18. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Singh Sandeep


    Full Text Available Abstract Background Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs, Hoechst 33342 dye effluxing side population (SP cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. Results SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549, as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Conclusions Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of

  19. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar


    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  20. p38γ MAPK Is a Therapeutic Target for Triple-Negative Breast Cancer by Stimulation of Cancer Stem-Like Cell Expansion. (United States)

    Qi, Xiaomei; Yin, Ning; Ma, Shao; Lepp, Adrienne; Tang, Jun; Jing, Weiqing; Johnson, Bryon; Dwinell, Michael B; Chitambar, Christopher R; Chen, Guan


    Triple-negative breast cancer (TNBC) is highly progressive and lacks established therapeutic targets. p38γ mitogen-activated protein kinase (MAPK) (gene name: MAPK12) is overexpressed in TNBC but how overexpressed p38γ contributes to TNBC remains unknown. Here, we show that p38γ activation promotes TNBC development and progression by stimulating cancer stem-like cell (CSC) expansion and may serve as a novel therapeutic target. p38γ silencing in TNBC cells reduces mammosphere formation and decreases expression levels of CSC drivers including Nanog, Oct3/4, and Sox2. Moreover, p38γ MAPK-forced expression alone is sufficient to stimulate CSC expansion and to induce epithelial cell transformation in vitro and in vivo. Furthermore, p38γ depends on its activity to stimulate CSC expansion and breast cancer progression, indicating a therapeutic opportunity by application of its pharmacological inhibitor. Indeed, the non-toxic p38γ specific pharmacological inhibitor pirfenidone selectively inhibits TNBC growth in vitro and/or in vivo and significantly decreases the CSC population. Mechanistically, p38γ stimulates Nanog transcription through c-Jun/AP-1 via a multi-protein complex formation. These results together demonstrate that p38γ can drive TNBC development and progression and may be a novel therapeutic target for TNBC by stimulating CSC expansion. Inhibiting p38γ activity with pirfenidone may be a novel strategy for the treatment of TNBC.

  1. Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells


    Wang, Dan; Upadhyaya, Bijaya; Liu, Yi; Knudsen, David; Dey, Moul


    Background The cytokine TRAIL (tumor necrotic factor-related apoptosis-inducing ligand) selectively induces apoptosis in cancer cells, but cancer stem cells (CSCs) that contribute to cancer-recurrence are frequently TRAIL-resistant. Here we examined hitherto unknown effects of the dietary anti-carcinogenic compound phenethyl isothiocyanate (PEITC) on attenuation of proliferation and tumorigenicity and on up regulation of death receptors and apoptosis in human cervical CSC. Methods Cancer stem...

  2. Brain Cancer Stem Cells: Current Status on Glioblastoma Multiforme



    Glioblastoma multiforme (GBM), an aggressive brain tumor of astrocytic/neural stem cell origin, represents one of the most incurable cancers. GBM tumors are highly heterogeneous. However, most tumors contain a subpopulation of cells that display neural stem cell characteristics in vitro and that can generate a new brain tumor upon transplantation in mice. Hence, previously identified molecular pathways regulating neural stem cell biology were found to represent the cornerstone of GBM stem cel...

  3. The Low Chamber Pancreatic Cancer Cells Had Stem-Like Characteristics in Modified Transwell System: Is It a Novel Method to Identify and Enrich Cancer Stem-Like Cells?

    Directory of Open Access Journals (Sweden)

    Dongqing Wang


    Full Text Available Cancer stem cells (CSCs or cancer-initiating cells (CICs play an important role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. It is important to construct an effective method to identify and isolate CSCs for biotherapy of cancer. During the past years, many researchers had paid more attention to it; however, this method was still on seeking. Therefore, compared to the former methods that were used to isolate the cancer stem cell, in the present study, we tried to use modified transwell system to isolate and enrich CSCs from human pancreatic cancer cell lines (Panc-1. Our results clearly showed that the lower chamber cells in modified transwell system were easily forming spheres; furthermore, these spheres expressed high levels of stem cell markers (CD133/CD44/CD24/Oct-4/ESA and exhibited chemoresistance, underwent epithelial-to-mesenchymal transition (EMT, and possessed the properties of self-renewal in vitro and tumorigenicity in vivo. Therefore, we speculated that modified transwell assay system, as a rapid and effective method, can be used to isolate and enrich CSCs.

  4. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist.

    Directory of Open Access Journals (Sweden)

    Gérald J Prud'homme

    Full Text Available BACKGROUND: Cancer stem cells (CSCs have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH. CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs. METHODOLOGY/FINDINGS: We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231 mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation. It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast

  5. Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature.

    Directory of Open Access Journals (Sweden)

    Martin P Barr

    Full Text Available INTRODUCTION: Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC. Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. METHODS: An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460. Over a period of twelve months, cisplatin resistant (CisR cell lines were derived from original, age-matched parent cells (PT and subsequently characterized. Proliferation (MTT and clonogenic survival assays (crystal violet were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX and cellular platinum uptake (ICP-MS was also assessed. RESULTS: Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. CONCLUSION: Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like

  6. GP73-regulated oncolytic adenoviruses possess potent killing effect on human liver cancer stem-like cells (United States)

    Zhang, Rong; Ma, Buyun; Liu, Tao; Yang, Yu; Xie, Wenjie; Liu, Xianglei; Huang, Fang; Liu, Tao; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang


    Cancer stem cells (CSCs), also known as tumor-initiating cells, are highly metastatic, chemo-resistant and tumorigenic, and are critical for cancer development, maintenance and recurrence. Oncolytic adenovirus could targetedly kill CSCs and has been acted as a promising anticancer agent. Currently, a novel GP73-regulated oncolytic adenovirus GD55 was constructed to specifically treat liver cancer and exhibited obvious cytotoxicity effect. However, there remains to be confirmed that whether GD55 could effectively eliminate liver CSCs. We first utilized the suspension culture to enrich the liver CSCs-like cells, which acquires the properties of liver CSCs in self-renewal, differentiation, quiescence, chemo-resistance and tumorigenicity. The results indicated that GD55 elicited more significant cytotoxicity and stronger oncolytic effect in liver CSC-like cells compared to common oncolytic virus ZD55. Additionally, GD55 possessed the greater efficacy in suppressing the growth of implanted tumors derived from liver CSC-like cells than ZD55. Furthermore, GD55 induced remarkable apoptosis of liver CSC-like cells in vitro and in vivo, and inhibited the propogation of cells and angiogenesis in xenograft tumor tissues. Thus, GD55 may virtually represent an attractive therapeutic agent for targeting liver CSCs to achieve better clinical outcomes for HCC patients. PMID:27121064

  7. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Judy [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada); Tang, Damu, E-mail: [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada)


    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.

  8. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway. (United States)

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun; Cho, Youngkwan; Oh, Eunhye; Seo, Jae Hong


    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27(kip1) nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4 and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs.

  9. Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: Enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells. (United States)

    Huang, Wei-Ting; Larsson, Mikael; Lee, Yi-Chi; Liu, Dean-Mo; Chiou, Guang-Yuh


    Lung cancer kills more humans than any other cancer and multidrug resistance (MDR) in cancer stem-like cells (CSC) is emerging as a reason for failed treatments. One concept that addresses this root cause of treatment failure is the utilization of nanoparticles to simultaneously deliver dual drugs to cancer cells with synergistic performance, easy to envision - hard to achieve. (1) It is challenging to simultaneously load drugs of highly different physicochemical properties into one nanoparticle, (2) release kinetics may differ between drugs and (3) general requirements for biomedical nanoparticles apply. Here self-assembled nanoparticles of amphiphilic carboxymethyl-hexanoyl chitosan (CHC) were shown to present nano-microenvironments enabling simultaneous loading of hydrophilic and hydrophobic drugs. This was expanded into a dual-drug nano-delivery system to treat lung CSC. CHC nanoparticles were loaded/chemically modified with the anticancer drug cisplatin and the MDR-suppressing Chinese herbal extract demethoxycurcumin, followed by biofunctionalization with CD133 antibody for enhanced uptake by lung CSC, all in a feasible one-pot preparation. The nanoparticles were characterized with regard to chemistry, size, zeta potential and drug loading/release. Biofunctionalized and non-functionalized nanoparticles were investigated for uptake by lung CSC. Subsequently the cytotoxicity of single and dual drugs, free in solution or in nanoparticles, was evaluated against lung CSC at different doses. From the dose response at different concentrations the degree of synergy was determined through Chou-Talalay's Plot. The biofunctionalized nanoparticles promoted synergistic effects between the drugs and were highly effective against MDR lung CSC. The efficacy and feasible one-pot preparation suggests preclinical studies using relevant disease models to be justified.

  10. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. (United States)

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno


    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.

  11. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells. (United States)

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik


    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by

  12. Glioblastoma cancer stem cells: Biomarker and therapeutic advances. (United States)

    Pointer, Kelli B; Clark, Paul A; Zorniak, Michael; Alrfaei, Bahauddeen M; Kuo, John S


    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in humans. It accounts for fifty-two percent of primary brain malignancies in the United States and twenty percent of all primary intracranial tumors. Despite the current standard therapies of maximal safe surgical resection followed by temozolomide and radiotherapy, the median patient survival is still less than 2 years due to inevitable tumor recurrence. Glioblastoma cancer stem cells (GSCs) are a subgroup of tumor cells that are radiation and chemotherapy resistant and likely contribute to rapid tumor recurrence. In order to gain a better understanding of the many GBM-associated mutations, analysis of the GBM cancer genome is on-going; however, innovative strategies to target GSCs and overcome tumor resistance are needed to improve patient survival. Cancer stem cell biology studies reveal basic understandings of GSC resistance patterns and therapeutic responses. Membrane proteomics using phage and yeast display libraries provides a method to identify novel antibodies and surface antigens to better recognize, isolate, and target GSCs. Altogether, basic GBM and GSC genetics and proteomics studies combined with strategies to discover GSC-targeting agents could lead to novel treatments that significantly improve patient survival and quality of life.

  13. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. (United States)

    Hovinga, Koos E; Shimizu, Fumiko; Wang, Rong; Panagiotakos, Georgia; Van Der Heijden, Maartje; Moayedpardazi, Hamideh; Correia, Ana Sofia; Soulet, Denis; Major, Tamara; Menon, Jayanthi; Tabar, Viviane


    Glioblastoma multiforme (GBM) is a highly heterogeneous malignant tumor. Recent data suggests the presence of a hierarchical organization within the GBM cell population that involves cancer cells with stem-like behavior, capable of repopulating the tumor and contributing to its resistance to therapy. Tumor stem cells are thought to reside within a vascular niche that provides structural and functional support. However, most GBM studies involve isolated tumor cells grown under various culture conditions. Here, we use a novel three-dimensional organotypic "explant" system of surgical GBM specimens that preserves cytoarchitecture and tumor stroma along with tumor cells. Notch inhibition in explants results in decreased proliferation and self-renewal of tumor cells but is also associated with a decrease in endothelial cells. When endothelial cells are selectively eliminated from the explants via a toxin conjugate, we also observed a decrease in self-renewal of tumor stem cells. These findings support a critical role for tumor endothelial cells in GBM stem cell maintenance, mediated at least in part by Notch signaling. The explant system further highlighted differences in the response to radiation between explants and isolated tumor neurospheres. Combination treatment with Notch blockade and radiation resulted in a substantial decrease in proliferation and in self-renewal in tumor explants while radiation alone was less effective. This data suggests that the Notch pathway plays a critical role in linking angiogenesis and cancer stem cell self-renewal and is thus a potential therapeutic target. Three-dimensional explant systems provide a novel approach for the study of tumor and microenvironment interactions.

  14. Synergistic inhibition of characteristics of liver cancer stem-like cells with a combination of sorafenib and 8-bromo-7-methoxychrysin in SMMC-7721 cell line. (United States)

    Zou, Hui; Cao, Xiaozheng; Xiao, Qiao; Sheng, Xifeng; Ren, Kaiqun; Quan, Meifang; Song, Zhengwei; Li, Duo; Zheng, Yu; Zeng, Wenbin; Cao, Jianguo; Peng, Yaojin


    Sorafenib, a multi-kinase inhibitor, has shown its promising antitumor effect in a series of clinical trials, and has been approved as the current standard treatment for advanced hepatocellular carcinoma (HCC). 8-Bromo‑7-methoxychrysin (BrMC) is a novel chrysin synthetic analogue that has been reported to inhibit the growth of various tumor cells and possess properties for targeting liver cancer stem cells (LCSCs) . The present study investigated the synergistic targeting effects on the properties of liver cancer stem-like cells (LCSLCs) by a combination of sorafenib and BrMC in SMMC-7721 cell line. We also investigated whether this effect involves regulation of HIF-1α, Twist and NF-κB protein. We found that the sphere-forming cells (SFCs) from the SMMC‑7721 cells possessed the properties of LCSLCs. Sorafenib diminished the self-renewal capacity and downregulated the expression of stem cell biomarkers (CD133, CD44 and ALDH1) in a dose-dependent manner, while BrMC cooperated with sorafenib to strengthen this inhibition. Moreover, the combination of sorafenib and BrMC led to a remarkable decrease in the cellular migration and invasion, the downregulation of N-cadherin protein and upregulation of E-cadherin protein, and increase of cell apoptosis in LCSLCs. BrMC has a remarkable antagonistic effect on the upregulation of protein expression and DNA binding activity of NF-κB (p65) induced by sorafenib. In addition, our results indicated that the synergistic inhibition of sorafenib and BrMC on the characteristics of LCSLCs involves the downregulated expression of HIF-1α and EMT regulator Twist1. Collectively, the combination therapy of sorafenib and BrMC could be a new and promising therapeutic approach in the treatment of HCC.

  15. The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells. (United States)

    Ying, Jin; Tsujii, Masahiko; Kondo, Jumpei; Hayashi, Yoshito; Kato, Motohiko; Akasaka, Tomofumi; Inoue, Takuta; Shiraishi, Eri; Inoue, Tahahiro; Hiyama, Satoshi; Tsujii, Yoshiki; Maekawa, Akira; Kawai, Shoichiro; Fujinaga, Tetsuji; Araki, Maekawa; Shinzaki, Shinichiro; Watabe, Kenji; Nishida, Tsutomu; Iijima, Hideki; Takehara, Tetsuo


    Recent studies have demonstrated that cancer stem cells (CSCs) can initiate and sustain tumor growth and exhibit resistance to clinical cytotoxic therapies. Therefore, CSCs represent the main target of anticancer therapy. Interleukin-6 (IL-6) promotes cellular proliferation and drug resistance in colorectal cancer, and its serum levels correlate with patient survival. Therefore, IL-6 and its downstream signaling molecule the signal transducer and activator of transcription-3 (STAT3) represent potential molecular targets. In the present study, we investigated the effects of IL-6 and its downstream signaling components on stem cell biology, particularly the chemoresistance of CSCs, to explore potential molecular targets for cancer therapy. The colon cancer cell line WiDr was cultured in serum-free, non-adherent, and three-dimensional spheroid-forming conditions to enrich the stem cell-like population. Spheroid-forming cells slowly proliferated and expressed high levels of Oct-4, Klf4, Bmi-1, Lgr5, IL-6, and Notch 3 compared with adherent cells. Treatment with an anti-human IL-6 receptor monoclonal antibody reduced spheroid formation, stem cell-related gene expression, and 5-fluorouracil (5-FU) resistance. In addition, IL-6 treatment enhanced the levels of p-STAT3 (Tyr705), the expression of Oct-4, Klf4, Lgr5, and Notch 3, and chemoresistance to 5-FU. siRNA targeting Notch 3 suppressed spheroid formation, Oct-4 and Lgr5 expression, and 5-FU chemoresistance, whereas STAT3 inhibition enhanced Oct-4, Klf4, Lgr5, and Notch 3 expression and 5-FU chemoresistance along with reduced spheroid growth. Taken together, these results indicate that IL-6 functions in dichotomous pathways involving Notch 3 induction and STAT3 activation. The former pathway is involved in cancer stem-like cell biology and enhanced chemoresistance, and the latter pathway leads to accelerated proliferation and reduced chemoresistance. Thus, an anti-human IL-6 receptor monoclonal antibody or Notch 3

  16. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A


    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like “dirty” drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a “global” targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C

  17. Inhibition of Sonic Hedgehog Signaling Pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-Stem-Like Population and Sphere-Forming Capacity in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Na Yang


    Full Text Available Background/Aim: Triple-negative breast cancer (TNBC represents a particular clinical challenge because these cancers do not respond to endocrine therapy or other available targeted agents. The lack of effective agents and obvious targets are major challenges in treating TNBC. In this study we explored the cytostatic effect of thiazole ring containing antibiotic drug thiostrepton on TNBC cell lines and investigated the molecular mechanism. Methods: Cell viability was measured by MTT assay. Cell surface marker was monitored by FCM. Western blot was applied to assess the protein expression levels of target genes. Results: We found that thiostrepton remarkably suppressed the CD44+/CD24- stem-like population and sphere forming capacity of TNBC cell lines. Notably, we showed for the first time that thiostrepton exerted its pharmacological action by targeting sonic hedgehog (SHH signaling pathway. Thiostrepton repressed SHH ligand expression and reduced Gli-1 nuclear localization in TNBC cell line. Furthermore, the downstream target of SHH signaling undergone dose-dependent, rapid, and sustained loss of mRNA transcript level after thiostrepton treatment. Finally, we showed that SHH ligand was essential for maintaining CD44+/CD24- stem-like population in TNBC cell line. Conclusion: We conclude that thiostrepton suppresses the CD44+/CD24- stem-like population through inhibition of SHH signaling pathway. Our results give a new insight into the mechanism of thiostrepton anti-tumor activity and suggest thiostrepton as a promising agent that targets hedgehog signaling pathway in TNBC.

  18. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)


    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  19. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma. (United States)

    Geng, Songmei; Guo, Yuanyuan; Wang, Qianqian; Li, Lan; Wang, Jianli


    Increasing evidences have indicated that only a phenotypic subset of cancer cells, termed as the cancer stem cells (CSCs), is capable of initiating tumor growth and provide a reservoir of cells that cause tumor recurrence after therapy. Epithelial-mesenchymal transition (EMT), a cell type change from an epithelial cobblestone phenotype to an elongated fibroblastic phenotype, plays a critical role not only in tumor metastasis but also in tumor recurrence and contributes to drug resistance. Accumulating evidence has shown that cells with an EMT phenotype are rich sources for CSCs, suggesting a biological link between EMT and CSCs; thus study on the link will help understand the cellular and molecular mechanisms of tumor metastasis and drug resistance. CD29 is involved in EMT through cross-talk with cadherins and CD44 has been reported as a successful used marker for CSCs. Here, we try to address whether combination of CD29 and CD44 could be used to identify cancer stem-like cells undergoing EMT in squamous cell carcinoma (SCC) and compare the molecular differences between CD29high/CD44high and CD29low/CD44low cells in SCC. Expression pattern of CD29 and CD44 was analyzed in tissues of skin SCC and cultured A431 cells by immunostaining. Subtype cells of CD29high/CD44high and CD29low/CD44low A431 were sorted by fluorescence-activated cell sorting and proliferating abilities were assayed by cell counting, colony forming and tumorigenicity in NOD/SCID mice. Finally, to probe more deeply into the molecular differences between CD29high/CD44high and CD29low/CD44low A431 cells, gene microarray analysis was applied to compare gene expression profiling. Staining of CD29 and CD44 showed similar heterogeneous expression pattern with positive cells located in the invasion front of SCC tissue as well as in cultured A431 cells. Sorted CD29high/CD44high A431 cells had higher proliferating ability in vitro and in NOD/SCID mice as compared with CD29low/CD44low cells. Gene profiling

  20. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer (United States)

    Mariya, Tasuku; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Tabuchi, Yuta; Asano, Takuya; Saijo, Hiroshi; Kuroda, Takafumi; Yasuda, Kazuyo; Mizuuchi, Masahito; Saito, Tsuyoshi; Sato, Noriyuki


    Epithelial ovarian cancer (EOC) is one of the most lethal cancers in females. Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) have been reported to be origin of primary and recurrent cancers and to be resistant to several treatments. In this study, we identified matrix metalloproteinase-10 (MMP10) is expressed in CSCs/CICs of EOC. An immunohistochemical study revealed that a high expression level of MMP10 is a marker for poor prognosis and platinum resistance in multivariate analysis. MMP10 gene overexpression experiments and MMP10 gene knockdown experiments using siRNAs revealed that MMP10 has a role in the maintenance of CSCs/CICs in EOC and resistance to platinum reagent. Furthermore, MMP10 activate canonical Wnt signaling by inhibiting noncanonical Wnt signaling ligand Wnt5a. Therefore, MMP10 is a novel marker for CSCs/CICs in EOC and that targeting MMP10 is a novel promising approach for chemotherapy-resistant CSCs/CICs in EOC. PMID:27072580

  1. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im


    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  2. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties (United States)

    Im, Chang-Nim; Yun, Hye Hyeon; Lee, Jeong-Hwa


    Heat shock factor 1 (HSF1), a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2) interacting cell death suppressor (BIS). HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs). In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP)-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY)-box 2 (SOX2) expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2) activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ) treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose) polymerase (PARP) cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment. PMID:28241425

  3. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy. (United States)

    Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping


    The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.

  4. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lee

    Full Text Available Poly (ADP-ribose polymerase-1 (PARP-1 and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60 in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.

  5. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway (United States)

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A


    Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg’s theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka’s stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR—the master switch of cellular catabolism and anabolism—in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1–60, and TRA-1–81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44+ and ALDEFLUOR-stained ALDHbright cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic α 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep

  6. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells (United States)

    Liu, P; Kumar, I S; Brown, S; Kannappan, V; Tawari, P E; Tang, J Z; Jiang, W; Armesilla, A L; Darling, J L; Wang, W


    Background: Triple-negative breast cancer (TNBC) has significantly worse prognosis. Acquired chemoresistance remains the major cause of therapeutic failure of TNBC. In clinic, the relapsed TNBC is commonly pan-resistant to various drugs with completely different resistant mechanisms. Investigation of the mechanisms and development of new drugs to target pan-chemoresistance will potentially improve the therapeutic outcomes of TNBC patients. Methods: In this study, 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI)–isobologram, western blot, ALDEFLUOR analysis, clonogenic assay and immunocytochemistry were used. Results: The chemoresistant MDA-MB-231PAC10 cells are highly cross-resistant to paclitaxel (PAC), cisplatin (CDDP), docetaxel and doxorubicin. The MDA-MB-231PAC10 cells are quiescent with significantly longer doubling time (64.9 vs 31.7 h). This may be caused by high expression of p21Waf1. The MDA-MB-231PAC10 cells express high aldehyde dehydrogenase (ALDH) activity and a panel of embryonic stem cell-related proteins, for example, Oct4, Sox2, Nanog and nuclealisation of HIF2α and NF-κBp65. We have previously reported that disulfiram (DS), an antialcoholism drug, targets cancer stem cells (CSCs) and enhances cytotoxicity of anticancer drugs. Disulfiram abolished CSC characters and completely reversed PAC and CDDP resistance in MDA-MB-231PAC10 cells. Conclusion: Cancer stem cells may be responsible for acquired pan-chemoresistance. As a drug used in clinic, DS may be repurposed as a CSC inhibitor to reverse the acquired pan-chemoresistance. PMID:24008666

  7. Chemoirradiation for glioblastoma multiforme: the national cancer institute experience.

    Directory of Open Access Journals (Sweden)

    Jennifer Ho

    Full Text Available PURPOSE: Standard treatment for glioblastoma (GBM is surgery followed by radiation (RT and temozolomide (TMZ. While there is variability in survival based on several established prognostic factors, the prognostic utility of other factors such as tumor size and location are not well established. EXPERIMENTAL DESIGN: The charts of ninety two patients with GBM treated with RT at the National Cancer Institute (NCI between 1998 and 2012 were retrospectively reviewed. Most patients received RT with concurrent and adjuvant TMZ. Topographic locations were classified using preoperative imaging. Gross tumor volumes were contoured using treatment planning systems utilizing both pre-operative and post-operative MR imaging. RESULTS: At a median follow-up of 18.7 months, the median overall survival (OS and progression-free survival (PFS for all patients was 17.9 and 7.6 months. Patients with the smallest tumors had a median OS of 52.3 months compared to 16.3 months among patients with the largest tumors, P = 0.006. The patients who received bevacizumab after recurrence had a median OS of 23.3 months, compared to 16.3 months in patients who did not receive it, P = 0.0284. The median PFS and OS in patients with periventricular tumors was 5.7 and 17.5 months, versus 8.9 and 23.3 months in patients with non-periventricular tumors, P = 0.005. CONCLUSIONS: Survival in our cohort was comparable to the outcome of the defining EORTC-NCIC trial establishing the use of RT+TMZ. This study also identifies several potential prognostic factors that may be useful in stratifying patients.

  8. Transforming growth factor-β1 regulates epithelial-mesenchymal transition in association with cancer stem-like cells in a breast cancer cell line. (United States)

    Jia, Yongfeng; Wu, Di; Yun, Fen; Shi, Lin; Luo, Nianrong; Liu, Zhiyue; Shi, Yonghong; Sun, Qinnuan; Jiang, Lili; Wang, Shiqi; Du, Maolin


    Epithelial-mesenchymal transition (EMT) is associated with altered connection and junctions between cells and changes in abilities of invasion and migration. In this study, we investigated whether SK-BR-3 breast cancer cells induced to undergo EMT exhibit changes in morphological and invasion abilities after Transforming growth factor β1 (TGF-β1) treatment. Serum-deprived SK-BR-3 cells were treated with TGF-β1 (0, 10 ng/mL) for 24 h. The cells morphological changes were observed and imaged using inverted phase contrast microscope. Scratch experiment and invasion experiment were employed to detect changes of invasion ability, cell-flow experiment was used to assess cell cycle, immunohistochemistry technique was used to detect epithelial and mesenchymal markers after the crawling cells were fixed. Our research reveal that SK-BR-3 cells become larger and more messy, the elongated cells extend pseudopodia, the link of the cells became more loosely and cell gap widened after TGF-β1 treatment. SK-BR-3 cells showed faster growing and improved invasion abilities after TGF-β1 treatment, and reduced G1 phase cells proportion in the total number of cells after the conversion, in contrast the S phase cells accounted for the proportion of the total number of cells increased. These findings indicate that TGF-β1-induced EMT in breast cancer cells may be associated with major alterations in morphological and invasion abilities.

  9. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina


    on their resemblance to normal neural stem cells (NSC) and their tumorigenic potential. Like for NSC, the epidermal growth factor receptor (EGFR) and Notch receptor signaling pathways are believed to be important for the maintenance of bCSC. These pathways as such present promising targets in a future anti-bCSC GBM...... treatment. The overall aim of the present PhD project has been to study the functional role of EGFR and Notch activity in bCSCs stem cell-like features and tumorigenic potential with the purpose of deepen our knowledge about the significance of these pathways in the bCSC population in GBM. By establishing...... and culturing human derived GBM xenograft cells under NSC conditions we obtained neurosphere cultures that contained cells with stem cell-like and tumorigenic properties. We moreover characterized the different cultures based on their expression level of the EGFR and Notch receptor as well as the expression...

  10. Analysis of cancer stem like cell characteristic in MKN-45 side population%MKN-45侧群细胞的肿瘤干细胞干性特征分析

    Institute of Scientific and Technical Information of China (English)


    Objective We tried to ascertain gastric cancer cell line MKN-45 contain SP cells, and learned about wether gastric cancer SP cells possess cancer stem-like characteristic. Method We used fluorescence activated cell sorting (FACS) to sort SP cells in human gastric carcinoma (GC) cell line MKN-45 cells labeled with Hoechst 33342, and then characterized the cancer stem-like properties of SP cells. Result The SP cells had higher clone formation efficiency than major population (MP) cells. Five stemness–related genes expression profiles, including OCT-4, SOX-2, NANOG, CD44 and ATP-binding cassette transporters gene ABCG-2, were tested in SP and MP cells using quantitative real-time RT-PCR. Western blot was chosen to show the difference of protein expression between SP and MP cells. Both results showed that there was significantly higher expression in SP cells than in MP cells. When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, SP cells showed higher tumorigenesis tendency than MP cells. Conclusion SP cells possess cancer stem cell properties and proved that SP cells from MKN-45 were gastric cancer stem-like cells.%  目的探讨胃癌细胞系中是否存在SP细胞及SP细胞的生物学特征。方法采用荧光活化的细胞分选技术(FACS)从胃癌MKN-45细胞株获得SP细胞,进而分析这些SP细胞有无肿瘤干细胞特性;采用实时定量的RT-PCR检测5个干性相关基因OCT-4, SOX-2, NANOG, CD44和ABCG-2的mRNA在SP和MP 细胞中的表达水平,并进行统计学差异分析。结果发现二者之间具有显著差异。进一步使用蛋白印迹法(Western blot)定性分析发现:5个干性相关基因在SP和MP细胞中的蛋白表达水平亦有差异;体内实验结果显示,当SP细胞和MP细胞注射非糖尿病联合重度免疫缺陷(NOD/SCID)的小鼠,SP 细胞较MP细胞具有更强的成瘤性。结论综合分析本实验相关结果,可以推测SP细胞具有

  11. Cancer quasispecies and stem-like adaptive aneuploidy [v1; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Domenico Napoletani


    Full Text Available In this paper we develop a theoretical frame to understand self-regulation of aneuploidy rate in cancer and stem cells. This is accomplished building upon quasispecies theory, by leaving its formal mathematical structure intact, but by drastically changing the meaning of its objects. In particular, we propose a novel definition of chromosomal master sequence, as a sequence of physically distinct whole or fragmented chromosomes, whose length is taken to be the sum of the copy numbers of each whole or fragmented chromosome. This fundamental change in the functional objects of quasispecies theory allows us to show that previously measured aneuploidy rates in cancer populations are already close to a formally derived aneuploid error threshold, and that any value of aneuploidy rate larger than the aneuploid error threshold would lead to a loss of fitness of a tumor population. Finally, we make a phenomenological analysis of existing experimental evidence to argue that single clone cancer cells, derived from an aneuploid cancer subpopulation, are capable of self-regulating their aneuploidy rate and of adapting it to distinct environments, namely primary and metastatic microenvironments. We also discuss the potential origin of this self-regulatory ability in the wider context of developmental and comparative biology and we hypothesize the existence of a diversification factor, i.e. a cellular mechanism that regulates adaptation of aneuploidy rates, active in all embryo, adult and cancer stem cells.

  12. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma (United States)

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich


    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  13. Sphere-forming-like cells (squamospheres) with cancer stem-like cell traits from VX2 rabbit buccal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yuk-Kwan Chen; Anderson Hsien-Cheng Huang; Li-Min Lin


    Previous studies have demonstrated that spheroid type cells grown under suspension culture conditions have cancer stem cell (CSC) traits in a number of cancers, but this phenomenon has not yet been reported in the VX2 rabbit oral cancer model. Hence, this study aimed to study the spheroid cells from VX2 rabbit buccal squamous cell carcinomas (SCCs) and assess their CSC characteristics. Five adult male New Zealand white outbred rabbits were used to generate VX2 rabbit buccal SCC. Sphere-forming cell culture was performed for the VX2 rabbit buccal SCC specimens. The self-renewal capability;cluster of designation (CD) 44, CD133, acetaldehyde dehydrogenase 1 (ALDH1), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1), Nestin, octamer-binding transcription factor 4 (Oct4) and reduced expression protein-1 (Rex-1) expression with reverse transcription-polymerase chain reaction (RT-PCR);chemoresistance to cisplatin and 5-fluorouracil;and in vivo tumorigenicity of spheroid cell transplantation in nude mice were evaluated to determine the CSC characteristics of the resulting spheroid cells. We successfully obtained spheroid cells from the VX2 rabbit OSCC tissues. The spheroid cells exhibited CSC traits, including the expression of CSC and stem cell markers (CD44, Bmi-1, Nestin, Oct4 and Rex-1), capacity to generate new spheroid colonies within 1 week of reseeding from single-dissociated spheroid cells, chemoresistance capacity and generation of tumour xenografts (with histological features resembling those of the original VX2 rabbit buccal SCC) from the transplantation of 103 undifferentiated spheroid cells into nude mice. In summary, we demonstrated that spheroid cells with CSC cell traits can be derived from VX2 rabbit buccal SCCs, indicating that this animal cancer model is applicable for studying CSCs in human oral cancers.

  14. Chemoresistance of glioblastoma cancer stem cells - much more complex than expected


    Beier Christoph P; Schulz Joerg B; Beier Dagmar


    Abstract Glioblastomas (GBM) are a paradigm for the investigation of cancer stem cells (CSC) in solid malignancies. The susceptibility of GBM CSC to standard chemotherapeutic drugs is controversial as the existing literature presents conflicting experimental data. Here, we summarize the experimental evidence on the resistance of GBM CSC to alkylating chemotherapeutic agents, with a special focus on temozolomide (TMZ). The data suggests that CSC are neither resistant nor susceptible to chemoth...

  15. Forced extinction of CD24 stem-like breast cancer marker alone promotes radiation resistance through the control of oxidative stress. (United States)

    Bensimon, Julie; Biard, Denis; Paget, Vincent; Goislard, Maud; Morel-Altmeyer, Sandrine; Konge, Julie; Chevillard, Sylvie; Lebeau, Jérôme


    Along with CD44, CD24 is a key marker of breast cancer stem cells (CSCs), frequently defined by CD24(-)/CD44(+) labeling. Among all phenotypes classically attributed to breast CD24(-)/CD44(+) cancer cells, radiation resistance has been extensively described and seen as being implicated in radiotherapy failure. Our previous data indicated that CD24(-) cells constitute a radiation-resistant subpopulation transitory selected by high doses of ionizing radiation. However, little is known about the biological role of CD24 in breast cancers, and no function has been assigned to CD24 in radiation response. Here, CD24 expression was induced in CD24(-) cells or knocked-down in CD24(+) cells. We show that forced extinction of CD24 expression is associated with decreased proliferation rate, lower levels of reactive oxygen species (ROS) and decreased genomic instability. On the opposite when CD24 is artificially expressed in CD24(-) cells, proliferation rates in vitro and in vivo, ROS levels and genomic instability are enhanced. Moreover, we observe that loss of CD24 expression leads to radiation resistance, by preventing radiation-induced cell death and promoting generation of progeny in relation to lower G2/M blockade and a smaller proportion of polyploid cells. Finally, control of ROS levels appears to be the key event in the CD24-mediated radiation response. For the first time, CD24 is proposed as a direct actor in radiation response of breast cancer cells, independently of CD44 expression. These findings could have interesting applications in evaluating the intrinsic radiation response of primary tumors.

  16. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines. (United States)

    Baharuddin, Puteri; Satar, Nazilah; Fakiruddin, Kamal Shaik; Zakaria, Norashikin; Lim, Moon Nian; Yusoff, Narazah Mohd; Zakaria, Zubaidah; Yahaya, Badrul Hisham


    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may

  17. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. (United States)

    Chang, Yun-Li; Zhou, Pei-Jie; Wei, Lianzi; Li, Wang; Ji, Zhongzhong; Fang, Yu-Xiang; Gao, Wei-Qiang


    Up to now, the molecular mechanisms underlying the stemness of prostate cancer stem cells (PCSCs) are still poorly understood. In this study, we demonstrated that microRNA-7 (miR-7) appears to be a novel tumor-suppressor miRNA, which abrogates the stemness of PCSCs and inhibits prostate tumorigenesis by suppressing a key stemness factor KLF4. MicroRNA-7 is down-regulated in prostate cancer cells compared to non-tumorigenic prostate epithelial cells. Restoration of miR-7 suppresses the expression of the stemness factor KLF4 in PCSCs and inhibits prostate tumorigenesis both in vitro and in vivo. Interestingly, the suppression of the stemness of PCSCs by miR-7 is sustained for generations in xenografts. Analysis of clinical samples also revealed a negative correlation between miR-7 expression and prostate tumor progression. Mechanistically, overexpression of miR-7 may lead to a cell cycle arrest but not apoptosis, which seems achieved via suppressing the KLF4/PI3K/Akt/p21 pathway. This study identifies miR-7 as a suppressor of PCSCs' stemness and implicates its potential application for PCa therapy.

  18. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. (United States)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming


    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(d,l-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ∼500 times of enhancement compared to the simple mixture of the two drugs.

  19. Efficient enrichment of hepatic cancer stem-like cells from a primary rat HCC model via a density gradient centrifugation-centered method.

    Directory of Open Access Journals (Sweden)

    Wei-hui Liu

    Full Text Available BACKGROUND: Because few definitive markers are available for hepatic cancer stem cells (HCSCs, based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs. METHODOLOGY: After hepatic tumor cells (HTCs were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC and purified via differential trypsinization and differential attachment (DTDA, they were separated into four fractions using percoll continuous gradient centrifugation (PCGC and sequentially designated as fractions I-IV (FI-IV. Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction. FINDINGS: As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI-FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133 than cells from other fractions (P<0.01. Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×10(4 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice. CONCLUSIONS: Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.

  20. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy (United States)

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.


    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  1. Radiotherapy for glioblastoma: reorganization of genome maintenance mechanisms involved in the process of inhibiting cancer; Radioterapia de glioblastoma: reorganizacao das vias de manutencao do genoma

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, J.K.; Santos, C.L. dos [Centro Universitario Franciscano, Santa Maria, RS (Brazil). Curso de Fisica Medica; Simao, E.M., E-mail: [Centro Universitario Franciscano, Santa Maria, RS (Brazil). Programa de Pos-Graduacao em Nanociencias


    Glioblastoma is a very aggressive brain tumor, which occurs in Glial cells. The treatment consists in chemotherapy, surgery and radiotherapy. The radiotherapy is a treatment method that uses ionizing radiation to kill cancer cells. The cells have genome maintenance mechanisms (MMG) distributed in apoptosis, DNA damage response, and cell cycle pathways. These pathways are formed by sets of proteins and perform specific functions within the cell (example: induce cell death). The mutation of these proteins associated with the failure of the MMG can cause the activation of mutations and consequently induce the development of cancer. This work, objective has to identify pathways and proteins expressed in cancer treatment using free software of the statistical analysis, developed in Fortran and R platforms to show the effects caused by radiation in the proteins of cancerous tissues. The results, were fond to pathways of glioblastoma treated with radiotherapy, activation of apoptosis and response to DNA damage pathways, indicating that there is death of carcinogenic tissue caused by radiation and that some cells are triggering a process of DNA repair. (author)

  2. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells (United States)

    Ito, Daisuke


    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1− and SSEA-1+ cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines. PMID:27456773

  3. Adult stem-like cells in kidney

    Institute of Scientific and Technical Information of China (English)

    Keiichi Hishikawa; Osamu Takase; Masahiro Yoshikawa; Taro Tsujimura; Masaomi Nangaku; Tsuyoshi Takato


    Human pluripotent cells are promising for treatmentfor kidney diseases, but the protocols for derivationof kidney cell types are still controversial. Kidneytissue regeneration is well confirmed in several lowervertebrates such as fish, and the repair of nephronsafter tubular damages is commonly observed after renalinjury. Even in adult mammal kidney, renal progenitorcell or system is reportedly presents suggesting thatadult stem-like cells in kidney can be practical clinicaltargets for kidney diseases. However, it is still unclearif kidney stem cells or stem-like cells exist or not. Ingeneral, stemness is defined by several factors suchas self-renewal capacity, multi-lineage potency andcharacteristic gene expression profiles. The definiteuse of stemness may be obstacle to understand kidneyregeneration, and here we describe the recent broadfindings of kidney regeneration and the cells thatcontribute regeneration.

  4. Immunosuppressive mechanisms in glioblastoma. (United States)

    Nduom, Edjah K; Weller, Michael; Heimberger, Amy B


    Despite maximal surgical and medical therapy, the treatment of glioblastoma remains a seriously vexing problem, with median survival well under 2 years and few long-term survivors. Targeted therapy has yet to produce significant advances in treatment of these lesions in spite of advanced molecular characterization of glioblastoma and glioblastoma cancer stem cells. Recently, immunotherapy has emerged as a promising mode for some of the hardest to treat tumors, including metastatic melanoma. Although immunotherapy has been evaluated in glioblastoma in the past with limited success, better understanding of the failures of these therapies could lead to more successful treatments in the future. Furthermore, there is a persistent challenge for the use of immune therapy to treat glioblastoma secondary to the existence of redundant mechanisms of tumor-mediated immune suppression. Here we will address these mechanisms of immunosuppression in glioblastoma and therapeutic approaches.

  5. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma

    Directory of Open Access Journals (Sweden)

    Lu Lizhi


    Full Text Available Abstract Background Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown. Results In this study, by FACS analysis we determined the percentage of CD133 positive cells in three primary cultured cell lines established from glioblastoma patients 10.2%, 69.7% and 27.5%, respectively. We also determined the average mRNA levels of markers associated with neural precursors. For example, CD90, CD44, CXCR4, Nestin, Msi1 and MELK mRNA on CD133 positive cells increased to 15.6, 5.7, 337.8, 21.4, 84 and 1351 times, respectively, compared to autologous CD133 negative cells derived from cell line No. 66. Additionally, CD133 positive cells express higher levels of BCRP1 and MGMT mRNA, as well as higher mRNA levels of genes that inhibit apoptosis. Furthermore, CD133 positive cells were significantly resistant to chemotherapeutic agents including temozolomide, carboplatin, paclitaxel (Taxol and etoposide (VP16 compared to autologous CD133 negative cells. Finally, CD133 expression was significantly higher in recurrent GBM tissue obtained from five patients as compared to their respective newly diagnosed tumors. Conclusion Our study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy. This resistance is probably contributed by the CD133 positive cell with higher expression of on BCRP1 and MGMT, as well as the anti-apoptosis protein and inhibitors of apoptosis protein families. Future treatment should target this small population of CD133 positive cancer stem cells in

  6. Molecular heterogeneity in a patient-derived glioblastoma xenoline is regulated by different cancer stem cell populations.

    Directory of Open Access Journals (Sweden)

    Jo Meagan Garner

    Full Text Available Malignant glioblastoma (GBM is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal, which may arise from different glioblastoma stem-like cell (GSC populations. We previously showed that adherent cultures of GSCs grown on laminin-coated plates (Ad-GSCs and spheroid cultures of GSCs (Sp-GSCs had high expression of stem cell markers (CD133, Sox2 and Nestin, but low expression of differentiation markers (βIII-tubulin and glial fibrillary acid protein. In the present study, we characterized GBM tumors produced by subcutaneous and intracranial injection of Ad-GSCs and Sp-GSCs isolated from a patient-derived xenoline. Although they formed tumors with identical histological features, gene expression analysis revealed that xenografts of Sp-GSCs had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of Ad-GSCs expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression, and enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Therefore, Ad-GSCs and Sp-GSCs produced histologically identical tumors with different gene expression patterns, and a STAT3/ANGPTL4 pathway is identified in glioblastoma that may serve as a target for therapeutic intervention.

  7. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Villingshøj, Mette; Poulsen, Hans Skovgaard;


    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions...... in the normal NSC population. Notch signaling is often deregulated in GBM and recent results suggest that this pathway plays a significant role in bCSC as well. We therefore wished to further elucidate the role of Notch activation in GBM-derived bCSC....

  8. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall

    Directory of Open Access Journals (Sweden)

    Li Shengwen


    Full Text Available Abstract Background The cancer stem cell (CSC hypothesis posits that deregulated neural stem cells (NSCs form the basis of brain tumors such as glioblastoma multiforme (GBM. GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Methods We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. Results The patient’s MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and −2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. Conclusions This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer

  9. Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Yong-Wan Kim

    Full Text Available Aminoacyl-tRNA synthetases (ARSs and ARS-interacting multifunctional proteins (AIMPs exhibit remarkable functional versatility beyond their catalytic activities in protein synthesis. Their non-canonical functions have been pathologically linked to cancers. Here we described our integrative genome-wide analysis of ARSs to show cancer-associated activities in glioblastoma multiforme (GBM, the most aggressive malignant primary brain tumor. We first selected 23 ARS/AIMPs (together referred to as ARSN, 124 cancer-associated druggable target genes (DTGs and 404 protein-protein interactors (PPIs of ARSs using NCI's cancer gene index. 254 GBM affymetrix microarray data in The Cancer Genome Atlas (TCGA were used to identify the probe sets whose expression were most strongly correlated with survival (Kaplan-Meier plots versus survival times, log-rank t-test <0.05. The analysis identified 122 probe sets as survival signatures, including 5 of ARSN (VARS, QARS, CARS, NARS, FARS, and 115 of DTGs and PPIs (PARD3, RXRB, ATP5C1, HSP90AA1, CD44, THRA, TRAF2, KRT10, MED12, etc. Of note, 61 survival-related probes were differentially expressed in three different prognosis subgroups in GBM patients and showed correlation with established prognosis markers such as age and phenotypic molecular signatures. CARS and FARS also showed significantly higher association with different molecular networks in GBM patients. Taken together, our findings demonstrate evidence for an ARSN biology-dominant contribution in the biology of GBM.

  10. Stopping cancer in its tracks: using small molecular inhibitors to target glioblastoma migrating cells. (United States)

    Mattox, Austin K; Li, Jing; Adamson, David C


    Glioblastoma multiforme (GBM) represents one of the most common aggressive types of primary brain tumors. Despite advances in surgical resection, novel neuroimaging procedures, and the most recent adjuvant radiotherapy and chemotherapy, the median survival after diagnosis is about 12-14 months. Targeting migrating GBM cells is a key research strategy in the fight against this devastating cancer. Though the vast majority of the primary tumor focus can be surgically resected, these migrating cells are responsible for its universal recurrence. Numerous strategies and technologies are being explored to target migrating glioma cells, with small molecular inhibitors as one of the most commonly studied. Small molecule inhibitors, such as protein kinase inhibitors, phosphorylation site inhibitors, protease inhibitors, and antisense oligonucleotides show promise in slowing the progression of this disease. A better understanding of these small molecule inhibitors and how they target various extra- and intracellular signaling pathways may eventually lead to a cure for GBM.

  11. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy (United States)

    Cheng, Xiaoqian; Murphy, William; Recek, Nina; Yan, Dayun; Cvelbar, Uros; Vesel, Alenka; Mozetič, Miran; Canady, Jerome; Keidar, Michael; Sherman, Jonathan H.


    Gold nanoparticles (AuNPs) have been investigated as a promising reagent for cancer therapy in various fields. In the meantime, cold atmospheric plasma has shown exquisite selectivity towards cancer cells. In this paper, we demonstrate that there is a synergy between gold nanoparticles and cold atmospheric plasma in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce glioblastoma (U87) cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The reactive oxygen species (ROS) intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the efficiency of cancer therapy and reducing harm to normal cells.

  12. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. (United States)

    Kathagen, Annegret; Schulte, Alexander; Balcke, Gerd; Phillips, Heidi S; Martens, Tobias; Matschke, Jakob; Günther, Hauke S; Soriano, Robert; Modrusan, Zora; Sandmann, Thomas; Kuhl, Carsten; Tissier, Alain; Holz, Mareike; Krawinkel, Lutz A; Glatzel, Markus; Westphal, Manfred; Lamszus, Katrin


    Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.

  13. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). (United States)

    Ivanov, Vladimir N; Hei, Tom K


    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In

  14. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. (United States)

    Guryanova, Olga A; Wu, Qiulian; Cheng, Lin; Lathia, Justin D; Huang, Zhi; Yang, Jinbo; MacSwords, Jennifer; Eyler, Christine E; McLendon, Roger E; Heddleston, John M; Shou, Weinian; Hambardzumyan, Dolores; Lee, Jeongwu; Hjelmeland, Anita B; Sloan, Andrew E; Bredel, Markus; Stark, George R; Rich, Jeremy N; Bao, Shideng


    Glioblastomas display cellular hierarchies containing tumor-propagating glioblastoma stem cells (GSCs). STAT3 is a critical signaling node in GSC maintenance but molecular mechanisms underlying STAT3 activation in GSCs are poorly defined. Here we demonstrate that the bone marrow X-linked (BMX) nonreceptor tyrosine kinase activates STAT3 signaling to maintain self-renewal and tumorigenic potential of GSCs. BMX is differentially expressed in GSCs relative to nonstem cancer cells and neural progenitors. BMX knockdown potently inhibited STAT3 activation, expression of GSC transcription factors, and growth of GSC-derived intracranial tumors. Constitutively active STAT3 rescued the effects of BMX downregulation, supporting that BMX signals through STAT3 in GSCs. These data demonstrate that BMX represents a GSC therapeutic target and reinforces the importance of STAT3 signaling in stem-like cancer phenotypes.

  15. Antineoplastic activity of taurolidine and its derivatives on human ex vivo glioblastoma bulk cells and cancer stem cells


    Kälin, M B


    Despite multimodal therapy, patients suffering from glioblastoma (GBM) still have a dismal prognosis. The identification of cancer stem cells (CSC) in brain tumour tissue, yielded hope that the vulnerable target to combat GBM has been found. Several study groups worldwide concentrate nowadays on therapeutic strategies that effectively target CSC. Since in our laboratory has been revealed that taurolidine, a derivate of the amino acid taurin, displays a potent antineoplastic effect in human gl...

  16. Effect and Mechanism of Total Flavonoids Extracted from Cotinus coggygria against Glioblastoma Cancer In Vitro and In Vivo. (United States)

    Wang, Gang; Wang, JunJie; Du, Li; Li, Fei


    Flavonoids, a major constituent of Cotinus coggygria (CC), have been reported to possess diverse biological activities, including antigenotoxic and hepatoprotective effects; however, few studies have investigated the biological activity of the total flavonoids of Cotinus coggygria, especially in terms of its cytotoxicity in cancer cells. In the present study, the Cotinus coggygria flavonoids (CCF) were extracted from Cotinus coggygria and characterized by HPLC. These results indicated that CCF extracts could inhibit cell proliferation, with IC50 values of 128.49 µg/mL (U87), 107.62 µg/mL (U251), and 93.57 µg/mL (DBTRG-05MG). The current investigation also revealed that CCF induced apoptosis in highly malignant glioblastoma cells, a process that apparently involved the inhibition of Akt coupled with ERK protein expression. This finding suggests that the PI3K/Akt-ERK signaling pathway is regulated by CCF and leads to the inhibition of the glioblastoma cancer cells. Furthermore, a significant antitumor effect of CCF was observed in xenograft animal models of glioblastoma multiforme in vivo. Taken together, these data suggest that CCF is the active component in the Cotinus coggygria plant that offers potential therapeutic modality in the abrogation of cancer cell proliferation, including the induction of apoptosis.

  17. An off-target nucleostemin RNAi inhibits growth in human glioblastoma-derived cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Jon Gil-Ranedo

    Full Text Available Glioblastomas (GBM may contain a variable proportion of active cancer stem cells (CSCs capable of self-renewal, of aggregating into CD133(+ neurospheres, and to develop intracranial tumors that phenocopy the original ones. We hypothesized that nucleostemin may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Here we report that nucleostemin is expressed in GBM-CSCs isolated from patient samples, and that its expression, conversely to what it has been described for ordinary stem cells, does not disappear when cells are differentiated. The significance of nucleostemin expression in CSCs was addressed by targeting the corresponding mRNA using lentivirally transduced short hairpin RNA (shRNA. In doing so, we found an off-target nucleostemin RNAi (shRNA22 that abolishes proliferation and induces apoptosis in GBM-CSCs. Furthermore, in the presence of shRNA22, GBM-CSCs failed to form neurospheres in vitro or grow on soft agar. When these cells are xenotransplanted into the brains of nude rats, tumor development is significantly delayed. Attempts were made to identify the primary target/s of shRNA22, suggesting a transcription factor involved in one of the MAP-kinases signaling-pathways or multiple targets. The use of this shRNA may contribute to develop new therapeutic approaches for this incurable type of brain tumor.

  18. The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. (United States)

    Haley, Elizabeth M; Kim, Yonghyun


    Glioblastoma multiforme (GBM) is the most malignant form of central nervous system tumor, and current therapies are largely ineffective at treating the cancer. Developing a more complete understanding of the mechanisms controlling the tumor is important in order to explore new possible treatment options. It is speculated that the presence of glioblastoma stem or stem-like cells (GSCs), a rare type of pluripotent cancer cell that possesses the ability to self-renew and generate tumors, could be an important factor contributing to the resistance to treatment and deadliness of the cancer. A comprehensive knowledge of the mechanisms controlling the expression and properties of GSCs is currently lacking, and one promising area for further exploration is in the influence of basic fibroblast growth factor (FGF-2) on GSCs. Recent studies reveal that FGF-2 plays a significant part in regulating GBM, and the growth factor is commonly included as a supplement in media used to culture GSCs in vitro. However, the particular role that FGF-2 plays in GSCs has not been as extensively explored. Therefore, understanding how FGF-2 is involved in GSCs and in GBMs could be an important step towards a more complete comprehension of the managing the disease. In this review, we look at the structure, signaling pathways, and specific role of FGF-2 in GBM and GSCs. In addition, we explore the use of FGF-2 in cell culture and using its synthetic analogs as a potential alternative to the growth factor in culture medium.

  19. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells (United States)

    Mammary stem cells are undifferentiated epithelial cells which initiate mammary tumors and render them resistant to anticancer therapies, when deregulated. Diets rich in fruits and vegetables are implicated in breast cancer risk reduction, yet underlying mechanisms are poorly understood. Here, we ad...

  20. Chemoresistance of glioblastoma cancer stem cells--much more complex than expected. (United States)

    Beier, Dagmar; Schulz, Joerg B; Beier, Christoph P


    Glioblastomas (GBM) are a paradigm for the investigation of cancer stem cells (CSC) in solid malignancies. The susceptibility of GBM CSC to standard chemotherapeutic drugs is controversial as the existing literature presents conflicting experimental data. Here, we summarize the experimental evidence on the resistance of GBM CSC to alkylating chemotherapeutic agents, with a special focus on temozolomide (TMZ). The data suggests that CSC are neither resistant nor susceptible to chemotherapy per se. Detoxifying proteins such as O6-methylguanine-DNA-methyltransferase (MGMT) confer a strong intrinsic resistance to CSC in all studies. Extrinsic factors may also contribute to the resistance of CSC to TMZ. These may include TMZ concentrations in the brain parenchyma, TMZ dosing schemes, hypoxic microenvironments, niche factors, and the re-acquisition of stem cell properties by non-stem cells. Thus, the interaction of CSC and chemotherapy is more complex than may be expected and it is necessary to consider these factors in order to overcome chemoresistance in the patient.

  1. Chemoresistance of glioblastoma cancer stem cells - much more complex than expected

    Directory of Open Access Journals (Sweden)

    Beier Christoph P


    Full Text Available Abstract Glioblastomas (GBM are a paradigm for the investigation of cancer stem cells (CSC in solid malignancies. The susceptibility of GBM CSC to standard chemotherapeutic drugs is controversial as the existing literature presents conflicting experimental data. Here, we summarize the experimental evidence on the resistance of GBM CSC to alkylating chemotherapeutic agents, with a special focus on temozolomide (TMZ. The data suggests that CSC are neither resistant nor susceptible to chemotherapy per se. Detoxifying proteins such as O6-methylguanine-DNA-methyltransferase (MGMT confer a strong intrinsic resistance to CSC in all studies. Extrinsic factors may also contribute to the resistance of CSC to TMZ. These may include TMZ concentrations in the brain parenchyma, TMZ dosing schemes, hypoxic microenvironments, niche factors, and the re-acquisition of stem cell properties by non-stem cells. Thus, the interaction of CSC and chemotherapy is more complex than may be expected and it is necessary to consider these factors in order to overcome chemoresistance in the patient.

  2. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Justin D Lathia

    Full Text Available High-grade gliomas (World Health Organization grade III anaplastic astrocytoma and grade IV glioblastoma multiforme, the most prevalent primary malignant brain tumors, display a cellular hierarchy with self-renewing, tumorigenic cancer stem cells (CSCs at the apex. While the CSC hypothesis has been an attractive model to describe many aspects of tumor behavior, it remains controversial due to unresolved issues including the use of ex vivo analyses with differential growth conditions. A CSC population has been confirmed in malignant gliomas by preferential tumor formation from cells directly isolated from patient biopsy specimens. However, direct comparison of multiple tumor cell populations with analysis of the resulting phenotypes of each population within a representative tumor environment has not been clearly described. To directly test the relative tumorigenic potential of CSCs and non-stem tumor cells in the same microenvironment, we interrogated matched tumor populations purified from a primary human tumor transplanted into a xenograft mouse model and monitored competitive in vivo tumor growth studies using serial in vivo intravital microscopy. While CSCs were a small minority of the initial transplanted cancer cell population, the CSCs, not the non-stem tumor cells, drove tumor formation and yielded tumors displaying a cellular hierarchy. In the resulting tumors, a fraction of the initial transplanted CSCs maintained expression of stem cell and proliferation markers, which were significantly higher compared to the non-stem tumor cell population and demonstrated that CSCs generated cellular heterogeneity within the tumor. These head-to-head comparisons between matched CSCs and non-stem tumor cells provide the first functional evidence using live imaging that in the same microenvironment, CSCs more than non-stem tumor cells are responsible for tumor propagation, confirming the functional definition of a CSC.

  3. Isolation and identiffcation of cancer stem-like side population cells in pancreatic cancer%胰腺癌肿瘤干细胞样侧群细胞的分离鉴定

    Institute of Scientific and Technical Information of China (English)

    周静; 王春友; 周峰; 刘涛; 吴河水; 熊炯圻; 赵刚; 陶京; 杨明; 周蒙滔


    目的 分离鉴定胰腺癌中的侧群(SP)细胞亚群.方法 应用Hoechst33342染色,流式细胞仪检测5个胰腺癌细胞系及3个原代培养的临床胰腺癌标本中sP细胞的含量.以PANC-1为例,通过平板克隆形成试验和NOD-SCID小鼠异种移植成瘤实验比较SP细胞与non-SP细胞的克隆形成能力及成瘤能力,通过对体外培养的SP细胞和SP细胞衍生肿瘤的HoechsG3342复染SP再分析判断其是否具有分化潜能.结果 除了BXPC-3,其他胰腺癌细胞系及原代培养标本都存在Verapamil敏感的SP细胞.SP细胞与non-SP细胞比较具有较高的克隆形成能力[(43.67±3.10)%比(8.33±1.63)%,P<0.01],并且能够分化产生non-SP细胞并维持自身SP细胞的比例在一个较稳定的水平.SP细胞的成瘤能力是non-SP细胞的100倍以上.而且SP细胞在体内亦可发生不对称分裂生成SP细胞和non-SP细胞.结论 SP细胞可能是胰腺癌干细胞的候选细胞之一.%Objective To isolate and identify side population(SP)cells in pancreatic cancer.Methods We detected the number of SP cells in 5 pancreatic cancer cell lines and 3 clinical samples by Hoechst33342 dyeing and FACS analysis.The clone formation efficiency and tumorigenicity were compared between SP cels and non-SP ceils by clone formation assay and NOD/SCID xenograft transplantation experiment.The differentiation ability of SP ceils was studied by flow cytometry reanalysis of SP-derived tumors and cultured SP ceils.Results All cell lines and clinical samples were found to exhibit verapamilsensitive SP cells except BXPC-3.Using SP cells sorted from PANC-1 as a model.SP ceUs were demonstratcd to exhibit higher colony-formation ability than non-SP cells [(43.67±3.10)% vs (8.33±1.63)%.P<0.01].And flow cytometry reanalysis indicated SP ceHs could generate both SP and non-SP cells with a fraction size comparable with the original population.In addition.SP cells were enriched in tumorigenicity by at least 100-fold

  4. A Metabolic Inhibitory Cocktail for Grave Cancers: Metformin, Pioglitazone and Lithium Combination in Treatment of Pancreatic Cancer and Glioblastoma Multiforme. (United States)

    Elmaci, İlhan; Altinoz, Meric A


    Pancreatic cancer (PC) and glioblastoma multiforme (GBM) are among the human cancers with worst prognosis which require an urgent need for efficient therapies. Here, we propose to apply to treat both malignancies with a triple combination of drugs, which are already in use for different indications. Recent studies demonstrated a considerable link between risk of PC and diabetes. In experimental models, anti-diabetogenic agents suppress growth of PC, including metformin (M), pioglitazone (P) and lithium (L). L is used in psychiatric practice, yet also bears anti-diabetic potential and selectively inhibits glycogen synthase kinase-3 beta (GSK-3β). M, a biguanide class anti-diabetic agent shows anticancer activity via activating AMP-activated protein kinase (AMPK). Glitazones bind to PPAR-γ and inhibit NF-κB, triggering cell proliferation, apoptosis resistance and synthesis of inflammatory cytokines in cancer cells. Inhibition of inflammatory cytokines could simultaneously decrease tumor growth and alleviate cancer cachexia, having a major role in PC mortality. Furthermore, mutual synergistic interactions exist between PPAR-γ and GSK-3β, between AMPK and GSK-3β and between AMPK and PPAR-γ. In GBM, M blocks angiogenesis and migration in experimental models. Very noteworthy, among GBM patients with type 2 diabetes, usage of M significantly correlates with better survival while reverse is true for sulfonylureas. In experimental models, P synergies with ligands of RAR, RXR and statins in reducing growth of GBM. Further, usage of P was found to be lesser in anaplastic astrocytoma and GBM patients, indicating a protective effect of P against high-grade gliomas. L is accumulated in GBM cells faster and higher than in neuroblastoma cells, and its levels further increase with chronic exposure. Recent studies revealed anti-invasive potential of L in GBM cell lines. Here, we propose that a triple-agent regime including drugs already in clinical usage may provide a

  5. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice.

    Directory of Open Access Journals (Sweden)

    Alexei Shir


    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most lethal form of brain cancer. With the available treatments, survival does not exceed 12-14 mo from the time of diagnosis. We describe a novel strategy to selectively induce the death of glioblastoma cells and other cancer cells that over-express the EGF receptor. Using a non-viral delivery vector that homes to the EGF receptor, we target synthetic anti-proliferative dsRNA (polyinosine-cytosine [poly IC], a strong activator of apoptosis, selectively to cancer cells. METHODS AND FINDINGS: Poly IC was delivered by means of a non-viral vector: 25kDa polyethylenimine-polyethyleneglycol-EGF (PEI25-PEG-EGF. EGFR-targeted poly IC induced rapid apoptosis in the target cells in vitro and in vivo. Expression of several cytokines and "bystander killing" of untransfected tumor cells was detected in vitro and in vivo. Intra-tumoral delivery of the EGFR-targeted poly IC induced the complete regression of pre-established intracranial tumors in nude mice, with no obvious adverse toxic effects on normal brain tissue. A year after treatment completion the treated mice remain cancer-free and healthy. Similarly, non-viral delivery of poly IC completely eliminated pre-established breast cancer and adenocarcinoma xenografts derived from EGFR over-expressing cancer cell lines, suggesting that the strategy is applicable to other EGFR-over-expressing tumors. CONCLUSION: The strategy described has yielded an effective treatment of EGFR over-expressing GBM in an animal model. If this strategy is translated successfully to the clinical setting, it may actually offer help to GBM patients. Moreover the elimination of two additional EGFR over-expressing cancers in vivo suggests that in principle this strategy can be applied to treat other tumors that over-express EGFR.

  6. Analysis of angiogenesis related factors in glioblastoma, peritumoral tissue and their derived cancer stem cells. (United States)

    D'Alessio, Alessio; Proietti, Gabriella; Lama, Gina; Biamonte, Filippo; Lauriola, Libero; Moscato, Umberto; Vescovi, Angelo; Mangiola, Annunziato; Angelucci, Cristiana; Sica, Gigliola


    The formation of new blood vessels represents a crucial event under both physiological and pathological circumstances. In this study, we evaluated by immunohistochemistry, and/or Western blotting and/or quantitative real time-PCR the expression of HIF1α, HIF2α, VEGF, VEGFR1 and VEGFR2 in surgical glioblastoma multiforme (GBM) and peritumoral tissue samples obtained from 50 patients as well as in cancer stem cells (CSCs) isolated from GBM (GCSCs) and peritumoral tissue (PCSCs) of 5 patients. We also investigated the contribution of both GCSCs and PCSCs on the behavior of endothelial cells (ECs) in vitro. Immunohistochemistry demonstrated the expression of angiogenesis markers in both GBM and peritumoral tissue. In addition, in vitro tube formation assay indicated that both GCSCs and PCSCs stimulate EC proliferation as well as tube-like vessel formation. An increased migration aptitude was mainly observed when ECs were cultured in the presence of GCSCs rather than in the presence of PCSCs. These findings suggest that relevant neoangiogenetic events may occur in GBM. In particular, VEGF/VEGFR co-expression in PCSCs leads to hypothesize the involvement of an autocrine signaling. Moreover, our results suggest that both GCSCs and PCSCs own the skill of activating the "angiogenic switch" and the capability of modulating EC behavior, indicating that both cell types are either responsive to angiogenic stimuli or able to trigger angiogenic response. Together with our previous findings, this study adds a further piece to the challenging puzzle of the characterization of peritumoral tissue and of the definition of its real role in GBM pathophysiology.

  7. Signaling Crosstalk in the Regulation of Epithelial-Mesenchymal Transition and Cancer Stem-Like Cells Properties Acquisition%调控肿瘤上皮-间质转化及肿瘤干细胞样特性的信号通路串话

    Institute of Scientific and Technical Information of China (English)

    张婷; 崔戈; 邵圣文; 叶家辉; 黄斌; 潘臻


    Epithelial-mesenchymal transition (EMT) is an important biological process that epithelial tumor cells can obtain the ability of invasion and metastasis. Cancer stem-like cells (CSLCs)/tumor-initiatmg cells (TICs) play a key role in tumorigenesis, tumor invasion, metastasis and recurrence. In recent years, it was found that EMT had a close correlation with the acquisition of CSLCs properties, they promote tumorigenesis, tumor invasion and metastasis by complicated interaction through signaling crosstalk between TGF-β, Wnt/p-catenin, Notch, Hedgehog, FGF, PI3k/Akt and other signaling pathways. Understanding the functions and interactions of key molecules within the context of EMT/CSLCs signaling is critical to design targeted therapeutics.%上皮-间质转化(epithelial-mesenchymal transition,EMT)是上皮来源肿瘤细胞获得侵袭和转移能力的重要生物学过程.肿瘤干细胞样细胞(cancer stem-like cells,CSLCs)在肿瘤发生、侵袭、转移和复发中亦起着关键作用.近年发现,EMT与肿瘤干细胞样特性获得存在密切关联,二者通过TGF-β、Wnt/β-catenin、Notch、Hedgehog、FGF、PI3k/Akt等多种信号通路及通路间的信号串话而交互作用,共同影响着肿瘤发生、侵袭及转移,了解调控EMT/CSLCs关键信号分子的功能及相互作用对于肿瘤靶向治疗具有重要意义.

  8. Genomic understanding of glioblastoma expanded (United States)

    Glioblastoma multiforme (GBM) was the first cancer type to be systematically studied by TCGA in 2008. In a new, complementary report, TCGA experts examined more than 590 GBM samples--the largest to date utilizing genomic characterization techniques and ne

  9. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    DEFF Research Database (Denmark)

    Lin, Xue; Li, Jian; Yin, Guangliang


    Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal...

  10. Tectal glioblastoma Glioblastoma tetal

    Directory of Open Access Journals (Sweden)

    Feres Chaddad Neto


    Full Text Available Brain stem gliomas are a heterogeneous group of neoplasms arising mostly in paediatric patients. Tectal plate gliomas represent a particular type of brain stem tumours usually with a benign, indolent clinical course, presenting with signs of raised intracranial hipertension due to supra-tentorialhydrocephalous caused by aqueductal stenosis. Seldom high-grade lesions arise in this location with tremendous therapeutic implications. When a malignant tumour is clinically and radiographically suspected a biopsy should be performed to obtain histhological confirmation. Treatment is then planned in a case-by-case basis. We present the case of a glioblastoma of the tectal plate in a 22 years-old woman operated upon by a supracerebellar-infratentorial approach.Os gliomas do tronco cerebral são um grupo heterogêneo de neoplasias que acometem habitualmente crianças. Os gliomas da placa quadrigeminal representam um tipo particular de tumores do tronco cerebral, habitualmente com um curso benigno e indolente, surgindo com sinais de hipertensão intracraniana devido a hidrocefalia supra-tentorial provocada por compressão do aqueduto cerebral. Raramente surgem lesões de alto grau nesta região, mas as implicações terapêuticas são tremendas. Quando existe suspeita clínica e imagiológica de que se trata de lesão maligna, esta deve ser biopsada para se obter confirmação histológica. O tratamento deve então ser planejado caso a caso. Apresentamos o caso de glioblastoma da placa quadrigeminal em uma paciente de 22 anos intervencionado por via supracerebelar-infratentorial.

  11. BIS-mediated STAT3 stabilization regulates glioblastoma stem cell-like phenotypes (United States)

    Im, Chang-Nim; Yun, Hye Hyeon; Song, Byunghoo; Youn, Dong-Ye; Cui, Mei Nu; Kim, Hong Sug; Park, Gyeong Sin; Lee, Jeong-Hwa


    Glioblastoma stem cells (GSCs) are a subpopulation of highly tumorigenic and stem-like cells that are responsible for resistance to conventional therapy. Bcl-2-intreacting cell death suppressor (BIS; also known as BAG3) is an anti-apoptotic protein that is highly expressed in human cancers with various origins, including glioblastoma. In the present study, to investigate the role of BIS in GSC subpopulation, we examined the expression profile of BIS in A172 and U87-MG glioblastoma cell lines under specific in vitro culture conditions that enrich GSC-like cells in spheres. Both BIS mRNA and protein levels significantly increased under the sphere-forming condition as compared with standard culture conditions. BIS depletion resulted in notable decreases in sphere-forming activity and was accompanied with decreases in SOX-2 expression. The expression of STAT3, a master regulator of stemness, also decreased following BIS depletion concomitant with decreases in the nuclear levels of active phosphorylated STAT3, while ectopic STAT3 overexpression resulted in recovery of sphere-forming activity in BIS-knockdown glioblastoma cells. Additionally, immunoprecipitation and confocal microscopy revealed that BIS physically interacts with STAT3. Furthermore, BIS depletion increased STAT3 ubiquitination, suggesting that BIS is necessary for STAT3 stabilization in GSC-like cells. BIS depletion also affected epithelial-to-mesenchymal transition-related genes as evidenced by decrease in SNAIL and MMP-2 expression and increase in E-cadherin expression in GSC-like cells. Our findings suggest that high levels of BIS expression might confer stem-cell-like properties on cancer cells through STAT3 stabilization, indicating that BIS is a potential target in cancer therapy. PMID:27145367

  12. CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cell-related gene expression profile in in vitro propagated glioblastoma multiforme-derived cell line with a PNET-like component. (United States)

    Kahlert, Ulf D; Bender, Noemi O; Maciaczyk, Donata; Bogiel, Tomasz; Bar, Eli E; Eberhart, Charles G; Nikkhah, Guido; Maciaczyk, Jarosław


    Glioblastoma multiforme (GBM), as many other solid tumours, contains a subpopulation of cells termed cancer stem-like cells responsible for the initiation and propagation of tumour growth. However, a unique immunophenotype/surface antigen composition for the clear identification of brain tumour stem cells (BTSC) has not yet been found. Here we report a novel code of cell surface markers for the identification of different cell subpopulations in neurospheres derived from a GBM with a primitive neuroectodermal tumour (PNET)-like component (GBM-PNET). These subgroups differ in their CD133/CD15 expression pattern and resemble cells with different stem-like genotype and developmental pathway activation levels. Strikingly, clonogenic analysis of cultures differentially expressing the investigated markers enabled the identification of distinct subpopulations of cells endowed with stem cell characteristics. High clonogenicity could be found in CD133(-)/CD15(-) and CD133(+)/CD15(+) but not in CD133(-)/CD15(+) cells. Moreover, cell subpopulations with pronounced clonogenic growth were characterized by high expression of stem cell-related genes. Interestingly, these observations were unique for GBM-PNET and differed from ordinary GBM cultures derived from tumours lacking a PNET component. This work elucidates the complex molecular heterogeneity of in vitro propagated glioblastoma-derived cells and potentially contributes to the development of novel diagnostic modalities aiming at the identification of the brain tumour stem-like cell population in a subgroup of GBMs.

  13. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)


    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  14. Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma. (United States)

    Aldea, Mihaela; Florian, Ioan Alexandru; Kacso, Gabriel; Craciun, Lucian; Boca, Sanda; Soritau, Olga; Florian, Ioan Stefan


    Extensive hypoxic regions are the daunting hallmark of glioblastoma, as they host aggressive stem-like cells, hinder drug delivery and shield cancer cells from the effects of radiotherapy. Nanotechnology could address most of these issues, as it employs nanoparticles (NPs) carrying drugs that selectively accumulate and achieve controlled drug release in tumor tissues. Methods overcoming the stiff interstitium and scarce vascularity within hypoxic zones include the incorporation of collagenases to degrade the collagen-rich tumor extracellular matrix, the use of multistage systems that progressively reduce NP size or of NP-loaded cells that display inherent hypoxia-targeting abilities. The unfavorable hypoxia-induced low pH could be converted into a therapeutical advantage by pH-responsive NPs or multilayer NPs, while overexpressed markers of hypoxic cells could be specifically targeted for an enhanced preferential drug delivery. Finally, promising new gene therapeutics could also be incorporated into nanovehicles, which could lead to silencing of hypoxia-specific genes that are overexpressed in cancer cells. In this review, we highlight NPs which have shown promising results in targeting cancer hypoxia and we discuss their applicability in glioblastoma, as well as possible limitations. Novel research directions in this field are also considered.

  15. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells. (United States)

    Boyle, S T; Ingman, W V; Poltavets, V; Faulkner, J W; Whitfield, R J; McColl, S R; Kochetkova, M


    The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. Although recent reports correlated high CCR7 levels with more advanced tumor grade and poor prognosis, limited in vivo data are available regarding its specific function in mammary gland neoplasia and the underlying mechanisms involved. To address these questions we generated a bigenic mouse model of breast cancer combined with CCR7 deletion, which revealed that CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary cancer stem-like cells in both murine and human tumors. In vivo experiments showed that loss of CCR7 activity either through deletion or pharmacological antagonism significantly decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to a new route for therapeutic intervention to target evasive cancer stem cells.

  16. Key concepts in glioblastoma therapy

    DEFF Research Database (Denmark)

    Bartek, Jiri; Ng, Kimberly; Bartek, Jiri;


    Glioblastoma is the most common form of primary brain cancer and remains one of the most aggressive forms of human cancer. Current standard of care involves maximal surgical resection followed by concurrent therapy with radiation and the DNA alkylating agent temozolomide. Despite this aggressive...

  17. Microarray Analysis in Glioblastomas (United States)

    Bhawe, Kaumudi M.; Aghi, Manish K.


    Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-based tissue microarrays as being the preferred methods of choice in cancers of neurological origin. Microarray analysis may be carried out for various purposes including the following: To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemotherapy (DeLay et al., Clin Cancer Res 18(10):2930–2942, 2012)To correlate gene expression patterns with biological features like proliferation or invasiveness of the glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013)To discover new tumor classificatory systems based on gene expression signature, and to correlate therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59–70, 2013; Verhaak et al., Cancer Cell 17(1):98–110, 2010) While investigators can sometimes use archived tumor gene expression data available from repositories such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to adequately answer specific questions. Here, we provide a detailed description of microarray methodologies, how to select the appropriate methodology for a given question, and analytical strategies that can be used. Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample preparation techniques for transcript-based microarrays are included here. PMID:26113463

  18. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells. (United States)

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping


    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas.

  19. Evaluation of the cytotoxic activity of Hypericum spp. on human glioblastoma A1235 and breast cancer MDA MB-231 cells. (United States)

    Madunić, Josip; Matulić, Maja; Friščić, Maja; Pilepić, Kroata Hazler


    Cytotoxic activity of 16 Hypericum ethanolic extracts was evaluated by MTT assay on two human cancer cell lines: glioblastoma A1235 and breast cancer MDA MB-231. Morphology and the type of induced cell death were determined using light and fluorescence microscopy. The majority of Hypericum extracts had no significant cytotoxic effect on MDA MB-231 cells. Eight extracts exhibited mild cytotoxic effect on A1235 cells after 24 h incubation, ranging from 8.0% (H. patulum) to 21.7% (H. oblongifolium). After 72 h of treatment, the strongest inhibition of A1235 viability was observed for extracts of H. androsaemum (26.4-43.9%), H. balearicum (25.8-36.3%), H. delphicum (14.8-27.4%) and H. densiflorum (11.2-24.1%). Micro-scopic examination of cells showed apoptosis as the dominant type of cell death. Due to observed high viability of treated cells, we propose that cytotoxic effects of Hypericum extracts could be related to alternations/interruptions in the cell cycle.

  20. Impact of Microenvironment and Stem-Like Plasticity in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Raggi, Chiara; Invernizzi, Pietro; Andersen, Jesper Bøje


    Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying diversity of CCA growth patterns remain a key issue and a clinical concern...... or tumor microenvironment (TME) likely promotes initiation and progression of this malignancy contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA....

  1. Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines.

    Directory of Open Access Journals (Sweden)

    Alessia Calzolari

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.

  2. Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines. (United States)

    Calzolari, Alessia; Saulle, Ernestina; De Angelis, Maria Laura; Pasquini, Luca; Boe, Alessandra; Pelacchi, Federica; Ricci-Vitiani, Lucia; Baiocchi, Marta; Testa, Ugo


    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.

  3. Alterations in cellular metabolome after pharmacological inhibition of Notch in glioblastoma cells. (United States)

    Kahlert, Ulf D; Cheng, Menglin; Koch, Katharina; Marchionni, Luigi; Fan, Xing; Raabe, Eric H; Maciaczyk, Jarek; Glunde, Kristine; Eberhart, Charles G


    Notch signaling can promote tumorigenesis in the nervous system and plays important roles in stem-like cancer cells. However, little is known about how Notch inhibition might alter tumor metabolism, particularly in lesions arising in the brain. The gamma-secretase inhibitor MRK003 was used to treat glioblastoma neurospheres, and they were subdivided into sensitive and insensitive groups in terms of canonical Notch target response. Global metabolomes were then examined using proton magnetic resonance spectroscopy, and changes in intracellular concentration of various metabolites identified which correlate with Notch inhibition. Reductions in glutamate were verified by oxidation-based colorimetric assays. Interestingly, the alkylating chemotherapeutic agent temozolomide, the mTOR-inhibitor MLN0128, and the WNT inhibitor LGK974 did not reduce glutamate levels, suggesting that changes to this metabolite might reflect specific downstream effects of Notch blockade in gliomas rather than general sequelae of tumor growth inhibition. Global and targeted expression analyses revealed that multiple genes important in glutamate homeostasis, including glutaminase, are dysregulated after Notch inhibition. Treatment with an allosteric inhibitor of glutaminase, compound 968, could slow glioblastoma growth, and Notch inhibition may act at least in part by regulating glutaminase and glutamate.

  4. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke, E-mail:


    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  5. Effects of the lysosomal destabilizing drug siramesine on glioblastoma in vitro and in vivo

    DEFF Research Database (Denmark)

    Jensen, Stine S.; Asferg Petterson, Stine; Halle, Bo


    - and chemoresistant brain tumor-initiating cells combined with the invasive properties of the tumors is believed to be critical for treatment resistance. In the present study, the aim was to investigate the effect of a novel therapeutic strategy using the lysosomotropic detergent siramesine on glioblastomas. Methods......Background: Glioblastoma is the most frequent and most malignant brain tumor with the patients having a median survival of only 14.6 months. Although glioblastoma patients are treated with surgery, radiation and chemotherapy recurrence is inevitable. A stem-like population of radio......: Standard glioma cell lines and patient-derived spheroids cultures with tumor-initiating stem-like cells were used to investigate effects of siramesine on proliferation and cell death. Responsible mechanisms were investigated by inhibitors of caspases and cathepsins. Effects of siramesine on migrating tumor...

  6. O6-Methylguanine-Methyltransferase (MGMT Promoter Methylation Status in Glioma Stem-Like Cells is Correlated to Temozolomide Sensitivity Under Differentiation-Promoting Conditions

    Directory of Open Access Journals (Sweden)

    Lucie Karayan-Tapon


    Full Text Available Glioblastoma (GBM is the most malignant type of primary brain tumor with a very poor prognosis. The actual standard protocol of treatment for GBM patients consists of radiotherapy and concomitant temozolomide (TMZ. However, the therapeutic efficacy of this treatment is limited due to tumor recurrence and TMZ resistance. Recently isolated, glioma stem-like cells (GSCs are thought to represent the population of tumorigenic cells responsible for GBM resistance and recurrence following surgery and chemotherapy. In addition, MGMT (O6-methylguanine-methyltransferase methylation is considered as one of the principal mechanisms contributing to TMZ sensitivity of GBM. In this study we have isolated GSCs from 10 adult GBM patients and investigated the relationship between MGMT methylation status and Temozolomide (TMZ sensitivity of these lines grown either in stem-like or differentiation promoting conditions. Sensitivity to TMZ was significantly associated with MGMT methylation status in cells committed to differentiation but not in stem-like cells. In addition, patients harboring highly methylated MGMT promoters had a longer overall survival. These results reveal the importance of the differentiation process when considering the predictive value of MGMT status in GSCs for clinical response to TMZ.

  7. Activation of Wnt signaling pathway by AF1q enriches stem-like population and enhance mammosphere formation of breast cells. (United States)

    Tse, Charlotte Olivia; Kim, Soojin; Park, Jino


    Wnt signaling pathway is believed to be responsible for control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state. Moreover, dysregulated Wnt signaling pathway is strongly associated with several diseases including cancer. Previously, we have shown that AF1q associates with a poor prognosis in leukemia, myelodysplastic syndromes, multiple myeloid, ovarian cancer, and breast cancer. Also, AF1q plays a pivotal role as an oncogene and metastasis enhancer in breast cancer via activation of Wnt signaling pathway. AF1q is highly expressed in stem cells, and this expression is diminished by differentiation. To understand the role of AF1q in stem-like population, we examined stem-like cells derived from breast cells which dysregulated Wnt signaling pathway by alteration of AF1q expression. The effect of Wnt signaling pathway by AF1q on EMT marker expression, stem cell marker expression, and sphere formation was determined. Activated Wnt signaling pathway by AF1q enriched stem-like population showed enhanced sphere formation ability. Interestingly, Wnt signaling pathway inhibitor, Quercetin, decreased the sphere formation in these cells. These results suggest that AF1q would have a role as an enhancer in generation of stem-like population through activation of Wnt signaling pathway.

  8. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling. (United States)

    Yu, Ling; Fan, Zhengfu; Fang, Shuo; Yang, Jian; Gao, Tian; Simões, Bruno M; Eyre, Rachel; Guo, Weichun; Clarke, Robert B


    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance.

  9. Glioblastoma care in the elderly. (United States)

    Jordan, Justin T; Gerstner, Elizabeth R; Batchelor, Tracy T; Cahill, Daniel P; Plotkin, Scott R


    Glioblastoma is common among elderly patients, a group in which comorbidities and a poor prognosis raise important considerations when designing neuro-oncologic care. Although the standard of care for nonelderly patients with glioblastoma includes maximal safe surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide, the safety and efficacy of these modalities in elderly patients are less certain given the population's underrepresentation in many clinical trials. The authors reviewed the clinical trial literature for reports on the treatment of elderly patients with glioblastoma to provide evidence-based guidance for practitioners. In elderly patients with glioblastoma, there is a survival advantage for those who undergo maximal safe resection, which likely includes an incremental benefit with increasing completeness of resection. Radiotherapy extends survival in selected patients, and hypofractionation appears to be more tolerable than standard fractionation. In addition, temozolomide chemotherapy is safe and extends the survival of patients with tumors that harbor O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation. The combination of standard radiation with concurrent and adjuvant temozolomide has not been studied in this population. Although many questions remain unanswered regarding the treatment of glioblastoma in elderly patients, the available evidence provides a framework on which providers may base individual treatment decisions. The importance of tumor biomarkers is increasingly apparent in elderly patients, for whom the therapeutic efficacy of any treatment must be weighed against its potential toxicity. MGMT promoter methylation status has specifically demonstrated utility in predicting the efficacy of temozolomide and should be considered in treatment decisions when possible. Cancer 2016;122:189-197. © 2015 American Cancer Society.

  10. Corticosteroids compromise survival in glioblastoma. (United States)

    Pitter, Kenneth L; Tamagno, Ilaria; Alikhanyan, Kristina; Hosni-Ahmed, Amira; Pattwell, Siobhan S; Donnola, Shannon; Dai, Charles; Ozawa, Tatsuya; Chang, Maria; Chan, Timothy A; Beal, Kathryn; Bishop, Andrew J; Barker, Christopher A; Jones, Terreia S; Hentschel, Bettina; Gorlia, Thierry; Schlegel, Uwe; Stupp, Roger; Weller, Michael; Holland, Eric C; Hambardzumyan, Dolores


    Glioblastoma is the most common and most aggressive primary brain tumour. Standard of care consists of surgical resection followed by radiotherapy and concomitant and maintenance temozolomide (temozolomide/radiotherapy→temozolomide). Corticosteroids are commonly used perioperatively to control cerebral oedema and are frequently continued throughout subsequent treatment, notably radiotherapy, for amelioration of side effects. The effects of corticosteroids such as dexamethasone on cell growth in glioma models and on patient survival have remained controversial. We performed a retrospective analysis of glioblastoma patient cohorts to determine the prognostic role of steroid administration. A disease-relevant mouse model of glioblastoma was used to characterize the effects of dexamethasone on tumour cell proliferation and death, and to identify gene signatures associated with these effects. A murine anti-VEGFA antibody was used in parallel as an alternative for oedema control. We applied the dexamethasone-induced gene signature to The Cancer Genome Atlas glioblastoma dataset to explore the association of dexamethasone exposure with outcome. Mouse experiments were used to validate the effects of dexamethasone on survival in vivo Retrospective clinical analyses identified corticosteroid use during radiotherapy as an independent indicator of shorter survival in three independent patient cohorts. A dexamethasone-associated gene expression signature correlated with shorter survival in The Cancer Genome Atlas patient dataset. In glioma-bearing mice, dexamethasone pretreatment decreased tumour cell proliferation without affecting tumour cell viability, but reduced survival when combined with radiotherapy. Conversely, anti-VEGFA antibody decreased proliferation and increased tumour cell death, but did not affect survival when combined with radiotherapy. Clinical and mouse experimental data suggest that corticosteroids may decrease the effectiveness of treatment and shorten

  11. Genetic variations in EGF and EGFR and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, Sara; Andersson, Ulrika; Liu, Yanhong;


    Few prognostic factors have been associated with glioblastoma survival. We analyzed a complete tagging of the epidermal growth factor (EGF) and EGF receptor (EGFR) gene polymorphisms as potential prognostic factors. Thirty tagging single-nucleotide polymorphisms (SNPs) in EGF and 89 tagging SNPs...... in EGFR were analyzed for association with survival in 176 glioblastoma cases. Validation analyses were performed for 4 SNPs in a set of 638 glioblastoma patients recruited at The University of Texas M. D. Anderson Cancer Center (MDACC). Three hundred and seventy-four glioblastoma patients aged 50 years...... or older at diagnosis were subanalyzed to enrich for de novo arising glioblastoma. We found 7 SNPs in haplotype 4 in EGF that were associated with prognosis in glioblastoma patients. In EGFR, 4 of 89 SNPs were significantly associated with prognosis but judged as false positives. Four of the significantly...

  12. Fluorouracil selectively enriches stem-like cells in the lung adenocarcinoma cell line SPC. (United States)

    Shi, Mu-mu; Xiong, Yan-lei; Jia, Xin-shan; Li, Xin; Zhang, Li; Li, Xiao-lei; Wang, En-Hua


    Most adult stem cells are in the G0 or quiescent phase of the cell cycle and account for only a small percentage of the cells in the tissue. Thus, isolation of stem cells from tissues for further study represents a major challenge. This study sought to enrich cancer stem cells and explore cancer stem-like cell clones using 5-fluorouracil (5-FU) in the lung adenocarcinoma cell line, SPC. Proliferation inhibition was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, according to which half maximal inhibitory concentration values were calculated. Expression levels of stem cell markers after treatment with 5-FU were examined using immunofluorescence and Western blotting. Additionally, side population (SP) cells were sorted using FACS. Properties of SP cells were evaluated by using Transwell, colony-forming assays, and tumor formation experiments. 5-FU greatly inhibits proliferation, especially of cells in S phase. SP cells possess greater invasive potential, higher clone-forming potential, and greater tumor-forming ability than non-SP cells. Treatment with 5-FU enriches the SP cells with stem cell properties in human lung adenocarcinoma cell lines.

  13. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming


    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells. © 2014 Springer Science+Business Media.

  14. Synthesis of tetrahydrohonokiol derivates and their evaluation for cytotoxic activity against CCRF-CEM leukemia, U251 glioblastoma and HCT-116 colon cancer cells. (United States)

    Bernaskova, Marketa; Kretschmer, Nadine; Schuehly, Wolfgang; Huefner, Antje; Weis, Robert; Bauer, Rudolf


    Biphenyl neolignans such as honokiol and magnolol, which are the major active constituents of the Asian medicinal plant Magnolia officinalis, are known to exert a multitude of pharmacological and biological activities. Among these, cytotoxic and tumor growth inhibitory activity against various tumour cell lines are well-documented. To further elucidate the cytotoxic effects of honokiol derivatives, derivatizations were performed using tetrahydrohonokiol as a scaffold. The derivatizations comprised the introduction of functional groups, e.g., nitro and amino groups, as well as alkylation. This way, 18 derivatives, of which 13 were previously undescribed compounds, were evaluated against CCRF-CEM leukemia cells, U251 glioblastoma and HCT-116 colon cancer cells. The results revealed no significant cytotoxic effects in any of the three tested cell lines at a test concentration of 10 µM.

  15. Synthesis of Tetrahydrohonokiol Derivates and Their Evaluation for Cytotoxic Activity against CCRF-CEM Leukemia, U251 Glioblastoma and HCT-116 Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Marketa Bernaskova


    Full Text Available Biphenyl neolignans such as honokiol and magnolol, which are the major active constituents of the Asian medicinal plant Magnolia officinalis, are known to exert a multitude of pharmacological and biological activities. Among these, cytotoxic and tumor growth inhibitory activity against various tumour cell lines are well-documented. To further elucidate the cytotoxic effects of honokiol derivatives, derivatizations were performed using tetrahydrohonokiol as a scaffold. The derivatizations comprised the introduction of functional groups, e.g., nitro and amino groups, as well as alkylation. This way, 18 derivatives, of which 13 were previously undescribed compounds, were evaluated against CCRF-CEM leukemia cells, U251 glioblastoma and HCT-116 colon cancer cells. The results revealed no significant cytotoxic effects in any of the three tested cell lines at a test concentration of 10 µM.

  16. 4-IBP, a σ1 Receptor Agonist, Decreases the Migration of Human Cancer Cells, Including Glioblastoma Cells, In Vitro and Sensitizes Them In Vitro and In Vivo to Cytotoxic Insults of Proapoptotic and Proautophagic Drugs

    Directory of Open Access Journals (Sweden)

    Veronique Mégalizzi


    Full Text Available Although the molecular function of cr receptors has not been fully defined and the natural ligand(s is still not known, there is increasing evidence that these receptors and their ligands might play a significant role in cancer biology. 4-(N-tibenzylpiperidin-4-yl-4iodobenzamide (4-IBP, a selective σ1, agonist, has been used to investigate whether this compound is able to modify: 1 in vitro the migration and proliferation of human cancer cells; 2 in vitro the sensitivity of human glioblastoma cells to cytotoxic drugs; and 3 in vivo in orthotopic glioblastoma and non-small cell lung carcinoma (NSCLC models the survival of mice coadministered cytotoxic agents. 4-IBP has revealed weak anti proliferative effects on human U373-MG glioblastoma and C32 melanoma cells but induced marked concentration-dependent decreases in the growth of human A549 NSCLC and PC3 prostate cancer cells. The compound was also significantly antimigratory in all four cancer cell lines. This may result, at least in U373-MG cells, from modifications to the actin cytoskeleton. 4-IBP modified the sensitivity of U373-MG cells in vitro to proapoptotic lomustin and proautophagic temozolomide, and markedly decreased the expression of two proteins involved in drug resistance: glucosylceramide synthase and Rho guanine nucleotide dissociation inhibitor. In vivo, 4-IBP increased the antitumor effects of temozolomide and irinotecan in immunodeficient mice that were orthotopically grafted with invasive cancer cells.

  17. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. (United States)

    Garner, Jo Meagan; Fan, Meiyun; Yang, Chuan He; Du, Ziyun; Sims, Michelle; Davidoff, Andrew M; Pfeffer, Lawrence M


    Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.

  18. Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures

    DEFF Research Database (Denmark)

    Halle, Bo; Thomassen, Mads; Venkatesan, Ranga;


    Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non......-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using...

  19. Recurrent Glioblastoma: Where we stand

    Directory of Open Access Journals (Sweden)

    Sanjoy Roy


    Full Text Available Current first-line treatment regimens combine surgical resection and chemoradiation for Glioblastoma that provides a slight increase in overall survival. Age on its own should not be used as an exclusion criterion of glioblastoma multiforme (GBM treatment, but performance should be factored heavily into the decision-making process for treatment planning. Despite aggressive initial treatment, most patients develop recurrent diseases which can be treated with re-resection, systemic treatment with targeted agents or cytotoxic chemotherapy, reirradiation, or radiosurgery. Research into novel therapies is investigating alternative temozolomide regimens, convection-enhanced delivery, immunotherapy, gene therapy, antiangiogenic agents, poly ADP ribose polymerase inhibitors, or cancer stem cell signaling pathways. Given the aggressive and resilient nature of GBM, continued efforts to better understand GBM pathophysiology are required to discover novel targets for future therapy.

  20. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    Directory of Open Access Journals (Sweden)

    Hyunsook An

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC; however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705. Furthermore, interleukin-6 (IL-6-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  1. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells. (United States)

    An, Hyunsook; Kim, Ji Young; Oh, Eunhye; Lee, Nahyun; Cho, Youngkwan; Seo, Jae Hong


    Triple-negative breast cancer (TNBC) is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC); however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705). Furthermore, interleukin-6 (IL-6)-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  2. Improving Goals of Care Discussion in Advanced Cancer Patients (United States)


    Primary Stage IV Hepatobiliary; Esophageal; Colorectal Cancer; Glioblastoma; Cancer of Stomach; Cancer of Pancreas; Melanoma; Head or Neck Cancer; Stage III; Stage IV; Lung Cancers; Pancreatic Cancers

  3. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA (United States)

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  4. Proteomic analysis of human Sonic Hedgehog (SHH) medulloblastoma stem-like cells. (United States)

    Ronci, Maurizio; Catanzaro, Giuseppina; Pieroni, Luisa; Po, Agnese; Besharat, Zein Mersini; Greco, Viviana; Levi Mortera, Stefano; Screpanti, Isabella; Ferretti, Elisabetta; Urbani, Andrea


    Human medulloblastoma (MB) is a malignant brain tumor that comprises four distinct molecular subgroups including the Sonic Hedgehog (SHH)-MB group. A leading cause of the SHH subgroup is an aberrant activation of the SHH pathway, a developmental signaling that regulates postnatal development of the cerebellum by promoting the mitotic expansion of granule neural precursors (GNPs) in the external granule layer (EGL). The abnormal SHH signaling pathway drives not only SHH-MB but also its cancer stem-like cells (SLCs), which represent a fraction of the tumor cell population that maintain cancer growth and have been associated with high grade tumors. Here, we report the first proteomic analysis of human SHH-MB SLCs before and after Retinoic Acid (RA)-induced differentiation. A total of 994 nLC-MS buckets were statistically analysed returning 68 modulated proteins between SLCs and their differentiated counterparts. Heat Shock Protein 70 (Hsp70) was one of the proteins that characterized the protein profile of SLCs. By means of Ingenuity Pathway Analysis (IPA), Genomatix analysis and extending the network obtained using the differentially expressed proteins we found a correlation between Hsp70 and the NF-κB complex. A key driver of the SHH-MB group is cMET whose downstream proliferation/survival signalling is indeed via PI3K/Akt/NF-κB. We confirmed the results of the proteomic analysis by western blot, underlining that a P-p65/NF-κB activatory complex is highly expressed in SLCs. Taking together these results we define a new protein feature of SHH-MB SLCs.

  5. Advance Care Planning in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Lara Fritz


    Full Text Available Despite multimodal treatment with surgery, radiotherapy and chemotherapy, glioblastoma is an incurable disease with a poor prognosis. During the disease course, glioblastoma patients may experience progressive neurological deficits, symptoms of increased intracranial pressure such as drowsiness and headache, incontinence, seizures and progressive cognitive dysfunction. These patients not only have cancer, but also a progressive brain disease. This may seriously interfere with their ability to make their own decisions regarding treatment. It is therefore warranted to involve glioblastoma patients early in the disease trajectory in treatment decision-making on their future care, including the end of life (EOL care, which can be achieved with Advance Care Planning (ACP. Although ACP, by definition, aims at timely involvement of patients and proxies in decision-making on future care, the optimal moment to initiate ACP discussions in the disease trajectory of glioblastoma patients remains controversial. Moreover, the disease-specific content of these ACP discussions needs to be established. In this article, we will first describe the history of patient participation in treatment decision-making, including the shift towards ACP. Secondly, we will describe the possible role of ACP for glioblastoma patients, with the specific aim of treatment of disease-specific symptoms such as somnolence and dysphagia, epileptic seizures, headache, and personality changes, agitation and delirium in the EOL phase, and the importance of timing of ACP discussions in this patient population.

  6. Stem-Like Cells in Bone Sarcomas: Implications for Tumorigenesis

    Directory of Open Access Journals (Sweden)

    C. Parker Gibbs


    Full Text Available Bone sarcomas are a clinically and molecularly heterogeneous group of malignancies characterized by varying degrees of mesenchymal differentiation. Despite advances in medical and surgical management, survival rates for high-grade tumors have remained static at 50% to 70%. Tumor stem cells have been recently implicated in the pathogenesis of other heterogeneous, highly malignant tumors. We demonstrate here the existence of a small subpopulation of self-renewing bone sarcoma cells that are capable of forming suspended spherical, clonal colonies, also called “sarcospheres,” in anchorage-independent, serum-starved conditions. These bone sarcoma cells as well as tissue specimens express activated STAT3 and the marker genes of pluripotent embryonic stem (ES cells, Oct 3/4 and Nanog. Expression levels of Oct 3/4 and Nanog are greater in sarcospheres than in adherent cultures. A subset of bone sarcoma cells displays several surface markers of mesenchymal stem cells (Stro-1, CD105, and CD44 as well as attributes of mesodermal, ectodermal, and endodermal differentiation. Although previously documented in brain and breast tumors, our results support the extension of the cancer stem cell hypothesis to include tumors of mesenchymal lineage. Furthermore, they suggest the participation of ES cell homeobox proteins in non-germ cell tumorigenesis.

  7. Identification of quiescent, stem-like cells in the distal female reproductive tract.

    Directory of Open Access Journals (Sweden)

    Yongyi Wang

    Full Text Available In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs. To this aim, transgenic mice expressing histone2B-GFP (H2B-GFP in a Tet-inducible fashion were administered doxycycline (pulse which was thereafter withdrawn from the drinking water (chase. Over time, dividing cells progressively loose GFP signal whereas infrequently dividing cells retain H2B-GFP expression. We evaluated H2B-GFP retaining cells at different chase time points and identified long-term (LT; >12 weeks LRCs. The LT-LRCs are negative for estrogen receptor-α and express low levels of progesterone receptors. LRCs sorted by FACS are able to form spheroids capable of self-renewal and differentiation. Upon serum stimulation spheroid cells are induced to differentiate and form glandular structures which express markers of mature műllerian epithelial cells. Overall, the results indicate that quiescent cells located in the distal oviduct have stem-like properties and can differentiate into distinct cell lineages specific of endometrium, proximal and distal oviduct. Future lineage-tracing studies will elucidate the role played by these cells in homeostasis, tissue injury and cancer of the female reproductive tract in the mouse and eventually in man.

  8. Transcriptional profiling of adult neural stem-like cells from the human brain. (United States)

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A


    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  9. Gene transfection in primary stem-like cells of giant cell tumor of bone. (United States)

    Singh, Shalini; Mak, Isabella; Power, Patricia; Cunningham, Melissa; Cunnigham, Melissa; Turcotte, Robert; Ghert, Michelle


    The neoplastic stem-like stromal cell of giant cell tumor of bone (GCT) survives for multiple passages in primary culture with a stable phenotype, and exhibits multipotent characteristics. The pathophysiology of this tumor has been studied through the primary culture of these cells. However, successful gene transfer of these cells has not been reported to date. In this short report, we describe the development of the first reported technique that results in efficient gene transfection in primary stem-like cells of GCT.

  10. Emerging Biomarkers in Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Mairéad G.; Sahebjam, Solmaz; Mason, Warren P., E-mail: [Pencer Brain Tumor Centre, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada)


    Glioblastoma, the most common primary brain tumor, has few available therapies providing significant improvement in survival. Molecular signatures associated with tumor aggressiveness as well as with disease progression and their relation to differences in signaling pathways implicated in gliomagenesis have recently been described. A number of biomarkers which have potential in diagnosis, prognosis and prediction of response to therapy have been identified and along with imaging modalities could contribute to the clinical management of GBM. Molecular biomarkers including O(6)-methlyguanine-DNA-methyltransferase (MGMT) promoter and deoxyribonucleic acid (DNA) methylation, loss of heterozygosity (LOH) of chromosomes 1p and 19q, loss of heterozygosity 10q, isocitrate dehydrogenase (IDH) mutations, epidermal growth factor receptor (EGFR), epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1 (ELTD1), vascular endothelial growth factor (VEGF), tumor suppressor protein p53, phosphatase and tensin homolog (PTEN), p16INK4a gene, cytochrome c oxidase (CcO), phospholipid metabolites, telomerase messenger expression (hTERT messenger ribonucleic acid [mRNA]), microRNAs (miRNAs), cancer stem cell markers and imaging modalities as potential biomarkers are discussed. Inclusion of emerging biomarkers in prospective clinical trials is warranted in an effort for more effective personalized therapy in the future.

  11. Chemoresistance and chemotherapy targeting stem-like cells in malignant glioma

    DEFF Research Database (Denmark)

    Sørensen, Mia Dahl; Fosmark, Sigurd; Hellwege, Sofie


    Glioblastoma remains a tumor with a dismal prognosis because of failure of current treatment. Glioblastoma cells with stem cell (GSC) properties survive chemotherapy and give rise to tumor recurrences that invariably result in the death of the patients. Here we summarize the current knowledge...... by extrinsic factors like hypoxia increasing MGMT expression and thereby resistance to alkylating chemotherapy. The search of new biomarkers helping to predict the tumor response to chemotherapy is ongoing and will complement the already known markers like MGMT....

  12. [Biology molecular of glioblastomas]. (United States)

    Franco-Hernández, C; Martínez-Glez, V; Rey, J A


    Glioblastomas, the most frequent and malignant human brain tumors, may develop de novo (primary glioblastoma) or by progression from low-grade or anapalsic astrocytoma (secondary glioblastoma). The molecular alteration most frequent in these tumor-like types is the loss of heterozygosity on chromosome 10, in which several genes have been identified as tumors suppressor. The TP53/MDM2/P14arf and CDK4/RB1/ P16ink4 genetic pathways involved in cycle control are deregulated in the majority of gliomas as well as genes that promote the cellular division, EGFR. Finally the increase of growth and angiogenics factors is also involved in the development of glioblastomas. One of the objectives of molecular biology in tumors of glial ancestry is to try to find the genetic alterations that allow to approach better the classification of glioblastomas, its evolution prediction and treatment. The new pathmolecular classification of gliomas should improve the old one, especially being concerned about the oncogenesis and heterogeneity of these tumors. It is desirable that this classification had clinical applicability and integrates new molecular findings with some known histological features with pronostic value. In this paper we review the most frequent molecular mechanisms involved in the patogenesis of glioblastomas.

  13. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. (United States)

    Zanotto-Filho, Alfeu; Braganhol, Elizandra; Edelweiss, Maria Isabel; Behr, Guilherme A; Zanin, Rafael; Schröder, Rafael; Simões-Pires, André; Battastini, Ana Maria Oliveira; Moreira, José Cláudio Fonseca


    Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.

  14. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells.

    Directory of Open Access Journals (Sweden)

    Raquel Ordóñez

    Full Text Available Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC, a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture. Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.

  15. Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis (United States)

    Cristofanon, S; Abhari, B A; Krueger, M; Tchoghandjian, A; Momma, S; Calaminus, C; Vucic, D; Pichler, B J; Fulda, S


    This study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination index<0.1). Also, BV6 profoundly enhances Drozitumab-induced apoptosis in primary glioblastoma cultures and glioblastoma stem-like cells. Importantly, BV6 cooperates with Drozitumab to suppress tumor growth in two glioblastoma in vivo models including an orthotopic, intracranial mouse model, underlining the clinical relevance of these findings. Mechanistic studies reveal that BV6 and Drozitumab act in concert to trigger the formation of a cytosolic receptor-interacting protein (RIP) 1/Fas-associated via death domain (FADD)/caspase-8-containing complex and subsequent activation of caspase-8 and -3. BV6- and Drozitumab-induced apoptosis is blocked by the caspase inhibitor zVAD.fmk, pointing to caspase-dependent apoptosis. RNA interference-mediated silencing of RIP1 almost completely abolishes the BV6-conferred sensitization to Drozitumab-induced apoptosis, indicating that the synergism critically depends on RIP1 expression. In contrast, both necrostatin-1, a RIP1 kinase inhibitor, and Enbrel, a TNFα-blocking antibody, do not interfere with BV6/Drozitumab-induced apoptosis, demonstrating that apoptosis occurs independently of RIP1 kinase activity or an autocrine TNFα loop. In conclusion, the rational combination of BV6 and Drozitumab presents a promising approach to trigger apoptosis in glioblastoma, which warrants further investigation. PMID:25880091

  16. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties.

    Directory of Open Access Journals (Sweden)

    Lenora Ann Pluchino

    Full Text Available Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and benzo[a]pyrene (B[a]P, and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.

  17. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell


    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  18. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma (United States)

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.


    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis.

  19. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells (United States)



    Glioblastoma is the most common and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas, but it is not curative. The difficulties in treating glioblastoma may be as a result of the presence of glioma stem cells (GSCs), which are a source of relapse and chemoresistance. Another reason may be that endogenous Akt kinase activity may be activated in response to clinically relevant concentrations of TMZ. Akt activation is correlated with the increased tumorigenicity, invasiveness and stemness of cancer cells and overexpression of an active form of Akt increases glioma cell resistance to TMZ. Mounting evidence has demonstrated that cancer stem cells are preferentially sensitive to an inhibitor of Akt and down-regulation of the PI3K/Akt pathway may enhance the cytotoxicity of TMZ. Metformin (MET), the first-line drug for treating diabetes, it has been proved that it reduces AKT activation and selectively kills cancer stem cells, but whether it can potentiate the cytotoxicity of TMZ for GSCs remains unknown. In the present study, the GSCs isolated from human glioma cell line U87 and Rat glioma cell line C6, in vitro treatment with TMZ either alone or with MET. The present study demonstrates that MET acts synergistically with TMZ in inhibiting GSCs proliferation and generating the highest apoptotic rates when compared to either drug alone. These findings implicate that GSCs cytotoxicity mediated by TMZ may be stimulated by MET, have a synergistic effect, but the definite mechanisms remain elusive. PMID:27073554

  20. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther


    Recent research suggests that deregulation of microRNAs (miRNAs) is involved in initiation and progression of many cancers, including gliomas and that miRNAs hold great potential as future diagnostic and therapeutic tools in cancer. MiRNAs are a class of short non-coding RNA sequences (18......-24 nucleotides), which base-pair to target messenger RNA (mRNA) and thereby cause translational repression or mRNA degradation based on the level of complementarity between strands. Profiling miRNAs in clinical glioblastoma samples has shown aberrant expression of numerous miRNAs when compared to normal brain...... tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  1. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells. (United States)

    Tığlı Aydın, R Seda; Kaynak, Gökçe; Gümüşderelioğlu, Menemşe


    Salinomycin has been introduced as a novel alternative to traditional anti-cancer drugs. The aim of this study was to test a strategy designed to deliver salinomycin to glioblastoma cells in vitro. Salinomycin-encapsulated polysorbate 80-coated poly(lactic-co-glycolic acid) nanoparticles (P80-SAL-PLGA) were prepared and characterized with respect to particle size, morphology, thermal properties, drug encapsulation efficiency and controlled salinomycin-release behaviour. The in vitro cellular uptake of P80-SAL-PLGA (5 and 10 µM) or uncoated nanoparticles was assessed in T98G human glioblastoma cells, and the cell viability was investigated with respect to anti-growth activities. SAL, which was successfully transported to T98G glioblastoma cells via P80 coated nanoparticles (∼14% within 60 min), greatly decreased (p salinomycin delivery system in the treatment of human glioblastoma.

  2. Engagement of Patients With Advanced Cancer (United States)


    End of Life; Advanced Cancer; Lung Neoplasm; Gastric Cancer; Colon Cancer; Glioblastoma Multiforme; Head and Neck Neoplasms; Rectum Cancer; Melanoma; Kidney Cancer; Prostate Cancer; Testicular Neoplasms; Liver Cancer; Cancer of Unknown Origin

  3. Strategies in Gene Therapy for Glioblastoma



    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strate...

  4. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. (United States)

    Yamamuro, Shun; Sano, Emiko; Okamoto, Yutaka; Ochiai, Yushi; Ohta, Takashi; Ogino, Akiyoshi; Natsume, Atsushi; Wakabayashi, Toshihiko; Ueda, Takuya; Hara, Hiroyuki; Nakayama, Tomohiro; Yoshino, Atsuo; Katayama, Yoichi


    Glioma stem-like cells (GSCs) are undifferentiated cells that are considered to be an origin of glioblastomas. Furthermore, they may contribute to treatment resistance and recurrence in glioblastomas. GSCs differentiate into differentiated glioma cells (non-glioma stem-like cells: non‑GSCs), and interconversion might occur between GSCs and non-GSCs. We investigated whether interferon-beta (IFN-β) could exert any efficacy towards GSCs or such interconversion processes. The neural stem cell marker CD133 and pluripotency marker Nanog in GSCs were analyzed to evaluate their differentiation levels. GSCs were considered to undergo differentiation into non-GSCs upon serum exposure, since the expression of CD133 and Nanog in the GSCs was negatively affected. Furthermore, the cells regained their undifferentiated features upon removal of the serum. However, we verified that IFN-β reduced cell proliferation and tumor sphere formation in GSCs, and induced suppression of the restoration of such undifferentiated features. In addition, we also confirmed that IFN-β suppressed the acquisition process of undifferentiated features in human malignant glioma cell lines. Our data thus suggest that IFN-β could be an effective agent not only through its cell growth inhibitory effect on GSCs but also as a means of targeting the interconversion between GSCs and non-GSCs, indicating the possibility of IFN-β being used to prevent treatment resistance and recurrence in glioblastomas, via the inhibition of undifferentiated features.

  5. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells (United States)



    Glioma stem-like cells (GSCs) are undifferentiated cells that are considered to be an origin of glioblastomas. Furthermore, they may contribute to treatment resistance and recurrence in glioblastomas. GSCs differentiate into differentiated glioma cells (non-glioma stem-like cells: non-GSCs), and interconversion might occur between GSCs and non-GSCs. We investigated whether interferon-beta (IFN-β) could exert any efficacy towards GSCs or such interconversion processes. The neural stem cell marker CD133 and pluripotency marker Nanog in GSCs were analyzed to evaluate their differentiation levels. GSCs were considered to undergo differentiation into non-GSCs upon serum exposure, since the expression of CD133 and Nanog in the GSCs was negatively affected. Furthermore, the cells regained their undifferentiated features upon removal of the serum. However, we verified that IFN-β reduced cell proliferation and tumor sphere formation in GSCs, and induced suppression of the restoration of such undifferentiated features. In addition, we also confirmed that IFN-β suppressed the acquisition process of undifferentiated features in human malignant glioma cell lines. Our data thus suggest that IFN-β could be an effective agent not only through its cell growth inhibitory effect on GSCs but also as a means of targeting the interconversion between GSCs and non-GSCs, indicating the possibility of IFN-β being used to prevent treatment resistance and recurrence in glioblastomas, via the inhibition of undifferentiated features. PMID:26397698

  6. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer

    NARCIS (Netherlands)

    Barault, L.; Amatu, A.; Bleeker, F.E.; Moutinho, C.; Falcomata, C.; Fiano, V.; Cassingena, A.; Siravegna, G.; Milione, M.; Cassoni, P.; Braud, F. De; Ruda, R.; Soffietti, R.; Venesio, T.; Bardelli, A.; Wesseling, P.; Hamer, P. de Witt; Pietrantonio, F.; Siena, S. Di; Esteller, M.; Sartore-Bianchi, A.; Nicolantonio, F. Di


    BACKGROUND: O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. PATIENTS AND METHODS: We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor a

  7. Transforming Growth Factor-beta signal responding in hepatic stem-like cells

    Institute of Scientific and Technical Information of China (English)

    CUI Wei


    Objective To investigate the effects of TGF-β on the expressions and distribution of phosphorated Smad2/3 and Smad7 in hepatic stem-like cells. Methods Using immunogold transmission electron microscopy, we observed the expressions and distribution of phosphorated Smad2/3, and Smad7 before and after TGF-β1 (5 ng·mL-1) treatment for 4, 8, and 24 hours in hepatic stem-like cells (WB cells). In addition, we also detected the apoptosis status after TGF-β1 stimulation by transmission electron microscopy. Results TGF-β1 stimulation can result in expression increasing of phosphorated Smad2/3 in WB cells, and reach the peak at 8 h, especially in the nuclear. After treatment with TGF-β1 for 24 h, the nuclear expression of phosphorated Smad2/3 gradually decreased. Additionally, we found that TGF-β1 treatment also contributed to increasing in protein level and alteration in cellular distribution of Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. Furthermore, we observed apoptotic body in WB cells after TGF-β1 treatment for 8 h. Conclusions These results indicate that TGF-β stimulation can alter the expression and cellular distribution of phosphorated Srnad2/3 and Smad7 which are its downstream molecular, suggesting hepatic stem-like cells own intact responding to TGF-β.

  8. 高表达β1,6分支N-糖链的骨肉瘤类肿瘤干细胞诱导巨噬细胞M2表型分化%Cancer stem-like cells from osteosarcoma with highly expressed beta 1,6 GlcNAc branched N-glycan induce a phenotypic switch in polarization of bone marrow-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    张思胜; 刘世清


    Objective To investigate the effect of cancer stem-like cells (CSCs) from osteosarcoma cell line on the polarization of macrophages.Methods CSCs were pre-treated with different doses of swainsonine and co-cultured with macrophages,and the phenotypic specific markers on macrophages were detected respectively.Results Compared to the control group,the expression of Arg-1 [(12.0 ± 3.1) % vs.(40.0±2.6)%,P<0.05] and interleukin (IL)-10 [(90.0±4.4) ng/Lvs.(150.0±6.8) ng/L,P <0.05] in macrophages co-cultured with CSCs pre-treated with swainsonine (1 mg/L) was decreased,whereas inducible nitric oxide synthase (iNOS) [(50.0 ±2.1)% vs.(12.0 ± 1.3)%,P<0.05] and tumor necrosis factor (TNF)-α [(240.0 ± 8.1) ng/L vs.(50.0 ± 3.3) ng/L,P < 0.05] increased.Conclusion Increased expression of beta-1,6-oligosaccharide in CSCs derived from osteosarcoma cell line induced the differentiation of bone marrow-derived macrophages into anti-inflammatory M2 macrophages.%目的 检测骨肉瘤类肿瘤干细胞对巨噬细胞表型转换的影响.方法 苦马豆素预处理的CD133+ CD44+骨肉瘤细胞LM8与骨髓巨噬细胞共培养后检测巨噬细胞表型相关标志分子的表达.结果 与未处理组比较,1 mg/L苦马豆素处理组巨噬细胞精氨酸酶(Arg)-1[(12.0±3.1)%比(40.0±2.6)%,P<0.05]和白细胞介素(IL)-10[(90.0±4.4) ng/L比(150.0 ±6.8) ng/L,P<0.05]表达下降,诱导型一氧化氮合酶(iNOS)[(50.0±2.1)%比(12.0±1.3)%,P<0.05]与肿瘤坏死因子(TNF)-α[(240.0 ±8.1)ng/L比(50.0±3.3) ng/L,P<0.05]表达上升.结论 骨肉瘤类肿瘤干细胞高表达1,6分支N-糖链诱导巨噬细胞M2表型转换.

  9. NFKBIA Deletion in Glioblastomas (United States)

    Bredel, Markus; Scholtens, Denise M.; Yadav, Ajay K.; Alvarez, Angel A.; Renfrow, Jaclyn J.; Chandler, James P.; Yu, Irene L.Y.; Carro, Maria S.; Dai, Fangping; Tagge, Michael J.; Ferrarese, Roberto; Bredel, Claudia; Phillips, Heidi S.; Lukac, Paul J.; Robe, Pierre A.; Weyerbrock, Astrid; Vogel, Hannes; Dubner, Steven; Mobley, Bret; He, Xiaolin; Scheck, Adrienne C.; Sikic, Branimir I.; Aldape, Kenneth D.; Chakravarti, Arnab; Harsh, Griffith R.


    BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O6-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival. PMID:21175304

  10. Glioblastoma multiforme associated with klinefelter syndrome. (United States)

    Sasayama, Takashi; Mizukawa, Katsu; Sakagami, Yoshio; Mizowaki, Takashi; Tanaka, Kazuhiro; Ohbayashi, Chiho; Mori, Kiyoshi; Kitazawa, Sohei; Kohmura, Eiji


    A 54-year-old man with Klinefelter syndrome presented with glioblastoma multiforme manifesting as a 2-week history of motor weakness of the bilateral extremities. Magnetic resonance imaging showed multiple heterogeneously enhanced tumors in the bilateral frontal lobes. Angiography showed no tumor stain or arteriovenous shunt. The tumor was partially removed through a right craniotomy. The histological diagnosis was glioblastoma. Immunohistochemical examination showed no O(6)-methylguanine-deoxyribonucleic acid methyltransferase protein expression. Postoperative local radiotherapy (60 Gy/30 fractions) combined with temozolomide (75 mg/m(2) x 42 days) and interferon-beta (3,000,000 U, 3 times/week) was performed. The patient's clinical status rapidly deteriorated during chemoradiotherapy, and he died of tumor progression 3.5 months after the surgery. Postmortem examination revealed widespread glioblastoma infiltrating the basal ganglia and thalamus. Klinefelter syndrome is associated with increased cancer predisposition, especially for male breast cancer and germ cell tumors, but glioma is extremely rare. The abnormal genetic constitution of this patient may have been directly responsible for the poor outcome.

  11. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. (United States)

    Yan, Kenneth; Wu, Qiulian; Yan, Diana H; Lee, Christine H; Rahim, Nasiha; Tritschler, Isabel; DeVecchio, Jennifer; Kalady, Matthew F; Hjelmeland, Anita B; Rich, Jeremy N


    Glioblastomas are the most prevalent and lethal primary brain tumor and are comprised of hierarchies with self-renewing cancer stem cells (CSCs) at the apex. Like neural stem cells (NSCs), CSCs reside in functional niches that provide essential cues to maintain the cellular hierarchy. Bone morphogenetic proteins (BMPs) instruct NSCs to adopt an astrocyte fate and are proposed as anti-CSC therapies to induce differentiation, but, paradoxically, tumors express high levels of BMPs. Here we demonstrate that the BMP antagonist Gremlin1 is specifically expressed by CSCs as protection from endogenous BMPs. Gremlin1 colocalizes with CSCs in vitro and in vivo. Furthermore, Gremlin1 blocks prodifferentiation effects of BMPs, and overexpression of Gremlin1 in non-CSCs decreases their endogenous BMP signaling to promote stem-like features. Consequently, Gremlin1-overexpressing cells display increased growth and tumor formation abilities. Targeting Gremlin1 in CSCs results in impaired growth and self-renewal. Transcriptional profiling demonstrated that Gremlin1 effects were associated with inhibition of p21(WAF1/CIP1), a key CSC signaling node. This study establishes CSC-derived Gremlin1 as a driving force in maintaining glioblastoma tumor proliferation and glioblastoma hierarchies through the modulation of endogenous prodifferentiation signals.

  12. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2.

    Directory of Open Access Journals (Sweden)

    Julie Dwyer

    Full Text Available Glioblastoma constitutes the most aggressive and deadly of brain tumors. As yet, both conventional and molecular-based therapies have met with limited success in treatment of this cancer. Among other explanations, the heterogeneity of glioblastoma and the associated microenvironment contribute to its development, as well as resistance and recurrence in response to treatments. Increased vascularity suggests that tumor angiogenesis plays an important role in glioblastoma progression. However, the molecular crosstalk between endothelial and glioblastoma cells requires further investigation. To examine the effects of glioblastoma-derived signals on endothelial homeostasis, glioblastoma cell secretions were collected and used to treat brain endothelial cells. Here, we present evidence that the glioblastoma secretome provides pro-angiogenic signals sufficient to disrupt VE-cadherin-mediated cell-cell junctions and promote endothelial permeability in brain microvascular endothelial cells. An unbiased angiogenesis-specific antibody array screen identified the chemokine, interleukin-8, which was further demonstrated to function as a key factor involved in glioblastoma-induced permeability, mediated through its receptor CXCR2 on brain endothelia. This underappreciated interface between glioblastoma cells and associated endothelium may inspire the development of novel therapeutic strategies to induce tumor regression by preventing vascular permeability and inhibiting angiogenesis.

  13. Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation

    Directory of Open Access Journals (Sweden)

    Xuan eZong


    Full Text Available Glioblastoma is the most fatal brain cancer found in humans. Patients suffering from glioblastoma have a dismal prognosis, with a median survival of 15 months. The tumor may develop rapidly de novo in older patients or through progression from anaplastic astrocytomas in younger patients if glioblastoma is primary or secondary, respectively. During the past decade, significant advances have been made in the understanding of processes leading to glioblastoma, and several important genetic defects that appear to be important for the development and progression of this tumor have been identified. Particularly, the discovery of recurrent mutations in the isocitrate dehydrogenase 1 (IDH1 gene has shed new light on the molecular landscape in glioblastoma. Indeed, emerging research on the consequences of mutant IDH1 protein expression suggests that its neomorphic enzymatic activity catalyzing the production of the oncometabolite 2-hydroxyglutarate influences a range of cellular programs that affect the epigenome and contribute to glioblastoma development. One of the exciting observations is the presence of IDH1 mutation in the vast majority of secondary glioblastoma, while it is almost absent in primary glioblastoma. Growing data indicate that this particular mutation has clinical and prognostic importance and will become a critical early distinction in diagnosis of glioblastoma.

  14. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti


    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  15. Characterization of cancer stem-like cells in a novel STI571-resistant chronic myeloid leukemia cell line%K562多药耐药细胞系中肿瘤干细胞样细胞对伊马替尼耐药机制的初步研究

    Institute of Scientific and Technical Information of China (English)

    Baijun Fang; Yongping Song; Yanli Zhang; Quande Lin; Xudong Wei


    Objective: To characterize a novel chronic myeloid leukemia (CML) cell line and to further elucidate the mechanisms of resistance to STI571. Methods: A novel K562 cell line (K562NP16) was achieved after exposure of the K562 cells to VP16. A small subpopulation (K562NP16 SP) that was capable of excluding Hoechst 33342 in the K562NP16 cell line was isolated by flow cytometry sorting. The rest of the K562NP16 cells were classified as non-SP K562NP16. The mechanisms involved in K562NP16 SP cells which became resistant to STI571 were studied. Results: The levels of Bcr-Abl and Abl proteins were similar in the K562 cell line and in non-SP K562NP16 and K562NP16 SP cells. The multidrug-resistant gene 1 (MDR1) expression of the 170 kDa P-glycoprotein (P-gp) was detected in K562NP16 non-SP and K562NP16 SP cells but not in K562 cells. The expression levels of P-gp in the two K562NP16 cell lines were similar. Compared with non-SP K562/VP16, the K562NP16 SP cells were more resistant to STI571. This resistance could hardly be reversed by many multidrug resistance inhibitors. In addition, in vivo study showed that the K562NP16 SP cells induced tumorigenesis in mice, while the K562NP16 non-SP cells failed to do so. Conclusion: A novel K562 cell line, K562NP16, was generated. A small side population K562NP16 SP cells, had high resistance to STI571 treatment and more tumorigenic than the K562 cells. It may represent the cancer stem cells of the K562NP16 cell line.

  16. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    Directory of Open Access Journals (Sweden)

    Esser Norbert


    Full Text Available Abstract Background and Purpose Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR. Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Materials and methods Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF and fibroblast growth factor-2 (FGF-2. Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. Results SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Conclusions Our results suggest the importance of delayed

  17. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg


    invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains......AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  18. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma. (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko


    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells.

  19. Role of Receptor Tyrosine Kinases and Their Ligands in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Estefanía Carrasco-García


    Full Text Available Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.

  20. Immunological Evasion in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Roxana Magaña-Maldonado


    Full Text Available Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.

  1. REST regulates oncogenic properties of glioblastoma stem cells (United States)

    Kamal, Mohamed M.; Sathyan, Pratheesh; Singh, Sanjay K.; Zinn, Pascal O.; Marisetty, Anantha L.; Liang, Shoudan; Gumin, Joy; El-Mesallamy, Hala Osman; Suki, Dima; Colman, Howard; Fuller, Gregory N.; Lang, Frederick F.; Majumder, Sadhan


    Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor REST, suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. PMID:22228704

  2. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response. (United States)

    El-Khattouti, Abdelouahid; Selimovic, Denis; Haïkel, Youssef; Megahed, Mosaad; Gomez, Christian R; Hassan, Mohamed


    The presence and the involvement of cancer stem-like cells (CSCs) in tumor initiation and progression, and chemo-resistance are documented. Herein, we functionally analyzed melanoma stem-like cells (MSC)/CD133(+) cells on their resistance and response to taxol-induced apoptosis. Besides being taxol resistant, the CD133(+) cells demonstrated a growth advantage over the CD133(-) subpopulation. Taxol induced apoptosis on CD133(-) cells, but not on CD133(+) cells. In the CD133(-) subpopulation, the exposure to taxol induced the activation of apoptosis signal-regulating kinase1 (ASK1)/c-jun-N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK) pathways and Bax expression, while in CD133(+) cells taxol was able only to enhance the activity of the ERK pathway. In CD133(+) cells, the direct gene transfer of Bax overcame the acquired resistance to taxol. Taken together, our data provide an insight into the mechanistic cascade of melanoma resistance to taxol and suggest Bax gene transfer as a complementary approach to chemotherapy.

  3. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    Directory of Open Access Journals (Sweden)

    Biernat Wojciech


    Full Text Available Abstract Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA: exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP. Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+ and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8, as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.

  4. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation (United States)

    Hirota, Yuki; Masunaga, Shin-Ichiro; Kondo, Natsuko; Kawabata, Shinji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi


    Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. PMID:23955054

  5. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. (United States)

    Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio


    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs.

  6. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. (United States)

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Lian, Haiwei; Chen, Xiong; Zhang, Yingying; He, Xiaohua; Liu, Wanhong; Xie, Conghua


    Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma.

  7. Statin use and survival following glioblastoma multiforme

    DEFF Research Database (Denmark)

    Gaist, David; Hallas, Jesper; Friis, Søren;


    AIM: While some studies indicate a potential chemopreventive effect of statin use on the risk of glioma, the effect of statins on the prognosis of brain tumours has not yet been examined. We thus conducted a cohort study evaluating the influence of statin use on survival in patients...... with glioblastoma multiforme (GBM). METHODS: We identified 1562 patients diagnosed with GBM during 2000-2009 from the Danish Cancer Registry and linked this cohort to Danish nationwide demographic and health registries. Within the GBM cohort, each patient recorded as using statins prior to diagnosis (defined as ≥2...... redeemed prescriptions) was matched to two statin non-users (

  8. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima


    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  9. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu, E-mail:


    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells.

  10. MicroRNA-153 regulates glutamine metabolism in glioblastoma through targeting glutaminase. (United States)

    Liu, Zhenyang; Wang, Junyu; Li, Yunjun; Fan, Juan; Chen, Lihua; Xu, Ruxiang


    Glioblastoma is the most aggressive manifestation of malignant gliomas and considered to be among the deadliest forms of human cancers. MicroRNAs are found to tightly regulate diverse biological processes and considered to play important roles in cancer etiology. In this study, we found that microRNA-153 was significantly downregulated in glioblastoma tissues compared to matched non-tumor tissues and in glioblastoma cell lines. To investigate the potential function of microRNA-153 in glioblastoma, we transfected glioblastoma cell line U87MG as well as U373MG with synthetic microRNA-153 oligos and observed decreased cell proliferation and increased apoptosis. We further found that microRNA-153 restrained glutamine utilization and glutamate generation. Bioinformatics analysis revealed that glutaminase, which catalyzed the formation of glutamate from glutamine, is the potential target of microRNA-153. Indeed, microRNA-153 cannot further reduce glutamine utilization when glutaminase was knocked down. Overexpression of glutaminase abrogates the effect of microRNA-153 on glutamine utilization. Furthermore, the relative expression of microRNA-153 and glutaminase in glioblastoma versus matched non-tumor tissues showed a reverse correlation, further indicating that microRNA-153 may negatively regulate glutaminase in vivo. These results demonstrate an unexpected role of microRNA-153 in regulating glutamine metabolism and strengthen the role of microRNA-153 as a therapeutic target in glioblastoma.

  11. Glioblastoma stem cells resistant to temozolomide-induced autophagy

    Institute of Scientific and Technical Information of China (English)

    FU Jun; LIU Zhi-gang; LIU Xiao-mei; CHEN Fu-rong; SHI Hong-liu; PANG Jesse Chung-sean; NG Ho-keung; CHEN Zhong-ping


    Background Recent studies have demonstrated the existence of a small fraction of cells with features of primitive neural progenitor cells and tumor-initiating function in brain tumors. These cells might represent primary therapeutic target for complete eradication of the tumors. This study aimed to determine the resistant phenotype of glioblastoma stem cells (GSCs) to temozolomide (TMZ) and to explore the possible molecular mechanisms underlying TMZ resistance.Methods Freshly resected glioblastoma specimen was collected and magnetic isolation of GSCs was carded out using the Miltenyi Biotec CD133 Celt isolation kit. The cytotoxic effect of TMZ on CD133+ and CD133- glioblastoma cells was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Autophagy-related proteins (Beclin-1, LC3 and Atg5) and cleaved caspase-3 (p17) were analyzed by Westem blotting. Immunofluorescent staining was used to detect Atg5, glial fibrillary acidic protein (GFAP) and CD133 expression in glioblastoma cells. Statistical analysis was carried out using SPSS 10.0 software. For all tests, the level of statistical significance was set at P <0.05.Results CD133+ glioblastoma cells exhibited neurosphere-like growth in vitro and high expression of CD133 stem cell marker. The growth-inhibiting rate in CD133- glioblastoma cells treated with 5 or 50 pmol/L TMZ was significantly higher than that in CD133+ glioblastoma cells ((14.36±3.75)% vs (2.54±1.36)% or (25.95±5.25)% vs (2.72±1.84)%, respectively, P <0.05). Atg5, LC3-ll and Beclin-1 levels were significantly lower in CD133+ glioblastoma cells than those in autologous CD133- cells after TMZ treatment (P <0.05). Caspase-3 was mildly activated only in CD133- glioblastoma cells after exposure to TMZ (P <0.05). Immunofluorescent staining revealed elevated expression of Atg5 in GFAP* cells following TMZ treatment.Conclusions The GSCs display strong capability of tumor's resistance to TMZ. This resistance is

  12. Glioblastoma Circulating Cells: Reality, Trap or Illusion?

    Directory of Open Access Journals (Sweden)

    A. Lombard


    Full Text Available Metastases are the hallmark of cancer. This event is in direct relationship with the ability of cancer cells to leave the tumor mass and travel long distances within the bloodstream and/or lymphatic vessels. Glioblastoma multiforme (GBM, the most frequent primary brain neoplasm, is mainly characterized by a dismal prognosis. The usual fatal issue for GBM patients is a consequence of local recurrence that is observed most of the time without any distant metastases. However, it has recently been documented that GBM cells could be isolated from the bloodstream in several studies. This observation raises the question of the possible involvement of glioblastoma-circulating cells in GBM deadly recurrence by a “homing metastasis” process. Therefore, we think it is important to review the already known molecular mechanisms underlying circulating tumor cells (CTC specific properties, emphasizing their epithelial to mesenchymal transition (EMT abilities and their possible involvement in tumor initiation. The idea is here to review these mechanisms and speculate on how relevant they could be applied in the forthcoming battles against GBM.

  13. Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. (United States)

    Svendsen, Agnete; Verhoeff, Joost J C; Immervoll, Heike; Brøgger, Jan C; Kmiecik, Justyna; Poli, Aurelie; Netland, Inger A; Prestegarden, Lars; Planagumà, Jesús; Torsvik, Anja; Kjersem, Anneli Bohne; Sakariassen, Per Ø; Heggdal, Jan I; Van Furth, Wouter R; Bjerkvig, Rolf; Lund-Johansen, Morten; Enger, Per Ø; Felsberg, Joerg; Brons, Nicolaas H C; Tronstad, Karl J; Waha, Andreas; Chekenya, Martha


    Glioblastoma (GBM) is a highly aggressive brain tumour, where patients respond poorly to radiotherapy and exhibit dismal survival outcomes. The mechanisms of radioresistance are not completely understood. However, cancer cells with an immature stem-like phenotype are hypothesised to play a role in radioresistance. Since the progenitor marker neuron-glial-2 (NG2) has been shown to regulate several aspects of GBM progression in experimental systems, we hypothesised that its expression would influence the survival of GBM patients. Quantification of NG2 expression in 74 GBM biopsies from newly diagnosed and untreated patients revealed that 50% express high NG2 levels on tumour cells and associated vessels, being associated with significantly shorter survival. This effect was independent of age at diagnosis, treatment received and hypermethylation of the O(6)-methylguanine methyltransferase (MGMT) DNA repair gene promoter. NG2 was frequently co-expressed with nestin and vimentin but rarely with CD133 and the NG2 positive tumour cells harboured genetic aberrations typical for GBM. 2D proteomics of 11 randomly selected biopsies revealed upregulation of an antioxidant, peroxiredoxin-1 (PRDX-1), in the shortest surviving patients. Expression of PRDX-1 was associated with significantly reduced products of oxidative stress. Furthermore, NG2 expressing GBM cells showed resistance to ionising radiation (IR), rapidly recognised DNA damage and effectuated cell cycle checkpoint signalling. PRDX-1 knockdown transiently slowed tumour growth rates and sensitised them to IR in vivo. Our data establish NG2 as an important prognostic factor for GBM patient survival, by mediating resistance to radiotherapy through induction of ROS scavenging enzymes and preferential DNA damage signalling.

  14. Targeted Nanotechnology in Glioblastoma Multiforme (United States)

    Glaser, Talita; Han, Inbo; Wu, Liquan; Zeng, Xiang


    Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors characterized by a poor prognosis and high rates of recurrence. Current treatment strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy. However, none of these treatments, alone or in combination, are considered effective in managing this devastating disease, resulting in a median survival time of less than 15 months. The efficiency of chemotherapy is mainly compromised by the blood-brain barrier (BBB) that selectively inhibits drugs from infiltrating into the tumor mass. Cancer stem cells (CSCs), with their unique biology and their resistance to both radio- and chemotherapy, compound tumor aggressiveness and increase the chances of treatment failure. Therefore, more effective targeted therapeutic regimens are urgently required. In this article, some well-recognized biological features and biomarkers of this specific subgroup of tumor cells are profiled and new strategies and technologies in nanomedicine that explicitly target CSCs, after circumventing the BBB, are detailed. Major achievements in the development of nanotherapies, such as organic poly(propylene glycol) and poly(ethylene glycol) or inorganic (iron and gold) nanoparticles that can be conjugated to metal ions, liposomes, dendrimers and polymeric micelles, form the main scope of this summary. Moreover, novel biological strategies focused on manipulating gene expression (small interfering RNA and clustered regularly interspaced short palindromic repeats [CRISPR]/CRISPR associated protein 9 [Cas 9] technologies) for cancer therapy are also analyzed. The aim of this review is to analyze the gap between CSC biology and the development of targeted therapies. A better understanding of CSC properties could result in the development of precise nanotherapies to fulfill unmet clinical needs.

  15. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment


    Nicolas Goffart; Jérôme Kroonen; Bernard Rogister


    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays sti...

  16. Current management of glioblastoma multiforme


    Moscote-Salazar Luís Rafael; Meneses-García Carlos; Sáenz-Amuruz Miguel; Penagos Pedro; Zubieta Camilo; Romero Alfredo


    The glioblastoma multiforme is a agressive tumor in the brain. Despite aggressive multimodal treatment including surgical excision, local and systemic chemotherapy, median survival is in the range of 12 months. Patients with glioblastoma multiforme are considered to receive only palliative treatment with no hope of cure. Surgical resection is based on the premise that provides themaximum possible lengthen survival but with lower neurological deficit. Radiation therapy increases the duration o...

  17. Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

    Directory of Open Access Journals (Sweden)

    Sajad Sahab Negah


    Full Text Available Objective(s: In order to grow cells in a three-dimensional (3D microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma stem-like cells (hMgSCs. Materials and Methods: The efficacy of a novel method for placing hMgSCs in PuraMatrix (the injection approach was compared to the encapsulation and surface plating methods. In addition, we designed a new method for measurement of migration distance in 3D cultivation of hMgSCs in PuraMatrix. Results: Our results revealed that hMgSCs have the ability to form spheres in stem cell culture condition. These meningioma cells expressed GFAP, CD133, vimentin, and nestin. Using the injection method, a higher proliferation rate of the hMgSCs was observed after seven days of culture. Furthermore, the novel migration assay was able to measure the migration of a single cell alone in 3D environment. Conclusion: The results indicate the injection method as an efficient technique for culturing hMgSCs in PuraMatrix. Furthermore, the novel migration assay enables us to evaluate the migration of hMgSCs.

  18. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas


    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  19. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells

    Directory of Open Access Journals (Sweden)

    Samantha Hughes


    Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.

  20. Small-Molecule XIAP Inhibitors Enhance γ-Irradiation-Induced Apoptosis in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sri Hari Krishna Vellanki


    Full Text Available Because evasion of apoptosis can cause radioresistance of glioblastoma, there is a need to design rational strategies that counter apoptosis resistance. In the present study, we investigated the potential of targeting the antiapoptotic protein XIAP for the radiosensitization of glioblastoma. Here, we report that small-molecule XIAP inhibitors significantly enhance γ-irradiation-induced loss of viability and apoptosis and cooperate with γ-irradiation to suppress clonogenic survival of glioblastoma cells. Analysis of molecular mechanisms reveals that XIAP inhibitors act in concert with γ-irradiation to cause mitochondrial outer membrane permeabilization, caspase activation, and caspasedependent apoptosis. Importantly, XIAP inhibitors also sensitize primary cultured glioblastoma cells derived from surgical specimens as well as glioblastoma-initiating stemlike cancer stem cells for γ-irradiation. In contrast, they do not increase the toxicity of γ-irradiation on some nonmalignant cells of the central nervous system, including rat neurons or glial cells, pointing to some tumor selectivity. In conclusion, by demonstrating for the first time that smallmolecule XIAP inhibitors increase the radiosensitivity of glioblastoma cells while sparing normal cells of the central nervous system, our findings build the rationale for further (preclinical development of XIAP inhibitors in combination with γ-irradiation in glioblastoma.

  1. Targeting SOX2 as a therapeutic strategy in glioblastoma

    Directory of Open Access Journals (Sweden)

    Ander Matheu


    Full Text Available Glioblastoma is the most common and malignant brain cancer in adults. Current therapy consisting of surgery followed by radiation and temozolomide therapy has moderate success rate and the tumor reappears. Among the features that a cancer cell must have to survive the therapeutic treatment and reconstitute the tumor is the ability to self-renewal. Therefore, it is vital to identify the molecular mechanisms that regulate this activity.SOX2 is a transcription factor whose activity has been associated with the maintenance of the undifferentiated state of cancer stem cells in several tissues including the brain. Several groups have detected SOX2 levels increased in biopsies of glioblastoma patients, with highest levels associated to poor outcome. Therefore, SOX2 silencing might be a novel therapeutic approach to combat cancer and particularly brain tumors.In this review, we will summarize the current knowledge about SOX2 in glioblastoma and recapitulate several strategies, which have been recently described targeting SOX2 in this malignancy.

  2. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen


    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cellline (SF-767) and 7 MGMT-negative celllines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, al the GSCs and their parental glioma celllines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.

  3. Restricted calorie ketogenic diet for the treatment of glioblastoma multiforme. (United States)

    Maroon, Joseph; Bost, Jeffrey; Amos, Austin; Zuccoli, Giulio


    Glioblastoma multiforme is the most common malignant primary brain tumor in adults and generally considered to be universally fatal. Glioblastoma multiforme accounts for 12% to 15% of all intracranial neoplasms and affects 2 to 3 adults per every 100,000 in the United States annually. In children glioblastoma multiforme accounts for only approximately 7% to 9% of central nervous system tumors. The mean survival rate in adults after diagnosis ranges from 12 to 18 months with standard therapy and 3 to 6 months without therapy. The prognosis in children is better compared to adult tumor onset with a mean survival of approximately 4 years following gross total surgical resection and chemotherapy. There have been few advances in the treatment of glioblastoma multiforme in the past 40 years beyond surgery, radiotherapy, chemotherapy, and corticosteroids. For this reason a restrictive calorie ketogenic diet, similar to that used in children to control drug resistant seizure activity, has been advanced as an alternative adjunctive treatment to help prolonged survival. This article reviews the science of tumor metabolism and discusses the mechanism of calorie restriction, cellular energy metabolism, and how dietary induced ketosis can inhibit cancer cell's energy supply to slow tumor growth.

  4. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing. (United States)

    Xie, Hao; Tubbs, Raymond; Yang, Bin


    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient's response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation.

  5. The Dynamics of Interactions Among Immune and Glioblastoma Cells. (United States)

    Eder, Katalin; Kalman, Bernadette


    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.

  6. Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma. (United States)

    Zhang, Issan; Cui, Yiming; Amiri, Abdolali; Ding, Yidan; Campbell, Robert E; Maysinger, Dusica


    Increased lipid droplet number and fatty acid synthesis allow glioblastoma multiforme, the most common and aggressive type of brain cancer, to withstand accelerated metabolic rates and resist therapeutic treatments. Lipid droplets are postulated to sequester hydrophobic therapeutic agents, thereby reducing drug effectiveness. We hypothesized that the inhibition of lipid droplet accumulation in glioblastoma cells using pyrrolidine-2, a cytoplasmic phospholipase A2 alpha inhibitor, can sensitize cancer cells to the killing effect of curcumin, a promising anticancer agent isolated from the turmeric spice. We observed that curcumin localized in the lipid droplets of human U251N glioblastoma cells. Reduction of lipid droplet number using pyrrolidine-2 drastically enhanced the therapeutic effect of curcumin in both 2D and 3D glioblastoma cell models. The mode of cell death involved was found to be mediated by caspase-3. Comparatively, the current clinical chemotherapeutic standard, temozolomide, was significantly less effective in inducing glioblastoma cell death. Together, our results suggest that the inhibition of lipid droplet accumulation is an effective way to enhance the chemotherapeutic effect of curcumin against glioblastoma multiforme.

  7. Evaluation of the Combined Effect of 2ME2 and Co on the Inducement of DNA Damage by IUdR in a Spheroid Model of the U87MG Glioblastoma Cancer Cell Line Using Alkaline Comet Assay

    Directory of Open Access Journals (Sweden)

    Ali Neshasteh-Riz


    Full Text Available Objective: In this study, we investigated the combined effect of 2-Methoxyestradiol (2ME2and 60Co on the cytogenetic damage of iododeoxyuridine (IUdR in the spheroid model ofU87MG glioblastoma cancer cell lines by alkaline comet assay.Materials and Methods: U87MG cells were cultured as spheroids with diameters of 350μm. As control, the spheroids of one plate were not treated. Other cultures were pretreatedwith 2ME2 (250 μM for one volume doubling time (1 VDT. After this time, the subsequenttreatments were performed according to the following groups:1. Vehicle (this sample was not treated in the 2nd VDT2. Treated with 2ME2 (250 μM for 1 VDT3. Treated simultaneously with 2ME2 (250 μM and IUdR (1 μM for 1 VDT4. Treated with 2ME2 (250 μM for 1 VDT then irradiated with 60Co (2 Gy5. Treated simultaneously with 2ME2 (250 μM and IUdR (1 μM for 1 VDT then irradiatedwith 60Co (2 GyThen the DNA damage was evaluated using the alkaline comet assay method.Results: The results showed that 2ME2 in combination with gamma irradiation of 60Cosignificantly (p<0.001 increased the DNA damage by IUdR as compared to the controlgroup. Thus the combination of these two agents increased the cytogenetic effects ofIUdR in the spheroid culture model of U87MG glioblastoma cell lines.Conclusion: By inhibiting the HIF-1α protein and preventing the G0 phase arrest, 2ME2causes an increased progression into S phase and increases the IUdR absorption. Thenthe DNA damage in the spheroid cells increases as the uptake of IUdR is increased.These results suggest that the combined use of 2ME2 and 60Co can increase the radiosensitizationeffect of IUdR.

  8. Biodistribution and dosimetry of 18F-EF5 in cancer patients with preliminary comparison of 18F-EF5 uptake versus EF5 binding in human glioblastoma (United States)

    Koch, Cameron J.; Scheuermann, Joshua S.; Divgi, Chaitanya; Judy, Kevin D.; Kachur, Alexander V.; Freifelder, Richard; Reddin, Janet S.; Karp, Joel; Stubbs, James B.; Hahn, Stephen M.; Driesbaugh, Jason; Smith, Deborah; Prendergast, Susan; Evans, Sydney M.


    Purpose The primary purpose of this study was to assess the biodistribution and radiation dose resulting from administration of 18F-EF5, a lipophilic 2-nitroimidazole hypoxia marker in ten cancer patients. For three of these patients (with glioblastoma) unlabeled EF5 was additionally administered to allow the comparative assessment of 18F-EF5 tumor uptake with EF5 binding, the latter measured in tumor biopsies by fluorescent anti-EF5 monoclonal antibodies. Methods 18F-EF5 was synthesized by electrophilic addition of 18F2 gas, made by deuteron bombardment of a neon/fluorine mixture in a high-pressure gas target, to an allyl precursor in trifluoroacetic acid at 0° then purified and administered by intravenous bolus. Three whole-body images were collected for each of ten patients using an Allegro (Philips) scanner. Gamma counts were determined in blood, drawn during each image, and urine, pooled as a single sample. PET images were analyzed to determine radiotracer uptake in several tissues and the resulting radiation dose calculated using OLINDA software and standard phantom. For three patients, 21 mg/kg unlabeled EF5 was administered after the PET scans, and tissue samples obtained the next day at surgery to determine EF5 binding using immunohistochemistry techniques (IHC). Results EF5 distributes evenly throughout soft tissue within minutes of injection. Its concentration in blood over the typical time frame of the study (~3.5 h) was nearly constant, consistent with a previously determined EF5 plasma half-life of ~13 h. Elimination was primarily via urine and bile. Radiation exposure from labeled EF5 is similar to other 18F-labeled imaging agents (e.g., FDG and FMISO). In a de novo glioblastoma multiforme patient, focal uptake of 18F-EF5 was confirmed by IHC. Conclusion These results confirm predictions of biodistribution and safety based on EF5's characteristics (high biological stability, high lipophilicity). EF5 is a novel hypoxia marker with unique

  9. Radiosensitisation by pharmacological ascorbate in glioblastoma multiforme cells, human glial cells, and HUVECs depends on their antioxidant and DNA repair capabilities and is not cancer specific. (United States)

    Castro, M Leticia; McConnell, Melanie J; Herst, Patries M


    We previously showed that 5 mM ascorbate radiosensitized early passage radioresistant glioblastoma multiforme (GBM) cells derived from one patient tumor. Here we investigate the sensitivity of a panel of cell lines to 5 mM ascorbate and 6 Gy ionizing radiation, made up of three primary human GBM cells, three GBM cell lines, a human glial cell line, and primary human vascular endothelial cells. The response of different cells lines to ascorbate and/or radiation was determined by measuring viability, colony-forming ability, generation and repair of double-stranded DNA breaks (DSBs), cell cycle progression, antioxidant capacity and generation of reactive oxygen species. Individually, radiation and ascorbate both decreased viability and clonogenicity by inducing DNA damage, but had differential effects on cell cycle progression. Radiation led to G2/M arrest in most cells whereas ascorbate caused accumulation in S phase, which was moderately associated with poor DSB repair. While high dose ascorbate radiosensitized all cell lines in clonogenic assays, the sensitivity to radiation, high dose ascorbate, and combined treatment varied between cell lines. Normal glial cells were similar to GBM cells with respect to free radical scavenging potential and effect of treatment on DNA damage and repair, viability, and clonogenicity. Both GBM cells and normal cells coped equally poorly with oxidative stress caused by radiation and/or high dose ascorbate, dependent primarily on their antioxidant and DSB repair capacity.

  10. The microarray gene profiling analysis of glioblastoma cancer cells reveals genes affected by FAK inhibitor Y15 and combination of Y15 and temozolomide. (United States)

    Huang, Grace; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Qiang, Hu; Golubovskaya, Vita


    Focal adhesion is known to be highly expressed and activated in glioma cells. Recently, we demonstrated that FAK autophosphorylation inhibitor, Y15 significantly decreased tumor growth of DBTRG and U87 cells, especially in combination with temozolomide. In the present report, we performed gene expression analysis in these cells to reveal genes affected by Y15, temozolomide and combination of Y15 and temozolomide. We tested the effect of Y15 on gene expression by Illumina Human HT12v4 microarray assay and detected 8087 and 6555 genes, which were significantly either up- or down-regulated by Y15-treatment in DBTRG and U87 cells, respectively (ptemozolomide and by combination of Y15 and temozolomide treatment in U87 cells. Among genes up-regulated by Y15 and temozolomide more significantly than by each agent alone were: COX7B; interferon, gamma-inducible transcript: IFI16; DDIT4; GADD45G and down-regulated: KIF3A, AKT1; ABL; JAK1, GLI3 and ALDH1A3. Thus, microarray gene expression analysis can be effective in establishing genes affected in response to FAK inhibitor alone and in response to combination of Y15 with temozolomide that is important for glioblastoma therapy.

  11. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)


    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  12. p53 isoform profiling in glioblastoma and injured brain. (United States)

    Takahashi, R; Giannini, C; Sarkaria, J N; Schroeder, M; Rogers, J; Mastroeni, D; Scrable, H


    The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10 to 70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, some of which can modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain and neural progenitor cells by SDS-PAGE, immunoblot, mass spectrometry and reverse transcription-PCR. We found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared with tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions.

  13. Classification of glioblastoma and metastasis for neuropathology intraoperative diagnosis: a multi-resolution textural approach to model the background (United States)

    Ahmad Fauzi, Mohammad Faizal; Gokozan, Hamza Numan; Elder, Brad; Puduvalli, Vinay K.; Otero, Jose J.; Gurcan, Metin N.


    Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers.

  14. A comprehensive profile of recurrent glioblastoma

    DEFF Research Database (Denmark)

    Campos, B.; Olsen, Lars Rønn; Urup, T.;


    In spite of relentless efforts to devise new treatment strategies, primary glioblastomas invariably recur as aggressive, therapy-resistant relapses and patients rapidly succumb to these tumors. Many therapeutic agents are first tested in clinical trials involving recurrent glioblastomas. Remarkably......, however, fundamental knowledge on the biology of recurrent glioblastoma is just slowly emerging. Here, we review current knowledge on recurrent glioblastoma and ask whether and how therapies change intra-tumor heterogeneity, molecular traits and growth pattern of glioblastoma, and to which extent...... this information can be exploited for therapeutic decision-making. We conclude that the ability to characterize and predict therapy-induced changes in recurrent glioblastoma will determine, whether, one day, glioblastoma can be contained in a state of chronic disease.Oncogene advance online publication, 4 April...

  15. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism

    DEFF Research Database (Denmark)

    Akita, Hirofumi; Marquardt, Jens U; Durkin, Marian E;


    Activation of c-MYC is an oncogenic hallmark of many cancers including liver cancer, and is associated with a variety of adverse prognostic characteristics. Despite a causative role during malignant transformation and progression in hepatocarcinogenesis, consequences of c-MYC activation for the b...

  16. Current Trends in Targeted Therapies for Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka


    Full Text Available Glioblastoma multiforme (GBM is one of the most frequently occurring tumors in the central nervous system and the most malignant tumor among gliomas. Despite aggressive treatment including surgery, adjuvant TMZ-based chemotherapy, and radiotherapy, GBM still has a dismal prognosis: the median survival is 14.6 months from diagnosis. To date, many studies report several determinants of resistance to this aggressive therapy: (1 O6-methylguanine-DNA methyltransferase (MGMT, (2 the complexity of several altered signaling pathways in GBM, (3 the existence of glioma stem-like cells (GSCs, and (4 the blood-brain barrier. Many studies aim to overcome these determinants of resistance to conventional therapy by using various approaches to improve the dismal prognosis of GBM such as modifying TMZ administration and combining TMZ with other agents, developing novel molecular-targeting agents, and novel strategies targeting GSCs. In this paper, we review up-to-date clinical trials of GBM treatments in order to overcome these 4 hurdles and to aim at more therapeutical effect than conventional therapies that are ongoing or are about to launch in clinical settings and discuss future perspectives.

  17. The somatic genomic landscape of glioblastoma. (United States)

    Brennan, Cameron W; Verhaak, Roel G W; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J Zachary; Berman, Samuel H; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A; Ciriello, Giovanni; Yung, W K; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D; Van Meir, Erwin G; Prados, Michael; Sloan, Andrew; Black, Keith L; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W; Guha, Abhijit; Iacocca, Mary; O'Neill, Brian P; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J; Penny, Robert; Kucherlapati, Raju; Perou, Charles M; Hayes, D Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W; Haussler, David; Getz, Gad; Chin, Lynda


    We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

  18. Overexpression of miR-100 inhibits cell proliferation, migration, and chemosensitivity in human glioblastoma through FGFR3

    Directory of Open Access Journals (Sweden)

    Luan YX


    Full Text Available Yongxin Luan,1 Shuyan Zhang,1 Ling Zuo,2 Lixiang Zhou1 1Department of Neurosurgery, First Bethune Hospital of Jilin University, 2Department of Ophthalmology, Second Bethune Hospital of Jilin University, Changchun, People’s Republic of China Background: Glioblastoma multiforme is one of the most deadly forms of brain cancer. We investigated the regulatory effects of microRNA-100 (miR-100 on cell proliferation, migration, and chemosensitivity in human glioblastoma. Methods: miR-100 expression was assessed by quantitative real-time polymerase chain reaction in both glioblastoma cells and human tumors. Lentiviruses of miR-100 mimics and inhibitors were transfected into U251 and T98G cells. The regulatory effects of either overexpressing or downregulating miR-100 on glioblastoma were evaluated by a viability assay, growth assay, migration assay, chemosensitivity assay, and an in vivo tumor transplantation assay. Expression of fibroblast growth factor receptor 3 (FGFR3, the bioinformatically predicted target of miR-100, was examined by Western blot in glioblastoma. FGFR3 was then ectopically overexpressed in U251 and T98G cells, and its effects on miR-100-mediated cancer regulation were evaluated by growth, migration, and chemosensitivity assays. Results: MiR-100 was markedly downregulated in both glioblastoma cell lines and human tumors. Overexpressing miR-100 through lentiviral transfection in U251 and T98G cells significantly inhibited cancer growth (both in vitro and in vivo and migration and increased chemosensitivity to cisplatin and 1, 3-bis (2-chloroethyl-l-nitrosourea, whereas downregulation of miR-100 had no effects on development of cancer. FGFR3 was directly regulated by miR-100 in glioblastoma. Ectopically overexpressing FGFR3 was able to ameliorate the anticancer effects of upregulation of miR-100 on glioblastoma growth, migration, and chemosensitivity. Conclusion: MiR-100 was generally downregulated in glioblastoma. Overexpressing mi

  19. Fenofibrate induces ketone body production in melanoma and glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Maja M Grabacka


    Full Text Available Ketone bodies (beta-hydroxybutyrate, bHB, acetoacetate are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of nontransformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and down-regulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic therapeutic approaches against glioblastoma.

  20. In vitro analysis of neurospheres derived from glioblastoma primary culture: a novel methodology paradigm.

    Directory of Open Access Journals (Sweden)

    Lorena Favaro Pavon


    Full Text Available Glioblastomas are the most lethal primary brain tumour frequently relapse or progress as focal masses after radiation, suggesting that only a fraction of tumour cells are responsible for the tumor regrowth. The identification of a brain tumour cell subpopulation with potent tumorigenic activity supports the cancer stem cell hypothesis in solid tumours. The goal of this study was to determine a methodology for the establishment of primary human glioblastoma stem cell lines. Our aim was achieved by taking the following approaches: i the establishment of primary glioblastoma cell culture; ii isolation of neurospheres derived from glioblastoma primary culture and derived straight from the tumor; iii CD133 microbeads purified neurospheres by MACS, iv Formation of subspheres in the CD133+ population, v Study of the expression level of GFAP, CD133, Nestin, Nanog, CD34 and Sox2 markers on tumor subspheres. Here, we describe a successful method for isolation of CD133+ cell population and establishment of glioblastoma neurospheres from this primary culture, which are more robust than the ones derived straight from the tumor. Highlight that the neurospheres derived from glioblatoma primary culture showed 89% expression of CD133+ cells, whereas tumor-derived neurospheres showed a 60% expression of CD133+ cells. These results show a higher concentration of CD133+ cells in neurospheres derived from glioblastoma primary culture. These CD133+ fractions were able to further generate subspheres. The subspheres derived from glioblastoma primary culture presented a well defined morphology while the ones derived form the fresh tumor were sparce and less robust. The negative fraction of CD133 cells was unable to generate subspheres. The tumor subspheres expressed GFAP, CD133, Nestin and Nanog. The present study describes an optimization of isolation of neurospheres/subspheres derived from glioblastoma primary culture by process of selection of CD133+ adherent stem

  1. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens. (United States)

    Ilhan-Mutlu, Aysegül; Wöhrer, Adelheid; Berghoff, Anna Sophie; Widhalm, Georg; Marosi, Christine; Wagner, Ludwig; Preusser, Matthias


    Glioblastoma is the most frequent primary brain tumour in adults. Recent therapeutic advances increased patient's survival, but tumour recurrence inevitably occurs. The pathobiological mechanisms involved in glioblastoma recurrence are still unclear. MicroRNAs are small RNAs proposed o have important roles for cancer including proliferation, aggressiveness and metastases development. There exist only few data on the involvement of microRNAs in glioblastoma recurrence. We selected the following 7 microRNAs with potential relevance for glioblastoma pathobiology by means of a comprehensive literature search: microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222. We further selected 15 primary glioblastoma patients, of whom formalin fixed and paraffin embedded tissue (FFPE) of the initial and recurrence surgery were available. All patients had received first line treatment consisting of postoperative combined radiochemotherapy with temozolomide (n = 15). Non-neoplastic brain tissue samples from 3 patients with temporal lobe epilepsy served as control. The expression of the microRNAs were analysed by RT-qPCR. These were correlated with each other and with clinical parameters. All microRNAs showed detectable levels of expressions in glioblastoma group, whereas microRNA-10b was not detectable in epilepsy patients. MicroRNAs except microRNA-21 showed significantly higher levels in epilepsy patients when compared to the levels of first resection of glioblastoma. Comparison of microRNA levels between first and second resections revealed no significant change. Cox regression analyses showed no significant association of microRNA expression levels in the tumor tissue with progression free survival times. Expression levels of microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222 do not differ significantly between initial and recurrent glioblastoma.

  2. Pulsed Electromagnetic Field with Temozolomide Can Elicit an Epigenetic Pro-apoptotic Effect on Glioblastoma T98G Cells. (United States)

    Pasi, Francesca; Fassina, Lorenzo; Mognaschi, Maria Evelina; Lupo, Giuseppe; Corbella, Franco; Nano, Rosanna; Capelli, Enrica


    Treatment with pulsed electromagnetic fields (PEMFs) is emerging as an interesting therapeutic option for patients with cancer. The literature has demonstrated that low-frequency/low-energy electromagnetic fields do not cause predictable effects on DNA; however, they can epigenetically act on gene expression. The aim of the present work was to study a possible epigenetic effect of a PEMF, mediated by miRNAs, on a human glioblastoma cell line (T98G). We tested a PEMF (maximum magnetic induction, 2 mT; frequency, 75 Hz) that has been demonstrated to induce autophagy in glioblastoma cells. In particular, we studied the effect of PEMF on the expression of genes involved in cancer progression and a promising synergistic effect with temozolomide, a frequently used drug to treat glioblastoma multiforme. We found that electromagnetic stimulation in combination with temozolomide can elicit an epigenetic pro-apoptotic effect in the chemo- and radioresistant T98G glioblastoma cell line.

  3. Visualizing molecular profiles of glioblastoma with GBM-BioDP.

    Directory of Open Access Journals (Sweden)

    Orieta Celiku

    Full Text Available Validation of clinical biomarkers and response to therapy is a challenging topic in cancer research. An important source of information for virtual validation is the datasets generated from multi-center cancer research projects such as The Cancer Genome Atlas project (TCGA. These data enable investigation of genetic and epigenetic changes responsible for cancer onset and progression, response to cancer therapies, and discovery of the molecular profiles of various cancers. However, these analyses often require bulk download of data and substantial bioinformatics expertise, which can be intimidating for investigators. Here, we report on the development of a new resource available to scientists: a data base called Glioblastoma Bio Discovery Portal (GBM-BioDP. GBM-BioDP is a free web-accessible resource that hosts a subset of the glioblastoma TCGA data and enables an intuitive query and interactive display of the resultant data. This resource provides visualization tools for the exploration of gene, miRNA, and protein expression, differential expression within the subtypes of GBM, and potential associations with clinical outcome, which are useful for virtual biological validation. The tool may also enable generation of hypotheses on how therapies impact GBM molecular profiles, which can help in personalization of treatment for optimal outcome. The resource can be accessed freely at (a tutorial is included.

  4. Cytomegalovirus pp71 protein is expressed in human glioblastoma and promotes pro-angiogenic signaling by activation of stem cell factor.

    Directory of Open Access Journals (Sweden)

    Lisa A Matlaf

    Full Text Available Glioblastoma multiforme (GBM is a highly malignant primary central nervous system neoplasm characterized by tumor cell invasion, robust angiogenesis, and a mean survival of 15 months. Human cytomegalovirus (HCMV infection is present in >90% of GBMs, although the role the virus plays in GBM pathogenesis is unclear. We report here that HCMV pp71, a viral protein previously shown to promote cell cycle progression, is present in a majority of human GBMs and is preferentially expressed in the CD133+, cancer stem-like cell population. Overexpression of pp71 in adult neural precursor cells resulted in potent induction of stem cell factor (SCF, an important pro-angiogenic factor in GBM. Using double immunofluorescence, we demonstrate in situ co-localization of pp71 and SCF in clinical GBM specimens. pp71 overexpression in both normal and transformed glial cells increased SCF secretion and this effect was specific, since siRNA mediated knockdown of pp71 or treatment with the antiviral drug cidofovir resulted in decreased expression and secretion of SCF by HCMV-infected cells. pp71- induced upregulation of SCF resulted in downstream activation of its putative endothelial cell receptor, c-kit, and angiogenesis as measured by increased capillary tube formation in vitro. We demonstrate that pp71 induces a pro-inflammatory response via activation of NFΚB signaling which drives SCF expression. Furthermore, we show that pp71 levels and NFKB activation are selectively augmented in the mesenchymal subtype of human GBMs, characterized by worst patient outcome, suggesting that HCMV pp71-induced paracrine signaling may contribute to the aggressive phenotype of this human malignancy.

  5. A radial glia gene marker, fatty acid binding protein 7 (FABP7, is involved in proliferation and invasion of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Antonella De Rosa

    Full Text Available Glioblastoma multiforme (GBM is among the most deadly cancers. A number of studies suggest that a fraction of tumor cells with stem cell features (Glioma Stem-like Cells, GSC might be responsible for GBM recurrence and aggressiveness. GSC similarly to normal neural stem cells, can form neurospheres (NS in vitro, and seem to mirror the genetic features of the original tumor better than glioma cells growing adherently in the presence of serum. Using cDNA microarray analysis we identified a number of relevant genes for glioma biology that are differentially expressed in adherent cells and neurospheres derived from the same tumor. Fatty acid-binding protein 7 (FABP7 was identified as one of the most highly expressed genes in NS compared to their adherent counterpart. We found that down-regulation of FABP7 expression in NS by small interfering RNAs significantly reduced cell proliferation and migration. We also evaluated the potential involvement of FABP7 in response to radiotherapy, as this treatment may cause increased tumor infiltration. Migration of irradiated NS was associated to increased expression of FABP7. In agreement with this, in vivo reduced tumorigenicity of GBM cells with down-regulated expression of FABP7 was associated to decreased expression of the migration marker doublecortin. Notably, we observed that PPAR antagonists affect FABP7 expression and decrease the migration capability of NS after irradiation. As a whole, the data emphasize the role of FABP7 expression in GBM migration and provide translational hints on the timing of treatment with anti-FABP7 agents like PPAR antagonists during GBM evolution.

  6. The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate. (United States)

    Brabin, Charles; Appleford, Peter J; Woollard, Alison


    Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi) animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation.

  7. The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate.

    Directory of Open Access Journals (Sweden)

    Charles Brabin


    Full Text Available Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation.

  8. MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Hongping Xia

    Full Text Available The down-regulation of miR-214 has previously been observed in human hepatocellular carcinoma (HCC. Here, we demonstrated the down-regulation of miR-214 is associated with cell invasion, stem-like traits and early recurrence of HCC. Firstly, we validated the suppression of miR-214 in human HCC by real-time quantitative RT-PCR (qRT-PCR in 20 paired tumor and non-tumor liver tissues of HCC patients and 10 histologically normal liver tissues from colorectal cancer patients with liver metastases. Further qRT-PCR analysis of 50 HCC tissues from an independent cohort of HCC patients of whom 29 with early recurrent disease (<2 years and 21 with late recurrent disease demonstrated that the suppression of miR-214 was significantly more suppressed in samples from HCC patients with early recurrent disease compared those from patients with no recurrence. Re-expression of miR-214 significantly suppressed the growth of HCC cells in vitro and reduced their tumorigenicity in vivo. The enhancer of zeste homologue 2 (EZH2 and β-catenin (CTNNB1 was identified as two potential direct downstream targets of miR-214 through bioinformatics analysis and experimentally validated the miRNA-target interactions with a dual-firefly luciferase reporter assay. In corroborate with this, both EZH2 and CTNNB1 are found to be significantly overexpressed in human HCC biopsies. Since EZH2 can regulate CTNNB1, CTNNB1 can also be an indirect target of miR-214 through EZH2. Silencing EZH2 or CTNNB1 expression suppressed the growth and invasion of HCC cells and induced E-cadherin (CDH1, known to inhibit cell invasion and metastasis. Furthermore, the silencing of miR-214 or overexpression of EZH2 increased EpCAM(+ stem-like cells through the activation of CTNNB1. Interestingly, the up-regulation of EZH2, CTNNB1 and the down-regulation of CDH1 in HCC patients correlated with early recurrent disease and can be an independent predictor of poor survival. Therefore, miR-214 can directly or

  9. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    DEFF Research Database (Denmark)

    Hamerlik, Petra; Lathia, Justin D; Rasmussen, Rikke;


    glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2-Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF-VEGFR2-NRP1......, which is associated with VEGFR2-NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions...

  10. Clinical Neuropathology mini-review 6-2015: PD-L1: emerging biomarker in glioblastoma? (United States)

    Preusser, Matthias; Berghoff, Anna S; Wick, Wolfgang; Weller, Michael


    Programmed death 1 (PD-1, CD279) and programmed death ligand 1 (PD-L1, CD274) are involved in generating tumor-associated immunosuppression by suppression of T-cell proliferation and interleukin 2 (IL-2) production and immune checkpoint inhibitors targeting these molecules are showing compelling activity against a variety of human cancers. PD-L1 expression has shown a positive association with response to PD-1 inhibition in noncentral nervous system (CNS) tumors, e.g., melanoma or non-small cell lung cancer, and is discussed as a potential predictive biomarker for patient selection in these tumor types. This review summarizes current knowledge and potential clinical implications of PD-L1 expression in glioblastoma. At present, the following conclusions are drawn: (a) functional data support a role for PD-1/PD-L1 in tumor-associated immunosuppression in glioblastoma; (b) the incidence of PD-L1-expressing glioblastomas seems to be relatively high in comparison to other tumor types, however, the reported rates of glioblastomas with PD-L1 protein expression vary and range from 61 to 88%; (c) there is considerable variability in the methodology of PD-L1 assessment in glioblastoma across studies with heterogeneity in utilized antibodies, tissue sampling strategies, immunohistochemical staining protocols, cut-off definitions, and evaluated staining patterns; (d) there are conflicting data on the prognostic role and so far no data on the predictive role of PD-L1 gene and protein expression in glioblastoma. In summary, the ongoing clinical studies evaluating the activity of PD-1/PD-L1 inhibitors in glioblastoma need to be complemented with well designed and stringently executed studies to understand the influence of PD-1/PD-L1 expression on therapy response or failure and to develop robust means of PD-L1 assessment for meaningful biomarker development.

  11. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells. (United States)

    Jung, Eun-Hwa; Lee, Han-Na; Han, Gi-Yeon; Kim, Min-Jung; Kim, Chan-Wha


    Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood-brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self-renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase-like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down-regulation of ROR1 suppressed the expression of epithelial-mesenchymal transition-related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy.

  12. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair. (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui


    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future.

  13. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

    DEFF Research Database (Denmark)

    Rasmussen, Rikke D.; Gajjar, Madhavsai K.; Tuckova, Lucie


    Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels...

  14. CDK4/6 inhibitor PD0332991 in glioblastoma treatment: Does it have a future?

    NARCIS (Netherlands)

    L.B.W. Schröder (Lisette B.W.); K.L. McDonald (Kerrie L.)


    textabstractGlioblastoma is aggressive, highly infiltrating, and the most frequent malignant form of brain cancer. With a median survival time of only 14.6 months, when treated with the standard of care, it is essential to find new therapeutic options. A specific CDK4/6 inhibitor, PD0332991, obtaine

  15. Targeted polymeric nanoparticles containing gold nanorods: a therapeutic approach against glioblastoma (United States)

    Locatelli, Erica; Bost, Wolfgang; Fournelle, Marc; Llop, Jordi; Gil, Larraitz; Arena, Francesca; Lorusso, Vito; Comes Franchini, Mauro


    Chlorotoxin-targeted polymeric nanoparticles containing entrapped gold nanorods as potential therapeutic agent for glioblastoma multiforme have been developed and evaluated. In first proof of concept experiments, in vitro specific uptake in cancer cells and selective laser-induced cell death have been shown. In vivo studies with optical imaging showed increased retention of targeted NPs in the tumor.

  16. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

    DEFF Research Database (Denmark)

    Rasmussen, Rikke D.; Gajjar, Madhavsai K.; Tuckova, Lucie;


    Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels. Hi...

  17. SU-D-BRB-06: Treating Glioblastoma Multiforme (GBM) as a Chronic Disease: Implication of Temporal-Spatial Dose Fractionation Optimization Including Cancer Stem Cell Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, V; Nguyen, D; Pajonk, F; Kaprealian, T; Kupelian, P; Steinberg, M; Low, D; Sheng, K [Department of Radiation Oncology, UCLA, Los Angeles, CA (United States)


    Purpose: To explore the feasibility of improving GBM treatment outcome with temporal-spatial dose optimization of an ordinary differential equation (ODE) that models the differentiation and distinct radiosensitivity between cancer stem cells (CSC) and differentiated cancer cells (DCC). Methods: The ODE was formulated into a non-convex optimization problem with the objective to minimize remaining total cancer cells 500 days from the onset of radiotherapy when the total cancer cell number was 3.5×10{sup 7}, while maintaining normal tissue biological effective dose (BED) of 100Gy resulted from standard prescription of 2Gyx30. Assuming spatially separated CSC and DCC, optimization was also performed to explore the potential benefit from dose-painting the two compartments. Dose escalation to a sub-cell-population in the GTV was also examined assuming that a 2 cm margin around the GTV allows sufficient dose drop-off to 100Gy BED. The recurrence time was determined as the time at which the total cancer cell number regrows to 10{sup 9} cells. Results: The recurrence time with variable fractional doses administered once per week, bi-week and month for one year were found to be 615, 593 and 570 days, superior to the standard-prescription recurrence time of 418 days. The optimal dose-fraction size progression for both uniform and dose-painting to the tumor is low and relatively constant in the beginning and gradually increases to more aggressive fractions at end of the treatment course. Dose escalation to BED of 200Gy to the whole tumor alongside with protracted weekly treatment was found to further delay recurrence to 733 days. Dose-painting of 200 and 500Gy BED to CSC on a year-long weekly schedule further extended recurrence to 736 and 1076 days, respectively. Conclusion: GBM treatment outcome can possibly be improved with a chronic treatment approach. Further dose escalation to the entire tumor or CSC targeted killing is needed to achieve total tumor control. This work

  18. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth. (United States)

    Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Yuan, Zhigang; Johnson, Joseph J; Adam, Klaus-Peter; Kensicki, Elizabeth; Chinnaiyan, Prakash


    The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.

  19. Mutational profiling of kinases in glioblastoma

    NARCIS (Netherlands)

    F.E. Bleeker (Fonnet); S. Lamba (Simona); C. Zanon (Carlo); R.J. Molenaar (Remco J.); T. Hulsebos (Theo); D. Troost (Dirk); A.A.G. van Tilborg (Angela); W.P. Vandertop (Peter); S. Leenstra (Sieger); C.J.F. van Noorden (Cornelis); A. Bardelli (Alberto)


    textabstractBackground: Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma.Methods: Database mining and a literature search identified 76 kinases that have been found to

  20. Leptomeningeal dissemination in glioblastoma; an inspection of risk factors, treatment, and outcomes at a single institution. (United States)

    Mandel, Jacob J; Yust-Katz, Shlomit; Cachia, David; Wu, Jimin; Liu, Diane; de Groot, John F; Yung, Alfred W K; Gilbert, Mark R


    There are few studies reporting the incidence of leptomeningeal dissemination (LMD) in patients with glioblastoma; only small case series have been published. Consequently, there are no established standards of care for these patients. Therefore, we undertook this retrospective review to evaluate a large series of patients with glioblastoma treated at MD Anderson Cancer Center to estimate the incidence of LMD and assess the impact of a variety of treatment modalities. Analysis was performed on 595 patients with glioblastoma treated on clinical trials from 2006 to 2012. The diagnosis of LMD was made by imaging or positive cerebrospinal fluid cytology in 24 patients. An additional 12 patients with known LMD diagnosed during this same period were included to evaluate the impact of treatment on outcome for a total of 36 patients. LMD developed in 4.0 % (24/595 patients) of the clinical trial cohort. Median survival from glioblastoma diagnosis was 16.0 months. Estimated median time of glioblastoma diagnosis to LMD was 11.9 months. Median overall survival from the time of LMD diagnosis was 3.5 months. Patients treated for LMD with chemotherapy/targeted therapy and radiation had a significantly prolonged survival (7.7 months) compared to chemotherapy/targeted therapy alone, radiation alone or palliative care. LMD remains an uncommon event in patients with glioblastoma. Patients treated aggressively with chemotherapy/targeted therapy and radiation had the longest median survival following diagnosis of LMD. However, patients receiving chemotherapy/targeted therapy and radiation were younger and this may have influenced survival. Given the overall poor outcomes, improved therapeutic approaches are needed for glioblastoma patients with LMD.

  1. Amelioration of cancer stem cells in macrophage colony stimulating factor-expressing U87MG-human glioblastoma upon 5-fluorouracil therapy.

    Directory of Open Access Journals (Sweden)

    S Chockalingam

    Full Text Available Macrophage colony stimulating factor (MCSF regulates growth, proliferation and differentiation of haematopoietic cell lineages. Many cancers are known to secrete high level of MCSF, which recruit macrophages into the tumour micro-environment, supporting tumour growth. Herein, we report the cloning of MCSF and subsequent generation of U87MG expressing MCSF stable cell line (U87-MCSF. Cytotoxicity of anti-cancer drug 5-fluorouracil (5-FU was evaluated on both U87MG and U87-MCSF cells. Interestingly, the proliferation of U87-MCSF cells was less (p<0.001 than that of U87MG cells alone, after treatment with 5-FU. Significant decrease in expression levels of cyclin E and A2 quantified by real time PCR analysis corroborated the reduced proliferation of 5-FU treated U87-MCSF cells. However, JC-1 staining did not reveal any apoptosis upon 5-FU treatment. Notch-1 upregulation induced a possible epithelial-mesenchymal transition in U87-MCSF cells, which accounted for an increase in the proportion of CD24(high/CD44(less cancer stem cells in U87-MCSF cells after 5-FU treatment. The elevated resistance of U87-MCSF cells towards 5-FU was due to the increase in the expressions (10.2 and 6 fold of ABCB1 and mdm2, respectively. Furthermore, increase in expressions of ABCG1, mdm2 and CD24 was also observed in U87MG cells after prolonged incubation with 5-FU. Our studies provided mechanistic insights into drug resistance of U87MG cells and also described the pivotal role played by MCSF in augmenting the resistance of U87MG cells to 5-FU.

  2. Biomarker-based adaptive trials for patients with glioblastoma--lessons from I-SPY 2. (United States)

    Alexander, Brian M; Wen, Patrick Y; Trippa, Lorenzo; Reardon, David A; Yung, Wai-Kwan Alfred; Parmigiani, Giovanni; Berry, Donald A


    The traditional clinical trials infrastructure may not be ideally suited to evaluate the numerous therapeutic hypotheses that result from the increasing number of available targeted agents combined with the various methodologies to molecularly subclassify patients with glioblastoma. Additionally, results from smaller screening studies are rarely translated to successful larger confirmatory studies, potentially related to a lack of efficient control arms or the use of unvalidated surrogate endpoints. Streamlining clinical trials and providing a flexible infrastructure for biomarker development is clearly needed for patients with glioblastoma. The experience developing and implementing the I-SPY studies in breast cancer may serve as a guide to developing such trials in neuro-oncology.

  3. Why is there a lack of consensus on molecular subgroups of glioblastoma? Understanding the nature of biological and statistical variability in glioblastoma expression data.

    Directory of Open Access Journals (Sweden)

    Nicholas F Marko

    Full Text Available INTRODUCTION: Gene expression patterns characterizing clinically-relevant molecular subgroups of glioblastoma are difficult to reproduce. We suspect a combination of biological and analytic factors confounds interpretation of glioblastoma expression data. We seek to clarify the nature and relative contributions of these factors, to focus additional investigations, and to improve the accuracy and consistency of translational glioblastoma analyses. METHODS: We analyzed gene expression and clinical data for 340 glioblastomas in The Cancer Genome Atlas (TCGA. We developed a logic model to analyze potential sources of biological, technical, and analytic variability and used standard linear classifiers and linear dimensional reduction algorithms to investigate the nature and relative contributions of each factor. RESULTS: Commonly-described sources of classification error, including individual sample characteristics, batch effects, and analytic and technical noise make measurable but proportionally minor contributions to inconsistent molecular classification. Our analysis suggests that three, previously underappreciated factors may account for a larger fraction of classification errors: inherent non-linear/non-orthogonal relationships among the genes used in conjunction with classification algorithms that assume linearity; skewed data distributions assumed to be Gaussian; and biologic variability (noise among tumors, of which we propose three types. CONCLUSIONS: Our analysis of the TCGA data demonstrates a contributory role for technical factors in molecular classification inconsistencies in glioblastoma but also suggests that biological variability, abnormal data distribution, and non-linear relationships among genes may be responsible for a proportionally larger component of classification error. These findings may have important implications for both glioblastoma research and for translational application of other large-volume biological databases.

  4. Real-time visualization of nanoparticles interacting with glioblastoma stem cells. (United States)

    Pohlmann, Elliot S; Patel, Kaya; Guo, Sujuan; Dukes, Madeline J; Sheng, Zhi; Kelly, Deborah F


    Nanoparticle-based therapy represents a novel and promising approach to treat glioblastoma, the most common and lethal malignant brain cancer. Although similar therapies have achieved significant cytotoxicity in cultured glioblastoma or glioblastoma stem cells (GSCs), the lack of an appropriate approach to monitor interactions between cells and nanoparticle-based therapies impedes their further clinical application in human patients. To address this critical issue, we first obtained NOTCH1 positive GSCs from patient-derived primary cultures. We then developed a new imaging approach to directly observe the dynamic nature of nanoparticles at the molecular level using in situ transmission electron microscopy (TEM). Utilizing these tools we were able to visualize real-time movements of nanoparticles interacting with GSCs for the first time. Overall, we show strong proof-of-concept results that real-time visualization of nanoparticles in single cells can be achieved at the nanoscale using TEM, thereby providing a powerful platform for the development of nanotherapeutics.

  5. Acute hypoxia induces upregulation of microRNA-210 expression in glioblastoma spheroids

    DEFF Research Database (Denmark)

    Rosenberg, Tine Agerbo; Thomassen, Mads; Jensen, Stine Skov;


    AIM: Tumor hypoxia and presence of tumor stem cells are related to therapeutic resistance and tumorigenicity in glioblastomas. The aim of the present study was therefore to identify microRNAs deregulated in acute hypoxia and to identify possible associated changes in stem cell markers. MATERIALS...... & METHODS: Glioblastoma spheroid cultures were grown in either 2 or 21% oxygen. Subsequently, miRNA profiling was performed and expression of ten stem cell markers was examined. RESULTS: MiRNA-210 was significantly upregulated in hypoxia in patient-derived spheroids. The stem cell markers displayed...... a complex regulatory pattern. CONCLUSION: MiRNA-210 appears to be upregulated in hypoxia in immature glioblastoma cells. This miRNA may represent a therapeutic target although it is not clear from the results whether this miRNA may be related to specific cancer stem cell functions....

  6. Morusin Induces TRAIL Sensitization by Regulating EGFR and DR5 in Human Glioblastoma Cells. (United States)

    Park, Dain; Ha, In Jin; Park, Sang-Yoon; Choi, Minji; Lim, Sung-Lyul; Kim, Sung-Hoon; Lee, Jun-Hee; Ahn, Kwang Seok; Yun, Miyong; Lee, Seok-Geun


    Glioblastoma is one of the most malignant primary tumors, and the prognosis for glioblastoma patients remains poor. Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its remarkable ability to selectively kill tumor cells. However, since many cancers are resistant to TRAIL, strategies to overcome resistance are required for the successful use of TRAIL in the clinic. In the present study, the potential of morusin as a TRAIL sensitizer in human glioblastoma cells was evaluated. Treatment with TRAIL or morusin alone showed weak cytotoxicity in human glioblastoma cells. However, combination treatment of TRAIL with morusin synergistically decreased cell viability and increased apoptosis compared with single treatment. Morusin induced expression of death receptor 5 (DR5), but not DR4 or decoy receptors (DcR1 and DcR2). Furthermore, morusin significantly decreased anti-apoptotic molecules survivin and XIAP. In addition, morusin reduced expression of EGFR and PDFGR as well as phosphorylation of STAT3, possibly mediating down-regulation of survivin and XIAP. Together these results suggest that morusin enhances TRAIL sensitivity in human glioblastoma cells through regulating expression of DR5 and EGFR. Therefore, the combination treatment of TRAIL and morusin may be a new therapeutic strategy for malignant glioma patients.

  7. Oncogene addiction and non-oncogene addiction in glioblastoma therapy

    Institute of Scientific and Technical Information of China (English)

    Kimberly Ng; Clark C.Chen


    @@ INTRODUCTION Glioblastoma is the most common form of primary brain tumor.The incidence of this tumor is fairly low,with 2-3 cases per 100 000 people in Europe and North America.1It is one of the most aggressive forms of cancer.2 Without treatment,the median survival is approximately 3 months.3 The current standard of treatment involves maximal surgical resection followed by concurrent radiation therapy and chemotherapy with the DNA alkylating agent,temozolomide.4,5 With this regimen,the median survival is approximately 14 months.For nearly all affected,the treatments available remain palliative.

  8. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-κB

    Institute of Scientific and Technical Information of China (English)

    PengYao; YiqunZhan; WangxiangXu; ChangyanLi; PeibinYue; ChengwangXu; DarongHU; ChengkuiQu; XiaomingYang


    Background/Aims: Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-κB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-κB in HGF-mediated cellular proliferation responses in a rat liver.derived hepatic stem-like cell line WB.F344. Methods: Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IκBα by HGF stimulation was detected by Western blotting. NF-κB activation was determined by electrophoretic mobility shift assay and NF-κB.mediated SEAP reporter assay. NF-κB activation was inhibited by treatment with an IκBα dominant-negative vector or inhibitor BAY-11-7082. Results: We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-α. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-κB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-κB activity.Furthermore, it was demonstrated that IκB mutant that suppressed NF-κB activity completely blocked HGF-induced cell proliferation. Conclusions: NF-κB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.

  9. The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells. (United States)

    Clark, Paul A; Gaal, Jordan T; Strebe, Joslyn K; Pasch, Cheri A; Deming, Dustin A; Kuo, John S; Robins, H Ian


    A recent Phase 3 study of newly diagnosed glioblastoma (GBM) demonstrated the addition of tumor treating fields (TTFields) to temozolomide (TMZ) after combined radiation/TMZ significantly increased survival and progression free survival. Preliminary data suggested benefit with both methylated and unmethylated O-6-methylguanine-DNA methyl-transferase (MGMT) promoter status. To date, however, there have been no studies to address the potential interactions of TTFields and TMZ. Thus, the effects of TTFields and TMZ were studied in vitro using patient-derived GBM stem-like cells (GSCs) including MGMT expressing (TMZ resistant: 12.1 and 22GSC) and non-MGMT expressing (TMZ sensitive: 33 and 114GSC) lines. Dose-response curves were constructed using cell proliferation and sphere-forming assays. Results demonstrated a ⩾10-fold increase in TMZ resistance of MGMT-expressing (12.1GSCs: IC50=160μM; 22GSCs: IC50=44μM) compared to MGMT non-expressing (33GSCs: IC50=1.5μM; 114GSCs: IC50=5.2μM) lines. TTFields inhibited 12.1 GSC proliferation at all tested doses (50-500kHz) with an optimal frequency of 200kHz. At 200kHz, TTFields inhibited proliferation and tumor sphere formation of both MGMT GSC subtypes at comparable levels (12.1GSC: 74±2.9% and 38±3.2%, respectively; 22GSC: 61±11% and 38±2.6%, respectively; 33GSC: 56±9.5% and 60±7.1%, respectively; 114 GSC: 79±3.5% and 41±4.3%, respectively). In combination, TTFields (200kHz) and TMZ showed an additive anti-neoplastic effect with equal efficacy for TTFields in both cell types (i.e., ± MGMT expression) with no effect on TMZ resistance. This is the first demonstration of the effects of TTFields on cancer stem cells. The expansion of such studies may have clinical implications.

  10. Genetic alterations in primary glioblastomas in Japan. (United States)

    Fukushima, Takao; Favereaux, Alexandre; Huang, Hervé; Shimizu, Tsuneo; Yonekawa, Yasuhiro; Nakazato, Yoichi; Ohagki, Hiroko


    Current knowledge of genetic alterations in glioblastomas is based largely on genetic analyses of tumors from mainly caucasian patients in the United States and Europe. In the present study, screening for several key genetic alterations was performed on 77 primary (de novo) glioblastomas in Japanese patients. SSCP followed by DNA sequencing revealed TP53 mutations in 16 of 73 (22%) glioblastomas and PTEN mutations in 13 of 63 (21%) cases analyzed. Polymerase chain reaction (PCR) showed EGFR amplification in 25 of 77 (32%) cases and p16 homozygous deletion in 32 of 77 (42%) cases. Quantitative microsatellite analysis revealed LOH 10q in 41 of 59 (69%) glioblastomas. The frequencies of these genetic alterations were similar to those reported for primary glioblastomas at the population level in Switzerland. As previously observed for glioblastomas in Europe, there was a positive association between EGFR amplification and p16 deletion (p=0.009), whereas there was an inverse association between TP53 mutations and p16 deletion (p=0.049) in glioblastomas in Japan. Multivariate analyses showed that radiotherapy was significantly predictive for longer survival of glioblastoma patients (p=0.002). SSCP followed by DNA sequencing of the kinase domain (exons 18-21) of the EGFR gene revealed mutations in 2 ou of 69 (3%) glioblastomas in Japan and in 4 of 81 (5%) glioblastomas in Switzerland. The allele frequencies of polymorphisms at codon 787 CAG/CAA (Gln/Gln) in glioblastomas in Japan were G/G (82.4%), G/A (10.8%), A/A (6.8%), corresponding to G 0.878 versus A 0.122, significantly different from those in glioblastomas in Switzerland: G/G (27.2%), G/A (28.4%), A/A (44.4%), corresponding to G 0.414 versus A 0.586 (p < 0.0001). These results suggest that primary glioblastomas in Japan show genetic alterations similar to those in Switzerland, suggesting a similar molecular basis in caucasians and Asians, despite different genetic backgrounds, including different status of a

  11. Linking of mPGES-1 and iNOS activates stem-like phenotype in EGFR-driven epithelial tumor cells. (United States)

    Terzuoli, Erika; Finetti, Federica; Costanza, Filomena; Giachetti, Antonio; Ziche, Marina; Donnini, Sandra


    Inflammatory prostaglandin E-2 (PGE-2) favors cancer progression in epithelial tumors characterized by persistent oncogene input. However, its effects on tumor cell stemness are poorly understood at molecular level. Here we describe two epithelial tumor cells A431 and A459, originating from human lung and skin tumors, in which epithelial growth factor (EGF) induces sequential up-regulation of mPGES-1 and iNOS enzymes, producing an inflammatory intracellular milieu. We demonstrated that concerted action of EGF, mPGES-1 and iNOS causes sharp changes in cell phenotype demonstrated by acquisition of stem-cell features and activation of the epithelial-mesenchymal transition (EMT). When primed with EGF, epithelial tumor cells transfected with mPGES-1 or iNOS to ensure steady enzyme levels display major stem-like and EMT markers, such as reduction in E-cadherin with a concomitant rise in vimentin, ALDH-1, CD133 and ALDH activity. Tumorsphere studies with these cells show increased sphere number and size, enhanced migratory and clonogenic capacity and sharp changes in EMT markers, indicating activation of this process. The concerted action of the enzymes forms a well-orchestrated cascade where expression of iNOS depends on overexpression of mPGES-1. Indeed, we show that through its downstream effectors (PGE-2, PKA, PI3K/Akt), mPGES-1 recruits non-canonical transcription factors, thus facilitating iNOS production. In conclusion, we propose that the initial event leading to tumor stem-cell activation may be a leveraged intrinsic mechanism in which all players are either inherent constituents (EGF) or highly inducible proteins (mPGES-1, iNOS) of tumor cells. We suggest that incipient tumor aggressiveness may be moderated by reducing pivotal input of mPGES-1.

  12. The strong anti-glioblastoma capacity of the plasma-stimulated lysine-rich medium (United States)

    Yan, Dayun; Nourmohammadi, Niki; Talbot, Annie; Sherman, Jonathan H.; Keidar, Michael


    Plasma-stimulated medium (PSM) shows a remarkable anti-cancer capacity as strong as the direct cold atmospheric plasma (CAP) treatment of cancer cells. PSM is able to effectively resist the growth of several cancer cell lines. To date, the sole approach to strengthen the anti-cancer capacity of PSM is extending the plasma treatment time. In this study, we demonstrated that the anti-glioblastoma capacity of PSM could be significantly increased by adding 20 mM lysine in Dulbecco’s modified Eagle’s medium (DMEM). This study provides clear evidence that the anti-glioblastoma capacity of PSM could be noticeably enhanced by modifying the composition of medium without increasing the CAP treatment time.

  13. Current concepts in glioblastoma imaging

    Institute of Scientific and Technical Information of China (English)

    George Alexiou; Spyridon Tsiouris; Haralabos Bougias; Spyridon Voulgaris; Andreas Fotopoulos


    Glioblastoma (GBM, WHO grade Ⅳ) is the most common and the most malignant primary brain tumor occurring during adulthood, with an annual incidence of 5 cases per 100 000. Treatment involves surgical resection, followed by radiotherapy and concomitant and adjuvant temozolomide. Despite multimodality treatment, the median survival time is 15 months. Herewith we discuss the value of neuroimaging in differentiating GBM from other types of brain tumors, in guiding tumor biopsy, in making non-invasive assessment of tumor's aggressiveness, in estimating overall prognosis, in differentiating treatment -induced brain necrosis from tumor recurrence and in assessing response to treatment.

  14. CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres.

    Directory of Open Access Journals (Sweden)

    Dagmar Walter

    Full Text Available Cancer stem cells (CSCs have been identified in a number of solid tumors, but not yet in rhabdomyosarcoma (RMS, the most frequently occurring soft tissue tumor in childhood. Hence, the aim of this study was to identify and characterize a CSC population in RMS using a functional approach. We found that embryonal rhabdomyosarcoma (eRMS cell lines can form rhabdomyosarcoma spheres (short rhabdospheres in stem cell medium containing defined growth factors over several passages. Using an orthotopic xenograft model, we demonstrate that a 100 fold less sphere cells result in faster tumor growth compared to the adherent population suggesting that CSCs were enriched in the sphere population. Furthermore, stem cell genes such as oct4, nanog, c-myc, pax3 and sox2 are significantly upregulated in rhabdospheres which can be differentiated into multiple lineages such as adipocytes, myocytes and neuronal cells. Surprisingly, gene expression profiles indicate that rhabdospheres show more similarities with neuronal than with hematopoietic or mesenchymal stem cells. Analysis of these profiles identified the known CSC marker CD133 as one of the genes upregulated in rhabdospheres, both on RNA and protein levels. CD133(+ sorted cells were subsequently shown to be more tumorigenic and more resistant to commonly used chemotherapeutics. Using a tissue microarray (TMA of eRMS patients, we found that high expression of CD133 correlates with poor overall survival. Hence, CD133 could be a prognostic marker for eRMS. These experiments indicate that a CD133(+ CSC population can be enriched from eRMS which might help to develop novel targeted therapies against this pediatric tumor.

  15. Strategies in Gene Therapy for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Mariano S. Viapiano


    Full Text Available Glioblastoma (GBM is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  16. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)


    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  17. Rare clinical form of glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Maria Ejma


    Full Text Available Glioblastoma multiforme (glioblastoma multiforme - GBM is the most malignant tumor classified by WHO. It is also the most common primary CNS tumor with a very aggressive course and unfavourable prognosis, usually develops in adults, and is typically located supratentorially in the fronto-temporal region. However, the literature describes an unusual position of GBM (e.g. spinal cord, pons, pineal region, familial gliomas unconnected with the family of gliomas predisposed to the occurrence of syndromes, unusual glioma and metastatic sites, gliomas transplanted with organs. In this paper, based on the available literature, the authors discuss an unusual and rare form of glioblastoma multiforme.

  18. Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma

    Directory of Open Access Journals (Sweden)

    Santoro Antonio


    Full Text Available Abstract Background Adaptation to hypoxia and consequent pro-inflammatory gene expression of prostate and breast carcinomas have been implicated in the progression toward cancer malignant phenotype. Only partial data are available for the human tumor glioblastoma multiforme (GBM. The aim of our study was to analyze the hypoxic and pro-inflammatory microenvironment in GBMs and to demonstrate that in a stem/progenitor cell line derived from human glioblastoma (GBM-SCs, hypoxia activates a coordinated inflammatory response, evidencing an invasive and migratory phenotype. Methods From each of 10 human solid glioblastomas, clinically and histopathologically characterized, we obtained three surgical samples taken from the center and the periphery of the tumor, and from adjacent host normal tissue. Molecular and morphological analyses were carried out using quantitative real-time PCR and western blot (WB. GBM stem and differentiated cells were incubated under hypoxic conditions and analyzed for pro-inflammatory gene expression and for invasive/migratory behavior. Results A panel of selected representative pro-inflammatory genes (RAGE and P2X7R, COX2, NOS2 and, PTX3 were analyzed, comparing tumor, peritumor and host normal tissues. Tumors containing leukocyte infiltrates (as assessed using CD45 immunohistochemistry were excluded. Selected genes were overexpressed in the central regions of the tumors (i.e. in the more hypoxic areas, less expressed in peripheral regions, and poorly expressed or absent in adjacent normal host tissues. Western blot analysis confirmed that the corresponding pro-inflammatory proteins were also differently expressed. Hypoxic stem cell lines showed a clear time-dependent activation of the entire panel of pro-inflammatory genes as compared to differentiated tumor cells. Biological assays showed that invasive and migratory behavior was strengthened by hypoxia only in GBM stem cells. Conclusions In human solid glioblastoma we have

  19. MicroRNA-663 inhibits the proliferation, migration and invasion of glioblastoma cells via targeting TGF-β1. (United States)

    Li, Qizhuang; Cheng, Quan; Chen, Zigui; Peng, Renjun; Chen, Rui; Ma, Zhiming; Wan, Xin; Liu, Jincan; Meng, Ming; Peng, Zhigang; Jiang, Bing


    Cell migration and invasion are key processes involved during tumor metastasis. Recently, microRNAs (miRs) have been demonstrated to play important roles in the regulation of cancer metastasis. However, the underlying mechanisms remain unknown. Here, we aimed to investigate the exact role of miR-663 in the metastasis of glioblastoma as well as the underlying mechanisms. By performing quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis, we demonstrated that miR-663 was significantly downregulated in glioblastoma tissues (n=25), when compared to that in normal brain tissues (n=15). In addition, its expression levels were also reduced in human glioblastoma cell lines, A172 and U87. Furthermore, restoration of miR-663 expression led to a significant decrease in the cell proliferation, migration and invasion of human glioblastoma A172 and U87 cells. We further identified TGF-β1 as a direct target of miR-663, and found that the expression of TGF-β1 was negatively mediated by miR-663 at the post-transcriptional level in glioblastoma cells. Moreover, overexpression of TGF-β1 significantly reversed the inhibitory effects of miR-663 upregulation on the proliferation, migration and invasion in A172 and U87 cells. In addition, our data suggest that MMP2 and E-cadherin, a key factor in epithelial-mesenchymal transition (EMT), are involved in the miR-633/TGF-β1-mediated metastasis of glioblastoma. In summary, miR-663 plays an inhibitory role in the regulation of proliferation, migration and invasion of glioblastoma cells, partly at least, via direct mediation of TGF-β1 as well as downstream MMP2 and E-cadherin. Therefore, we suggest that miR-663 is a potential candidate for the prevention of glioblastoma metastasis.

  20. Phase I/II Study of IMMU-132 in Patients With Epithelial Cancers (United States)


    Colorectal Cancer; Gastric Adenocarcinoma; Esophageal Cancer; Hepatocellular Carcinoma; Non-small Cell Lung Cancer; Small Cell Lung Cancer; Ovarian Epithelial Cancer; Carcinoma Breast Stage IV; Hormone-refractory Prostate Cancer; Pancreatic Ductal Adenocarcinoma; Head and Neck Cancers- Squamous Cell; Renal Cell Cancer; Urinary Bladder Neoplasms; Cervical Cancer; Endometrial Cancer; Follicular Thyroid Cancer; Glioblastoma Multiforme

  1. Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells. (United States)

    Vidak, Marko; Rozman, Damjana; Komel, Radovan


    Quercetin, catechins and proanthocyanidins are flavonoids that are prominently featured in foodstuffs and dietary supplements, and may possess anti-carcinogenic activity. Glioblastoma multiforme is the most dangerous form of glioma, a malignancy of the brain connective tissue. This review assesses molecular structures of these flavonoids, their importance as components of diet and dietary supplements, their bioavailability and ability to cross the blood-brain barrier, their reported beneficial health effects, and their effects on non-malignant glial as well as glioblastoma tumor cells. The reviewed flavonoids appear to protect glial cells via reduction of oxidative stress, while some also attenuate glutamate-induced excitotoxicity and reduce neuroinflammation. Most of the reviewed flavonoids inhibit proliferation of glioblastoma cells and induce their death. Moreover, some of them inhibit pro-oncogene signaling pathways and intensify the effect of conventional anti-cancer therapies. However, most of these anti-glioblastoma effects have only been observed in vitro or in animal models. Due to limited ability of the reviewed flavonoids to access the brain, their normal dietary intake is likely insufficient to produce significant anti-cancer effects in this organ, and supplementation is needed.

  2. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Renee D Read

    Full Text Available Glioblastoma, the most common primary malignant brain tumor, is incurable with current therapies. Genetic and molecular analyses demonstrate that glioblastomas frequently display mutations that activate receptor tyrosine kinase (RTK and Pi-3 kinase (PI3K signaling pathways. In Drosophila melanogaster, activation of RTK and PI3K pathways in glial progenitor cells creates malignant neoplastic glial tumors that display many features of human glioblastoma. In both human and Drosophila, activation of the RTK and PI3K pathways stimulates Akt signaling along with other as-yet-unknown changes that drive oncogenesis. We used this Drosophila glioblastoma model to perform a kinome-wide genetic screen for new genes required for RTK- and PI3K-dependent neoplastic transformation. Human orthologs of novel kinases uncovered by these screens were functionally assessed in mammalian glioblastoma models and human tumors. Our results revealed that the atypical kinases RIOK1 and RIOK2 are overexpressed in glioblastoma cells in an Akt-dependent manner. Moreover, we found that overexpressed RIOK2 formed a complex with RIOK1, mTor, and mTor-complex-2 components, and that overexpressed RIOK2 upregulated Akt signaling and promoted tumorigenesis in murine astrocytes. Conversely, reduced expression of RIOK1 or RIOK2 disrupted Akt signaling and caused cell cycle exit, apoptosis, and chemosensitivity in glioblastoma cells by inducing p53 activity through the RpL11-dependent ribosomal stress checkpoint. These results imply that, in glioblastoma cells, constitutive Akt signaling drives RIO kinase overexpression, which creates a feedforward loop that promotes and maintains oncogenic Akt activity through stimulation of mTor signaling. Further study of the RIO kinases as well as other kinases identified in our Drosophila screen may reveal new insights into defects underlying glioblastoma and related cancers and may reveal new therapeutic opportunities for these cancers.

  3. Molecular heterogeneity in glioblastoma: potential clinical implications

    Directory of Open Access Journals (Sweden)

    Nicole Renee Parker


    Full Text Available Glioblastomas, (grade 4 astrocytomas, are aggressive primary brain tumors characterized by histopathological heterogeneity. High resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed.

  4. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.

    Directory of Open Access Journals (Sweden)

    Elena Riccitelli

    Full Text Available Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs, a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ, and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source

  5. MicroRNA-197 inhibits cell proliferation by targeting GAB2 in glioblastoma. (United States)

    Tian, Li-Qiang; Liu, En-Qin; Zhu, Xi-De; Wang, Xin-Gong; Li, Jian; Xu, Guang-Ming


    Glioblastoma is the most common type of primary brain tumor in adults, and is usually fatal in a short duration. Acquiring a better understanding of the pathogenic mechanisms of glioblastoma is essential to the design of effective therapeutic strategies. Grb2-associated binding protein 2 (GAB2) is a member of the daughter of sevenless/Gab family of scaffolding adapters, and has been reported to be important in the development and progression of human cancer. Previously, it has been reported that GAB2 is expressed at high levels in glioma, and may serve as a useful prognostic marker for glioma and a novel therapeutic target for glioma invasion intervention. Elucidating why GAB2 is overexpressed in glioma, and investigating how to downregulate it will assist in further understanding the pathogenesis and progression of the disease, and to offer novel targets for therapy. The present study used in situ hybridization to detect microRNA (miR)‑197 expression levels and Targetscan to predict that the 3'-UTR of GAB2 was targeted by miR-197. Northern blotting and reverse transcription‑quantitative polymerase chain reaction were also conducted in the current study. miR-197 is downregulated in glioblastoma tissues, compared with adjacent normal tissues, however it involvement continues to be detected in the disease. The results of the present study demonstrated that miR‑197, as a tumor suppressor gene, inhibited proliferation by regulating GAB2 in glioblastoma cells. Furthermore, GAB2 was not only upregulated in glioma, but its expression levels were also associated with the grades of glioma severity. In addition, overexpression of GAB2 suppressed the expression of miR‑197 in glioblastoma cells. Therefore, restoration of miR‑197 and targeting GAB2 may be used, in conjunction with other therapies, to prevent the progression of glioblastoma.

  6. Malignant behaviorial characteristics of CD133(+/-) glioblastoma cells from a Northern Chinese population. (United States)

    Liu, Xiaozhi; Chen, Lei; Jiang, Zhongmin; Wang, Junfei; Su, Zhiguo; Li, Gang; Yu, Shizhu; Liu, Zhenlin


    Following emergence of the tumor stem cell theory, the increasing number of related studies demonstrates the theory's growing importance in cancer research and its potential for clinical applications. Few studies have addressed the in vitro or in vivo properties of glioma stem cells from a Han Chinese population. In the present study, surgically obtained glioblastoma tissue was classified into two subtypes, CD133(+) and CD133(-). The hierarchy, invasiveness, growth tolerance under low nutrient conditions and colony forming abilities of the tissue samples were analyzed. Additionally, the characteristics of tumor cells transplanted subcutaneously or re-transplanted into nude mice were observed. The results demonstrated that CD133(+) glioblastoma cells derived from Han Chinese glioma specimens were more prone to primitive cell differentiation and more invasive than CD133(-) glioblastoma cells, leading to increased tumor malignancy compared with CD133(-) cells. The tumor formation rates of CD133(+) and CD133(-) cells in mice were 26/30 and 2/30, respectively. A comparison of tumor subtypes demonstrated that CD133(+) glioblastoma cells had a lower incidence of cell apoptosis in the tumor tissue and higher protein expression levels of Oct4, Sox2, PCNA, EGFR, Ang2, MMP2 and MMP9 compared with CD133(-) cells. Flow cytometry revealed that in the CD133(+) and CD133(-) glioblastoma cell-induced tumors, the percentage of CD133(+) cells was 2.47±0.67 and 0.44±0.14%, respectively. The tumor formation rates following the re-transplantation of CD133(+) or CD133(-) tumors into nude mice were 10/10 and 4/10, respectively. These findings suggest that the CD133(+) glioblastoma cell subpopulation has a stronger malignant cell phenotype than the CD133(-) subpopulation and that its recurrence rate is increased compared with the primitive tumorigenic rate following in vivo transplantation.

  7. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)


    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  8. miR-92a-3p Exerts Various Effects in Glioma and Glioma Stem-Like Cells Specifically Targeting CDH1/β-Catenin and Notch-1/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Hang Song


    Full Text Available MicroRNAs (miRNAs are implicated in the regulation of tumor progression and stemness of cancer stem-like cells. Recently, miR-92a-3p was reported to be up-regulated in human glioma samples. Nevertheless, the precise role of miR-92a-3p in glioma cells and glioma stem-like cells (GSCs has not been fully elucidated. It is necessary to clarify the function of miR-92a-3p in glioma and GSCs to develop novel therapeutic approaches for glioma patients. In the present study, we applied methyl-thiazolyl-tetrazolium (MTT assay and Transwell assay to measure the proliferation rate and metastatic potential of glioma cells. Meanwhile, the self-renewal ability of GSCs was detected by tumor sphere formation assay. The results revealed that down-regulation of miR-92a-3p suppressed the glioma cell malignancy in vitro. Moreover, knockdown of miR-92a-3p led to a reduction of tumorgenesis in vivo. Interestingly, we also observed that up-regulation of miR-92a-3p could inhibit the stemness of GSCs. Subsequent mechanistic investigation indicated that cadherin 1 (CDH1/β-catenin signaling and Notch-1/Akt signaling were the downstream pathways of miR-92a-3p in glioma cells and GSCs, respectively. These results suggest that miR-92a-3p plays different roles in glioma cells and GSCs through regulating different signaling pathways.

  9. Signal transduction molecule patterns indicating potential glioblastoma therapy approaches

    Directory of Open Access Journals (Sweden)

    Cruceru ML


    Full Text Available Maria Linda Cruceru,1 Ana-Maria Enciu,1,2,7 Adrian Claudiu Popa,1,3 Radu Albulescu,2,4,7 Monica Neagu,2,7 Cristiana Pistol Tanase,2,7 Stefan N Constantinescu5–7 1Carol Davila University of Medicine and Pharmacy, Department of Cellular and Molecular Medicine, Bucharest, Romania; 2Victor Babes National Institute of Pathology, Bucharest, Romania; 3Army Centre for Medical Research, Bucharest, Romania; 4National Institute for Chemical Pharmaceutical R&D, Bucharest, Romania; 5de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; 6Ludwig Institute for Cancer Research, Brussels, Belgium; 7Operational Sectorial Programme for Competitive Economic Growth Canbioprot at Victor Babes National Institute of Pathology, Bucharest, Romania Purpose: The expression of an array of signaling molecules, along with the assessment of real-time cell proliferation, has been performed in U87 glioma cell line and in patients’ glioblastoma established cell cultures in order to provide a better understanding of cellular and molecular events involved in glioblastoma pathogenesis. Experimental therapy was performed using a phosphatydylinositol-3´-kinase (PI3K inhibitor. Patients and methods: xMAP technology was employed to assess expression levels of several signal transduction molecules and real-time xCELLigence platform for cell behavior. Results: PI3K inhibition induced the most significant effects on global signaling pathways in patient-derived cell cultures, especially on members of the mitogen-activated protein-kinase family, P70S6 serine-threonine kinase, and cAMP response element-binding protein expression and further prevented tumor cell proliferation. Conclusion: The PI3K pathway might be a prime target for glioblastoma treatment. Keywords: personalized medicine, PI3K inhibitor, targeted therapy, xCELLigence, xMAP analysis

  10. Hypermethylation of testis derived transcript gene promoter significantly correlates with worse outcomes in glioblastoma patients

    Institute of Scientific and Technical Information of China (English)

    WANG Li-jia; BAI Yu; BAO Zhao-shi; CHEN Yan; YAN Zhuo-hong; ZHANG Wei; ZHANG Quan-geng


    Background Glioblastoma is the most common and lethal cancer of the central nervous system.Global genomic hypomethylation and some CpG island hypermethylation are common hallmarks of these malignancies,but the effects of these methylation abnormalities on glioblastomas are still largely unclear.Methylation of the O6-methylguanine-DNA methyltransferase promoter is currently an only confirmed molecular predictor of better outcome in temozolomide treatment.To better understand the relationship between CpG island methylation status and patient outcome,this study launched DNA methylation profiles for thirty-three primary glioblastomas (pGBMs) and nine secondary glioblastomas (sGBMs) with the expectation to identify valuable prognostic and therapeutic targets.Methods We evaluated the methylation status of testis derived transcript (TES) gene promoter by microarray analysis of glioblastomas and the prognostic value for TES methylation in the clinical outcome of pGBM patients.Significance analysis of microarrays was used for genes significantly differently methylated between 33 pGBM and nine sGBM.Survival curves were calculated according to the Kaplan-Meier method,and differences between curves were assessed using the log-rank test.Then,we treated glioblastoma cell lines (U87 and U251) with 5-aza-2-deoxycytidines (5-aza-dC) and detected cell biological behaviors.Results Microarray data analysis identified TES promoter was hypermethylated in pGBMs compared with sGBMs (P<0.05).Survival curves from the Kaplan-Meier method analysis revealed that the patients with TES hypermethylation had a short overall survival (P <0.05).This abnormality is also confirmed in glioblastoma cell lines (U87 and U251).Treating these cells with 5-aza-dC released TES protein expression resulted in significant inhibition of cell growth (P=0.013).Conclusions Hypermethylation of TES gene promoter highly correlated with worse outcome in pGBM patients.TES might represent a valuable prognostic marker

  11. NETRIN-4 Protects Glioblastoma Cells FROM Temozolomide Induced Senescence


    Li Li; Yizhou Hu; Irene Ylivinkka; Huini Li; Ping Chen; Jorma Keski-Oja; Marko Hyytiäinen


    Glioblastoma multiforme is the most common primary tumor of the central nervous system. The drug temozolomide (TMZ) prolongs lifespan in many glioblastoma patients. The sensitivity of glioblastoma cells to TMZ is interfered by many factors, such as the expression of O-6-methylguanine-DNA methyltransferase (MGMT) and activation of AKT signaling. We have recently identified the interaction between netrin-4 (NTN4) and integrin beta-4 (ITGB4), which promotes glioblastoma cell proliferation via ac...

  12. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    Energy Technology Data Exchange (ETDEWEB)

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard, E-mail:


    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.

  13. Tumorigenic lung tumorospheres exhibit stem-like features with significantly increased expression of CD133 and ABCG2


    Zhao, Wensi; Luo, Yi; Li, Boyi; Zhang, Tao


    Accumulating evidence supports the existence of cancer stem cells (CSCs) in human tumors, and the successful certification of CSCs may lead to the identification of therapeutic targets, which are more effective for the treatment of cancer. The use of spherical cancer models has increased in popularity in cancer stem cell investigations. Tumorospheres, which are used as a model of CSCs and are established in serum-free medium supplemented with growth factors under non-adherent conditions, are ...

  14. Telomere profiling: toward glioblastoma personalized medicine. (United States)

    Ferrandon, Sylvain; Saultier, Paul; Carras, Julien; Battiston-Montagne, Priscillia; Alphonse, Gersende; Beuve, Michael; Malleval, Céline; Honnorat, Jérôme; Slatter, Tania; Hung, Noelyn; Royds, Janice; Rodriguez-Lafrasse, Claire; Poncet, Delphine


    Despite a standard of care combining surgery, radiotherapy (RT), and temozolomide chemotherapy, the average overall survival (OS) of glioblastoma patients is only 15 months, and even far lower when the patient cannot benefit from this combination. Therefore, there is a strong need for new treatments, such as new irradiation techniques. Against this background, carbon ion hadrontherapy, a new kind of irradiation, leads to a greater biological response of the tumor, while minimizing adverse effects on healthy tissues in comparison with RT. As carbon ion hadrontherapy is restricted to RT-resistant patients, photon irradiation resistance biomarkers are needed. Long telomeres and high telomerase activity have been widely associated with photon radioresistance in other cancers. Moreover, telomere protection, telomere function, and telomere length (TL) also depend on the shelterin protein complex (TRF1, TRF2, TPP1, POT1, TIN2, and hRAP1). We thus decided to evaluate an enlarged telomeric status (TL, telomerase catalytic subunit, and the shelterin component expression level) as a potential radioresistance biomarker in vitro using cellular models and ex vivo using patient tumor biopsies. In addition, nothing was known about the role of telomeres in carbon ion response. We thus evaluated telomeric status after both types of irradiation. We report here a significant correlation between TL and the basal POT1 expression level and photon radioresistance, in vitro, and a significant increase in the OS of patients with long telomeres or a high POT1 level, in vivo. POT1 expression was predictive of patient response irrespective of the TL. Strikingly, these correlations were lost, in vitro, when considering carbon irradiation. We thus propose (1) a model of the implications of telomeric damage in the cell response to both types of irradiation and (2) assessment of the POT1 expression level and TL using patient tumor biopsies to identify radioresistant patients who could benefit from

  15. Morphometic analysis of TCGA glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Chang Hang


    Full Text Available Abstract Background Our goals are to develop a computational histopathology pipeline for characterizing tumor types that are being generated by The Cancer Genome Atlas (TCGA for genomic association. TCGA is a national collaborative program where different tumor types are being collected, and each tumor is being characterized using a variety of genome-wide platforms. Here, we have developed a tumor-centric analytical pipeline to process tissue sections stained with hematoxylin and eosin (H&E for visualization and cell-by-cell quantitative analysis. Thus far, analysis is limited to Glioblastoma Multiforme (GBM and kidney renal clear cell carcinoma tissue sections. The final results are being distributed for subtyping and linking the histology sections to the genomic data. Results A computational pipeline has been designed to continuously update a local image database, with limited clinical information, from an NIH repository. Each image is partitioned into blocks, where each cell in the block is characterized through a multidimensional representation (e.g., nuclear size, cellularity. A subset of morphometric indices, representing potential underlying biological processes, can then be selected for subtyping and genomic association. Simultaneously, these subtypes can also be predictive of the outcome as a result of clinical treatments. Using the cellularity index and nuclear size, the computational pipeline has revealed five subtypes, and one subtype, corresponding to the extreme high cellularity, has shown to be a predictor of survival as a result of a more aggressive therapeutic regime. Further association of this subtype with the corresponding gene expression data has identified enrichment of (i the immune response and AP-1 signaling pathways, and (ii IFNG, TGFB1, PKC, Cytokine, and MAPK14 hubs. Conclusion While subtyping is often performed with genome-wide molecular data, we have shown that it can also be applied to categorizing histology

  16. Integrative Modeling Reveals Annexin A2-mediated Epigenetic Control of Mesenchymal Glioblastoma. (United States)

    Kling, Teresia; Ferrarese, Roberto; Ó hAilín, Darren; Johansson, Patrik; Heiland, Dieter Henrik; Dai, Fangping; Vasilikos, Ioannis; Weyerbrock, Astrid; Jörnsten, Rebecka; Carro, Maria Stella; Nelander, Sven


    Glioblastomas are characterized by transcriptionally distinct subtypes, but despite possible clinical relevance, their regulation remains poorly understood. The commonly used molecular classification systems for GBM all identify a subtype with high expression of mesenchymal marker transcripts, strongly associated with invasive growth. We used a comprehensive data-driven network modeling technique (augmented sparse inverse covariance selection, aSICS) to define separate genomic, epigenetic, and transcriptional regulators of glioblastoma subtypes. Our model identified Annexin A2 (ANXA2) as a novel methylation-controlled positive regulator of the mesenchymal subtype. Subsequent evaluation in two independent cohorts established ANXA2 expression as a prognostic factor that is dependent on ANXA2 promoter methylation. ANXA2 knockdown in primary glioblastoma stem cell-like cultures suppressed known mesenchymal master regulators, and abrogated cell proliferation and invasion. Our results place ANXA2 at the apex of a regulatory cascade that determines glioblastoma mesenchymal transformation and validate aSICS as a general methodology to uncover regulators of cancer subtypes.

  17. Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma (United States)

    Xipell, Enric; Gonzalez-Huarriz, Marisol; de Irujo, Juan Jose Martinez; García-Garzón, Antonia; Lang, Fred F.; Jiang, Hong; Fueyo, Juan; Gomez-Manzano, Candelaria; Alonso, Marta M.


    Glioblastoma is the most frequent malignant brain tumor. Even with aggressive treatment, prognosis for patients is poor. One characteristic of glioblastoma cells is its intrinsic resistance to apoptosis. Therefore, drugs that induce alternative cell deaths could be interesting to evaluate as alternative therapeutic candidates for glioblastoma. Salinomycin (SLM) was identified through a chemical screening as a promising anticancer drug, but its mechanism of cell death remains unclear. In the present work we set out to elucidate how SLM causes cell death in glioblastoma cell lines (both established cell lines and brain tumor stem cell lines), aiming to find a potential antitumor candidate. In addition, we sought to determine the mechanism of action of SLM so that this mechanism can be can be exploited in the fight against cancer. Our data showed that SLM induces a potent endoplasmic reticulum (ER) stress followed by the trigger of the unfolded protein response (UPR) and an aberrant autophagic flux that culminated in necrosis due to mitochondria and lysosomal alterations. Of importance, the aberrant autophagic flux was orchestrated by the production of Reactive Oxygen Species (ROS). Alleviation of ROS production restored the autophagic flux. Altogether our data suggest that in our system the oxidative stress blocks the autophagic flux through lipid oxidation. Importantly, oxidative stress could be instructing the type of cell death in SLM-treated cells, suggesting that cell death modality is a dynamic concept which depends on the cellular stresses and the cellular mechanism activated. PMID:27121320

  18. Anti-miR delivery strategies to bypass the blood-brain barrier in glioblastoma therapy (United States)

    Kim, Dong Geon; Kim, Kang Ho; Seo, Yun Jee; Yang, Heekyoung; Marcusson, Eric G.; Son, Eunju; Lee, Kyoungmin; Sa, Jason K.; Lee, Hye Won; Nam, Do-Hyun


    Small non-coding RNAs called miRNAs are key regulators in various biological processes, including tumor initiation, propagation, and metastasis in glioblastoma as well as other cancers. Recent studies have shown the potential for oncogenic miRNAs as therapeutic targets in glioblastoma. However, the application of antisense oligomers, or anti-miRs, to the brain is limited due to the blood-brain barrier (BBB), when administered in the traditional systemic manner. To induce a therapeutic effect in glioblastoma, anti-miR therapy requires a robust and effective delivery system to overcome this obstacle. To bypass the BBB, different delivery administration methods for anti-miRs were evaluated. Stereotaxic surgery was performed to administer anti-Let-7 through intratumoral (ITu), intrathecal (ITh), and intraventricular (ICV) routes, and each method's efficacy was determined by changes in the expression of anti-Let-7 target genes as well as by immunohistochemical analysis. ITu administration of anti-miRs led to a high rate of anti-miR delivery to tumors in the brain by both bolus and continuous administration. In addition, ICV administration, compared with ITu administration, showed a greater distribution of the miR across entire brain tissues. This study suggests that local administration methods are a promising strategy for anti-miR treatment and may overcome current limitations in the treatment of glioblastoma in preclinical animal models. PMID:27102443

  19. Epithelioid/rhabdoid glioblastoma: a highly aggressive subtype of glioblastoma. (United States)

    Sugimoto, Kazutaka; Ideguchi, Makoto; Kimura, Tokuhiro; Kajiwara, Koji; Imoto, Hirochika; Sadahiro, Hirokazu; Ishii, Aya; Kawano, Hiroo; Ikeda, Eiji; Suzuki, Michiyasu


    Epithelioid glioblastoma (GBM) and rhabdoid GBM are rare variants that are morphologically similar, but there is no consensus on the characteristics of each disease. These tumors have aggressive features of early recurrence and leptomeningeal dissemination and tend to develop in younger patients compared to typical GBM. The prognosis is normally worse than typical GBM, even with intensive chemoradiotherapy after surgical resection. Thus, accurate diagnosis and effective therapy for epithelioid/rhabdoid GBM are required. Four consecutive patients aged 16-48 years were diagnosed with epithelioid/rhabdoid GBM by pathological and immunohistochemical analysis at Yamaguchi University Hospital from 2006 to 2012. Two of these patients had relatively long-term survival (19 and 23 months after diagnosis). Two cases had a BRAF V600E mutation, whereas no ATRX mutation was present in any cases. All patients suffered leptomeningeal and/or spinal dissemination that worsened their prognosis. These results illustrate the need for a new therapeutic approach, such as molecular targeted drug therapy like BRAF inhibition, in addition to standard chemoradiotherapy for typical GBM.

  20. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.

    Directory of Open Access Journals (Sweden)

    Stine Skov Jensen

    Full Text Available Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account.Glioblastoma stem cell-like containing spheroid (GSS cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models.We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo.The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.

  1. Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells.

    Directory of Open Access Journals (Sweden)

    N Sumru Bayin

    Full Text Available Glioblastoma multiforme (GBM is a deadly primary brain malignancy. Glioblastoma stem cells (GSC, which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.

  2. Multiple extraneural metastasis of glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    J. Undabeitia


    Full Text Available Introduction. Glioblastoma multiforme is the most frequent primary tumor in the brain. Despite improvements in its surgical, chemotherapy and radiotherapy treatment, prognosis remains poor. Extracranial metastases of glioblastoma are a rare complication in this disease. Its appearance has been described in lung, liver, bone or lymph nodes. Case report. We describe the case of a 20 year-old patient who complained of a subacute-onset headache. In the MRI an enhancing right temporal lesion was detected suggesting a high grade glioma as first diagnosis. Surgery was performed, obtaining a gross total resection of the lesion. Our patient underwent adjuvant radiotherapy and chemotherapy treatment, according to our hospital´s protocol. Five months after initial surgery our patient complained of chest pain and a hacking cough. A thoracic-abdominal-pelvic CT scan was obtained, which showed bilateral lung infiltrates with pleural effusion, a pancreatic nodule and several vertebral lytic lesions. The lung lesions were biopsied. The pathologic diagnosis was metastatic glioblastoma multiforme. The patient died eight months after initial diagnosis. Conclusion. Extracranial metastases of glioblastoma remain a rare event although its incidence is increasing, probably due to the improvement in survival among these patients and better imaging techniques. The mechanisms for extracranial dissemination of glioblastoma are not entirely known, as several theories exist in this regard. Physicians must be aware of this complication and keep it in mind as a differential diagnosis to improve the quality of life of our patients.

  3. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats


    Staedtke, Verena; Bai, Ren-Yuan; Sun, Weiyun; Huang, Judy; Kibler, Kathleen Kazuko; Tyler, Betty M.; Gallia, Gary L.; Kinzler, Kenneth; Vogelstein, Bert; Zhou, Shibin; Riggins, Gregory J.


    Glioblastoma (GBM) is a highly aggressive primary brain tumor that is especially difficult to treat. The tumor's ability to withstand hypoxia leads to enhanced cancer cell survival and therapy resistance, but also yields a microenvironment that is in many aspects unique within the human body, thus offering potential therapeutic opportunities. The spore-forming anaerobic bacterium Clostridium novyi-NT(C. novyi-NT) has the ability to propagate in tumor-generated hypoxia, leading to oncolysis. H...

  4. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme


    Bai, Ren-Yuan; Staedtke, Verena; apRhys, Colette M.; Gallia, Gary L.; Riggins, Gregory J.


    Glioblastoma multiforme (GBM) is the most common and aggressive brain cancer, and despite treatment advances, patient prognosis remains poor. During routine animal studies, we serendipitously observed that fenbendazole, a benzimidazole antihelminthic used to treat pinworm infection, inhibited brain tumor engraftment. Subsequent in vitro and in vivo experiments with benzimidazoles identified mebendazole as the more promising drug for GBM therapy. In GBM cell lines, mebendazole displayed cytoto...

  5. TSPO Imaging in Glioblastoma Multiforme

    DEFF Research Database (Denmark)

    Jensen, Per; Feng, Ling; Law, Ian


    -CLINDE is superior to (18)F-FET in predicting progression of glioblastoma multiforme (GBM) at follow-up. METHODS: Three patients with World Health Organization grade IV GBM were scanned with (123)I-CLINDE SPECT, (18)F-FET PET, and gadolinium-enhanced MR imaging. Molecular imaging data were compared with follow......UNLABELLED: Here we compare translocator protein (TSPO) imaging using 6-chloro-2-(4'-(123)I-iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide SPECT ((123)I-CLINDE) and amino acid transport imaging using O-(2-(18)F-fluoroethyl)-l-tyrosine PET ((18)F-FET) and investigate whether (123)I......-up gadolinium-enhanced MR images or contrast-enhanced CT scans. RESULTS: The percentage overlap between volumes of interest (VOIs) of increased (18)F-FET uptake and (123)I-CLINDE binding was variable (12%-42%). The percentage overlap of MR imaging baseline VOIs was greater for (18)F-FET (79%-93%) than (123)I...

  6. Evolving Molecular Genetics of Glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Qiu-Ju Li; Jin-Quan Cai; Cheng-Yin Liu


    Objective: To summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease.Data Sources: Data cited in this review were obtained mainly from PubMed in English up to 2015, with keywords "molecular", "genetics", "GBM", "isocitrate dehydrogenase", "telomerase reverse transcriptase", "epidermal growth factor receptor", "PTPRZ1-MET", and "clinical treatment".Study Selection: Articles regarding the morphological pathology of GBM, the epidemiology of GBM, genetic alteration of GBM, and the development of treatment for GBM patients were identified, retrieved, and reviewed.Results: There is a large amount of data supporting the view that these recurrent genetic aberrations occur in a specific context of cellular origin, co-oncogenic hits and are present in distinct patient populations.Primary and secondary GBMs are distinct disease entities that affect different age groups of patients and develop through distinct genetic aberrations.These differences are important, especially because they may affect sensitivity to radio-and chemo-therapy and should thus be considered in the identification of targets for novel therapeutic approaches.Conclusion: This review highlights the molecular and genetic alterations of GBM, indicating that they are of potential value in the diagnosis and treatment for patients with GBM.

  7. p21-activated kinase 1 determines stem-like phenotype and sunitinib resistance via NF-κB/IL-6 activation in renal cell carcinoma. (United States)

    Zhu, Y; Liu, H; Xu, L; An, H; Liu, W; Liu, Y; Lin, Z; Xu, J


    The p21-activated kinase 1 (PAK1), a serine/threonine kinase that orchestrates cytoskeletal remodeling and cell motility, has been shown to function as downstream node for various oncogenic signaling pathways to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, resulting in tumor formation and invasiveness. Although alterations in PAK1 expression and activity have been detected in various human malignancies, its potential biological and clinical significance in renal cell carcinoma (RCC) remains obscure. In this study, we found increased PAK1 and phosphorylated PAK1 levels in tumor tissues according to TNM stage progression. Elevated phosphorylated PAK1 levels associated with progressive features and indicated unfavorable overall survival (OS) as an independent adverse prognosticator for patients with RCC. Moreover, PAK1 kinase activation with constitutive active PAK1 mutant T423E promoted growth, colony formation, migration, invasion and stem-like phenotype of RCC cells, and vice versa, in PAK1 inhibition by PAK1 kinase inactivation with specific PAK1 shRNA, dead kinase PAK1 mutant K299R or allosteric inhibitor IPA3. Stem-like phenotype due to sunitinib administration via increased PAK1 kinase activation could be ameliorated by PAK1 shRNA, PAK1 mutant K299R and IPA3. Furthermore, nuclear factor-κB (NF-κB)/interleukin-6 (IL-6) activation was found to be responsible for PAK1-mediated stem-like phenotype following sunitinib treatment. Both IL-6 neutralizing antibody and IPA3 administration enhanced tumor growth inhibition effect of sunitinib treatment on RCC cells in vitro and in vivo. Our results unraveled that oncogenic activation of PAK1 defines an important mechanism for maintaining stem-like phenotype and sunitinib resistance through NF-κB/IL-6 activation in RCC, lending PAK1-mediated NF-κB/IL-6 activation considerable appeal as novel pharmacological therapeutic targets against sunitinib resistance.

  8. EGFR as a therapeutic target in glioblastoma

    Directory of Open Access Journals (Sweden)

    David M Siebert


    Full Text Available The tyrosine kinase receptor epidermal growth factor receptor (EGFR can be activated by several ligands, thus triggering downstream pathways regulating cell growth and survival. Its dysregula­tion is particularly important for the development and progression of astrocytomas. After the description of its role in glioblastomas (WHO grade IV astrocytomas, an overview on the therapeutic strategies target­ing EGFR is provided. It analyzes the past and ongoing trials concerning the small molecule tyro­sine kinase inhibitors, i.e. gefitinib, erlotinib and the combination therapies, the EGFR vaccina­tion strategies, the antibodies directed against EGFR and finally the intracranially administered EGFR-targeted therapies. As our understanding of the underlying molecular aberrancies in glioblastoma grows, our ability to better target specific subtypes of glioblastoma should improve. Molecular biomarker enriched clinical trials may lead to improved patient outcomes.

  9. Comparative studies of TIMP-1 immunohistochemistry, TIMP-1 FISH analysis and plasma TIMP-1 in glioblastoma patients

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Halle, Bo; Jensen, Stine Skov;


    Tissue inhibitor of metalloproteinases-1 (TIMP-1) has been associated with poor prognosis and resistance towards chemotherapy in several cancer forms. In a previous study we found an association between a low TIMP-1 tumor immunoreactivity and increased survival for glioblastoma patients, when...... compared to moderate and high TIMP-1 tumor immunoreactivity. The aim of the present study was to further evaluate TIMP-1 as a biomarker in gliomas by studying TIMP-1 gene copy numbers by fluorescence in situ hybridization (FISH) on 33 glioblastoma biopsies and by measuring levels of TIMP-1 in plasma...... obtained pre-operatively from 43 patients (31 gliomas including 21 glioblastomas) by enzyme-linked immunosorbent assay (ELISA). The results showed TIMP-1 gene copy numbers per cell ranging from 1 to 5 and the TIMP-1/CEN-X ratio ranging between 0.7 and 1.09, suggesting neither amplification nor loss...

  10. Monosomy of Chromosome 10 Associated With Dysregulation of Epidermal Growth Factor Signaling in Glioblastomas (United States)

    Yadav, Ajay K.; Renfrow, Jaclyn J.; Scholtens, Denise M.; Xie, Hehuang; Duran, George E.; Bredel, Claudia; Vogel, Hannes; Chandler, James P.; Chakravarti, Arnab; Robe, Pierre A.; Das, Sunit; Scheck, Adrienne C.; Kessler, John A.; Soares, Marcelo B.; Sikic, Branimir I.; Harsh, Griffith R.; Bredel, Markus


    Context Glioblastomas—uniformly fatal brain tumors—often have both monosomy of chromosome 10 and gains of the epidermal growth factor receptor (EGFR) gene locus on chromosome 7, an association for which the mechanism is poorly understood. Objectives To assess whether coselection of EGFR gains on 7p12 and monosomy 10 in glioblastomas promotes tumorigenic epidermal growth factor (EGF) signaling through loss of the annexin A7 (ANXA7) gene on 10q21.1–q21.2 and whether ANXA7 acts as a tumor suppressor gene by regulating EGFR in glioblastomas. Design, Setting, and Patients Multidimensional analysis of gene, coding sequence, promoter methylation, messenger RNA (mRNA) transcript, protein data for ANXA7 (and EGFR), and clinical patient data profiles of 543 high-grade gliomas from US medical centers and The Cancer Genome Atlas pilot project (made public 2006–2008; and unpublished, tumors collected 2001–2008). Functional analyses using LN229 and U87 glioblastoma cells. Main Outcome Measures Associations among ANXA7 gene dosage, coding sequence, promoter methylation, mRNA transcript, and protein expression. Effect of ANXA7 haploinsufficiency on EGFR signaling and patient survival. Joint effects of loss of ANXA7 and gain of EGFR expression on tumorigenesis. Results Heterozygous ANXA7 gene deletion is associated with significant loss of ANXA7 mRNA transcript expression (P=1×10−15; linear regression) and a reduction (mean [SEM]) of 91.5% (2.3%) of ANXA7 protein expression compared with ANXA7 wild-type glioblastomas (P=.004; unpaired t test). ANXA7 loss of function stabilizes the EGFR protein (72%–744% increase in EGFR protein abundance) and augments EGFR transforming signaling in glioblastoma cells. ANXA7 haploinsufficiency doubles tumorigenic potential of glioblastoma cells, and combined ANXA7 knockdown and EGFR overexpression promotes tumorigenicity synergistically. The heterozygous loss of ANXA7 in≈75% of glioblastomas in the The Cancer Genome Atlas plus

  11. Current data and strategy in glioblastoma multiforme (United States)

    Dinca, EB


    Glioblastoma multiforme (GBM) or astrocytoma grade Ⅳ on WHO classification is the most aggressive and the most frequent of all primary brain tumors. Glioblastoma is multiforme , resistant to therapeutic interventions illustrating the heterogeneity exhibited by this tumor in its every aspect, including clinical presentation, pathology, genetic signature. Current data and treatment strategy in GBM are presented focusing on basic science data and key clinical aspects like surgery, including personal experience; adjuvant modalities: radiotherapy, chemotherapy, but also for experimental approaches. Therapeutic attitude in recurrent GBM is also widely discussed. PMID:20108752

  12. Travelling wave analysis of a mathematical model of glioblastoma growth. (United States)

    Gerlee, Philip; Nelander, Sven


    In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered.

  13. Notch signaling in glioblastoma: a developmental drug target?

    Directory of Open Access Journals (Sweden)

    Boulay Jean-Louis


    Full Text Available Abstract Malignant gliomas are among the most devastating tumors for which conventional therapies have not significantly improved patient outcome. Despite advances in imaging, surgery, chemotherapy and radiotherapy, survival is still less than 2 years from diagnosis and more targeted therapies are urgently needed. Notch signaling is central to the normal and neoplastic development of the central nervous system, playing important roles in proliferation, differentiation, apoptosis and cancer stem cell regulation. Notch is also involved in the regulation response to hypoxia and angiogenesis, which are typical tumor and more specifically glioblastoma multiforme (GBM features. Targeting Notch signaling is therefore a promising strategy for developing future therapies for the treatment of GBM. In this review we give an overview of the mechanisms of Notch signaling, its networking pathways in gliomas, and discuss its potential for designing novel therapeutic approaches.

  14. Master regulators, regulatory networks, and pathways of glioblastoma subtypes. (United States)

    Bozdag, Serdar; Li, Aiguo; Baysan, Mehmet; Fine, Howard A


    Glioblastoma multiforme (GBM) is the most common malignant brain tumor. GBM samples are classified into subtypes based on their transcriptomic and epigenetic profiles. Despite numerous studies to better characterize GBM biology, a comprehensive study to identify GBM subtype- specific master regulators, gene regulatory networks, and pathways is missing. Here, we used FastMEDUSA to compute master regulators and gene regulatory networks for each GBM subtype. We also ran Gene Set Enrichment Analysis and Ingenuity Pathway Analysis on GBM expression dataset from The Cancer Genome Atlas Project to compute GBM- and GBM subtype-specific pathways. Our analysis was able to recover some of the known master regulators and pathways in GBM as well as some putative novel regulators and pathways, which will aide in our understanding of the unique biology of GBM subtypes.

  15. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenchao; Bao, Shideng, E-mail: [Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States)


    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described.

  16. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath, E-mail:


    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  17. Investigating Ceria Nanocrystals Uptake by Glioblastoma Multiforme Cells and its Related Effects: An Electron Microscopy Study

    KAUST Repository

    Aloufi, Bader


    Cerium oxide nanoparticles have been utilized widely nowadays in cancer research. It has been suggested by many studies that these nanoparticles are capable of having dual antioxidant behavior in healthy and cancer microenvironment; where in physiological condition, they act as antioxidant and do not affect the healthy cells, while in tumor-like condition; they act as an oxidase, and result in a selective killing for the cancer cells. In this experiment, the interaction of nanoceria with glioblastoma and healthy astrocyte cells was examined, and further correlated with the in vitro cytotoxic effects of various nanoceria concentrations (100 and 300 µg/ml) and exposure times (12, 24, and 48 hours). Electron microscopes were used to investigate the cellular-NPs interactions, and to examine the related cytotoxic effects in combination with trypan blue and propidium iodide viability assays. Our data suggest the following results. First, the two cell lines demonstrated capability of taken up the ceria through endocytosis pathway, where the NPs were recognized engulfed by double membrane vesicles at various regions over the cellular cytoplasm. Secondly, cerium oxide nanoparticles were found to affect the glioblastoma cells, but not so severely the corresponding healthy astrocytes at the various concentrations and incubation times, as revealed by the viability assays and the electron microscopy analysis. Thirdly, the viability of the glioblastoma cells after the treatment displayed a declined trend when increasing the ceria concentrations, but did not show such dependency with regard to the different time points. In all cases, the healthy astrocyte cells showed slight alterations in mitochondrial shape which did not influence their viability. Among the various nanoceria concentrations and exposure times, the most efficient dose of treatment was found to be with a concentration of 300 µg/ml at a time point of 24-hour, where higher reduction on the viability of

  18. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures. (United States)

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc


    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  19. The role of metabolic therapy in treating glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Joseph C Maroon


    Full Text Available Glioblastoma multiforme (GBM is an aggressive and nearly uniformly fatal malignancy of the central nervous system. Despite extensive research and clinical trials over the past 50 years, very little progress has been made to significantly alter its lethal prognosis. The current standard of care (SOC includes maximal surgical resection, radiation therapy and chemotherapy and temozolomide (TMZ, including the selective use of glucocorticoids for symptom control. These same treatments, however, have the potential to create an environment that may actually facilitate tumor growth and survival. Research investigating the unique metabolic needs of tumor cells has led to the proposal of a new metabolic treatment for various cancers including GBMs that may enhance the effectiveness of the SOC. The goal of metabolic cancer therapy is to restrict GBM cells of glucose, their main energy substrate. By recognizing the underlying energy production requirements of cancer cells, newly proposed metabolic therapy is being used as an adjunct to standard GBM therapies. This review will discuss the calorie restricted ketogenic diet (CR-KD as a promising potential adjunctive metabolic therapy for patients with GBMs. The effectiveness of the CR-KD is based on the "Warburg Effect" of cancer metabolism and the microenvironment of GBM tumors. We will review recent case reports, clinical studies, review articles, and animal model research using the CR-KD and explain the principles of the Warburg Effect as it relates to CR-KD and GBMs.

  20. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Directory of Open Access Journals (Sweden)

    Southey Bruce R


    Full Text Available Abstract Background Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. Methods A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. Results A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively or with other cancers (10, 19, and 15 genes, respectively and the rest (16, 4, and 10 genes, respectively are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events. Most genes (from 90 to 96% were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations

  1. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H


    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  2. Stereotactic radiosurgery for glioblastoma: retrospective analysis

    Directory of Open Access Journals (Sweden)

    Walter Kevin A


    Full Text Available Abstract Purpose This retrospective study was done to better understand the conditions for which stereotactic radiosurgery (SRS for glioblastoma may be efficacious. Methods Between 2000 and 2007, 33 patients with a pathological diagnosis of glioblastoma received SRS with the Novalis® Shaped Beam Radiosurgery system. Eighteen patients (54% underwent salvage SRS for recurrence while 15 (45% patients received upfront SRS following standard fractionated RT for newly diagnosed glioblastoma. Results There were no RTOG grade >2 acute side effects. The median survival after SRS was 6.7 months (range 1.4 – 74.7. There was no significant difference in overall survival (from the time of initial diagnosis with respect to the timing of SRS (p = 0.2. There was significantly better progression free survival in patients treated with SRS as consolidation versus at the time of recurrence (p = 0.04. The majority of patients failed within or at the margin of the SRS treatment volume (21/26 evaluable for recurrence. Conclusion SRS is well tolerated in the treatment of glioblastoma. As there was no difference in survival whether SRS is delivered upfront or at recurrence, the treatment for each patient should be individualized. Future studies are needed to identify patients most likely to respond to SRS.

  3. Multiple glioblastomas: CT and MR features

    Energy Technology Data Exchange (ETDEWEB)

    Lafitte, F.; Morel-Precetti, S.; Martin-Duverneuil, N.; Guermazi, A.; Brunet, E.; Chiras, J. [Hopital de la Salpetriere, Paris (France). Service de Neuroradiologie Charcot; Heran, F. [Service de Radiologie, Fondation Rothschild, Paris (France)


    The aim of this study was to analyze the CT and MR features of multiple glioblastomas, and to determine the best imaging modality for the initial diagnosis. The CT (four exams) and MR imaging (eight exams) of eight patients with proven multiple glioblastomas were reviewed by two neuroradiologists. The lesions were always hypo- or isodense on CT and hyperintense on T2-weighted images (100%). They were usually hypo- or isointense on T1-weighted images (90%). Edema and mass effect were very variable. After contrast media administration, the enhancement was mostly strong (71% on CT and 70% on MR), often either heterogeneous or ring-like. The different lesions of a patient often had a different pattern on MR (75% of cases). Meningeal or ventricular enhancement, suggestive of a possible way of dissemination, was rare. In case of multiple cerebral masses, multiple glioblastomas should be considered as a possible diagnosis in addition to the better known diagnosis of brain metastases, abscesses, or multifocal lymphomas. Moderate edema and mass effect on MR associated with strong and heterogeneous enhancement are suggestive of feature of multiple glioblastomas. Magnetic resonance allows rarely the visualization of a dissemination route. (orig.)

  4. Radiation induced glioblastoma. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naoki; Kayama, Takamasa; Sakurada, Kaori; Saino, Makoto; Kuroki, Akira [Yamagata Univ. (Japan). School of Medicine


    We report a surgical case of a 54-year-old woman with a radiation induced glioblastoma. At the age of 34, the patient was diagnosed to have a non-functioning pituitary adenoma. It was partially removed followed by 50 Gy focal irradiation with a 5 x 5 cm lateral opposed field. Twenty years later, she suffered from rapidly increasing symptoms such as aphasia and right hemiparesis. MRI showed a large mass lesion in the left temporal lobe as well as small mass lesions in the brain stem and the right medial temporal lobe. These lesions situated within the irradiated field. Magnetic resonance spectroscopy revealed relatively high lactate signal and decreased N-acetyl aspartate, choline, creatine and phosphocreatine signals. Increased lactate signal meant anaerobic metabolism that suggested the existence of a rapidly growing malignant tumor. Thus, we planned surgical removal of the left temporal lesion with the diagnosis of a radiation induced malignant glioma. The histological examination revealed a glioblastoma with radiation necrosis. MIB-1 staining index was 65%. Postoperatively, her symptoms improved, but she died from pneumonia 1 month after the surgery. A autopsy was obtained. The lesion of the left temporal lobe was found to have continuity to the lesion in the midbrain, the pons and the right temporal lobe as well. High MIB-1 staining index suggested that a radiation induced glioblastoma had high proliferative potential comparing with a de novo and secondary glioblastoma. (author)

  5. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. (United States)

    Kang, Sang Soo; Han, Kyung-Seok; Ku, Bo Mi; Lee, Yeon Kyung; Hong, Jinpyo; Shin, Hye Young; Almonte, Antoine G; Woo, Dong Ho; Brat, Daniel J; Hwang, Eun Mi; Yoo, Seung Hyun; Chung, Chun Kee; Park, Sung-Hye; Paek, Sun Ha; Roh, Eun Joo; Lee, Sung Joong; Park, Jae-Yong; Traynelis, Stephen F; Lee, C Justin


    Calcium signaling is important in many signaling processes in cancer cell proliferation and motility including in deadly glioblastomas of the brain that aggressively invade neighboring tissue. We hypothesized that disturbing Ca(2+) signaling pathways might decrease the invasive behavior of giloblastoma, extending survival. Evaluating a panel of small-molecule modulators of Ca(2+) signaling, we identified caffeine as an inhibitor of glioblastoma cell motility. Caffeine, which is known to activate ryanodine receptors, paradoxically inhibits Ca(2+) increase by inositol 1,4,5-trisphospate receptor subtype 3 (IP(3)R3), the expression of which is increased in glioblastoma cells. Consequently, by inhibiting IP(3)R3-mediated Ca(2+) release, caffeine inhibited migration of glioblastoma cells in various in vitro assays. Consistent with these effects, caffeine greatly increased mean survival in a mouse xenograft model of glioblastoma. These findings suggest IP(3)R3 as a novel therapeutic target and identify caffeine as a possible adjunct therapy to slow invasive growth of glioblastoma.

  6. Di-Ethylhexylphthalate (DEHP Modulates Cell Invasion, Migration and Anchorage Independent Growth through Targeting S100P in LN-229 Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Nicole Sims


    Full Text Available Glioblastoma multiforme (GBM is the most aggressive brain cancer with a median survival of 1–2 years. The treatment of GBM includes surgical resection, radiation and chemotherapy, which minimally extends survival. This poor prognosis necessitates the identification of novel molecular targets associated with glioblastoma. S100P is associated with drug resistance, metastasis, and poor clinical outcomes in many malignancies. The functional role of S100P in glioblastoma has not been fully investigated. In this study, we examined the role of S100P mediating the effects of the environmental contaminant, DEHP, in glioblastoma cells (LN-229 by assessing cell proliferation, apoptosis, anchorage independent growth, cell migration and invasion following DEHP exposure. Silencing S100P and DEHP treatment inhibited LN-229 glioblastoma cell proliferation and induced apoptosis. Anchorage independent growth study revealed significantly decreased colony formation in shS100P cells. We also observed reduced cell migration in cells treated with DEHP following S100P knockdown. Similar results were observed in spheroid formation and expansion. This study is the first to demonstrate the effects of DEHP on glioblastoma cells, and implicates S100P as a potential therapeutic target that may be useful as a drug response biomarker.

  7. Cancer (United States)

    ... cancer Non-Hodgkin lymphoma Ovarian cancer Pancreatic cancer Testicular cancer Thyroid cancer Uterine cancer Symptoms Symptoms of cancer ... tumor Obesity Pancreatic cancer Prostate cancer Stomach cancer Testicular cancer Throat or larynx cancer Thyroid cancer Patient Instructions ...

  8. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang


    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.


    Martinez-Gutierrez, Juan Carlos; Shah, Sagar R.; Ruiz-Valls, Alejandro; Tippens, Nathaniel D.; Quinones-Hinojosa, Alfredo


    Glioblastomas are characterized by their ability to disseminate into the local brain parenchyma; thus, confounding surgical excision and radiotherapy. Hence, it is imperative to identify and decipher the signaling networks that drive invasion. Glioblastoma cells utilize molecular transporters at both their leading (inward facing) and lagging (outward facing) edge to modulate cell volume and invade the confined microenvironment of the brain. These transporters include solute transporters as well as the aquaporins, and collectively behave as an osmotic engine for cellular invasion. However, the transcriptional regulators of these transporters have not been fully identified. Here, we report that TEAD4, a transcription factor implicated in neural development, is a potent regulator of the osmotic engine through transcriptional control of solute and water transporters. In particular, our data demonstrates that loss of TEAD4 decreases glioblastoma cells ability to migrate and invade through small pores (Boyden chamber and Matrigel transwell, respectively) mimicking the confined microenvironment of the brain (p < 0.05). Additionally, we uncover the role of TEAD4 in regulating members of the Na + /H+ exchanger, chloride co-transporter and aquaporin families, as well as the volume regulated anion channel to enable water permeation (p < 0.05). Apart from regulating cell dispersal, our data also shows that TEAD4 regulates glioblastoma proliferation (p < 0.05). Using the TCGA and REMBRANDT datasets, we observed TEAD4 is selectively overexpressed and hyperactive in glioblastomas compared to non-cancer cortex and lower grade gliomas (p < 0.05). Furthermore, we found that patients with elevated TEAD4 expression have a significantly shorter progression free survival and overall survival (p < 0.05). Taken together, our results show that TEAD4 is a potent regulator of cell dispersal through transcriptional control of the osmotic engine and has relevance to clinical outcomes of

  10. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  11. Identifying glioblastoma gene networks based on hypergeometric test analysis.

    Directory of Open Access Journals (Sweden)

    Vasileios Stathias

    Full Text Available Patient specific therapy is emerging as an important possibility for many cancer patients. However, to identify such therapies it is essential to determine the genomic and transcriptional alterations present in one tumor relative to control samples. This presents a challenge since use of a single sample precludes many standard statistical analysis techniques. We reasoned that one means of addressing this issue is by comparing transcriptional changes in one tumor with those observed in a large cohort of patients analyzed by The Cancer Genome Atlas (TCGA. To test this directly, we devised a bioinformatics pipeline to identify differentially expressed genes in tumors resected from patients suffering from the most common malignant adult brain tumor, glioblastoma (GBM. We performed RNA sequencing on tumors from individual GBM patients and filtered the results through the TCGA database in order to identify possible gene networks that are overrepresented in GBM samples relative to controls. Importantly, we demonstrate that hypergeometric-based analysis of gene pairs identifies gene networks that validate experimentally. These studies identify a putative workflow for uncovering differentially expressed patient specific genes and gene networks for GBM and other cancers.

  12. Treatment options and outcomes for glioblastoma in the elderly patient

    Directory of Open Access Journals (Sweden)

    Arvold ND


    Full Text Available Nils D Arvold,1 David A Reardon2 1Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA; 2Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA Abstract: Age remains the most powerful prognostic factor among glioblastoma (GBM patients. Half of all patients with GBM are aged 65 years or older at the time of diagnosis, and the incidence rate of GBM in patients aged over 65 years is increasing rapidly. Median survival for elderly GBM patients is less than 6 months and reflects less favorable tumor biologic factors, receipt of less aggressive care, and comorbid disease. The standard of care for elderly GBM patients remains controversial. Based on limited data, extensive resection appears to be more beneficial than biopsy. For patients with favorable Karnofsky performance status (KPS, adjuvant radiotherapy (RT has a demonstrated survival benefit with no observed decrement in quality of life. Concurrent and adjuvant temozolomide (TMZ along with RT to 60 Gy have not been prospectively studied among patients aged over 70 years but should be considered for patients aged 65–70 years with excellent KPS. Based on the recent NOA-08 and Nordic randomized trials, testing for O6-methylguanine-DNA-methyltransferase (MGMT promoter methylation should be performed routinely immediately after surgery to aid in adjuvant treatment decisions. Patients aged over 70 years with favorable KPS, or patients aged 60–70 years with borderline KPS, should be considered for monotherapy utilizing standard TMZ dosing for patients with MGMT-methylated tumors, and hypofractionated RT (34 Gy in ten fractions or 40 Gy in 15 fractions for patients with MGMT-unmethylated tumors. The ongoing European Organisation for Research and Treatment of Cancer/National Cancer Institute of Canada trial will help clarify the role for concurrent TMZ with hypofractionated RT. For elderly patients with poor KPS, reasonable

  13. Is Glioblastoma an Epigenetic Malignancy?

    Energy Technology Data Exchange (ETDEWEB)

    Maleszewska, Marta; Kaminska, Bozena, E-mail: [Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str., Warsaw 02-093 (Poland)


    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens.

  14. Association between RAD 51 rs1801320 and susceptibility to glioblastoma. (United States)

    Franceschi, S; Tomei, S; Mazzanti, C M; Lessi, F; Aretini, P; La Ferla, M; De Gregorio, V; Pasqualetti, F; Zavaglia, K; Bevilacqua, G; Naccarato, A G


    Glioblastoma is the most common and aggressive malignant primary brain tumor. Despite decades of research and the advent of new therapies, patients with glioblastoma continue to have a very poor prognosis. Radiation therapy has a major role as adjuvant treatment for glioblastoma following surgical resection. Many studies have shown that polymorphisms of genes involved in pathways of DNA repair may affect the sensitivity of the cells to treatment. Although the role of these polymorphisms has been investigated in relation to response to radiotherapy, their role as predisposing factors to glioblastoma has not been clarified yet. In the present study, we evaluated the association between polymorphisms in DNA repair genes, namely: XRCC1 rs25487, XRCC3 rs861539 and RAD51 rs1801320, with the susceptibility to develop glioblastoma. Eighty-five glioblastoma patients and 70 matched controls were recruited for this study. Data from the 1000 Genomes Project (98 Tuscans) were also downloaded and used for the association analysis. Subjects carrying RAD51 rs1801320 GC genotype showed an increased risk of glioblastoma (GC vs GG, χ(2) = 10.75; OR 3.0087; p = 0.0010). The C allele was also significantly associated to glioblastoma (χ(2) = 8.66; OR 2.5674; p = 0.0032). Moreover, RAD51 rs1801320 C allele increased the risk to develop glioblastoma also when combined to XRCC1 rs25487 G allele and XRCC3 rs861539 C allele (χ(2) = 6.558; p = 0.0053).

  15. PCDH10 is required for the tumorigenicity of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Echizen, Kanae [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Nakada, Mitsutoshi, E-mail: [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa 920-8641 (Japan); Hayashi, Tomoatsu [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Sabit, Hemragul; Furuta, Takuya [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa 920-8641 (Japan); Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Morishita, Yasuyuki [Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hirano, Shinji [Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Okoh-cho, Nangoku-City, Kochi 783-8505 (Japan); Terai, Kenta [Laboratory of Function and Morphology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito [Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Akiyama, Tetsu, E-mail: [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)


    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma.

  16. The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: an immunohistochemical study. (United States)

    Zhang, Jin-Feng; Chen, Yao; Qiu, Xian-Xin; Tang, Wen-Long; Zhang, Jian-Dong; Huang, Jian-Huang; Lin, Guo-Shi; Wang, Xing-Fu; Lin, Zhi-Xiong


    Delta-like ligand-4 (DLL4)-Notch signaling is known to play a pivotal role in the regulation of tumor angiogenesis. We had previously found that DLL4 was overexpressed, while Notch1 receptor, which binds to DLL4 during angiogenesis, was absent in the majority of human primary glioblastomas. Thus, DLL4-Notch signaling pathway in the regulation of tumor angiogenesis in primary glioblastoma remains unknown. Tumor tissues from 70 patients with primary glioblastoma were analyzed by immunohistochemistry for expression of components of DLL4-Notch signaling, vascular endothelial growth factor (VEGF), and microvessel density (MVD). Immunohistochemistry results showed that the positive staining of DLL4 and Notch4 was primarily distributed in tumor vascular endothelial cells but rarely detected in tumor cells. However, VEGF, hairy/enhancer of split-1 (HES1; a target gene of Notch signaling), and Notch1-3 expression was seen in both tumor vascular endothelial cells and tumor cells. Univariate analysis showed that the expression levels of VEGF and DLL4, HES1, and Notch4 in tumor endothelial cells were significantly associated with MVD in primary glioblastoma (P glioblastoma, while MVD increased with elevated VEGF expression in contrast. In addition, DLL4, Notch4, and HES1 expression were positively correlated in tumor vascular endothelial cells (P glioblastoma. Graphical abstract A, positive staining of DLL4 in human kidney; B, positive staining of VEGF in human breast cancer; C, positive staining of CD34 in human lung cancer; D, positive staining of HES1 in human breast cancer; E-H, positive staining of Notch1-4: E-F in human lung cancer; G-H in human kidney.

  17. Glioblastoma multiforme after radiotherapy for acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.


    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed.

  18. Ionizing Radiation in Glioblastoma Initiating Cells

    Directory of Open Access Journals (Sweden)

    Maricruz eRivera


    Full Text Available Glioblastoma is the most common primary malignant brain tumor in adults with a median survival of 12-15 months with treatment consisting of surgical resection followed by ionizing radiation (IR and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem-cell like properties termed glioblastoma initiating cells (GICs. Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR to result in a faster rate of double-strand break (DSB repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of glioblastoma. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies.

  19. Down-regulation of MicroRNA-126 in Glioblastoma and its Correlation with Patient Prognosis: A Pilot Study. (United States)

    Han, In Bo; Kim, Minsoo; Lee, Soo Hong; Kim, Jin Kwon; Kim, Se Hoon; Chang, Jong Hee; Teng, Yang D


    Glioblastoma is the most common primary malignant tumor of the adult human brain. Although microRNA-126 (miR-126) has been reported to exhibit expression abnormalities in various types of cancer, to date very few studies have examined changes in miR-126 level in glioblastoma. In this pilot study, we investigated the changes in miR-126 expression in newly-dissected primary glioblastoma to explore possible roles of miR-126 in patient prognosis. Total RNA was extracted from tumoral and adjacent non-cancerous tissues from 14 patients' paired frozen specimens. Using an established quantitative reverse transcriptase-PCR protocol, the levels of miR-126 in glioblastoma and adjacent non-tumor brain tissues were compared against small nucleolar RNA U48 (RNU48) as a reference gene. The expression of miR-126 in glioblastoma samples was significantly lower than in paired non-tumoral controls (pglioblastoma patients with higher relative intratumoral miR-126 expression (i.e. 53-79% relative to that of the control tissue; n=7) had significantly improved survival duration than patients whose miR-126 levels were lower (i.e. 12-48%, n=7; stratified log-rank analysis p=0.011 when the dividing threshold was set at ≥51%; total: n=14, male: 8; female: 6). Thus, intraglioblastoma miR-126 may be down-regulated relative to normal tissue and patients with less down-regulation of intratumoral miR-126 expression could have improved postsurgical prognosis. Future clinical studies with larger sample sizes should be performed to validate this observation.

  20. Cellular and molecular portrait of eleven human glioblastoma cell lines under photon and carbon ion irradiation. (United States)

    Ferrandon, S; Magné, N; Battiston-Montagne, P; Hau-Desbat, N-H; Diaz, O; Beuve, M; Constanzo, J; Chargari, C; Poncet, D; Chautard, E; Ardail, D; Alphonse, G; Rodriguez-Lafrasse, C


    This study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death. Statistical analysis demonstrated that: (i) the SF2(2) and the D10(3) values for photon are correlated with that obtained in response to carbon ions; (ii) regardless of the p53, MGMT status, and radiosensitivity, the release of ceramide is associated with the induction of late apoptosis; and (iii) the appearance of polyploid cells after photon irradiation could predict the Relative Biological Efficiency(4) to carbon ions. This large collection of data should increase our knowledge in glioblastoma radiobiology in order to better understand, and to later individualize, appropriate radiotherapy treatment for patients who are good candidates.

  1. Fyn and Src are Effectors of Oncogenic EGFR Signaling in Glioblastoma Patients (United States)

    Lu, Kan V.; Zhu, Shaojun; Cvrljevic, Anna; Huang, Tiffany T.; Sarkaria, Shawn; Ahkavan, David; Dang, Julie; Dinca, Eduard B.; Plaisier, Seema B.; Oderberg, Isaac; Lee, Yohan; Chen, Zugen; Caldwell, Jeremy S.; Xie, Yongmin; Loo, Joseph A.; Seligson, David; Chakravari, Arnab; Lee, Francis Y.; Weinmann, Roberto; Cloughesy, Timothy F.; Nelson, Stanley F.; Bergers, Gabriele; Graeber, Thomas; Furnari, Frank B.; James, C. David; Cavenee, Webster K.; Johns, Terrance G.; Mischel, Paul S.


    Activating EGFR mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We demonstrate that the Src family kinases (SFKs) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo. Expression of a constitutively active EGFR mutant, EGFRvIII, resulted in activating phosphorylation and physical association with Src and Fyn, promoting tumor growth and motility. Gene silencing of Fyn and Src limited EGFR and EGFRvIII-dependent tumor cell motility. The SFK inhibitor dasatinib inhibited invasion, promoted tumor regression and induced apoptosis in vivo, significantly prolonging survival of an orthotopic glioblastoma model expressing endogenous EGFRvIII. Dasatinib enhanced the efficacy of an anti-EGFR monoclonal antibody (mAb 806) in vivo, further limiting tumor growth and extending survival. Examination of a large cohort of clinical samples demonstrated frequent coactivation of EGFR and SFKs in glioblastoma patients. These results establish a mechanism linking EGFR signaling with Fyn and Src activation to promote tumor progression and invasion in vivo and provide rationale for combined anti-EGFR and anti-SFK targeted therapies. PMID:19690143

  2. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. (United States)

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H


    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  3. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  4. A three-gene signature for prognosis in patients with MGMT promoter-methylated glioblastoma. (United States)

    Wang, Wen; Zhang, Lu; Wang, Zheng; Yang, Fan; Wang, Haoyuan; Liang, Tingyu; Wu, Fan; Lan, Qing; Wang, Jiangfei; Zhao, Jizong


    Glioblastoma is the most malignant tumor and has high mortality rate. The methylated prompter of MGMT results in chemotherapy sensitivity for these patients. However, there are still other factors that affected the prognosis for the glioblastoma patients with similar MGMT methylation status. We developed a signature with three genes screened from the whole genome mRNA expression profile from Chinese Glioma Genome Atlas (CGGA) and RNAseq data from The Cancer Genome Atlas (TCGA). Patients with MGMT methylation in low risk group had longer survival than those in high risk group (median overall survival 1074 vs. 372 days; P = 0.0033). Moreover, the prognostic value of the signature was significant difference in cohorts stratified by MGMT methylation and chemotherapy (P=0.0473), while there is no significant difference between low and high risk group or unmethylated MGMT patients without chemotherapy. Multivariate analysis indicated that the risk score was an independent prognosis factor (P = 0.004). In conclusion, our results showed that the signature has prognostic value for patients with MGMT promoter-methylated glioblastomas based on bioinformatics analysis.

  5. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone

    NARCIS (Netherlands)

    Molenaar, R.J.; Verbaan, D.; Lamba, S.; Zanon, C.; Jeuken, J.W.M.; Boots-Sprenger, S.H.E.; Wesseling, P.; Hulsebos, T.J.M.; Troost, D.; Tilborg, A.A. Van; Leenstra, S.; Vandertop, W.P.; Bardelli, A.; Noorden, C.J.F. van; Bleeker, F.E.


    BACKGROUND: Genetic and epigenetic profiling of glioblastomas has provided a comprehensive list of altered cancer genes of which only O(6)-methylguanine-methyltransferase (MGMT) methylation is used thus far as a predictive marker in a clinical setting. We investigated the prognostic significance of

  6. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone

    NARCIS (Netherlands)

    R.J. Molenaar (Remco J.); D. Verbaan (Dagmar); S. Lamba (Simona); C. Zanon (Carlo); J. Jeuken (Judith); S.H.E. Boots-Sprenger (Sandra H. E.); P. Wesseling (Pieter); T. Hulsebos (Theo); D. Troost (Dirk); A.A.G. van Tilborg (Angela); S. Leenstra (Sieger); W.P. Vandertop (Peter); A. Bardelli (Alberto); C.J.F. van Noorden (Cornelis); F.E. Bleeker (Fonnet)


    textabstractBackground. Genetic and epigenetic profiling of glioblastomas has provided a comprehensive list of altered cancer genes of which only O6- methylguanine-methyltransferase (MGMT) methylation is used thus far as a predictive marker in a clinical setting. We investigated the prognostic signi

  7. Glioblastoma multiforme and papillary thyroid carcinoma - A rare combination of multiple primary malignancies

    Directory of Open Access Journals (Sweden)

    Swaroopa Pulivarthi


    Full Text Available We are describing a 19-year-old white woman who presented with two synchronous primary cancers, namely glioblastoma multiforme and papillary thyroid cancer. The patient was admitted with dizziness, headache, and vomiting. CT head revealed acute intraparenchymal hematoma in the right cingulate gyrus and the splenium of the corpus callosum. Carotid and cerebral angiogram were unremarkable. MRI of the brain demonstrated a non-enhancing and non-hemorrhagic component of the lesion along the lateral margin of the hemorrhage just medial to the atrium of the right lateral ventricle that was suspicious for a tumor or metastasis. Brain biopsy confirmed it as glioblastoma mutiforme. CT chest was done to rule out primary cancer that revealed a 11 mm hypodense lesion in the left lobe of the thyroid and ultrasound-guided fine-needle aspiration biopsy confirmed it as papillary thyroid carcinoma. We should evaluate for multiple primary malignancies in young patients who are found to have primary index cancer.

  8. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers.

    Directory of Open Access Journals (Sweden)

    Stefanie Wohlfart

    Full Text Available BACKGROUND: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid (PLGA nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. METHODOLOGY: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA or human serum albumin (PLGA/HSA as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3 × 2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. CONCLUSION: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.

  9. Near-infrared optical imaging in glioblastoma xenograft with ligand-targeting {alpha}3 integrin

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Wenwu; Yao, Nianhuan; Peng, Li; Liu, Ruiwu; Lam, Kit S. [University of California Davis, Division of Hematology and Oncology, Department of Internal Medicine, UC Davis Cancer Center, Sacramento, CA (United States)


    Patients with glioblastoma usually have a very poor prognosis. Even with a combination of radiotherapy plus temozolomide, the median survival of these patients is only 14.6 months. New treatment approaches to this cancer are needed. Our purpose is to develop new cell surface-binding ligands for glioblastoma cells and use them as targeted imaging and therapeutic agents for this deadly disease. One-bead one-compound combinatorial cyclic peptide libraries were screened with live human glioblastoma U-87MG cells. The binding affinity and targeting specificity of peptides identified were tested with in vitro experiments on cells and in vivo and ex vivo experiments on U-87MG xenograft mouse model. A cyclic peptide, LXY1, was identified and shown to be binding to the {alpha}3 integrin of U-87MG cells with moderately high affinity (K{sub d} = 0.5 {+-} 0.1 {mu}M) and high specificity. Biotinylated LXY1, when complexed with streptavidin-Cy5.5 (SA-Cy5.5) conjugate, targeted both subcutaneous and orthotopic U-87MG xenograft implants in nude mice. The in vivo targeting specificity was further verified by strong inhibition of tumor uptake of LXY1-biotin-SA-Cy5.5 complex when intravenously injecting the animals with anti-{alpha}3 integrin antibody or excess unlabeled LXY1 prior to administrating the imaging probe. The smaller univalent LXY1-Cy5.5 conjugate (2,279 Da) was found to have a faster accumulation in the U-87MG tumor and shorter retention time compared with the larger tetravalent LXY1-biotin-SA-Cy5.5 complex (approximately 64 kDa). Collectively, the data reveals that LXY1 has the potential to be developed into an effective imaging and therapeutic targeting agent for human glioblastoma. (orig.)

  10. A unique four-hub protein cluster associates to glioblastoma progression.

    Directory of Open Access Journals (Sweden)

    Pasquale Simeone

    Full Text Available Gliomas are the most frequent brain tumors. Among them, glioblastomas are malignant and largely resistant to available treatments. Histopathology is the gold standard for classification and grading of brain tumors. However, brain tumor heterogeneity is remarkable and histopathology procedures for glioma classification remain unsatisfactory for predicting disease course as well as response to treatment. Proteins that tightly associate with cancer differentiation and progression, can bear important prognostic information. Here, we describe the identification of protein clusters differentially expressed in high-grade versus low-grade gliomas. Tissue samples from 25 high-grade tumors, 10 low-grade tumors and 5 normal brain cortices were analyzed by 2D-PAGE and proteomic profiling by mass spectrometry. This led to identify 48 differentially expressed protein markers between tumors and normal samples. Protein clustering by multivariate analyses (PCA and PLS-DA provided discrimination between pathological samples to an unprecedented extent, and revealed a unique network of deranged proteins. We discovered a novel glioblastoma control module centered on four major network hubs: Huntingtin, HNF4α, c-Myc and 14-3-3ζ. Immunohistochemistry, western blotting and unbiased proteome-wide meta-analysis revealed altered expression of this glioblastoma control module in human glioma samples as compared with normal controls. Moreover, the four-hub network was found to cross-talk with both p53 and EGFR pathways. In summary, the findings of this study indicate the existence of a unifying signaling module controlling glioblastoma pathogenesis and malignant progression, and suggest novel targets for development of diagnostic and therapeutic procedures.

  11. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail:; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)


    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  12. Phenotypic characterization of glioblastoma identified through shape descriptors (United States)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew


    This paper proposes quantitatively describing the shape of glioblastoma (GBM) tissue phenotypes as a set of shape features derived from segmentations, for the purposes of discriminating between GBM phenotypes and monitoring tumor progression. GBM patients were identified from the Cancer Genome Atlas, and quantitative MR imaging data were obtained from the Cancer Imaging Archive. Three GBM tissue phenotypes are considered including necrosis, active tumor and edema/invasion. Volumetric tissue segmentations are obtained from registered T1˗weighted (T1˗WI) postcontrast and fluid-attenuated inversion recovery (FLAIR) MRI modalities. Shape features are computed from respective tissue phenotype segmentations, and a Kruskal-Wallis test was employed to select features capable of classification with a significance level of p < 0.05. Several classifier models are employed to distinguish phenotypes, where a leave-one-out cross-validation was performed. Eight features were found statistically significant for classifying GBM phenotypes with p <0.05, orientation is uninformative. Quantitative evaluations show the SVM results in the highest classification accuracy of 87.50%, sensitivity of 94.59% and specificity of 92.77%. In summary, the shape descriptors proposed in this work show high performance in predicting GBM tissue phenotypes. They are thus closely linked to morphological characteristics of GBM phenotypes and could potentially be used in a computer assisted labeling system.

  13. Glioblastoma Multiforme: A Look Inside Its Heterogeneous Nature

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Maria-del-Mar, E-mail:; Bonavia, Rudy [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Seoane, Joan [Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 119-129 Passeig Vall d’Hebron, Barcelona 08035 (Spain); Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08035 (Spain)


    Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.

  14. Characterizing mutational heterogeneity in a glioblastoma patient with double recurrence.

    Directory of Open Access Journals (Sweden)

    Gabrielle C Nickel

    Full Text Available Human cancers are driven by the acquisition of somatic mutations. Separating the driving mutations from those that are random consequences of general genomic instability remains a challenge. New sequencing technology makes it possible to detect mutations that are present in only a minority of cells in a heterogeneous tumor population. We sought to leverage the power of ultra-deep sequencing to study various levels of tumor heterogeneity in the serial recurrences of a single glioblastoma multiforme patient. Our goal was to gain insight into the temporal succession of DNA base-level lesions by querying intra- and inter-tumoral cell populations in the same patient over time. We performed targeted "next-generation" sequencing on seven samples from the same patient: two foci within the primary tumor, two foci within an initial recurrence, two foci within a second recurrence, and normal blood. Our study reveals multiple levels of mutational heterogeneity. We found variable frequencies of specific EGFR, PIK3CA, PTEN, and TP53 base substitutions within individual tumor regions and across distinct regions within the same tumor. In addition, specific mutations emerge and disappear along the temporal spectrum from tumor at the time of diagnosis to second recurrence, demonstrating evolution during tumor progression. Our results shed light on the spatial and temporal complexity of brain tumors. As sequencing costs continue to decline and deep sequencing technology eventually moves into the clinic, this approach may provide guidance for treatment choices as we embark on the path to personalized cancer medicine.

  15. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. (United States)

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe


    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.

  16. Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide

    Directory of Open Access Journals (Sweden)

    Miroslava Cuperlovic-Culf


    Full Text Available Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT. The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects.

  17. Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide. (United States)

    Cuperlovic-Culf, Miroslava; Touaibia, Mohamed; St-Coeur, Patrick-Denis; Poitras, Julie; Morin, Pier; Culf, Adrian S


    Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC) inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT). The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects.

  18. A role for the transcription factor HEY1 in glioblastoma

    DEFF Research Database (Denmark)

    Hulleman, Esther; Quarto, Micaela; Vernell, Richard


    Glioblastoma multiforme (GBM), the highest-grade glioma, is the most frequent tumour of the brain with a very poor prognosis and limited therapeutic options. Although little is known about the molecular mechanisms that underlie glioblastoma formation, a number of signal transduction routes, such ...

  19. DNA-repair gene variants are associated with glioblastoma survival

    DEFF Research Database (Denmark)

    Wibom, Carl; Sjöström, Sara; Henriksson, Roger


    genes, in 138 glioblastoma samples from Sweden and Denmark. We confirmed our findings in an independent cohort of 121 glioblastoma patients from the UK. Our analysis revealed nine SNPs annotating MSH2, RAD51L1 and RECQL4 that were significantly (p

  20. Degradable Organically-Derivatized Polyoxometalate with Enhanced Activity against Glioblastoma Cell Line (United States)

    She, Shan; Bian, Shengtai; Huo, Ruichao; Chen, Kun; Huang, Zehuan; Zhang, Jiangwei; Hao, Jian; Wei, Yongge


    High efficacy and low toxicity are critical for cancer treatment. Polyoxometalates (POMs) have been reported as potential candidates for cancer therapy. On accounts of the slow clearance of POMs, leading to long-term toxicity, the clinical application of POMs in cancer treatment is restricted. To address this problem, a degradable organoimido derivative of hexamolybdate is developed by modifying it with a cleavable organic group, leading to its degradation. Of note, this derivative exhibits favourable pharmacodynamics towards human malignant glioma cell (U251), the ability to penetrate across blood brain barrier and low toxicity towards rat pheochromocytoma cell (PC12). This line of research develops an effective POM-based agent for glioblastoma inhibition and will pave a new way to construct degradable anticancer agents for clinical cancer therapy.

  1. Combining NK cells and mAb9.2.27 to combat NG2-dependent and anti-inflammatory signals in glioblastoma. (United States)

    Kmiecik, Justyna; Gras Navarro, Andrea; Poli, Aurelie; Planagumà, Jesús Planagumà; Zimmer, Jacques; Chekenya, Martha


    Glioblastoma is a deadly brain cancer with limited treatment options. Targeting chondroitin sulfate proteoglycan 4 (CSPG4, best known as NG2) with the monoclonal antibody mAb9.2.27 and activated natural killer (NK) cells abrogated the tumor growth and prolonged the survival of glioblastoma-bearing animals by favoring the establishment of a pro-inflammatory microenvironment. The combination of NK cells and mAb9.2.27 recruited ED1(+)CCR2(low) macrophages that stimulated ED1(+)ED2(low)MHCII(high) microglial cells to exert robust cytotoxicity. Our findings demonstrate the therapeutic potential of targeting salient tumor associated-antigens.



    Staedtke, Verena; Bai, Renyuan; Kinzler, Kenneth; Zhou, Shibin; Vogelstein, Bert; Riggins, Gregory


    Glioblastomas (GBM) exhibit a remarkable histopathologic heterogeneity with extensive necrotic regions intermixed with cell proliferation that generate local hypoxia and thus, limit the effectiveness greatly of traditional cancer therapies. The spore-forming bacterium Clostridium spp., however, has the ability to precisely target and lyse tumor cells in hypoxic environments. Here we show that Clostridium novyi-NT (C. novyi-NT), an engineered strain devoid of the lethal alpha-toxin, induces a ...

  3. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.

    NARCIS (Netherlands)

    Stupp, R.; Hegi, M.E.; Mason, W.P.; Bent, M.J. van den; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.M.M.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O.


    BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and ad

  4. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study : 5-year analysis of the EORTC-NCIC trial

    NARCIS (Netherlands)

    Stupp, Roger; Hegi, Monika E.; Mason, Warren P.; van den Bent, Martin J.; Taphoorn, Martin J. B.; Janzer, Robert C.; Ludwin, Samuel K.; Allgeier, Anouk; Fisher, Barbara; Belanger, Karl; Hau, Peter; Brandes, Alba A.; Gijtenbeek, Johanna; Marosi, Christine; Vecht, Charles J.; Mokhtari, Karima; Wesseling, Pieter; Villa, Salvador; Eisenhauer, Elizabeth; Gorlia, Thierry; Weller, Michael; Lacombe, Denis; Cairncross, J. Gregory; Mirimanoff, Rene-Olivier


    Background In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adj

  5. BC3EE2,9B, a synthetic carbazole derivative, upregulates autophagy and synergistically sensitizes human GBM8901 glioblastoma cells to temozolomide. (United States)

    Chen, Chien-Min; Syu, Jhih-Pu; Way, Tzong-Der; Huang, Li-Jiau; Kuo, Sheng-Chu; Lin, Chung-Tien; Lin, Chih-Li


    Glioblastoma multiforme (GBM) is the most fatal form of human brain cancer. Although temozolomide (TMZ), an oral alkylating chemotherapeutic agent, improves the survival rate, the prognosis of patients with GBM remains poor. Naturally occurring carbazole alkaloids isolated from curry leaves (Murraya koenigii Spreng.) have been shown to possess a wide range of anticancer properties. However, the effects of carbazole derivatives on glioblastoma cells remain poorly understood. In the present study, anti‑glioblastoma profiles of a series of synthetic carbazole derivatives were evaluated in vitro. The most promising derivative in this series was BC3EE2,9B, which showed significant anti‑proliferative effects in GBM8401 and GBM8901 cells. BC3EE2,9B also triggered cell‑cycle arrest, most prominently at the G1 stage, and suppressed glioblastoma cell invasion and migration. Furthermore, BC3EE2,9B induced autophagy‑mediated cell death and synergistically sensitized GBM cells to TMZ cytotoxicity. The possible mechanism underlying BC3EE2,9B‑induced autophagy may involve activation of adenosine monophosphate-activated protein kinase and the attenuation of the Akt and mammalian target of the rapamycin downstream signaling pathway. Taken together, the present results provide molecular evidence for the mode of action governing the ability of BC3EE2,9B to sensitize drug‑resistant glioblastoma cells to the chemotherapeutic agent TMZ.

  6. Locomotion and proliferation of glioblastoma cells in vitro statistical evaluation of videomicroscopic observations

    CERN Document Server

    Hegedus, B; Fazekas, I; Babel, T; Madarasz, E; Vicsek, T


    Long-term videomicroscopy and computer-aided statistical analysis were used to determine some characteristic parameters of in vitro cell motility and proliferation in three established cell lines derived from human glioblastoma tumors. Migration and proliferation activities were compared among the three cell lines since these are two features of tumor cells that strongly influence the progression of cancer. The results on these dynamical parameters of cell locomotion were compared to pathological data obtained by traditional methods. The data indicate that the analysis of cell motility provides more specific information and is potentially useful in diagnosis.

  7. Assessment of temozolomide action encapsulated in chitosan and polymer nanostructures on glioblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Abrudan C.


    Full Text Available Purpose : Glioblastoma multiforme (GBM remains one of the most devastating diseases known to mankind and affects more than 17,000 patients in the United States alone every year. This malignancy infiltrates the brain early in its course and makes complete neurosurgical resection almost impossible. Recent years have brought significant advances in tumor biology. Many cancers, including gliomas, appear to be supported by cells with stemlike properties. Nanoparticles are excellent candidates to serve as delivery vectors of drugs or biologically active molecules because of their unique chemical and physical properties that result in specific transportation and deposition of such agents in specific organs and tissues..

  8. Limited advances in therapy of glioblastoma trigger re-consideration of research policy. (United States)

    Frosina, Guido


    Glioblastoma (GB - WHO grade IV) is the most frequent and lethal primary brain tumour with median overall survival of 7-15 months after diagnosis. As in other cancer research areas, an overwhelming amount of pre-clinical research acquisitions in the GB field have not been translated to patients' benefit, potentially due to inappropriate treatment schedules and/or trial designs in the clinical setting. The recent failure of promising anti-VEGF bevacizumab to improve GB patients' overall survival recapitulates this sense of frustration. The following measures are proposed.

  9. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs. (United States)

    Floyd, Desiree; Purow, Benjamin


    MicroRNAs are small noncoding RNAs encoded in eukaryotic genomes that have been found to play critical roles in most biological processes, including cancer. This is true for glioblastoma, the most common and lethal primary brain tumor, for which microRNAs have been shown to strongly influence cell viability, stem cell characteristics, invasiveness, angiogenesis, metabolism, and immune evasion. Developing microRNAs as prognostic markers or as therapeutic agents is showing increasing promise and has potential to reach the clinic in the next several years. This succinct review summarizes current progress and future directions in this exciting and steadily expanding field.

  10. Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. (United States)

    Natsume, Atsushi; Ito, Motokazu; Katsushima, Keisuke; Ohka, Fumiharu; Hatanaka, Akira; Shinjo, Keiko; Sato, Shinya; Takahashi, Satoru; Ishikawa, Yuta; Takeuchi, Ichiro; Shimogawa, Hiroki; Uesugi, Motonari; Okano, Hideyuki; Kim, Seung U; Wakabayashi, Toshihiko; Issa, Jean-Pierre J; Sekido, Yoshitaka; Kondo, Yutaka


    Tumor cell plasticity contributes to functional and morphologic heterogeneity. To uncover the underlying mechanisms of this plasticity, we examined glioma stem-like cells (GSC) where we found that the biologic interconversion between GSCs and differentiated non-GSCs is functionally plastic and accompanied by gain or loss of polycomb repressive complex 2 (PRC2), a complex that modifies chromatin structure. PRC2 mediates lysine 27 trimethylation on histone H3 and in GSC it affected pluripotency or development-associated genes (e.g., Nanog, Wnt1, and BMP5) together with alterations in the subcellular localization of EZH2, a catalytic component of PRC2. Intriguingly, exogenous expression of EZH2-dNLS, which lacks nuclear localization sequence, impaired the repression of Nanog expression under differentiation conditions. RNA interference (RNAi)-mediated attenuation or pharmacologic inhibition of EZH2 had little to no effect on apoptosis or bromodeoxyuridine incorporation in GSCs, but it disrupted morphologic interconversion and impaired GSC integration into the brain tissue, thereby improving survival of GSC-bearing mice. Pathologic analysis of human glioma specimens revealed that the number of tumor cells with nuclear EZH2 is larger around tumor vessels and the invasive front, suggesting that nuclear EZH2 may help reprogram tumor cells in close proximity to this microenvironment. Our results indicate that epigenetic regulation by PRC2 is a key mediator of tumor cell plasticity, which is required for the adaptation of glioblastoma cells to their microenvironment. Thus, PRC2-targeted therapy may reduce tumor cell plasticity and tumor heterogeneity, offering a new paradigm for glioma treatment.

  11. Is There Pseudoprogression in Secondary Glioblastomas?

    Energy Technology Data Exchange (ETDEWEB)

    Juratli, Tareq A., E-mail: [Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden (Germany); Engellandt, Kay [Institute of Neuroradiology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden (Germany); Lautenschlaeger, Tim [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center/Arthur G. James Cancer Hospital and Richard L. Solove Research Institute, The Ohio State University College of Medicine Columbus, Ohio (United States); Geiger, Kathrin D. [Institute of Neuropathology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden (Germany); Kummer, Rüdiger von; Cerhova, Jana [Institute of Neuroradiology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden (Germany); Chakravarti, Arnab [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center/Arthur G. James Cancer Hospital and Richard L. Solove Research Institute, The Ohio State University College of Medicine Columbus, Ohio (United States); Krex, Dietmar; Schackert, Gabriele [Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden (Germany)


    Purpose: Pseudoprogression (PP) during adjuvant treatment of glioblastoma (GBM) is frequent and is a clinically and radiologically challenging problem. While there are several reports of the frequency of PP in GBM cohorts including mainly patients with primary GBM, there are few data on the incidence of PP in patients with secondary glioblastomas (sGBM). Therefore, the goal of this study was to evaluate the frequency of PP in sGBM. Methods and Materials: We retrospectively evaluated the incidence of PP in adult patients with sGBM treated with chemoradiation therapy (CRTx) using temozolomide (TMZ) and sought to assess if there was an association between PP and MGMT promoter methylation status, IDH mutations status, or 1p/19q codeletion. The definition of PP according to the Response Assessment in Neuro-Oncology Working Group was used. Results: None of the evaluable 15 sGBM patients in our series demonstrated a PP. Of the 9 sGBM patients who received concomitant CRTx with TMZ, 6 patients had the methylated MGMT promoter, and 6 patients had IDH mutations. There also was no PP identified in sGBM patients who received sequential CRTx, irrespective of MGMT or IDH status. The median time of follow-up was 3.4 years after diagnosis of an sGBM, and the median overall survival was 18.2 months (range, 14.3-45.2 months). Three of 15 patients had previously received radiation therapy for their World Health Organization low-grade 2 glioma, while none of them had received chemotherapy at that stage. Conclusions: Based on this small series of sGBM patients treated with CRTx (concomitantly or sequentially) the frequency of PP appears to be very low in sGBM, even in those patients with methylated MGMT promoter or IDH mutations. Our results highlight the differences between primary glioblastomas and sGBM in particular as they relate to PP.

  12. Reverse engineering of modified genes by Bayesian network analysis defines molecular determinants critical to the development of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Brian W Kunkle

    Full Text Available In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV, and 'key genes' within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated. These 10 genes were able to predict tumor status with 96-100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential 'hubs of activity'. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several 'key genes' may be required for the development of glioblastoma. Further studies are needed to validate these 'key genes' as useful tools for early detection and novel therapeutic options for these tumors.

  13. Reverse engineering of modified genes by Bayesian network analysis defines molecular determinants critical to the development of glioblastoma. (United States)

    Kunkle, Brian W; Yoo, Changwon; Roy, Deodutta


    In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV), and 'key genes' within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96-100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential 'hubs of activity'. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several 'key genes' may be required for the development of glioblastoma. Further studies are needed to validate these 'key genes' as useful tools for early detection and novel therapeutic options for these tumors.

  14. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium (United States)

    Yan, Dayun; Xiao, Haijie; Zhu, Wei; Nourmohammadi, Niki; Zhang, Lijie Grace; Bian, Ka; Keidar, Michael


    The cold atmospheric plasma (CAP) is a promising novel anti-cancer method. Our previous study showed that the cold plasma-stimulated medium (PSM) exerted remarkable anti-cancer effect as effectively as the direct CAP treatment did. H2O2 has been identified as a key anti-cancer substance in PSM. However, the mechanisms underlying intracellular H2O2 regulation by cancer cells is largely unknown. Aquaporins (AQPs) are the confirmed membrane channels of H2O2. In this study, we first demonstrated that the anti-glioblastoma capacity of PSM could be inhibited by silencing the expression of AQP8 in glioblastoma cells (U87MG) or using the aquaporins-blocker silver atoms. This discovery illustrates the key intermediate role of AQPs in the toxicity of PSM on cancer cells. Because the expression of AQPs varies significantly among different cancer cell lines, this study may facilitate the understanding on the diverse responses of cancer cells to PSM or the direct CAP treatment.

  15. Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development. (United States)

    Brown, Kristine E; Chagoya, Gustavo; Kwatra, Shawn G; Yen, Timothy; Keir, Stephen T; Cooter, Mary; Hoadley, Katherine A; Rasheed, Ahmed; Lipp, Eric S; Mclendon, Roger; Ali-Osman, Francis; Bigner, Darell D; Sampson, John H; Kwatra, Madan M


    The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. To date, proteomic level validation of widely used patient-derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre-clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR. The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. We validated proteomic profiles using patient-derived glioblastoma xenografts (PDGX), characterizing 20 PDGX models according to subtype classification based on The Cancer Genome Atlas (TCGA) criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. Proteins found to be associated with high EGFR activity represent potential

  16. Cognitive-Behavioral Intervention for Worry, Uncertainty, and Insomnia for Cancer Survivors (United States)


    Anxiety Disorder; Worry; Uncertainty; Sleep Disorders; Insomnia; Fatigue; Pain; Depression; Cognitive-behavioral Therapy; Psychological Intervention; Esophageal Cancer; Pancreatic Cancer; Leukemia; Lung Cancer; Multiple Myeloma; Ovarian Neoplasm; Stage III or IV Cervical or Uterine Cancer; Stage IIIB, IIIC, or IV Breast Cancer; Glioblastoma Multiforme; Relapsed Lymphoma; Stage III or IV Colorectal Cancer; Stage IIIC or IV Melanoma

  17. Stem cell characteristics in prostate cancer cell lines.

    NARCIS (Netherlands)

    Pfeiffer, M.J.; Schalken, J.A.


    BACKGROUND: Recent studies indicate the presence of a small, stem-like cell population in several human cancers that is crucial for the tumour (re)population. OBJECTIVE: Six established prostate cancer (PCa) cell lines-DU145, DuCaP, LAPC-4, 22Rv1, LNCaP, and PC-3-were examined for their stem cell pr

  18. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. (United States)

    Luthra, Pratibha Mehta; Lal, Neetika


    GBM (Glioblastoma) is the most malignant human brain tumor with median survival of one year. The treatment involves surgery, radiotherapy and adjuvant chemotherapy mostly with the alkylation agents such as temozolomide (TMZ). Dietary polyphenol curcumin, isolated from the rhizome of the Curcuma longa (turmeric), has emerged as remarkable anti-cancer agent in the treatment of various peripheral cancers such as blood, lymphomas, multiple myeloma, melanoma as well as skin, lung, prostate, breast, ovarian, bladder, liver, gastrointestinal tract, pancreatic and colorectal epithelial cancers with a pleiotropic mode of action and also showed promise in alleviation of GBM. In this review, the mechanism of anticancer effect of curcumin in GBM has been discussed extensively. The clinical safety and pharmacokinetics of curcumin has been scrutinized to combat the challenges for the treatment of GBM.

  19. Prevention of the Angiogenic Switch in Human Breast Cancer (United States)


    and neck cancer, CNS tumours ( child ) • Phase II: Solid tumours, NSCLC, glioblastoma, melanoma, mesothelioma, neurofibromatosis, ovarian, CLL...Clinical Diagnostics, 100 Indigo Creek Drive, Rochester, NY 14626, Running Foot: PF-4 as a marker for early tumor detection

  20. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. (United States)

    Karim, Reatul; Palazzo, Claudio; Evrard, Brigitte; Piel, Geraldine


    Glioblastoma multiforme, a grade IV glioma, is the most frequently occurring and invasive primary tumor of the central nervous system, which causes about 4% of cancer-associated-deaths, making it one of the most fatal cancers. With present treatments, using state-of-the-art technologies, the median survival is about 14 months and 2 year survival rate is merely 3-5%. Hence, novel therapeutic approaches are urgently necessary. However, most drug molecules are not able to cross the blood-brain barrier, which is one of the major difficulties in glioblastoma treatment. This review describes the features of blood-brain barrier, and its anatomical changes with different stages of tumor growth. Moreover, various strategies to improve brain drug delivery i.e. tight junction opening, chemical modification of the drug, efflux transporter inhibition, convection-enhanced delivery, craniotomy-based drug delivery and drug delivery nanosystems are discussed. Nanocarriers are one of the highly potential drug transport systems that have gained huge research focus over the last few decades for site specific drug delivery, including drug delivery to the brain. Properly designed nanocolloids are capable to cross the blood-brain barrier and specifically deliver the drug in the brain tumor tissue. They can carry both hydrophilic and hydrophobic drugs, protect them from degradation, release the drug for sustained period, significantly improve the plasma circulation half-life and reduce toxic effects. Among various nanocarriers, liposomes, polymeric nanoparticles and lipid nanocapsules are the most widely studied, and are discussed in this review. For each type of nanocarrier, a general discussion describing their composition, characteristics, types and various uses is followed by their specific application to glioblastoma treatment. Moreover, some of the main challenges regarding toxicity and standardized evaluation techniques are narrated in brief.

  1. Transforming fusions of FGFR and TACC genes in human glioblastoma. (United States)

    Singh, Devendra; Chan, Joseph Minhow; Zoppoli, Pietro; Niola, Francesco; Sullivan, Ryan; Castano, Angelica; Liu, Eric Minwei; Reichel, Jonathan; Porrati, Paola; Pellegatta, Serena; Qiu, Kunlong; Gao, Zhibo; Ceccarelli, Michele; Riccardi, Riccardo; Brat, Daniel J; Guha, Abhijit; Aldape, Ken; Golfinos, John G; Zagzag, David; Mikkelsen, Tom; Finocchiaro, Gaetano; Lasorella, Anna; Rabadan, Raul; Iavarone, Antonio


    The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.

  2. Clinical implications of microRNAs in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro eMizoguchi


    Full Text Available Glioblastoma (GBM is one of the most common and dismal brain tumors in adults. Further elucidation of the molecular pathogenesis of GBM is mandatory to improve the overall survival of patients. A novel small non-coding RNA molecule, microRNA (miRNA, appears to represent one of the most attractive target molecules contributing to the pathogenesis of various types of tumors. Recent global analyses have revealed that several miRNAs are clinically implicated in GBM, with some reports indicating the association of miRNA dysregulation with acquired temozolomide (TMZ resistance. More recent studies have revealed that miRNAs could play a role in cancer stem cell (CSC properties, contributing to treatment resistance. In addition, greater impact might be expected from miRNA-targeted therapies based on tumor-derived exosomes that contain numerous functional miRNAs, which could be transferred between tumor cells and surrounding structures. Tumor-derived miRNAs are now considered to be a novel molecular mechanism promoting the progression of GBM. Establishment of miRNA-targeted therapies based on miRNA dysregulation of CSCs could provide effective therapeutic strategies for TMZ-resistant GBM. Recent progress has revealed that miRNAs are not only putative biological markers for diagnosis, but also one of the most promising targets for GBM treatment. Herein, we summarize the translational aspects of miRNAs in the diagnosis and treatment of GBM.

  3. Genetic and Functional Diversity of Propagating Cells in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sara G.M. Piccirillo


    Full Text Available Glioblastoma (GBM is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo.

  4. Decitabine nanoconjugate sensitizes human glioblastoma cells to temozolomide. (United States)

    Cui, Yi; Naz, Asia; Thompson, David H; Irudayaraj, Joseph


    In this study, we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) based nanoconjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells than that with the free drug. After synthesis, the highly efficient uptake process and intracellular dynamics of this nanoconjugate were monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nanovector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing positive feedback to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to the excellent internalization and endolysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than that of free drug molecules. Hence, the synthesized nanoconjugate and temozolomide could act in synergy to deliver a more potent and long-term antiproliferative effect against malignant GBM cells.

  5. Differentiation of radiation necrosis from glioblastoma recurrence after radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Chrissa Sioka; Anastasia Zikou; Anna Goussia; Spyridon Tsiouris; Loucas G Astrakas; Athanassios P Kyritsis


    The standard treatment of glioblastoma, the most common type of primary-brain-tumor, involves radiotherapy with concomitant temozolomide chemotherapy. A patient with glioblastoma, post radiotherapy developed magnatic resonance imaging (MRI) changes consistent with either radiation-induced tumor necrosis or tumor recurrence. Perfusion MRI was suggestive of radiation necrosis, but magnetic resonance spectroscopy and99mTc-Tetrofosmin single photon emission computed tomography was indicative of tumor recurrence. Positron emission tomography scan was not available. Tumor recurrence was documented by biopsy. Several advanced imaging methods are available to differentiate tumor recurrence from radiation necrosis in glioblastoma patients. However, in inconclusive cases, brain biopsy should be performed for deifnite diagnosis.

  6. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U


    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...... collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs...

  7. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U


    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...... collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs...

  8. Irinotecan and Bevacizumab in Glioblastoma-A Review

    Directory of Open Access Journals (Sweden)

    1M. T. Shahid


    Full Text Available Glioblastoma is a common brain tumor having comparatively poor prognosis. Bevacizumab and irinotecan are found to be effective in the treatment of recurrent glioblastoma. The present review covers investigations made on the mentioned drugs in the past decade. As compared to other chemotherapeutic agents, the drugs have shown greater activity and overall survival when used as monotherapeutic agents or in combination with other drugs. Still some work needs to be done in establishing clear role of both the drugs in newly diagnosed glioblastoma, especially, role of irinotecan needs clarity.

  9. 5-ALA based photodynamic management of glioblastoma (United States)

    Rühm, Adrian; Stepp, Herbert; Beyer, Wolfgang; Hennig, Georg; Pongratz, Thomas; Sroka, Ronald; Schnell, Oliver; Tonn, Jörg-Christian; Kreth, Friedrich-Wilhelm


    Objective: Improvement of the clinical outcome of glioblastoma (GBM) patients by employment of fluorescence and photosensitization on the basis of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX). Methods: In this report the focus is laid on the use of tumor selective PpIX fluorescence for stereotactic biopsy sampling and intra-operative treatment monitoring. In addition, our current concept for treatment planning is presented. For stereotactic interstitial photodynamic therapy (iPDT), radial diffusers were implanted into the contrast enhancing tumor volume. Spectroscopic measurements of laser light transmission and fluorescence between adjacent fibers were performed prior, during and post PDT. Results: PpIX concentrations in primary glioblastoma tissue show high intra- and inter-patient variability, but are usually sufficient for an effective PDT. During individual treatment attempts with 5-ALA based GBM-iPDT, transmission and fluorescence measurements between radial diffusers gave the following results: 1. In some cases, transmission after PDT is considerably reduced compared to the value before PDT, which may be attributable to a depletion of oxygenated hemoglobin and/or diffuse bleeding. 2. PpIX fluorescence is efficiently photobleached during PDT in all cases. Conclusion: iPDT with assessment of PpIX fluorescence and photobleaching is a promising treatment option. Individualization of treatment parameters appears to bear a potential to further improve clinical outcomes.

  10. Strategies of temozolomide in future glioblastoma treatment

    Directory of Open Access Journals (Sweden)

    Lee CY


    Full Text Available Chooi Yeng Lee School of Pharmacy, Monash University Malaysia, Selangor, Malaysia Abstract: Glioblastoma multiforme (GBM may be one of the most challenging brain tumors to treat, as patients generally do not live more than 2 years. This review aimed to give a timely review of potential future treatments for GBM by looking at the latest strategies, involving mainly the use of temozolomide (TMZ. Although these studies were carried out either in vitro or in rodents, the findings collectively suggested that we are moving toward developing a more efficacious therapy for GBM patients. Nanoparticles preparation was, by far, the most extensively studied strategy for targeted brain delivery. Therefore, the first section of this review presents a treatment strategy using TMZ-loaded nanocarriers, which encompassed nanoparticles, nanoliposomes, and nanosponges. Besides nanocarriers, new complexes that were formed between TMZ and another chemical agent or molecule have shown increased cytotoxicity and antitumor activity. Another approach was by reducing GBM cell resistance to TMZ, and this was achieved either through the suppression of metabolic change occurring in the cells, inhibition of the DNA repair protein, or up-regulation of the protein that mediates autophagy. Finally, the review collates a list of substances that have demonstrated the ability to suppress tumor cell growth. Keywords: cellular resistance, glioblastoma multiforme, nanoparticles, targeted delivery, temozolomide

  11. Nuclear SMAD2 Restrains Proliferation of Glioblastoma

    Directory of Open Access Journals (Sweden)

    Yunhu Yu


    Full Text Available Aims: Although TGFβ receptor signaling has been shown to play a role in regulation of the growth and metastasis of glioblastoma multiforme (GBM, the downstream pathway through either SMAD2 or SMAD3 has not been elucidated. In this study, we investigate whether nuclear SMAD2 can restrain the proliferation of glioblastoma. Methods: A total of 23 resected specimens from GBM patients were collected for SMAD2 detection. Human GBM cell line A172, U87mg, D341m and Hs683 were maintained in Dulbecco's modified Eagle's medium and transfected with SMAD2 and SMAD3 shRNA plasmids. Gene expression was detected by RT-qPCR and Western and cell growth were detected by MTT assay. Results: Our results showed that the phosphorylated SMAD2 (pSMAD2, the nuclear and functional form of SMAD2 levels in GBM were significantly lower than the paired normal brain tissue in patients. Depletion of SMAD2, but not SMAD3, significantly abolished the inhibitory effects of TGFβ1 on the growth of GBM cells, possibly through pSMAD2-mediated increases in cell-cycle inhibitor, p27. Conclusion: Our data suggest that TGFβ/SMAD2 signaling cascades restrains growth of GBM.

  12. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma (United States)

    Parker, Brittany C.; Annala, Matti J.; Cogdell, David E.; Granberg, Kirsi J.; Sun, Yan; Ji, Ping; Li, Xia; Gumin, Joy; Zheng, Hong; Hu, Limei; Yli-Harja, Olli; Haapasalo, Hannu; Visakorpi, Tapio; Liu, Xiuping; Liu, Chang-gong; Sawaya, Raymond; Fuller, Gregory N.; Chen, Kexin; Lang, Frederick F.; Nykter, Matti; Zhang, Wei


    Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3′–untranslated region (3′-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3′-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma. PMID:23298836

  13. Kruppel-like factor-9 (KLF9) inhibits glioblastoma stemness through global transcription repression and integrin α6 inhibition. (United States)

    Ying, Mingyao; Tilghman, Jessica; Wei, Yingying; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Ji, Hongkai; Laterra, John


    It is increasingly important to understand the molecular basis for the plasticity of neoplastic cells and their capacity to transition between differentiated and stemlike phenotypes. Kruppel-like factor-9 (KLF9), a member of the large KLF transcription factor family, has emerged as a regulator of oncogenesis, cell differentiation, and neural development; however, the molecular basis for the diverse contextual functions of KLF9 remains unclear. This study focused on the functions of KLF9 in human glioblastoma stemlike cells. We established for the first time a genome-wide map of KLF9-regulated targets in human glioblastoma stemlike cells and show that KLF9 functions as a transcriptional repressor and thereby regulates multiple signaling pathways involved in oncogenesis and stem cell regulation. A detailed analysis of one such pathway, integrin signaling, showed that the capacity of KLF9 to inhibit glioblastoma cell stemness and tumorigenicity requires ITGA6 repression. These findings enhance our understanding of the transcriptional networks underlying cancer cell stemness and differentiation and identify KLF9-regulated molecular targets applicable to cancer therapeutics.

  14. Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim.

    Directory of Open Access Journals (Sweden)

    Desiree Hunt Floyd

    Full Text Available Glioblastoma is the most common and lethal primary brain tumor. Tumor initiation and recurrence are likely caused by a sub-population of glioblastoma stem cells, which may derive from mutated neural stem and precursor cells. Since CD133 is a stem cell marker for both normal brain and glioblastoma, and to better understand glioblastoma formation and recurrence, we looked for dys-regulated microRNAs in human CD133+ glioblastoma stem cells as opposed to CD133+ neural stem cells isolated from normal human brain. Using FACS sorting of low-passage cell samples followed by microRNA microarray analysis, we found 43 microRNAs that were dys-regulated in common in three separate CD133+ human glioblastomas compared to CD133+ normal neural stem cells. Among these were several microRNAs not previously associated with cancer. We then verified the microRNAs dys-regulated in glioblastoma using quantitative real time PCR and Taqman analysis of the original samples, as well as human GBM stem cell and established cell lines and many human specimens. We show that two candidate oncogenic microRNAs, miR-363 and miR-582-5p, can positively influence glioblastoma survival, as shown by forced expression of the microRNAs and their inhibitors followed by cell number assay, Caspase 3/7 assay, Annexin V apoptosis/fluorescence activated cell sorting, siRNA rescue of microRNA inhibitor treatment, as well as 3'UTR mutagenesis to show luciferase reporter rescue of the most successful targets. miR-582-5p and miR-363 are shown to directly target Caspase 3, Caspase 9, and Bim.

  15. Molecular markers of extracellular matrix remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels. (United States)

    Pen, Ally; Moreno, Maria J; Martin, Joel; Stanimirovic, Danica B


    Glioblastoma multiforme (GBM) are the most malignant and vascularized brain tumors. The aberrant vascular phenotype of GBM could be exploited for diagnosis or therapeutic targeting. This study identified new molecular markers of GBM vessels, using a combination of laser capture microdissection (LCM) microscopy, RNA amplification, and microarray analyses to compare vessels from nonmalignant human brain and GBM tumors. Forty-two genes were differentially expressed in GBM vessels compared to nonmalignant brain vessels. Validation of differentially expressed genes was performed by literature mining, Q-PCR, and immunohistochemistry. Among the differentially expressed genes, only 64% were previously associated with vessels, angiogenesis, gliomas, and/or cancer. The upregulation of genes encoding secreted extracellular proteins IGFBP7 and SPARC was confirmed by Q-PCR in LCM-captured vessels. Whereas SPARC and IGFBP7 protein were absent in nonmalignant brain vessels, a distinct immunoreactivity patterns were observed in GBM sections whereby SPARC was strongly expressed in perivascular cells adjacent to GBM vessels while GBM endothelial cells were immunostained for IGFBP7. IGFBP7 immunoreactivity was also detected on the abluminal side of GBM vessels deposited between strands of vascular basal lamina. The study discerns unique molecular characteristics of GBM vessels compared with nonmalignant brain vessels that could potentially be used for diagnostic or therapeutic purposes.


    Institute of Scientific and Technical Information of China (English)


    Objective: To study the role of apoptosis in tumor cell of malignant glioma death following treatment with hyperthermia and calcium ionophore. Methods: The apoptosis induced by hyperthermia and calcium ionophore, A23187, in human glioblastoma cell line TJ905 and murine glioblastoma G422 was evaluated by characteristic findings in DNA agarose gel electrophresis, ultrastructural examination and flow cytometric analysis. Results: Apoptosis could be induced by moderate hyperthermia, but not by mild hyperthermia, calcium ionophore enhanced significantly the effect of mild hyperthermia on the induction of apoptosis. Conclusion: This result indicates that apoptotic cell death is one of the mechanisms of hyperthermic therapy for malignant glioma and taking measures to increase the cytolic calcium may enhance the effect of hyperthermia.

  17. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Karolina Ewa Zakrzewska

    Full Text Available Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.

  18. Rhabdoid glioblastoma is distinguishable from classical glioblastoma by cytogenetics and molecular genetics. (United States)

    Byeon, Sun-Ju; Cho, Hwa Jin; Baek, Hae Woon; Park, Chul-Kee; Choi, Seung-Hong; Kim, Se-Hoon; Kim, Hee Kyung; Park, Sung-Hye


    The clinicopathologic and molecular genetic features of 5 cases of rhabdoid glioblastoma, an extremely rare variant of glioblastoma that tends to affect patients at a young age, were investigated by immunohistochemical analysis and focused molecular genetic studies including array-based comparative genomic hybridization. All 5 cases had supratentorial tumors that immunohistochemical analysis revealed to be robustly positive for epithelial membrane antigen, vimentin, p53, and PDGFRα (platelet-derived growth factor receptor, alpha polypeptide) but only focally positive for glial fibrillary acidic protein. Although complete retention of SMARCB1 (INI1) was observed in all 5 cases, epidermal growth factor receptor (EGFR) amplification, PTEN (phosphatase and tensin homolog) loss, homozygous deletion of cyclin-dependent kinase inhibitor 2A, 1p/19q codeletion, and isocitrate dehydrogenase 1 R132/IDH2 R172 mutation were not observed in any case, although a high level of EGFR polysomy was detected in 1 recurrent tumor. Although c-MET (MET protein) expression was focal but robustly positive in 3 cases, met proto-oncogene (MET) fluorescence in situ hybridization revealed low polysomy but not MET amplification. MGMT (O-6-methylguanine-DNA methyl-40 transferase) methylation-specific polymerase chain reaction revealed MGMT methylation in only 1 case. Furthermore, array-based comparative genomic hybridization revealed gain of chromosome 7 and loss of 1p, 6, 8p, 11, 13q, and 18q but no deletion of chromosome 22. In contrast to the classical subtype of primary glioblastoma, the cases studied here were characterized by the absence of EGFR amplification, PTEN loss, and 9p homozygous deletion and overexpression of p53, PDGFRα, and c-MET, suggesting that they can be classified as the proneural or mesenchymal subtype of glioblastoma and benefit from intensive therapy that includes temozolomide.

  19. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Directory of Open Access Journals (Sweden)

    Nicolas Goffart


    Full Text Available Glioblastoma multiforme (GBM, WHO grade IV is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  20. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Energy Technology Data Exchange (ETDEWEB)

    Goffart, Nicolas [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Kroonen, Jérôme [Human Genetics, CHU and University of Liège, Liège 4000 (Belgium); The T& P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556 (Netherlands); Rogister, Bernard, E-mail: [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Department of Neurology, CHU and University of Liège, Liège 4000 (Belgium); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000 (Belgium)


    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  1. Glioblastoma multiforme in a child with tuberous sclerosis complex. (United States)

    Vignoli, Aglaia; Lesma, Elena; Alfano, Rosa Maria; Peron, Angela; Scornavacca, Giulia Federica; Massimino, Maura; Schiavello, Elisabetta; Ancona, Silvia; Cerati, Michele; Bulfamante, Gaetano; Gorio, Alfredo; Canevini, Maria Paola


    Tuberous Sclerosis Complex (TSC) is characterized by the presence of benign tumors in the brain, kidneys, heart, eyes, lungs, and skin. The typical brain lesions are cortical tubers, subependimal nodules and subependymal giant-cell astrocytomas. The occurrence of malignant astrocytomas such as glioblastoma is rare. We report on a child with a clinical diagnosis of TSC and a rapidly evolving glioblastoma multiforme. Genetic analysis identified a de novo mutation in TSC2. Molecular characterization of the tumor was performed and discussed, as well as a review of the literature where cases of TSC and glioblastoma multiforme are described. Although the co-occurrence of TSC and glioblastoma multiforme seems to be rare, this possible association should be kept in mind, and proper clinical and radiological follow up should be recommended in these patients.

  2. MicroRNA as potential biomarkers in Glioblastoma. (United States)

    Areeb, Zammam; Stylli, Stanley S; Koldej, Rachel; Ritchie, David S; Siegal, Tali; Morokoff, Andrew P; Kaye, Andrew H; Luwor, Rodney B


    Glioblastoma is the most aggressive and lethal tumour of the central nervous system and as such the identification of reliable prognostic and predictive biomarkers for patient survival and tumour recurrence is paramount. MicroRNA detection has rapidly emerged as potential biomarkers, in patients with glioblastoma. Over the last decade, analysis of miRNA in laboratory based studies have yielded several candidates as potential biomarkers however, the accepted use of these candidates in the clinic is yet to be validated. Here we will examine the use of miRNA signatures to improve glioblastoma stratification into subgroups and summarise recent advances made in miRNA examination as potential biomarkers for glioblastoma progression and recurrence.

  3. Prognostic relevance of epilepsy at presentation in glioblastoma patients

    NARCIS (Netherlands)

    Berendsen, Sharon; Varkila, Meri; Kroonen, Jérôme; Seute, Tatjana; Snijders, Tom J; Kauw, Frans; Spliet, Wim G M; Willems, Marie; Poulet, Christophe; Broekman, Marike L; Bours, Vincent; Robe, Pierre A


    BACKGROUND: Epileptogenic glioblastomas are thought to convey a favorable prognosis, either due to early diagnosis or potential antitumor effects of antiepileptic drugs. We investigated the relationship between survival and epilepsy at presentation, early diagnosis, and antiepileptic drug therapy in

  4. A prospective PET study of patients with glioblastoma multiforme

    DEFF Research Database (Denmark)

    Andersen, Preben B.; Blinkenberg, M; Lassen, U;


    OBJECTIVE: To study the post-surgical metabolic and structural cerebral changes in patients with glioblastoma multiforme (GBM). MATERIALS AND METHODS: We examined ten patients prospectively with newly diagnosed GBM. All patients were primarily treated with surgery, followed by chemotherapy...

  5. Glioblastoma multiforme no cerebelo: registro de um caso

    Directory of Open Access Journals (Sweden)

    Roberto Aidar Aun


    Full Text Available O glioblastoma multiforme no cerebelo é raro. Foram publicados cêrca de 38 casos na literatura. Os autores relatam um caso, parecendo tratar-se da primeira referência na literatura brasileira.

  6. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. (United States)

    Ríos-Marco, Pablo; Martín-Fernández, Mario; Soria-Bretones, Isabel; Ríos, Antonio; Carrasco, María P; Marco, Carmen


    Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.

  7. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu


    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  8. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells. (United States)

    Balenci, Laurent; van der Kooy, Derek


    Understanding the mechanisms regulating retinal stem cell (RSC) activity is fundamental for future stem cell-based therapeutic purposes. By combining gain and loss of function approaches, we addressed whether Notch signaling may play a selective role in retinal stem versus retinal progenitor cells in both developing and adult eyes. Inhibition of either Notch or fibroblast growth factor signaling reduced proliferation of retinal stem and retinal progenitor cells, and inhibited RSC self-renewal. Conversely, exogenous Delta-like 3 and direct intrinsic Notch activation stimulated expansionary symmetric divisions in adult RSCs with the concomitant upregulation of Hes5. Knocking down Hes5 expression specifically decreased the numbers, but not the diameters, of adult RSC primary spheres, indicating that HES5 is the downstream effector of Notch receptor in controlling adult RSC proliferation. In addition, constitutive Notch activation induced retinal stem-like asymmetric self-renewal properties, with no expansion (no symmetrical division) in perinatal neural retina progenitor cells. These findings highlight central roles of Notch signaling activity in regulating the modes of division of retinal stem and retinal progenitor cells.

  9. T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62L(highCD44(low Sca-1(+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells.

  10. Glioblastoma Multiforme Therapy and Mechanisms of Resistance

    Directory of Open Access Journals (Sweden)

    Yulian P. Ramirez


    Full Text Available Glioblastoma multiforme (GBM is a grade IV brain tumor characterized by a heterogeneous population of cells that are highly infiltrative, angiogenic and resistant to chemotherapy. The current standard of care, comprised of surgical resection followed by radiation and the chemotherapeutic agent temozolomide, only provides patients with a 12–14 month survival period post-diagnosis. Long-term survival for GBM patients remains uncommon as cells with intrinsic or acquired resistance to treatment repopulate the tumor. In this review we will describe the mechanisms of resistance, and how they may be overcome to improve the survival of GBM patients by implementing novel chemotherapy drugs, new drug combinations and new approaches relating to DNA damage, angiogenesis and autophagy.

  11. Current status of intratumoral therapy for glioblastoma. (United States)

    Mehta, Ankit I; Linninger, Andreas; Lesniak, Maciej S; Engelhard, Herbert H


    With emerging drug delivery technologies becoming accessible, more options are expected to become available to patients with glioblastoma (GBM) in the near future. It is important for clinicians to be familiar with the underlying mechanisms and limitations of intratumoral drug delivery, and direction of recent research efforts. Tumor-adjacent brain is an extremely complex living matrix that creates challenges with normal tissue intertwining with tumor cells. For convection-enhanced delivery (CED), the role of tissue anisotropy for better predicting the biodistribution of the infusate has recently been studied. Computational predictive methods are now available to better plan CED therapy. Catheter design and placement—in addition to the agent being used—are critical components of any protocol. This paper overviews intratumoral therapies for GBM, highlighting key anatomic and physiologic perspectives, selected agents (especially immunotoxins), and some new developments such as the description of the glymphatic system.

  12. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. (United States)

    Perry, James R; Laperriere, Normand; O'Callaghan, Christopher J; Brandes, Alba A; Menten, Johan; Phillips, Claire; Fay, Michael; Nishikawa, Ryo; Cairncross, J Gregory; Roa, Wilson; Osoba, David; Rossiter, John P; Sahgal, Arjun; Hirte, Hal; Laigle-Donadey, Florence; Franceschi, Enrico; Chinot, Olivier; Golfinopoulos, Vassilis; Fariselli, Laura; Wick, Antje; Feuvret, Loic; Back, Michael; Tills, Michael; Winch, Chad; Baumert, Brigitta G; Wick, Wolfgang; Ding, Keyue; Mason, Warren P


    Background Glioblastoma is associated with a poor prognosis in the elderly. Survival has been shown to increase among patients 70 years of age or younger when temozolomide chemotherapy is added to standard radiotherapy (60 Gy over a period of 6 weeks). In elderly patients, more convenient shorter courses of radiotherapy are commonly used, but the benefit of adding temozolomide to a shorter course of radiotherapy is unknown. Methods We conducted a trial involving patients 65 years of age or older with newly diagnosed glioblastoma. Patients were randomly assigned to receive either radiotherapy alone (40 Gy in 15 fractions) or radiotherapy with concomitant and adjuvant temozolomide. Results A total of 562 patients underwent randomization, 281 to each group. The median age was 73 years (range, 65 to 90). The median overall survival was longer with radiotherapy plus temozolomide than with radiotherapy alone (9.3 months vs. 7.6 months; hazard ratio for death, 0.67; 95% confidence interval [CI], 0.56 to 0.80; Ptemozolomide and 7.7 months with radiotherapy alone (hazard ratio for death, 0.53; 95% CI, 0.38 to 0.73; Ptemozolomide and 7.9 months with radiotherapy alone (hazard ratio for death, 0.75; 95% CI, 0.56 to 1.01; P=0.055; P=0.08 for interaction). Quality of life was similar in the two trial groups. Conclusions In elderly patients with glioblastoma, the addition of temozolomide to short-course radiotherapy resulted in longer survival than short-course radiotherapy alone. (Funded by the Canadian Cancer Society Research Institute and others; number, NCT00482677 .).

  13. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods