WorldWideScience

Sample records for cancer stem-like cells

  1. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells

    International Nuclear Information System (INIS)

    Highlights: • Existence of radiation induced bystander effects (RIBE) between cancer stem-like cells (CSCs) and non stem-like cancer cells (NSCCs) in human fibrosarcoma HT1080 cells. • Existence of significant difference in generation and response of bystander signals between CSCs and NSCCs. • CSCs are significantly less sensitive to NO scavenger than that of NSCCs in terms of DNA double strand breaks induced by RIBE. - Abstract: Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy

  2. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Kobayashi, Alisa [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Maeda, Takeshi [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Fu, Qibin [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Oikawa, Masakazu [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yang, Gen, E-mail: gen.yang@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Konishi, Teruaki, E-mail: tkonishi@nirs.go.jp [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Uchihori, Yukio [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); and others

    2015-03-15

    Highlights: • Existence of radiation induced bystander effects (RIBE) between cancer stem-like cells (CSCs) and non stem-like cancer cells (NSCCs) in human fibrosarcoma HT1080 cells. • Existence of significant difference in generation and response of bystander signals between CSCs and NSCCs. • CSCs are significantly less sensitive to NO scavenger than that of NSCCs in terms of DNA double strand breaks induced by RIBE. - Abstract: Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  3. Breast cancer stem-like cells and breast cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Niansong Qian; Nobuko Kawaguchi-Sakita; Masakazu Toi

    2010-01-01

    @@ Until the early 1990s, human cancers were considered a morphologically heterogeneous population of cells. In 1997, Bonnet et al[1] demonstrated that a small population of leukemia cells was able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone was organized as a hierarchy; this was subsequently denoted as cancer stem like cells (CSCs). CSCs are cancer cells that possess characteristics associated with normal stem cells and have the specific ability to give rise to all cell types found in a particular cancer. One reason for the failure of traditional anti tumor therapies might be their inability to eradicate CSCs. Therefore, therapies must identify and destroy CSCs in both primary and metastatic tumors.

  4. Nanodrug-Mediated Thermotherapy of Cancer Stem-Like Cells.

    Science.gov (United States)

    Rao, Wei; Wang, Hai; Zhong, Allison; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-03-01

    Cancer stem-like cells (CSCs) are rare subpopulations of cancer cells that are resistant to conventional chemotherapy and radiotherapy and contribute to cancer metastases and tumor recurrence. Therefore, it is of significance to develop an effective therapy to eliminate the CSCs. Cancer thermotherapy realized by depositing heat into tumor in a minimally invasive way is a promising alternative to the conventional therapies for cancer treatment. However, this method is limited by its inability to target CSCs, potentially allowing the CSCs to survive and re-initiate tumor growth. More recently, nanodrug-mediated thermotherapy has been explored to selectively eliminate CSCs and specifically deposit heat in tumor to spare healthy tissue. Here, we provide a brief overview of the targeting moieties and nanoplatforms used in developing nanodrug-mediated thermotherapy of cancer with particular emphasis on the CSCs, as well as the challenges and potential directions for future research in this emerging field. PMID:27455612

  5. Isolation and Identification of Cancer Stem-Like Cells from Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Jun Dou; Kai Hu; Ning Gu; Meng Pan; Ping Wen; Yating Li; Quan Tang; Lili Chu; Fengshu Zhao; Chuilian Jiang; Weihua Hu

    2007-01-01

    In current study, cancer stem-like cells in the murine melanoma B16F10 cells were investigated. CD phenotypes of the B16F10 cells were analyzed by flow cytometry, and the specific CD phenotype cells from the B16F10 cells were isolated by MACS. Then we used colony formation assay in soft agar media, the cell growth assay in serum-free culture media as well as the tumorigenicity investigation of the specific CD phenotype cells in C57BL/6 mice,respectively, to identify cancer stem-like cells in the B16F10 cells. The results showed that the B16F10 cells could form spherical clones in serum-free culture media, and the rate of clonegenesis of CD133+, CD44+ and CD44+CD133+ cells was higher than that of CD133-, CD44- and CD44+CD133- cells in soft agar media, respectively.The tumorigenic potential of CD133+, CD44+, CD44+CD133+ cells and CD44+CD133+CD24+ cells was stronger than that of CD133-, CD44-, CD44+CD133- cells and CD44+CD133+CD24- cells in mice, respectively. In conclusion, the CD44+CD133+CD24+ cells have some biological properties of cancer stem-like cells or are highly similar to the characteristics of cancer stem cells (CSC). These results provide an important method for identifying cancer stem-like cells in B16F10 cells and for further cancer target therapy.

  6. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    International Nuclear Information System (INIS)

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44+ cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways

  7. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rae-Kwon; Uddin, Nizam [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Hyun, Jin-Won [College of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju-si 690-756 (Korea, Republic of); Kim, Changil [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Suh, Yongjoon, E-mail: hiswork@hanmail.net [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae, E-mail: sj0420@hanyang.ac.kr [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-01

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  8. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types. PMID:27259361

  9. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  10. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Nora D Mineva

    Full Text Available Inflammatory Breast Cancer (IBC is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration

  11. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway.

    Science.gov (United States)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-22

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer.

  12. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI

    2013-01-01

    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  13. Kinomic and phospho-proteomic analysis of breast cancer stem-like cells

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Christensen, Anne Geske Lindhard; Ehmsen, Sidse;

    Kinomic and phospho-proteomic analysis of breast cancer stem-like cells Rikke Leth-Larsen1, Anne G Christensen1, Sidse Ehmsen1, Mark Møller1, Giuseppe Palmisano2, Martin R Larsen2, Henrik J Ditzel1,3 1Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark 2Institute...... cell death, while the bulk of a tumor lacks these capacities. The resistance mechanisms may cause these cells to survive and become the source of later tumor recurrence, highlighting the need for therapeutic strategies that specifically target pathways central to these cancer stem cells. The CD44hi....../CD24-/low compartment of human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. From a triple-negative breast cancer cell line we isolated and cloned CD44hi single-cells that exhibited functional heterogeneity...

  14. Isolation and characterization of cancer stem-like cells from MHCC97H Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Shanyong Yi; Kejun Nan; Aihua Yuan; Chuangxin Lu

    2009-01-01

    Objective:To identify and isolate CD133 positive cancer stem-like cells (CD133+ cells) from the highly invasive human hepatocellular carcinoma cell line(MHCC97H), and examine their potential for clonogenicity and tumorigenicity. Methods: CD133+ and CD133- cells were isolated from MHCC97H cell line by magnetic bead cell sorting(MACS), and the potentials of CD133+ cells for colony formation and tumorigenicity were evaluated by soft agar cloning and tumor formation following nude mice inoculation. Results:CD133+ cells represent a minority(0.5-2.0%) of the tumor cell population with a greater colony-forming efficiency and greater tumor production ability. The colony-forming efficiency of CD133+ cells in soft agar was significantly higher than CD133- cells(36.8±1.4 vs 12.9±0.8, P<0.05).After 6 weeks, 3/5 mice inoculated with 1 × 103 CD133+ cells, 4/5 with 1 × 104 CD133+ cells and 5/5 with 1 × 105 CD133+ cells developed detectable tumors at the injection site, while only one tumor was found in mice treated with same numbers of CD133- cells. Conclusion: CD133 may be a hallmark of liver cancer stem cells (CSC) in human hepatocellular carcinoma(HCC), because the CD133+ cells identified and isolated with anti-CD133 labeled magnetic beads from MHCC97H cell line exhibit high potentials for clonogenicity and tumorigenicity. These CD133+ cells might contribute to hepatocarcinogenesis, as well as the growth and recurrence of human HCC, and therefore may be a useful target for anti-cancer therapy.

  15. Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells

    Science.gov (United States)

    Hong, Yoochan; Lee, Eugene; Choi, Jihye; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon

    2016-06-01

    Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.

  16. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  17. Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo

    2015-11-01

    Full Text Available Androgen deprivation therapy (ADT has been the standard care for patients with advanced prostate cancer (PC since the 1940s. Although ADT shows clear benefits for many patients, castration-resistant prostate cancer (CRPC inevitably occurs. In fact, with the two recent FDA-approved second-generation anti-androgens abiraterone and enzalutamide, resistance develops rapidly in patients with CRPC, despite their initial effectiveness. The lack of effective therapeutic solutions towards CRPC largely reflects our limited understanding of the underlying mechanisms responsible for CRPC development. While persistent androgen receptor (AR signaling under castration levels of serum testosterone (<50 ng/mL contributes to resistance to ADT, it is also clear that CRPC evolves via complex mechanisms. Nevertheless, the physiological impact of individual mechanisms and whether these mechanisms function in a cohesive manner in promoting CRPC are elusive. In spite of these uncertainties, emerging evidence supports a critical role of prostate cancer stem-like cells (PCSLCs in stimulating CRPC evolution and resistance to abiraterone and enzalutamide. In this review, we will discuss the recent evidence supporting the involvement of PCSLC in CRPC acquisition as well as the pathways and factors contributing to PCSLC expansion in response to ADT.

  18. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Samantha Wei-Man Lun; Siu-Tim Cheung; Kwok-Wai Lo

    2014-01-01

    Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cels. These cancer stem-like cels (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed.

  19. Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features

    OpenAIRE

    Jokinen, Elina; Laurila, Niina; Koivunen, Peppi; Koivunen, Jussi P

    2014-01-01

    Treatment resistance significantly inhibits the efficiency of targeted cancer therapies in drug-sensitive genotypes. In the current work, we studied mechanisms for rapidly occurring, adaptive resistance in targeted therapy-sensitive lung, breast, and melanoma cancer cell lines. The results show that in ALK translocated lung cancer lines H3122 and H2228, cells with cancer stem-like cell features characterized by high expression of cancer stem cell markers and/or in vivo tumorigenesis can media...

  20. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds

    OpenAIRE

    Sims-Mourtada J; Niamat RA; Samuel S; Eskridge C; Kmiec EB

    2014-01-01

    Jennifer Sims-Mourtada,1 Rohina A Niamat,2 Shani Samuel,2 Chris Eskridge,2 Eric B Kmiec1,2 1Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, 2Department of Chemistry, Delaware State University, Dover, DE, USA Abstract: A small population of highly tumorigenic breast cancer cells has recently been identified. These cells, known as breast-cancer stem-like cells (BCSC), express markers similar to mammary...

  1. Radiotherapy diagnostic biomarkers in radioresistant human H460 lung cancer stem-like cells.

    Science.gov (United States)

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Um, Hong-Duck; Park, Jong Kuk; Song, Jie-Young; Park, In-Chul; Kim, Jae-Sung; Lee, Su-Jae; Lee, Chang-Woo; Hwang, Sang-Gu

    2016-02-01

    Tumor cell radioresistance is a major contributor to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. In this work, we established a radioresistant H460 (RR-H460) cell line from parental radiosensitive H460 lung cancer cells by exposure to fractionated radiation. The radiation-resistant, anti-apoptotic phenotype of RR-H460 cell lines was confirmed by their enhanced clonogenic survival and increased expression of the radioresistance genes Hsp90 and Her-3. RR-H460 cells displayed characteristics of cancer stem-like cells (CSCs), including induction of the surface marker CD44 and stem cell markers Nanog, Oct4, and Sox2. RR-H460 cells also exhibited sphere formation and malignant behavior, further supporting a CSC phenotype. Using proteomic analyses, we identified 8 proteins that were up-regulated in RR-H460 CSC lines and therefore potentially involved in radioresistance and CSC-related biological processes. Notably, 4 of these-PAI-2, NOMO2, KLC4, and PLOD3-have not been previously linked to radioresistance. Depletion of these individual genes sensitized RR-H460 cells to radiotoxicity and additively enhancing radiation-induced apoptosis. Our findings suggest the possibility of integrating molecular targeted therapy with radiotherapy as a strategy for resolving the radioresistance of lung tumors. PMID:26901847

  2. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells.

    Science.gov (United States)

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-03-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  3. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells

    Science.gov (United States)

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-01-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  4. Accumulation efficiency of cancer stem-like cells post γ-ray and proton irradiation

    Science.gov (United States)

    Quan, Yi; Wang, Weikang; Fu, Qibin; Mei, Tao; Wu, Jingwen; Li, Jia; Yang, Gen; Wang, Yugang

    2012-09-01

    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with γ-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133+ protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with γ-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and γ-rays can significantly accumulate the CD133+ CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  5. Accumulation efficiency of cancer stem-like cells post {gamma}-ray and proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Quan Yi; WangWeikang; Fu Qibin; Mei Tao; Wu Jingwen; Li Jia [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Yang, Gen, E-mail: gen.yang@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wang Yugang [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2012-09-01

    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with {gamma}-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133{sup +} protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with {gamma}-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and {gamma}-rays can significantly accumulate the CD133{sup +} CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  6. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  7. Angiogenesis-independent tumor growth mediated by stem-like cancer cells.

    NARCIS (Netherlands)

    Sakariassen, P.; Prestegarden, L.; Wang, J.; Skaftnesmo, K.O.; Mahesparan, R.; Molthoff, C.F.M.; Sminia, P.; Sundlisaeter, E.; Misra, A.; Tysnes, B.B.; Chekenya, M.; Peters, H.; Lende, G.; Kalland, K.H.; Oyan, A.M.; Petersen, K.; Jonassen, I.; Kogel, A.J. van der; Feuerstein, B.G.; Terzis, A.J.; Bjerkvig, R.; Enger, P.O.

    2006-01-01

    In this work, highly infiltrative brain tumors with a stem-like phenotype were established by xenotransplantation of human brain tumors in immunodeficient nude rats. These tumors coopted the host vasculature and presented as an aggressive disease without signs of angiogenesis. The malignant cells ex

  8. Isolation of Cancer Stem Like Cells from Human Adenosquamous Carcinoma of the Lung Supports a Monoclonal Origin from a Multipotential Tissue Stem Cell

    OpenAIRE

    Mather, Jennie P.; Roberts, Penelope E.; Pan, Zhuangyu; Chen, Francine; Hooley, Jeffrey; Young, Peter; Xu, Xiaolin; Smith, Douglas H.; Easton, Ann; Li, Panjing; Bonvini, Ezio; Koenig, Scott; Moore, Paul A.

    2013-01-01

    There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC) is an aggressive type of lung cancer that contains a mixture of cells with sq...

  9. Response of cancer stem-like cells and non-stem cancer cells to proton and γ-ray irradiation

    International Nuclear Information System (INIS)

    Ionizing radiation is a widely used therapy for solid tumors. Compelling evidence indicates cancer stem-like cells (CSCs) exist in solid tumors, which is on the top of hierarchically organization and suggested to be involved in carcinogenesis, tumor invasion, recurrence and resistance to various forms of therapies. Understanding the response of CSCs to irradiation is of great importance to improve cancer curability. In present study, the response to proton and γ-ray irradiation of these cells, including DNA damage and apoptosis were investigated experimentally. The results show that CSCs have higher resistance than non-stem cancer cells (NSCCs) to either proton or γ-ray irradiation. In addition, compared with γ-ray, proton irradiation is more efficient to kill CSCs at the same dose with lower survival as well as higher DNA damages. The results suggest that proton irradiation may have greater capability of eliminating CSCs for cancer radiotherapy than γ-ray at the same dose, which in turn makes radiotherapy more efficient.

  10. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chih Chen

    Full Text Available CD133 (prominin-1, a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133(+ and CD133-negative cells (LC-CD133(- from tissue samples of ten patients with non-small cell lung cancer (LC and five LC cell lines. LC-CD133(+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133(+, unlike LC-CD133(-, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133(+ to form spheres and can further facilitate LC-CD133(+ to differentiate into LC-CD133(-. In addition, knock-down of Oct-4 expression in LC-CD133(+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose polymerase (PARP. Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133(+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133(+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133(+ and malignant lung cancer.

  11. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer.

    Science.gov (United States)

    Feng, Long; Wu, Jian-Bing; Yi, Feng-Ming

    2015-09-01

    Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.

  12. Chemo-Predictive Assay for Targeting Cancer Stem-Like Cells in Patients Affected by Brain Tumors

    OpenAIRE

    Mathis, Sarah E.; Anthony Alberico; Rounak Nande; Walter Neto; Logan Lawrence; Danielle R McCallister; James Denvir; Gerrit A Kimmey; Mark Mogul; Gerard Oakley; Denning, Krista L.; Thomas Dougherty; Jagan V Valluri; Pier Paolo Claudio

    2014-01-01

    Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs) resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID), which measures the sensitivity of CSLCs as well as the bul...

  13. Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition.

    Science.gov (United States)

    Zhang, Jie; Wang, Wenjing; Qian, Lin; Zhang, Qiuwan; Lai, Dongmei; Qi, Cong

    2015-11-01

    Ovarian cancer is the most frequent cause of cancer-related death among all gynecological cancers. Increasing evidence suggests that human ovarian cancer stem-like cells could be enriched under serum-free culture conditions. In the present study, SKOV3 ovarian epithelial cancer cells were cultured for sphere cells. Ursolic acid (UA) with triterpenoid compounds exist widely in food, medicinal herbs and other plants. Evidence shows that UA has anticancer activities in human ovarian cancer cells, but he role of UA in ovarian cancer stem cells (CSCs) remains unknown. The aim of the present study was to investigate the anticancer effects of UA in combination with cisplatin in ovarian CSCs (in vitro and in vivo), along with the molecular mechanism of action. Treatment with UA at various concentrations was examined in combination with cisplatin in human ovarian CSCs. MTT assay and flow cytometry were used for cell viability and apoptosis analysis, and qRT-PCR for stem cell markers and epithelial-mesenchymal transition (EMT) markers for mRNA expression. Transwell assay was employed to observe the migration and invasion of SKOV3 cells and SKOV3 sphere cells after treatment. Moreover, athymic BALB/c-nu nude mice were injected with SKOV3 sphere cells to obtain a xenograft model for in vivo studies. The results showed that CSCs possessed mesenchymal characteristics and EMT ability, and the growth of SKOV3 and sphere cells was significantly inhibited by UA. Transplanted tumors were significantly reduced after injection of UA and UA plus cisplatin. Furthermore, we found that UA could play a role in enhancing the sensitivity of CSCs to cisplatin resistance. Our findings suggested that UA is involved in EMT mechanism to affect the proliferation and apoptosis of human ovarian cancer stem-like cells and it is a potent anti-ovarian cancer agent.

  14. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    International Nuclear Information System (INIS)

    Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma

  15. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Martins-Neves Sara R

    2012-04-01

    Full Text Available Abstract Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.

  16. Ginsenoside Rh2 Inhibits Cancer Stem-Like Cells in Skin Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Shunli Liu

    2015-05-01

    Full Text Available Background/Aims: Treatments targeting cancer stem cells (CSCs are most effective cancer therapy, whereas determination of CSCs is challenging. We have recently reported that Lgr5-positive cells are cancer stem cells (CSCs in human skin squamous cell carcinoma (SCC. Ginsenoside Rh2 (GRh2 has been shown to significantly inhibit growth of some types of cancers, whereas its effects on the SCC have not been examined. Methods: Here, we transduced human SCC cells with lentivirus carrying GFP reporter under Lgr5 promoter. The transduced SCC cells were treated with different doses of GRh2, and then analyzed cell viability by CCK-8 assay and MTT assay. The effects of GRh2 on Lgr5-positive CSCs were determined by fow cytometry and by tumor sphere formation. Autophagy-associated protein and β-catenin were measured by Western blot. Expression of short hairpin small interfering RNA (shRNA for Atg7 and β-catenin were used to inhibit autophagy and β-catenin signaling pathway, respectively, as loss-of-function experiments. Results: We found that GRh2 dose-dependently reduced SCC viability, possibly through reduced the number of Lgr5-positive CSCs. GRh2 increased autophagy and reduced β-catenin signaling in SCC cells. Inhibition of autophagy abolished the effects of GRh2 on β-catenin and cell viability, while increasing β-catenin abolished the effects of GRh2 on autophagy and cell viability. Conclusion: Taken together, our data suggest that GRh2 inhibited SCC growth, possibly through reduced the number of Lgr5-positive CSCs. This may be conducted through an interaction between autophagy and β-catenin signaling.

  17. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds

    Directory of Open Access Journals (Sweden)

    Sims-Mourtada J

    2014-02-01

    Full Text Available Jennifer Sims-Mourtada,1 Rohina A Niamat,2 Shani Samuel,2 Chris Eskridge,2 Eric B Kmiec1,2 1Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, 2Department of Chemistry, Delaware State University, Dover, DE, USA Abstract: A small population of highly tumorigenic breast cancer cells has recently been identified. These cells, known as breast-cancer stem-like cells (BCSC, express markers similar to mammary stem cells, and are highly resistant to chemotherapy. Currently, study of BCSC is hampered by the inability to propagate these cells in tissue culture without inducing differentiation. Recently, it was reported that proliferation and differentiation can be modified by culturing cells on electrospun nanofibers. Here, we sought to characterize the chemoresistance and stem-like properties of breast cancer cell lines grown on nanofiber scaffolds. Cells cultured on three-dimensional templates of electrospun poly(ε-caprolactone-chitosan nanofibers showed increases in mammary stem cell markers and in sphere-forming ability compared with cells cultured on polystyrene culture dishes. There was no increase in proliferation of stem cell populations, indicating that culture on nanofibers may inhibit differentiation of BCSC. The increase in stemness was accompanied by increases in resistance to docetaxel and doxorubicin. These data indicate that BCSC populations are enriched in cells cultured on electrospun poly(ε-caprolactone-chitosan nanofibers, scaffolds that may provide a useful system to study BCSC and their response to anticancer drug treatment. Keywords: breast cancer, mammary stem cells, chemoresistance, nanofibers, three-dimensional culture

  18. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    Science.gov (United States)

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-06-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.

  19. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells.

    Science.gov (United States)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-08-01

    Cancer stem-like cells (CSCs) are resistant to chemotherapy and highly tumorigenic, which contributes to tumor occurrence and post-treatment relapse. We developed a novel C60 fullerene-silica nanoparticle system surface-decorated with hyaluronan (HA) to target the variant CD44 overexpressed on breast CSCs. Furthermore, doxorubicin hydrochloride (DOX) and indocyanine green (ICG) can be encapsulated in the nanoparticles with ultrahigh encapsulation efficiency (>90%) and loading content (e.g., 48.5% at a drug-to-nanoparticle feeding ratio of 1:1, compared to the commonly used drug-to-nanoparticle feeding ratio of 1:20 with a drug loading content of less than 5%). As a result, the DOX and ICG-laden nanoparticles can be used as a single nanoplatform to achieve combined chemo, photodynamic, and photothermal therapy under near infrared laser irradiation for effective destruction of the breast CSCs both in vitro and in vivo, with no evident systemic toxicity. Moreover, we found the nanoparticles with a higher drug loading content (e.g., 48.5 versus 4.6%) also have significantly higher antitumor efficacy, given the same total drug dose. These results demonstrate the great potential of the multifunctional hybrid nanoparticle system for augmenting cancer therapy by eliminating the CSCs. PMID:27162075

  20. Wnt pathway activity in breast cancer sub-types and stem-like cells

    OpenAIRE

    Rebecca Lamb; Ablett, Matthew P.; Katherine Spence; Göran Landberg; Sims, Andrew H.; Clarke, Robert B.

    2013-01-01

    Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell regulation remains unclear.Methods: We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt pat...

  1. Radiotherapy diagnostic biomarkers in radioresistant human H460 lung cancer stem-like cells

    OpenAIRE

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Um, Hong-Duck; Park, Jong Kuk; Song, Jie-Young; Park, In-Chul; KIM, JAE-SUNG; Lee, Su-Jae; Lee, Chang-Woo; Hwang, Sang-Gu

    2016-01-01

    ABSTRACT Tumor cell radioresistance is a major contributor to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. In this work, we established a radioresistant H460 (RR-H460) cell line from parental radiosensitive H460 lung cancer cells by exposure to fractionated radiation. The radiation-resistant, anti-apoptotic phenotype of RR-H460 cell lines was confirmed by their enhanced clonogenic survival and increased expression of the radioresi...

  2. Aldehyde dehydrogenase 3A1 is robustly upregulated in gastric cancer stem-like cells and associated with tumorigenesis.

    Science.gov (United States)

    Wu, Di; Mou, Yi-Ping; Chen, Ke; Cai, Jia-Qin; Zhou, Yu-Cheng; Pan, Yu; Xu, Xiao-Wu; Zhou, Wei; Gao, Jia-Qi; Chen, Ding-Wei; Zhang, Ren-Chao

    2016-08-01

    Enhanced aldehyde dehydrogenase (ALDH) activity has been shown to serve as a hallmark for cancer stem cells (CSCs). Recent evidence suggests that its role as a stem cell-related marker has come down to the specific isoform. However, little is known about the specific ALDH isoform contributing to aldefluor activity in gastric cancer. In this study, we isolated ALDHbright cells from 2 human gastric cancer cell lines MKN-45 and SGC‑7901 by using an Aldefluor assay and found elevated self-renewal, differentiation and tumorigenicity, as demonstration of stemness characteristics. We also found that ALDHbright cells expressed decreased levels of E-cadherin but increased levels of Snail and Vimentin, indication of an epithelial-mesenchymal transition (EMT) phenotype which may be responsible for the enhanced metastatic potential. Since further research and prognostic application based on ALDH prevalence require the quantification of the specific ALDH isoform, we characterized the expression of all 19 ALDH isoforms in the sorted gastric cancer cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Compared with the non-stem counterparts, robust upregulation of ALDH-3A1 was observed in these gastric cancer stem-like cells. Furthermore, we performed immunohistological analysis on 93 fixed patient gastric tumor samples and found that ALDH-3A1 expression correlated well with gastric cancer dysplasia and grades, differentiation, lymph node metastasis and cancer stage. Our data, therefore, provide strong evidence that ALDH-3A1 is a novel gastric cancer stem cell related marker with potential prognostic values and demonstrate a clear association between ALDH-3A1 prevalence and gastric cancer progression. PMID:27279633

  3. Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohishi

    2015-12-01

    Full Text Available Bladder cancer (BC, the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC and non-muscle-invasive bladder cancer (NMIBC. MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases. Evidence suggests that MIBC comprises a small population of cancer stem cells (CSCs, which may be resistant to these treatments and may be able to form new tumors in the bladder or other organs. Therefore, the unambiguous identification of bladder CSCs and the development of targeted therapies are urgently needed. Nevertheless, it remains unclear where bladder CSCs originate and how they are generated. We review recent studies on bladder CSCs, specifically focusing on their proposed origin and the possible therapeutic options based on the CSC theory.

  4. In vitro identification and characterization of CD133(pos cancer stem-like cells in anaplastic thyroid carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Giovanni Zito

    they might represent putative thyroid cancer stem-like cells. Our in vitro findings might provide new insights for novel therapeutic approaches.

  5. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2013-01-01

    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  6. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells.

    Science.gov (United States)

    Wei, Ming-Feng; Chen, Min-Wei; Chen, Ke-Cheng; Lou, Pei-Jen; Lin, Susan Yun-Fan; Hung, Shih-Chieh; Hsiao, Michael; Yao, Cheng-Jung; Shieh, Ming-Jium

    2014-07-01

    Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported. In this study, CSCs were isolated from colorectal cancer cells using PROM1/CD133 (prominin 1) expression, which is a surface marker commonly found on stem cells of various tissues. We demonstrated that PpIX-mediated PDT induced the formation of autophagosomes in PROM1/CD133(+) cells, accompanied by the upregulation of autophagy-related proteins ATG3, ATG5, ATG7, and ATG12. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of the ATG5 gene substantially triggered apoptosis of PROM1/CD133(+) cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. In conclusion, our results revealed a protective role played by autophagy against PDT in CSCs and indicated that targeting autophagy could be used to elevate the PDT sensitivity of CSCs. These findings would aid in the development of novel therapeutic approaches for CSC treatment.

  7. The nutritional phenome of EMT-induced cancer stem-like cells

    Science.gov (United States)

    Cuyàs, Elisabet; Corominas-Faja, Bruna; Menendez, Javier A.

    2014-01-01

    The metabolic features of cancer stem (CS) cells and the effects of specific nutrients or metabolites on CS cells remain mostly unexplored. A preliminary study to delineate the nutritional phenome of CS cells exploited the landmark observation that upon experimental induction into an epithelial-to-mesenchymal (EMT) transition, the proportion of CS-like cells drastically increases within a breast cancer cell population. EMT-induced CS-like cells (HMLERshEcad) and isogenic parental cells (HMLERshCntrol) were simultaneously screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput metabolic phenotyping platform comprising >350 wells that were pre-loaded with different carbohydrates/starches, alcohols, fatty acids, ketones, carboxylic acids, amino acids, and bi-amino acids. The generation of “phenetic maps” of the carbon and nitrogen utilization patterns revealed that the acquisition of a CS-like cellular state provided an enhanced ability to utilize additional catabolic fuels, especially under starvation conditions. Crucially, the acquisition of cancer stemness activated a metabolic infrastructure that enabled the vectorial transfer of high-energy nutrients such as glycolysis end products (pyruvate, lactate) and bona fide ketone bodies (β-hydroxybutyrate) from the extracellular microenvironment to support mitochondrial energy production in CS-like cells. Metabolic reprogramming may thus constitute an efficient adaptive strategy through which CS-like cells would rapidly obtain an advantage in hostile conditions such as nutrient starvation following the inhibition of tumor angiogenesis. By understanding how specific nutrients could bioenergetically boost EMT-CS-like phenotypes, “smart foods” or systemic “metabolic nichotherapies” may be tailored to specific nutritional CSC phenomes, whereas high-resolution heavy isotope-labeled nutrient tracking may be developed to monitor the spatiotemporal distribution and

  8. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis.

    Science.gov (United States)

    Yang, Nan; Jiang, Yao; Zhang, Huifeng; Sun, Bo; Hou, Chunying; Zheng, Ji; Liu, Yanyong; Zuo, Pingping

    2015-01-01

    Lung cancer is the major cause of cancer related lethality worldwide, and metastasis to distant organs is the pivotal cause of death for the vast majority of lung cancer patients. Accumulated evidence indicates that lung cancer stem-like cells (CSLCs) play important roles in metastagenesis, and these circulating CSLCs may be important targets to inhibit the subsequent metastasis. The present study was aimed at establishing CSLC-targeting polylactic acid (PLA) encapsulated docetaxel nanoparticles for antimetastatic therapy. Cyclic binding peptides were screened on CSLCs in vitro and the peptide CVKTPAQSC exhibiting high specific binding ability to pulmonary adenocarcinoma tissue was subsequently conjugated to the nanoparticles loaded with docetaxel (NDTX). Antimetastatic effect of CSLC-targeting nanoparticles loaded with docetaxel (TNDTX) was evaluated in a nude mouse model of liver metastasis. Results showed that, in the absence of targeting peptide, NDTX hardly exhibited any antimetastatic effect. However, TNDTX treatment significantly decreased the metastatic tumor area in the nude mouse liver. Histopathological and serological results also confirmed the antimetastatic efficacy of TNDTX. To our knowledge, this is the first report on establishing a CSLC-based strategy for lung cancer metastatic treatment, and we hope this will offer a potential therapeutic approach for management of metastatic lung cancer.

  9. HER2-signaling pathway, JNK and ERKs kinases, and cancer stem-like cells are targets of Bozepinib

    Science.gov (United States)

    Ramírez, Alberto; Boulaiz, Houria; Morata-Tarifa, Cynthia; Perán, Macarena; Jiménez, Gema; Picon-Ruiz, Manuel; Agil, Ahmad; Cruz-López, Olga; Conejo-García, Ana; Campos, Joaquín M.; Sánchez, Ana; García, María A.; Marchal, Juan A.

    2014-01-01

    Identification of novel anticancer drugs presenting more than one molecular target and efficacy against cancer stem-like cells (CSCs) subpopulations represents a therapeutic need to combat the resistance and the high risk of relapse in patients. In the present work we show how Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine], a small anti-tumor compound, demonstrated selectivity on cancer cells and showed an inhibitory effect over kinases involved in carcinogenesis, proliferation and angiogenesis. The cytotoxic effects of Bozepinib were observed in both breast and colon cancer cells expressing different receptor patterns. Bozepinib inhibited HER-2 signaling pathway and JNK and ERKs kinases. In addition, Bozepinib has an inhibitory effect on AKT and VEGF together with anti-angiogenic and anti-migratory activities. Moreover, the modulation of pathways involved in tumorigenesis by Bozepinib was also evident in microarrays analysis. Interestingly, Bozepinib inhibited both mamo- and colono-spheres formation and eliminated ALDH+ CSCs subpopulations at a low micromolar range similar to Salinomycin. Bozepinib induced the down-regulation of c-MYC, β-CATENIN and SOX2 proteins and the up-regulation of the GLI-3 hedgehog-signaling repressor. Finally, Bozepinib shows in vivo anti-tumor and anti-metastatic efficacy in xenotransplanted nude mice without presenting sub-acute toxicity. These findings support further studies on the therapeutic potential of Bozepinib in cancer patients. PMID:24946763

  10. Epithelial to Mesenchymal Transition and the Generation of Stem-like Cells in Pancreatic Cancer

    OpenAIRE

    Rhim, Andrew D.

    2013-01-01

    An epithelial-to-mesenchymal transition (EMT) is thought to be an important process in the acquisition of capabilities required for metastasis. Until recently, studies of EMT involved mostly in vitro assays and transplantation experiments of cancer cells that overexpressed known EMT drivers. While valuable, these studies do not allow us to conclude if an EMT sustained under “physiologic conditions” within the tumor microenvironment leads to the myriad changes in phenotype observed in vitro. H...

  11. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Jennifer L., E-mail: jennifer.dembinski@rr-research.no; Krauss, Stefan [Cellular and Genetic Therapy, Department of Microbiology, Cancer Stem Cell Innovation Center (CAST), Oslo University Hospital, Rikshospitalet, Oslo (Norway)

    2010-11-29

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics.

  12. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    International Nuclear Information System (INIS)

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics

  13. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone

    Institute of Scientific and Technical Information of China (English)

    LING Li-jun; WANG Feng; WANG Shui; LIU Xiao-an; SHEN En-chao; DING Qiang; LU Chao; XU Jian; CAO Qin-hong; ZHU Hai-qing

    2008-01-01

    Background A satisfactory animal model of breast cancer metastasizing to bone is unavailable. In this study, we used human breast cancer stem-like cells and human bone to build a novel "human-source" model of human breast cancer skeletal metastasis.Methods Human breast cancer stem-like cells, the CD44+/CD24-/lower subpopulation, was separated and cultured. Before injection with the stem-like cells, mice were implanted with human bone in the right or left dorsal flanks. Animals in Groups A, B, and C were injected with 1x105, 1x106 human breast cancer stem-like cells, and 1x106 parental MDA-MB-231 cells, respectively. A positive control group (D) without implantation of human bone was also injected with 1x106 MDA-MB-231 cells. Immunohistochemistry was performed for determination of CD34, CD105, smooth muscle antibody, CD44, CD24, cytokine, CXC chemokine receptor-4 (CXCR4), and osteopontin (OPN). mRNA levels of CD44, CD24, CXCR4, and OPN in bone metastasis tissues were analyzed by real-time quantitative polymerase chain reaction (PCR). Results Our results demonstrated that cells in implanted human bones of group B, which received 1x106 cancer stem-like cells, stained strongly positive for CD44, CXCR4, and OPN, whereas those of other groups showed no or minimum staining. Moreover, group B had the highest incidence of human bone metastasis (77.8%, P=0.0230) and no accompaniment of other tissue metastasis. The real-time PCR showed an increase of CD44, CXCR4, and OPN mRNA in metastatic bone tissues in group B compared with those of groups C and D, however the expression of CD24 mRNA in group B were the lowest. Conclusions In the novel "human source" model of breast cancer, breast cancer stem-like cells demonstrated a higher human bone-seeking ability. Its mechanism might be related to the higher expressions of CD44, CXCR4, and OPN, and the lower expression of CD24 in breast cancer stem-like cells.

  14. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells.

    Directory of Open Access Journals (Sweden)

    Cristiano Farace

    Full Text Available The presence of cancer stem cells (CSCs or tumor-initiating cells can lead to cancer recurrence in a permissive cell-microenvironment interplay, promoting invasion in glioblastoma (GBM and neuroblastoma (NB. Extracellular matrix (ECM small leucine-rich proteoglycans (SLRPs play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs, SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN and lumican (LUM are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+ CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge

  15. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells.

    Science.gov (United States)

    Farace, Cristiano; Oliver, Jaime Antonio; Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell-microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  16. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yujie Fu

    Full Text Available Resveratrol, a natural polyphenolic compound, is abundantly found in plant foods and has been extensively studied for its anti-cancer properties. Given the important role of CSCs (Cancer Stem Cells in breast tumorigenesis and progression, it is worth investigating the effects of resveratrol on CSCs. The article is an attempt to investigate the effects of resveratrol on breast CSCs. Resveratrol significantly inhibits the proliferation of BCSCs (breast cancer stem-like cells isolated from MCF-7 and SUM159, and decreased the percentage of BCSCs population, consequently reduced the size and number of mammospheres in non-adherent spherical clusters. Accordingly, the injection of resveratrol (100 mg/kg/d in NOD/SCID (nonobese diabetic/severe combined immunodeficient mice effectively inhibited the growth of xenograft tumors and reduced BCSC population in tumor cells. After the reimplantation of primary tumor cells into the secondary mice for 30 d, all 6 control inoculations produced tumors, while tumor cells derived from resveratrol-treated mice only caused 1 tumor of 6 inoculations. Further studies by TEM (Transmission electron microscopy analysis, GFP-LC3-II puncta formation assay and western blot for LC3-II, Beclin1 and Atg 7, showed that resveratrol induces autophagy in BCSCs. Moreover, resveratrol suppresses Wnt/β-catenin signaling pathway in BCSCs; over-expression of β-catenin by transfecting the plasmid markedly reduced resveratrol-induced cytotoxicity and autophagy in BCSCs. Our findings indicated that resveratrol inhibits BCSCs and induces autophagy via suppressing Wnt/β-catenin signaling pathway.

  17. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro.

    Science.gov (United States)

    Chen, Xu; Hu, Chuanzhen; Zhang, Weibin; Shen, Yuhui; Wang, Jun; Hu, Fangqiong; Yu, Pei

    2015-12-01

    Metformin is an oral drug that has been widely used to treat type 2 diabetes mellitus. Interestingly, accumulated evidence indicate that metformin may reduce the risk of cancer in patients with type 2 diabetes and inhibit tumor cell growth and survival in numerous malignancies, including osteosarcoma (OS) cells. In the present study, we aimed to investigate the effects of metformin on the proliferation, migration, invasion, and sphere formation in OS MG63 cells in vitro. Metformin suppressed OS MG63 cell proliferation in a dose- and time-dependent manner and markedly blocked anti-metastatic potentials, migration, and invasion, by downregulating matrix metalloproteinase 2 (MMP2) and MMP9. Besides, we established OS cancer stem-like cell (CSC) model with sarcosphere formation assay and demonstrated that metformin posed damage on CSCs in OS by inhibiting sphere formation and by inducing their stemness loss. The stemness of CSCs in OS such as self-renewal and differentiation potentials was both impaired with a significant decrease of Oct-4 and Nanog activation. Consistent with this, the positive rates of CD90, CD133, and stage-specific embryonic antigen-4 (SSEA-4) were all observed with reductions in response to metformin exposure. In addition, Western blot showed that metformin activated AMPKα at Tyr172, followed by a downregulated phosphorylation of mammalian target of rapamycin (mTOR)/S6 and feedback activation of p-AKT Ser(473) in both OS MG63 cells and CSCs. This indicates that AMPK/mTOR/S6 signaling pathway might be involved in the growth inhibition of both OS MG63 cells and CSCs. These results suggest that metformin, a potential anti-neoplastic agent, might make it a novel therapeutic choice for the treatment of OS in the future.

  18. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    Science.gov (United States)

    Mathis, Sarah E; Alberico, Anthony; Nande, Rounak; Neto, Walter; Lawrence, Logan; McCallister, Danielle R; Denvir, James; Kimmey, Gerrit A; Mogul, Mark; Oakley, Gerard; Denning, Krista L; Dougherty, Thomas; Valluri, Jagan V; Claudio, Pier Paolo

    2014-01-01

    Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs) resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID), which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1) and a 5-month female (patient 2), affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC) greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity of CSLCs as

  19. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    Directory of Open Access Journals (Sweden)

    Sarah E Mathis

    Full Text Available Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID, which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1 and a 5-month female (patient 2, affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity

  20. γ-Secretase Inhibitor, DAPT Inhibits Self-renewal and Stemness Maintenance of Ovarian Cancer Stem-like Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    Li-yu Jiang; Xiao-lei Zhang; Ping Du; Jian-hua Zheng

    2011-01-01

    Objective: The Notch signaling pathway plays an important role in the stem cell signaling network and contributes to tumorigenesis. However, the functions of Notch signaling in ovarian cancer stem cells (OCSCs) are not well understood. We aimed to investigate the effects of Notch blockade on self-renewal and stemness maintenance of OCSCs. Methods: Ovarian cancer stem-like cells were enriched from ovarian cancer cell lines in serum-free medium. A y-secretase inhibitor, (DAPT), was used to block Notch signaling. MTT assays were performed to assess self-renewal and proliferation inhibition, flow cytometry was performed to analyze cell surface marker and immunofluorescence,Western Blot and Real-time RT-PCR assays were performed to detect Oct4 and Sox2 protein and mRNA expression of the Ovarian cancer stem-like cells treated with DAPT. Results: Notch blockade markedly inhibits self-renewal and proliferation of ovarian cancer stem-like cells,significantly downregulates the expression of OCSCs-specific surface markers, and reduces protein and mRNA expression of Oct4 and Sox2 in OCSC-like cells. Conclusion: Our results suggest that Notch signaling is not only critical for the self-renewal and proliferation of OCSCs, but also for the stemness maintenance of OCSCs. The γ-secretase inhibitor is a promising treatment targeting OCSCs.

  1. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells

    International Nuclear Information System (INIS)

    Purpose: The effects of a carbon ion beam and X-rays on human pancreatic cancer stem-like cells were examined from the point of view of clonogenic survival and DNA repair. Materials and methods: Human pancreatic cancer stem-like cells were treated with and without carbon ion and X-ray irradiation, and then colony, spheroid and tumor formation assays as well as γH2AX foci formation assay were performed. Results: The relative biological effectiveness (RBE) values of a carbon ion beam relative to X-ray for the MIA PaCa-2 and BxPc-3 cells at the D10 values were 1.85–2.10. The ability for colony, spheroid formation, and tumorigenicity from cancer stem-like CD44+/CD24+ cells is significantly higher than that from non-cancer stem-like CD44−/CD24−cells. FACS data showed that CD44+/CD24+ cells were more highly enriched after X-rays compared to carbon ion irradiation at isoeffective doses. The RBE values for the carbon ion beam relative to X-ray at the D10 levels for CD44+/CD24+ cells were 2.0–2.19. The number of γH2AX foci in CD44−/CD24− cells was higher than that of CD44+/CD24+ cells after irradiation with either X-ray or carbon ion beam. The number of γH2AX foci in CD44+/CD24+ cells was almost the same in the early time, but it persists significantly longer in carbon ion beam irradiated cells compared to X-rays. Conclusions: Carbon ion beam has superior potential to kill pancreatic cancer stem cell-like cells, and prolonged induction of DNA damage might be one of the pivotal mechanisms of its high radiobiological effects compared to X-rays.

  2. Adult stem-like cells in kidney

    Institute of Scientific and Technical Information of China (English)

    Keiichi Hishikawa; Osamu Takase; Masahiro Yoshikawa; Taro Tsujimura; Masaomi Nangaku; Tsuyoshi Takato

    2015-01-01

    Human pluripotent cells are promising for treatmentfor kidney diseases, but the protocols for derivationof kidney cell types are still controversial. Kidneytissue regeneration is well confirmed in several lowervertebrates such as fish, and the repair of nephronsafter tubular damages is commonly observed after renalinjury. Even in adult mammal kidney, renal progenitorcell or system is reportedly presents suggesting thatadult stem-like cells in kidney can be practical clinicaltargets for kidney diseases. However, it is still unclearif kidney stem cells or stem-like cells exist or not. Ingeneral, stemness is defined by several factors suchas self-renewal capacity, multi-lineage potency andcharacteristic gene expression profiles. The definiteuse of stemness may be obstacle to understand kidneyregeneration, and here we describe the recent broadfindings of kidney regeneration and the cells thatcontribute regeneration.

  3. Isolation of cancer stem like cells from human adenosquamous carcinoma of the lung supports a monoclonal origin from a multipotential tissue stem cell.

    Directory of Open Access Journals (Sweden)

    Jennie P Mather

    Full Text Available There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC is an aggressive type of lung cancer that contains a mixture of cells with squamous (cytokeratin 5+ and adenocarcinoma (cytokeratin 7+ phenotypes. The origin of these mixtures is unclear as squamous carcinomas are thought to arise from basal cells in the upper respiratory tract while adenocarcinomas are believed to form from stem cells in the bronchial alveolar junction. We have isolated and characterized cancer stem-like populations from ASC through application of selective defined culture medium initially used to grow human lung stem cells. Homogeneous cells selected from ASC tumor specimens were stably expanded in vitro. Primary xenografts and metastatic lesions derived from these cells in NSG mice fully recapitulate both the adenocarcinoma and squamous features of the patient tumor. Interestingly, while the CSLC all co-expressed cytokeratins 5 and 7, most xenograft cells expressed either one, or neither, with <10% remaining double positive. We also demonstrated the potential of the CSLC to differentiate to multi-lineage structures with branching lung morphology expressing bronchial, alveolar and neuroendocrine markers in vitro. Taken together the properties of these ASC-derived CSLC suggests that ASC may arise from a primitive lung stem cell distinct from the bronchial-alveolar or basal stem cells.

  4. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3

    Institute of Scientific and Technical Information of China (English)

    Li Ma; Dongmei Lai; Te Liu; Weiwei Cheng; Lihe Guo

    2010-01-01

     One emerging model for the development of drugresistant tumors utilizes a pool of self-renewing malignant progenitors known as cancer stem cells(CSCs)or cancerinitiating cells(CICs).The purpose of this study was to propagate such CICs from the ovarian cancer cell line SKOV3.The SKOV3 sphere cells were selected using 40.0 μmol/l cisplatin and 10.0 μmol/l paclitaxel in serumfree culture system supplemented with epidermal growth factor,basic fibroblast growth factor,leukemia inhibitory factor,and insufin or standard serum-containing system.These cells formed non-adherent spheres under drug selection(cisplatin and paclitaxel)and serum-free culture system.The selected sphere cells are more resistant to cisplatin,paclitaxel,adriamycin,and methotrexate.Importantly,the sphere cells have the properties of se lfrenewal,with high expression of the stem cell genes Nanog,Oct4,sox2,nestin,ABCG2,CD133,and the stem cell factor receptor CD117(c-kit).Consistently,flow cytometric analysis revealed that the sphere cells have a much higher percentage of CD133+/CD117+-positive cells (71%)than differentiated cells(33%).Moreover,the SKOV3 sphere cells are more tumorigenic.Furthermore,cDNA microarray and subsequent ontological analyses revealed that a large proportion of the classified genes were related to angiogenesis,extracellular matrix,integrin-mediated signaling pathway,cell adhesion,and cell proliferation.The subpopulation isolation from the SKOV3 cell line under this culture system offers a suitable in vitro model for studying ovarian CSCs in terms of their survival,self-renewal,and chemoresistance,and for developing therapeutic drugs that specifically interfere with ovarian CSCs.

  5. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2012-09-01

    Full Text Available Abstract Background Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs, Hoechst 33342 dye effluxing side population (SP cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. Results SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549, as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Conclusions Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of

  6. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    International Nuclear Information System (INIS)

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells

  7. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ping, Yu; Liu, Shasha [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); School of Life Sciences, Zhengzhou University, Zhengzhou 450000 (China); Shi, Xiaojuan; Li, Lifeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Liping [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Huang, Lan [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Zhang, Bin [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Sun, Yan [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences (China); and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  8. Elimination of Cancer Stem-Like “Side Population” Cells in Hepatoma Cell Lines by Chinese Herbal Mixture “Tien-Hsien Liquid”

    Directory of Open Access Journals (Sweden)

    Chih-Jung Yao

    2012-01-01

    Full Text Available There are increasing pieces of evidence suggesting that the recurrence of cancer may result from a small subpopulation of cancer stem cells, which are resistant to the conventional chemotherapy and radiotherapy. We investigated the effects of Chinese herbal mixture Tien-Hsien Liquid (THL on the cancer stem-like side population (SP cells isolated from human hepatoma cells. After sorting and subsequent culture, the SP cells from Huh7 hepatoma cells appear to have higher clonogenicity and mRNA expressions of stemness genes such as SMO, ABCG2, CD133, β-catenin, and Oct-4 than those of non-SP cells. At dose of 2 mg/mL, THL reduced the proportion of SP cells in HepG2, Hep3B, and Huh7 cells from 1.33% to 0.49%, 1.55% to 0.43%, and 1.69% to 0.27%, respectively. The viability and colony formation of Huh7 SP cells were effectively suppressed by THL dose-dependently, accompanied with the inhibition of stemness genes, e.g., ABCG2, CD133, and SMO. The tumorigenicity of THL-treated Huh7 SP cells in NOD/SCID mice was also diminished. Moreover, combination with THL could synergize the effect of doxorubicin against Huh7 SP cells. Our data indicate that THL may act as a cancer stem cell targeting therapeutics and be regarded as complementary and integrative medicine in the treatment of hepatoma.

  9. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar

    2011-08-01

    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  10. Cyclin A1 and P450 Aromatase Promote Metastatic Homing and Growth of Stem-like Prostate Cancer Cells in the Bone Marrow.

    Science.gov (United States)

    Miftakhova, Regina; Hedblom, Andreas; Semenas, Julius; Robinson, Brian; Simoulis, Athanasios; Malm, Johan; Rizvanov, Albert; Heery, David M; Mongan, Nigel P; Maitland, Norman J; Allegrucci, Cinzia; Persson, Jenny L

    2016-04-15

    Bone metastasis is a leading cause of morbidity and mortality in prostate cancer. While cancer stem-like cells have been implicated as a cell of origin for prostate cancer metastasis, the pathways that enable metastatic development at distal sites remain largely unknown. In this study, we illuminate pathways relevant to bone metastasis in this disease. We observed that cyclin A1 (CCNA1) protein expression was relatively higher in prostate cancer metastatic lesions in lymph node, lung, and bone/bone marrow. In both primary and metastatic tissues, cyclin A1 expression was also correlated with aromatase (CYP19A1), a key enzyme that directly regulates the local balance of androgens to estrogens. Cyclin A1 overexpression in the stem-like ALDH(high) subpopulation of PC3M cells, one model of prostate cancer, enabled bone marrow integration and metastatic growth. Further, cells obtained from bone marrow metastatic lesions displayed self-renewal capability in colony-forming assays. In the bone marrow, cyclin A1 and aromatase enhanced local bone marrow-releasing factors, including androgen receptor, estrogen and matrix metalloproteinase MMP9 and promoted the metastatic growth of prostate cancer cells. Moreover, ALDH(high) tumor cells expressing elevated levels of aromatase stimulated tumor/host estrogen production and acquired a growth advantage in the presence of host bone marrow cells. Overall, these findings suggest that local production of steroids and MMPs in the bone marrow may provide a suitable microenvironment for ALDH(high) prostate cancer cells to establish metastatic growths, offering new approaches to therapeutically target bone metastases. Cancer Res; 76(8); 2453-64. ©2016 AACR. PMID:26921336

  11. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  12. Calmidazolium chloride inhibits growth of murine embryonal carcinoma cells, a model of cancer stem-like cells.

    Science.gov (United States)

    Lee, Jina; Kim, Min Seong; Kim, Min Aeh; Jang, Yeun Kyu

    2016-09-01

    Calmidazolium chloride (CMZ) is widely used as a calmodulin (CaM) antagonist, but is also known to induce apoptosis in certain cancer cell lines. However, in spite of the importance of cancer stem cells (CSCs) in cancer therapy, the effects of CMZ on CSCs are not yet well understood. We investigated the effects of CMZ on the F9 embryonal carcinoma cell (ECC) line as a surrogate model of CSCs. To avoid bias due to culture conditions, F9 ECCs and E14 embryonic stem cells (ESCs) were grown in the same culture medium. Results obtained using a cell-counting kit showed that CMZ significantly inhibited growth in F9 ECCs compared with growth in E14 ESCs. CMZ also induced apoptosis of F9 ECCs, but not of E14 ESCs, which was associated with caspase-3 activation and an increased fraction of the sub-G1 cell population. In addition, our data revealed that the expression of stemness-related genes including c-Myc was selectively down regulated in CMZ-treated F9 ECCs. Our results suggest that CMZ can inhibit the growth of ECCs by inducing apoptosis and down regulating stemness-related genes, without causing any harm to normal stem cells. These findings indicate a potential application of CMZ in the development of anti-CSC therapeutics. PMID:27247146

  13. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133+ cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  14. Inhibition of CK2α down-regulates Hedgehog/Gli signaling leading to a reduction of a stem-like side population in human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Shulin Zhang

    Full Text Available Protein kinase CK2 is frequently elevated in a variety of human cancers. The Hedgehog (Hh signaling pathway has been implicated in stem cell maintenance, and its aberrant activation has been indicated in several types of cancer, including lung cancer. In this study, we show that CK2 is positively involved in Hh/Gli signaling in lung cancer cell lines A549 and H1299. First, we found a correlation between CK2α and Gli1 mRNA levels in 100 primary lung cancer tissues. Down-regulation of Gli1 expression and transcriptional activity were demonstrated after the silencing of CK2α in lung cancer cells. In addition, CK2α siRNA down-regulated the expression of Hh target genes. Furthermore, two small-molecule CK2α inhibitors led to a dose-dependent inhibition of Gli1 expression and transcriptional activity in lung cancer cells. Reversely, forced over-expression of CK2α resulted in an increase both in Gli1 expression and transcriptional activity in A549 cells. Finally, the inhibition of Hh/Gli by CK2α siRNA led to a reduction of a cancer stem cell-like side population that shows higher ABCG2 expression level. Thus, we report that the inhibition of CK2α down-regulates Hh/Gli signaling and subsequently reduces stem-like side population in human lung cancer cells.

  15. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment

    OpenAIRE

    Bertolini, Giulia; Roz, Luca; Perego, Paola; Tortoreto, Monica; Fontanella, Enrico; Gatti, Laura; Pratesi, Graziella; Fabbri, Alessandra; Andriani, Francesca; Tinelli, Stella; Roz, Elena; Caserini, Roberto; Lo Vullo, Salvatore; Camerini, Tiziana; Mariani, Luigi

    2009-01-01

    The identification of lung tumor-initiating cells and associated markers may be useful for optimization of therapeutic approaches and for predictive and prognostic information in lung cancer patients. CD133, a surface glycoprotein linked to organ-specific stem cells, was described as a marker of cancer-initiating cells in different tumor types. Here, we report that a CD133+, epithelial-specific antigen-positive (CD133+ESA+) population is increased in primary nonsmall cell lung cancer (NSCLC) ...

  16. p38γ MAPK Is a Therapeutic Target for Triple-Negative Breast Cancer by Stimulation of Cancer Stem-Like Cell Expansion.

    Science.gov (United States)

    Qi, Xiaomei; Yin, Ning; Ma, Shao; Lepp, Adrienne; Tang, Jun; Jing, Weiqing; Johnson, Bryon; Dwinell, Michael B; Chitambar, Christopher R; Chen, Guan

    2015-09-01

    Triple-negative breast cancer (TNBC) is highly progressive and lacks established therapeutic targets. p38γ mitogen-activated protein kinase (MAPK) (gene name: MAPK12) is overexpressed in TNBC but how overexpressed p38γ contributes to TNBC remains unknown. Here, we show that p38γ activation promotes TNBC development and progression by stimulating cancer stem-like cell (CSC) expansion and may serve as a novel therapeutic target. p38γ silencing in TNBC cells reduces mammosphere formation and decreases expression levels of CSC drivers including Nanog, Oct3/4, and Sox2. Moreover, p38γ MAPK-forced expression alone is sufficient to stimulate CSC expansion and to induce epithelial cell transformation in vitro and in vivo. Furthermore, p38γ depends on its activity to stimulate CSC expansion and breast cancer progression, indicating a therapeutic opportunity by application of its pharmacological inhibitor. Indeed, the non-toxic p38γ specific pharmacological inhibitor pirfenidone selectively inhibits TNBC growth in vitro and/or in vivo and significantly decreases the CSC population. Mechanistically, p38γ stimulates Nanog transcription through c-Jun/AP-1 via a multi-protein complex formation. These results together demonstrate that p38γ can drive TNBC development and progression and may be a novel therapeutic target for TNBC by stimulating CSC expansion. Inhibiting p38γ activity with pirfenidone may be a novel strategy for the treatment of TNBC.

  17. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin-xing [Division of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn [Division of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Wang, Hao-lu; Wang, Wei; Yin, Xiao-bin; Li, Qi-wei [Division of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Chen, Yu-ying; Yi, Jing [Department of Biochemistry and Molecular Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substrate Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.

  18. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    International Nuclear Information System (INIS)

    Highlights: ► We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. ► SP cells displayed higher proliferation and stronger clonal-generating capability. ► SP cells showed more migratory and invasive abilities. ► SP cells were more resistant and tumorigenic than non-SP counterparts. ► ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substrate Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.

  19. RBP2 induces stem-like cancer cells by promoting EMT and is a prognostic marker for renal cell carcinoma

    Science.gov (United States)

    Zhou, Dahai; Kannappan, Vinodh; Chen, Xiang; Li, Jingqin; Leng, Xuefeng; Zhang, Jinping; Xuan, Shiying

    2016-01-01

    Renal cell carcinoma (RCC), one of the most common kidney cancers, has a poor prognosis. Epithelial to mesenchymal transition (EMT) is a hallmark of carcinoma invasion and metastasis. Several studies have examined the molecular regulation of EMT, but the relationship between histone demethylases and EMT is little understood. In this study, we investigated the role of retinoblastoma-binding protein-2 (RBP2), a histone demethylase that is highly expressed in RCC and is positively correlated with poor RCC prognosis in the regulation of EMT. We found that ectopic overexpression of RBP2 can induce cancer stem cell-like (CSC) phenotypes through EMT in RCC cells by converting them to a more mesenchymal phenotype. This results in increased resistance to apoptosis, which leads to enhanced tumor growth in xenograft models. Together, our data show that RBP2 is an epigenetic regulator that has an important role in the initiation of CSC phenotypes through EMT, leading to tumor progression. RBP2 is also a novel biomolecule for RCC diagnosis, and prognosis and may be a therapeutic target. PMID:27282106

  20. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    Science.gov (United States)

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-01

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor

  1. The Low Chamber Pancreatic Cancer Cells Had Stem-Like Characteristics in Modified Transwell System: Is It a Novel Method to Identify and Enrich Cancer Stem-Like Cells?

    Directory of Open Access Journals (Sweden)

    Dongqing Wang

    2014-01-01

    Full Text Available Cancer stem cells (CSCs or cancer-initiating cells (CICs play an important role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. It is important to construct an effective method to identify and isolate CSCs for biotherapy of cancer. During the past years, many researchers had paid more attention to it; however, this method was still on seeking. Therefore, compared to the former methods that were used to isolate the cancer stem cell, in the present study, we tried to use modified transwell system to isolate and enrich CSCs from human pancreatic cancer cell lines (Panc-1. Our results clearly showed that the lower chamber cells in modified transwell system were easily forming spheres; furthermore, these spheres expressed high levels of stem cell markers (CD133/CD44/CD24/Oct-4/ESA and exhibited chemoresistance, underwent epithelial-to-mesenchymal transition (EMT, and possessed the properties of self-renewal in vitro and tumorigenicity in vivo. Therefore, we speculated that modified transwell assay system, as a rapid and effective method, can be used to isolate and enrich CSCs.

  2. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist.

    Directory of Open Access Journals (Sweden)

    Gérald J Prud'homme

    Full Text Available BACKGROUND: Cancer stem cells (CSCs have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH. CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs. METHODOLOGY/FINDINGS: We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231 mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation. It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast

  3. Synergistic inhibition of characteristics of liver cancer stem-like cells with a combination of sorafenib and 8-bromo-7-methoxychrysin in SMMC-7721 cell line.

    Science.gov (United States)

    Zou, Hui; Cao, Xiaozheng; Xiao, Qiao; Sheng, Xifeng; Ren, Kaiqun; Quan, Meifang; Song, Zhengwei; Li, Duo; Zheng, Yu; Zeng, Wenbin; Cao, Jianguo; Peng, Yaojin

    2016-09-01

    Sorafenib, a multi-kinase inhibitor, has shown its promising antitumor effect in a series of clinical trials, and has been approved as the current standard treatment for advanced hepatocellular carcinoma (HCC). 8-Bromo‑7-methoxychrysin (BrMC) is a novel chrysin synthetic analogue that has been reported to inhibit the growth of various tumor cells and possess properties for targeting liver cancer stem cells (LCSCs) . The present study investigated the synergistic targeting effects on the properties of liver cancer stem-like cells (LCSLCs) by a combination of sorafenib and BrMC in SMMC-7721 cell line. We also investigated whether this effect involves regulation of HIF-1α, Twist and NF-κB protein. We found that the sphere-forming cells (SFCs) from the SMMC‑7721 cells possessed the properties of LCSLCs. Sorafenib diminished the self-renewal capacity and downregulated the expression of stem cell biomarkers (CD133, CD44 and ALDH1) in a dose-dependent manner, while BrMC cooperated with sorafenib to strengthen this inhibition. Moreover, the combination of sorafenib and BrMC led to a remarkable decrease in the cellular migration and invasion, the downregulation of N-cadherin protein and upregulation of E-cadherin protein, and increase of cell apoptosis in LCSLCs. BrMC has a remarkable antagonistic effect on the upregulation of protein expression and DNA binding activity of NF-κB (p65) induced by sorafenib. In addition, our results indicated that the synergistic inhibition of sorafenib and BrMC on the characteristics of LCSLCs involves the downregulated expression of HIF-1α and EMT regulator Twist1. Collectively, the combination therapy of sorafenib and BrMC could be a new and promising therapeutic approach in the treatment of HCC.

  4. Synergistic inhibition of characteristics of liver cancer stem-like cells with a combination of sorafenib and 8-bromo-7-methoxychrysin in SMMC-7721 cell line.

    Science.gov (United States)

    Zou, Hui; Cao, Xiaozheng; Xiao, Qiao; Sheng, Xifeng; Ren, Kaiqun; Quan, Meifang; Song, Zhengwei; Li, Duo; Zheng, Yu; Zeng, Wenbin; Cao, Jianguo; Peng, Yaojin

    2016-09-01

    Sorafenib, a multi-kinase inhibitor, has shown its promising antitumor effect in a series of clinical trials, and has been approved as the current standard treatment for advanced hepatocellular carcinoma (HCC). 8-Bromo‑7-methoxychrysin (BrMC) is a novel chrysin synthetic analogue that has been reported to inhibit the growth of various tumor cells and possess properties for targeting liver cancer stem cells (LCSCs) . The present study investigated the synergistic targeting effects on the properties of liver cancer stem-like cells (LCSLCs) by a combination of sorafenib and BrMC in SMMC-7721 cell line. We also investigated whether this effect involves regulation of HIF-1α, Twist and NF-κB protein. We found that the sphere-forming cells (SFCs) from the SMMC‑7721 cells possessed the properties of LCSLCs. Sorafenib diminished the self-renewal capacity and downregulated the expression of stem cell biomarkers (CD133, CD44 and ALDH1) in a dose-dependent manner, while BrMC cooperated with sorafenib to strengthen this inhibition. Moreover, the combination of sorafenib and BrMC led to a remarkable decrease in the cellular migration and invasion, the downregulation of N-cadherin protein and upregulation of E-cadherin protein, and increase of cell apoptosis in LCSLCs. BrMC has a remarkable antagonistic effect on the upregulation of protein expression and DNA binding activity of NF-κB (p65) induced by sorafenib. In addition, our results indicated that the synergistic inhibition of sorafenib and BrMC on the characteristics of LCSLCs involves the downregulated expression of HIF-1α and EMT regulator Twist1. Collectively, the combination therapy of sorafenib and BrMC could be a new and promising therapeutic approach in the treatment of HCC. PMID:27461522

  5. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina

    2013-01-01

    throughout this thesis project, we suggest that targeting a bCSC population by EGFR and/or Notch inhibition is feasible and future studies might prove if anti-bCSC therapy in combination with conventional therapy can improve the prognosis for GBM patients displaying a specific gene expression profile...... on their resemblance to normal neural stem cells (NSC) and their tumorigenic potential. Like for NSC, the epidermal growth factor receptor (EGFR) and Notch receptor signaling pathways are believed to be important for the maintenance of bCSC. These pathways as such present promising targets in a future anti-bCSC GBM...... for new molecular and cellular targets that can improve the prognosis for GBM patients. One such target is the brain cancer stem-like cells (bCSC) that are believed to be responsible for tumor initiation, progression, treatment resistance and ultimately relapse. bCSC are identified based...

  6. GP73-regulated oncolytic adenoviruses possess potent killing effect on human liver cancer stem-like cells

    Science.gov (United States)

    Zhang, Rong; Ma, Buyun; Liu, Tao; Yang, Yu; Xie, Wenjie; Liu, Xianglei; Huang, Fang; Liu, Tao; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang

    2016-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, are highly metastatic, chemo-resistant and tumorigenic, and are critical for cancer development, maintenance and recurrence. Oncolytic adenovirus could targetedly kill CSCs and has been acted as a promising anticancer agent. Currently, a novel GP73-regulated oncolytic adenovirus GD55 was constructed to specifically treat liver cancer and exhibited obvious cytotoxicity effect. However, there remains to be confirmed that whether GD55 could effectively eliminate liver CSCs. We first utilized the suspension culture to enrich the liver CSCs-like cells, which acquires the properties of liver CSCs in self-renewal, differentiation, quiescence, chemo-resistance and tumorigenicity. The results indicated that GD55 elicited more significant cytotoxicity and stronger oncolytic effect in liver CSC-like cells compared to common oncolytic virus ZD55. Additionally, GD55 possessed the greater efficacy in suppressing the growth of implanted tumors derived from liver CSC-like cells than ZD55. Furthermore, GD55 induced remarkable apoptosis of liver CSC-like cells in vitro and in vivo, and inhibited the propogation of cells and angiogenesis in xenograft tumor tissues. Thus, GD55 may virtually represent an attractive therapeutic agent for targeting liver CSCs to achieve better clinical outcomes for HCC patients. PMID:27121064

  7. miR-17-92/p38α Dysregulation Enhances Wnt Signaling and Selects Lgr6+ Cancer Stem-like Cells during Lung Adenocarcinoma Progression.

    Science.gov (United States)

    Guinot, Anna; Oeztuerk-Winder, Feride; Ventura, Juan-Jose

    2016-07-01

    Defining the molecular and cellular roots of lung cancer relapse after initial treatment remains an imperative to improve survival. Here we report that the lung stem cell marker Lgr6 becomes enriched in non-small cell lung cancer (NSCLC) cells during malignant progression. Lgr6(+) NSCLC cells displayed self-renewal and differentiation properties along with a higher tumorigenic potential. Mechanistic investigations suggested that a defective repression of the miR-17-92 gene cluster was responsible for evolution of a selection for outgrowth of Lgr6(+) NSCLC cells. High levels of expression of miR-19 family members were found to target and downregulate levels of p38α kinase, providing a specific survival signal for Lgr6(+) cells as mediated by increased Wnt/ß-catenin activity. Our results identify a specific stem-like cell population in NSCLC with increased malignant potential, the elucidation of which may enable earlier prognosis and possibly the development of more effective targeted treatments. Cancer Res; 76(13); 4012-22. ©2016 AACR. PMID:27197183

  8. Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature

    OpenAIRE

    D′Amico, L; Patanè, S; Grange, C.; Bussolati, B; Isella, C.; Fontani, L; Godio, L; Cilli, M; D′Amelio, P; Isaia, G; Medico, E; Ferracini, R; Roato, I

    2013-01-01

    Background: Bone metastases represent a common and severe complication in breast cancer, and the involvement of cancer stem cells (CSCs) in the promotion of bone metastasis is currently under discussion. Here, we used a human-in-mice model to study bone metastasis formation due to primary breast CSCs-like colonisation. Methods: Primary CD44+CD24− breast CSCs-like were transduced by a luciferase-lentiviral vector and injected through subcutaneous and intracardiac (IC) routes in non-obese/sever...

  9. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells

    DEFF Research Database (Denmark)

    Schonberg, David L; Miller, Tyler E; Wu, Qiulian;

    2015-01-01

    Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progeni......Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue......-specific progenitors. Direct interrogation of iron uptake demonstrated that CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin, two core iron regulators......, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable...

  10. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    Science.gov (United States)

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care. PMID:26283155

  11. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    Science.gov (United States)

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.

  12. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    International Nuclear Information System (INIS)

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs

  13. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Judy [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada); Tang, Damu, E-mail: damut@mcmaster.ca [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada)

    2014-10-15

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.

  14. Using immunoadjuvant agent glycated chitosan to enhance anti-cancer stem like cell immunity induced by HIFU

    Science.gov (United States)

    Chen, Y.-L.; Chen, W.-R.; Liu, R.-S.; Yang, F.-Y.; Wang, C.-Y.; Lee, Y.-J.

    2013-02-01

    Thermal therapy is based on the observation that tumor cells are sensitive to increased temperature, which is important for tumor control. In this study, the high intensity focused ultrasound (HIFU) system was used to simulate thermal therapy on breast cancer control in the small animal model. Additionally, the immunoadjuvant agent, so called glycated chitosan (GC), was used to enhance the immunological effects on tumor control. The bioluminescent imaging showed that tumor metastasis was apparently suppressed by a combined treatment using HIFU and GC, but not in HIFU or GC alone. Using immunohistochemical (IHC) staining, lung metastasis of 4T1-3R tumor cells further agree the observations obtained from non-invasive in vivo imaging. We also found that plasma collected from mice treated with combined HIFU and GC could significantly suppress the viability of cultured 4T1 cells compared to untreated or single treated group. In summary, these results suggest that the HIFU therapy combined with GC can enhance the tumor immunogenicity and tumor control.

  15. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs)

    Science.gov (United States)

    Fiorillo, Marco; Lamb, Rebecca; Tanowitz, Herbert B.; Cappello, Anna Rita; Martinez-Outschoorn, Ubaldo E.; Sotgia, Federica; Lisanti, Michael P.

    2016-01-01

    Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-μM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/− CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties. PMID:27344270

  16. High expression of CD109 antigen regulates the phenotype of cancer stem-like cells/cancer-initiating cells in the novel epithelioid sarcoma cell line ESX and is related to poor prognosis of soft tissue sarcoma.

    Directory of Open Access Journals (Sweden)

    Makoto Emori

    Full Text Available Epithelioid sarcoma (ES is a relatively rare, highly malignant soft tissue sarcoma. The mainstay of treatment is resection or amputation. Currently other therapeutic options available for this disease are limited. Therefore, a novel therapeutic option needs to be developed. In the present study, we established a new human ES cell line (ESX and analyzed the characteristics of its cancer stem-like cells/cancer-initiating cells (CSCs/CICs based on ALDH1 activity. We demonstrated that a subpopulation of ESX cells with high ALDH1 activity (ALDH(high cells correlated with enhanced clonogenic ability, sphere-formation ability, and invasiveness in vitro and showed higher tumorigenicity in vivo. Next, using gene expression profiling, we identified CD109, a GPI-anchored protein upregulated in the ALDH(high cells. CD109 mRNA was highly expressed in various sarcoma cell lines, but weakly expressed in normal adult tissues. CD109-positive cells in ESX predominantly formed spheres in culture, whereas siCD109 reduced ALDH1 expression and inhibited the cell proliferation in vitro. Subsequently, we evaluated the expression of CD109 protein in 80 clinical specimens of soft tissue sarcoma. We found a strong correlation between CD109 protein expression and the prognosis (P = 0.009. In conclusion, CD109 might be a CSC/CIC marker in epithelioid sarcoma. Moreover, CD109 is a promising prognostic biomarker and a molecular target of cancer therapy for sarcomas including ES.

  17. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer

    OpenAIRE

    Zucha, Muhammad Ary; Wu, Alexander T. H.; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-01-01

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurviva...

  18. Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Qing-Li Kong

    Full Text Available It has been recently reported that a side population of cells in nasopharyngeal carcinoma (NPC displayed characteristics of stem-like cancer cells. However, the molecular mechanisms underlying the modulation of such stem-like cell populations in NPC remain unclear. Epstein-Barr virus was the first identified human tumor virus to be associated with various malignancies, most notably NPC. LMP2A, the Epstein-Barr virus encoded latent protein, has been reported to play roles in oncogenic processes. We report by immunostaining in our current study that LMP2A is overexpressed in 57.6% of the nasopharyngeal carcinoma tumors sampled and is mainly localized at the tumor invasive front. We found also in NPC cells that the exogenous expression of LMP2A greatly increases their invasive/migratory ability, induces epithelial-mesenchymal transition (EMT-like cellular marker alterations, and stimulates stem cell side populations and the expression of stem cell markers. In addition, LMP2A enhances the transforming ability of cancer cells in both colony formation and soft agar assays, as well as the self-renewal ability of stem-like cancer cells in a spherical culture assay. Additionally, LMP2A increases the number of cancer initiating cells in a xenograft tumor formation assay. More importantly, the endogenous expression of LMP2A positively correlates with the expression of ABCG2 in NPC samples. Finally, we demonstrate that Akt inhibitor (V greatly decreases the size of the stem cell side populations in LMP2A-expressing cells. Taken together, our data indicate that LMP2A induces EMT and stem-like cell self-renewal in NPC, suggesting a novel mechanism by which Epstein-Barr virus induces the initiation, metastasis and recurrence of NPC.

  19. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  20. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    International Nuclear Information System (INIS)

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  1. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile.

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2014-01-01

    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA

  2. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2014-01-01

    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like “dirty” drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a “global” targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C

  3. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non–Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Namrata Bora-Singhal

    2015-07-01

    Full Text Available Non–small cell lung cancer (NSCLC patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations.

  4. Sphere-forming-like cells (squamospheres) with cancer stem-like cell traits from VX2 rabbit buccal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yuk-Kwan Chen; Anderson Hsien-Cheng Huang; Li-Min Lin

    2014-01-01

    Previous studies have demonstrated that spheroid type cells grown under suspension culture conditions have cancer stem cell (CSC) traits in a number of cancers, but this phenomenon has not yet been reported in the VX2 rabbit oral cancer model. Hence, this study aimed to study the spheroid cells from VX2 rabbit buccal squamous cell carcinomas (SCCs) and assess their CSC characteristics. Five adult male New Zealand white outbred rabbits were used to generate VX2 rabbit buccal SCC. Sphere-forming cell culture was performed for the VX2 rabbit buccal SCC specimens. The self-renewal capability;cluster of designation (CD) 44, CD133, acetaldehyde dehydrogenase 1 (ALDH1), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1), Nestin, octamer-binding transcription factor 4 (Oct4) and reduced expression protein-1 (Rex-1) expression with reverse transcription-polymerase chain reaction (RT-PCR);chemoresistance to cisplatin and 5-fluorouracil;and in vivo tumorigenicity of spheroid cell transplantation in nude mice were evaluated to determine the CSC characteristics of the resulting spheroid cells. We successfully obtained spheroid cells from the VX2 rabbit OSCC tissues. The spheroid cells exhibited CSC traits, including the expression of CSC and stem cell markers (CD44, Bmi-1, Nestin, Oct4 and Rex-1), capacity to generate new spheroid colonies within 1 week of reseeding from single-dissociated spheroid cells, chemoresistance capacity and generation of tumour xenografts (with histological features resembling those of the original VX2 rabbit buccal SCC) from the transplantation of 103 undifferentiated spheroid cells into nude mice. In summary, we demonstrated that spheroid cells with CSC cell traits can be derived from VX2 rabbit buccal SCCs, indicating that this animal cancer model is applicable for studying CSCs in human oral cancers.

  5. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lee

    Full Text Available Poly (ADP-ribose polymerase-1 (PARP-1 and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60 in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.

  6. EGFR Amplification and Glioblastoma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Katrin Liffers

    2015-01-01

    Full Text Available Glioblastoma (GBM, the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells. GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM.

  7. ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis.

    Directory of Open Access Journals (Sweden)

    Takafumi Kuroda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiating cells (CICs are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1(high population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas by the ALDEFLUOR assay. ALDH1(high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1(high cells. ALDH1(high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.

  8. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy

    OpenAIRE

    Fillmore, Christine M.; Kuperwasser, Charlotte

    2008-01-01

    Introduction The phenotypic and functional differences between cells that initiate human breast tumors (cancer stem cells) and those that comprise the tumor bulk are difficult to study using only primary tumor tissue. We embarked on this study hypothesizing that breast cancer cell lines would contain analogous hierarchical differentiation programs to those found in primary breast tumors. Methods Eight human breast cell lines (human mammary epithelial cells, and MCF10A, MCF7, SUM149, SUM159, S...

  9. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines.

    Science.gov (United States)

    Baharuddin, Puteri; Satar, Nazilah; Fakiruddin, Kamal Shaik; Zakaria, Norashikin; Lim, Moon Nian; Yusoff, Narazah Mohd; Zakaria, Zubaidah; Yahaya, Badrul Hisham

    2016-01-01

    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may

  10. The microRNA miR-34a Inhibits Non-Small Cell Lung Cancer (NSCLC) Growth and the CD44hi Stem-Like NSCLC Cells

    OpenAIRE

    Shi, Yang; Liu, Can; Liu, Xin; Tang, Dean G.; Wang, Junchen

    2014-01-01

    Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate, which is probably due to the existence of lung cancer stem cells (CSCs). CSCs in many tumors including non-small cell lung cancer (NSCLC) have been identified using adhesion molecular CD44, either individually or in combination with other marker(s). MicroRNAs (miRNAs) regulate both normal stem cells and CSCs and dysregulation of miRNAs has been implicated in tumorigenesis. Recently, miR-34a was found...

  11. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    Science.gov (United States)

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg’s theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka’s stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR—the master switch of cellular catabolism and anabolism—in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1–60, and TRA-1–81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44+ and ALDEFLUOR-stained ALDHbright cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic α 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep

  12. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer

    Science.gov (United States)

    Mariya, Tasuku; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Tabuchi, Yuta; Asano, Takuya; Saijo, Hiroshi; Kuroda, Takafumi; Yasuda, Kazuyo; Mizuuchi, Masahito; Saito, Tsuyoshi; Sato, Noriyuki

    2016-01-01

    Epithelial ovarian cancer (EOC) is one of the most lethal cancers in females. Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) have been reported to be origin of primary and recurrent cancers and to be resistant to several treatments. In this study, we identified matrix metalloproteinase-10 (MMP10) is expressed in CSCs/CICs of EOC. An immunohistochemical study revealed that a high expression level of MMP10 is a marker for poor prognosis and platinum resistance in multivariate analysis. MMP10 gene overexpression experiments and MMP10 gene knockdown experiments using siRNAs revealed that MMP10 has a role in the maintenance of CSCs/CICs in EOC and resistance to platinum reagent. Furthermore, MMP10 activate canonical Wnt signaling by inhibiting noncanonical Wnt signaling ligand Wnt5a. Therefore, MMP10 is a novel marker for CSCs/CICs in EOC and that targeting MMP10 is a novel promising approach for chemotherapy-resistant CSCs/CICs in EOC. PMID:27072580

  13. The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells.

    Science.gov (United States)

    Shi, Yang; Liu, Can; Liu, Xin; Tang, Dean G; Wang, Junchen

    2014-01-01

    Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate, which is probably due to the existence of lung cancer stem cells (CSCs). CSCs in many tumors including non-small cell lung cancer (NSCLC) have been identified using adhesion molecular CD44, either individually or in combination with other marker(s). MicroRNAs (miRNAs) regulate both normal stem cells and CSCs and dysregulation of miRNAs has been implicated in tumorigenesis. Recently, miR-34a was found to be downregulated in NSCLC cells but the biological functions of miR-34a in regulating NSCLC cell behavior have not been extensively studied. Here we show that transfection of synthetic miR-34a, but not the negative control (NC) miRNA oligonucleotides (oligos) in three NSCLC cell lines, i.e., A549, H460, and H1299, inhibited their holoclone formation, clonogenic expansion, and tumor regeneration in vivo. Furthermore, the lentiviral vector-mediated overexpression of miR-34a in purified CD44hi H460 cells also inhibited tumor outgrowth. In contrast, expression of miR-34a antagomirs (i.e., antisense oligos) in the CD44lo H460 cells promoted tumor development. Our study shows that miR-34a is a negative regulator of the tumorigenic properties of NSCLC cells and CD44hi lung CSCs, and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against NSCLC. PMID:24595209

  14. The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC growth and the CD44hi stem-like NSCLC cells.

    Directory of Open Access Journals (Sweden)

    Yang Shi

    Full Text Available Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate, which is probably due to the existence of lung cancer stem cells (CSCs. CSCs in many tumors including non-small cell lung cancer (NSCLC have been identified using adhesion molecular CD44, either individually or in combination with other marker(s. MicroRNAs (miRNAs regulate both normal stem cells and CSCs and dysregulation of miRNAs has been implicated in tumorigenesis. Recently, miR-34a was found to be downregulated in NSCLC cells but the biological functions of miR-34a in regulating NSCLC cell behavior have not been extensively studied. Here we show that transfection of synthetic miR-34a, but not the negative control (NC miRNA oligonucleotides (oligos in three NSCLC cell lines, i.e., A549, H460, and H1299, inhibited their holoclone formation, clonogenic expansion, and tumor regeneration in vivo. Furthermore, the lentiviral vector-mediated overexpression of miR-34a in purified CD44hi H460 cells also inhibited tumor outgrowth. In contrast, expression of miR-34a antagomirs (i.e., antisense oligos in the CD44lo H460 cells promoted tumor development. Our study shows that miR-34a is a negative regulator of the tumorigenic properties of NSCLC cells and CD44hi lung CSCs, and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against NSCLC.

  15. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer.

    Science.gov (United States)

    Kim, Ji Young; Cho, Youngkwan; Oh, Eunhye; Lee, Nahyun; An, Hyunsook; Sung, Daeil; Cho, Tae-Min; Seo, Jae Hong

    2016-08-28

    HER2-positive breast tumors are known to harbor cancer stem-like cell populations and are associated with an aggressive tumor phenotype and poor clinical outcomes. Disulfiram (DSF), an anti-alcoholism drug, is known to elicit cytotoxicity in many cancer cell types in the presence of copper (Cu). The objective of the present study was to investigate the mechanism of action responsible for the induction of apoptosis by DSF/Cu and its effect on cancer stem cell properties in HER2-positive breast cancers in vitro and in vivo. DSF/Cu treatment induced apoptosis, associated with a marked decrease in HER2, truncated p95HER2, phospho-HER2, HER3, phospho-HER3 and phospho-Akt levels, and p27 nuclear accumulation. This was accompanied by the eradication of cancer stem-like populations, concomitant with the suppression of aldehyde dehydrogenase 1 (ALDH1) activity and mammosphere formation. DSF administration resulted in a significant reduction in tumor growth and an enhancement of apoptosis, as well as HER2 intracellular domain (ICD) and ALDH1A1 downregulation. Our results demonstrate that DSF/Cu induces apoptosis and eliminates cancer stem-like cells via the suppression of HER2/Akt signaling, suggesting that DSF may be potentially effective for the treatment of HER2-positive cancers. PMID:27238567

  16. Fluorouracil Selectively Enriches Stem-like Leukemic Cells in a Leukemic Cell Line

    Directory of Open Access Journals (Sweden)

    Ling Zhang, Song Yang, Yu-Juan He, Hui-Yuan Shao, Li Wang, Hui Chen, Yu-Jie Gao, Feng-Xian Qing, Xian-Chun Chen, Liu-Yang Zhao, Shi Tan

    2010-01-01

    Full Text Available Recent studies have reported that cancer stem cells (CSCs could be isolated from solid cancer cell lines, in which the purity of CSCs was higher than that from tumor tissues. Separation of CSCs from leukemic cell lines was rarely reported. In this study, CD34+CD38- stem-like cell subsets in human KG-1a leukemic cell line were enriched by cytotoxic agent 5-fluorouracil (5-FU. After 4 days incubation of KG-1a cell line with 5-FU (50 μg/ml, the CD34+CD38- subpopulation of cell lines was enriched more than 10 times. The enriched cells had proliferate potential in vitro, low level of RNA transcription and Hoechst 33342 dye efflux ability, accompanied by high expression of ATP-binding cassette transporter protein ABCG2. Our findings suggest that treatment with 5-FU offers an easy method to isolate leukemic stem-like subpopulation. It can facilitate studies of leukemic stem cell biology and the development of new therapeutic strategies.

  17. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  18. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    International Nuclear Information System (INIS)

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell–like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: ► Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 ► These grow as spheres in serum-free medium and self-renew ► Isolated stem-like cancer cells initiate tumor in immunodeficient mice ► Xenografted tumors are phenotypically similar to the original tumor ► Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential

  19. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030 were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP. MicroRNA-4284 (miR-4284 was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK/stress-activated protein kinase (SAPK, resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an

  20. The T-box transcription factor Brachyury regulates epithelial–mesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells

    International Nuclear Information System (INIS)

    The high frequencies of recurrence and distant metastasis of adenoid cystic carcinoma (AdCC) emphasize the need to better understand the biological factors associated with these outcomes. To analyze the mechanisms of AdCC metastasis, we established the green fluorescence protein (GFP)-transfected subline ACCS-GFP from the AdCC parental cell line and the metastatic ACCS-M GFP line from an in vivo metastasis model. Using these cell lines, we investigated the involvement of the epithelial–mesenchymal transition (EMT) and cancer stem cell (CSCs) in AdCC metastasis by real-time RT-PCR for EMT related genes and stem cell markers. Characteristics of CSCs were also analyzed by sphere-forming ability and tumorigenicity. Short hairpin RNA (shRNA) silencing of target gene was also performed. ACCS-M GFP demonstrated characteristics of EMT and additionally displayed sphere-forming ability and high expression of EMT-related genes (Snail, Twist1, Twist2, Slug, zinc finger E-box binding homeobox 1 and 2 [Zeb1 and Zeb2], glycogen synthase kinase 3 beta [Gsk3β and transforming growth factor beta 2 [Tgf-β2]), stem cell markers (Nodal, Lefty, Oct-4, Pax6, Rex1, and Nanog), and differentiation markers (sex determining region Y [Sox2], Brachyury, and alpha fetoprotein [Afp]). These observations suggest that ACCS-M GFP shows the characteristics of CSCs and CSCs may be involved in the EMT of AdCC. Surprisingly, shRNA silencing of the T-box transcription factor Brachyury (also a differentiation marker) resulted in downregulation of the EMT and stem cell markers. In addition, sphere-forming ability, EMT characteristics, and tumorigenicity were simultaneously lost. Brachyury expression in clinical samples of AdCC was extremely high and closely related to EMT. This finding suggests that regulation of EMT by Brachyury in clinical AdCC may parallel that observed in vitro in this study. The use of a single cell line is a limitation of this study. However, parallel data from in vitro and

  1. IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation

    OpenAIRE

    Chen, Yuhchyau; Zhang, Fuquan; Tsai, Ying; Yang, Xiadong; Yang, Li; Duan, Shanzhou; Wang, Xin; Keng, Peter; Lee, Soo Ok

    2015-01-01

    Background Local tumor control by standard fractionated radiotherapy (RT) remains poor because of tumor resistance to radiation (radioresistance). It has been suggested that cancer stem cells (CSCs) are more radioresistant than non-CSCs. In previous studies, we have shown IL-6 promotes self-renewal of CD133+ CSC-like cells. In this study, we investigated whether IL-6 plays roles not only in promoting self-renewal of CD133+ cells after radiation, but also in conferring radioresistance of CD133...

  2. CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells

    Science.gov (United States)

    Liang, Shujing; Li, Chao; Zhang, Chunlei; Chen, Yunsheng; Xu, Liang; Bao, Chenchen; Wang, Xiaoyong; liu, Gang; zhang, Fengchun; Cui, Daxiang

    2015-01-01

    Developing safe and effective nanoprobes for targeted imaging and selective therapy of gastric cancer stem cells (GCSCs) has become one of the most promising anticancer strategies. Herein, gold nanostars-based PEGylated multifunctional nanoprobes were prepared with conjugated CD44v6 monoclonal antibodies (CD44v6-GNS) as the targeting ligands. It was observed that the prepared nanoprobes had high affinity towards GCSC spheroid colonies and destroyed them completely with a low power density upon near-infrared (NIR) laser treatment (790 nm, 1.5 W/cm2, 5 min) in vitro experiment. Orthotopic and subcutaneous xenografted nude mice models of human gastric cancer were established. Subsequently, biodistribution and photothermal therapeutic effects after being intravenously injected with the prepared nanoprobes were assessed. Photoacoustic imaging revealed that CD44v6-GNS nanoprobes could target the gastric cancer vascular system actively at 4 h post-injection, while the probes inhibited tumor growth remarkably upon NIR laser irradiation, and even extended survivability of the gastric cancer-bearing mice. The CD44v6-GNS nanoprobes exhibited great potential for applications of gastric cancer targeted imaging and photothermal therapy in the near future. PMID:26155313

  3. Efficient enrichment of hepatic cancer stem-like cells from a primary rat HCC model via a density gradient centrifugation-centered method.

    Directory of Open Access Journals (Sweden)

    Wei-hui Liu

    Full Text Available BACKGROUND: Because few definitive markers are available for hepatic cancer stem cells (HCSCs, based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs. METHODOLOGY: After hepatic tumor cells (HTCs were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC and purified via differential trypsinization and differential attachment (DTDA, they were separated into four fractions using percoll continuous gradient centrifugation (PCGC and sequentially designated as fractions I-IV (FI-IV. Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction. FINDINGS: As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI-FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133 than cells from other fractions (P<0.01. Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×10(4 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice. CONCLUSIONS: Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.

  4. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway.

    Science.gov (United States)

    Chang, Yun-Li; Zhou, Pei-Jie; Wei, Lianzi; Li, Wang; Ji, Zhongzhong; Fang, Yu-Xiang; Gao, Wei-Qiang

    2015-09-15

    Up to now, the molecular mechanisms underlying the stemness of prostate cancer stem cells (PCSCs) are still poorly understood. In this study, we demonstrated that microRNA-7 (miR-7) appears to be a novel tumor-suppressor miRNA, which abrogates the stemness of PCSCs and inhibits prostate tumorigenesis by suppressing a key stemness factor KLF4. MicroRNA-7 is down-regulated in prostate cancer cells compared to non-tumorigenic prostate epithelial cells. Restoration of miR-7 suppresses the expression of the stemness factor KLF4 in PCSCs and inhibits prostate tumorigenesis both in vitro and in vivo. Interestingly, the suppression of the stemness of PCSCs by miR-7 is sustained for generations in xenografts. Analysis of clinical samples also revealed a negative correlation between miR-7 expression and prostate tumor progression. Mechanistically, overexpression of miR-7 may lead to a cell cycle arrest but not apoptosis, which seems achieved via suppressing the KLF4/PI3K/Akt/p21 pathway. This study identifies miR-7 as a suppressor of PCSCs' stemness and implicates its potential application for PCa therapy.

  5. Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype

    Directory of Open Access Journals (Sweden)

    Berry Nicholas B

    2008-11-01

    Full Text Available Abstract Aggressive epithelial ovarian cancer (EOC is genetically and epigenetically distinct from normal ovarian surface epithelial cells (OSE and early neoplasia. Co-expression of epithelial and mesenchymal markers in EOC suggests an involvement of epithelial-mesenchymal transition (EMT in cancer initiation and progression. This phenomenon is often associated with acquisition of a stem cell-like phenotype and chemoresistance that correlate with the specific gene expression patterns accompanying transformation, revealing a plasticity of the ovarian cancer cell genome during disease progression. Differential gene expressions between normal and transformed cells reflect the varying mechanisms of regulation including genetic changes like rearrangements within the genome, as well as epigenetic changes such as global genomic hypomethylation with localized promoter CpG island hypermethylation. The similarity of gene expression between ovarian cancer cells and the stem-like ovarian cancer initiating cells (OCIC are surprisingly also correlated with epigenetic mechanisms of gene regulation in normal stem cells. Both normal and cancer stem cells maintain genetic flexibility by co-placement of activating and/or repressive epigenetic modifications on histone H3. The co-occupancy of such opposing histone marks is believed to maintain gene flexibility and such bivalent histones have been described as being poised for transcriptional activation or epigenetic silencing. The involvement of both-microRNA (miRNA mediated epigenetic regulation, as well as epigenetic-induced changes in miRNA expression further highlight an additional complexity in cancer stem cell epigenomics. Recent advances in array-based whole-genome/epigenome analyses will continue to further unravel the genomes and epigenomes of cancer and cancer stem cells. In order to illuminate phenotypic signatures that delineate ovarian cancer from their associated cancer stem cells, a priority must lie

  6. Glioblastoma stem-like cells give rise to tumour endothelium

    NARCIS (Netherlands)

    R. Wang; K. Chadalavada; J. Wilshire; U. Kowalik; K.E. Hovinga; A. Geber; B. Fligelman; M. Leversha; C. Brennan; V. Tabar

    2010-01-01

    Glioblastoma (GBM) is among the most aggressive of human cancers(1). A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia(2). Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poo

  7. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells.

    Science.gov (United States)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(d,l-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ∼500 times of enhancement compared to the simple mixture of the two drugs.

  8. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells

    Science.gov (United States)

    Shen, Hongxin; Shi, Sanjun; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2015-01-01

    Successful anticancer chemotherapy requires targeting tumors efficiently and further potential to eliminate cancer stem cell (CSC) subpopulations. Since CD44 is present on many types of CSCs, and it binds specially to hyaluronic acid (HA), we tested whether coating solid lipid nanoparticles with hyaluronan (HA-SLNs)would allow targeted delivery of paclitaxel (PTX) to CD44-overexpressing B16F10 melanoma cells. First, we developed a model system based on melanoma stem-like cells for experiments in vitro and in mouse xenografts, and we showed that cells expressing high levels of CD44 (CD44+) displayed a strong CSC phenotype while cells expressing low levels of CD44 (CD44-) did not. This phenotype included sphere and colony formation, higher proportion of side population cells, expression of CSC-related markers (ALDH, CD133, Oct-4) and tumorigenicity in vivo. Next we showed that administering PTX-loaded HA-SLNs led to efficient intracellular delivery of PTX and induced substantial apoptosis in CD44+ cells in vitro. In the B16F10-CD44+ lung metastasis model, PTX-loaded HA-SLNs targeted the tumor-bearing lung tissues well and subsequently exhibited significant antitumor effects with a relative low dose of PTX, which provided significant survival benefit without evidence of adverse events. These findings suggest that the HA-SLNs targeting system shows promise for enhancing cancer therapy. PMID:25897340

  9. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming

    2014-01-28

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells. © 2014 Springer Science+Business Media.

  10. Antiproliferative Effect of Androgen Receptor Inhibition in Mesenchymal Stem-Like Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Aiyu Zhu

    2016-03-01

    Full Text Available Background/Aims: Androgen receptor (AR, a steroid hormone receptor, has recently emerged as prognostic and treatment-predictive marker in breast cancer. Previous studies have shown that AR is widely expressed in up to one-third of triple-negative breast cancer (TNBC. However, the role of AR in TNBC is still not fully understood, especially in mesenchymal stem-like (MSL TNBC cells. Methods: MSL TNBC MDA-MB-231 and Hs578T breast cancer cells were exposed to various concentration of agonist 5-α-dihydrotestosterone (DHT or nonsteroidal antagonist bicalutamide or untreated. The effects of AR on cell viability and apoptosis were determined by MTT assay, cell counting, flow cytometry analysis and protein expression of p53, p73, p21 and Cyclin D1 were analyzed by western blotting. The bindings of AR to p73 and p21 promoter were detected by ChIP assay. MDA-MB-231 cells were transplanted into nude mice and the tumor growth curves were determined and expression of AR, p73 and p21 were detected by Immunohistochemistry (IHC staining after treatment of DHT or bicalutamide. Results: We demonstrate that AR agonist DHT induces MSL TNBC breast cancer cells proliferation and inhibits apoptosis in vitro. Similarly, activated AR significantly increases viability of MDA-MB-231 xenografts in vivo. On the contrary, AR antagonist, bicalutamide, causes apoptosis and exerts inhibitory effects on the growth of breast cancer. Moreover, DHT-dependent activation of AR involves regulation in the cell cycle related genes, including p73, p21 and Cyclin D1. Further investigations indicate the modulation of AR on p73 and p21 mediated by direct binding of AR to their promoters, and DHT could make these binding more effectively. Conclusions: Our study demonstrates the tumorigenesis role of AR and the inhibitory effect of bicalutamide in AR-positive MSL TNBC both in vitro and in vivo, suggesting that AR inhibition could be a potential therapeutic approach for AR-positive TNBC

  11. Polysome Profiling Links Translational Control to the Radioresponse of Glioblastoma Stem-like Cells.

    Science.gov (United States)

    Wahba, Amy; Rath, Barbara H; Bisht, Kheem; Camphausen, Kevin; Tofilon, Philip J

    2016-05-15

    Changes in polysome-bound mRNA (translatome) are correlated closely with changes in the proteome in cells. Therefore, to better understand the processes mediating the response of glioblastoma to ionizing radiation (IR), we used polysome profiling to define the IR-induced translatomes of a set of human glioblastoma stem-like cell (GSC) lines. Although cell line specificity accounted for the largest proportion of genes within each translatome, there were also genes that were common to the GSC lines. In particular, analyses of the IR-induced common translatome identified components of the DNA damage response, consistent with a role for the translational control of gene expression in cellular radioresponse. Moreover, translatome analyses suggested that IR enhanced cap-dependent translation processes, an effect corroborated by the finding of increased eIF4F-cap complex formation detected after irradiation in all GSC lines. Translatome analyses also predicted that Golgi function was affected by IR. Accordingly, Golgi dispersal was detected after irradiation of each of the GSC lines. In addition to the common responses seen, translatome analyses predicted cell line-specific changes in mitochondria, as substantiated by changes in mitochondrial mass and DNA content. Together, these results suggest that analysis of radiation-induced translatomes can provide new molecular insights concerning the radiation response of cancer cells. More specifically, they suggest that the translational control of gene expression may provide a source of molecular targets for glioblastoma radiosensitization. Cancer Res; 76(10); 3078-87. ©2016 AACR.

  12. Osteopontin Overexpression Induced Tumor Progression and Chemoresistance to Oxaliplatin through Induction of Stem-Like Properties in Human Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Lui Ng

    2015-01-01

    Full Text Available Colorectal cancer (CRC is one of the most common and fatal malignancies worldwide. The poor prognosis of colorectal cancer patients is due to development of chemoresistance and cancer metastasis. Recently osteopontin (OPN has been associated with stem-like properties in colorectal cancer. This study further examined the clinicopathological significance of OPN in CRC and its effect on chemoresistance and transcription of stem cell markers. We examined the transcription level of OPN in 84 CRC patients and correlated the expression with their clinicopathological parameters. The associations of OPN overexpression with transcription of stem cell markers and response to chemotherapy in DLD1-OPN overexpressing clones and CRC patients were also investigated. Our results showed that OPN was significantly overexpressed in CRC, and its overexpression correlated with tumor stage and poor prognosis. Overexpression of CRC induced OCT4 and SOX2 expression in vitro and correlated with SOX2 overexpression in CRC patients. In addition, DLD1-OPN overexpressing cells showed enhanced ability to survive upon oxaliplatin treatment, and OPN expression was higher in CRC patients who were resistant to oxaliplatin-involved chemotherapy treatment. Thus, CRC cells overexpressing OPN demonstrated stem-like properties and OPN inhibition is a potential therapeutic approach to combat CRC progression and chemoresistance.

  13. 甲状腺癌中类干细胞的侧群细胞的分离及鉴定%Isolation and characterization of a stem-like side population in thyroid cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    张菀姣; 兰玲; 郑旭琴; 武晓泓; 徐宽枫; 蒋琳; 唐伟; 崔岱

    2012-01-01

    目的:研究不同甲状腺肿瘤细胞中是否存在具备干细胞特性的侧群(side population,SP)细胞,同时比较侧群细胞和非侧群(non-SP)细胞生长、成瘤及侵袭性的差异.方法:以多种人甲状腺未分化癌细胞株为对象,利用干细胞高表达ABCG2转运体,可将荧光染料Hoechst泵出胞外的特性,运用双波长流式细胞仪从不同的甲状腺肿瘤细胞株中分选出具有干细胞特性的侧群细胞,进而通过半定量PCR及免疫荧光染色比较侧群和非侧群细胞的干细胞标志OCT4及肿瘤耐药基因ABCG2、MDR1表达的情况,采用克隆形成率及细胞侵袭迁移实验比较两组细胞群的克隆形成能力和侵袭转移能力.结果:人甲状腺未分化癌细胞株中存在具有干细胞特性的侧群细胞,该群细胞高表达干细胞标志OCT4及肿瘤耐药基因ABCG2和MDR1;同时在体外培养中,此侧群细胞可产生侧群细胞和非侧群细胞;侧群细胞比非侧群细胞具有更强的体外克隆形成能力和侵袭转移能力.结论:甲状腺肿瘤细胞中存在具有干细胞特性的侧群细胞,此群细胞可生成普通的瘤体细胞,提示该群细胞可能是肿瘤耐药和复发的根源.%Objective: To identify the presence of cancer stem-like cells (side population,SP) in thyroid cancer and compare the growth pattern,clonogenity and invasive potential between cancer SP and non-SP cells. Methods; Three different human anaplastic thyroid cancer cell lines(including HTh74,SW1736,and C643) were stained with Hoechst 33342 and sorted for a small fraction of SP by fluorescence-activated cell sorting (FACS). The gene expression of stem cell marker-0ct4 (oetamer-binding transcription factor 4) and genes related to cancer resistance and relapse-ABCG2(ATP-binding cassette superfamily G member 2) and MDR1 (mullidrug resistance 1) in SP and non-SP cells was compared by performing RT-PCH and immunofluorescenl staining. Colony formation assay was performed to

  14. Big bang theory of stem-like T cells confirmed

    OpenAIRE

    Restifo, Nicholas P

    2014-01-01

    In this issue of Blood, Stemberger et al show that the progeny of a single CD62Lhi cell can provide protection against bacterial challenge and that ultra-low doses of cytomegalovirus (CMV)-specific CD8+ T cells can expand greatly in humans.1

  15. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    International Nuclear Information System (INIS)

    Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of

  16. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    Directory of Open Access Journals (Sweden)

    Esser Norbert

    2011-06-01

    Full Text Available Abstract Background and Purpose Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR. Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Materials and methods Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF and fibroblast growth factor-2 (FGF-2. Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. Results SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Conclusions Our results suggest the importance of delayed

  17. Identification of quiescent, stem-like cells in the distal female reproductive tract.

    Directory of Open Access Journals (Sweden)

    Yongyi Wang

    Full Text Available In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs. To this aim, transgenic mice expressing histone2B-GFP (H2B-GFP in a Tet-inducible fashion were administered doxycycline (pulse which was thereafter withdrawn from the drinking water (chase. Over time, dividing cells progressively loose GFP signal whereas infrequently dividing cells retain H2B-GFP expression. We evaluated H2B-GFP retaining cells at different chase time points and identified long-term (LT; >12 weeks LRCs. The LT-LRCs are negative for estrogen receptor-α and express low levels of progesterone receptors. LRCs sorted by FACS are able to form spheroids capable of self-renewal and differentiation. Upon serum stimulation spheroid cells are induced to differentiate and form glandular structures which express markers of mature műllerian epithelial cells. Overall, the results indicate that quiescent cells located in the distal oviduct have stem-like properties and can differentiate into distinct cell lineages specific of endometrium, proximal and distal oviduct. Future lineage-tracing studies will elucidate the role played by these cells in homeostasis, tissue injury and cancer of the female reproductive tract in the mouse and eventually in man.

  18. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells.

    Directory of Open Access Journals (Sweden)

    Maria Zeniou

    Full Text Available Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM, the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.

  19. Molecular and ultra-structural insight into the enrichment of Glioblastoma and Neuroblastoma stem-like cells

    OpenAIRE

    Farace, Cristiano

    2014-01-01

    Cancer stem cells (CSC) and tumor micro-environments play a significant role in malignant cancer initiation and progression. Metastasis in vivo involves a stem-like, epithelial-mesenchymal transition (EMT). Serum-free cultures of 3-D neurospheres represent the gold standard in CSC-like enrichment. The aim of the thesis was to explore the induction of stem-like phenotypes in Glioblastoma (GBM) and Neuroblastoma (NBL) cell lines, in order to assess common stem/oncogenic related marks. CSC chara...

  20. Polysome Profiling Links Translational Control to the Radioresponse of Glioblastoma Stem-like Cells.

    Science.gov (United States)

    Wahba, Amy; Rath, Barbara H; Bisht, Kheem; Camphausen, Kevin; Tofilon, Philip J

    2016-05-15

    Changes in polysome-bound mRNA (translatome) are correlated closely with changes in the proteome in cells. Therefore, to better understand the processes mediating the response of glioblastoma to ionizing radiation (IR), we used polysome profiling to define the IR-induced translatomes of a set of human glioblastoma stem-like cell (GSC) lines. Although cell line specificity accounted for the largest proportion of genes within each translatome, there were also genes that were common to the GSC lines. In particular, analyses of the IR-induced common translatome identified components of the DNA damage response, consistent with a role for the translational control of gene expression in cellular radioresponse. Moreover, translatome analyses suggested that IR enhanced cap-dependent translation processes, an effect corroborated by the finding of increased eIF4F-cap complex formation detected after irradiation in all GSC lines. Translatome analyses also predicted that Golgi function was affected by IR. Accordingly, Golgi dispersal was detected after irradiation of each of the GSC lines. In addition to the common responses seen, translatome analyses predicted cell line-specific changes in mitochondria, as substantiated by changes in mitochondrial mass and DNA content. Together, these results suggest that analysis of radiation-induced translatomes can provide new molecular insights concerning the radiation response of cancer cells. More specifically, they suggest that the translational control of gene expression may provide a source of molecular targets for glioblastoma radiosensitization. Cancer Res; 76(10); 3078-87. ©2016 AACR. PMID:27005284

  1. Transforming Growth Factor-beta signal responding in hepatic stem-like cells

    Institute of Scientific and Technical Information of China (English)

    CUI Wei

    2008-01-01

    Objective To investigate the effects of TGF-β on the expressions and distribution of phosphorated Smad2/3 and Smad7 in hepatic stem-like cells. Methods Using immunogold transmission electron microscopy, we observed the expressions and distribution of phosphorated Smad2/3, and Smad7 before and after TGF-β1 (5 ng·mL-1) treatment for 4, 8, and 24 hours in hepatic stem-like cells (WB cells). In addition, we also detected the apoptosis status after TGF-β1 stimulation by transmission electron microscopy. Results TGF-β1 stimulation can result in expression increasing of phosphorated Smad2/3 in WB cells, and reach the peak at 8 h, especially in the nuclear. After treatment with TGF-β1 for 24 h, the nuclear expression of phosphorated Smad2/3 gradually decreased. Additionally, we found that TGF-β1 treatment also contributed to increasing in protein level and alteration in cellular distribution of Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. Furthermore, we observed apoptotic body in WB cells after TGF-β1 treatment for 8 h. Conclusions These results indicate that TGF-β stimulation can alter the expression and cellular distribution of phosphorated Srnad2/3 and Smad7 which are its downstream molecular, suggesting hepatic stem-like cells own intact responding to TGF-β.

  2. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    DEFF Research Database (Denmark)

    Lin, Xue; Li, Jian; Yin, Guangliang;

    2013-01-01

    Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal for es...

  3. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    OpenAIRE

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSC...

  4. FoxM1 Drives a Feed-forward STAT3-activation Signaling Loop that Promotes the Self-renewal and Tumorigenicity of Glioblastoma Stem-like Cells

    Science.gov (United States)

    Gong, Ai-hua; Wei, Ping; Zhang, Sicong; Yao, Jun; Yuan, Ying; Zhou, Ai-dong; Lang, Frederick F.; Heimberger, Amy B.; Rao, Ganesh; Huang, Suyun

    2015-01-01

    The growth factor PDGF controls the development of glioblastoma (GBM) but its contribution to the function of GBM stem-like cells (GSC) has been little studied. Here we report that the transcription factor FoxM1 promotes PDGFA-STAT3 signaling to drive GSC self-renewal and tumorigenicity. In GBM we found a positive correlation between expression of FoxM1 and PDGF-A. In GSC and mouse neural stem cells, FoxM1 bound to the PDGF-A promoter to upregulate PDGF-A expression, acting to maintain the stem-like qualities of GSC in part through this mechanism. Analysis of the human cancer genomic database TCGA revealed that GBM express higher levels of STAT3, a PDGF-A effector signaling molecule, as compared with normal brain. FoxM1 regulated STAT3 transcription through interactions with the β-catenin/TCF4 complex. FoxM1 deficiency inhibited PDGF-A and STAT3 expression in neural stem cells and GSC, abolishing their stem-like and tumorigenic properties. Further mechanistic investigations defined a FoxM1-PDGFA-STAT3 feed-forward pathway that was sufficient to confer stem-like properties to glioma cells. Collectively, our findings showed how FoxM1 activates expression of PDGF-A and STAT3 in a pathway required to maintain the self-renewal and tumorigenicity of glioma stem-like cells. PMID:25832656

  5. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties.

    Directory of Open Access Journals (Sweden)

    Lenora Ann Pluchino

    Full Text Available Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and benzo[a]pyrene (B[a]P, and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.

  6. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non–Small Cell Lung Cancer 1

    OpenAIRE

    Namrata Bora-Singhal; Deepak Perumal; Jonathan Nguyen; Srikumar Chellappan

    2015-01-01

    Non–small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embr...

  7. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  8. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo.

    Science.gov (United States)

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β₁-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in Ras(G12V)-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  9. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation

    OpenAIRE

    LING, GENG-QIANG; LIU, YI-JING; Ke, Yi-Quan; Chen, Lei; JIANG, XIAO-DAN; JIANG, CHUAN-LU; Ye, Wei

    2015-01-01

    The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the present study was to investigate the effects of ATRA on the VM formation ability of U87 glioblastoma SL...

  10. Biological behaviors of lung cancer stem-like cells from human large-cell lung cancer cell line H460%大细胞肺癌H460细胞系肿瘤干细胞样细胞生物学特性

    Institute of Scientific and Technical Information of China (English)

    刘攀; 周向东

    2014-01-01

    目的利用无血清条件悬浮培养人大细胞肺癌H460系,从中分离到肺癌干细胞并进行其生物学特性研究。方法无血清条件培养法悬浮培养H460细胞形成悬浮细胞球,通过qPCR、Western blot、流式细胞术、平皿克隆形成等实验,比较H460细胞和H460细胞球中干性相关分子表达水平及细胞增殖能力强弱,并利用裸鼠移植瘤形成实验研究肺癌细胞干细胞球的体内生物学特性。结果利用无血清条件培养法成功从H460细胞中分离出悬浮生长的肿瘤干细胞样细胞,其增殖能力强于H460贴壁细胞(P<0.05),干细胞相关转录因子Sox2、Oct4和Nanog表达在mRNA及蛋白水平均有增加(尤以Nanog提升水平明显(P<0.01)),细胞球在裸鼠体内具有较强成瘤能力。结论无血清条件培养法可以有效富集到H460细胞系中的肺癌干细胞,Nanog可能与H460细胞系中CSLCs的干性特征维持相关。%Objective To isolate lung cancer stem-like cells (LCSCs) from human large-cell lung cancer cell line NCI-H460 (H460) and explore their biological characteristics. Methods H460 cells were cultured in serum-free medium in the presence of specific growth factors. Quantitative PCR (qPCR), flow cytometry and colony formation assay were performed to characterize the stemness of H460 spheres. Adherent H460 cells and H460 cell spheres were inoculated subcutaneously in nude mice and the tumor growth was assessed. Results The isolated LCSCs from H460 cells in serum-free medium grew as floating cell spheres and exhibited stronger proliferative activity than H460 cells. Compared with H460 cells, H460 cells spheres showed higher expressions of stem cell markers Sox2, Oct4, and especially Nanog, and possessed a stronger tumorgenicity in nude mice. Conclusion The serum-free culture system can effectively enrich lung cancer stem cells from human lung cancer stem cell line H460, and the high expression of Nanog may

  11. Large cell anaplastic medulloblastoma metastatic to the scalp: tumor and derived stem-like cells features

    International Nuclear Information System (INIS)

    Extraneural metastases (ENM) rarely occur in medulloblastoma (MBL) patients and only few cases of subcutaneous localizations have been described. ENM indicate an aggressive disease associated with a worse prognosis. The characterization of metastatic tumours might be useful to understand their pathogenesis and to identify the most appropriate therapeutic strategies. We present the case of a child with Large Cell Anaplastic (LC/A) MBL, who developed multiple subcutaneous metastases in the scalp area after a ventriculo-peritoneal shunting procedure. The disease rapidly progressed and the child died despite chemotherapy and primary tumour surgical debulking. We molecularly classified the tumour as a group 3 MBL; in addition, we derived stem-like cells (SLC) from a metastatic lesion. Primary tumour, metastases and SLC were further analysed, particularly focusing on features linked to the cutaneous dissemination. Indeed, molecules involved in angiogenesis, cell invasion and epidermal growth factor signalling resulted highly expressed. The present report describes a very rare case of subcutaneous metastatic MBL. The tumour, metastases and SLC have been clinically, pathologically and molecularly characterized. Our case is an example of multidisciplinary approach aiming to characterize MBL aggressive behaviour

  12. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    Directory of Open Access Journals (Sweden)

    Hyunsook An

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC; however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705. Furthermore, interleukin-6 (IL-6-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  13. Targeted disruption of the JAK2/STAT3 pathway in combination with systemic administration of paclitaxel inhibits the priming of ovarian cancer stem-like cells leading to a reduced tumor burden

    Directory of Open Access Journals (Sweden)

    Khalid eAbubaker

    2014-04-01

    Full Text Available Chemotherapy resistance associated with recurrent disease is the major cause of poor survival of ovarian cancer patients. We have recently demonstrated activation of the JAK2/STAT3 pathway and the enhancement of a cancer stem cell (CSC-like phenotype in ovarian cancer cells treated in vitro with chemotherapeutic agents. To elucidate further these mechanisms in vivo, we used a two tiered paclitaxel treatment approach in nude mice inoculated with ovarian cancer cells. In the first approach, we demonstrate that a single intraperitoneal administration of paclitaxel in mice 7 days after subcutaneous transplantation of the HEY ovarian cancer cell line resulted in a significant increase in the expression of CA125, Oct4 and CD117 in mice xenografts compared to control mice xenografts which did not receive paclitaxel. In the second approach, mice were administered once weekly with paclitaxel and/or a daily dose of the JAK2 specific inhibitor, CYT387, over four weeks. Mice receiving paclitaxel only demonstrated a significant decrease in tumor volume compared to control mice. At the molecular level, mouse tumors remaining after paclitaxel administration showed a significant increase in the expression of Oct4 and CD117 coinciding with a significant activation of the JAK2/STAT3 pathway compared to control tumors. The addition of CYT387 with paclitaxel resulted in the suppression of JAK2/STAT3 activation and abrogation of Oct4 and CD117 expression in mouse xenografts. This coincided with significantly smaller tumors in mice administered CYT387 in addition to paclitaxel, compared to the control group and the group of mice receiving paclitaxel only. These data suggest that the systemic administration of paclitaxel enhances Oct4 and CD117 associated CSC-like marker expression in surviving cancer cells in vivo, which can be suppressed by the addition of the JAK2 specific inhibitor CYT387, leading to a significantly smaller tumor burden. These novel findings have

  14. Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance

    International Nuclear Information System (INIS)

    Subsets of cells with stem-like properties have been previously isolated from human epithelial cancers and their resistance to apoptosis-inducing stimuli has been related to carcinoma recurrence and treatment failure. The aim of this study was to investigate the mechanisms of resistance to apoptosis-inducing agents of cells with stem-like properties in both normal and malignant human epithelia. Cells isolated from fresh human head and neck carcinomas (n = 11), cell lines derived from head and neck, prostate and breast human carcinomas (n = 7), and from normal human oral mucosa (n = 5), were exposed to various apoptosis-inducing stimuli (UV, Tumour Necrosis Factor, Cisplatin, Etoposide, and Neocarzinostatin). Flow cytometry for CD44 and epithelial-specific antigen (ESA) expression, colony morphology, tumour sphere formation and rapid adherence assays were used to identify the subset of cells with stem-like properties. Apoptosis, cell cycle and expression of various cell cycle checkpoint proteins were assessed (Western Blot, qPCR). The role of G2-checkpoint regulators Chk1 and Chk2 was investigated by use of debromohymenialdisine (DBH) and siRNA. In both cancer biopsies and carcinoma cell lines a subset of CD44high cells showed increased clonogenicity, a significantly lower rate of apoptosis, and a significantly higher proportion of cells in the G2-phase of the cell cycle. An inverse correlation between the percentage of cells in G2-phase and the rate of apoptosis was found. Pulse-chase with iododeoxyuridine (IdU) demonstrated that CD44high carcinoma cells spent longer time in G2, even in un-treated controls. These cells expressed higher levels of G2 checkpoint proteins, and their release from G2 with BDH or Chk1 siRNA increased their rate of apoptosis. Low passage cultures of normal keratinocytes were also found to contain a subset of CD44high cells showing increased clonogenicity, and a similar pattern of G2-block associated with apoptotic resistance. These data

  15. Chromatin remodeling system, cancer stem-like attractors, and cellular reprogramming.

    Science.gov (United States)

    Zhang, Yue; Moriguchi, Hisashi

    2011-11-01

    The cancer cell attractors theory provides a next-generation understanding of carcinogenesis and natural explanation of punctuated clonal expansions of tumor progression. The impressive notion of atavism of cancer is now updated but more evidence is awaited. Besides, the mechanisms that the ectopic expression of some germline genes result in somatic tumors such as melanoma and brain tumors are emerging but are not well understood. Cancer could be triggered by cells undergoing abnormal cell attractor transitions, and may be reversible with "cyto-education". From mammals to model organisms like Caenorhabditis elegans and Drosophila melanogaster, the versatile Mi-2β/nucleosome remodeling and histone deacetylation complexes along with their functionally related chromatin remodeling complexes (CRCs), i.e., the dREAM/Myb-MuvB complex and Polycomb group complex are likely master regulators of cell attractors. The trajectory that benign cells switch to cancerous could be the reverse of navigation of embryonic cells converging from a series of intermediate transcriptional states to a final adult state, which is supported by gene expression dynamics inspector assays and some cross-species genetic evidence. The involvement of CRCs in locking cancer attractors may help find the recipes of perturbing genes to achieve successful reprogramming such that the reprogrammed cancer cell function in the same way as the normal cells. PMID:21909785

  16. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas

    2011-06-01

    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  17. Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Wen-Tao Yang

    2016-01-01

    Full Text Available Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P<0.05. The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P<0.05. The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P<0.05. The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P<0.05. Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of

  18. Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells

    Science.gov (United States)

    Yang, Wen-Tao; Li, Gen-Hua; Li, Zheng-You; Feng, Song; Liu, Xue-Qin; Han, Guang-Kui; Zhang, Hao; Qin, Xian-Yun; Zhang, Ran; Nie, Quan-Min; Jin, Feng

    2016-01-01

    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell

  19. 原发性乳腺癌组织中类干细胞检测及临床意义%The clinical significance of detecting stem-like cells in primary breast cancer tissue

    Institute of Scientific and Technical Information of China (English)

    屈志钢; 杨超; 左燕红; 黄丽娟; 王鹏; 赵凤云; 刘运江

    2013-01-01

    目的 本实验拟采用流式细胞术检测乳腺癌组织中乳腺癌干细胞(mammary cancer stem cells,MCSC)的存在及比例,并分析其与临床及病理的关系.方法 选取2008年2月至2009年1月在河北医科大学第四医院外一科诊治的乳腺癌患者45例.采用CD55,CK19双抗对原发性乳腺癌单细胞悬液进行免疫荧光标记,以流式细胞学方法进行检测,取得CD55高表达(CD55hig)群细胞的比例.结合患者的临床资料,分析实验数据.结果 (1)本实验测得原发性乳腺癌肿瘤组织中CD55hig的细胞比例均数为(0.21±0.20)%.(2)CD55hig的细胞比例在腋淋巴结无转移组、1~3个腋淋巴结转移组及≥4个腋淋巴结转移组之间进行两两比较,差异均有统计学意义(P=0.000).(3)原发性乳腺癌肿瘤组织中C-erbB2(-)组的CD55hig的细胞比例较C-erbB2(+~+++)组的CD55hig的细胞比例有明显的下降,差异有统计学意义(P<0.05).结论 (1)乳腺癌肿瘤组织中代表乳腺癌类干细胞的CD55hig 细胞的均数比例为(0.21±0.20)%.(2)原发性乳腺癌组织中类干细胞的比例与乳腺癌患者病灶的转移和病情的进展有一定的相关性.(3)在侵袭性强的乳腺癌组织中乳腺癌类干细胞比例增高.%Objective To detect the existence and the ratio of mammary cancer stem cells( MCSC )in primary breast cancer tissue by means of flow cytometry, and to analyze the relationship between MCSC and clinical pathological factors. Methods The 45 patients were enrolled in the study who were diagnosed and treated at The First Department of surgery, The Fourth Hospital of Hebei Medical University from February 2008 to January 2009. The patients' breast cancer single cell suspension was immunofluorescence labled with CD55, CK19 double antibodies, and was detected by flow cytometry to get the ratio of CD55 high expression group( CD55 hig ). The experimental data combined with clinical data of the patients were analyzed. Results The average ratio

  20. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells

    Science.gov (United States)

    Krusche, Benjamin; Ottone, Cristina; Clements, Melanie P; Johnstone, Ewan R; Goetsch, Katrin; Lieven, Huang; Mota, Silvia G; Singh, Poonam; Khadayate, Sanjay; Ashraf, Azhaar; Davies, Timothy; Pollard, Steven M; De Paola, Vincenzo; Roncaroli, Federico; Martinez-Torrecuadrada, Jorge; Bertone, Paul; Parrinello, Simona

    2016-01-01

    Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM. DOI: http://dx.doi.org/10.7554/eLife.14845.001 PMID:27350048

  1. The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Muhammad Jamal

    2012-02-01

    Full Text Available Brain tumor xenografts initiated from glioblastoma (GBM CD133+ tumor stem-like cells (TSCs are composed of TSC and non-TSC subpopulations, simulating the phenotypic heterogeneity of GBMs in situ. Given that the discrepancies between the radiosensitivity of GBM cells in vitro and the treatment response of patients suggest a role for the microenvironment in GBM radioresistance, we compared the response of TSCs and non-TSCs irradiated under in vitro and orthotopic conditions. As a measure of radioresponse determined at the individual cell level, γH2AX and 53BP1 foci were quantified in CD133+ cells and their differentiated (CD133- progeny. Under in vitro conditions, no difference was detected between CD133+ and CD133- cells in foci induction or dispersal after irradiation. However, irradiation of orthotopic xenografts initiated from TSCs resulted in the induction of fewer γH2AX and 53BP1 foci in CD133+ cells compared to their CD133- counterparts within the same tumor. Xenograft irradiation resulted in a tumor growth delay of approximately 7 days with a corresponding increase in the percentage of CD133+ cells at 7 days after radiation, which persisted to the onset of neurologic symptoms. These results suggest that, although the radioresponse of TSCs and non-TSCs does not differ under in vitro growth conditions, CD133+ cells are relatively radioresistant under intracerebral growth conditions. Whereas these findings are consistent with the suspected role for TSCs as a determinant of GBM radioresistance, these data also illustrate the dependence of the cellular radioresistance on the brain microenvironment.

  2. Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy.

    Directory of Open Access Journals (Sweden)

    Peter C Huszthy

    Full Text Available BACKGROUND: Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model. METHODOLOGY/PRINCIPAL FINDINGS: We used a rodent xenograft model that recapitulates the invasive and angiogenic features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP and vesicular stomatitis virus glycoprotein (VSV-G pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast, pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene herpes simplex virus thymidine kinase (HSV-1-tk fused to eGFP, both lentiviral vectors mediated a complete remission of solid tumors as seen on MRI resulting in a highly significant survival benefit (p<0.001 compared to control groups. In all recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even enhance and prolong the therapeutic effect. CONCLUSIONS/SIGNIFICANCE: In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of glioma in patients. The inefficient gene delivery

  3. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    Science.gov (United States)

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas. PMID:26329778

  4. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Science.gov (United States)

    Qiu, Zhi-Kun; Shen, Dong; Chen, Yin-Sheng; Yang, Qun-Ying; Guo, Cheng-Cheng; Feng, Bing-Hong; Chen, Zhong-Ping

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs. PMID:23958055

  5. Altered cell cycle regulation helps stem-like carcinoma cells resist apoptosis

    OpenAIRE

    Dalton Stephen; Chappell James

    2010-01-01

    Abstract Reemergence of carcinomas following chemotherapy and/or radiotherapy is not well understood, but a recent study in BMC Cancer suggests that resistance to apoptosis resulting from altered cell cycle regulation is crucial. See research article: http://biomedcentral.com/1471-2407/10/166

  6. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism.

    Science.gov (United States)

    Phillips, Emma; Lang, Verena; Bohlen, Jonathan; Bethke, Frederic; Puccio, Laura; Tichy, Diana; Herold-Mende, Christel; Hielscher, Thomas; Lichter, Peter; Goidts, Violaine

    2016-10-15

    In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem-like cell (GSC) survival. Here, we show that PKCι is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCι has been intensively studied as a therapeutic target in non-small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCι/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCι acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI-silenced GSCs revealed a novel role of the Notch signaling pathway in PKCι mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCι are in close proximity in GSCs. Targeting PKCι in the context of Notch signaling could be an effective way of attacking the GSC population in GBM. PMID:27299852

  7. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment. PMID:26358937

  8. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cellline (SF-767) and 7 MGMT-negative celllines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, al the GSCs and their parental glioma celllines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.

  9. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest.

    Science.gov (United States)

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Fortner, Karen A; Viapiano, Mariano S; Jaworski, Diane M

    2015-08-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth.

  10. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits.

    Science.gov (United States)

    Vyas, Avani R; Moura, Michelle B; Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-11-01

    Preventive and therapeutic efficiencies of dietary sulforaphane (SFN) against human prostate cancer have been demonstrated in vivo, but the underlying mechanism(s) by which this occurs is poorly understood. Here, we show that the prostate cancer stem cell (pCSC)-like traits, such as accelerated activity of aldehyde dehydrogenase 1 (ALDH1), enrichment of CD49f+ fraction, and sphere forming efficiency, are attenuated by SFN treatment. Interestingly, the expression of c-Myc, an oncogenic transcription factor that is frequently deregulated in prostate cancer cells, was markedly suppressed by SFN both in vitro and in vivo. This is biologically relevant, because the lessening of pCSC-like phenotypes mediated by SFN was attenuated when c-Myc was overexpressed. Naturally occurring thio, sulfinyl, and sulfonyl analogs of SFN were also effective in causing suppression of c-Myc protein level. However, basal glycolysis, a basic metabolic pathway that can also be promoted by c-Myc overexpression, was not largely suppressed by SFN, implying that, in addition to c-Myc, there might be another SFN-sensitive cellular factor, which is not directly involved in basal glycolysis, but cooperates with c-Myc to sustain pCSC-like phenotypes. Our study suggests that oncogenic c-Myc is a target of SFN to prevent and eliminate the onset of human prostate cancer. J. Cell. Biochem. 117: 2482-2495, 2016. © 2016 Wiley Periodicals, Inc.

  11. Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells

    International Nuclear Information System (INIS)

    The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein. To identify pathways that are affected by sarcoma-associated variants of HMGA2, we have over-expressed wild type and truncated HMGA2 protein in an immortalized mesenchymal stem-like cell (MSC) line, and investigated the localisation of these proteins and their effects on differentiation and gene expression patterns. Over-expression of both transgenes blocked adipogenic differentiation of these cells, and microarray analysis revealed clear changes in gene expression patterns, more pronounced for the truncated protein. Most of the genes that showed altered expression in the HMGA2-overexpressing cells fell into the group of NF-κB-target genes, suggesting a central role for HMGA2 in this pathway. Of particular interest was the pronounced up-regulation of SSX1, already implicated in mesenchymal oncogenesis and stem cell functions, only in cells expressing the truncated protein. Furthermore, over-expression of both HMGA2 forms was associated with a strong repression of the epithelial marker CD24, consistent with the reported low level of CD24 in cancer stem cells. We conclude that the c-terminal part of HMGA2 has important functions at least in mesenchymal cells, and the changes in gene expression resulting from overexpressing a protein lacking this domain may add to the malignant potential of sarcomas

  12. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism

    DEFF Research Database (Denmark)

    Akita, Hirofumi; Marquardt, Jens U; Durkin, Marian E;

    2014-01-01

    Activation of c-MYC is an oncogenic hallmark of many cancers including liver cancer, and is associated with a variety of adverse prognostic characteristics. Despite a causative role during malignant transformation and progression in hepatocarcinogenesis, consequences of c-MYC activation......-MYC induced a pro-apoptotic program and loss of CSC potential both in vitro and in vivo. Mechanistically, c-MYC induced self-renewal capacity of liver cancer cells was exerted in a p53 dependent manner. Low c-MYC activation increased spheroid formation in p53-deficient tumor cells, whereas p53-dependent...... effects were blunted in the absence of MYC overexpression. Together, our results confirm the role of c-MYC as a master regulator during hepatocarcinogenesis and establish a new gatekeeper role for p53 in repressing c-MYC induced CSC phenotype in liver cancer cells....

  13. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response.

    Science.gov (United States)

    El-Khattouti, Abdelouahid; Selimovic, Denis; Haïkel, Youssef; Megahed, Mosaad; Gomez, Christian R; Hassan, Mohamed

    2014-02-01

    The presence and the involvement of cancer stem-like cells (CSCs) in tumor initiation and progression, and chemo-resistance are documented. Herein, we functionally analyzed melanoma stem-like cells (MSC)/CD133(+) cells on their resistance and response to taxol-induced apoptosis. Besides being taxol resistant, the CD133(+) cells demonstrated a growth advantage over the CD133(-) subpopulation. Taxol induced apoptosis on CD133(-) cells, but not on CD133(+) cells. In the CD133(-) subpopulation, the exposure to taxol induced the activation of apoptosis signal-regulating kinase1 (ASK1)/c-jun-N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK) pathways and Bax expression, while in CD133(+) cells taxol was able only to enhance the activity of the ERK pathway. In CD133(+) cells, the direct gene transfer of Bax overcame the acquired resistance to taxol. Taken together, our data provide an insight into the mechanistic cascade of melanoma resistance to taxol and suggest Bax gene transfer as a complementary approach to chemotherapy.

  14. PI3K/mTOR信号通路参与胰腺肿瘤干细胞样SP细胞生存增殖的调控%Phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway is critical for survival and proliferation of pancreatic cancer stem-like side population cells

    Institute of Scientific and Technical Information of China (English)

    周静; 周蒙滔; 王春友; 刘涛; 吴河水; 周峰; 熊炯炘; 赵刚; 杨明; 殷涛

    2008-01-01

    294002 and rapamycin the fractions of the SP cells in the in PANC-1 cells decreased from (7.60±0.27)% to (1.90±0.22)% and (1.14±0.20)% respectively, both P=0.000, and they preferentially inhibited the SP cells rather than non-SP cells. Conclusion SP cells are enriched in pancreatic cancer stem-like cells. PI3K/mTOR pathway is critical for pancreatic SP cells maintenance that can be selected as a new target for inhibiting cancer stem-like cells.%目的 分离鉴定胰腺癌中肿瘤干细胞样的侧群(SP)细胞亚群并探讨磷脂酰肌醇3-激酶/雷帕霉素靶蛋白(PI3K/mTOR)信号通路对其生存与增殖的调控.方法 应用流式分析检测5个胰腺癌细胞系中SP细胞的含量.观察加入PI3K/mTOR)R信号通路特异性抑制剂LY294002或雷帕霉素培养后胰腺癌细胞PANC-1中SP细胞的含量变化.通过平板集落形成试验,NOD-SCID小鼠异种移植成瘤试验和移植瘤的SP再次分析评价PANC-1 SP细胞的自我更新和分化潜能.采用 MTT试验和集落形成试验检测LY294002或雷帕霉素对分选的SP细胞和非SP细胞的抑制作用.结果 除了BXPC-3,其他胰腺癌细胞系都存在维拉帕米敏感的SP细胞.SP细胞具有较高的集落形成能力(SP细胞:43.7%±3.1%,非SP细胞8.3%±1.6%,P=0.000)和成瘤能力(至少100倍于非sP细胞),并能够发生不对称分裂生成非SP细胞.加入LY294002或雷帕霉素培养后PANC-1中sP细胞的含量明显降低(LY294002,7.60%±0.27% vs 1.90%±0.22%,P=0.000;雷帕霉素,7.60%±0.27%vs 1.14%±0.20%,P=0.000).与非SP细胞相比,LY294002及雷帕霉素均优先抑制sP细胞.结论 SP细胞富集胰腺癌肿瘤干细胞.PI3K/mT0R信号通路参与对其生长增殖的调控,可能成为根治胰腺癌的治疗新靶点.

  15. Cholangiocarcinoma Stem-like Cells Shapes Tumor-initiating Niche by Regulating Associated Macrophages

    DEFF Research Database (Denmark)

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio;

    2016-01-01

    -SPHs were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, FACS-analysis showed that in presence of CCA-SPH-CM, CD14+ expressed key macrophage (MØ) markers (CD68, CD115, HLA-DR, CD206) indicating that CCA-SPH- conditioned medium was a strong MØ...

  16. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells.

    Science.gov (United States)

    Kathagen, Annegret; Schulte, Alexander; Balcke, Gerd; Phillips, Heidi S; Martens, Tobias; Matschke, Jakob; Günther, Hauke S; Soriano, Robert; Modrusan, Zora; Sandmann, Thomas; Kuhl, Carsten; Tissier, Alain; Holz, Mareike; Krawinkel, Lutz A; Glatzel, Markus; Westphal, Manfred; Lamszus, Katrin

    2013-11-01

    Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.

  17. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. PMID:27341268

  18. Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Stobbe, Louise;

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. Despite recent treatment progress, most patients succumb to their disease within 2 years of diagnosis. Current research has highlighted the importance of a subpopulation of cells, assigned brain...... and activation of the epidermal growth factor receptor (EGFR) and expression of a deletion variant EGFRvIII. In the normal brain, EGFR is expressed in neurogenic areas where also NSC are located and it has been shown that EGFR is involved in regulation of NSC proliferation, migration, and differentiation...

  19. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem;

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...... bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106 and CD166 as revealed by immunohistochemical staining and flow cytometry (FACS) analysis. Ex vivo differentiation of h...

  20. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells

    Directory of Open Access Journals (Sweden)

    Samantha Hughes

    2013-06-01

    Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.

  1. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-κB

    Institute of Scientific and Technical Information of China (English)

    PengYao; YiqunZhan; WangxiangXu; ChangyanLi; PeibinYue; ChengwangXu; DarongHU; ChengkuiQu; XiaomingYang

    2005-01-01

    Background/Aims: Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-κB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-κB in HGF-mediated cellular proliferation responses in a rat liver.derived hepatic stem-like cell line WB.F344. Methods: Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IκBα by HGF stimulation was detected by Western blotting. NF-κB activation was determined by electrophoretic mobility shift assay and NF-κB.mediated SEAP reporter assay. NF-κB activation was inhibited by treatment with an IκBα dominant-negative vector or inhibitor BAY-11-7082. Results: We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-α. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-κB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-κB activity.Furthermore, it was demonstrated that IκB mutant that suppressed NF-κB activity completely blocked HGF-induced cell proliferation. Conclusions: NF-κB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.

  2. Inhibition of Sonic Hedgehog Signaling Pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-Stem-Like Population and Sphere-Forming Capacity in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Na Yang

    2016-03-01

    Full Text Available Background/Aim: Triple-negative breast cancer (TNBC represents a particular clinical challenge because these cancers do not respond to endocrine therapy or other available targeted agents. The lack of effective agents and obvious targets are major challenges in treating TNBC. In this study we explored the cytostatic effect of thiazole ring containing antibiotic drug thiostrepton on TNBC cell lines and investigated the molecular mechanism. Methods: Cell viability was measured by MTT assay. Cell surface marker was monitored by FCM. Western blot was applied to assess the protein expression levels of target genes. Results: We found that thiostrepton remarkably suppressed the CD44+/CD24- stem-like population and sphere forming capacity of TNBC cell lines. Notably, we showed for the first time that thiostrepton exerted its pharmacological action by targeting sonic hedgehog (SHH signaling pathway. Thiostrepton repressed SHH ligand expression and reduced Gli-1 nuclear localization in TNBC cell line. Furthermore, the downstream target of SHH signaling undergone dose-dependent, rapid, and sustained loss of mRNA transcript level after thiostrepton treatment. Finally, we showed that SHH ligand was essential for maintaining CD44+/CD24- stem-like population in TNBC cell line. Conclusion: We conclude that thiostrepton suppresses the CD44+/CD24- stem-like population through inhibition of SHH signaling pathway. Our results give a new insight into the mechanism of thiostrepton anti-tumor activity and suggest thiostrepton as a promising agent that targets hedgehog signaling pathway in TNBC.

  3. Large cell anaplastic medulloblastoma metastatic to the scalp: tumor and derived stem-like cells features

    OpenAIRE

    Mastronuzzi, Angela; Miele, Evelina; Po, Agnese; Antonelli, Manila; Buttarelli, Francesca Romana; Colafati, Giovanna Stefania; Del Bufalo, Francesca; Faedda, Roberta; Spinelli, Gian Paolo; Carai, Andrea; Giangaspero, Felice; Gulino, Alberto; Locatelli, Franco; Ferretti, Elisabetta

    2014-01-01

    Background Extraneural metastases (ENM) rarely occur in medulloblastoma (MBL) patients and only few cases of subcutaneous localizations have been described. ENM indicate an aggressive disease associated with a worse prognosis. The characterization of metastatic tumours might be useful to understand their pathogenesis and to identify the most appropriate therapeutic strategies. Case presentation We present the case of a child with Large Cell Anaplastic (LC/A) MBL, who developed multiple subcut...

  4. Lineage-restricted OLIG2-RTK signaling governs the molecular subtype of glioma stem-like cells

    Science.gov (United States)

    Kupp, Robert; Shtayer, Lior; Tien, An-Chi; Szeto, Emily; Sanai, Nader; Rowitch, David H.; Mehta, Shwetal

    2016-01-01

    SUMMARY The bHLH transcription factor OLIG2 is a master regulator of oligodendroglial fate decisions and tumorigenic competence of glioma stem-like cells (GSCs). However, the molecular mechanisms underlying dysregulation of OLIG2 function during gliomagenesis remains poorly understood. Here, we show that OLIG2 modulates growth factor signaling in two distinct populations of GSCs, characterized by expression of either the EGFR or PDGFRα. Biochemical analyses of OLIG2 function in normal and malignant neural progenitors reveal a positive feedforward loop between OLIG2 and EGFR to sustain co-expression. Furthermore, loss of OLIG2 function results in mesenchymal transformation in PDGFRαHIGH GSCs, a phenomenon that appears to be circumscribed in EGFRHIGH GSCs. Exploitation of OLIG2’s dual and antithetical, pro-mitotic (EGFR-driven) and lineage-specifying (PDGFRα-driven) functions by glioma cells, appears to be critical for sustaining growth factor signaling and GSC molecular subtype. PMID:27626655

  5. Blockade of Notch3 inhibits the stem-like property and is associated with ALDH1A1 and CD44 via autophagy in non-small lung cancer.

    Science.gov (United States)

    Ma, Yuanyuan; Li, Mingzhen; Si, Jiahui; Xiong, Ying; Lu, Fangliang; Zhang, Jianzhi; Zhang, Liyi; Zhang, Panpan; Yang, Yue

    2016-06-01

    Acquired resistance to standard chemotherapy causes treatment failure in patients with local advanced and advanced non-small lung cancer (NSCLC). Cancer stem cells (CSCs) are a small subpopulation within cancer that is thought to be resistant to conventional chemotherapy. The Notch pathway is one of the most intensively studied for putative therapeutic targets of CSCs in solid tumors. In our study, suppression of Notch3 decreased colony and sphere formation of stem-like property in lung cancer cells. In addition, Notch3 expression was demonstrated to be upregulated in the patients with chemoresistance and related to poor prognosis of NSCLC patients. Our results also showed that CSC markers ALDH1A1 and CD44 were highly expressed in NSCLC patients with chemoresistance and these two markers were positively correlated with Notch3 expression in lung cancer specimens from TCGA database. Furthermore, the lung cancer cells with drug resistance were shown to be associated with activation of autophagy. All the data support a crucial role of Notch3 in the increase of stem-like property in NSCLC cells that might be associated with upregulation of ALDH1A1 and CD44 and activation of autophagy. PMID:27035162

  6. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  7. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H2AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H2AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G2/M arrest and increased γ-H2AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H2AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G2/M

  8. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer.

    Science.gov (United States)

    Wahdan-Alaswad, Reema; Harrell, J Chuck; Fan, Zeying; Edgerton, Susan M; Liu, Bolin; Thor, Ann D

    2016-01-01

    Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-β elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-β receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-β-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-β target genes was correlated to poor prognosis in claudin-low patients. Given TGF-β's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-β mediated oncogenesis. PMID:26919310

  9. Proteomic profiling identifies distinct protein patterns in acute myelogenous leukemia CD34+CD38- stem-like cells.

    Directory of Open Access Journals (Sweden)

    Steven M Kornblau

    Full Text Available Acute myeloid leukemia (AML is believed to arise from leukemic stem-like cells (LSC making understanding the biological differences between LSC and normal stem cells (HSC or common myeloid progenitors (CMP crucial to understanding AML biology. To determine if protein expression patterns were different in LSC compared to other AML and CD34+ populations, we measured the expression of 121 proteins by Reverse Phase Protein Arrays (RPPA in 5 purified fractions from AML marrow and blood samples: Bulk (CD3/CD19 depleted, CD34-, CD34+(CMP, CD34+CD38+ and CD34+CD38-(LSC. LSC protein expression differed markedly from Bulk (n =31 cases, 93/121 proteins and CD34+ cells (n = 30 cases, 88/121 proteins with 54 proteins being significantly different (31 higher, 23 lower in LSC than in either Bulk or CD34+ cells. Sixty-seven proteins differed significantly between CD34+ and Bulk blasts (n = 69 cases. Protein expression patterns in LSC and CD34+ differed markedly from normal CD34+ cells. LSC were distinct from CD34+ and Bulk cells by principal component and by protein signaling network analysis which confirmed individual protein analysis. Potential targetable submodules in LSC included the proteins PU.1(SP1, P27, Mcl1, HIF1α, cMET, P53, Yap, and phospho-Stats 1, 5 and 6. Protein expression and activation in LSC differs markedly from other blast populations suggesting that studies of AML biology should be performed in LSC.

  10. Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Peng Cheng

    2015-05-01

    Full Text Available Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs were recently identified: mesenchymal (MES and proneural (PN. To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers.

  11. Transplantation of rat hepatic stem-like (HSL) cells with collagen matrices.

    Science.gov (United States)

    Ueno, Yasuharu; Nagai, Hirokazu; Watanabe, Go; Ishikawa, Kiyoshi; Yoshikawa, Kiwamu; Koizumi, Yukio; Kameda, Takashi; Sugiyama, Toshihiro

    2005-12-01

    Organ restitution using somatic stem cells is of great clinical interest. Recent advances in the field of tissue engineering have demonstrated that the use of collagen matrices as scaffolds facilitates tissue reconstruction. Here, we examine the efficacy of transplantation of HSL cells, a previously established liver epithelial cell line with a potential for differentiation, using collagen scaffolds. To this end, HSL cells were transplanted into Nagase's analbuminemic rat with spongy or gelatinous type I collagen matrices. Consequently, immunohistochemical analyses and genomic PCR experiments revealed engraftment of the transplanted cells. Furthermore, the levels of serum albumin in recipient rats were found to increase up to 2.5-fold relative to controls after transplantation. These findings suggest that HSL cells are able to differentiate into functional hepatocytes in vivo, and that biodegradable collagen matrices enhance this phenomenon by providing an appropriate microenvironment for hepatocytic repopulation.

  12. Characterization and Potential Utility of Porcine Trophoblast-Derived Stem-Like Cells

    OpenAIRE

    Suasnavas, Edison A

    2013-01-01

    In mammals, the trophoblast lineage of the embryo is specified before implantation. It is restricted to become the fetal portion of the placenta. We have isolated and cultured trophoblast-derived cells from day 10 and day 13 porcine embryos. These cells demonstrate morphological and biological characteristics that make them unique. We have demonstrated that these cells can grow in vitro in a defined, serum-replacement medium for over a year without showing any signs of senescence. Trophoblast...

  13. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Aldaz

    Full Text Available Glioblastoma multiforme (GBM-initiating cells (GICs represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.

  14. Involvement of miRNAs in the Differentiation of Human Glioblastoma Multiforme Stem-Like Cells

    Science.gov (United States)

    Aldaz, Beatriz; Sagardoy, Ainara; Nogueira, Lorena; Guruceaga, Elizabeth; Grande, Lara; Huse, Jason T.; Aznar, Maria A.; Díez-Valle, Ricardo; Tejada-Solís, Sonia; Alonso, Marta M.; Fernandez-Luna, Jose L.

    2013-01-01

    Glioblastoma multiforme (GBM)-initiating cells (GICs) represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process. PMID:24155920

  15. Chemoresistance and chemotherapy targeting stem-like cells in malignant glioma

    DEFF Research Database (Denmark)

    Sørensen, Mia Dahl; Fosmark, Sigurd; Hellwege, Sofie;

    2015-01-01

    Glioblastoma remains a tumor with a dismal prognosis because of failure of current treatment. Glioblastoma cells with stem cell (GSC) properties survive chemotherapy and give rise to tumor recurrences that invariably result in the death of the patients. Here we summarize the current knowledge...... by extrinsic factors like hypoxia increasing MGMT expression and thereby resistance to alkylating chemotherapy. The search of new biomarkers helping to predict the tumor response to chemotherapy is ongoing and will complement the already known markers like MGMT....

  16. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  17. Treatment with embryonic stem-like cells into osteochondral defects in sheep femoral condyles

    OpenAIRE

    Pilichi, Susanna; Rocca, Stefano; Pool, Roy R.; Dattena, Maria; Masala, Gerolamo; Mara, Laura; Sanna, Daniela; Casu, Sara; Manunta, Maria L.; Manunta, Andrea; Sanna Passino, Eraldo

    2014-01-01

    Background Articular cartilage has poor intrinsic capacity for regeneration because of its avascularity and very slow cellular turnover. Defects deriving from trauma or joint disease tend to be repaired with fibrocartilage rather than hyaline cartilage. Consequent degenerative processes are related to the width and depth of the defect. Since mesenchymal stem cells (MSCs) deriving from patients affected by osteoarthritis have a lower proliferative and chondrogenic activity, the systemic or loc...

  18. Characterization of cancer stem-like cells in a novel STI571-resistant chronic myeloid leukemia cell line%K562多药耐药细胞系中肿瘤干细胞样细胞对伊马替尼耐药机制的初步研究

    Institute of Scientific and Technical Information of China (English)

    Baijun Fang; Yongping Song; Yanli Zhang; Quande Lin; Xudong Wei

    2007-01-01

    Objective: To characterize a novel chronic myeloid leukemia (CML) cell line and to further elucidate the mechanisms of resistance to STI571. Methods: A novel K562 cell line (K562NP16) was achieved after exposure of the K562 cells to VP16. A small subpopulation (K562NP16 SP) that was capable of excluding Hoechst 33342 in the K562NP16 cell line was isolated by flow cytometry sorting. The rest of the K562NP16 cells were classified as non-SP K562NP16. The mechanisms involved in K562NP16 SP cells which became resistant to STI571 were studied. Results: The levels of Bcr-Abl and Abl proteins were similar in the K562 cell line and in non-SP K562NP16 and K562NP16 SP cells. The multidrug-resistant gene 1 (MDR1) expression of the 170 kDa P-glycoprotein (P-gp) was detected in K562NP16 non-SP and K562NP16 SP cells but not in K562 cells. The expression levels of P-gp in the two K562NP16 cell lines were similar. Compared with non-SP K562/VP16, the K562NP16 SP cells were more resistant to STI571. This resistance could hardly be reversed by many multidrug resistance inhibitors. In addition, in vivo study showed that the K562NP16 SP cells induced tumorigenesis in mice, while the K562NP16 non-SP cells failed to do so. Conclusion: A novel K562 cell line, K562NP16, was generated. A small side population K562NP16 SP cells, had high resistance to STI571 treatment and more tumorigenic than the K562 cells. It may represent the cancer stem cells of the K562NP16 cell line.

  19. p21-activated kinase 1 determines stem-like phenotype and sunitinib resistance via NF-κB/IL-6 activation in renal cell carcinoma.

    Science.gov (United States)

    Zhu, Y; Liu, H; Xu, L; An, H; Liu, W; Liu, Y; Lin, Z; Xu, J

    2015-02-12

    The p21-activated kinase 1 (PAK1), a serine/threonine kinase that orchestrates cytoskeletal remodeling and cell motility, has been shown to function as downstream node for various oncogenic signaling pathways to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, resulting in tumor formation and invasiveness. Although alterations in PAK1 expression and activity have been detected in various human malignancies, its potential biological and clinical significance in renal cell carcinoma (RCC) remains obscure. In this study, we found increased PAK1 and phosphorylated PAK1 levels in tumor tissues according to TNM stage progression. Elevated phosphorylated PAK1 levels associated with progressive features and indicated unfavorable overall survival (OS) as an independent adverse prognosticator for patients with RCC. Moreover, PAK1 kinase activation with constitutive active PAK1 mutant T423E promoted growth, colony formation, migration, invasion and stem-like phenotype of RCC cells, and vice versa, in PAK1 inhibition by PAK1 kinase inactivation with specific PAK1 shRNA, dead kinase PAK1 mutant K299R or allosteric inhibitor IPA3. Stem-like phenotype due to sunitinib administration via increased PAK1 kinase activation could be ameliorated by PAK1 shRNA, PAK1 mutant K299R and IPA3. Furthermore, nuclear factor-κB (NF-κB)/interleukin-6 (IL-6) activation was found to be responsible for PAK1-mediated stem-like phenotype following sunitinib treatment. Both IL-6 neutralizing antibody and IPA3 administration enhanced tumor growth inhibition effect of sunitinib treatment on RCC cells in vitro and in vivo. Our results unraveled that oncogenic activation of PAK1 defines an important mechanism for maintaining stem-like phenotype and sunitinib resistance through NF-κB/IL-6 activation in RCC, lending PAK1-mediated NF-κB/IL-6 activation considerable appeal as novel pharmacological therapeutic targets against sunitinib resistance.

  20. O6-Methylguanine-Methyltransferase (MGMT Promoter Methylation Status in Glioma Stem-Like Cells is Correlated to Temozolomide Sensitivity Under Differentiation-Promoting Conditions

    Directory of Open Access Journals (Sweden)

    Lucie Karayan-Tapon

    2012-06-01

    Full Text Available Glioblastoma (GBM is the most malignant type of primary brain tumor with a very poor prognosis. The actual standard protocol of treatment for GBM patients consists of radiotherapy and concomitant temozolomide (TMZ. However, the therapeutic efficacy of this treatment is limited due to tumor recurrence and TMZ resistance. Recently isolated, glioma stem-like cells (GSCs are thought to represent the population of tumorigenic cells responsible for GBM resistance and recurrence following surgery and chemotherapy. In addition, MGMT (O6-methylguanine-methyltransferase methylation is considered as one of the principal mechanisms contributing to TMZ sensitivity of GBM. In this study we have isolated GSCs from 10 adult GBM patients and investigated the relationship between MGMT methylation status and Temozolomide (TMZ sensitivity of these lines grown either in stem-like or differentiation promoting conditions. Sensitivity to TMZ was significantly associated with MGMT methylation status in cells committed to differentiation but not in stem-like cells. In addition, patients harboring highly methylated MGMT promoters had a longer overall survival. These results reveal the importance of the differentiation process when considering the predictive value of MGMT status in GSCs for clinical response to TMZ.

  1. MicroRNA-218通过靶向多梳家族 Bmi1基因抑制胶质瘤的侵袭、迁移、增殖和肿瘤干细胞样细胞的自我更新%MicroRNA-218 inhibits glioma invasion,mi-gration,proliferation,and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1

    Institute of Scientific and Technical Information of China (English)

    涂艳阳; 高兴春; 李刚; 付华林; 崔大祥; 刘辉; 金卫林; 张永生

    2014-01-01

    AIM:To study the molecular mechanism of microR-NA-218 inhibiting glioma invasion,migration,proliferation,and cancer stem-like cell self-renewal.METHODS:miR-218 was overexpressed in glioma cells.Then quantitative reverse transcrip-tion PCR (qRT-PCR)and western blotting analysis were used to detect the expression level of Bmi1.Wound healing and in vitro migration assays were employed to study the glioma migration and proliferation.The effect of miR-218 on cancer growth was deter-mined via animal studies.Bioinformatics anlysis was performed to predict the direct targets of miR-218.Predicted target genes were verified using qRT-PCR,western bloting,luciferase reporter and immunofluorescence.The effect of miR-218 on self-renewal ca-pacity of glioma stem-like cells was examed using tumor sphere formation and limiting dilution assay.To determin the function of Bmi1 in glioma migration and proliferation,a RNAi vector of Bmi1 was constructed and introduced into glioma cells.Further-more,effect of miR-218 on genes involved in glioma development were determined using microarray-based gene expression analysis. RESULTS:Bmi1 is a direct target of miR-218.miR-218 inhibit glioma migration,proliferation,and cancer stem-like cell self-re-newal by targeting Bmi1.Moreover,miR-218 also regulates a se-ries of genes involved in glioma development.CONCLUSION:As a tumor suppressor,miR-218 prevents migration,invasion, proliferation,and stemlike qualities in glioma cells.%目的:探讨microRNA-218抑制胶质瘤侵袭、迁移、增殖和抑制肿瘤干细胞样细胞自我更新的分子机制。方法:在胶质瘤细胞中过表达miR-218,利用定量逆转录PCR(qRT-PCR)和免疫印迹法(Western blotting)检测Bmi1的表达水平,并利用创伤修复和体外迁移实验检测胶质瘤细胞的迁移和增殖能力;通过裸鼠移植瘤实验,检测体内过表达miR-218对胶质瘤生长的影响;利用生物信息学手段预测miR-218的直接靶标,并通过q

  2. BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression

    OpenAIRE

    Persano, L; Pistollato, F; Rampazzo, E; Della Puppa, A; Abbadi, S; Frasson, C; Volpin, F; S. Indraccolo; Scienza, R; G. Basso

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common brain tumour, characterized by a central and partially necrotic (i.e., hypoxic) core enriched in cancer stem cells (CSCs). We previously showed that the most hypoxic and immature (i.e., CSCs) GBM cells were resistant to Temozolomide (TMZ) in vitro, owing to a particularly high expression of O6-methylguanine-DNA-methyltransferase (MGMT), the most important factor associated to therapy resistance in GBM. Bone morphogenetic proteins (BMPs), and in...

  3. Identification of a novel human memory T-cell population with the characteristics of stem-like chemo-resistance.

    Science.gov (United States)

    Murata, Kenji; Tsukahara, Tomohide; Emori, Makoto; Shibayama, Yuji; Mizushima, Emi; Matsumiya, Hiroshi; Yamashita, Keiji; Kaya, Mitsunori; Hirohashi, Yoshihiko; Kanaseki, Takayuki; Kubo, Terufumi; Himi, Tetsuo; Ichimiya, Shingo; Yamashita, Toshihiko; Sato, Noriyuki; Torigoe, Toshihiko

    2016-06-01

    High-dose chemotherapy may kill not only tumor cells but also immunocytes, and frequently induces severe lymphocytopenia. On the other hand, patients who recover from the nadir maintain immunity against infection, suggesting the existence of an unknown memory T-cell population with stress resistance, long-living capacity, proliferation and differentiation. Recently, the differentiation system of T-cell memory has been clarified using mouse models. However, the human T-cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. Here we report a novel human T-cell memory population, "young memory" T (TYM) cells. TYM cells are defined by positive expression of CD73, which represents high aldehyde dehydrogenase 1 (ALDH1) activity and CXCR3 among CD8(+)CD45RA(+)CD62L(+) T cells. TYM proliferate upon TCR stimulation, with differentiation capacity into TCM and TEM and drug resistance. Moreover, TYM are involved in memory function for viral and tumor-associated antigens in healthy donors and cancer patients, respectively. Regulation of TYM might be very attractive for peptide vaccination, adoptive cell-transfer therapy and hematopoietic stem cell transplantation. PMID:27471640

  4. T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62L(highCD44(low Sca-1(+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells.

  5. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells

    Science.gov (United States)

    YU, ZHIYUN; ZHAO, GANG; LI, PENGLIANG; LI, YUNQIAN; ZHOU, GUANGTONG; CHEN, YONG; XIE, GUIFANG

    2016-01-01

    Glioblastoma is the most common and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas, but it is not curative. The difficulties in treating glioblastoma may be as a result of the presence of glioma stem cells (GSCs), which are a source of relapse and chemoresistance. Another reason may be that endogenous Akt kinase activity may be activated in response to clinically relevant concentrations of TMZ. Akt activation is correlated with the increased tumorigenicity, invasiveness and stemness of cancer cells and overexpression of an active form of Akt increases glioma cell resistance to TMZ. Mounting evidence has demonstrated that cancer stem cells are preferentially sensitive to an inhibitor of Akt and down-regulation of the PI3K/Akt pathway may enhance the cytotoxicity of TMZ. Metformin (MET), the first-line drug for treating diabetes, it has been proved that it reduces AKT activation and selectively kills cancer stem cells, but whether it can potentiate the cytotoxicity of TMZ for GSCs remains unknown. In the present study, the GSCs isolated from human glioma cell line U87 and Rat glioma cell line C6, in vitro treatment with TMZ either alone or with MET. The present study demonstrates that MET acts synergistically with TMZ in inhibiting GSCs proliferation and generating the highest apoptotic rates when compared to either drug alone. These findings implicate that GSCs cytotoxicity mediated by TMZ may be stimulated by MET, have a synergistic effect, but the definite mechanisms remain elusive. PMID:27073554

  6. Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in Glioblastoma stem-like cells

    OpenAIRE

    Toledo, Chad M; Ding, Yu; Hoellerbauer, Pia; Davis, Ryan J.; Basom, Ryan; Girard, Emily J.; Lee, EunJee; Corrin, Philip; Hart, Traver; Bolouri, Hamid; Davison, Jerry; Zhang, Qing; Hardcastle, Justin; Aronow, Bruce J; Plaisier, Christopher L.

    2015-01-01

    To identify therapeutic targets for Glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 "knockout" (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets reveal...

  7. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells

    OpenAIRE

    Chad M. Toledo; Yu Ding; Pia Hoellerbauer; Ryan J. Davis; Ryan Basom; Emily J. Girard; Eunjee Lee; Philip Corrin; Traver Hart; Hamid Bolouri; Jerry Davison; Qing Zhang; Justin Hardcastle; Bruce J. Aronow; Christopher L. Plaisier

    2015-01-01

    To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed...

  8. Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia.

    Directory of Open Access Journals (Sweden)

    Christoph P Hofstetter

    Full Text Available PURPOSE: The hypoxic microenvironment of glioblastoma multiforme (GBM is thought to increase resistance to cancer therapies. Recent evidence suggests that hypoxia induces protein phosphatase 2A (PP2A, a regulator of cell cycle and cell death. The effects of PP2A on GBM tumor cell proliferation and survival during hypoxic conditions have not been studied. EXPERIMENTAL DESIGN: Expression of PP2A subunits and HIF-α proteins was measured in 65 high-grade astrocytoma and 18 non-neoplastic surgical brain specimens by western blotting. PP2A activity was measured by an immunoprecipitation assay. For in vitro experiments, GBM-derived tumor stem cell-like cells (TSCs were exposed to severe hypoxia produced by either CoCl₂ or 1% O₂. PP2A activity was inhibited either by okadaic acid or by shRNA depletion of the PP2A C subunit. Effects of PP2A activity on cell cycle progression and cell survival during hypoxic conditions were assessed using flow cytometry. RESULTS: In our patient cohort, PP2A activity was positively correlated with HIF-1∝ protein expression (P = 0.002. Patients with PP2A activity levels above 160 pMP had significantly worse survival compared to patients with levels below this threshold (P = 0.002. PP2A activity was an independent predictor of survival on multivariable analysis (P = 0.009. In our in vitro experiments, we confirmed that severe hypoxia induces PP2A activity in TSCs 6 hours after onset of exposure. PP2A activity mediated G1/S phase growth inhibition and reduced cellular ATP consumption in hypoxic TSCs. Conversely, inhibition of PP2A activity led to increased cell proliferation, exhaustion of intracellular ATP, and accelerated P53-independent cell death of hypoxic TSCs. CONCLUSIONS: Our results suggest that PP2A activity predicts poor survival in GBM. PP2A appears to reduce the metabolic demand of hypoxic TSCs and enhances tumor cell survival. Modulation of PP2A may be a potential target for cancer therapy.

  9. Tandutinib (MLN518/CT53518) targeted to stem-like cells by inhibiting the function of ATP-binding cassette subfamily G member 2.

    Science.gov (United States)

    Zhao, Xiao-qin; Dai, Chun-ling; Ohnuma, Shinobu; Liang, Yong-ju; Deng, Wen; Chen, Jun-Jiang; Zeng, Mu-Sheng; Ambudkar, Suresh V; Chen, Zhe-Sheng; Fu, Li-Wu

    2013-06-14

    Tandutinib is a novel inhibitor of tyrosine kinases FLT3, PDGFR and KIT. Our study was to explore the capability of tandutinib to reverse ABC transporter-mediated multidrug resistance. Tandutinib reversed ABCG2-mediated drug resistance in ABCG2-482-R2, ABCG2-482-G2, ABCG2-482-T7 and S1-M1-80 cells and increased the accumulation of doxorubicin, rhodamine 123 and [H(3)] mitoxantrone in ABCG2-overexpressing cells. Importantly, tandutinib selectively sensitized side population cells to mitoxantrone. Taken together, our results advocate the potency of tandutinib as an ABCG2 modulator and stem-like cells targeted agent to increase efficiency of anticancer drugs. PMID:23619284

  10. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Toledo

    2015-12-01

    Full Text Available To identify therapeutic targets for glioblastoma (GBM, we performed genome-wide CRISPR-Cas9 knockout (KO screens in patient-derived GBM stem-like cells (GSCs and human neural stem/progenitors (NSCs, non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers. In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.

  11. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.

    Science.gov (United States)

    Toledo, Chad M; Ding, Yu; Hoellerbauer, Pia; Davis, Ryan J; Basom, Ryan; Girard, Emily J; Lee, Eunjee; Corrin, Philip; Hart, Traver; Bolouri, Hamid; Davison, Jerry; Zhang, Qing; Hardcastle, Justin; Aronow, Bruce J; Plaisier, Christopher L; Baliga, Nitin S; Moffat, Jason; Lin, Qi; Li, Xiao-Nan; Nam, Do-Hyun; Lee, Jeongwu; Pollard, Steven M; Zhu, Jun; Delrow, Jeffery J; Clurman, Bruce E; Olson, James M; Paddison, Patrick J

    2015-12-22

    To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality. PMID:26673326

  12. Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment.

    Science.gov (United States)

    Schimanski, Adrian; Ebbert, Lara; Sabel, Michael C; Finocchiaro, Gaetano; Lamszus, Katrin; Ewelt, Christian; Etminan, Nima; Fischer, Johannes C; Sorg, Rüdiger V

    2016-10-01

    Glioblastoma (GBM) is the most frequent and lethal primary brain tumor in adults. Despite multimodal therapy combining resection, radio- and alkylating chemotherapy, disease recurrence is universal and prognosis of patients is poor. Glioblastoma stem-like cells (GSC), which can be grown as neurospheres from primary tumors in vitro, appear to be resistant to the established therapies and are suspected to be the driving force for disease recurrence. Thus, efficacy of emerging therapies may depend on targeting GSC. 5-aminolaevulinic acid-mediated photodynamic therapy (5-ALA/PDT) is a promising therapeutic approach in GBM. It utilizes the selective accumulation of the photosensitizer protoporphyrin IX (PPIX) in GBM cells after application of 5-ALA. When exposed to laser light of 635nm wavelength, PPIX initiates a photochemical reaction resulting in the generation of reactive oxygen species, which kill the tumor cells. Whether GSC accumulate PPIX and are sensitive to 5-ALA/PDT is currently unknown. Therefore, human GSC were derived from primary tumors and grown as neurospheres under serum free conditions. When subjected to exogenous 5-ALA, a dose- and time-dependent accumulation of PPIX in GSC was observed by flow cytometry, which varied between individual GSC preparations. Subsequent exposure to laser light of 635nm wavelength substantially killed GSC, whereas treatment with 5-ALA or exposure to laser light only had no effect. LD50 values differed between GSC preparations, but were negatively correlated with PPIX accumulation in GSC. In summary, we report for the first time that glioblastoma stem-like cells accumulate PPIX when subjected to 5-aminolaevulinic acid and are sensitive to 5-aminolaevulinc acid based photodynamic therapy. PMID:27588717

  13. 高表达β1,6分支N-糖链的骨肉瘤类肿瘤干细胞诱导巨噬细胞M2表型分化%Cancer stem-like cells from osteosarcoma with highly expressed beta 1,6 GlcNAc branched N-glycan induce a phenotypic switch in polarization of bone marrow-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    张思胜; 刘世清

    2014-01-01

    Objective To investigate the effect of cancer stem-like cells (CSCs) from osteosarcoma cell line on the polarization of macrophages.Methods CSCs were pre-treated with different doses of swainsonine and co-cultured with macrophages,and the phenotypic specific markers on macrophages were detected respectively.Results Compared to the control group,the expression of Arg-1 [(12.0 ± 3.1) % vs.(40.0±2.6)%,P<0.05] and interleukin (IL)-10 [(90.0±4.4) ng/Lvs.(150.0±6.8) ng/L,P <0.05] in macrophages co-cultured with CSCs pre-treated with swainsonine (1 mg/L) was decreased,whereas inducible nitric oxide synthase (iNOS) [(50.0 ±2.1)% vs.(12.0 ± 1.3)%,P<0.05] and tumor necrosis factor (TNF)-α [(240.0 ± 8.1) ng/L vs.(50.0 ± 3.3) ng/L,P < 0.05] increased.Conclusion Increased expression of beta-1,6-oligosaccharide in CSCs derived from osteosarcoma cell line induced the differentiation of bone marrow-derived macrophages into anti-inflammatory M2 macrophages.%目的 检测骨肉瘤类肿瘤干细胞对巨噬细胞表型转换的影响.方法 苦马豆素预处理的CD133+ CD44+骨肉瘤细胞LM8与骨髓巨噬细胞共培养后检测巨噬细胞表型相关标志分子的表达.结果 与未处理组比较,1 mg/L苦马豆素处理组巨噬细胞精氨酸酶(Arg)-1[(12.0±3.1)%比(40.0±2.6)%,P<0.05]和白细胞介素(IL)-10[(90.0±4.4) ng/L比(150.0 ±6.8) ng/L,P<0.05]表达下降,诱导型一氧化氮合酶(iNOS)[(50.0±2.1)%比(12.0±1.3)%,P<0.05]与肿瘤坏死因子(TNF)-α[(240.0 ±8.1)ng/L比(50.0±3.3) ng/L,P<0.05]表达上升.结论 骨肉瘤类肿瘤干细胞高表达1,6分支N-糖链诱导巨噬细胞M2表型转换.

  14. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. ► STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. ► Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. ► STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. ► Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH+/CD133+). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem-like

  15. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lin.796@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: lin.674@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  16. Cultivation and identification of human colon cancer stem-like cells in the serum-free culture medium in vitro%结肠癌干细胞样细胞的无血清法培养及特性鉴定

    Institute of Scientific and Technical Information of China (English)

    杨婷; 马磊; 李盛; 管向东

    2015-01-01

    Objective To generate suspended spheres ,Human colon cancer cell line SW620 cells were acclimated gradually in the free serum culture medium ,1 week later ,a great quantity of spheres were obtained for the further research .Methods SW620 cells and spheres were incubated with the following Abs :anti‐SSEA‐4 Ab and anti‐TRA‐1‐60 Ab and detected with confocal microscopy . SW620 cells and spheres were collected and stained by PI ,Cell cycle distribution was then acquired by flow cytometry .SW620 cells and spheres were transferred into Adipocyte Differentiation Medium and cultured for 7 d and then lipid droplets were counted . SW620 cells and sphere cells were injected subcutaneously into the lateral root of one posterior limb of a nude mouse ,tumor volume was calculated .Results Spheres formed when grown under serum‐free conditions in 7 days ,and the ability of SW620 cells to form spheres was sustained .A few of SW620 adherent cells be cultured in DF+10% FBS clearly showed the expression of pluripotent stem cell markers Ssea‐4(25 .739 ± 7 .62)% ,Tra‐1‐60(27 .742 ± 4 .311)% ,but almost all spheres expressed the 2 markers and there was a significant difference between the two groups in the expression ratio (P<0 .05) .It had been shown that the spheres exhibited a relatively high proportion of cells in G0/G1 phase(84 .19 ± 2 .52)% and low proportion in S phase(7 .18 ± 1 .35)% ;when com‐pared to SW620 cells ,G0/G1 phase(63 .02 ± 6 .73)% ,S phase(20 .89 ± 3 .84)% (P<0 .05) .Adipocytes drops from spheres and ad‐herent cells were calculated under microscope after been cultured in adipocytes liquid for 7 d .The number of adipocytes drops in spheres was (583 .80 ± 77 .69) ,but(169 .20 ± 26 .43)in SW620 adherent(P<0 .05) .2 × 104 sphere cells injected subcutaneously into the lateral root of one posterior limb of a nude mouse fromed transplantation tumor after 4 weeks ,and the tumor size was (2 279 .98 ± 346 .27) mm3 ;2 × 105 adherent cells

  17. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation

    International Nuclear Information System (INIS)

    Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. (author)

  18. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells.

    Science.gov (United States)

    Zeng, Yingjian; Weng, Guangyang; Fan, Jiaxin; Li, Zhangqiu; Wu, Jianwei; Li, Yuanming; Zheng, Rong; Xia, Pingfang; Guo, Kunyuan

    2016-09-01

    Low response, treatment-related complications and relapse due to the low sensitivity of myelodysplastic syndrome (MDS) and leukemia stem cells (LSCs) or pre‑LSCs to arsenic trioxide (ATO), represent the main problems following treatment with ATO alone in patients with MDS. To solve these problems, a chemosensitization agent can be applied to increase the susceptibility of these cells to ATO. Curcumin (CUR), which possesses a wide range of anticancer activities, is a commonly used chemosensitization agent for various types of tumors, including hematopoietic malignancies. In the present study, we investigated the cytotoxic effects and potential mechanisms in MDS-SKM-1 and leukemia stem-like KG1a cells treated with CUR and ATO alone or in combination. CUR and ATO exhibited growth inhibition detected by MTT assays and apoptosis analyzed by Annexin V/PI analyses in both SKM-1 and KG1a cells. Apoptosis of SKM-1 and KG1a cells determined by Annexin V/PI was significantly enhanced in the combination groups compared with the groups treated with either agent alone. Further evaluation was performed by western blotting for two hallmark markers of apoptosis, caspase-3 and cleaved-PARP. Co-treatment of the cells with CUR and ATO resulted in significant synergistic effects. In SKM-1 and KG1a cells, 31 and 13 proteins analyzed by protein array assays were modulated, respectively. Notably, survivin protein expression levels were downregulated in both cell lines treated with CUR alone and in combination with ATO, particularly in the latter case. Susceptibility to apoptosis was significantly increased in SKM-1 and KG1a cells treated with siRNA-survivin and ATO. These results suggested that CUR increased the sensitivity of SKM-1 and KG1a cells to ATO by downregulating the expression of survivin. PMID:27430728

  19. Urothelial Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Irena Dimov

    2010-01-01

    Full Text Available There is mounting evidence supporting the idea that tumors, similar to normal adult tissues, arise from a specific stem-like cell population, the cancer stem cells (CSCs, which are considered as the real driving force behind tumor growth, the ability to metastasize, as well as resistance to conventional antitumor therapy. The concept that cancer growth recapitulates normal proliferative and/or regenerative processes, even though in very dysfunctional ways, has tremendous implications for cancer therapy. The rapid development of the CSC field, shoulder to shoulder with powerful genome-wide screening techniques, has provided cause for optimism for the development of more reliable therapies in the future. However, several important issues still lie ahead. Recent identification of a highly tumorigenic stem-like compartment and existence of urothelial differentiation programs in urothelial cell carcinomas (UCCs raised important questions about UCC initiation and development. This review examines the present knowledge on CSCs in UCCs regarding the similarities between CSCs and the adult urothelial stem cells, potential origin of urothelial CSCs, main regulatory pathways, surface markers expression, and the current state of CSC-targeting therapeutic strategies.

  20. MiR-21-5p Links Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid Keratinocytes

    Science.gov (United States)

    Yan, Li; Cao, Rui; Liu, YuanBo; Wang, LianZhao; Pan, Bo; Lv, XiaoYan; Jiao, Hu; Zhuang, Qiang; Sun, XueJian; Xiao, Ran

    2016-01-01

    Keloid is the abnormal wound healing puzzled by the aggressive growth and high recurrence rate due to its unrevealed key pathogenic mechanism. MicroRNAs contribute to a series of biological processes including epithelial-mesenchymal transition (EMT) and cells stemness involved in fibrotic disease. Here, using microRNAs microarray analysis we found mir-21-5p was significantly up-regulated in keloid epidermis. To investigate the role of miR-21-5p in keloid pathogenesis, we transfected miR-21-5p mimic or inhibitor in keloid keratinocytes and examined the abilities of cell proliferation, apoptosis, migration and invasion, the expressions of EMT-related markers vimentin and E-cadherin and stem-like cells-associated markers CD44 and ALDH1, and the involvement of PTEN and the signaling of AKT and ERK. Our results demonstrated that up-regulation or knockdown of miR-21-5p significantly increased or decreased the migration, invasion and sphere-forming abilities of keloid keratinocytes, and the phenotype of EMT and cells stemness were enhanced or reduced as well. Furthermore, PTEN and p-AKT were shown to participate in the regulation of miR-21-5p on EMT phenotypes and stemness signatures of keloid keratinocytes, which might account for the invasion and recurrence of keloids. This molecular mechanism of miR-21-5p on keloid keratinocytes linked EMT with cells stemness and implicated novel therapeutic targets for keloids. PMID:27596120

  1. MiR-21-5p Links Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid Keratinocytes

    Science.gov (United States)

    Yan, Li; Cao, Rui; Liu, Yuanbo; Wang, Lianzhao; Pan, Bo; Lv, Xiaoyan; Jiao, Hu; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2016-09-01

    Keloid is the abnormal wound healing puzzled by the aggressive growth and high recurrence rate due to its unrevealed key pathogenic mechanism. MicroRNAs contribute to a series of biological processes including epithelial-mesenchymal transition (EMT) and cells stemness involved in fibrotic disease. Here, using microRNAs microarray analysis we found mir-21-5p was significantly up-regulated in keloid epidermis. To investigate the role of miR-21-5p in keloid pathogenesis, we transfected miR-21-5p mimic or inhibitor in keloid keratinocytes and examined the abilities of cell proliferation, apoptosis, migration and invasion, the expressions of EMT-related markers vimentin and E-cadherin and stem-like cells-associated markers CD44 and ALDH1, and the involvement of PTEN and the signaling of AKT and ERK. Our results demonstrated that up-regulation or knockdown of miR-21-5p significantly increased or decreased the migration, invasion and sphere-forming abilities of keloid keratinocytes, and the phenotype of EMT and cells stemness were enhanced or reduced as well. Furthermore, PTEN and p-AKT were shown to participate in the regulation of miR-21-5p on EMT phenotypes and stemness signatures of keloid keratinocytes, which might account for the invasion and recurrence of keloids. This molecular mechanism of miR-21-5p on keloid keratinocytes linked EMT with cells stemness and implicated novel therapeutic targets for keloids.

  2. MiR-21-5p Links Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid Keratinocytes.

    Science.gov (United States)

    Yan, Li; Cao, Rui; Liu, YuanBo; Wang, LianZhao; Pan, Bo; Lv, XiaoYan; Jiao, Hu; Zhuang, Qiang; Sun, XueJian; Xiao, Ran

    2016-01-01

    Keloid is the abnormal wound healing puzzled by the aggressive growth and high recurrence rate due to its unrevealed key pathogenic mechanism. MicroRNAs contribute to a series of biological processes including epithelial-mesenchymal transition (EMT) and cells stemness involved in fibrotic disease. Here, using microRNAs microarray analysis we found mir-21-5p was significantly up-regulated in keloid epidermis. To investigate the role of miR-21-5p in keloid pathogenesis, we transfected miR-21-5p mimic or inhibitor in keloid keratinocytes and examined the abilities of cell proliferation, apoptosis, migration and invasion, the expressions of EMT-related markers vimentin and E-cadherin and stem-like cells-associated markers CD44 and ALDH1, and the involvement of PTEN and the signaling of AKT and ERK. Our results demonstrated that up-regulation or knockdown of miR-21-5p significantly increased or decreased the migration, invasion and sphere-forming abilities of keloid keratinocytes, and the phenotype of EMT and cells stemness were enhanced or reduced as well. Furthermore, PTEN and p-AKT were shown to participate in the regulation of miR-21-5p on EMT phenotypes and stemness signatures of keloid keratinocytes, which might account for the invasion and recurrence of keloids. This molecular mechanism of miR-21-5p on keloid keratinocytes linked EMT with cells stemness and implicated novel therapeutic targets for keloids. PMID:27596120

  3. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches

    Directory of Open Access Journals (Sweden)

    Marco Mineo

    2016-06-01

    Full Text Available Long non-coding RNAs (lncRNAs have an undefined role in the pathobiology of glioblastoma multiforme (GBM. These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2 as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.

  4. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy

    OpenAIRE

    Sullivan, James P.; Minna, John D.; Shay, Jerry W.

    2010-01-01

    The discovery of rare tumor cells with stem cell features first in leukemia and later in solid tumors has emerged as an important area in cancer research. It has been determined that these stem-like tumor cells, termed cancer stem cells, are the primary cellular component within a tumor that drives disease progression and metastasis. In addition to their stem-like ability to self-renew and differentiate, cancer stem cells are also enriched in cells resistant to conventional radiation therapy ...

  5. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    OpenAIRE

    Narumol Bhummaphan; Pithi Chanvorachote

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent ...

  6. High prevalence of side population in human cancer cell lines

    OpenAIRE

    Boesch, Maximilian; Zeimet, Alain G; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther; Sopper, Sieghart; Wolf, Dominik

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems.

  7. Forced extinction of CD24 stem-like breast cancer marker alone promotes radiation resistance through the control of oxidative stress.

    Science.gov (United States)

    Bensimon, Julie; Biard, Denis; Paget, Vincent; Goislard, Maud; Morel-Altmeyer, Sandrine; Konge, Julie; Chevillard, Sylvie; Lebeau, Jérôme

    2016-03-01

    Along with CD44, CD24 is a key marker of breast cancer stem cells (CSCs), frequently defined by CD24(-)/CD44(+) labeling. Among all phenotypes classically attributed to breast CD24(-)/CD44(+) cancer cells, radiation resistance has been extensively described and seen as being implicated in radiotherapy failure. Our previous data indicated that CD24(-) cells constitute a radiation-resistant subpopulation transitory selected by high doses of ionizing radiation. However, little is known about the biological role of CD24 in breast cancers, and no function has been assigned to CD24 in radiation response. Here, CD24 expression was induced in CD24(-) cells or knocked-down in CD24(+) cells. We show that forced extinction of CD24 expression is associated with decreased proliferation rate, lower levels of reactive oxygen species (ROS) and decreased genomic instability. On the opposite when CD24 is artificially expressed in CD24(-) cells, proliferation rates in vitro and in vivo, ROS levels and genomic instability are enhanced. Moreover, we observe that loss of CD24 expression leads to radiation resistance, by preventing radiation-induced cell death and promoting generation of progeny in relation to lower G2/M blockade and a smaller proportion of polyploid cells. Finally, control of ROS levels appears to be the key event in the CD24-mediated radiation response. For the first time, CD24 is proposed as a direct actor in radiation response of breast cancer cells, independently of CD44 expression. These findings could have interesting applications in evaluating the intrinsic radiation response of primary tumors.

  8. Cancer quasispecies and stem-like adaptive aneuploidy [v1; ref status: indexed, http://f1000r.es/29s

    Directory of Open Access Journals (Sweden)

    Domenico Napoletani

    2013-12-01

    Full Text Available In this paper we develop a theoretical frame to understand self-regulation of aneuploidy rate in cancer and stem cells. This is accomplished building upon quasispecies theory, by leaving its formal mathematical structure intact, but by drastically changing the meaning of its objects. In particular, we propose a novel definition of chromosomal master sequence, as a sequence of physically distinct whole or fragmented chromosomes, whose length is taken to be the sum of the copy numbers of each whole or fragmented chromosome. This fundamental change in the functional objects of quasispecies theory allows us to show that previously measured aneuploidy rates in cancer populations are already close to a formally derived aneuploid error threshold, and that any value of aneuploidy rate larger than the aneuploid error threshold would lead to a loss of fitness of a tumor population. Finally, we make a phenomenological analysis of existing experimental evidence to argue that single clone cancer cells, derived from an aneuploid cancer subpopulation, are capable of self-regulating their aneuploidy rate and of adapting it to distinct environments, namely primary and metastatic microenvironments. We also discuss the potential origin of this self-regulatory ability in the wider context of developmental and comparative biology and we hypothesize the existence of a diversification factor, i.e. a cellular mechanism that regulates adaptation of aneuploidy rates, active in all embryo, adult and cancer stem cells.

  9. Melanoma dormancy in a mouse model is linked to GILZ/FOXO3A-dependent quiescence of disseminated stem-like cells.

    Science.gov (United States)

    Touil, Yasmine; Segard, Pascaline; Ostyn, Pauline; Begard, Severine; Aspord, Caroline; El Machhour, Raja; Masselot, Bernadette; Vandomme, Jerome; Flamenco, Pilar; Idziorek, Thierry; Figeac, Martin; Formstecher, Pierre; Quesnel, Bruno; Polakowska, Renata

    2016-01-01

    Metastatic cancer relapses following the reactivation of dormant, disseminated tumour cells; however, the cells and factors involved in this reactivation are just beginning to be identified. Using an immunotherapy-based syngeneic model of melanoma dormancy and GFP-labelled dormant cell-derived cell lines, we determined that vaccination against melanoma prevented tumour growth but did not prevent tumour cell dissemination or eliminate all tumour cells. The persistent disseminated melanoma tumour cells were quiescent and asymptomatic for one year. The quiescence/activation of these cells in vitro and the dormancy of melanoma in vivo appeared to be regulated by glucocorticoid-induced leucine zipper (GILZ)-mediated immunosuppression. GILZ expression was low in dormant cell-derived cultures, and re-expression of GILZ inactivated FOXO3A and its downstream target, p21CIP1. The ability of dormancy-competent cells to re-enter the cell cycle increased after a second round of cellular dormancy in vivo in association with shortened tumour dormancy period and faster and more aggressive melanoma relapse. Our data indicate that future cancer treatments should be adjusted according to the stage of disease progression. PMID:27465291

  10. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment

    OpenAIRE

    Würth, Roberto; Bajetto, Adriana; Harrison, Jeffrey K.; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascr...

  11. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    OpenAIRE

    Roberto eWurth; Adriana eBajetto; Harrison, Jeffrey K.; Federica eBarbieri; Tullio eFlorio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascri...

  12. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  13. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  14. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  15. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor

  16. Oncogenic signaling pathways and origins of tumor-initiating stem-like cells of hepatocellular carcinomas induced by hepatitis C virus, alcohol and/or obesity.

    Science.gov (United States)

    Chen, Chia-Lin; Tsukamoto, Hidekazu; Machida, Keigo

    2014-07-01

    This review article discusses the importance and oncogenic signaling pathways of tumor-initiating cells (TICs) in several etiologies of hepatocellular carcinomas (HCCs) induced by hepatitis C virus (HCV), alcohol, obesity and/or chemicals. Stem cells may be present in cancer tissue, and a hierarchy of cells is formed, as is the case for normal tissue. Tumor formation, growth and propagation are maintained by a small proportion of cells with stem cell-like properties. TICs are present in alcohol-fed HCV transgenic mice, diethylnitrosamine/phenobarbital-treated mice (chemical carcinogenesis) and Spnb2 +/- mice (defective TGF-β signal). Alcohol/obesity-associated endotoxemia induces the stem cell marker Nanog through TLR4 signaling to generate TICs and liver tumors in several HCC models. The oncogenic pathway (such as the STAT3 and TLR4-NANOG pathway) and mechanism of generation of TICs of HCCs associated with HCV, alcohol and obesity are discussed. Understanding the molecular stemness signaling and cellular hierarchy and defining key TIC-specific genes will accelerate the development of novel biomarkers and treatment strategies. This review highlights recent advances in understanding the pathogenesis of liver TICs and discusses unanswered questions about the concept of liver TICs. (This project was supported by NIH grants 1R01AA018857 and P50AA11999).

  17. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion

    OpenAIRE

    Iliopoulos, Dimitrios; Hirsch, Heather A.; Wang, Guannan; Struhl, Kevin

    2011-01-01

    Tumors are often heterogeneous, being composed of multiple cell types with different phenotypic and molecular properties. Cancer stem-like cells (CSCs) are a highly tumorigenic cell type found in developmentally diverse tumors or cancer cell lines, and they are often resistant to standard chemotherapeutic drugs. The origins of CSCs and their relationships to nonstem cancer cells (NSCCs) are poorly understood. In an inducible breast oncogenesis model, CSCs are generated from nontransformed cel...

  18. Interfacial geometry dictates cancer cell tumorigenicity

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  19. Common stemness regulators of embryonic and cancer stem cells

    OpenAIRE

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we h...

  20. CXCR4 expression in prostate cancer progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Dubrovska

    Full Text Available Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44(+/CD133(+ prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.

  1. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    International Nuclear Information System (INIS)

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data. (paper)

  2. Cancer Stem Cells, Tumor Dormancy, And Metastasis

    Directory of Open Access Journals (Sweden)

    Purvi ePatel

    2012-10-01

    Full Text Available Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Although overlapping molecules and pathways have been reported to regulate the stem-like phenotype of CSCs and metastasis, accumulated evidence has suggested additional clonal diversity within the stem-like cancer cell subpopulation. This review will describe the current hypothesis linking CSCs and metastasis and summarize mechanisms important for metastatic CSCs to re-initiate tumors in the secondary sites. A better understanding of CSCs’ contribution to clinical tumor dormancy and metastasis will provide new therapeutic revenues to eradicate metastatic tumors and significantly reduce the mortality of cancer patients.

  3. HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable anti-tumor effects

    OpenAIRE

    Zhou, Yan; Yang, Jiyuan; Rhim, Johng S.; Kopeček, Jindřich

    2013-01-01

    Current treatments for prostate cancer are still not satisfactory, often resulting in tumor regrowth and metastasis. One of the main reasons for the ineffective anti-prostate cancer treatments is the failure to deplete cancer stem-like cells (CSCs) - a subset of cancer cells with enhanced tumorigenic capacity. Thus, combination of agents against both CSCs and bulk tumor cells may offer better therapeutic benefits. Several molecules with anti-cancer stem/progenitor cell activities have been un...

  4. Generation of liver-specific TGF-α/c-Myc-overexpressing porcine induced pluripotent stem-like cells and blastocyst formation using nuclear transfer.

    Science.gov (United States)

    Park, Kyung-Mee; Lee, Joohyeong; Hussein, Kamal Hany; Hong, Seok-Ho; Yang, Se-Ran; Lee, Eunsong; Woo, Heung-Myong

    2016-05-01

    Transgenic porcine induced pluripotent stem (iPS) cells are attractive cell sources for the development of genetically engineered pig models, because they can be expanded without senescence and have the potential for multiple gene manipulation. They are also useful cell sources for disease modeling and treatment. However, the generation of transgenic porcine iPS cells is rare, and their embryonic development after nuclear transfer (NT) has not yet been reported. We report here the generation of liver-specific oncogenes (TGF-α/c-Myc)-overexpressing porcine iPS (T/M iPS)-like cells. They expressed stem cell characteristics and were differentiated into hepatocyte-like cells that express oncogenes. We also confirmed that NT embryos derived from T/M iPS-like cells successfully developed blastocysts in vitro. As an initial approach toward porcine transgenic iPS cell generation and their developmental competence after NT, this study provides foundations for the efficient generation of genetically modified porcine iPS cells and animal models. PMID:26725870

  5. Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation.

    Science.gov (United States)

    Ryzhov, Sergey; Sung, Bong Hwan; Zhang, Qinkun; Weaver, Alissa; Gumina, Richard J; Biaggioni, Italo; Feoktistov, Igor

    2014-09-01

    Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1(+)CD31(-) mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1(+)CD31(-) cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1(+)CD31(-) cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1(+)CD31(-) cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1(+)CD31(-) cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.

  6. Downregulation of Histone Methyltransferase Genes SUV39H1 and SUV39H2 Increases Telomere Length in Embryonic Stem-like Cells and Embryonic Fibroblasts in Pigs

    OpenAIRE

    DANG-NGUYEN, Thanh Quang; Haraguchi, Seiki; FURUSAWA, Tadashi; Somfai, Tamas; KANEDA, Masahiro; Watanabe, Shinya; Akagi, Satoshi; KIKUCHI, Kazuhiro; Tajima, Atsushi; Nagai, Takashi

    2012-01-01

    Abstract Telomere is a nucleoprotein structure at the ends of chromosomes that helps to protect the ends of chromosomes from being fused with other chromosomes. Knockout of histone methyltransferases Suv39h1 and Suv39h2 increases the telomere length in murine cells, whereas downregulation of SUV39H1 and SUV39H2 genes decreases the telomere length in human cells, suggesting that telomere biology is different among mammalian species. However, epigenetic regulation of the telomere has not been s...

  7. The Culture Repopulation Ability (CRA) Assay and Incubation in Low Oxygen to Test Antileukemic Drugs on Imatinib-Resistant CML Stem-Like Cells.

    Science.gov (United States)

    Cheloni, Giulia; Tanturli, Michele

    2016-01-01

    Chronic myeloid leukemia (CML) is a stem cell-driven disorder caused by the BCR/Abl oncoprotein, a constitutively active tyrosine kinase (TK). Chronic-phase CML patients are treated with impressive efficacy with TK inhibitors (TKi) such as imatinib mesylate (IM). However, rather than definitively curing CML, TKi induces a state of minimal residual disease, due to the persistence of leukemia stem cells (LSC) which are insensitive to this class of drugs. LSC persistence may be due to different reasons, including the suppression of BCR/Abl oncoprotein. It has been shown that this suppression follows incubation in low oxygen under appropriate culture conditions and incubation times.Here we describe the culture repopulation ability (CRA) assay, a non-clonogenic assay capable - together with incubation in low oxygen - to reveal in vitro stem cells endowed with marrow repopulation ability (MRA) in vivo. The CRA assay can be used, before moving to animal tests, as a simple and reliable method for the prescreening of drugs potentially active on CML and other leukemias with respect to their activity on the more immature leukemia cell subsets. PMID:27581140

  8. Cancer stem cells and metastasis.

    Science.gov (United States)

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  9. Keeping an open mind: highlights and controversies of the breast cancer stem cell theory

    OpenAIRE

    Shah M; Allegrucci C

    2012-01-01

    Mansi Shah,1 Cinzia Allegrucci1,21School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK; 2Center for Genetics and Genomics and Cancer Research Nottingham, University of Nottingham, University Park, Nottingham, UKAbstract: The discovery that breast cancers contain stem-like cells has fuelled exciting research in the last few years. These cells are referred to as breast cancer stem cells (BCSCs) and are thought to be involved in tumor ini...

  10. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT), induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors

  11. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dejuan; Li, Yiwei; Wang, Zhiwei; Sarkar, Fazlul H., E-mail: fsarkar@med.wayne.edu [Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201 (United States)

    2011-02-21

    Cancer stem cells (CSCs) are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT), induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors.

  12. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT-Phenotypic Cells: Are They Cousins or Twins?

    Directory of Open Access Journals (Sweden)

    Fazlul H. Sarkar

    2011-02-01

    Full Text Available Cancer stem cells (CSCs are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT, induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors.

  13. mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related functions

    Science.gov (United States)

    Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin

    2013-11-01

    Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.

  14. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  15. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  16. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells

    OpenAIRE

    Krishnamurthy, Sudha; Dong, Zhihong; Vodopyanov, Dmitry; Imai, Atsushi; Helman, Joseph I.; Prince, Mark E.; Wicha, Max S.; Jacques E Nör

    2010-01-01

    Recent studies have demonstrated that cancer stem cells play an important role in the pathobiology of head and neck squamous cell carcinomas (HNSCC). However, little is known about functional interactions between head and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we used Aldehyde Dehydrogenase activity and CD44 expression to sort putative stem cells from primary human HNSCC. Implantation of 1,000 CSC (ALDH+CD44+Lin−) led to tumors in 13 (out of 15) mice, while 10,...

  17. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  18. Common stemness regulators of embryonic and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Christiana; Hadjimichael; Konstantina; Chanoumidou; Natalia; Papadopoulou; Panagiota; Arampatzi; Joseph; Papamatheakis; Androniki; Kretsovali

    2015-01-01

    Pluripotency of embryonic stem cells(ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal trans-ducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors(cancer stem cells), provides a common conceptual and research frame-work for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.

  19. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  20. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  1. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  2. Matrix Metalloproteinase-10 Is Required for Lung Cancer Stem Cell Maintenance, Tumor Initiation and Metastatic Potential

    OpenAIRE

    Verline Justilien; Regala, Roderick P.; I-Chu Tseng; Walsh, Michael P.; Jyotica Batra; Radisky, Evette S.; Murray, Nicole R.; Fields, Alan P.

    2012-01-01

    Matrix metalloproteinases (Mmps) stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2) in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC). Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. ...

  3. Doublecortin-like kinase 1 exhibits cancer stem cell-like characteristics in a human colon cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Lianna Li; Charles F.Bellows

    2013-01-01

    Objective:Colon cancer stem cells (CSCs) are implicated in colorectal cancer carcinogenesis,metastasis,and therapeutic resistance.The identification of these cells could help to develop novel therapeutic strategies.Doublecortin-like kinase 1 (DCLK1) has been viewed as a marker for gastrointestinal stem cells that fuel the self-renewal process,however others view them as a marker of Tuft cells or as an enteroendocrine subtype.The purpose of this study was to use a colon cancer cell line to identify and characterize the stem-like characteristics of the DCLK1+ cell population.Methods:To enrich stem-like cells,HCT116 cells (derived from colon adenocarcinomas) were cultured using serum-free media to form spheres under both normal oxygen and hypoxia condition.DCLK1 transcript expression in the adherent parental cells and spheroids was quantified using quantitative real time reverse transcription-polymerase chain reaction [(q)RT-PCR].DCLK1 protein expression was determined using flow cytometry.Self-renewal capability from adherent parental cells and spheroids was determined using extreme limiting dilution analysis (ELDA).Results:Under both normal oxygen and hypoxia condition,the adherent parental cells were composed of cells that express low levels of DCLK1.However,spheroids exhibited an increased frequency of cells expressing DCLK1 on both mRNA and protein levels.Cells derived from spheroids also possess stronger self-renewal capability.Conclusions:The higher fraction of DCLK1+ cells exhibited by spheroids and hypoxia reflects the stemlike characteristics of these cells.DCLK1 may represent an ideal marker to study and develop effective strategies to overcome chemo-resistance and relapse of colon cancer.

  4. 人类羊水源类ES细胞多能性干细胞的分离培养%ISOLATION AND CUTURE EMBRYONIC STEM-LIKE CELLS DERIVED HUMAN AMNIOTIC FLUID CELLS

    Institute of Scientific and Technical Information of China (English)

    华进联; 刘雨潇; 董武子

    2004-01-01

    @@ Stem cells are classified into embryonic stem (ES) cells and adult stem cells, which are the progenitors of any cell types of the body or tissues, and have the ability to self-renew and produce one or more differentiated cell types.

  5. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  6. 人肝癌PLC/PRF-5细胞中干细胞样细胞的分离及其特异性miRNAs的筛选%Isolation of stem-like cells from human hepatocellular carcinoma PLC/PRF-5 cells and screening for their specific miRNAs

    Institute of Scientific and Technical Information of China (English)

    郑秋红; 许扬梅; 魏植强; 龚福生; 杨建伟; 谢云青; 应敏刚

    2011-01-01

    Objective: To isolate stem-like cells from hepatocellular carcinoma cell line PLC/PRF-5 and to study their miRNA profile. Methods:ABCG2 + and ABCG2- PLC/PRF-5 cells were isolated from the PLC/PRF-5 cell line by magnetic activated cell sorting (MACS) method, and further identified by flow cytometry. The colony formation ability in soft agar and tumor formation ability in NOD/SCID mice of ABCG2+ and ABCG2- PLC/PRF-5 cells were observed. miRNA chip was adopted to screen the differentially expressed miRNAs between ABCG2 + and ABCG2 - PLC/PRF-5 cells; and real-time PCR assay was used to confirm the results of miRNA chip. Results:The purity of ABCG2 + PLC/PRF-5 cells isolated by MACS method was ( 84.20 ± 4.52 ) %. The colony number and size formed by ABCG2 + PLC/PRF-5 cells were more and larger than those formed by ABCG2 - cells (47.17 ± 10.50 vs 23.33 ±7.31, P <0.05). 1 × 104 ABCG2 + cells could form tumors with at least 5 × 105 cells needed for ABCG2 - cells. The size of tumors generated by 5 × 105 ABCG2 + cells was larger than that by the ABCG2 - cells ( [ 3.73 ± 1.19 ]cm3 vs [0.72 ± 0.57 ] cm3, P < O. Ol ). There are 20 miRNAs differentially expressed between ABCG2 + and ABCG2- cells, with 13 up-regulated and 7 down-regulated. Realtime PCR assay was applied to further verify the differential expression of hsa-miR-30a and hsa-miR-630, and the results were in accordance with those of miRNA chip. Conclusion: ABCG2+ PLC/PRF-5 cells in hepatocellular carcinoma cell line PLC/PRF-5 have the properties of cancer stem cells. Twenty miRNAs are differentially expressed between ABCG2 + and ABCG2 - PLC/PRF-5 cells, which might play important roles in the carcinogenesis of hepatocellular carcinoma.%目的:分选及鉴定人肝癌PLC/PRF-5细胞中的肝癌干细胞样细胞,研究其microRNAs(miRNAs)表达谱.方法:以ABCG2为表面标志,免疫磁珠法分选、流式细胞术检测ABCG2+和ABCG2-PLC/PRF-5细胞,观察ABCG2+与ABCG2-PLC/PRF-5细胞的琼脂克隆

  7. Cancer stem cell and its relevance to tumors resistance to radiotherapy

    International Nuclear Information System (INIS)

    The gradually accumulated information and knowledge regarding cancer stem cell or stem-like cancer cell greatly potentiated the research progression of radiation oncology and biology. In recent years, a series studies have uncovered that the cancer stem cell and cancer quiescent cell could be the major cells origin attributed to the radioresistance and recurrence of tumors in the course of radiotherapy. A rapid research progression has already been achieved respecting the radiosensitivity and related mechanisms of these two subsets of cancer cells, and which provides an idea strategy for development of the measures targeting tumor radioresistance. This paper reviewed and discussed the cellular basis and molecular mechanism of the tumor radioresistance from the aspects of cancer cells subsets and the radiobiological characteristics. (authors)

  8. Cancer Stem Cell Biomarker Discovery Using Antibody Array Technology.

    Science.gov (United States)

    Burgess, Rob; Huang, Ruo-Pan

    2016-01-01

    Cancer is a complex disease involving hundreds of pathways and numerous levels of disease progression. In addition, there is a growing body of evidence that the origins and growth rates of specific types of cancer may involve "cancer stem cells," which are defined as "cells within a tumor that possess the capacity to self-renew and to cause the development of heterogeneous lineages of cancer cells that comprise the tumor.(1)" Many types of cancer are now thought to harbor cancer stem cells. These cells themselves are thought to be unique in comparison to other cells types present within the tumor and to exhibit characteristics that allow for the promotion of tumorigenesis and in some cases metastasis. In addition, it is speculated that each type of cancer stem cell exhibits a unique set of molecular and biochemical markers. These markers, alone or in combination, may act as a signature for defining not only the type of cancer but also the progressive state. These biomarkers may also double as signaling entities which act autonomously or upon neighboring cancer stem cells or other cells within the local microenvironment to promote tumorigenesis. This review describes the heterogeneic properties of cancer stem cells and outlines the identification and application of biomarkers and signaling molecules defining these cells as they relate to different forms of cancer. Other examples of biomarkers and signaling molecules expressed by neighboring cells in the local tumor microenvironment are also discussed. In addition, biochemical signatures for cancer stem cell autocrine/paracrine signaling, local site recruitment, tumorigenic potential, and conversion to a stem-like phenotype are described.

  9. Phototheranostics of CD44-positive cell populations in triple negative breast cancer

    OpenAIRE

    Jiefu Jin; Balaji Krishnamachary; Yelena Mironchik; Hisataka Kobayashi; Bhujwalla, Zaver M.

    2016-01-01

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed...

  10. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  11. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  12. Tumour-initiating cells vs. cancer 'stem' cells and CD133: What's in the name?

    International Nuclear Information System (INIS)

    Recent evidence suggests that a subset of cells within a tumour have 'stem-like' characteristics. These tumour-initiating cells, distinct from non-malignant stem cells, show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumour cells, resistance to chemotherapy or radiation, and they are often characterised by elevated expression of the stem cell surface marker CD133. Understanding the molecular biology of the CD133+ cancer cells is now essential for developing more effective cancer treatments. These may include drugs targeting organelles, such as mitochondria or lysosomes, using highly efficient and selective inducers of apoptosis. Alternatively, agents or treatment regimens that enhance sensitivity of these therapy-resistant 'tumour stem cells' to the current or emerging anti-tumour drugs would be of interest as well

  13. Accumulation of ALDH1-positive cells after neoadjuvant chemotherapy predicts treatment resistance and prognosticates poor outcome in ovarian cancer.

    Science.gov (United States)

    Ayub, Tiyasha H; Keyver-Paik, Mignon-Denise; Debald, Manuel; Rostamzadeh, Babak; Thiesler, Thore; Schröder, Lars; Barchet, Winfried; Abramian, Alina; Kaiser, Christina; Kristiansen, Glen; Kuhn, Walther; Kübler, Kirsten

    2015-06-30

    Although ovarian cancer is a highly chemosensitive disease, it is only infrequently cured. One of the major reasons lies in the presence of drug-resistant cancer stem-like cells, sufficient to fuel recurrence. We phenotyped cancer stem-like cells by flow cytometry and immunohistochemistry in 55 matched samples before and after taxane/platinum-based neoadjuvant chemotherapy. All used markers of stemness (ALDH1, CD24, CD117, CD133) isolated low frequencies of malignant cells. ALDH1 was the most valuable marker for tracking stemness in vivo. The enrichment of ALDH1 expression after treatment was associated with a poor response to chemotherapy, with platinum resistance and independently prognosticated unfavorable outcome. Our results suggest that increased ALDH1 expression after treatment identifies patients with aggressive tumor phenotypes. PMID:25999351

  14. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  15. Targeting IL-8 signalling to inhibit breast cancer stem cell activity.

    Science.gov (United States)

    Singh, Jagdeep K; Simões, Bruno M; Clarke, Robert B; Bundred, Nigel J

    2013-11-01

    Although survival from breast cancer has improved significantly over the past 20 years, disease recurrence remains a significant clinical problem. The concept of stem-like cells in cancer has been gaining currency over the last decade or so, since evidence for stem cell activity in human leukaemia and solid tumours, including breast cancer, was first published. Evidence indicates that this sub-population of cells, known as cancer stem-like cells (CSCs), is responsible for driving tumour formation and disease progression. In breast cancer, there is good evidence that CSCs are intrinsically resistant to conventional chemo-, radio- and endocrine therapies. By evading the effects of these treatments, CSCs are held culpable for disease recurrence. Hence, in order to improve treatment there is a need to develop CSC-targeted therapies. Interleukin-8 (IL-8), an inflammatory cytokine, is upregulated in breast cancer and associated with poor prognostic factors. Accumulating evidence demonstrates that IL-8, through its receptors CXCR1/2, is an important regulator of breast CSC activity. Inhibiting CXCR1/2 signalling has proved efficacious in pre-clinical models of breast cancer providing a good rationale for targeting CXCR1/2 clinically. Here, we discuss the role of IL-8 in breast CSC regulation and development of novel therapies to target CXCR1/2 signalling in breast cancer.

  16. Phototheranostics of CD44-positive cell populations in triple negative breast cancer

    Science.gov (United States)

    Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena; Kobayashi, Hisataka; Bhujwalla, Zaver M.

    2016-01-01

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC. PMID:27302409

  17. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    Science.gov (United States)

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC. PMID:26517679

  18. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    Science.gov (United States)

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  19. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  20. Natural Products That Target Cancer Stem Cells.

    Science.gov (United States)

    Moselhy, Jim; Srinivasan, Sowmyalakshmi; Ankem, Murali K; Damodaran, Chendil

    2015-11-01

    The cancer stem cell model suggests that tumor initiation is governed by a small subset of distinct cells with stem-like character termed cancer stem cells (CSCs). CSCs possess properties of self-renewal and intrinsic survival mechanisms that contribute to resistance of tumors to most chemotherapeutic drugs. The failure to eradicate CSCs during the course of therapy is postulated to be the driving force for tumor recurrence and metastasis. Recent studies have focused on understanding the unique phenotypic properties of CSCs from various tumor types, as well as the signaling pathways that underlie self-renewal and drug resistance. Natural products (NPs) such as those derived from botanicals and food sources may modulate vital signaling pathways involved in the maintenance of CSC phenotype. The Wingless/Integrated (WNT), Hedgehog, Notch and PI3K/AKT/mTOR pathways have all been associated with quiescence and self-renewal of CSCs, as well as execution of CSC function including differentiation, multidrug resistance and metastasis. Recent studies evaluating NPs against CSC support the epidemiological evidence linking plant-based diets with reduced malignancy rates. This review covers the key aspects of NPs as modulators of CSC fate. PMID:26503998

  1. Breast cancer stem cells

    OpenAIRE

    Owens, Thomas W.; Naylor, Matthew J.

    2013-01-01

    Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to th...

  2. Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo

    International Nuclear Information System (INIS)

    A subpopulation of tumor cells with distinct stem-like properties (cancer stem-like cells, CSCs) may be responsible for tumor initiation, invasive growth, and possibly dissemination to distant organ sites. CSCs exhibit a spectrum of biological, biochemical, and molecular features that are consistent with a stem-like phenotype, including growth as non-adherent spheres (clonogenic potential), ability to form a new tumor in xenograft assays, unlimited self-renewal, and the capacity for multipotency and lineage-specific differentiation. PKCδ is a novel class serine/threonine kinase of the PKC family, and functions in a number of cellular activities including cell proliferation, survival or apoptosis. PKCδ has previously been validated as a synthetic lethal target in cancer cells of multiple types with aberrant activation of Ras signaling, using both genetic (shRNA and dominant-negative PKCδ mutants) and small molecule inhibitors. In contrast, PKCδ is not required for the proliferation or survival of normal cells, suggesting the potential tumor-specificity of a PKCδ-targeted approach. shRNA knockdown was used validate PKCδ as a target in primary cancer stem cell lines and stem-like cells derived from human tumor cell lines, including breast, pancreatic, prostate and melanoma tumor cells. Novel and potent small molecule PKCδ inhibitors were employed in assays monitoring apoptosis, proliferation and clonogenic capacity of these cancer stem-like populations. Significant differences among data sets were determined using two-tailed Student’s t tests or ANOVA. We demonstrate that CSC-like populations derived from multiple types of human primary tumors, from human cancer cell lines, and from transformed human cells, require PKCδ activity and are susceptible to agents which deplete PKCδ protein or activity. Inhibition of PKCδ by specific genetic strategies (shRNA) or by novel small molecule inhibitors is growth inhibitory and cytotoxic to multiple types of human

  3. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  4. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  5. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; Okumura, Tomoyuki; Timothy C Wang

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  6. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  7. Using a stem cell-based signature to guide therapeutic selection in cancer.

    Science.gov (United States)

    Shats, Igor; Gatza, Michael L; Chang, Jeffrey T; Mori, Seiichi; Wang, Jialiang; Rich, Jeremy; Nevins, Joseph R

    2011-03-01

    Given the very substantial heterogeneity of most human cancers, it is likely that most cancer therapeutics will be active in only a small fraction of any population of patients. As such, the development of new therapeutics, coupled with methods to match a therapy with the individual patient, will be critical to achieving significant gains in disease outcome. One such opportunity is the use of expression signatures to identify key oncogenic phenotypes that can serve not only as biomarkers but also as a means of identifying therapeutic compounds that might specifically target these phenotypes. Given the potential importance of targeting tumors exhibiting a stem-like phenotype, we have developed an expression signature that reflects common biological aspects of various stem-like characteristics. The consensus stemness ranking (CSR) signature is upregulated in cancer stem cell-enriched samples at advanced tumor stages and is associated with poor prognosis in multiple cancer types. Using two independent computational approaches we utilized the CSR signature to identify clinically useful compounds that could target the CSR phenotype. In vitro assays confirmed selectivity of several predicted compounds including topoisomerase inhibitors and resveratrol towards breast cancer cell lines that exhibit a high-CSR phenotype. Importantly, the CSR signature could predict clinical response of breast cancer patients to a neoadjuvant regimen that included a CSR-specific agent. Collectively, these results suggest therapeutic opportunities to target the CSR phenotype in a relevant cohort of cancer patients. PMID:21169407

  8. Impact of Microenvironment and Stem-Like Plasticity in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Raggi, Chiara; Invernizzi, Pietro; Andersen, Jesper Bøje

    2014-01-01

    . Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment...

  9. The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma.

    Science.gov (United States)

    Xiang, Yan; Yang, Ting; Pang, Bing-Yao; Zhu, Ying; Liu, Yong-Ning

    2016-01-01

    Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with "stem-like" characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a "global" marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies. PMID:27610139

  10. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    International Nuclear Information System (INIS)

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways

  11. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Sung-Ho [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Lim, Shin-Saeng [School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Kwon, Jungkee [College of Veterinary Medicine, Chonbuk National University, Jeonju (Korea, Republic of); Hwang, Jae-Won; Bae, Cheol-Hyeon [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Seo, Young-Kwon [Research Institute of Biotechnology, Dongguk University, Seoul (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  12. Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Edi; Levi; Paula; Sochacki; Nabiha; Khoury; Bhaumik; B; Patel; Adhip; PN; Majumdar

    2014-01-01

    AIM: To demonstrated the combined effects of aging and carcinogen treatment on cancer stem/stem-like cells(CSCs) of gastric mucosa in an animal model. METHODS: In this study we investigated the effects of aging and Helicobacter pylori(H. pylori) inflammation as a model for inflammation induced carcinogenesis in human and rat gastric mucosa samples. In aging studies, we compared 4-mo old(young) with 22 mo(aged) old Fischer-344 rats. For human studies, gastric biop-sies and resection specimens representing normal mucosa or different stages of H. pylori gastritis and gastric adenocarcinomas were used for determining the expression of stem cell markers CD166, ALDH1 and LGR5. In addition we performed immunofluorescent double labeling for B-catenin and Lgr5 in both rat and human gastric tissues to examine the status of Wnt signaling in these cells. RESULTS: CSC markers ALDH1, LGR5, and CD166 were expressed in very low levels in normal human gastric mucosa or young rat gastric mucosa. In contrast, level of expression for all three markers significantly increased in H. pylori gastritis and gastric adenocarcinomas as well as in normal gastric mucosa in aged rats. We also observed cytoplasmic B-catenin staining in both aged rat and human H. pylori inflamed gastric mucosa, which were found to be colocalized with Lgr5 immunoreactive cells. The increased number of ALDH1, CD166 and LGR5 positive cells in H. pylori gastritis indicates that increased number of stem-like cells in gastric mucosa is an early event, and may constitute an important step in the progression to neoplasia. CONCLUSION: Our observation of the age-related increase in cancer stem/stem-like cells in the gastric mucosa may explain the increased incidence of gastric cancer during aging. Combination of aging and H. pylori infection may have additive effects in progression to neoplasia.

  13. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  14. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  15. Mammosphere culture of cancer stem cells in a microfluidic device

    Science.gov (United States)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  16. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  17. Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential.

    Directory of Open Access Journals (Sweden)

    Verline Justilien

    Full Text Available Matrix metalloproteinases (Mmps stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2 in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC. Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10(-/- mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells.

  18. Cancer Stem Cells in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer

  19. Stem Cells and Cancer

    International Nuclear Information System (INIS)

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  20. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  1. Cancer Stem Cells in Breast Cancer

    OpenAIRE

    Fumitaka Takeshita; Tomohiro Fujiwara; Takahiro Ochiya; Makiko Ono; Ryou-u Takahashi

    2011-01-01

    The cancer stem cell (CSC) theory is generally acknowledged as an important field of cancer research, not only as an academic matter but also as a crucial aspect of clinical practice. CSCs share a variety of biological properties with normal somatic stem cells in self-renewal, the propagation of differentiated progeny, the expression of specific cell markers and stem cell genes, and the utilization of common signaling pathways and the stem cell niche. However, CSCs differ from normal stem cel...

  2. Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.

    Science.gov (United States)

    Yan, Judy; Ojo, Diane; Kapoor, Anil; Lin, Xiaozeng; Pinthus, Jehonathan H; Aziz, Tariq; Bismar, Tarek A; Wei, Fengxiang; Wong, Nicholas; De Melo, Jason; Cutz, Jean-Claude; Major, Pierre; Wood, Geoffrey; Peng, Hao; Tang, Damu

    2016-03-15

    Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies.

  3. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9.

    Science.gov (United States)

    Iskender, Banu; Izgi, Kenan; Karaca, Halit; Canatan, Halit

    2015-10-01

    Cancer and stem cells exhibit similar features, including self-renewal, differentiation and immortality. The expression of stem-cell-related genes in cancer cells is demonstrated to be potentially correlated with cancer cell behaviour, affecting both drug response and tumor recurrence. There is an emerging body of evidence that subpopulations of tumors carry a distinct molecular sign and are selectively resistant to chemotherapy. Therefore, it is important to find novel therapeutic agents that could suppress the stem-like features of cancer cells while inhibiting their proliferation. Myrtucommulone-A (MC-A) is an active compound of a nonprenylated acylphloroglucinol isolated from the leaves of myrtle. Here we have investigated the potential of MC-A in inhibiting the expression of self-renewal regulatory factors and cancer stem cell markers in a bladder cancer cell line HTB-9. We used RT-PCR, immunocytochemistry, flow cytometry and western blotting to examine the expression of pluripotency- and multipotency-associated markers with or without treatment with MC-A. Treatment with MC-A not only decreased cancer cell viability and proliferation but also resulted in a decrease in the expression of pluripotency- and multipotency-associated markers such as NANOG, OCT-4, SOX-2, SSEA-4, TRA-1-60, CD90, CD73 and CD44. MC-A treatment was also observed to decrease the sphere-forming ability of HTB-9 cells. In summary, this study provides valuable information on the presence of stem-cell marker expression in HTB-9 cells and our results imply that MC-A could be utilized to target cancer cells with stem-like characteristics. PMID:26054707

  4. Bromodomain and hedgehog pathway targets in small cell lung cancer.

    Science.gov (United States)

    Kaur, Gurmeet; Reinhart, Russell A; Monks, Anne; Evans, David; Morris, Joel; Polley, Eric; Teicher, Beverly A

    2016-02-28

    Small cell lung cancer (SCLC) is an extremely aggressive cancer that frequently recurs. Twenty-three human SCLC lines were selected representing varied Myc status. Gene expression of lung cancer, stem-like, hedgehog pathway, and notch pathway genes were determined by RT(2)-PCR array and Exon 1.0 ST array. Etoposide and topotecan concentration response was examined. The IC50's for etoposide and topotecan ranged over nearly 3 logs upon 96 hrs exposure to the drugs. Myc status, TOP2A, TOP2B and TOP1 mRNA expression or topoisomerase 1 and topoisomerase 2 protein did not account for the range in the sensitivity to the drugs. γ-secretase inhibitors, RO429097 and PF-03084014, had little activity in the SCLC lines over ranges covering the clinical Cmax concentrations. MYC amplified lines tended to be more sensitive to the bromodomain inhibitor JQ1. The Smo antagonists, erismodegib and vismodegib and the Gli antagonists, HPI1 and SEN-450 had a trend toward greater sensitivity of the MYC amplified line. Recurrent SCLC is among the most recalcitrant cancers and drug development efforts in this cancer are a high priority. PMID:26683772

  5. HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Amy Belton

    Full Text Available BACKGROUND: Although metastatic colon cancer is a leading cause of cancer death worldwide, the molecular mechanisms that enable colon cancer cells to metastasize remain unclear. Emerging evidence suggests that metastatic cells develop by usurping transcriptional networks from embryonic stem (ES cells to facilitate an epithelial-mesenchymal transition (EMT, invasion, and metastatic progression. Previous studies identified HMGA1 as a key transcription factor enriched in ES cells, colon cancer, and other aggressive tumors, although its role in these settings is poorly understood. METHODS/PRINCIPAL FINDINGS: To determine how HMGA1 functions in metastatic colon cancer, we manipulated HMGA1 expression in transgenic mice and colon cancer cells. We discovered that HMGA1 drives proliferative changes, aberrant crypt formation, and intestinal polyposis in transgenic mice. In colon cancer cell lines from poorly differentiated, metastatic tumors, knock-down of HMGA1 blocks anchorage-independent cell growth, migration, invasion, xenograft tumorigenesis and three-dimensional colonosphere formation. Inhibiting HMGA1 expression blocks tumorigenesis at limiting dilutions, consistent with depletion of tumor-initiator cells in the knock-down cells. Knock-down of HMGA1 also inhibits metastatic progression to the liver in vivo. In metastatic colon cancer cells, HMGA1 induces expression of Twist1, a gene involved in embryogenesis, EMT, and tumor progression, while HMGA1 represses E-cadherin, a gene that is down-regulated during EMT and metastatic progression. In addition, HMGA1 is among the most enriched genes in colon cancer compared to normal mucosa. CONCLUSIONS: Our findings demonstrate for the first time that HMGA1 drives proliferative changes and polyp formation in the intestines of transgenic mice and induces metastatic progression and stem-like properties in colon cancer cells. These findings indicate that HMGA1 is a key regulator, both in metastatic

  6. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    ... Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell ... seen in young adults. Patients with mediastinal nonseminomatous EGC are typically classed as poor risk patients because ...

  7. A New Biological Feature of Natural Killer Cells: The Recognition of Solid Tumor-Derived Cancer Stem Cells

    Science.gov (United States)

    Tallerico, Rossana; Garofalo, Cinzia; Carbone, Ennio

    2016-01-01

    Natural killer (NK) cells are classified as a member of the innate lymphoid cells (ILCs) group 1. ILCs have been recently identified and grouped on the basis of their phenotypical and functional characteristics. They are effectors of innate immunity and are involved in secondary lymphoid organ generation and tissue remodeling. NK cells are powerful cytotoxic lymphocytes able to recognize and eliminate tumor- and virus-infected cells by limiting their spread and tissue damage. The recognition of tumor cells is mediated by both activating and inhibitory receptors. While in hematological malignancies the role played by NK cells is widely known, their role in recognizing solid tumors remains unclear. Recently, tumor cell populations have been divided into two compartments: cancer-initiating cells (CICs) or cancer stem cells (CSCs) and senescent tumor cells. Here, CSC will be used. CSCs are a small subset of malignant cells with stem-like properties that are involved in tumor maintenance and recurrence due to their ability to survive to traditional therapies; they are, moreover, poorly recognized by T lymphocytes. Recent data showed that NK cells recognize in vitro cancer-initiating cells derived from colon cancer, glioblastoma, and melanoma. However, more in vivo studies are urgently required to fully understand whether these new antitumor NK cells with cytotoxic capability may be considered in the design of new immunotherapeutic interventions. PMID:27242786

  8. Cancer Stem Cells in Pancreatic Cancer

    OpenAIRE

    Karl-Walter Jauch; Hendrik Seeliger; Hanno Niess; Qi Bao; Andrea Renner; Yue Zhao; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC t...

  9. Cancer stem cells in prostate cancer

    OpenAIRE

    Moltzahn, Felix; Thalmann, George N

    2013-01-01

    Prostate cancer (P-Ca) remains a leading cause of cancer-related death in men. Lately, increasing evidence for a hierarchically organized cancer stem cell (CSC) model emerged for different tumors entities, including P-Ca. CSCs are defined by several characteristics including self-renewal, pluripotency and tumorigenicity and are thought to be responsible for tumor recurrence, metastasis and cancer related death. In this review we discuss the recent research in the field of CSCs, its limitation...

  10. CCL21 Facilitates Chemoresistance and Cancer Stem Cell-Like Properties of Colorectal Cancer Cells through AKT/GSK-3β/Snail Signals

    Directory of Open Access Journals (Sweden)

    Lin-Lin Lu

    2016-01-01

    Full Text Available Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3β mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3β. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3β/Snail signals, which suggested a potential therapeutic approach to CRC patients.

  11. CCL21 Facilitates Chemoresistance and Cancer Stem Cell-Like Properties of Colorectal Cancer Cells through AKT/GSK-3β/Snail Signals.

    Science.gov (United States)

    Lu, Lin-Lin; Chen, Xiao-Hui; Zhang, Ge; Liu, Zong-Cai; Wu, Nong; Wang, Hao; Qi, Yi-Fei; Wang, Hong-Sheng; Cai, Shao Hui; Du, Jun

    2016-01-01

    Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp) and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC) HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3β mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3β. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3β/Snail signals, which suggested a potential therapeutic approach to CRC patients. PMID:27057280

  12. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Liu, Jianwen, E-mail: liujian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Ni, Lei, E-mail: nilei625@yahoo.com [Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025 (China)

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  13. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells

    Science.gov (United States)

    Krishnamurthy, Sudha; Dong, Zhihong; Vodopyanov, Dmitry; Imai, Atsushi; Helman, Joseph I.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2010-01-01

    Recent studies have demonstrated that cancer stem cells play an important role in the pathobiology of head and neck squamous cell carcinomas (HNSCC). However, little is known about functional interactions between head and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we used Aldehyde Dehydrogenase activity and CD44 expression to sort putative stem cells from primary human HNSCC. Implantation of 1,000 CSC (ALDH+CD44+Lin−) led to tumors in 13 (out of 15) mice, while 10,000 non-cancer stem cells (NCSC; ALDH−CD44−Lin−) resulted in 2 tumors in 15 mice. These data demonstrated that ALDH and CD44 select a sub-population of cells that are highly tumorigenic. The ability to self-renew was confirmed by the observation that ALDH+CD44+Lin− cells sorted from human HNSCC formed more spheroids (orospheres) in 3-D agarose matrices or ultra-low attachment plates than controls and were serially passaged in vivo. We observed that approximately 80% of the CSC were located in close proximity (within 100-µm radius) of blood vessels in human tumors, suggesting the existence of perivascular niches in HNSCC. In vitro studies demonstrated that endothelial cell-secreted factors promoted self-renewal of CSC, as demonstrated by the upregulation of Bmi-1 expression and the increase in the number of orospheres as compared to controls. Notably, selective ablation of tumor-associated endothelial cells stably transduced with a caspase-based artificial death switch (iCaspase-9) caused a marked reduction in the fraction of CSC in xenograft tumors. Collectively, these findings indicate that endothelial cell-initiated signaling can enhance the survival and self-renewal of head and neck cancer stem cells. PMID:21098716

  14. Homeostatic Signaling by Cell–Cell Junctions and Its Dysregulation during Cancer Progression

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2016-02-01

    Full Text Available The transition of sessile epithelial cells to a migratory, mesenchymal phenotype is essential for metazoan development and tissue repair, but this program is exploited by tumor cells in order to escape the confines of the primary organ site, evade immunosurveillance, and resist chemo-radiation. In addition, epithelial-to-mesenchymal transition (EMT confers stem-like properties that increase efficiency of colonization of distant organs. This review evaluates the role of cell–cell junctions in suppressing EMT and maintaining a quiescent epithelium. We discuss the conflicting data on junctional signaling in cancer and recent developments that resolve some of these conflicts. We focus on evidence from breast cancer, but include other organ sites where appropriate. Current and potential strategies for inhibition of EMT are discussed.

  15. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis.

    Science.gov (United States)

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L; Mulholland, David J; Wu, Hong

    2015-07-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal-like and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre(+/-);Pten(L/L);Kras(G12D) (/+) prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT, and mesenchymal-like cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM(+)/Vim-GFP(+)) and mesenchymal-like (EpCAM(-)/Vim-GFP(+)) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal-like tumor cells displayed enhanced stemness and invasive character compared with epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal-like tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  16. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion.

    Science.gov (United States)

    Iliopoulos, Dimitrios; Hirsch, Heather A; Wang, Guannan; Struhl, Kevin

    2011-01-25

    Tumors are often heterogeneous, being composed of multiple cell types with different phenotypic and molecular properties. Cancer stem-like cells (CSCs) are a highly tumorigenic cell type found in developmentally diverse tumors or cancer cell lines, and they are often resistant to standard chemotherapeutic drugs. The origins of CSCs and their relationships to nonstem cancer cells (NSCCs) are poorly understood. In an inducible breast oncogenesis model, CSCs are generated from nontransformed cells at a specific time during the transformation process, but CSC formation is not required for transformation. MicroRNA profiles indicate that CSCs and NSCCs are related, but different cell types arising from a common nontransformed population. Interestingly, medium from the transformed population stimulates NSCCs to become CSCs, and conversion of NSCCs to CSCs occurs in mouse xenografts. Furthermore, IL6 is sufficient to convert NSCCs to CSCs in genetically different breast cell lines, human breast tumors, and a prostate cell line. Thus, breast and prostate CSCs and NSCCs do not represent distinct epigenetic states, and these CSCs do not behave as or arise from classic stem cells. Instead, tumor heterogeneity involves a dynamic equilibrium between CSCs and NSCCs mediated by IL6 and activation of the inflammatory feedback loop required for oncogenesis. This dynamic equilibrium provides an additional rationale for combining conventional chemotherapy with metformin, which selectively inhibits CSCs. PMID:21220315

  17. 肿瘤干细胞学说在非小细胞肺癌研究中的应用%Application of Cancer Stem Cell Theory in Research of Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    姜尧

    2011-01-01

    肿瘤干细胞学说的提出是对传统肿瘤治疗方式的巨大挑战,研究者已在非小细胞肺癌中找到了具有干细胞特性的细胞,并加以分离和鉴定.非小细胞肺癌干细胞在癌组织的发生发展过程中起着重要作用,并与耐药性和转移相关,基于肿瘤干细胞的治疗策略也已逐渐成形.在此主要综述近几年在非小细胞肺癌及其干细胞研究方面的相关进展.%The cancer stem cell theory is a big challenge to the traditional therapy of cancer.More and more researchers have already found stem-like cancer cells in non-small cell lung cancer, who isolate and characterize these cells based on their features.Recent research reveals that cancer stem cell not only plays an important role in the development and process of non-small lung cancer,but also is associated with drug resistance and metastasis.A therapeutic regimen targeting cancer stem cell is emerging.This article reviews recent progress in non-small cell lung cancer and cancer stem cell.

  18. Concise Review: Stem Cells and Epithelial-Mesenchymal Transition in Cancer: Biological Implications and Therapeutic Targets.

    Science.gov (United States)

    Sato, Ryo; Semba, Takashi; Saya, Hideyuki; Arima, Yoshimi

    2016-08-01

    Cancer stem cells (CSCs) constitute a small subpopulation of cancer cells with stem-like properties that are able to self-renew, generate differentiated daughter cells, and give rise to heterogeneous tumor tissue. Tumor heterogeneity is a hallmark of cancer and underlies resistance to anticancer therapies and disease progression. The epithelial-mesenchymal transition (EMT) is a reversible phenomenon that is mediated by EMT-inducing transcription factors (EMT-TFs) and plays an important role in normal organ development, wound healing, and the invasiveness of cancer cells. Recent evidence showing that overexpression of several EMT-TFs is associated with stemness in cancer cells has suggested the existence of a link between EMT and CSCs. In this review, we focus on the roles of CSCs and EMT signaling in driving tumor heterogeneity. A better understanding of the dynamics of both CSCs and EMT-TFs in the generation of tumor heterogeneity may provide a basis for the development of new treatment options for cancer patients. Stem Cells 2016;34:1997-2007. PMID:27251010

  19. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sha Chen; An-Xin Wang; Bing Dong; Ke-Feng Pu; Li-Hua Yuan; Yi-Min Zhu

    2012-01-01

    According to the cancer stem cell theory,cancers can be initiated by cancer stem cells.This makes cancer stem cells prime targets for therapeutic intervention.Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer.In this review,we summarize recent breakthroughs that have improved our understanding of cancer stem cells,and we discuss the therapeutic strategy of targeting cancer stem cells,a promising future direction for cancer stem cell research.

  20. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    OpenAIRE

    Yi-Min Zhu; Li-Hua Yuan; Ke-Feng Pu; Bing Dong; An-Xin Wang; Li-Sha Chen

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell resea...

  1. Stem Cells in Liver Diseases and Cancer: Recent Advances on the Path to New Therapies

    Science.gov (United States)

    Rountree, C. Bart; Mishra, Lopa; Willenbring, Holger

    2011-01-01

    Stem cells have potential for therapy of liver diseases, but may also be involved in the formation of liver cancer. Recently, the AASLD Henry M. and Lillian Stratton Basic Research Single Topic Conference “Stem Cells in Liver Diseases and Cancer: Discovery and Promise” brought together a diverse group of investigators to define the status of research on stem cells and cancer stem cells in the liver and identify problems and solutions on the path to clinical translation. This report summarizes the outcomes of the conference and provides an update on recent research advances. Progress in liver stem cell research includes isolation of primary liver progenitor cells (LPC), directed hepatocyte differentiation of primary LPC and pluripotent stem cells, findings of transdifferentiation, disease-specific considerations for establishing a therapeutically effective cell mass, and disease modeling in cell culture. Tumor initiating stem-like cells (TISC) that emerge during chronic liver injury share expression of signaling pathways, including those organized around TGF-β and β-catenin, and surface markers with normal LPC. Recent investigations of the role of TISC in hepatocellular carcinoma have provided insight into the transcriptional and posttranscriptional regulation of hepatocarcinogenesis. Targeted chemotherapies for TISC are in development as a means to overcome cellular resistance and mechanisms driving disease progression in liver cancer. PMID:22030746

  2. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  3. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  4. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  5. The Distribution of Human Stem Cell–like Memory T Cell in Lung Cancer

    Science.gov (United States)

    Hong, Hai; Gu, Yong; Sheng, Si Yuan; Lu, Chuan Gang; Zou, Jian Yong

    2016-01-01

    Human stem cell–like memory T (Tscm) cells are long-lived, self-renewing memory lymphocytes that can differentiate into effector cells and mediate strong antitumour response in murine model. The distribution and function of Tscm cells in human lung cancer remain unknown. In this study, we investigated the properties of human Tscm cells in the blood and lymph node of non–small cell lung cancer (NSCLC) patients. There were more CD4+ Tscm cells in blood from NSCLC patients than from healthy donors, fewer CD4+ and CD8+ TSCM cells in blood than in lymph node from NSCLC patients. To further analyze their properties, we stimulated peripheral blood mononuclear cells from NSCLC patients by mitogens to examine cytokine production. Our data suggest that both CD4 and CD8 Tscm cells in blood produced interferon-γ significantly increased in NSCLC patients compare with healthy subjects. In addition, fewer Tscm cells produced interferon-γ in lymph node than in blood from NSCLC patients. Our results strongly suggest that the distribution and function of CD4 Tscm cells in NSCLC patients is upregulated. Understanding of the properties of stem-like memory T cells will supply a good rationale for designing the new adoptive immunotherapy in cancer. PMID:27244531

  6. MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Hongping Xia

    Full Text Available The down-regulation of miR-214 has previously been observed in human hepatocellular carcinoma (HCC. Here, we demonstrated the down-regulation of miR-214 is associated with cell invasion, stem-like traits and early recurrence of HCC. Firstly, we validated the suppression of miR-214 in human HCC by real-time quantitative RT-PCR (qRT-PCR in 20 paired tumor and non-tumor liver tissues of HCC patients and 10 histologically normal liver tissues from colorectal cancer patients with liver metastases. Further qRT-PCR analysis of 50 HCC tissues from an independent cohort of HCC patients of whom 29 with early recurrent disease (<2 years and 21 with late recurrent disease demonstrated that the suppression of miR-214 was significantly more suppressed in samples from HCC patients with early recurrent disease compared those from patients with no recurrence. Re-expression of miR-214 significantly suppressed the growth of HCC cells in vitro and reduced their tumorigenicity in vivo. The enhancer of zeste homologue 2 (EZH2 and β-catenin (CTNNB1 was identified as two potential direct downstream targets of miR-214 through bioinformatics analysis and experimentally validated the miRNA-target interactions with a dual-firefly luciferase reporter assay. In corroborate with this, both EZH2 and CTNNB1 are found to be significantly overexpressed in human HCC biopsies. Since EZH2 can regulate CTNNB1, CTNNB1 can also be an indirect target of miR-214 through EZH2. Silencing EZH2 or CTNNB1 expression suppressed the growth and invasion of HCC cells and induced E-cadherin (CDH1, known to inhibit cell invasion and metastasis. Furthermore, the silencing of miR-214 or overexpression of EZH2 increased EpCAM(+ stem-like cells through the activation of CTNNB1. Interestingly, the up-regulation of EZH2, CTNNB1 and the down-regulation of CDH1 in HCC patients correlated with early recurrent disease and can be an independent predictor of poor survival. Therefore, miR-214 can directly or

  7. Ovarian cancer: emerging concept on cancer stem cells

    OpenAIRE

    Ponnusamy Moorthy P; Batra Surinder K

    2008-01-01

    Abstract Emerging evidence suggests that the capacity of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. In fact, cancer cells, like stem cells, can proliferate indefinitely through a dysregulated cellular self-renewal capacity. Cancer stem cells may originate due to the distribution into self-renewal and differentiation pathways occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells and cancer cell...

  8. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    Science.gov (United States)

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs. PMID:26330103

  9. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  10. Prostate cancer stem cell biology

    OpenAIRE

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of s...

  11. Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions

    Science.gov (United States)

    Hsu, Chueh-Lin; Chung, Feng-Hsiang; Chen, Chih-Hao; Hsu, Tzu-Ting; Liu, Szu-Mam; Chung, Dao-Sheng; Hsu, Ya-Fen; Chen, Chien-Lung; Ma, Nianhan; Lee, Hoong-Chien

    2016-01-01

    Cancer stem cells (CSCs), or cancer cells with stem cell-like properties, generally exhibit drug resistance and have highly potent cancer inducing capabilities. Genome-wide expression data collected at public repositories over the last few years provide excellent material for studies that can lead to insights concerning the molecular and functional characteristics of CSCs. Here, we conducted functional genomic studies of CSC based on fourteen PCA-screened high quality public CSC whole genome gene expression datasets and, as control, four high quality non-stem-like cancer cell and non-cancerous stem cell datasets from the Gene Expression Omnibus database. A total of 6,002 molecular signatures were taken from the Molecular Signatures Database and used to characterize the datasets, which, under two-way hierarchical clustering, formed three genotypes. Type 1, consisting of mainly glia CSCs, had significantly enhanced proliferation, and significantly suppressed epithelial-mesenchymal transition (EMT), related functions. Type 2, mainly breast CSCs, had significantly enhanced EMT, but not proliferation, related functions. Type 3, composed of ovarian, prostate, and colon CSCs, had significantly suppressed proliferation related functions and mixed expressions on EMT related functions. PMID:27597445

  12. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hindriksen, Sanne; Bijlsma, Maarten F., E-mail: m.f.bijlsma@amc.uva.nl [Laboratory for Experimental Oncology and Radiobiology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam (Netherlands)

    2012-10-12

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.

  13. Small Cell Lung Cancer.

    Science.gov (United States)

    Bernhardt, Erica B; Jalal, Shadia I

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive cancer of neuroendocrine origin, which is strongly associated with cigarette smoking. Patients typically present with a short duration of symptoms and frequently (60-65 %) with metastatic disease. SCLC is a heterogeneous disease including extremely chemosensitive and chemoresistant clones. For this reason, a high percentage of patients respond to first-line chemotherapy but rapidly succumb to the disease. SCLC is generally divided into two stages, limited and extensive. Standard treatment of limited stage disease includes combination chemotherapy with cisplatin and etoposide for four cycles, thoracic radiation initiated early with the first cycle of chemotherapy, and consideration of prophylactic cranial irradiation (PCI) in the subset of patients with good response. Surgery may play a role in TNM stages I and II. In extensive disease, platinum agents and etoposide, used in combination, are again the first-line standard of care in the USA. However, thoracic radiation therapy is used predominately in patients where local control is important and PCI is of uncertain benefit. Despite these treatments, prognosis remains poor and novel therapies are needed to improve survival in this disease. PMID:27535400

  14. Mouse models for cancer stem cell research

    OpenAIRE

    Cheng, Le; Ramesh, Anirudh V.; Flesken-Nikitin, Andrea; Choi, Jinhyang; Nikitin, Alexander Yu.

    2009-01-01

    Cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human...

  15. Endothelial derived factors inhibit anoikis of head and neck cancer stem cells

    Science.gov (United States)

    Campos, Marcia S.; Neiva, Kathleen G.; Meyers, Kristy A.; Krishnamurthy, Sudha; Nör, Jacques E.

    2011-01-01

    Recent evidence demonstrated that cancer stem cells reside in close proximity to blood vessels in human head and neck squamous cell carcinomas (HNSCC). These findings suggest the existence of a supporting perivascular niche for cancer stem cells. Objective The purpose of this study was to evaluate the effect of endothelial cell-secreted factors on the behavior of head and neck cancer stem-like cells (HNCSC). Materials and methods HNCSC were identified by sorting UM-SCC-22A (cell line derived from a primary squamous cell carcinoma of the oropharynx) and UM-SCC-22B (derived from the metastatic lymph node of the same patient) for CD44 expression and ALDH (aldehyde dehydrogenase) activity. HNCSC (ALDH+CD44+) and control (ALDH−CD44−) cells were cultured in ultra-low attachment plates in presence of conditioned medium from primary human endothelial cells. Results ALDH+CD44+ generated more orospheres than control cells when cultured in suspension. The growth factor milieu secreted by endothelial cells protected HNCSC against anoikis. Mechanistic studies revealed that endothelial cell-secreted vascular endothelial growth factor (VEGF) induces proliferation of HNCSC derived from primary UM-SCC-22A, but not from the metastatic UM-SCC-22B. Likewise, blockade of VEGF abrogated endothelial cell-induced Akt phosphorylation in HNCSC derived from UM-SCC-22A while it had a modest effect in Akt phosphorylation in HNCSC from UM-SCC-22B. Conclusion This study revealed that endothelial cells initiate a crosstalk that protect head and neck cancer stem cells against anoikis, and suggest that therapeutic interference with this crosstalk might be beneficial for patients with head and neck cancer. PMID:22014666

  16. Head and Neck Cancer Stem Cells

    OpenAIRE

    Krishnamurthy, S.; Nör, J.E.

    2012-01-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signalin...

  17. Cell of origin of lung cancer

    OpenAIRE

    Hanna, Jennifer M.; Onaitis, Mark W.

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s) of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell o...

  18. HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable anti-tumor effects

    Science.gov (United States)

    Zhou, Yan; Yang, Jiyuan; Rhim, Johng S.; Kopeček, Jindřich

    2013-01-01

    Current treatments for prostate cancer are still not satisfactory, often resulting in tumor regrowth and metastasis. One of the main reasons for the ineffective anti-prostate cancer treatments is the failure to deplete cancer stem-like cells (CSCs) - a subset of cancer cells with enhanced tumorigenic capacity. Thus, combination of agents against both CSCs and bulk tumor cells may offer better therapeutic benefits. Several molecules with anti-cancer stem/progenitor cell activities have been under preclinical evaluations. However, their low solubility and nonspecific toxicity limit their clinical translation. Herein, we designed a combination macromolecular therapy containing two drug conjugates: HPMA copolymer-cyclopamine conjugate (P-CYP) preferentially toxic to cancer stem/progenitor cells, and HPMA copolymer-docetaxel conjugate (P-DTX) effective in debulking the tumor mass. Both conjugates were synthesized using RAFT (reversible addition-fragmentation chain transfer) polymerization resulting in narrow molecular weight distribution. The killing effect of the two conjugates against bulk tumor cells and CSCs were evaluated in vitro and in vivo. In PC-3 or RC-92a/hTERT prostate cancer cells, P-CYP preferentially kills and impairs the function of CD133+ prostate cancer stem/progenitor cells; P-DTX was able to kill bulk tumor cells instead of CSCs. In PC-3 xenograft mice model, combination of P-DTX and P-CYP showed the most effective and persistent tumor growth inhibitory effect. In addition, residual tumors contained less CD133+ cancer cells following combination or P-CYP treatments, indicating selective killing of cancer cells with stem/progenitor cell properties. PMID:24041709

  19. High expression of HIF-2α and its anti-radiotherapy effect in lung cancer stem cells.

    Science.gov (United States)

    Sun, J C; He, F; Yi, W; Wan, M H; Li, R; Wei, X; Wu, R; Niu, D L

    2015-01-01

    Hypoxia-inducible factor-2 alpha (HIF-2α) has been shown to regulate cell stemness, although the expression and effects of HIF-2α in lung cancer stem cells remained unclear. This study investigated HIF-2α expression in lung cancer stem cells, as well as the relationship between HIF-2α expression and radioresistance in lung cancer cells. Stem-like cells (CD133(+)) in the non-small-cell lung cancer cell line A549 were enriched by serum-free culture conditions, and CD133(+) cells were sorted via fluorescence-activated cell sorting. A549 cells were treated with middle-infrared radiation, and the level of HIF-2α expression was determined by a quantitative polymerase chain reaction assay and western blot analysis. The level of HIF-2α expression in tissue sections from 50 cases of clinically confirmed non-small-cell lung cancer was determined via immunohistochemical analysis, and its correlation with prognosis after radiotherapy was analyzed. HIF-2α levels in CD133(+) cells were significantly higher than those in CD133(-) cells (P = 0.032). However, after radiation treatment, these levels were significantly upregulated in both CD133(+) and CD133(-) cells (P = 0.031 and P = 0.023, respectively). After irradiation, the proportions of apoptotic, dead, and autophagic CD133(+) A549 cells were considerably lower than those of CD133(-) A549 cells (P < 0.05). Furthermore, the recovery of carcinoembryonic antigen to pre-radiation levels was more rapid in lung cancer patients with high levels of HIF-2α expression, and these patients had shorter survival times (P = 0.018). HIF-2α is highly expressed in lung cancer stem cells, which may lead to radioresistance. In conclusion, HIF-2α is a potential prognostic marker for lung cancer. PMID:26782458

  20. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ye-Hui Shi

    2016-04-01

    Full Text Available Recent studies have shown that sulforaphane (SFN selectively inhibits the growth of ALDH+ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH+ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX increased the ALDH+ subpopulation.

  1. Mesenchymal traits are selected along with stem features in breast cancer cells grown as mammospheres

    Science.gov (United States)

    Borgna, Silvia; Armellin, Michela; di Gennaro, Alessandra; Maestro, Roberta; Santarosa, Manuela

    2012-01-01

    Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined. In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition. PMID:23095640

  2. Role of cancer stem cells in racial disparity in colorectal cancer.

    Science.gov (United States)

    Farhana, Lulu; Antaki, Fadi; Anees, Mohammad R; Nangia-Makker, Pratima; Judd, Stephanie; Hadden, Timothy; Levi, Edi; Murshed, Farhan; Yu, Yingjie; Van Buren, Eric; Ahmed, Kulsoom; Dyson, Gregory; Majumdar, Adhip P N

    2016-06-01

    Although African-Americans (AAs) have a higher incidence of colorectal cancer (CRC) than White people, the underlying biochemical mechanisms for this increase are poorly understood. The current investigation was undertaken to examine whether differences in self-renewing cancer stem/stem-like cells (CSCs) in the colonic mucosa, whose stemness is regulated by certain microRNAs (miRs), could partly be responsible for the racial disparity in CRC. The study contains 53 AAs and 47 White people. We found the number of adenomas and the proportion of CD44(+) CD166(-  ) CSC phenotype in the colon to be significantly higher in AAs than White people. MicroRNAs profile in CSC-enriched colonic mucosal cells, expressed as ratio of high-risk (≥3 adenomas) to low-risk (no adenoma) CRC patients revealed an 8-fold increase in miR-1207-5p in AAs, compared to a 1.2-fold increase of the same in White people. This increase in AA was associated with a marked rise in lncRNA PVT1 (plasmacytoma variant translocation 1), a host gene of miR-1207-5p. Forced expression of miR-1207-5p in normal human colonic epithelial cells HCoEpiC and CCD841 produced an increase in stemness, as evidenced by morphologically elongated epithelial mesenchymal transition( EMT) phenotype and significant increases in CSC markers (CD44, CD166, and CD133) as well as TGF-β, CTNNB1, MMP2, Slug, Snail, and Vimentin, and reduction in Twist and N-Cadherin. Our findings suggest that an increase in CSCs, specifically the CD44(+) CD166(-) phenotype in the colon could be a predisposing factor for the increased incidence of CRC among AAs. MicroRNA 1207-5p appears to play a crucial role in regulating stemness in colonic epithelial cells in AAs. PMID:26990997

  3. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria-Martinez, Albert [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat de Barcelona, Barcelona (Spain); Barquinero, Jordi [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Banc de Sang i Teixits, Barcelona (Spain); Barbosa-Desongles, Anna; Hurtado, Antoni; Pinos, Tomas [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Seoane, Joan [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Medical Oncology program, Vall d' Hebron Institute of Oncology, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Poupon, Marie-France [Institut Curie, Paris (France); Morote, Joan [Universitat Autonoma de Barcelona, Barcelona (Spain); Servei d' Urologia. Hospital Vall d' Hebron, Barcelona (Spain); Reventos, Jaume [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain); Munell, Francina, E-mail: fmunell@ir.vhebron.net [Institut de Recerca Hospital Vall d' Hebron, Barcelona (Spain); Universitat Autonoma de Barcelona, Barcelona (Spain)

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  4. Prostate Cancer Stem Cells: Research Advances

    OpenAIRE

    Dagmara Jaworska; Wojciech Król; Ewelina Szliszka

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve th...

  5. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells.

    Science.gov (United States)

    Singh, Jagdeep K; Simões, Bruno M; Howell, Sacha J; Farnie, Gillian; Clarke, Robert B

    2013-01-01

    Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival.

  6. Oxidative phosphorylation in cancer cells.

    Science.gov (United States)

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  7. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine;

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues......, the last part of the review discusses future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities....

  8. Stem cells in human breast cancer

    OpenAIRE

    Roberto Oliveira, Lucinei; Jeffrey, Stefanie S; Ribeiro Silva, Alfredo

    2010-01-01

    Increasing data support cancer as a stem cell-based disease. Cancer stem cells (CSCs) have beenfound in different human cancers, and recent evidenceindicates that breast cancer originates from and ismaintained by its own CSCs, as well as the normalmammary gland. Mammary stem cells and breast CSCshave been identified and purified in in vitroculturesystems, transplantation assays and/or by cell surfaceantigen identification. Cell surface markers enable thefunctional isolation of stem cells that...

  9. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma

    Science.gov (United States)

    Lin, K-Y; Ye, H; Han, B-W; Wang, W-T; Wei, P-P; He, B; Li, X-J; Chen, Y-Q

    2016-01-01

    Cholangiocarcinoma (CCA), which is a poor prognosis malignancy that arises from the malignant transformation of cholangiocytes, is associated with chronic inflammation of the biliary epithelium. Thus far, the molecular mechanisms of the origin and neoplastic processes of CCA that are promoted by inflammation are still unclear and need to be fully elucidated. Here using small RNA sequencing to determine the microRNA (miRNA) expression profiles in CCA, we found that let-7c, miR-99a and miR-125b, which are three miRNAs of the same cluster, were downregulated in CCA and targeted interleukin 6 (IL-6), IL-6R and type 1 insulin-like growth factor, which are important cytokines and receptors of the IL-6/signal transducer and activator 3 (STAT3) pathway and have key roles in inflammation and CCA initiation. We also found that enforced expression of let-7c, miR-99a or miR-125b could reduce the activity of STAT3 and further suppress CCA tumorigenicity in vivo and inhibit the migration and invasion of CCA cells in vitro. Surprisingly, let-7c/miR-99a/miR-125b cluster also significantly decreased the ability of CCA cells for cancer stem cell-like mammosphere generation by downregulating CD133 and CD44, which suggests the pivotal roles of let-7c, miR-99a and miR-125b in CCA by regulating both inflammation and stem-like properties. Our findings showed potential links between miRNAs and inflammation, and provide a potential treatment strategy for developing an miRNA-based therapy via IL-6/STAT3 targeting for CCA. PMID:26455324

  10. Constitutive expression of Wnt/β-catenin target genes promotes proliferation and invasion of liver cancer stem cells

    Science.gov (United States)

    CHEN, WEI; ZHANG, YU-WEI; LI, YANG; ZHANG, JIAN-WEN; ZHANG, TONG; FU, BIN-SHENG; ZHANG, QI; JIANG, NAN

    2016-01-01

    Wnt/β-catenin is an important signaling pathways involved in the tumorgenesis, progression and maintenance of cancer stem cells (CSCs). In the present study, the role of Wnt/β-catenin signaling in CSC-mediated tumorigenesis and invasion in liver CSCs was investigated. A small population of cancer stem-like side population (SP) cells (3.6%) from liver cancer samples were identified. The cells were highly resistant to drug treatment due to the enhanced expression of drug efflux pumps, such as ABC subfamily G member 2, multidrug resistance protein 1 and ATP-binding cassette subfamily B member 5. Furthermore, using TOPflash and reverse transcription-quantitative polymerase chain reaction analysis, Wnt/β-catenin signaling and the transcriptional regulation of Wnt/β-catenin target genes including dickkopf Wnt signaling pathway inhibitor 1, axis inhibition protein 2 and cyclin D1 were observed to be markedly upregulated in liver cancer SP cells. As a consequence, SP cells possessed infinite cell proliferation potential and the ability to generating tumor spheres. In addition, upon reducing Wnt/β-catenin signaling, the rates of proliferation, tumor sphere formation and tumor invasion of SP cells were markedly reduced. Therefore, these data suggest that Wnt/β-catenin signaling is a potential therapeutic target to reduce CSC-mediated tumorigenicity and invasion in liver cancer. PMID:26956539

  11. Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  12. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  13. Role of cancer stem cells in hepatocarcinogenesis

    OpenAIRE

    Wang, Bo; Jacob, Samson T.

    2011-01-01

    There has been considerable interest in cancer stem cells (CSCs) among cancer biologists and clinicians, most likely because of their role in the heterogeneity of cancer and their potential application in cancer therapeutics. Recent studies suggest that CSCs play a key role in liver carcinogenesis. A small subpopulation of cancer cells with CSC properties has been identified and characterized from hepatocellular carcinoma (HCC) cell lines, animal models and human primary HCCs. Considering the...

  14. Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties.

    Science.gov (United States)

    Huang, Xiaoxing; Xiong, Meng; Jin, Yujie; Deng, Chaohua; Xu, Hui; An, Changqing; Hao, Ling; Yang, Xiangyong; Deng, Xinzhou; Tu, Zhenbo; Li, Xinran; Xiao, Ruijing; Zhang, Qiuping

    2016-07-01

    Leukemia represents a spectrum of hematological malignancies threatening human health. Resistance to treatments and metastasis of leukemia are the main causes of death in patients. Leukemia stem cells (LSCs) are the initiating cells of leukemia as well as the main source of drug resistance, invasion and metastasis. Consequently, eliminating LSCs is a prerequisite to eradicate leukemia. Preliminary studies in our laboratory have shown that chemokines and their related receptors play an important role in the drug resistance and metastasis of leukemic cells. In this study, we obtained high migration drug-surviving (short term) MOLT4 cells (hMDSCs-MOLT4) with treatment of doxorubicin (DOX) after Transwell assay. Then we detected stem cell-associated molecular markers on hMDSCs-MOLT4 cells and the parental MOLT4 cells by FCM, QPCR, western blotting, H&E staining and immunohisto-chemistry experimental techniques in vitro and in vivo. Moreover, we explored its impact on drug resistance and tumor formation. Then we found that compared with the parental MOLT4 cells, the mRNA expression levels of stem cell-related factors Sox2, Oct4, C-myc, Klf4, Nanog, Bmi-1, CXCR4 are increased in hMDSCs-MOLT4 cells, together with the protein expression levels of Sox2, Oct4, Klf4, Nanog, CXCR4 and CD34. Our results indicated that hMDSCs-MOLT4 cells exhibited strong drug resistance and certain cancer stem cell-like characteristics. It is the first indication that the targeting stemness factors such as Sox2, Oct4, Klf4, Nanog and CXCR4 may represent plausible options for eliminating T-ALL stem-like cells. The present findings shed light on the relationship between drug-tolerant leukemic cells and cancer stem cells.

  15. Establishment of Human Ultra-Low Passage Colorectal Cancer Cell Lines Using Spheroids from Fresh Surgical Specimens Suitable for In Vitro and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Satyajit Ray, Russell C. Langan, John E. Mullinax, Tomotake Koizumi, Hong-Wu Xin, Gordon W. Wiegand, Andrew J. Anderson, Alexander Stojadinovic, Snorri Thorgeirsson, Udo Rudloff, Itzhak Avital

    2012-01-01

    Full Text Available Colorectal cancer (CRC holds the third highest incidence and cancer related mortality rate among men and women in the United States. Unfortunately, there has been little progression made in the treatment of this deadly disease once it has spread beyond the colon. It has been hypothesize that colon cancer stem cells are implicated in CRC carcinogenesis, metastasis, and therapeutic resistance. One of the difficulties in testing these hypotheses is the current use of established high-passage cancer cell lines. Long term, high-passage established cell lines have cells with stem like properties as they propagate almost indefinitely. These cells are thought to be different than the original cancer stem cells in fresh tumors. In order to investigate cancer stem cells, and molecularly profiling tumors with high fidelity to the original primary tumor, one needs to establish suitable primary ultra-low passage cell lines from fresh surgical specimens. Here we report the establishment of tumor initiating colon cancer ultra-low passage cell lines by a combination of gentle mechanical, enzymatic dissociation, spheroid formation, and followed by two generation xenografts from fresh tumors obtained at time of operation. Tumors generated were characterized by morphology, flow cytometry, immunofluorescence, and by gene expression. In the future, such a technology can be used to produce expeditiously enough material to test for mutations, genetic signatures and molecular subtyping readily available for clinical therapeutic decision making.

  16. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  17. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  18. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  19. Antiangiogenic therapy using endostatin increases the number of ALDH+ lung cancer stem cells by generating intratumor hypoxia

    Science.gov (United States)

    Yu, Yang; Wang, Yu-yi; Wang, Yi-qin; Wang, Xia; Liu, Yan-Yang; Wang, Jian-Tao; Du, Chi; Wang, Li; Li, Mei; Luo, Feng; Jiang, Ming

    2016-01-01

    Antiangiogenic therapy is becoming a promising option for cancer treatment. However, many investigations have recently indicated that these therapies may have limited efficacy, and the cancers in most patients eventually develop resistance to these therapies. There is considerable recently acquired evidence for an association of such resistance with cancer stem-like cells (CSLCs). Here, we used xenograft tumor murine models to further suggest that antiangiogenic agents actually increase the invasive and metastatic properties of lung cancer cells. In our experiments with murine lung cancer xenografts, we found that the antiangiogenic agent endostatin increased the population of ALDH+ cells, and did so by generating intratumoral hypoxia in the xenografts. We further showed endostatin to cause an increase in the CSLC population by accelerating the generation of tumor hypoxia and by recruiting TAMs, MDSCs and Treg cells, which are inflammatory and immunosuppressive cells and which can secrete cytokines and growth factors such as IL-6, EGF, and TGF-β into the tumor microenvironment. All these factors are related with increased CSLC population in tumors. These results imply that improving the clinical efficacy of antiangiogenic treatments will require the concurrent use of CSLC-targeting agents. PMID:27703219

  20. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  1. The Rab2A GTPase Promotes Breast Cancer Stem Cells and Tumorigenesis via Erk Signaling Activation

    Directory of Open Access Journals (Sweden)

    Man-Li Luo

    2015-04-01

    Full Text Available Proline-directed phosphorylation is regulated by the prolyl isomerase Pin1, which plays a fundamental role in driving breast cancer stem-like cells (BCSCs. Rab2A is a small GTPase critical for vesicle trafficking. Here, we show that Pin1 increases Rab2A transcription to promote BCSC expansion and tumorigenesis in vitro and in vivo. Mechanistically, Rab2A directly interacts with and prevents dephosphorylation/inactivation of Erk1/2 by the MKP3 phosphatase, resulting in Zeb1 upregulation and β-catenin nuclear translocation. In cancer cells, Rab2A is activated via gene amplification, mutation or Pin1 overexpression. Rab2A overexpression or mutation endows BCSC traits to primary normal human breast epithelial cells, whereas silencing Rab2A potently inhibits the expansion and tumorigenesis of freshly isolated BCSCs. Finally, Rab2A overexpression correlates with poor clinical outcome in breast cancer patients. Thus, Pin1/Rab2A/Erk drives BCSC expansion and tumorigenicity, suggesting potential drug targets.

  2. Activity of ABCG2 Is Regulated by Its Expression and Localization in DHT and Cyclopamine-Treated Breast Cancer Cells.

    Science.gov (United States)

    Chua, Vivian Y L; Larma, Irma; Harvey, Jennet; Thomas, Marc A; Bentel, Jacqueline M

    2016-10-01

    Elevated expression of the efflux transporter, ATP-binding cassette subfamily G isoform 2 (ABCG2) on the plasma membrane of cancer cells contributes to the development of drug resistance and is a key characteristic of cancer stem cells. In this study, gene expression analysis identified that treatment of the MCF-7 and T-47D breast cancer cell lines with the androgen, 5α-dihydrotestosterone (DHT), and the Hedgehog signaling inhibitor, cyclopamine downregulated ABCG2 mRNA levels. In MCF-7 cells, and in Hoechst 33342(lo) /CD44(hi) /CD24(lo) breast cancer stem-like cells isolated from MCF-7 cultures, ABCG2 was accumulated in cell-to-cell junction complexes and in large cytoplasmic aggresome-like vesicles. DHT treatments, which decreased cellular ABCG2 protein levels, led to diminished ABCG2 localization in both cell-to-cell junction complexes and in cytoplasmic vesicles. In contrast, cyclopamine, which did not alter ABCG2 protein levels, induced accumulation of ABCG2 in cytoplasmic vesicles, reducing its localization in cell-to-cell junction complexes. The reduced localization of ABCG2 at the plasma membrane of MCF-7 cells was associated with decreased efflux of the ABCG2 substrate, mitoxantrone, and increased sensitivity of cyclopamine-treated cultures to the cytotoxic effects of mitoxantrone. Together, these findings indicate that DHT and cyclopamine reduce ABCG2 activity in breast cancer cells by distinct mechanisms, providing evidence to advocate the adjunct use of analogous pharmaceutics to increase or prolong the efficacy of breast cancer treatments. J. Cell. Biochem. 117: 2249-2259, 2016. © 2016 Wiley Periodicals, Inc. PMID:26917208

  3. What makes cancer stem cell markers different?

    OpenAIRE

    Karsten, Uwe; Goletz, Steffen

    2013-01-01

    Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve t...

  4. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  5. Targeting the Checkpoint to Kill Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jan Benada

    2015-08-01

    Full Text Available Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells.

  6. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Directory of Open Access Journals (Sweden)

    Yi An

    Full Text Available It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP, which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  7. Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer.

    Science.gov (United States)

    Shaheen, Sameerah; Ahmed, Mehreen; Lorenzi, Federica; Nateri, Abdolrahman S

    2016-08-01

    Colorectal cancers (CRCs) form a disorganized hierarchy of heterogeneous cell populations on which current chemotherapy regimens fail to exert their distinctive cytotoxicity. A small sub-population of poorly differentiated cancer stem-like cells (CSCs), also known as cancer initiating cells, may exhibit embryonic and/or adult stem-cell gene expression signatures. Self-renewal and survival signals are also dominant over differentiation in CSCs. However, inducers of differentiation exclusive to CSC may affect cellular pathways required for the formation and progression of a tumor, which are not utilized in normal adult stem-cells. Nevertheless, assays for targeting CSCs have been hindered by expanding and maintaining rare CSCs in vitro. However, CRC-CSCs are able to form floating spheroids (known as colonospheres) 3-dimentinionally (3D) in a serum-free defined medium. Therefore, great efforts have been paid to improve colonosphere forming assay as a preclinical model to study tumor biology and to conduct drug screening in cancer research. The 3D-colonosphere culture model may also represent in vivo conditions for the spontaneous aggregation of cancer cells in spheroids. This protocol describes the development of an enrichment/culture assay using CRC-CSCs to facilitate colorectal cancer research through immunofluorescence staining of colonospheres. We have developed colonospheres from HCT116 CRC cell line to compare and link CRC-CSC markers to the NANOG expression level using an immunofluorescence assay. Our data also show that the immunostaining assay of colonosphere is a useful method to explore the role and dynamics of CRC-CSCs division between self-renewal and cell lineage differentiation of cancer cells. In principle, this method is applicable to a variety of primary cells and cell lines of epithelial origin. Furthermore, this protocol may also allow screening of libraries of compounds to identify bona fide CRC-CSC differentiation inducers. PMID:27207017

  8. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  9. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state.

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-09-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells.

  10. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-01-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells. PMID:22908280

  11. The relationship of cancer stem cells in urological cancers

    Directory of Open Access Journals (Sweden)

    Marta Pokrywczyńska

    2013-08-01

    Full Text Available Numerous studies are ongoing to identify and isolate cancer stem cells from cancers of genito-urinary tracts. Better understanding of their role in prostate, urothelial and kidney cancer origin, growth and progression opens new pathways in development of more effective treatment methods. However there are still many issues before advances in this field can be introduced for clinical application. This review addresses current achievements in cancer stem cells research in uro-oncology.

  12. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  13. Glutathione in Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Jose M. Estrela

    2011-03-01

    Full Text Available Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  14. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  15. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  16. Understanding the cancer stem cell

    OpenAIRE

    Bomken, S; Fišer, K; Heidenreich, O; Vormoor, J

    2010-01-01

    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of fun...

  17. MicroRNAs involved in neoplastic transformation of liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    Wang Xinchuan

    2010-12-01

    Full Text Available Abstract Background The existence of cancer stem cells in hepatocellular carcinoma (HCC has been verified by characterizing side population (SP cells based on efflux of Hoechst 33342 dye from stem cells. Recent advances in microRNA (miRNA biology have revealed that miRNAs play an important role in embryonic development and tumorigenesis. However, it is still unclear which miRNAs participate in the neoplastic transformation of liver cancer stem cells (LCSCs during hepatocarcinogenesis. Methods To identify the unique set of miRNAs differentially regulated in LCSCs, we applied SP sorting to primary cultures of F344 rat HCC cancer cells treated with diethylnitrosamine (DEN and normal syngenic fetal liver cells, and the stem-like characteristics of SP cells were verified through detecting expression of CD90.1, AFP and CK-7. Global miRNA expression profiles of two groups of SP cells were screened through microarray platform. Results A total of 68 miRNAs, including miR-10b, miR-21, miR-470*, miR-34c-3p, and let-7i*, were identified as overexpressed in SP of HCC cells compared to fetal liver cells. Ten miRNAs were underexpressed, including miR-200a* and miR-148b*. These miRNAs were validated using stem-loop real-time reverse transcriptase polymerase chain reaction (RT-PCR. Conclusions Our results suggest that LCSCs may have a distinct miRNA expression fingerprint during hepatocarcinogenesis. Dissecting these relationships will provide a new understanding of the function of miRNA in the process of neoplastic transformation of LCSCs.

  18. Prostate Cancer Stem Cells: Research Advances.

    Science.gov (United States)

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  19. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  20. Cancer stem cells: the lessons from pre-cancerous stem cells

    OpenAIRE

    Gao, Jian-Xin

    2007-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not con...

  1. Cancer stem cells may be the cause of poor radiotherapy results

    Energy Technology Data Exchange (ETDEWEB)

    Sadayuki, Ban [International and Research Cooperation Section, National Institute of Radiological Sciences, Inage-ku, Chiba (Japan)

    2006-07-01

    Radiotherapy is frequently applied to esophageal squamous cell carcinoma (ESCC), because about 90 percent of the cases is diagnosed in its late stages , although the 5-year survival rate after radiotherapy alone ranges from only 6 to 11.6 percent. Stage I ESCC has been considered a good target for radiation therapy, but the 5-year overall survival ratio is only 62 percent. It is well known that the cells in cancer tissue are heterogeneous in morphology and differentiation, even if the tissue consists of progenies developed from a single neoplastic cell. Cultured cancer cells have often been characterized by their morphological heterogeneity. When we assessed the dose-survival responses of 31 culture d human ESCC cell lines in a colony-formation assay, we found that one cell line (KYSE70) formed morphologically variable colonies in one dish. These were a densely mounding type (M-type), a flat, diffusive type (F-type), and a type with mixed mounding and flat cells (M/F-type). The M- and F-type colonies were isolated from a clone of the KYSE70 cells, and both types of cells produced tumors in nude mice. Interestingly, metastatic tumors were observed in mice transplanted with the F-type-colony forming cells. X-ray irradiation stimulated the cells to transform from M-type to F-type. A direct comparison of gene expression levels between both types of cells was conducted using an oligonucleotide micro-array. Genes involved in tumor invasion, cell motility, and cell-shape change were up-regulated in F-type colony-forming cells. Our data suggest that the cancer stem-like cells exist in the M-type colony-forming cells, and that X-ray irradiation stimulated them to de-differentiate into more malignant progenies than the parental cells. Our study suggests that it is urgent to establish methods to ascertain whether or not tumor tissues contain cancer stem cells. If tissues do contain cancer stem cells, excluding or killing them before radiotherapy or chemotherapy may greatly

  2. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H; Boersma-van Ek, Wytske; Terstappen, Leon W M M; Groen, Harry J M; Timens, Wim; Kruyt, Frank A E; Hiltermann, T Jeroen N

    2016-01-01

    BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and epitheli

  3. Extinction Models for Cancer Stem Cell Therapy

    OpenAIRE

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet ,; Lange, Kenneth

    2009-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tool...

  4. Lung cancer stem cells and lung cancer%肺癌干细胞与肺癌的发生

    Institute of Scientific and Technical Information of China (English)

    刘哲亮; 肖高明; 陈跃军; 吴冠宇

    2014-01-01

    cancer stem cells, in an effort to eradicate these cells to combat lung cancer. METHODS:In order to search relevant articles about the lung cancer stem celland its relationship with lung cancer from PubMed and Sciencedirect databases (from 1990 to 2014), a computer-based search was performed, using the key words of“lung cancer, cancer stem cell, lung cancer stem cell, lung cancer occur, tumor heterogeneity, drug resistance, gene mutation, signal pathways”in English. After eliminating literatures which were irrelevant to research purpose or containing a similar content, 48 articles were chosen for further analysis. RESULTS AND CONCLUSION:The cancer stem cellmodel has gained considerable support recently in context of lung cancers and stem-like cells that are associated with aggressive cancer behavior, metastatic progression, resistance to therapy and relapse. Since lung cancer stem cells are thought to consist of a heterogeneous population depending on the histology and site of tumors, and multiple signaling pathways might have to be targeted to effectively eliminate lung cancer stem cells for therapeutic benefit. It can be imagined that the multidisciplinary efforts currently under way to characterize and target stem-like cells in lung cancer wil reap significant therapeutic benefits in the future.

  5. Lung cancer stem cells and lung cancer%肺癌干细胞与肺癌的发生

    Institute of Scientific and Technical Information of China (English)

    刘哲亮; 肖高明; 陈跃军; 吴冠宇

    2014-01-01

    BACKGROUND:Lung cancers are highly heterogeneous and resistant to available therapeutic agents, with a five year survival rate of less than 15%. It has been difficult to determine the basis of lung cancer heterogeneity and drug resistance. Cancer stem cellmodel has attracted a significant amount of attention in recent years as a viable explanation for the heterogeneity, drug resistance, dormancy and recurrence and metastasis of various tumors. OBJECTIVE:To summarize the current understanding of lung cancer stem cells, including their histological types and tumor growth areas, and to discusses the prognosis of lung cancer and its relationship with lung cancer stem cells, in an effort to eradicate these cells to combat lung cancer. METHODS:In order to search relevant articles about the lung cancer stem celland its relationship with lung cancer from PubMed and Sciencedirect databases (from 1990 to 2014), a computer-based search was performed, using the key words of“lung cancer, cancer stem cell, lung cancer stem cell, lung cancer occur, tumor heterogeneity, drug resistance, gene mutation, signal pathways”in English. After eliminating literatures which were irrelevant to research purpose or containing a similar content, 48 articles were chosen for further analysis. RESULTS AND CONCLUSION:The cancer stem cellmodel has gained considerable support recently in context of lung cancers and stem-like cells that are associated with aggressive cancer behavior, metastatic progression, resistance to therapy and relapse. Since lung cancer stem cells are thought to consist of a heterogeneous population depending on the histology and site of tumors, and multiple signaling pathways might have to be targeted to effectively eliminate lung cancer stem cells for therapeutic benefit. It can be imagined that the multidisciplinary efforts currently under way to characterize and target stem-like cells in lung cancer wil reap significant therapeutic benefits in the future.%背景:肺

  6. Effects of Withania somnifera and Tinospora cordifolia extracts on the side population phenotype of human epithelial cancer cells: toward targeting multidrug resistance in cancer.

    Science.gov (United States)

    Maliyakkal, Naseer; Appadath Beeran, Asmy; Balaji, Sai A; Udupa, Nayanabhirama; Ranganath Pai, Sreedhara; Rangarajan, Annapoorni

    2015-03-01

    Recent reports suggest the existence of a subpopulation of stem-like cancer cells, termed as cancer stem cells (CSCs), which bear functional and phenotypic resemblance with the adult, tissue-resident stem cells. Side population (SP) assay based on differential efflux of Hoechst 33342 has been effectively used for the isolation of CSCs. The drug resistance properties of SP cells are typically due to the increased expression of ABC transporters leading to drug efflux. Conventionally used chemotherapeutic drugs may often leads to an enrichment of SP, revealing their inability to target the drug-resistant SP and CSCs. Thus, identification of agents that can reduce the SP phenotype is currently in vogue in cancer therapeutics. Withania somnifera (WS) and Tinospora cordifolia (TC) have been used in Ayurveda for treating various diseases, including cancer. In the current study, we have investigated the effects of ethanolic (ET) extracts of WS and TC on the cancer SP phenotype. Interestingly, we found significant decrease in SP on treatment with TC-ET, but not with WS-ET. The SP-inhibitory TC-ET was further fractionated into petroleum ether (TC-PET), dichloromethane (TC-DCM), and n-butyl alcohol (TC-nBT) fractions using bioactivity-guided fractionation. Our data revealed that TC-PET and TC-DCM, but not TC-nBT, significantly inhibited SP in a dose-dependent manner. Furthermore, flow cytometry-based functional assays revealed that TC-PET and TC-DCM significantly inhibited ABC-B1 and ABC-G2 transporters and sensitized cancer cells toward chemotherapeutic drug-mediated cytotoxicity. Thus, the TC-PET and TC-DCM may harbor phytochemicals with the potential to reverse the drug-resistant phenotype, thus improving the efficacy of cancer chemotherapy. PMID:25549922

  7. Effects of Withania somnifera and Tinospora cordifolia extracts on the side population phenotype of human epithelial cancer cells: toward targeting multidrug resistance in cancer.

    Science.gov (United States)

    Maliyakkal, Naseer; Appadath Beeran, Asmy; Balaji, Sai A; Udupa, Nayanabhirama; Ranganath Pai, Sreedhara; Rangarajan, Annapoorni

    2015-03-01

    Recent reports suggest the existence of a subpopulation of stem-like cancer cells, termed as cancer stem cells (CSCs), which bear functional and phenotypic resemblance with the adult, tissue-resident stem cells. Side population (SP) assay based on differential efflux of Hoechst 33342 has been effectively used for the isolation of CSCs. The drug resistance properties of SP cells are typically due to the increased expression of ABC transporters leading to drug efflux. Conventionally used chemotherapeutic drugs may often leads to an enrichment of SP, revealing their inability to target the drug-resistant SP and CSCs. Thus, identification of agents that can reduce the SP phenotype is currently in vogue in cancer therapeutics. Withania somnifera (WS) and Tinospora cordifolia (TC) have been used in Ayurveda for treating various diseases, including cancer. In the current study, we have investigated the effects of ethanolic (ET) extracts of WS and TC on the cancer SP phenotype. Interestingly, we found significant decrease in SP on treatment with TC-ET, but not with WS-ET. The SP-inhibitory TC-ET was further fractionated into petroleum ether (TC-PET), dichloromethane (TC-DCM), and n-butyl alcohol (TC-nBT) fractions using bioactivity-guided fractionation. Our data revealed that TC-PET and TC-DCM, but not TC-nBT, significantly inhibited SP in a dose-dependent manner. Furthermore, flow cytometry-based functional assays revealed that TC-PET and TC-DCM significantly inhibited ABC-B1 and ABC-G2 transporters and sensitized cancer cells toward chemotherapeutic drug-mediated cytotoxicity. Thus, the TC-PET and TC-DCM may harbor phytochemicals with the potential to reverse the drug-resistant phenotype, thus improving the efficacy of cancer chemotherapy.

  8. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models......There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...

  9. Cancer Stem Cells Converted from Pluripotent Stem Cells and the Cancerous Niche

    OpenAIRE

    Kasai, T; Chen, L.; Mizutani, AZ; Kudoh, T.; Murakami, H; Fu, L.; Seno, M

    2014-01-01

    Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-...

  10. Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells.

    Science.gov (United States)

    Alam, Maroof; Rajabi, Hasan; Ahmad, Rehan; Jin, Caining; Kufe, Donald

    2014-05-15

    The capacity of breast cancer cells to form mammospheres in non-adherent serum-free culture is used as a functional characteristic of the self-renewing stem-like cell population. The present studies demonstrate that silencing expression of the MUC1-C oncoprotein inhibits growth of luminal MCF-7 and HER2-overexpressing SKBR3 breast cancer cells as mammospheres. We also show that triple-negative MDA-MB-468 breast cancer cells are dependent on MUC1-C for growth as mammospheres and tumor xenografts. Similar results were obtained when MUC1-C function was inhibited by expression of a MUC1-C(CQCAQA) mutant. Moreover, treatment with the MUC1-C inhibitor GO-203, a cell penetrating peptide that binds to the MUC1-C cytoplasmic domain and blocks MUC1-C function, confirmed the importance of this target for self-renewal. The mechanistic basis for these findings is supported by the demonstration that MUC1-C activates NF-κB, occupies the IL-8 promoter with NF-κB, and induces IL-8 transcription. MUC1-C also induces NF-κB-dependent expression of the IL-8 receptor, CXCR1. In concert with these results, targeting MUC1-C with GO-203 suppresses IL-8/CXCR1 expression and disrupts the formation of established mammospheres. Our findings indicate that MUC1-C contributes to the self-renewal of breast cancer cells by activating the NF-κBIL-8/CXCR1 pathway and that targeting MUC1-C represents a potential approach for the treatment of this population.

  11. Epithelial-Mesenchymal Transition and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yanyuan Wu

    2016-01-01

    Full Text Available Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges.

  12. Self-Renewing Pten-/-TP53-/- Protospheres Produce Metastatic Adenocarcinoma Cell Lines with Multipotent Progenitor Activity

    OpenAIRE

    Abou-Kheir, Wassim; Hynes, Paul G.; Martin, Philip; Yin, Juan Juan; Liu, Yen-Nien; Seng, Victoria; Lake, Ross; Spurrier, Joshua; Kelly, Kathleen

    2011-01-01

    Prostate cancers of luminal adenocarcinoma histology display a range of clinical behaviors. Although most prostate cancers are slow-growing and indolent, a proportion is aggressive, developing metastasis and resistance to androgen deprivation treatment. One hypothesis is that a portion of aggressive cancers initiate from stem-like, androgen-independent tumor-propagating cells. Here we demonstrate the in vitro creation of a mouse cell line, selected for growth as self-renewing stem/progenitor ...

  13. The ability to generate senescent progeny as a mechanism underlying breast cancer cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Mine Mumcuoglu

    Full Text Available BACKGROUND: Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, "normal-like", and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity. METHODOLOGY/PRINCIPAL FINDINGS: A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP and immortal cell progenitor (ICP subtypes. All SCP cell lines expressed estrogen receptor (ER. Loss of ER expression combined with the accumulation of p21(Cip1 correlated with senescence in these cell lines. p21(Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and "normal-like" tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice. CONCLUSIONS/SIGNIFICANCE: Luminal A and "normal-like" breast cancer cell lines were able to generate luminal-like and

  14. Cancer stem cells and brain tumors

    OpenAIRE

    Pérez Castillo, Ana; Aguilar Morante, Diana; Morales-García, José A.; Dorado, Jorge

    2008-01-01

    Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem ...

  15. Cancer stem cells, tumor dormancy, and metastasis

    OpenAIRE

    EmilyChen

    2012-01-01

    Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs) in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignanc...

  16. Cancer Immunotherapy Using Engineered Hematopoietic Stem Cells

    OpenAIRE

    Gschweng, Eric Hans

    2015-01-01

    Engineering the immune system against cancer ideally provides surgical precision against the antigen bearing target cell while avoiding the systemic, off-target toxicity of chemotherapy. Successful treatment of patients in the clinic has been achieved by the expression of anti-cancer T-cell receptors (TCR) and chimeric antigen receptors (CAR) in T cells followed by infusion of these cells into cancer patients. Unfortunately, while many patients initially respond showing anti-tumor efficacy, t...

  17. Head and neck cancer stem cells.

    Science.gov (United States)

    Krishnamurthy, S; Nör, J E

    2012-04-01

    Most cancers contain a small sub-population of cells that are endowed with self-renewal, multipotency, and a unique potential for tumor initiation. These properties are considered hallmarks of cancer stem cells. Here, we provide an overview of the field of cancer stem cells with a focus on head and neck cancers. Cancer stem cells are located in the invasive fronts of head and neck squamous cell carcinomas (HNSCC) close to blood vessels (perivascular niche). Endothelial cell-initiated signaling events are critical for the survival and self-renewal of these stem cells. Markers such as aldehyde dehydrogenase (ALDH), CD133, and CD44 have been successfully used to identify highly tumorigenic cancer stem cells in HNSCC. This review briefly describes the orosphere assay, a method for in vitro culture of undifferentiated head and neck cancer stem cells under low attachment conditions. Notably, recent evidence suggests that cancer stem cells are exquisitely resistant to conventional therapy and are the "drivers" of local recurrence and metastatic spread. The emerging understanding of the role of cancer stem cells in the pathobiology of head and neck squamous cell carcinomas might have a profound impact on the treatment paradigms for this malignancy. PMID:21933937

  18. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Institute of Scientific and Technical Information of China (English)

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  19. Cross-talk between Human Papillomavirus Oncoproteins and Hedgehog Signaling Synergistically Promotes Stemness in Cervical Cancer Cells

    Science.gov (United States)

    Vishnoi, Kanchan; Mahata, Sutapa; Tyagi, Abhishek; Pandey, Arvind; Verma, Gaurav; Jadli, Mohit; Singh, Tejveer; Singh, Sukh Mahendra; Bharti, Alok C.

    2016-01-01

    Viral oncoproteins E6/E7 play key oncogenic role in human papillomavirus (HPV)-mediated cervical carcinogenesis in conjunction with aberrant activation of cellular signaling events. GLI-signaling has been implicated in metastasis and tumor recurrence of cervical cancer. However, the interaction of GLI-signaling with HPV oncogenes is unknown. We examined this relationship in established HPV-positive and HPV-negative cervical cancer cell lines using specific GLI inhibitor, cyclopamine and HPVE6/E7 siRNAs. Cervical cancer cell lines showed variable expression of GLI-signaling components. HPV16-positive SiHa cells, overexpressed GLI1, Smo and Patch. Inhibition by cyclopamine resulted in dose-dependent reduction of Smo and GLI1 and loss of cell viability with a higher magnitude in HPV-positive cells. Cyclopamine selectively downregulated HPVE6 expression and resulted in p53 accumulation, whereas HPVE7 and pRb level remained unaffected. siRNA-mediated silencing of HPV16E6 demonstrated reduced GLI1 transcripts in SiHa cells. Cervical cancer stem-like cells isolated by side population analysis, displayed retention of E6 and GLI1 expression. Fraction of SP cells was reduced in cyclopamine-treated cultures. When combined with E6-silencing cyclopamine resulted in loss of SP cell’s sphere-forming ability. Co-inhibition of GLI1 and E6 in cervical cancer cells showed additive anti-cancer effects. Overall, our data show existence of a cooperative interaction between GLI signaling and HPVE6. PMID:27678330

  20. Mitochondria, cholesterol and cancer cell metabolism.

    Science.gov (United States)

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  1. Cell of origin of lung cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M Hanna

    2013-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide, and current therapies are disappointing. Elucidation of the cell(s of origin of lung cancer may lead to new therapeutics. In addition, the discovery of putative cancer-initiating cells with stem cell properties in solid tumors has emerged as an important area of cancer research that may explain the resistance of these tumors to currently available therapeutics. Progress in our understanding of normal tissue stem cells, tumor cell of origin, and cancer stem cells has been hampered by the heterogeneity of the disease, the lack of good in vivo transplantation models to assess stem cell behavior, and an overall incomplete understanding of the epithelial stem cell hierarchy. As such, a systematic computerized literature search of the MEDLINE database was used to identify articles discussing current knowledge about normal lung and lung cancer stem cells or progenitor cells. In this review, we discuss what is currently known about the role of cancer-initiating cells and normal stem cells in the development of lung tumors.

  2. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells

    OpenAIRE

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2015-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, che...

  3. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Science.gov (United States)

    Noubissi, Felicite K.; Ogle, Brenda M.

    2016-01-01

    Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so. PMID:27657058

  4. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  5. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  6. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  7. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  8. Cancer Stem Cells in Lung Tumorigenesis

    OpenAIRE

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2010-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continue...

  9. Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid.

    Science.gov (United States)

    Bizzarro, Valentina; Belvedere, Raffaella; Milone, Maria Rita; Pucci, Biagio; Lombardi, Rita; Bruzzese, Francesca; Popolo, Ada; Parente, Luca; Budillon, Alfredo; Petrella, Antonello

    2015-09-22

    In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression. PMID:26312765

  10. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  11. Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Jar-Yi Ho

    Full Text Available Estrogen induces ERα-positive breast cancer aggressiveness via the promotion of cell proliferation and survival, the epithelial-mesenchymal transition, and stem-like properties. Integrin β4 signaling has been implicated in estrogen/ERα-induced tumorigenicity and anti-apoptosis; however, this signaling cascade poorly understood. ΔNp63, an N-terminally truncated isoform of the p63 transcription factor, functions as a transcription factor of integrinβ4 and therefore regulates cellular adhesion and survival. Therefore, the aim of the present study was to investigate the estrogen-induced interaction between ERα, ΔNp63 and integrin β4 in breast cancer cells. In ERα-positive MCF-7 cells, estrogen activated ERα transcription, which induced ΔNp63 expression. And ΔNp63 subsequently induced integrin β4 expression, which resulted in AKT phosphorylation and enhanced cell viability and motility. Conversely, there was no inductive effect of estrogen on ΔNp63-integrinβ4-AKT signaling or on cell viability and motility in ERα-negative MDA-MB-231 cells. ΔNp63 knockdown abolishes these estrogen-induced effects and reduces cell viability and motility in MCF-7 cells. Nevertheless, ΔNp63 knockdown also inhibited cell migration in MDA-MB-231 cells through reducing integrin β4 expression and AKT phosphorylation. In conclusion, estrogen enhances ERα-positive breast cancer cell viability and motility through activating the ERα-ΔNp63-integrin β4 signaling pathway to induce AKT phosphorylated activation. Those findings should be useful to elucidate the crosstalk between estrogen/ER signaling and ΔNp63 signaling and provide novel insights into the effects of estrogen on breast cancer progression.

  12. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction

    Directory of Open Access Journals (Sweden)

    Zhang Huanle

    2010-06-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs have been recently identified in breast carcinoma as CD44+CD24- cells, which exclusively retain tumorigenic activity and display stem cell-like properties. Using a mammosphere culture technique, MCF7 mammosphere cells are found to enrich breast cancer stem-like cells expressing CD44+CD24-. The stromal cells are mainly constituted by fibroblasts within a breast carcinoma, yet little is known of the contributions of the stromal cells to BCSCs. Methods Carcinoma-associated fibroblasts (CAFs and normal fibroblasts (NFs were isolated and identified by immunohistochemistry. MCF7 mammosphere cells were co-cultured with different stromal fibroblasts by a transwell cocultured system. Flow cytometry was used to measure CD44 and CD24 expression status on MCF7. ELISA (enzyme-linked immunosorbent assay was performed to investigate the production of stromal cell-derived factor 1 (SDF-1 in mammosphere cultures subject to various treatments. Mammosphere cells were injected with CAFs and NFs to examine the efficiency of tumorigenity in NOD/SCID mice. Results CAFs derived from breast cancer patients were found to be positive for α-smooth muscle actin (α-SMA, exhibiting the traits of myofibroblasts. In addition, CAFs played a central role in promoting the proliferation of CD44+CD24- cells through their ability to secrete SDF-1, which may be mediated to SDF-1/CXCR4 signaling. Moreover, the tumorigenicity of mammosphere cells with CAFs significantly increased as compared to that of mammosphere cells alone or with NFs. Conclusion We for the first time investigated the effects of stromal fibroblasts on CD44+CD24- cells and our findings indicated that breast CAFs contribute to CD44+CD24- cell proliferation through the secretion of SDF-1, and which may be important target for therapeutic approaches.

  13. Breathless cancer cells get fat on glutamine

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Anastasiou; Lewis C Cantley

    2012-01-01

    Many cancer cells depend on glutamine as a fuel for proliferation,yet the mechanisms by which glutamine supports cancer metabolism are not fully understood.Two recent studies highlight an important role for glutamine in the synthesis of lipids and provide novel insights into how glutamine metabolism could be targeted for cancer therapy.

  14. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  15. Markers of small cell lung cancer

    OpenAIRE

    Sharma SK; Taneja Tarvinder

    2004-01-01

    Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic effi...

  16. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  17. Targeting prostate cancer stem cells for cancer therapy

    OpenAIRE

    Wang, Guocan; Wang, Zhiwei; Sarkar, Fazlul H; Wei, Wenyi

    2012-01-01

    Prostate cancer (PCa) is the most common malignant neoplasm in men and the second most frequent cause of cancer death for males in the United States. Recently, emerging evidence suggests that prostate cancer stem cells (CSCs) may play a critical role in the development and progression of PCa. Therefore, targeting prostate CSCs for the prevention of tumor progression and treatment of PCa could become a novel strategy for better treatment of patients diagnosed with PCa. In this review article, ...

  18. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  19. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  20. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  1. Tracheal metastasis of small cell lung cancer

    OpenAIRE

    De, Sajal

    2009-01-01

    Endotracheal metastases of primary lung cancer are rare. Only one case of tracheal metastasis from small cell lung cancer has been reported in literature. Here, we report a rare case of a 45-year-old woman who was admitted for sudden-onset breathlessness with respiratory failure and required ventilatory support. Endotracheal growth was identified during bronchoscopy, and biopsy revealed endotracheal metastasis of small cell lung cancer.

  2. Repopulation of Ovarian Cancer Cells After Chemotherapy

    OpenAIRE

    Telleria, Carlos M.

    2013-01-01

    The high mortality rate caused by ovarian cancer has not changed for the past thirty years. Although most patients diagnosed with this disease respond to cytoreductive surgery and platinum-based chemotherapy and undergo remission, foci of cells almost always escape therapy, manage to survive, and acquire the capacity to repopulate the tumor. Repopulation of ovarian cancer cells that escape front-line chemotherapy, however, is a poorly understood phenomenon. Here I analyze cancer-initiating ce...

  3. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    OpenAIRE

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-01-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and sup...

  4. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy.

    Science.gov (United States)

    Yan, Kenneth; Wu, Qiulian; Yan, Diana H; Lee, Christine H; Rahim, Nasiha; Tritschler, Isabel; DeVecchio, Jennifer; Kalady, Matthew F; Hjelmeland, Anita B; Rich, Jeremy N

    2014-05-15

    Glioblastomas are the most prevalent and lethal primary brain tumor and are comprised of hierarchies with self-renewing cancer stem cells (CSCs) at the apex. Like neural stem cells (NSCs), CSCs reside in functional niches that provide essential cues to maintain the cellular hierarchy. Bone morphogenetic proteins (BMPs) instruct NSCs to adopt an astrocyte fate and are proposed as anti-CSC therapies to induce differentiation, but, paradoxically, tumors express high levels of BMPs. Here we demonstrate that the BMP antagonist Gremlin1 is specifically expressed by CSCs as protection from endogenous BMPs. Gremlin1 colocalizes with CSCs in vitro and in vivo. Furthermore, Gremlin1 blocks prodifferentiation effects of BMPs, and overexpression of Gremlin1 in non-CSCs decreases their endogenous BMP signaling to promote stem-like features. Consequently, Gremlin1-overexpressing cells display increased growth and tumor formation abilities. Targeting Gremlin1 in CSCs results in impaired growth and self-renewal. Transcriptional profiling demonstrated that Gremlin1 effects were associated with inhibition of p21(WAF1/CIP1), a key CSC signaling node. This study establishes CSC-derived Gremlin1 as a driving force in maintaining glioblastoma tumor proliferation and glioblastoma hierarchies through the modulation of endogenous prodifferentiation signals.

  5. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    OpenAIRE

    Wenke YUE; JIAO, FENG; Liu, Bin; Jiacong YOU; Zhou, Qinghua

    2011-01-01

    Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung can...

  6. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  7. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  8. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  9. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  10. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    International Nuclear Information System (INIS)

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis

  11. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  12. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  13. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  14. Cancer Stem Cells in the Thyroid

    Science.gov (United States)

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  15. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  16. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    OpenAIRE

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is ...

  17. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.;

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  18. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  19. Cancer stem cells in head and neck cancer.

    Science.gov (United States)

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  20. Every Single Cell Clones from Cancer Cell Lines Growing Tumors In Vivo May Not Invalidate the Cancer Stem Cell Concept

    OpenAIRE

    Li, Fengzhi

    2009-01-01

    We present the result of our research on the tumorigenic ability of single cell clones isolated from an aggressive murine breast cancer cell line in a matched allografting mouse model. Tumor formation is basically dependent on the cell numbers injected per location. We argue that in vivo tumor formation from single cell clones, isolated in vitro from cancer cell lines, may not provide conclusive evidence to disprove the cancer stem cell (CSC) theory without additional data.

  1. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Science.gov (United States)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  2. Prostate cancer and metastasis initiating stem cells

    Institute of Scientific and Technical Information of China (English)

    Kathleen Kelly; Juan Juan Yin

    2008-01-01

    Androgen refractory prostate cancer metastasis is a major clinical challenge.Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell.Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis.This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.

  3. Acquisition of Chemoresistance and Other Malignancy-related Features of Colorectal Cancer Cells Are Incremented by Ribosome-inactivating Stress.

    Science.gov (United States)

    Oh, Chang-Kyu; Lee, Seung Joon; Park, Seong-Hwan; Moon, Yuseok

    2016-05-01

    Colorectal cancer (CRC) as an environmental disease is largely influenced by accumulated epithelial stress from diverse environmental causes. We are exposed to ribosome-related insults, including ribosome-inactivating stress (RIS), from the environment, dietary factors, and medicines, but their physiological impacts on the chemotherapy of CRC are not yet understood. Here we revealed the effects of RIS on chemosensitivity and other malignancy-related properties of CRC cells. First, RIS led to bidirectional inhibition of p53-macrophage inhibitory cytokine 1 (MIC-1)-mediated death responses in response to anticancer drugs by either enhancing ATF3-linked antiapoptotic signaling or intrinsically inhibiting MIC-1 and p53 expression, regardless of ATF3. Second, RIS enhanced the epithelial-mesenchymal transition and biogenesis of cancer stem-like cells in an ATF3-dependent manner. These findings indicate that gastrointestinal exposure to RIS interferes with the efficacy of chemotherapeutics, mechanistically implying that ATF3-linked malignancy and chemoresistance can be novel therapeutic targets for the treatment of environmentally aggravated cancers.

  4. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  5. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  6. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    Directory of Open Access Journals (Sweden)

    Opdenaker LM

    2014-12-01

    Full Text Available Lynn M Opdenaker,1,2 Kimberly M Arnold,1,3 Ryan T Pohlig,3,4 Jayasree S Padmanabhan,1 Daniel C Flynn,1,3 Jennifer Sims-Mourtada1–3 1Center for Translational Cancer Research, Helen F Graham Cancer Center, Christiana Care Health Services, Inc., Newark, Delaware, USA; 2Department of Biological Sciences, 3Department of Medical Laboratory Sciences, 4Biostatistics Core Facility, University of Delaware, Newark, Delaware, USA Abstract: In many types of tumors, especially breast tumors, aldehyde dehydrogenase (ALDH activity has been used to identify cancer stem-like cells within the tumor. The presence and quantity of these cells are believed to predict the response of tumors to chemotherapy. Therefore, identification and eradication of these cells would be necessary to cure the patient. However, there are 19 different ALDH isoforms that could contribute to the enzyme activity. ALDH1A1 and ALDH1A3 are among the isoforms mostly responsible for the increased ALDH activity observed in these stem-like cells, although the main isoforms vary in different tissues and tumor types. In the study reported here, we attempted to determine if ALDH1A1 or ALDH1A3, specifically, correlate with tumor stage, grade, and hormone-receptor status in breast-cancer patients. While there was no significant correlation between ALDH1A1 and any of the parameters tested, we were able to identify a positive correlation between ALDH1A3 and tumor stage in triple-negative cancers. In addition, ALDH1A3 was negatively correlated with estrogen-receptor status. Our data suggest that ALDH1A3 could be utilized as a marker to identify stem-like cells within triple-negative tumors. Keywords: breast tumor, ALDH, ALDH1A1, ALDH1A3, stem-like cells, triple-negative cancer

  7. Cancer stem cells: progress and challenges in lung cancer.

    Science.gov (United States)

    Templeton, Amanda K; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama; Ramesh, Rajagopal

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called "cancer stem cells" (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  8. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  9. Treatment Option Overview (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Prevention Lung Cancer Screenin