WorldWideScience

Sample records for cancer proton therapy

  1. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  2. Risk-optimized proton therapy to minimize radiogenic second cancers

    DEFF Research Database (Denmark)

    Rechner, Laura A; Eley, John G; Howell, Rebecca M

    2015-01-01

    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were...... to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimizes the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment...

  3. Proton Therapy Coverage for Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Vargas, Carlos; Wagner, Marcus; Mahajan, Chaitali; Indelicato, Daniel; Fryer, Amber; Falchook, Aaron; Horne, David C.; Chellini, Angela; McKenzie, Craig C.; Lawlor, Paula C.; Li Zuofeng; Lin Liyong; Keole, Sameer

    2008-01-01

    Purpose: To determine the impact of prostate motion on dose coverage in proton therapy. Methods and Materials: A total of 120 prostate positions were analyzed on 10 treatment plans for 10 prostate patients treated using our low-risk proton therapy prostate protocol (University of Florida Proton Therapy Institute 001). Computed tomography and magnetic resonance imaging T 2 -weighted turbo spin-echo scans were registered for all cases. The planning target volume included the prostate with a 5-mm axial and 8-mm superoinferior expansion. The prostate was repositioned using 5- and 10-mm one-dimensional vectors and 10-mm multidimensional vectors (Points A-D). The beam was realigned for the 5- and 10-mm displacements. The prescription dose was 78 Gy equivalent (GE). Results: The mean percentage of rectum receiving 70 Gy (V 70 ) was 7.9%, the bladder V 70 was 14.0%, and the femoral head/neck V 50 was 0.1%, and the mean pelvic dose was 4.6 GE. The percentage of prostate receiving 78 Gy (V 78 ) with the 5-mm movements changed by -0.2% (range, 0.006-0.5%, p > 0.7). However, the prostate V 78 after a 10-mm displacement changed significantly (p 78 coverage had a large and significant reduction of 17.4% (range, 13.5-17.4%, p 78 coverage of the clinical target volume. The minimal prostate dose was reduced 33% (25.8 GE), on average, for Points A-D. The prostate minimal dose improved from 69.3 GE to 78.2 GE (p < 0.001) with realignment for 10-mm movements. Conclusion: The good dose coverage and low normal doses achieved for the initial plan was maintained with movements of ≤5 mm. Beam realignment improved coverage for 10-mm displacements

  4. Definitive proton beam radiation therapy for inoperable gastric cancer

    International Nuclear Information System (INIS)

    Shibuya, Susumu; Takase, Yasuhiro; Aoyagi, Hiroyuki; Orii, Kazuo; Sharma, N.; Iwasaki, Yoji; Tsujii, Hirohiko; Tsujii, Hiroshi.

    1991-01-01

    Proton beam radiation therapy using 250 MeV protons was carried out on two patients with early gastric cancer (T1, N0, M0). One patient was an 85-year-old man with early gastric cancer of type IIa + IIc. The other one was a 70-year-old man with early gastric cancer of type IIc. In both cases histological examination of biopsy specimens showed differential adenocarcinoma; distant metastasis was not found by other examinations. Both patients were considered inoperable due to their poor cardiac and/or respiratory functions. Therefore, it was decided to treat them by definitive proton irradiation, delivering total doses of 86 Gy and 83 Gy, respectively. In both patients, skin erythema that did not require any special treatment was found in the irradiation field. Hematobiological examinations did not show any abnormality. Although endoscopic examination at two years after irradiation in the former case and at seven months in the latter case showed persistent gastric ulcer at the site of the cancerous lesions, cancer cells were not found histologically. Therefore, we concluded that proton irradiation therapy was useful for inoperable early gastric cancers. (author)

  5. Risk-optimized proton therapy to minimize radiogenic second cancers

    Science.gov (United States)

    Rechner, Laura A.; Eley, John G.; Howell, Rebecca M.; Zhang, Rui; Mirkovic, Dragan; Newhauser, Wayne D.

    2015-01-01

    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimize the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment planning utilized a combination of a commercial treatment planning system and an in-house risk-optimization algorithm. When normal-tissue dose constraints were incorporated in treatment planning, the risk model that incorporated the effects of fractionation, initiation, inactivation, and repopulation selected a combination of anterior and lateral beams, which lowered the relative risk by 21% for the bladder and 30% for the rectum compared to the lateral-opposed beam arrangement. Other results were found for other risk models. PMID:25919133

  6. Rethinking the Combination of Proton Exchanger Inhibitors in Cancer Therapy.

    Science.gov (United States)

    Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Supuran, Claudiu T; Fais, Stefano

    2017-12-23

    Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na⁺/H⁺ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.

  7. Proton therapy for prostate cancer online: patient education or marketing?

    Science.gov (United States)

    Sadowski, Daniel J; Ellimoottil, Chandy S; Tejwani, Ajay; Gorbonos, Alex

    2013-12-01

    Proton therapy (PT) for prostate cancer is an expensive treatment with limited evidence of benefit over conventional radiotherapy. We sought to study whether online information on PT for prostate cancer was balanced and whether the website source influenced the content presented. We applied a systematic search process to identify 270 weblinks associated with PT for prostate cancer, categorized the websites by source, and filtered the results to 50 websites using predetermined criteria. We then used a customized version of the DISCERN instrument, a validated tool for assessing the quality of consumer health information, to evaluate the remaining websites for balance of content and description of risks, benefits and uncertainty. Depending on the search engine and key word used, proton center websites (PCWs) made up 10%-47% of the first 30 encountered links. In comparison, websites from academic and nonacademic medical centers without ownership stake in proton centers appeared much less frequently as a search result (0%-3%). PCWs scored lower on DISCERN questions compared to other sources for being balanced/unbiased (p online information regarding PT for prostate cancer may represent marketing by proton centers rather than comprehensive and unbiased patient education. An awareness of these results will also better prepare clinicians to address the potential biases of patients with prostate cancer who search the Internet for health information.

  8. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  9. Improving Outcomes for Esophageal Cancer using Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chuong, Michael D. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Hallemeier, Christopher L. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Jabbour, Salma K. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Yu, Jen; Badiyan, Shahed [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Merrell, Kenneth W. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mishra, Mark V. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Li, Heng [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Verma, Vivek [Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska (United States); Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2016-05-01

    Radiation therapy (RT) plays an essential role in the management of esophageal cancer. Because the esophagus is a centrally located thoracic structure there is a need to balance the delivery of appropriately high dose to the target while minimizing dose to nearby critical structures. Radiation dose received by these critical structures, especially the heart and lungs, may lead to clinically significant toxicities, including pneumonitis, pericarditis, and myocardial infarction. Although technological advancements in photon RT delivery like intensity modulated RT have decreased the risk of such toxicities, a growing body of evidence indicates that further risk reductions are achieved with proton beam therapy (PBT). Herein we review the published dosimetric and clinical PBT literature for esophageal cancer, including motion management considerations, the potential for reirradiation, radiation dose escalation, and ongoing esophageal PBT clinical trials. We also consider the potential cost-effectiveness of PBT relative to photon RT.

  10. Early experience of proton beam therapy combined with chemotherapy for locally advanced oropharyngeal cancer

    International Nuclear Information System (INIS)

    Ishikawa, Youjirou; Nakamura, Tatsuya; Takada, Akinori; Takayama, Kanako; Makita, Chiyoko; Suzuki, Motohisa; Azami, Yusuke; Kikuchi, Yasuhiro; Fuwa, Nobukazu

    2013-01-01

    Between 2009 and 2012, 10 patients with advanced oropharyngeal cancer underwent proton therapy combined with chemotherapy. The initial results of this therapy were 8 complete response (CR) and 2 partial response (PR), local recurrence was detected 1 patient. Proton beam therapy combined with chemotherapy is thought to be an effective treatment for locally advanced oropharyngeal cancer. (author)

  11. Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John G., E-mail: jeley@som.umaryland.edu [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Friedrich, Thomas [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Homann, Kenneth L.; Howell, Rebecca M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Scholz, Michael; Durante, Marco [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Newhauser, Wayne D. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana (United States); Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana (United States)

    2016-05-01

    Purpose: This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. Methods and Materials: We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breast by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. Results: For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio, , to be 0.75 ± 0.07 but not significantly smaller than 1 (P=.180). Conclusions: Our findings suggest that second cancer risks are, on average, comparable between proton therapy and carbon-ion therapy.

  12. Proton therapy of cancer: Potential clinical advantages and cost-effectiveness

    International Nuclear Information System (INIS)

    Lundkvist, Jonas; Ekman, Mattias; Rehn Ericsson, Suzanne; Glimelius, Bengt; Akademiska sjukhuset, Uppsala

    2005-01-01

    Proton therapy may offer potential clinical advantages compared with conventional radiation therapy for many cancer patients. Due to the large investment costs for building a proton therapy facility, however, the treatment cost with proton radiation is higher than with conventional radiation. It is therefore important to evaluate whether the medical benefits of proton therapy are large enough to motivate the higher costs. We assessed the cost-effectiveness of proton therapy in the treatment of four different cancers: left-sided breast cancer, prostate cancer, head and neck cancer, and childhood medulloblastoma. A Markov cohort simulation model was created for each cancer type and used to simulate the life of patients treated with radiation. Cost and quality adjusted life years (QALYs) were used as primary outcome measures. The results indicated that proton therapy was cost-effective if appropriate risk groups were chosen. The average cost per QALY gained for the four types of cancer assessed was about Euro 10,130. If the value of a QALY was set to Euro 55,000, the total yearly net benefit of treating 925 cancer patients with the four types of cancer was about Euro 20.8 million. Investment in a proton facility may thus be cost-effective. The results must be interpreted with caution, since there is a lack of data, and consequently large uncertainties in the assumptions used

  13. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  14. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Myles, Bevan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guo Xiaomao [Department of Radiation Oncology, Fudan University Cancer Hospital, Shanghai (China); Palmer, Matthew [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G.; Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log-rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38-86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36-57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%-1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log-rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and clinical

  15. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    International Nuclear Information System (INIS)

    Lin, Steven H.; Komaki, Ritsuko; Liao Zhongxing; Wei, Caimiao; Myles, Bevan; Guo Xiaomao; Palmer, Matthew; Mohan, Radhe; Swisher, Stephen G.; Hofstetter, Wayne L.; Ajani, Jaffer A.; Cox, James D.

    2012-01-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log–rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38–86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36–57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%–1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log–rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and

  16. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  17. Outcomes of Sinonasal Cancer Treated With Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dagan, Roi, E-mail: rdagan@floridaproton.org [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); Department of Radiation Oncology, University of Florida, Jacksonville, Florida (United States); Bryant, Curtis; Li, Zuofeng; Yeung, Daniel [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); Department of Radiation Oncology, University of Florida, Jacksonville, Florida (United States); Justice, Jeb; Dzieglewiski, Peter; Werning, John [Department of Otolaryngology, University of Florida, Gainesville, Florida (United States); Fernandes, Rui; Pirgousis, Phil [Department of Oral and Maxillofacial Surgery, University of Florida, Jacksonville, Florida (United States); Lanza, Donald C. [Sinus & Nasal Institute of Florida, St. Petersburg, Florida (United States); Morris, Christopher G.; Mendenhall, William M. [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); Department of Radiation Oncology, University of Florida, Jacksonville, Florida (United States)

    2016-05-01

    Purpose: To report disease outcomes after proton therapy (PT) for sinonasal cancer. Methods and Materials: Eighty-four adult patients without metastases received primary (13%) or adjuvant (87%) PT for sinonasal cancers (excluding melanoma, sarcoma, and lymphoma). Common histologies were olfactory neuroblastoma (23%), squamous cell carcinoma (22%), and adenoid cystic carcinoma (17%). Advanced stage (T3 in 25% and T4 in 69%) and high-grade histology (51%) were common. Surgical procedures included endoscopic resection alone (45%), endoscopic resection with craniotomy (12%), or open resection (30%). Gross residual disease was present in 26% of patients. Most patients received hyperfractionated PT (1.2 Gy [relative biological effectiveness (RBE)] twice daily, 99%) and chemotherapy (75%). The median PT dose was 73.8 Gy (RBE), with 85% of patients receiving more than 70 Gy (RBE). Prognostic factors were analyzed using Kaplan-Meier analysis and proportional hazards regression for multiple regression. Dosimetric parameters were evaluated using logistic regression. Serious, late grade 3 or higher toxicity was reported using the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4. The median follow-up was 2.4 years for all patients and 2.7 years among living patients. Results: The local control (LC), neck control, freedom from distant metastasis, disease-free survival, cause-specific survival, and overall survival rates were 83%, 94%, 73%, 63%, 70%, and 68%, respectively, at 3 years. Gross total resection and PT resulted in a 90% 3-year LC rate. The 3-year LC rate was 61% for primary radiation therapy and 59% for patients with gross disease. Gross disease was the only significant factor for LC on multivariate analysis, whereas grade and continuous LC were prognostic for overall survival. Six of 12 local recurrences were marginal. Dural dissemination represented 26% of distant recurrences. Late toxicity occurred in 24% of patients (with

  18. National Cancer Database Analysis of Proton Versus Photon Radiation Therapy in Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Kristin A., E-mail: kristin.higgins@emory.edu [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); O' Connell, Kelli [Rollins School of Public Health, Emory University, Atlanta, Georgia (United States); Liu, Yuan [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Rollins School of Public Health, Emory University, Atlanta, Georgia (United States); Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia (United States); Gillespie, Theresa W. [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Surgery, Emory University, Atlanta, Georgia (United States); McDonald, Mark W. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Pillai, Rathi N. [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia (United States); Patel, Kirtesh R.; Patel, Pretesh R. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Robinson, Clifford G. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Simone, Charles B. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Owonikoko, Taofeek K. [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia (United States); Belani, Chandra P. [Penn State Hershey Cancer Institute, Pennsylvania University, Hershey, Pennsylvania (United States); and others

    2017-01-01

    Purpose: To analyze outcomes and predictors associated with proton radiation therapy for non-small cell lung cancer (NSCLC) in the National Cancer Database. Methods and Materials: The National Cancer Database was queried to capture patients with stage I-IV NSCLC treated with thoracic radiation from 2004 to 2012. A logistic regression model was used to determine the predictors for utilization of proton radiation therapy. The univariate and multivariable association with overall survival were assessed by Cox proportional hazards models along with log–rank tests. A propensity score matching method was implemented to balance baseline covariates and eliminate selection bias. Results: A total of 243,822 patients (photon radiation therapy: 243,474; proton radiation therapy: 348) were included in the analysis. Patients in a ZIP code with a median income of <$46,000 per year were less likely to receive proton treatment, with the income cohort of $30,000 to $35,999 least likely to receive proton therapy (odds ratio 0.63 [95% confidence interval (CI) 0.44-0.90]; P=.011). On multivariate analysis of all patients, non-proton therapy was associated with significantly worse survival compared with proton therapy (hazard ratio 1.21 [95% CI 1.06-1.39]; P<.01). On propensity matched analysis, proton radiation therapy (n=309) was associated with better 5-year overall survival compared with non-proton radiation therapy (n=1549), 22% versus 16% (P=.025). For stage II and III patients, non-proton radiation therapy was associated with worse survival compared with proton radiation therapy (hazard ratio 1.35 [95% CI 1.10-1.64], P<.01). Conclusions: Thoracic radiation with protons is associated with better survival in this retrospective analysis; further validation in the randomized setting is needed to account for any imbalances in patient characteristics, including positron emission tomography–computed tomography staging.

  19. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  20. Particles that fight cancer: the use of protons and carbon ions in cancer therapy

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Particles that fight cancer: the use of protons and carbon ions in cancer therapy Cancer is a major societal issue. A key challenge for cancer therapy is the complex and multifaceted nature of the disease, which calls for personalised treatment. Radiotherapy has been used to treat tumours for more than a century, and is still a staple in oncology: today, 50 % of cancer patients receive radiotherapy, half of them with curative intent. Hadrontherapy is one of the most technologically advanced methods of delivering radiation dose to the tumour while protecting surrounding healthy tissues. In addition, hadrontherapy can reach otherwise difficult to access deep-seated tumours and can be used for radio resistant tumours as in hypoxia. This year marks 60 years since the first patient was treated with protons in the US and 20 years since the use of carbon ions in Japan. Join us in learning about the journey of particle therapy in Japan and Europe, its challenges, clinical results and future prospects. Thursday 2...

  1. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    International Nuclear Information System (INIS)

    Berman, Abigail T.; James, Sara St.; Rengan, Ramesh

    2015-01-01

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning

  2. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  3. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  4. Pencil beam scanning proton therapy vs rotational arc radiation therapy: A treatment planning comparison for postoperative oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Apinorasethkul, Ontida, E-mail: Ontida.a@gmail.com; Kirk, Maura; Teo, Kevin; Swisher-McClure, Samuel; Lukens, John N.; Lin, Alexander

    2017-04-01

    Patients diagnosed with head and neck cancer are traditionally treated with photon radiotherapy. Proton therapy is currently being used clinically and may potentially reduce treatment-related toxicities by minimizing the dose to normal organs in the treatment of postoperative oropharyngeal cancer. The finite range of protons has the potential to significantly reduce normal tissue toxicity compared to photon radiotherapy. Seven patients were planned with both proton and photon modalities. The planning goal for both modalities was achieving the prescribed dose to 95% of the planning target volume (PTV). Dose-volume histograms were compared in which all cases met the target coverage goals. Mean doses were significantly lower in the proton plans for the oral cavity (1771 cGy photon vs 293 cGy proton, p < 0.001), contralateral parotid (1796 cGy photon vs 1358 proton, p < 0.001), and the contralateral submandibular gland (3608 cGy photon vs 3251 cGy proton, p = 0.03). Average total integral dose was 9.1% lower in proton plans. The significant dosimetric sparing seen with proton therapy may lead to reduced side effects such as pain, weight loss, taste changes, and dry mouth. Prospective comparisons of protons vs photons for disease control, toxicity, and patient-reported outcomes are therefore warranted and currently being pursued.

  5. Proton beam therapy in non-small cell lung cancer: state of the art

    Directory of Open Access Journals (Sweden)

    Harada H

    2017-08-01

    Full Text Available Hideyuki Harada, Shigeyuki Murayama Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan Abstract: This review summarizes the past and present status of proton beam therapy (PBT for lung cancer. PBT has a unique characteristic called the Bragg peak that enables a reduction in the dose of normal tissue around the tumor, but is sensitive to the uncertainties of density changes. The heterogeneity in electron density for thoracic lesions, such as those in the lung and mediastinum, and tumor movement according to respiration necessitates respiratory management for PBT to be applied in lung cancer patients. There are two types of PBT – a passively scattered approach and a scanning approach. Typically, a passively scattered approach is more robust for respiratory movement and a scanning approach could result in a more conformal dose distribution even when the tumor shape is complex. Large tumors of centrally located lung cancer may be more suitably irradiated than with intensity-modulated radiotherapy (IMRT or stereotactic body radiotherapy (SBRT. For a locally advanced lung cancer, PBT can spare the lung and heart more than photon IMRT. However, no randomized controlled trial has reported differences between PBT and IMRT or SBRT for early-stage and locally advanced lung cancers. Therefore, a well-designed controlled trial is warranted. Keywords: proton beam therapy, non-small cell lung cancer, survival, SBRT, IMRT

  6. The potential of proton beam radiation therapy in lung cancer (including mesothelioma)

    Energy Technology Data Exchange (ETDEWEB)

    Bjelkengren, Goeran [Univ. Hospital, Malmoe (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A Swedish group of oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. It is estimated that about 350 patients with lung cancer and about 20 patients with mesothelioma annually may benefit from proton beam therapy.

  7. Microscopic Gold Particle-Based Fiducial Markers for Proton Therapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Lim, Young Kyung; Kwak, Jungwon; Kim, Dong Wook; Shin, Dongho; Yoon, Myonggeun; Park, Soah; Kim, Jin Sung; Ahn, Sung Hwan; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Pyo, Hong Ryeol; Kim, Dae Yong M.D.; Cho, Kwan Ho

    2009-01-01

    Purpose: We examined the feasibility of using fiducial markers composed of microscopic gold particles and human-compatible polymers as a means to overcome current problems with conventional macroscopic gold fiducial markers, such as dose reduction and artifact generation, in proton therapy for prostate cancer. Methods and Materials: We examined two types of gold particle fiducial marker interactions: that with diagnostic X-rays and with a therapeutic proton beam. That is, we qualitatively and quantitatively compared the radiographic visibility of conventional gold and gold particle fiducial markers and the CT artifacts and dose reduction associated with their use. Results: The gold particle fiducials could be easily distinguished from high-density structures, such as the pelvic bone, in diagnostic X-rays but were nearly transparent to a proton beam. The proton dose distribution was distorted <5% by the gold particle fiducials with a 4.9% normalized gold density; this was the case even in the worst configuration (i.e., parallel alignment with a single-direction proton beam). In addition, CT artifacts were dramatically reduced for the gold particle mixture. Conclusion: Mixtures of microscopic gold particles and human-compatible polymers have excellent potential as fiducial markers for proton therapy for prostate cancer. These include good radiographic visibility, low distortion of the depth-dose distribution, and few CT artifacts.

  8. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  9. Proton Therapy for Breast Cancer After Mastectomy: Early Outcomes of a Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Patel, Sagar A.; Hickey, Shea [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Specht, Michelle [Department of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Isakoff, Steven J. [Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Gadd, Michele; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Adams, Judith; DeLaney, Thomas F.; Kooy, Hanne; Lu, Hsiao-Ming; Taghian, Alphonse G. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2013-07-01

    Purpose: Dosimetric planning studies have described potential benefits for the use of proton radiation therapy (RT) for locally advanced breast cancer. We report acute toxicities and feasibility of proton delivery for 12 women treated with postmastectomy proton radiation with or without reconstruction. Methods and Materials: Twelve patients were enrolled in an institutional review board-approved prospective clinical trial. The patients were assessed for skin toxicity, fatigue, and radiation pneumonitis during treatment and at 4 and 8 weeks after the completion of therapy. All patients consented to have photographs taken for documentation of skin toxicity. Results: Eleven of 12 patients had left-sided breast cancer. One patient was treated for right-sided breast cancer with bilateral implants. Five women had permanent implants at the time of RT, and 7 did not have immediate reconstruction. All patients completed proton RT to a dose of 50.4 Gy (relative biological effectiveness [RBE]) to the chest wall and 45 to 50.4 Gy (RBE) to the regional lymphatics. No photon or electron component was used. The maximum skin toxicity during radiation was grade 2, according to the Common Terminology Criteria for Adverse Events (CTCAE). The maximum CTCAE fatigue was grade 3. There have been no cases of RT pneumonitis to date. Conclusions: Proton RT for postmastectomy RT is feasible and well tolerated. This treatment may be warranted for selected patients with unfavorable cardiac anatomy, immediate reconstruction, or both that otherwise limits optimal RT delivery using standard methods.

  10. Proton Therapy for Breast Cancer After Mastectomy: Early Outcomes of a Prospective Clinical Trial

    International Nuclear Information System (INIS)

    MacDonald, Shannon M.; Patel, Sagar A.; Hickey, Shea; Specht, Michelle; Isakoff, Steven J.; Gadd, Michele; Smith, Barbara L.; Yeap, Beow Y.; Adams, Judith; DeLaney, Thomas F.; Kooy, Hanne; Lu, Hsiao-Ming; Taghian, Alphonse G.

    2013-01-01

    Purpose: Dosimetric planning studies have described potential benefits for the use of proton radiation therapy (RT) for locally advanced breast cancer. We report acute toxicities and feasibility of proton delivery for 12 women treated with postmastectomy proton radiation with or without reconstruction. Methods and Materials: Twelve patients were enrolled in an institutional review board-approved prospective clinical trial. The patients were assessed for skin toxicity, fatigue, and radiation pneumonitis during treatment and at 4 and 8 weeks after the completion of therapy. All patients consented to have photographs taken for documentation of skin toxicity. Results: Eleven of 12 patients had left-sided breast cancer. One patient was treated for right-sided breast cancer with bilateral implants. Five women had permanent implants at the time of RT, and 7 did not have immediate reconstruction. All patients completed proton RT to a dose of 50.4 Gy (relative biological effectiveness [RBE]) to the chest wall and 45 to 50.4 Gy (RBE) to the regional lymphatics. No photon or electron component was used. The maximum skin toxicity during radiation was grade 2, according to the Common Terminology Criteria for Adverse Events (CTCAE). The maximum CTCAE fatigue was grade 3. There have been no cases of RT pneumonitis to date. Conclusions: Proton RT for postmastectomy RT is feasible and well tolerated. This treatment may be warranted for selected patients with unfavorable cardiac anatomy, immediate reconstruction, or both that otherwise limits optimal RT delivery using standard methods

  11. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. Proton therapy radiation pneumonitis local dose–response in esophagus cancer patients

    International Nuclear Information System (INIS)

    Echeverria, Alfredo E.; McCurdy, Matthew; Castillo, Richard; Bernard, Vincent; Ramos, Natalia Velez; Buckley, William; Castillo, Edward; Liu, Ping; Martinez, Josue; Guerrero, Thomas

    2013-01-01

    Purpose: This study quantifies pulmonary radiation toxicity in patients who received proton therapy for esophagus cancer. Materials/methods: We retrospectively studied 100 esophagus cancer patients treated with proton therapy. The linearity of the enhanced FDG uptake vs. proton dose was evaluated using the Akaike Information Criterion (AIC). Pneumonitis symptoms (RP) were assessed using the Common Toxicity Criteria for Adverse Events version 4.0 (CTCAEv4). The interaction of the imaging response with dosimetric parameters and symptoms was evaluated. Results: The RP scores were: 0 grade 4/5, 7 grade 3, 20 grade 2, 37 grade 1, and 36 grade 0. Each dosimetric parameter was significantly higher for the symptomatic group. The AIC winning models were 30 linear, 52 linear quadratic, and 18 linear logarithmic. There was no significant difference in the linear coefficient between models. The slope of the FDG vs. proton dose response was 0.022 for the symptomatic and 0.012 for the asymptomatic (p = 0.014). Combining dosimetric parameters with the slope did not improve the sensitivity or accuracy in identifying symptomatic cases. Conclusions: The proton radiation dose response on FDG PET/CT imaging exhibited a predominantly linear dose response on modeling. Symptomatic patients had a higher dose response slope

  13. Project of compact accelerator for cancer proton therapy

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1995-04-01

    The status of the sub-projetc 'Compact Accelerator' in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated 'Compact Accelerator' and to the scenario of the fonts of financial resources

  14. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and

  15. Design of radiation shielding for the proton therapy facility at the National Cancer Center in Korea

    International Nuclear Information System (INIS)

    Kim, J. W.; Kwon, J. W.; Lee, J.

    2005-01-01

    The design of radiation shielding was evaluated for a proton therapy facility being established at the National Cancer Center in Korea. The proton beam energy from a 230 MeV cyclotron is varied for therapy using a graphite target. This energy variation process produces high radiation and thus thick shielding walls surround the region. The evaluation was first carried out using analytical expressions at selected locations. Further detailed evaluations have been performed using the Monte Carlo method. Dose equivalent values were calculated to be compared with analytical results. The analytical method generally yielded more conservative values. With consideration of adequate occupancy factors annual dose equivalent rates are kept -1 in all areas. Construction of the building is expected to be completed near the end of 2004 and the installation of therapy equipments will begin a few months later. (authors)

  16. A dosimetric comparison of proton and photon therapy in unresectable cancers of the head of pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Reid F.; Zhai, Huifang; Both, Stefan; Metz, James M.; Plastaras, John P.; Ben-Josef, Edgar, E-mail: Edgar.Ben-Josef@uphs.upenn.edu [University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Mayekar, Sonal U. [Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Apisarnthanarax, Smith [University of Washington, Seattle, Washington 98109 (United States)

    2014-08-15

    Purpose: Uncontrolled local growth is the cause of death in ∼30% of patients with unresectable pancreatic cancers. The addition of standard-dose radiotherapy to gemcitabine has been shown to confer a modest survival benefit in this population. Radiation dose escalation with three-dimensional planning is not feasible, but high-dose intensity-modulated radiation therapy (IMRT) has been shown to improve local control. Still, dose-escalation remains limited by gastrointestinal toxicity. In this study, the authors investigate the potential use of double scattering (DS) and pencil beam scanning (PBS) proton therapy in limiting dose to critical organs at risk. Methods: The authors compared DS, PBS, and IMRT plans in 13 patients with unresectable cancer of the pancreatic head, paying particular attention to duodenum, small intestine, stomach, liver, kidney, and cord constraints in addition to target volume coverage. All plans were calculated to 5500 cGy in 25 fractions with equivalent constraints and normalized to prescription dose. All statistics were by two-tailed paired t-test. Results: Both DS and PBS decreased stomach, duodenum, and small bowel dose in low-dose regions compared to IMRT (p < 0.01). However, protons yielded increased doses in the mid to high dose regions (e.g., 23.6–53.8 and 34.9–52.4 Gy for duodenum using DS and PBS, respectively; p < 0.05). Protons also increased generalized equivalent uniform dose to duodenum and stomach, however these differences were small (<5% and 10%, respectively; p < 0.01). Doses to other organs-at-risk were within institutional constraints and placed no obvious limitations on treatment planning. Conclusions: Proton therapy does not appear to reduce OAR volumes receiving high dose. Protons are able to reduce the treated volume receiving low-intermediate doses, however the clinical significance of this remains to be determined in future investigations.

  17. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  18. Proton dynamics in cancer.

    Science.gov (United States)

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  19. Proton dynamics in cancer

    Directory of Open Access Journals (Sweden)

    Pouysségur Jacques

    2010-06-01

    Full Text Available Abstract Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  20. Improved Beam Angle Arrangement in Intensity Modulated Proton Therapy Treatment Planning for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Cao, Wenhua; Lim, Gino J.; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: This study investigates potential gains of an improved beam angle arrangement compared to a conventional fixed gantry setup in intensity modulated proton therapy (IMPT) treatment for localized prostate cancer patients based on a proof of principle study. Materials and Methods: Three patients with localized prostate cancer retrospectively selected from our institution were studied. For each patient, IMPT plans were designed using two, three and four beam angles, respectively, obtained from a beam angle optimization algorithm. Those plans were then compared with ones using two lateral parallel-opposed beams according to the conventional planning protocol for localized prostate cancer adopted at our institution. Results: IMPT plans with two optimized angles achieved significant improvements in rectum sparing and moderate improvements in bladder sparing against those with two lateral angles. Plans with three optimized angles further improved rectum sparing significantly over those two-angle plans, whereas four-angle plans found no advantage over three-angle plans. A possible three-beam class solution for localized prostate patients was suggested and demonstrated with preserved dosimetric benefits because individually optimized three-angle solutions were found sharing a very similar pattern. Conclusions: This study has demonstrated the potential of using an improved beam angle arrangement to better exploit the theoretical dosimetric benefits of proton therapy and provided insights of selecting quality beam angles for localized prostate cancer treatment

  1. Hip fractures and pain following proton therapy for management of prostate cancer

    International Nuclear Information System (INIS)

    Valery, Raul; Mendenhall, Nancy P.; Nichols, Romaine C. Jr.; Henderson, Randal; Morris, Christopher G.; Su, Zhong; Li, Zuofeng; Hoppe, Bradford S.; Mendenhall, William M.; Williams, Christopher R.

    2013-01-01

    Background: Proton therapy (PT) for prostate cancer reduces rectal and bladder dose, but increases dose to the femoral necks. We assessed the risk of hip fracture and pain in men treated with PT for prostate cancer. Material and methods: From 2006 to 2008, 382 men were treated for prostate cancer and evaluated at six-month intervals after PT for toxicities at Univ. of Florida Proton Therapy Institute (UFPTI). The WHO Fracture Risk Assessment Tool (FRAX) generated annual hip-fracture risk for the cohort. The WHO FRAX tool was utilized to generate the expected number of patients with hip fractures and the observed-to-expected ratio; confidence intervals and p-value were generated with the mid-P exact test. Univariate analysis of hip pain as a function of several prognostic factors was accomplished with Fisher's exact test. Results. Median follow-up was four years (range, 0.1-5.5 years). Per FRAX, 3.02 patients were expected to develop a hip fracture without PT. Three PT patients actually developed fractures for a rate of 0.21 fractures per 100 person-years of follow-up. There was an observed-expected ratio of 0.99 (p-value not significant). Forty-eight patients (13%) reported new pain in the hip during follow-up; three required prescription analgesics. Conclusion. PT for prostate cancer did not increase hip-fractures in the first four years after PT compared to expected rates in untreated men

  2. Reirradiation of Head and Neck Cancers With Proton Therapy: Outcomes and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Phan, Jack [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sio, Terence T. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Nguyen, Theresa P. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Takiar, Vinita [Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio (United States); Gunn, G. Brandon; Garden, Adam S.; Rosenthal, David I.; Fuller, Clifton D.; Morrison, William H.; Beadle, Beth; Ma, Dominic [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zafereo, Mark E. [Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hutcheson, Kate A. [Department of Speech Pathology University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kupferman, Michael E. [Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); William, William N. [Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-09-01

    Purpose: Reirradiation of head and neck (H&N) cancer is a clinical challenge. Proton radiation therapy (PRT) offers dosimetric advantages for normal tissue sparing and may benefit previously irradiated patients. Here, we report our initial experience with the use of PRT for H&N reirradiation, with focus on clinical outcomes and toxicity. Methods and Materials: We retrospectively reviewed the records of patients who received H&N reirradiation with PRT from April 2011 through June 2015. Patients reirradiated with palliative intent or without prior documentation of H&N radiation therapy were excluded. Radiation-related toxicities were recorded according to the Common Terminology Criteria for Adverse Events Version 4.0. Results: The conditions of 60 patients were evaluated, with a median follow-up time of 13.6 months. Fifteen patients (25%) received passive scatter proton therapy (PSPT), and 45 (75%) received intensity modulated proton therapy (IMPT). Thirty-five patients (58%) received upfront surgery, and 44 (73%) received concurrent chemotherapy. The 1-year rates of locoregional failure–free survival, overall survival, progression-free survival, and distant metastasis–free survival were 68.4%, 83.8%, 60.1%, and 74.9%, respectively. Eighteen patients (30%) experienced acute grade 3 (G3) toxicity, and 13 (22%) required a feeding tube at the end of PRT. The 1-year rates of late G3 toxicity and feeding tube independence were 16.7% and 2.0%, respectively. Three patients may have died of reirradiation-related effects (1 acute and 2 late). Conclusions: Proton beam therapy can be a safe and effective curative reirradiation strategy, with acceptable rates of toxicity and durable disease control.

  3. Reirradiation of Head and Neck Cancers With Proton Therapy: Outcomes and Analyses

    International Nuclear Information System (INIS)

    Phan, Jack; Sio, Terence T.; Nguyen, Theresa P.; Takiar, Vinita; Gunn, G. Brandon; Garden, Adam S.; Rosenthal, David I.; Fuller, Clifton D.; Morrison, William H.; Beadle, Beth; Ma, Dominic; Zafereo, Mark E.; Hutcheson, Kate A.; Kupferman, Michael E.; William, William N.; Frank, Steven J.

    2016-01-01

    Purpose: Reirradiation of head and neck (H&N) cancer is a clinical challenge. Proton radiation therapy (PRT) offers dosimetric advantages for normal tissue sparing and may benefit previously irradiated patients. Here, we report our initial experience with the use of PRT for H&N reirradiation, with focus on clinical outcomes and toxicity. Methods and Materials: We retrospectively reviewed the records of patients who received H&N reirradiation with PRT from April 2011 through June 2015. Patients reirradiated with palliative intent or without prior documentation of H&N radiation therapy were excluded. Radiation-related toxicities were recorded according to the Common Terminology Criteria for Adverse Events Version 4.0. Results: The conditions of 60 patients were evaluated, with a median follow-up time of 13.6 months. Fifteen patients (25%) received passive scatter proton therapy (PSPT), and 45 (75%) received intensity modulated proton therapy (IMPT). Thirty-five patients (58%) received upfront surgery, and 44 (73%) received concurrent chemotherapy. The 1-year rates of locoregional failure–free survival, overall survival, progression-free survival, and distant metastasis–free survival were 68.4%, 83.8%, 60.1%, and 74.9%, respectively. Eighteen patients (30%) experienced acute grade 3 (G3) toxicity, and 13 (22%) required a feeding tube at the end of PRT. The 1-year rates of late G3 toxicity and feeding tube independence were 16.7% and 2.0%, respectively. Three patients may have died of reirradiation-related effects (1 acute and 2 late). Conclusions: Proton beam therapy can be a safe and effective curative reirradiation strategy, with acceptable rates of toxicity and durable disease control.

  4. Proton therapy for head and neck cancer: Rationale, potential indications, practical considerations, and current clinical evidence

    International Nuclear Information System (INIS)

    Mendenhall, Nancy P.; Malyapa, Robert S.; Su, Zhong; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng

    2011-01-01

    There is a strong rationale for potential benefits from proton therapy (PT) for selected cancers of the head and neck because of the opportunity to improve the therapeutic ratio by improving radiation dose distributions and because of the significant differences in radiation dose distribution achievable with x-ray-based radiation therapy (RT) and PT. Comparisons of dose distributions between x-ray-based and PT plans in selected cases show specific benefits in dose distribution likely to translate into improved clinical outcomes. However, the use of PT in head and neck cancers requires special considerations in the simulation and treatment planning process, and currently available PT technology may not permit realization of the maximum potential benefits of PT. To date, few clinical data are available, but early clinical experiences in sinonasal tumors in particular suggest significant improvements in both disease control and radiation-related toxicity

  5. Proton therapy for head and neck cancer: Rationale, potential indications, practical considerations, and current clinical evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Nancy P.; Malyapa, Robert S.; Su, Zhong; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng (Univ. of Florida Proton Therapy Inst., Jacksonville, Florida (United States)), e-mail: menden@shands.ufl.edu

    2011-08-15

    There is a strong rationale for potential benefits from proton therapy (PT) for selected cancers of the head and neck because of the opportunity to improve the therapeutic ratio by improving radiation dose distributions and because of the significant differences in radiation dose distribution achievable with x-ray-based radiation therapy (RT) and PT. Comparisons of dose distributions between x-ray-based and PT plans in selected cases show specific benefits in dose distribution likely to translate into improved clinical outcomes. However, the use of PT in head and neck cancers requires special considerations in the simulation and treatment planning process, and currently available PT technology may not permit realization of the maximum potential benefits of PT. To date, few clinical data are available, but early clinical experiences in sinonasal tumors in particular suggest significant improvements in both disease control and radiation-related toxicity

  6. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  7. Early Toxicity in Patients Treated With Postoperative Proton Therapy for Locally Advanced Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cuaron, John J. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Chon, Brian; Tsai, Henry; Goenka, Anuj; DeBlois, David [Procure Proton Therapy Center, Somerset, New Jersey (United States); Ho, Alice; Powell, Simon [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Hug, Eugen [Procure Proton Therapy Center, Somerset, New Jersey (United States); Cahlon, Oren, E-mail: cahlono@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Procure Proton Therapy Center, Somerset, New Jersey (United States)

    2015-06-01

    Purpose: To report dosimetry and early toxicity data in breast cancer patients treated with postoperative proton radiation therapy. Methods and Materials: From March 2013 to April 2014, 30 patients with nonmetastatic breast cancer and no history of prior radiation were treated with proton therapy at a single proton center. Patient characteristics and dosimetry were obtained through chart review. Patients were seen weekly while on treatment, at 1 month after radiation therapy completion, and at 3- to 6-month intervals thereafter. Toxicity was scored using Common Terminology Criteria for Adverse Events version 4.0. Frequencies of toxicities were tabulated. Results: Median dose delivered was 50.4 Gy (relative biological equivalent [RBE]) in 5 weeks. Target volumes included the breast/chest wall and regional lymph nodes including the internal mammary lymph nodes (in 93%). No patients required a treatment break. Among patients with >3 months of follow-up (n=28), grade 2 dermatitis occurred in 20 patients (71.4%), with 8 (28.6%) experiencing moist desquamation. Grade 2 esophagitis occurred in 8 patients (28.6%). Grade 3 reconstructive complications occurred in 1 patient. The median planning target volume V95 was 96.43% (range, 79.39%-99.60%). The median mean heart dose was 0.88 Gy (RBE) [range, 0.01-3.20 Gy (RBE)] for all patients, and 1.00 Gy (RBE) among patients with left-sided tumors. The median V20 of the ipsilateral lung was 16.50% (range, 6.1%-30.3%). The median contralateral lung V5 was 0.34% (range, 0%-5.30%). The median maximal point dose to the esophagus was 45.65 Gy (RBE) [range, 0-65.4 Gy (RBE)]. The median contralateral breast mean dose was 0.29 Gy (RBE) [range, 0.03-3.50 Gy (RBE)]. Conclusions: Postoperative proton therapy is well tolerated, with acceptable rates of skin toxicity. Proton therapy favorably spares normal tissue without compromising target coverage. Further follow-up is necessary to assess for clinical outcomes and cardiopulmonary

  8. SU-E-T-170: Evaluation of Rotational Errors in Proton Therapy Planning of Lung Cancer

    International Nuclear Information System (INIS)

    Rana, S; Zhao, L; Ramirez, E; Singh, H; Zheng, Y

    2014-01-01

    Purpose: To investigate the impact of rotational (roll, yaw, and pitch) errors in proton therapy planning of lung cancer. Methods: A lung cancer case treated at our center was used in this retrospective study. The original plan was generated using two proton fields (posterior-anterior and left-lateral) with XiO treatment planning system (TPS) and delivered using uniform scanning proton therapy system. First, the computed tomography (CT) set of original lung treatment plan was re-sampled for rotational (roll, yaw, and pitch) angles ranged from −5° to +5°, with an increment of 2.5°. Second, 12 new proton plans were generated in XiO using the 12 re-sampled CT datasets. The same beam conditions, isocenter, and devices were used in new treatment plans as in the original plan. All 12 new proton plans were compared with original plan for planning target volume (PTV) coverage and maximum dose to spinal cord (cord Dmax). Results: PTV coverage was reduced in all 12 new proton plans when compared to that of original plan. Specifically, PTV coverage was reduced by 0.03% to 1.22% for roll, by 0.05% to 1.14% for yaw, and by 0.10% to 3.22% for pitch errors. In comparison to original plan, the cord Dmax in new proton plans was reduced by 8.21% to 25.81% for +2.5° to +5° pitch, by 5.28% to 20.71% for +2.5° to +5° yaw, and by 5.28% to 14.47% for −2.5° to −5° roll. In contrast, cord Dmax was increased by 3.80% to 3.86% for −2.5° to −5° pitch, by 0.63% to 3.25% for −2.5° to −5° yaw, and by 3.75% to 4.54% for +2.5° to +5° roll. Conclusion: PTV coverage was reduced by up to 3.22% for rotational error of 5°. The cord Dmax could increase or decrease depending on the direction of rotational error, beam angles, and the location of lung tumor

  9. Image Guidance Based on Prostate Position for Prostate Cancer Proton Therapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Wagner, Marcus; Indelicato, Daniel; Fryer, Amber; Horne, David; Chellini, Angela; McKenzie, Craig; Lawlor, Paula; Mahajan, Chaitali; Li Zuofeng; Lin Liyong; Keole, Sameer

    2008-01-01

    Purpose: To determine the target coverage for proton therapy with and without image guidance and daily prebeam reorientation. Methods and Materials: A total of 207 prostate positions were analyzed for 9 prostate cancer patients treated using our low-risk prostate proton therapy protocol (University of Florida Proton Therapy Institute 001). The planning target volume was defined as the prostate plus a 5-mm axial and 8-mm superoinferior extension. The prostate was repositioned using 5- and 10-mm shifts (anteriorly, inferiorly, posteriorly, and superiorly) and for Points A-D using a combination of 10-mm multidimensional movements (anteriorly or inferiorly; posteriorly or superiorly; and left or right). The beams were then realigned using the new prostate position. The prescription dose was 78 Gray equivalent (GE) to 95% of the planning target volume. Results: For small movements in the anterior, inferior, and posterior directions within the planning target volume (≤5 mm), treatment realignment demonstrated small, but significant, improvements in the clinical target volume (CTV) coverage to the prescribed dose (78 GE). The anterior and posterior shifts also significantly increased the minimal CTV dose (Δ +1.59 GE). For prostate 10-mm movements in the inferior, posterior, and superior directions, the beam realignment produced larger and significant improvements for both the CTV V 78 (Δ +6.4%) and the CTV minimal dose (Δ +8.22 GE). For the compounded 10-mm multidimensional shifts, realignment significantly improved the CTV V 78 (Δ +11.8%) and CTV minimal dose (Δ +23.6 GE). After realignment, the CTV minimal dose was >76.6 GE (>98%) for all points (A-D). Conclusion: Proton beam realignment after target shift will enhance CTV coverage for different prostate positions

  10. Early Outcomes From Three Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Mendenhall, Nancy P.; Li Zuofeng; Hoppe, Bradford S.; Marcus, Robert B.; Mendenhall, William M.; Nichols, R. Charles; Morris, Christopher G.; Williams, Christopher R.; Costa, Joseph; Henderson, Randal

    2012-01-01

    Purpose: To report early outcomes with image-guided proton therapy for prostate cancer. Methods and Materials: We accrued 211 prostate cancer patients on prospective Institutional Review Board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low–risk disease, dose escalation from 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel followed by androgen deprivation for high-risk disease. Minimum follow-up was 2 years. Results: One intermediate-risk patient and 2 high-risk patients had disease progression. Pretreatment genitourinary (GU) symptom management was required in 38% of patients. A cumulative 88 (42%) patients required posttreatment GU symptom management. Four transient Grade 3 GU toxicities occurred, all among patients requiring pretreatment GU symptom management. Multivariate analysis showed correlation between posttreatment GU 2+ symptoms and pretreatment GU symptom management (p < 0.0001) and age (p = 0.0048). Only 1 Grade 3+ gastrointestinal (GI) symptom occurred. The prevalence of Grade 2+ GI symptoms was 0 (0%), 10 (5%), 12 (6%), and 8 (4%) at 6, 12, 18, and 24 months, with a cumulative incidence of 20 (10%) patients at 2 years after proton therapy. Univariate and multivariate analyses showed significant correlation between Grade 2+ rectal bleeding and proctitis and the percentage of rectal wall (rectum) receiving doses ranging from 40 CGE (10 CGE) to 80 CGE. Conclusions: Early outcomes with image-guided proton therapy suggest high efficacy and minimal toxicity with only 1.9% Grade 3 GU symptoms and <0.5% Grade 3 GI toxicities.

  11. Early Outcomes From Three Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Nancy P., E-mail: menden@shands.ufl.edu [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Li Zuofeng; Hoppe, Bradford S.; Marcus, Robert B.; Mendenhall, William M.; Nichols, R. Charles; Morris, Christopher G. [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Williams, Christopher R.; Costa, Joseph [Division of Urology, College of Medicine, University of Florida, Jacksonville, FL (United States); Henderson, Randal [University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2012-01-01

    Purpose: To report early outcomes with image-guided proton therapy for prostate cancer. Methods and Materials: We accrued 211 prostate cancer patients on prospective Institutional Review Board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low-risk disease, dose escalation from 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel followed by androgen deprivation for high-risk disease. Minimum follow-up was 2 years. Results: One intermediate-risk patient and 2 high-risk patients had disease progression. Pretreatment genitourinary (GU) symptom management was required in 38% of patients. A cumulative 88 (42%) patients required posttreatment GU symptom management. Four transient Grade 3 GU toxicities occurred, all among patients requiring pretreatment GU symptom management. Multivariate analysis showed correlation between posttreatment GU 2+ symptoms and pretreatment GU symptom management (p < 0.0001) and age (p = 0.0048). Only 1 Grade 3+ gastrointestinal (GI) symptom occurred. The prevalence of Grade 2+ GI symptoms was 0 (0%), 10 (5%), 12 (6%), and 8 (4%) at 6, 12, 18, and 24 months, with a cumulative incidence of 20 (10%) patients at 2 years after proton therapy. Univariate and multivariate analyses showed significant correlation between Grade 2+ rectal bleeding and proctitis and the percentage of rectal wall (rectum) receiving doses ranging from 40 CGE (10 CGE) to 80 CGE. Conclusions: Early outcomes with image-guided proton therapy suggest high efficacy and minimal toxicity with only 1.9% Grade 3 GU symptoms and <0.5% Grade 3 GI toxicities.

  12. Brain Injury After Proton Therapy or Carbon Ion Therapy for Head-and-Neck Cancer and Skull Base Tumors

    International Nuclear Information System (INIS)

    Miyawaki, Daisuke; Murakami, Masao; Demizu, Yusuke; Sasaki, Ryohei; Niwa, Yasue; Terashima, Kazuki; Nishimura, Hideki; Hishikawa, Yoshio; Sugimura, Kazuro

    2009-01-01

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volume of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.

  13. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  14. Physician Evaluation of Internet Health Information on Proton Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anand, E-mail: as4351@columbia.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Paly, Jonathan J.; Efstathiou, Jason A. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Bekelman, Justin E. [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-03-15

    Purpose: Many patients considering prostate cancer (PCa) treatment options report seeking proton beam therapy (PBT) based in part on information readily available on the Internet. There is, however, potential for considerable variation in Internet health information (IHI). We thus evaluated the characteristics, quality, and accuracy of IHI on PBT for PCa. Methods and Materials: We undertook a qualitative research study using snowball-purposive sampling in which we evaluated the top 50 Google search results for “proton prostate cancer.” Quality was evaluated on a 5-point scale using the validated 15-question DISCERN instrument. Accuracy was evaluated by comparing IHI with the best available evidence. Results: Thirty-seven IHI websites were included in the final sample. These websites most frequently were patient information/support resources (46%), were focused exclusively on PBT (51%), and had a commercial affiliation (38%). There was a significant difference in quality according to the type of IHI. Substantial inaccuracies were noted in the study sample compared with best available or contextual evidence. Conclusions: There are shortcomings in quality and accuracy in consumer-oriented IHI on PBT for PCa. Providers must be prepared to educate patients how to critically evaluate IHI related to PBT for PCa to best inform their treatment decisions.

  15. Physician Evaluation of Internet Health Information on Proton Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Shah, Anand; Paly, Jonathan J.; Efstathiou, Jason A.; Bekelman, Justin E.

    2013-01-01

    Purpose: Many patients considering prostate cancer (PCa) treatment options report seeking proton beam therapy (PBT) based in part on information readily available on the Internet. There is, however, potential for considerable variation in Internet health information (IHI). We thus evaluated the characteristics, quality, and accuracy of IHI on PBT for PCa. Methods and Materials: We undertook a qualitative research study using snowball-purposive sampling in which we evaluated the top 50 Google search results for “proton prostate cancer.” Quality was evaluated on a 5-point scale using the validated 15-question DISCERN instrument. Accuracy was evaluated by comparing IHI with the best available evidence. Results: Thirty-seven IHI websites were included in the final sample. These websites most frequently were patient information/support resources (46%), were focused exclusively on PBT (51%), and had a commercial affiliation (38%). There was a significant difference in quality according to the type of IHI. Substantial inaccuracies were noted in the study sample compared with best available or contextual evidence. Conclusions: There are shortcomings in quality and accuracy in consumer-oriented IHI on PBT for PCa. Providers must be prepared to educate patients how to critically evaluate IHI related to PBT for PCa to best inform their treatment decisions

  16. Using gEUD based plan analysis method to evaluate proton vs. photon plans for lung cancer radiation therapy.

    Science.gov (United States)

    Xiao, Zhiyan; Zou, Wei J; Chen, Ting; Yue, Ning J; Jabbour, Salma K; Parikh, Rahul; Zhang, Miao

    2018-03-01

    The goal of this study was to exam the efficacy of current DVH based clinical guidelines draw from photon experience for lung cancer radiation therapy on proton therapy. Comparison proton plans and IMRT plans were generated for 10 lung patients treated in our proton facility. A gEUD based plan evaluation method was developed for plan evaluation. This evaluation method used normal lung gEUD(a) curve in which the model parameter "a" was sampled from the literature reported value. For all patients, the proton plans delivered lower normal lung V 5 Gy with similar V 20 Gy and similar target coverage. Based on current clinical guidelines, proton plans were ranked superior to IMRT plans for all 10 patients. However, the proton and IMRT normal lung gEUD(a) curves crossed for 8 patients within the tested range of "a", which means there was a possibility that proton plan would be worse than IMRT plan for lung sparing. A concept of deficiency index (DI) was introduced to quantify the probability of proton plans doing worse than IMRT plans. By applying threshold on DI, four patients' proton plan was ranked inferior to the IMRT plan. Meanwhile if a threshold to the location of curve crossing was applied, 6 patients' proton plan was ranked inferior to the IMRT plan. The contradictory ranking results between the current clinical guidelines and the gEUD(a) curve analysis demonstrated there is potential pitfalls by applying photon experience directly to the proton world. A comprehensive plan evaluation based on radio-biological models should be carried out to decide if a lung patient would really be benefit from proton therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  17. Principles and practice of proton beam therapy

    CERN Document Server

    Das, Indra J

    2015-01-01

    Commissioned by The American Association of Physicists in Medicine (AAPM) for their June 2015 Summer School, this is the first AAPM monograph printed in full color. Proton therapy has been used in radiation therapy for over 70 years, but within the last decade its use in clinics has grown exponentially. This book fills in the proton therapy gap by focusing on the physics of proton therapy, including beam production, proton interactions, biology, dosimetry, treatment planning, quality assurance, commissioning, motion management, and uncertainties. Chapters are written by the world's leading medical physicists who work at the pioneering proton treatment centers around the globe. They share their understandings after years of experience treating thousands of patients. Case studies involving specific cancer treatments show that there is some art to proton therapy as well as state-of-the-art science. Even though the focus lies on proton therapy, the content provided is also valuable to heavy charged particle th...

  18. Risk of Developing Second Cancer From Neutron Dose in Proton Therapy as Function of Field Characteristics, Organ, and Patient Age

    International Nuclear Information System (INIS)

    Zacharatou Jarlskog, Christina; Paganetti, Harald

    2008-01-01

    Purpose: To estimate the risk of a second malignancy after treatment of a primary brain cancer using passive scattered proton beam therapy. The focus was on the cancer risk caused by neutrons outside the treatment volume and the dependency on the patient's age. Methods and Materials: Organ-specific neutron-equivalent doses previously calculated for eight different proton therapy brain fields were considered. Organ-specific models were applied to assess the risk of developing solid cancers and leukemia. Results: The main contributors (>80%) to the neutron-induced risk are neutrons generated in the treatment head. Treatment volume can influence the risk by up to a factor of ∼2. Young patients are subject to significantly greater risks than are adult patients because of the geometric differences and age dependency of the risk models. Breast cancer should be the main concern for females. For males, the risks of lung cancer, leukemia, and thyroid cancer were significant for pediatric patients. In contrast, leukemia was the leading risk for an adult. Most lifetime risks were <1% (70-Gy treatment). The only exceptions were breast, thyroid, and lung cancer for females. For female thyroid cancer, the treatment risk can exceed the baseline risk. Conclusion: The risk of developing a second malignancy from neutrons from proton beam therapy of a brain lesion is small (i.e., presumably outweighed by the therapeutic benefit) but not negligible (i.e., potentially greater than the baseline risk). The patient's age at treatment plays a major role

  19. A compact proton synchrotron with combined-function lattice dedicated for cancer therapy

    CERN Document Server

    Morita, A; Inoue, M; Shirai, T; Iwashita, Y; Hiramoto, K; Katane, M; Tadokoro, M; Nishi, M; Umezawa, M

    1999-01-01

    A compact proton synchrotron with combined function lattice has been designed as a dedicated machine for cancer therapy because of its merits of easy operation and low construction cost. The lattice has a six-fold symmetry and its radius of curvature and circumference are 1.9 m and 23.9 m, respectively. For the purpose of establishing a good reference design, we have constructed a model magnet based on the three-dimensional magnetic field calculation. A magnetic field measurement has been performed with use of a three-dimensional Hall- probe. In the present paper, the results of these developments is presented together with the outline of the reference design. (3 refs) .

  20. A case of acute exacerbation of idiopathic pulmonary fibrosis after proton beam therapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Nagano, Tatsuya; Kotani, Yoshikazu; Fujii, Osamu

    2012-01-01

    There have been no reports describing acute exacerbations of idiopathic pulmonary fibrosis after particle radiotherapy for non-small cell lung cancer. The present study describes the case of a 76-year-old Japanese man with squamous cell carcinoma of the lung that relapsed in the left upper lobe 1 year after right upper lobectomy. He had been treated with oral prednisolone 20 mg/day every 2 days for idiopathic pulmonary fibrosis, and the relapsed lung cancer was treated by proton beam therapy, which was expected to cause the least adverse effects on the idiopathic pulmonary fibrosis. Fifteen days after the initiation of proton beam therapy, the idiopathic pulmonary fibrosis exacerbated, centered on the left upper lobe, for which intensive steroid therapy was given. About 3 months later, the acute exacerbation of idiopathic pulmonary fibrosis had improved, and the relapsed lung cancer became undetectable. Clinicians should be aware that an acute exacerbation of idiopathic pulmonary fibrosis may occur even in proton beam therapy, although proton beam therapy appears to be an effective treatment option for patients with idiopathic pulmonary fibrosis. (author)

  1. Outcomes of Proton Radiation Therapy for Peripapillary Choroidal Melanoma at the BC Cancer Agency

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Eric, E-mail: etran2@bccancer.bc.ca [Radiation Therapy Program, BC Cancer Agency and University of British Columbia, Vancouver, British Columbia (Canada); Ma, Roy [Radiation Therapy Program, BC Cancer Agency and University of British Columbia, Vancouver, British Columbia (Canada); Paton, Katherine [Department of Ophthalmology and Visual Sciences, Vancouver Hospital Eye Care Centre and University of British Columbia, Vancouver, British Columbia (Canada); Blackmore, Ewart [TRIUMF, Vancouver, British Columbia (Canada); Pickles, Tom [Radiation Therapy Program, BC Cancer Agency and University of British Columbia, Vancouver, British Columbia (Canada)

    2012-08-01

    Purpose: To report toxicity, local control, enucleation, and survival rates for patients with peripapillary choroidal melanoma treated with proton therapy in Canada. Methods and Materials: We performed a retrospective analysis of patients with peripapillary choroidal melanoma ({<=}2 mm from optic disc) treated between 1995 and 2007 at the only Canadian proton therapy facility. A prospective database was updated for follow-up information from a chart review. Descriptive and actuarial data are presented. Results: In total, 59 patients were treated. The median age was 59 years. According to the 2010 American Joint Committee on Cancer TNM classification, there were 20 T1 tumors (34%), 28 T2 tumors (48%), and 11 T3 tumors (19%). The median tumor diameter was 11.4 mm, and the median thickness was 3.5 mm. Median follow-up was 63 months. Nineteen patients received 54 cobalt gray equivalents (CGE) and forty patients received 60 CGE, each in 4 fractions. The 5-year actuarial local control rate was 91% (T1, 100%; T2, 93%; and T3, 59%) (p = 0.038). There was a suggestive relationship between local control and dose. The local control rate was 97% with 60 CGE and 83% with 54 CGE (p = 0.106). The metastasis-free survival rate was 82% and related to T stage (T1, 94%; T2, 84%; and T3, 47%) (p < 0.001). Twelve patients died, including eleven with metastases. The 5-year actuarial rate of neovascular glaucoma was 31% (23% for T1-T2 and 68% for T3, p < 0.001), and that of enucleation was 0% for T1, 14% for T2, and 72% for T3 (p < 0.001). Radiation retinopathy (74%) and optic neuropathy (64%) were common within-field effects. Conclusions: Proton therapy provides excellent local control with acceptable toxicity while conserving the globe in 80% of cases. These results are consistent with other single-institution series using proton radiotherapy, and toxicity rates were acceptable. T3 tumors carry a higher rate of both local recurrence and metastasis.

  2. Outcomes of Proton Radiation Therapy for Peripapillary Choroidal Melanoma at the BC Cancer Agency

    International Nuclear Information System (INIS)

    Tran, Eric; Ma, Roy; Paton, Katherine; Blackmore, Ewart; Pickles, Tom

    2012-01-01

    Purpose: To report toxicity, local control, enucleation, and survival rates for patients with peripapillary choroidal melanoma treated with proton therapy in Canada. Methods and Materials: We performed a retrospective analysis of patients with peripapillary choroidal melanoma (≤2 mm from optic disc) treated between 1995 and 2007 at the only Canadian proton therapy facility. A prospective database was updated for follow-up information from a chart review. Descriptive and actuarial data are presented. Results: In total, 59 patients were treated. The median age was 59 years. According to the 2010 American Joint Committee on Cancer TNM classification, there were 20 T1 tumors (34%), 28 T2 tumors (48%), and 11 T3 tumors (19%). The median tumor diameter was 11.4 mm, and the median thickness was 3.5 mm. Median follow-up was 63 months. Nineteen patients received 54 cobalt gray equivalents (CGE) and forty patients received 60 CGE, each in 4 fractions. The 5-year actuarial local control rate was 91% (T1, 100%; T2, 93%; and T3, 59%) (p = 0.038). There was a suggestive relationship between local control and dose. The local control rate was 97% with 60 CGE and 83% with 54 CGE (p = 0.106). The metastasis-free survival rate was 82% and related to T stage (T1, 94%; T2, 84%; and T3, 47%) (p < 0.001). Twelve patients died, including eleven with metastases. The 5-year actuarial rate of neovascular glaucoma was 31% (23% for T1–T2 and 68% for T3, p < 0.001), and that of enucleation was 0% for T1, 14% for T2, and 72% for T3 (p < 0.001). Radiation retinopathy (74%) and optic neuropathy (64%) were common within-field effects. Conclusions: Proton therapy provides excellent local control with acceptable toxicity while conserving the globe in 80% of cases. These results are consistent with other single-institution series using proton radiotherapy, and toxicity rates were acceptable. T3 tumors carry a higher rate of both local recurrence and metastasis.

  3. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  4. Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer.

    Science.gov (United States)

    Tommasino, Francesco; Fellin, Francesco; Lorentini, Stefano; Farace, Paolo

    2018-06-01

    Proton therapy for the treatment of breast cancer is acquiring increasing interest, due to the potential reduction of radiation-induced side effects such as cardiac and pulmonary toxicity. While several in silico studies demonstrated the gain in plan quality offered by pencil beam scanning (PBS) compared to passive scattering techniques, the related dosimetric uncertainties have been poorly investigated so far. Five breast cancer patients were planned with Raystation 6 analytical pencil beam (APB) and Monte Carlo (MC) dose calculation algorithms. Plans were optimized with APB and then MC was used to recalculate dose distribution. Movable snout and beam splitting techniques (i.e. using two sub-fields for the same beam entrance, one with and the other without the use of a range shifter) were considered. PTV dose statistics were recorded. The same planning configurations were adopted for the experimental benchmark. Dose distributions were measured with a 2D array of ionization chambers and compared to APB and MC calculated ones by means of a γ analysis (agreement criteria 3%, 3 mm). Our results indicate that, when using proton PBS for breast cancer treatment, the Raystation 6 APB algorithm does not allow obtaining sufficient accuracy, especially with large air gaps. On the contrary, the MC algorithm resulted into much higher accuracy in all beam configurations tested and has to be recommended. Centers where a MC algorithm is not yet available should consider a careful use of APB, possibly combined with a movable snout system or in any case with strategies aimed at minimizing air gaps. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Proton Beam Therapy of Stage II and III Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hidetsugu, E-mail: hnakayam@tokyo-med.ac.jp [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, Tokyo Medical University, Shinjuku, Tokyo (Japan); Satoh, Hiroaki [Department of Respiratory Medicine, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Sugahara, Shinji [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, Tokyo Medical University, Shinjuku, Tokyo (Japan); Kurishima, Koichi [Department of Respiratory Medicine, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Tsuboi, Koji; Sakurai, Hideyuki [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Ishikawa, Shigemi [Department of Thoracic Surgery, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Tokuuye, Koichi [Proton Medical Research Center, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, Tokyo Medical University, Shinjuku, Tokyo (Japan)

    2011-11-15

    Purpose: The present retrospective study assessed the role of proton beam therapy (PBT) in the treatment of patients with Stage II or III non-small-cell lung cancer who were inoperable or ineligible for chemotherapy because of co-existing disease or refusal. Patients and Methods: Between November 2001 and July 2008, PBT was given to 35 patients (5 patients with Stage II, 12 with Stage IIIA, and 18 with Stage IIIB) whose median age was 70.3 years (range, 47.4-85.4). The median proton dose given was 78.3 Gy (range, 67.1-91.3) (relative biologic effectiveness). Results: Local progression-free survival for Stage II-III patients was 93.3% at 1 year and 65.9% at 2 years during a median observation period of 16.9 months. Four patients (11.4%) developed local recurrence, 13 (37.1%) developed regional recurrence, and 7 (20.0%) developed distant metastases. The progression-free survival rate for Stage II-III patients was 59.6% at 1 year and 29.2% at 2 years. The overall survival rate of Stage II-III patients was 81.8% at 1 year and 58.9% at 2 years. Grade 3 or greater toxicity was not observed. A total of 15 patients (42.9%) developed Grade 1 and 6 (17.1%) Grade 2 toxicity. Conclusion: PBT for Stage II-III non-small-cell lung cancer without chemotherapy resulted in good local control and low toxicity. PBT has a definite role in the treatment of patients with Stage II-III non-small-cell lung cancer who are unsuitable for surgery or chemotherapy.

  6. Proton Beam Therapy of Stage II and III Non–Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Nakayama, Hidetsugu; Satoh, Hiroaki; Sugahara, Shinji; Kurishima, Koichi; Tsuboi, Koji; Sakurai, Hideyuki; Ishikawa, Shigemi; Tokuuye, Koichi

    2011-01-01

    Purpose: The present retrospective study assessed the role of proton beam therapy (PBT) in the treatment of patients with Stage II or III non–small-cell lung cancer who were inoperable or ineligible for chemotherapy because of co-existing disease or refusal. Patients and Methods: Between November 2001 and July 2008, PBT was given to 35 patients (5 patients with Stage II, 12 with Stage IIIA, and 18 with Stage IIIB) whose median age was 70.3 years (range, 47.4–85.4). The median proton dose given was 78.3 Gy (range, 67.1–91.3) (relative biologic effectiveness). Results: Local progression-free survival for Stage II-III patients was 93.3% at 1 year and 65.9% at 2 years during a median observation period of 16.9 months. Four patients (11.4%) developed local recurrence, 13 (37.1%) developed regional recurrence, and 7 (20.0%) developed distant metastases. The progression-free survival rate for Stage II-III patients was 59.6% at 1 year and 29.2% at 2 years. The overall survival rate of Stage II-III patients was 81.8% at 1 year and 58.9% at 2 years. Grade 3 or greater toxicity was not observed. A total of 15 patients (42.9%) developed Grade 1 and 6 (17.1%) Grade 2 toxicity. Conclusion: PBT for Stage II-III non–small-cell lung cancer without chemotherapy resulted in good local control and low toxicity. PBT has a definite role in the treatment of patients with Stage II-III non–small-cell lung cancer who are unsuitable for surgery or chemotherapy.

  7. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  8. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  9. Joint Estimation of Cardiac Toxicity and Recurrence Risks After Comprehensive Nodal Photon Versus Proton Therapy for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stick, Line B., E-mail: line.bjerregaard.stick@regionh.dk [Department of Clinical Oncology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen (Denmark); Yu, Jen [Maryland Proton Treatment Center, University of Maryland School of Medicine, Baltimore, Maryland (United States); Maraldo, Maja V. [Department of Clinical Oncology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Aznar, Marianne C. [Department of Clinical Oncology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Nuffield Department of Population Health, University of Oxford, Oxford (United Kingdom); Pedersen, Anders N. [Department of Clinical Oncology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Bentzen, Søren M. [Department of Clinical Oncology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Maryland Proton Treatment Center, University of Maryland School of Medicine, Baltimore, Maryland (United States); Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Vogelius, Ivan R. [Department of Clinical Oncology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark)

    2017-03-15

    Purpose: The study aims to perform joint estimation of the risk of recurrence caused by inadequate radiation dose coverage of lymph node targets and the risk of cardiac toxicity caused by radiation exposure to the heart. Delivered photon plans are compared with realistic proton plans, thereby providing evidence-based estimates of the heterogeneity of treatment effects in consecutive cases for the 2 radiation treatment modalities. Methods and Materials: Forty-one patients referred for postlumpectomy comprehensive nodal photon irradiation for left-sided breast cancer were included. Comparative proton plans were optimized by a spot scanning technique with single-field optimization from 2 en face beams. Cardiotoxicity risk was estimated with the model of Darby et al, and risk of recurrence following a compromise of lymph node coverage was estimated by a linear dose-response model fitted to the recurrence data from the recently published EORTC (European Organisation for Research and Treatment of Cancer) 22922/10925 and NCIC-CTG (National Cancer Institute of Canada Clinical Trials Group) MA.20 randomized controlled trials. Results: Excess absolute risk of cardiac morbidity was small with photon therapy at an attained age of 80 years, with median values of 1.0% (range, 0.2%-2.9%) and 0.5% (range, 0.03%-1.0%) with and without cardiac risk factors, respectively, but even lower with proton therapy (0.13% [range, 0.02%-0.5%] and 0.06% [range, 0.004%-0.3%], respectively). The median estimated excess absolute risk of breast cancer recurrence after 10 years was 0.10% (range, 0.0%-0.9%) with photons and 0.02% (range, 0.0%-0.07%) with protons. The association between age of the patient and benefit from proton therapy was weak, almost non-existing (Spearman rank correlations of −0.15 and −0.30 with and without cardiac risk factors, respectively). Conclusions: Modern photon therapy yields limited risk of cardiac toxicity in most patients, but proton therapy can reduce the

  10. Quality of Life and Toxicity From Passively Scattered and Spot-Scanning Proton Beam Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Pugh, Thomas J.; Munsell, Mark F.; Choi, Seungtaek; Nguyen, Quyhn Nhu; Mathai, Benson; Zhu, X. Ron; Sahoo, Narayan; Gillin, Michael; Johnson, Jennifer L.; Amos, Richard A.; Dong, Lei; Mahmood, Usama; Kuban, Deborah A.; Frank, Steven J.; Hoffman, Karen E.; McGuire, Sean E.; Lee, Andrew K.

    2013-01-01

    Purpose: To report quality of life (QOL)/toxicity in men treated with proton beam therapy for localized prostate cancer and to compare outcomes between passively scattered proton therapy (PSPT) and spot-scanning proton therapy (SSPT). Methods and Materials: Men with localized prostate cancer enrolled on a prospective QOL protocol with a minimum of 2 years' follow-up were reviewed. Comparative groups were defined by technique (PSPT vs SSPT). Patients completed Expanded Prostate Cancer Index Composite questionnaires at baseline and every 3-6 months after proton beam therapy. Clinically meaningful differences in QOL were defined as ≥0.5 × baseline standard deviation. The cumulative incidence of modified Radiation Therapy Oncology Group grade ≥2 gastrointestinal (GI) or genitourinary (GU) toxicity and argon plasma coagulation were determined by the Kaplan-Meier method. Results: A total of 226 men received PSPT, and 65 received SSPT. Both PSPT and SSPT resulted in statistically significant changes in sexual, urinary, and bowel Expanded Prostate Cancer Index Composite summary scores. Only bowel summary, function, and bother resulted in clinically meaningful decrements beyond treatment completion. The decrement in bowel QOL persisted through 24-month follow-up. Cumulative grade ≥2 GU and GI toxicity at 24 months were 13.4% and 9.6%, respectively. There was 1 grade 3 GI toxicity (PSPT group) and no other grade ≥3 GI or GU toxicity. Argon plasma coagulation application was infrequent (PSPT 4.4% vs SSPT 1.5%; P=.21). No statistically significant differences were appreciated between PSPT and SSPT regarding toxicity or QOL. Conclusion: Both PSPT and SSPT confer low rates of grade ≥2 GI or GU toxicity, with preservation of meaningful sexual and urinary QOL at 24 months. A modest, yet clinically meaningful, decrement in bowel QOL was seen throughout follow-up. No toxicity or QOL differences between PSPT and SSPT were identified. Long-term comparative results in a

  11. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Derek; Zhang, Rui, E-mail: rzhang@marybird.com [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States); Sanders, Mary [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Newhauser, Wayne [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States)

    2015-04-13

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  12. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Directory of Open Access Journals (Sweden)

    Derek Freund

    2015-04-01

    Full Text Available Cancer of the brain and central nervous system (CNS is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT compared to passively scattered proton therapy (PSPT and intensity modulated proton therapy (IMPT. Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  13. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  14. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newhauser, Wayne D., E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Zhang, Rui [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Jones, Timothy G. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Department of Physics, Abilene Christian University, ACU Box 27963, Abilene, TX 79699 (United States); Giebeler, Annelise; Taddei, Phillip J. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Stewart, Robert D. [Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195 (United States); Lee, Andrew [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Vassiliev, Oleg [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States)

    2015-04-24

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality.

  15. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Zhang, Rui; Jones, Timothy G.; Giebeler, Annelise; Taddei, Phillip J.; Stewart, Robert D.; Lee, Andrew; Vassiliev, Oleg

    2015-01-01

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality

  16. Initial Report of Pencil Beam Scanning Proton Therapy for Posthysterectomy Patients With Gynecologic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lilie L., E-mail: lin@xrt.upenn.edu; Kirk, Maura; Scholey, Jessica; Taku, Nicolette; Kiely, Janid B.; White, Benjamin; Both, Stefan

    2016-05-01

    Purpose: To report the acute toxicities associated with pencil beam scanning proton beam radiation therapy (PBS) for whole pelvis radiation therapy in women with gynecologic cancers and the results of a dosimetric comparison of PBS versus intensity modulated radiation therapy (IMRT) plans. Methods and Materials: Eleven patients with posthysterectomy gynecologic cancer received PBS to the whole pelvis. The patients received a dose of 45 to 50.4 Gy relative biological effectiveness (RBE) in 1.8 Gy (RBE) daily fractions. Acute toxicity was scored according to the Common Terminology Criteria for Adverse Events, version 4. A dosimetric comparison between a 2-field posterior oblique beam PBS and an IMRT plan was conducted. The Wilcoxon signed rank test was used to assess the potential dosimetric differences between the 2 plans and PBS target coverage robustness relative to setup uncertainties. Results: The median patient age was 55 years (range 23-76). The primary site was cervical in 7, vaginal in 1, and endometrial in 3. Of the 11 patients, 7 received concurrent cisplatin, 1 each received sandwich carboplatin and paclitaxel chemotherapy, both sandwich and concurrent chemotherapy, and concurrent and adjuvant chemotherapy, and 1 received no chemotherapy. All patients completed treatment. Of the 9 patients who received concurrent chemotherapy, the rate of grade 2 and 3 hematologic toxicities was 33% and 11%, respectively. One patient (9%) developed grade 3 acute gastrointestinal toxicity; no patient developed grade ≥3 genitourinary toxicity. The volume of pelvic bone marrow, bladder, and small bowel receiving 10 to 30 Gy was significantly lower with PBS than with intensity modulated radiation therapy (P<.001). The target coverage for all PBS plans was robust relative to the setup uncertainties (P>.05) with the clinical target volume mean dose percentage received by 95% and 98% of the target volume coverage changes within 2% for the individual plans. Conclusions: Our

  17. Estimated radiation pneumonitis risk after photon versus proton therapy alone or combined with chemotherapy for lung cancer

    DEFF Research Database (Denmark)

    Vogelius, Ivan R.; Westerly, David C; Aznar, Marianne Camille

    2011-01-01

    Background. Traditionally, radiation therapy plans are optimized without consideration of chemotherapy. Here, we model the risk of radiation pneumonitis (RP) in the presence of a possible interaction between chemotherapy and radiation dose distribution. Material and methods. Three alternative......-radiation combinations could be an interesting indication for selecting patients for proton therapy. It is likely that the IMRT plans would perform better if the CERD was accounted for during optimization, but more clinical data is required to facilitate evidence-based plan optimization in the multi-modality setting....... treatment plans are compared in 18 non-small cell lung cancer patients previously treated with helical tomotherapy; the tomotherapy plan, an intensity modulated proton therapy plan (IMPT) and a three dimensional conformal radiotherapy (3D-CRT) plan. All plans are optimized without consideration...

  18. Erectile Function, Incontinence, and Other Quality of Life Outcomes Following Proton Therapy for Prostate Cancer in Men 60 Years Old and Younger

    OpenAIRE

    Hoppe, Bradford S; Nichols, Romaine C; Henderson, Randal H; Morris, Christopher G; Williams, Christopher R; Costa, Joseph; Marcus, Robert B; Mendenhall, William M; Li, Zuofeng; Mendenhall, Nancy P

    2012-01-01

    BACKGROUND This study sought to evaluate patient-reported health-related quality of life following proton therapy for prostate cancer in men ≤60 years old. METHODS Between August 2006 and January 2010, 262 hormone-naive men ≤60 years old were treated with definitive proton therapy for prostate cancer. Before treatment and every 6 months after treatment, patients filled out the Expanded Prostate Index Composite (EPIC) and the International Index of Erectile Function (IIEF) questionnaires. Pote...

  19. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  20. Proton Therapy in Children: A Systematic Review of Clinical Effectiveness in 15 Pediatric Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Roos, E-mail: Roos.leroy@kce.fgov.be [Belgian Healthcare Knowledge Centre (KCE), Brussels (Belgium); Benahmed, Nadia; Hulstaert, Frank [Belgian Healthcare Knowledge Centre (KCE), Brussels (Belgium); Van Damme, Nancy [Belgian Cancer Registry, Brussels (Belgium); De Ruysscher, Dirk [Department of Radiation Oncology, University of Leuven, Leuven (Belgium)

    2016-05-01

    Because it spares many normal tissues and reduces the integral dose, proton therapy (PT) is the preferred tumor irradiation technique for treating childhood cancer. However, to the best of our knowledge, no systematic review of the clinical effectiveness of PT in children has been reported in the scientific literature. A systematic search for clinical outcome studies on PT published between 2007 and 2015 was performed in Medline (through OVID), EMBASE, and the Cochrane Library. Twenty-three primary studies were identified, including approximately 650 patients overall. The median/mean follow-up times were limited (range, 19-91 months). None of the studies were randomized, 2 were comparative, and 20 were retrospective. Most suffered from serious methodologic limitations, yielding a very low level of clinical evidence for the outcomes in all indications. For example, for retinoblastoma, very low-level evidence was found that PT might decrease the incidence of second malignancies. For chondrosarcoma, chordoma, craniopharyngioma, ependymoma, esthesioneuroblastoma, Ewing sarcoma, central nervous system germinoma, glioma, medulloblastoma, osteosarcoma, and rhabdomyosarcoma, there was insufficient evidence to either support or refute PT in children. For pelvic sarcoma (ie, nonrhabdomyosarcoma and non-Ewing sarcoma), pineal parenchymal tumor, primitive neuroectodermal tumor, and “adult-type” soft tissue sarcoma, no studies were identified that fulfilled the inclusion criteria. Although there is no doubt that PT reduces the radiation dose to normal tissues and organs, to date the critical clinical data on the long-term effectiveness and harm associated with the use of PT in the 15 pediatric cancers under investigation are lacking. High-quality clinical research in this area is needed.

  1. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.

    2016-05-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal

  2. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Blanco Kiely, Janid Patricia; White, Benjamin M.

    2016-01-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer

  3. Rectal Toxicity After Proton Therapy For Prostate Cancer: An Analysis of Outcomes of Prospective Studies Conducted at the University of Florida Proton Therapy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Colaco, Rovel J.; Hoppe, Bradford S.; Flampouri, Stella [The University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); McKibben, Brian T. [Baptist Health Medical Center, Department of Surgery, Jacksonville, Florida (United States); Henderson, Randal H.; Bryant, Curtis; Nichols, Romaine C.; Mendenhall, William M.; Li, Zuofeng; Su, Zhong [The University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Morris, Christopher G. [Baptist Health Medical Center, Department of Surgery, Jacksonville, Florida (United States); Mendenhall, Nancy P., E-mail: menden@floridaproton.org [The University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)

    2015-01-01

    Purpose: Study goals were to characterize gastrointestinal effects of proton therapy (PT) in a large cohort of patients treated for prostate cancer, identify factors associated with rectal bleeding (RB), and compare RB between patients receiving investigational protocols versus those in outcome-tracking protocols. Methods and Materials: A total of 1285 consecutive patients were treated with PT between August 2006 and May 2010. Potential pre-existing clinical and treatment-related risk factors for rectal toxicity were recorded. Common Terminology Criteria for Adverse Events version 3.0 was used to score toxicity. Results: Transient RB was the predominant grade 2 or higher (GR2+) toxicity after PT, accounting for 95% of gastrointestinal events. GR1 RB occurred in 217 patients (16.9%), GR2 RB in 187 patients (14.5%), and GR3 in 11 (0.9%) patients. There were no GR4 or GR5 events. Univariate analyses showed correlations between GR2+ RB and anticoagulation therapy (P=.008) and rectal and rectal wall dose-volume histogram (DVH) parameters (P<.001). On multivariate analysis, anticoagulation therapy (P=.0034), relative volume of rectum receiving 75 Gy (V75; P=.0102), and relative rectal wall V75 (P=.0017) were significant predictors for G2+ RB. Patients treated with investigational protocols had toxicity rates similar to those receiving outcome-tracking protocols. Conclusions: PT was associated with a low rate of GR2+ gastrointestinal toxicity, predominantly transient RB, which was highly correlated with anticoagulation and rectal DVH parameters. Techniques that limit rectal exposure should be used when possible.

  4. Rectal Toxicity After Proton Therapy For Prostate Cancer: An Analysis of Outcomes of Prospective Studies Conducted at the University of Florida Proton Therapy Institute

    International Nuclear Information System (INIS)

    Colaco, Rovel J.; Hoppe, Bradford S.; Flampouri, Stella; McKibben, Brian T.; Henderson, Randal H.; Bryant, Curtis; Nichols, Romaine C.; Mendenhall, William M.; Li, Zuofeng; Su, Zhong; Morris, Christopher G.; Mendenhall, Nancy P.

    2015-01-01

    Purpose: Study goals were to characterize gastrointestinal effects of proton therapy (PT) in a large cohort of patients treated for prostate cancer, identify factors associated with rectal bleeding (RB), and compare RB between patients receiving investigational protocols versus those in outcome-tracking protocols. Methods and Materials: A total of 1285 consecutive patients were treated with PT between August 2006 and May 2010. Potential pre-existing clinical and treatment-related risk factors for rectal toxicity were recorded. Common Terminology Criteria for Adverse Events version 3.0 was used to score toxicity. Results: Transient RB was the predominant grade 2 or higher (GR2+) toxicity after PT, accounting for 95% of gastrointestinal events. GR1 RB occurred in 217 patients (16.9%), GR2 RB in 187 patients (14.5%), and GR3 in 11 (0.9%) patients. There were no GR4 or GR5 events. Univariate analyses showed correlations between GR2+ RB and anticoagulation therapy (P=.008) and rectal and rectal wall dose-volume histogram (DVH) parameters (P<.001). On multivariate analysis, anticoagulation therapy (P=.0034), relative volume of rectum receiving 75 Gy (V75; P=.0102), and relative rectal wall V75 (P=.0017) were significant predictors for G2+ RB. Patients treated with investigational protocols had toxicity rates similar to those receiving outcome-tracking protocols. Conclusions: PT was associated with a low rate of GR2+ gastrointestinal toxicity, predominantly transient RB, which was highly correlated with anticoagulation and rectal DVH parameters. Techniques that limit rectal exposure should be used when possible

  5. Prospective study of proton-beam radiation therapy for limited-stage small cell lung cancer.

    Science.gov (United States)

    Rwigema, Jean-Claude M; Verma, Vivek; Lin, Liyong; Berman, Abigail T; Levin, William P; Evans, Tracey L; Aggarwal, Charu; Rengan, Ramesh; Langer, Corey; Cohen, Roger B; Simone, Charles B

    2017-11-01

    Existing data supporting the use of proton-beam therapy (PBT) for limited-stage small cell lung cancer (LS-SCLC) are limited to a single 6-patient case series. This is the first prospective study to evaluate clinical outcomes and toxicities of PBT for LS-SCLC. This study prospectively analyzed patients with primary, nonrecurrent LS-SCLC definitively treated with PBT and concurrent chemotherapy from 2011 to 2016. Clinical backup intensity-modulated radiotherapy (IMRT) plans were generated for each patient and were compared with PBT plans. Outcome measures included local control (LC), recurrence-free survival (RFS), and overall survival (OS) rates and toxicities. Thirty consecutive patients were enrolled and evaluated. The median dose was 63.9 cobalt gray equivalents (range, 45-66.6 cobalt gray equivalents) in 33 to 37 fractions delivered daily (n = 18 [60.0%]) or twice daily (n = 12 [40.0%]). The concurrent chemotherapy was cisplatin/etoposide (n = 21 [70.0%]) or carboplatin/etoposide (n = 9 [30.0%]). In comparison with the backup IMRT plans, PBT allowed statistically significant reductions in the cord, heart, and lung mean doses and the volume receiving at least 5 Gy but not in the esophagus mean dose or the lung volume receiving at least 20 Gy. At a median follow-up of 14 months, the 1-/2-year LC and RFS rates were 85%/69% and 63%/42%, respectively. The median OS was 28.2 months, and the 1-/2-year OS rates were 72%/58%. There was 1 case each (3.3%) of grade 3 or higher esophagitis, pneumonitis, anorexia, and pericardial effusion. Grade 2 pneumonitis and esophagitis were seen in 10.0% and 43.3% of patients, respectively. In the first prospective registry study and largest analysis to date of PBT for LS-SCLC, PBT was found to be safe with a limited incidence of high-grade toxicities. Cancer 2017;123:4244-4251. © 2017 American Cancer Society. © 2017 American Cancer Society.

  6. SU-F-T-133: Uniform Scanning Proton Therapy for Lung Cancer: Toxicity and Its Correlation with Dosimetry

    International Nuclear Information System (INIS)

    Zheng, Y; Rana, S; Larson, G

    2016-01-01

    Purpose: To analyze the toxicity of uniform scanning proton therapy for lung cancer patients and its correlation with dose distribution. Methods: In this study, we analyzed the toxicity of 128 lung cancer patients, including 18 small cell lung cancer and 110 non small cell lung cancer patients. Each patient was treated with uniform scanning proton beams at our center using typically 2–4 fields. The prescription was typically 74 Cobalt gray equivalent (CGE) at 2 CGE per fraction. 4D Computerized Tomography (CT) scans were used to evaluate the target motion and contour the internal target volume, and repeated 3 times during the course of treatment to evaluate the need for plan adaptation. Toxicity data for these patients were obtained from the proton collaborative group (PCG) database. For cases of grade 3 toxicities or toxicities of interest such as esophagitis and radiation dermatitis, dose distributions were reviewed and analyzed in attempt to correlate the toxicity with radiation dose. Results: At a median follow up time of about 21 months, none of the patients had experienced Grade 4 or 5 toxicity. The most common adverse effect was dermatitis (81%: 52%-Grade 1, 28%-Grade 2, and 1% Grade 3), followed by fatigue (48%), Cough (46%), and Esophagitis (45%), as shown in Figure 1. Severe toxicities, such as Grade 3 dermatitis or pain of skin, had a clear correlation with high radiation dose. Conclusion: Uniform scanning proton therapy is well tolerated by lung cancer patients. Preliminary analysis indicates there is correlation between severe toxicity and high radiation dose. Understanding of radiation resulted toxicities and careful choice of beam arrangement are critical in minimizing toxicity of skin and other organs.

  7. SU-F-T-133: Uniform Scanning Proton Therapy for Lung Cancer: Toxicity and Its Correlation with Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y; Rana, S; Larson, G [Procure Proton Therapy Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To analyze the toxicity of uniform scanning proton therapy for lung cancer patients and its correlation with dose distribution. Methods: In this study, we analyzed the toxicity of 128 lung cancer patients, including 18 small cell lung cancer and 110 non small cell lung cancer patients. Each patient was treated with uniform scanning proton beams at our center using typically 2–4 fields. The prescription was typically 74 Cobalt gray equivalent (CGE) at 2 CGE per fraction. 4D Computerized Tomography (CT) scans were used to evaluate the target motion and contour the internal target volume, and repeated 3 times during the course of treatment to evaluate the need for plan adaptation. Toxicity data for these patients were obtained from the proton collaborative group (PCG) database. For cases of grade 3 toxicities or toxicities of interest such as esophagitis and radiation dermatitis, dose distributions were reviewed and analyzed in attempt to correlate the toxicity with radiation dose. Results: At a median follow up time of about 21 months, none of the patients had experienced Grade 4 or 5 toxicity. The most common adverse effect was dermatitis (81%: 52%-Grade 1, 28%-Grade 2, and 1% Grade 3), followed by fatigue (48%), Cough (46%), and Esophagitis (45%), as shown in Figure 1. Severe toxicities, such as Grade 3 dermatitis or pain of skin, had a clear correlation with high radiation dose. Conclusion: Uniform scanning proton therapy is well tolerated by lung cancer patients. Preliminary analysis indicates there is correlation between severe toxicity and high radiation dose. Understanding of radiation resulted toxicities and careful choice of beam arrangement are critical in minimizing toxicity of skin and other organs.

  8. Treatment planning study comparing proton therapy, RapidArc and intensity modulated radiation therapy for a synchronous bilateral lung cancer case

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-03-01

    Full Text Available Purpose: The main purpose of this study is to perform a treatment planning study on a synchronous bilateral non-small cell lung cancer case using three treatment modalities: uniform scanning proton therapy, RapidArc, and intensity modulated radiation therapy (IMRT. Methods: The maximum intensity projection (MIP images obtained from the 4 dimensional-computed tomography (4DCT scans were used for delineation of tumor volumes in the left and right lungs. The average 4D-CT was used for the treatment planning among all three modalities with identical patient contouring and treatment planning goal. A proton therapy plan was generated in XiO treatment planning system (TPS using 2 fields for each target. For a comparative purpose, IMRT and RapidArc plans were generated in Eclipse TPS. Treatment plans were generated for a total dose of 74 CGE or Gy prescribed to each planning target volume (PTV (left and right with 2 CGE or Gy per fraction. In IMRT and RapidArc plans, normalization was done based on PTV coverage values in proton plans. Results: The mean PTV dose deviation from the prescription dose was lower in proton plan (within 3.4%, but higher in IMRT (6.5% to 11.3% and RapidArc (3.8% to 11.5% plans. Proton therapy produced lower mean dose to the total lung, heart, and esophagus when compared to IMRT and RapidArc. The relative volume of the total lung receiving 20, 10, and 5 CGE or Gy (V20, V10, and V5, respectively were lower using proton therapy than using IMRT, with absolute differences of 9.71%, 22.88%, and 39.04%, respectively. The absolute differences in the V20, V10, and V5 between proton and RapidArc plans were 4.84%, 19.16%, and 36.8%, respectively, with proton therapy producing lower dosimetric values. Conclusion: Based on the results presented in this case study, uniform scanning proton therapy has a dosimetric advantage over both IMRT and RapidArc for a synchronous bi-lateral NSCLC, especially for the normal lung tissue, heart, and

  9. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    International Nuclear Information System (INIS)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S.; George, Thomas J.; Zaiden, Robert A. Jr.; Awad, Ziad T.; Asbun, Horacio J.

    2013-01-01

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease

  10. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S. [Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: rnichols@floridaproton.org; George, Thomas J.; Zaiden, Robert A. Jr. [Dept. of Hematology and Medical Oncology, Univ. of Florida, Gainesville and Jacksonville (United States); Awad, Ziad T. [Dept. of Surgery, Univ. of Florida, Jacksonville (United States); Asbun, Horacio J. [Dept. of Surgery, Mayo Clinic, Jacksonville (United States)

    2013-04-15

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease.

  11. Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Voort, Sebastian van der [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Water, Steven van de [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Perkó, Zoltán [Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Heijmen, Ben [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Lathouwers, Danny [Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Hoogeman, Mischa, E-mail: m.hoogeman@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2016-05-01

    Purpose: We aimed to derive a “robustness recipe” giving the range robustness (RR) and setup robustness (SR) settings (ie, the error values) that ensure adequate clinical target volume (CTV) coverage in oropharyngeal cancer patients for given gaussian distributions of systematic setup, random setup, and range errors (characterized by standard deviations of Σ, σ, and ρ, respectively) when used in minimax worst-case robust intensity modulated proton therapy (IMPT) optimization. Methods and Materials: For the analysis, contoured computed tomography (CT) scans of 9 unilateral and 9 bilateral patients were used. An IMPT plan was considered robust if, for at least 98% of the simulated fractionated treatments, 98% of the CTV received 95% or more of the prescribed dose. For fast assessment of the CTV coverage for given error distributions (ie, different values of Σ, σ, and ρ), polynomial chaos methods were used. Separate recipes were derived for the unilateral and bilateral cases using one patient from each group, and all 18 patients were included in the validation of the recipes. Results: Treatment plans for bilateral cases are intrinsically more robust than those for unilateral cases. The required RR only depends on the ρ, and SR can be fitted by second-order polynomials in Σ and σ. The formulas for the derived robustness recipes are as follows: Unilateral patients need SR = −0.15Σ{sup 2} + 0.27σ{sup 2} + 1.85Σ − 0.06σ + 1.22 and RR=3% for ρ = 1% and ρ = 2%; bilateral patients need SR = −0.07Σ{sup 2} + 0.19σ{sup 2} + 1.34Σ − 0.07σ + 1.17 and RR=3% and 4% for ρ = 1% and 2%, respectively. For the recipe validation, 2 plans were generated for each of the 18 patients corresponding to Σ = σ = 1.5 mm and ρ = 0% and 2%. Thirty-four plans had adequate CTV coverage in 98% or more of the simulated fractionated treatments; the remaining 2 had adequate coverage in 97.8% and 97.9%. Conclusions: Robustness recipes were derived that can

  12. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  13. A Prospective Comparison of the Effects of Interfractional Variations on Proton Therapy and Intensity Modulated Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Trofimov, Alexei; Sharp, Gregory C.; Wang, Yi; Zietman, Anthony L.; Efstathiou, Jason A.; Lu, Hsiao-Ming

    2016-05-01

    Purpose: To quantify and compare the impact of interfractional setup and anatomic variations on proton therapy (PT) and intensity modulated radiation therapy (IMRT) for prostate cancer. Methods and Materials: Twenty patients with low-risk or intermediate-risk prostate cancer randomized to receive passive-scattering PT (n=10) and IMRT (n=10) were selected. For both modalities, clinical treatment plans included 50.4 Gy(RBE) to prostate and proximal seminal vesicles, and prostate-only boost to 79.2 Gy(RBE) in 1.8 Gy(RBE) per fraction. Implanted fiducials were used for prostate localization and endorectal balloons were used for immobilization. Patients in PT and IMRT arms received weekly computed tomography (CT) and cone beam CT (CBCT) scans, respectively. The planned dose was recalculated on each weekly image, scaled, and mapped onto the planning CT using deformable registration. The resulting accumulated dose distribution over the entire treatment course was compared with the planned dose using dose-volume histogram (DVH) and γ analysis. Results: The target conformity index remained acceptable after accumulation. The largest decrease in the average prostate D{sub 98} was 2.2 and 0.7 Gy for PT and IMRT, respectively. On average, the mean dose to bladder increased by 3.26 ± 7.51 Gy and 1.97 ± 6.84 Gy for PT and IMRT, respectively. These values were 0.74 ± 2.37 and 0.56 ± 1.90 for rectum. Differences between changes in DVH indices were not statistically significant between modalities. All volume indices remained within the protocol tolerances after accumulation. The average pass rate for the γ analysis, assuming tolerances of 3 mm and 3%, for clinical target volume, bladder, rectum, and whole patient for PT/IMRT were 100/100, 92.6/99, 99.2/100, and 97.2/99.4, respectively. Conclusion: The differences in target coverage and organs at risk dose deviations for PT and IMRT were not statistically significant under the guidelines of this protocol.

  14. Evidence-based support for the use of proton pump inhibitors in cancer therapy.

    Science.gov (United States)

    Fais, Stefano

    2015-11-24

    'We can only cure what we can understand first', said Otto H. Warburg, the 1931 Nobel laureate for his discovery on tumor metabolism. Unfortunately, we still don't know too much the mechanisms underlying of cancer development and progression. One of the unsolved mystery includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery, that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. One of the most mechanism to survive to the acidic tumor microenvironment are proton exchangers not allowing intracellular acidification through a continuous elimination of H(+) either outside the cells or within the internal vacuoles. This article wants to comment a translational process through which from the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed chemosensitizers as well, we have got to the clinical proof of concept that PPI may well be included in new anti-cancer strategies, and with a solid background and rationale.

  15. Consensus Statement on Proton Therapy in Early-Stage and Locally Advanced Non–Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jabbour, Salma K. [Rutgers Cancer Institute of New Jersey Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, New Jersey (United States); De Ruysscher, Dirk [MAASTRO Clinic, Maastricht (Netherlands); Schild, Steven E. [Mayo Clinic, Scottsdale, Arizona (United States); Simone, Charles B. [Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Rengan, Ramesh [University of Washington Medical Center, Seattle, Washington (United States); Feigenberg, Steven [University of Maryland Medical Center, Baltimore, Maryland (United States); Khan, Atif J. [Rutgers Cancer Institute of New Jersey Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, New Jersey (United States); Choi, Noah C. [Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Bradley, Jeffrey D. [Washington University, St Louis, Missouri (United States); Zhu, Xiaorong R. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lomax, Antony J. [Paul Scherrer Institute, Villigen (Switzerland); Hoppe, Bradford S. [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)

    2016-05-01

    Radiation dose escalation has been shown to improve local control and survival in patients with non–small cell lung cancer in some studies, but randomized data have not supported this premise, possibly owing to adverse effects. Because of the physical characteristics of the Bragg peak, proton therapy (PT) delivers minimal exit dose distal to the target volume, resulting in better sparing of normal tissues in comparison to photon-based radiation therapy. This is particularly important for lung cancer given the proximity of the lung, heart, esophagus, major airways, large blood vessels, and spinal cord. However, PT is associated with more uncertainty because of the finite range of the proton beam and motion for thoracic cancers. PT is more costly than traditional photon therapy but may reduce side effects and toxicity-related hospitalization, which has its own associated cost. The cost of PT is decreasing over time because of reduced prices for the building, machine, maintenance, and overhead, as well as newer, shorter treatment programs. PT is improving rapidly as more research is performed particularly with the implementation of 4-dimensional computed tomography–based motion management and intensity modulated PT. Given these controversies, there is much debate in the oncology community about which patients with lung cancer benefit significantly from PT. The Particle Therapy Co-operative Group (PTCOG) Thoracic Subcommittee task group intends to address the issues of PT indications, advantages and limitations, cost-effectiveness, technology improvement, clinical trials, and future research directions. This consensus report can be used to guide clinical practice and indications for PT, insurance approval, and clinical or translational research directions.

  16. Consensus Statement on Proton Therapy in Early-Stage and Locally Advanced Non–Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Jabbour, Salma K.; De Ruysscher, Dirk; Schild, Steven E.; Simone, Charles B.; Rengan, Ramesh; Feigenberg, Steven; Khan, Atif J.; Choi, Noah C.; Bradley, Jeffrey D.; Zhu, Xiaorong R.; Lomax, Antony J.; Hoppe, Bradford S.

    2016-01-01

    Radiation dose escalation has been shown to improve local control and survival in patients with non–small cell lung cancer in some studies, but randomized data have not supported this premise, possibly owing to adverse effects. Because of the physical characteristics of the Bragg peak, proton therapy (PT) delivers minimal exit dose distal to the target volume, resulting in better sparing of normal tissues in comparison to photon-based radiation therapy. This is particularly important for lung cancer given the proximity of the lung, heart, esophagus, major airways, large blood vessels, and spinal cord. However, PT is associated with more uncertainty because of the finite range of the proton beam and motion for thoracic cancers. PT is more costly than traditional photon therapy but may reduce side effects and toxicity-related hospitalization, which has its own associated cost. The cost of PT is decreasing over time because of reduced prices for the building, machine, maintenance, and overhead, as well as newer, shorter treatment programs. PT is improving rapidly as more research is performed particularly with the implementation of 4-dimensional computed tomography–based motion management and intensity modulated PT. Given these controversies, there is much debate in the oncology community about which patients with lung cancer benefit significantly from PT. The Particle Therapy Co-operative Group (PTCOG) Thoracic Subcommittee task group intends to address the issues of PT indications, advantages and limitations, cost-effectiveness, technology improvement, clinical trials, and future research directions. This consensus report can be used to guide clinical practice and indications for PT, insurance approval, and clinical or translational research directions.

  17. Reirradiation of Recurrent and Second Primary Head and Neck Cancer With Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Mark W., E-mail: mark.mcdonald@emory.edu [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia (United States); Zolali-Meybodi, Omid; Lehnert, Stephen J. [Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States); Estabrook, Neil C. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Liu, Yuan [Department of Biostatistics and Bioinformatics, Rollins School of Public Health of Emory University, Atlanta, Georgia (United States); Cohen-Gadol, Aaron A. [Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States); Moore, Michael G. [Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2016-11-15

    Purpose: To report the clinical outcomes of head and neck reirradiation with proton therapy. Methods and Materials: From 2004 to 2014, 61 patients received curative-intent proton reirradiation, primarily for disease involving skull base structures, at a median of 23 months from the most recent previous course of radiation. Most had squamous cell (52.5%) or adenoid cystic (16.4%) carcinoma. Salvage surgery before reirradiation was undertaken in 47.5%. Gross residual disease was present in 70.5%. For patients with microscopic residual disease, the median dose of reirradiation was 66 Gy (relative biological effectiveness), and for gross disease was 70.2 Gy (relative biological effectiveness). Concurrent chemotherapy was given in 27.9%. Results: The median follow-up time was 15.2 months and was 28.7 months for patients remaining alive. The 2-year overall survival estimate was 32.7%, and the median overall survival was 16.5 months. The 2-year cumulative incidence of local failure with death as a competing risk was 19.7%; regional nodal failure, 3.3%; and distant metastases, 38.3%. On multivariable analysis, Karnofsky performance status ≤70%, the presence of a gastrostomy tube before reirradiation, and an increasing number of previous courses of radiation therapy were associated with a greater hazard ratio for death. A cutaneous primary tumor, gross residual disease, increasing gross tumor volume, and a lower radiation dose were associated with a greater hazard ratio for local failure. Grade ≥3 toxicities were seen in 14.7% acutely and 24.6% in the late setting, including 3 treatment-related deaths. Conclusions: Reirradiation with proton therapy, with or without chemotherapy, provided reasonable locoregional disease control, toxicity profiles, and survival outcomes for an advanced-stage and heavily pretreated population. Additional data are needed to identify which patients are most likely to benefit from aggressive efforts to achieve local disease control and

  18. Five-Year Outcomes from 3 Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Mendenhall, Nancy P.; Hoppe, Bradford S.; Nichols, Romaine C.; Mendenhall, William M.; Morris, Christopher G.; Li, Zuofeng; Su, Zhong; Williams, Christopher R.; Costa, Joseph; Henderson, Randal H.

    2014-01-01

    Purpose: To report 5-year clinical outcomes of 3 prospective trials of image-guided proton therapy for prostate cancer. Methods and Materials: A total of 211 prostate cancer patients (89 low-risk, 82 intermediate-risk, and 40 high-risk) were treated in institutional review board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low-risk disease, 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel therapy followed by androgen deprivation therapy for high-risk disease. Toxicities were graded according to Common Terminology Criteria for Adverse Events (CTCAE), version 3.0. Median follow-up was 5.2 years. Results: Five-year rates of biochemical and clinical freedom from disease progression were 99%, 99%, and 76% in low-, intermediate-, and high-risk patients, respectively. Actuarial 5-year rates of late CTCAE, version 3.0 (or version 4.0) grade 3 gastrointestinal and urologic toxicity were 1.0% (0.5%) and 5.4% (1.0%), respectively. Median pretreatment scores and International Prostate Symptom Scores at >4 years posttreatment were 8 and 7, 6 and 6, and 9 and 8, respectively, among the low-, intermediate-, and high-risk patients. There were no significant changes between median pretreatment summary scores and Expanded Prostate Cancer Index Composite scores at >4 years for bowel, urinary irritative and/or obstructive, and urinary continence. Conclusions: Five-year clinical outcomes with image-guided proton therapy included extremely high efficacy, minimal physician-assessed toxicity, and excellent patient-reported outcomes. Further follow-up and a larger patient experience are necessary to confirm these favorable outcomes

  19. Five-Year Outcomes from 3 Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Nancy P., E-mail: menden@shands.ufl.edu [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Hoppe, Bradford S.; Nichols, Romaine C.; Mendenhall, William M.; Morris, Christopher G.; Li, Zuofeng; Su, Zhong [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Williams, Christopher R.; Costa, Joseph [Division of Urology, College of Medicine, University of Florida, Jacksonville, Florida (United States); Henderson, Randal H. [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)

    2014-03-01

    Purpose: To report 5-year clinical outcomes of 3 prospective trials of image-guided proton therapy for prostate cancer. Methods and Materials: A total of 211 prostate cancer patients (89 low-risk, 82 intermediate-risk, and 40 high-risk) were treated in institutional review board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low-risk disease, 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel therapy followed by androgen deprivation therapy for high-risk disease. Toxicities were graded according to Common Terminology Criteria for Adverse Events (CTCAE), version 3.0. Median follow-up was 5.2 years. Results: Five-year rates of biochemical and clinical freedom from disease progression were 99%, 99%, and 76% in low-, intermediate-, and high-risk patients, respectively. Actuarial 5-year rates of late CTCAE, version 3.0 (or version 4.0) grade 3 gastrointestinal and urologic toxicity were 1.0% (0.5%) and 5.4% (1.0%), respectively. Median pretreatment scores and International Prostate Symptom Scores at >4 years posttreatment were 8 and 7, 6 and 6, and 9 and 8, respectively, among the low-, intermediate-, and high-risk patients. There were no significant changes between median pretreatment summary scores and Expanded Prostate Cancer Index Composite scores at >4 years for bowel, urinary irritative and/or obstructive, and urinary continence. Conclusions: Five-year clinical outcomes with image-guided proton therapy included extremely high efficacy, minimal physician-assessed toxicity, and excellent patient-reported outcomes. Further follow-up and a larger patient experience are necessary to confirm these favorable outcomes.

  20. Clinical features of refractory radiation esophageal ulcer after proton beam therapy and its management in a patient with esophageal cancer

    International Nuclear Information System (INIS)

    Hisakura, Katsuji; Terashima, Hideo; Nagai, Kentaro

    2012-01-01

    It has been reported that proton beam therapy is an effective treatment method for patients with locally confined esophageal cancer. However, there seems to be serious problems related to post-radiotherapy (RT) esophageal ulcers. We treated 7 patients who developed post-RT esophageal ulcers with the earliest symptom of esophageal stenosis, which was observed 7-17 months (median, 10.0) after completion of RT. Five of the patients had unhealed ulcers leading to lethal events such as perforation or penetration. The mean time between the appearance of the earliest symptom and lethal episode was no more than 2 months (mean, 2.1). The first 3 patients who underwent conservative therapies died from severe complications caused by perforation or penetration of post-RT esophageal ulcers. In the case of 2 consecutive patients, we performed surgical treatment as soon as possible since there were indications of penetration in post-RT developed esophageal ulcers. Therefore, they could be cured by a salvage operation which was subtotal esophagectomy using the stomach for esophageal replacement. Through the above-mentioned experience, we discussed surgical management for esophageal ulcers after proton beam therapy. (author)

  1. Recircular accelerator to proton ocular therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Luisa A.; Campos, Tarcisio P.R., E-mail: luisarabelo88@gmail.com, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  2. Recircular accelerator to proton ocular therapy

    International Nuclear Information System (INIS)

    Rabelo, Luisa A.; Campos, Tarcisio P.R.

    2013-01-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  3. Proton therapy for prostate cancer treatment employing online image guidance and an action level threshold.

    Science.gov (United States)

    Vargas, Carlos; Falchook, Aaron; Indelicato, Daniel; Yeung, Anamaria; Henderson, Randall; Olivier, Kenneth; Keole, Sameer; Williams, Christopher; Li, Zuofeng; Palta, Jatinder

    2009-04-01

    The ability to determine the accuracy of the final prostate position within a determined action level threshold for image-guided proton therapy is unclear. Three thousand one hundred ten images for 20 consecutive patients treated in 1 of our 3 proton prostate protocols from February to May of 2007 were analyzed. Daily kV images and patient repositioning were performed employing an action-level threshold (ALT) of > or = 2.5 mm for each beam. Isocentric orthogonal x-rays were obtained, and prostate position was defined via 3 gold markers for each patient in the 3 axes. To achieve and confirm our action level threshold, an average of 2 x-rays sets (median 2; range, 0-4) was taken daily for each patient. Based on our ALT, we made no corrections in 8.7% (range, 0%-54%), 1 correction in 82% (41%-98%), and 2 to 3 corrections in 9% (0-27%). No patient needed 4 or more corrections. All patients were treated with a confirmed error of < 2.5 mm for every beam delivered. After all corrections, the mean and standard deviations were: anterior-posterior (z): 0.003 +/- 0.094 cm; superior-inferior (y): 0.028 +/- 0.073 cm; and right-left (x) -0.013 +/- 0.08 cm. It is feasible to limit all final prostate positions to less than 2.5 mm employing an action level image-guided radiation therapy (IGRT) process. The residual errors after corrections were very small.

  4. Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy.

    Science.gov (United States)

    Shiraishi, Yutaka; Xu, Cai; Yang, Jinzhong; Komaki, Ritsuko; Lin, Steven H

    2017-10-01

    To compare heart and cardiac substructure radiation exposure using intensity-modulated radiotherapy (IMRT) vs. proton beam therapy (PBT) for patients with mid- to distal esophageal cancer who received chemoradiation therapy. We identified 727 esophageal cancer patients who received IMRT (n=477) or PBT (n=250) from March 2004 to December 2015. All patients were treated to 50.4Gy with IMRT or to 50.4 cobalt Gray equivalents with PBT. IMRT and PBT dose-volume histograms (DVHs) of the whole heart, atria, ventricles, and four coronary arteries were compared. For PBT patients, passive scattering proton therapy (PSPT; n=237) and intensity-modulated proton therapy (IMPT; n=13) DVHs were compared. Compared with IMRT, PBT resulted in significantly lower mean heart dose (MHD) and heart V5, V10, V20, V30, and V40as well as lower radiation exposure to the four chambers and four coronary arteries. Compared with PSPT, IMPT resulted in significantly lower heart V20, V30, and V40 but not MHD or heart V5 or V10. IMPT also resulted in significantly lower radiation doses to the left atrium, right atrium, left main coronary artery, and left circumflex artery, but not the left ventricle, right ventricle, left anterior descending artery, or right coronary artery. Factors associated with lower MHD included PBT (Pheart and cardiac substructures than IMRT. Long-term studies are necessary to determine how this cardiac sparing effect impacts the development of coronary artery disease and other cardiac complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Grant, J; Wolfe, A; Gillin, M; Krishnan, S [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-15

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved

  6. WE-FG-BRB-04: RBEs for Human Lung Cancer Cells Exposed to Protons and Heavier Ions: Implications for Clinical Use of Charged Particles in Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Held, K. [Massachusetts General Hospital (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  7. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    International Nuclear Information System (INIS)

    Matney, Jason; Park, Peter C.; Bluett, Jaques; Chen, Yi Pei; Liu, Wei; Court, Laurence E.; Liao, Zhongxing; Li, Heng; Mohan, Radhe

    2013-01-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  8. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Matney, Jason; Park, Peter C. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Bluett, Jaques [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chen, Yi Pei [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Liu, Wei; Court, Laurence E. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Heng [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe, E-mail: rmohan@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-11-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  9. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans

  10. Feasibility of Pencil Beam Scanned Intensity Modulated Proton Therapy in Breath-hold for Locally Advanced Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Munck Af Rosenschold, Per; Perrin, Rosalind

    2017-01-01

    PURPOSE: We evaluated the feasibility of treating patients with locally advanced non-small cell lung cancer (NSCLC) with pencil beam scanned intensity modulated proton therapy (IMPT) in breath-hold. METHODS AND MATERIALS: Fifteen NSCLC patients who had previously received 66 Gy in 33 fractions wi...

  11. Antiproton Cancer Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels

    An essential part in cancer radiotherapy, is to direct a sufficiently high dose towards the tumour, without damaging the surrounding tissue. Different techniques such as intensity modulated radiation therapy and proton therapy have been developed, in order to reduce the dose to the normal tissue...

  12. Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. A comparison of benefits

    International Nuclear Information System (INIS)

    Boer, Peter de; Westerveld, Henrike; Smit, Mark; Bel, Arjan; Rasch, Coen R.N.; Stalpers, Lukas J.A.; Schoot, Agustinus J.A.J. van de; Buist, Marrije R.

    2018-01-01

    The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V 15Gy , V 30Gy , V 45Gy and D mean for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. Both IMPT and MRI-based target tailoring resulted in significant reductions in V 15Gy , V 30Gy , V 45Gy and D mean for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V 45Gy for bowel bag was >275 cm 3 and >200 cm 3 , respectively, during standard IGART alone. In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. (orig.) [de

  13. Bone marrow sparing in intensity modulated proton therapy for cervical cancer: Efficacy and robustness under range and setup uncertainties

    International Nuclear Information System (INIS)

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and purpose: This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and methods: IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated X-ray therapy (IMRT). Functional bone marrow was identified by 18 F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3 mm translational setup errors in all three principal dimensions. Results: In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V 5Gy , 47% for V 10Gy , 54% for V 20Gy , and 57% for V 40Gy , all with p < 0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V 5Gy , 37% for V 10Gy , 41% for V 20Gy , and 39% for V 40Gy , all with p < 0.01. Conclusions: The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors

  14. Bone Marrow Sparing in Intensity Modulated Proton Therapy for Cervical Cancer: Efficacy and Robustness under Range and Setup Uncertainties

    Science.gov (United States)

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and Purpose This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and Methods IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated x-ray therapy (IMRT). Functional bone marrow was identified by 18F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3mm translational setup errors in all three principal dimensions. Results In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V5GY, 47% for V10Gy, 54% for V20Gy, and 57% for V40Gy, all with p<0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V5Gy, 37% for V10Gy, 41% for V20Gy, and 39% for V40Gy, all with p<0.01. Conclusions The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors. PMID:25981130

  15. Outcomes in men with large prostates ({>=}60 cm{sup 3}) treated with definitive proton therapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mcgee, Lisa; Mendenhall, William M. [Dept. of Radiation Oncology, Univ. of Florida Coll. of Medicine, Gainesville (United States); Mendenhall, Nancy P.; Morris, Christopher G.; Marcus, Robert J. Jr. [Dept. of Radiation Oncology, Univ. of Florida Coll. of Medicine, Gainesville (United States); Univ. of Florida Proton Therapy Inst., Jacksonville (United States); Henderson, Randal H.; Nichols, Romaine C. Jr.; Li, Zuofeng; Williams, Christopher R.; Hoppe, Bradford S. [Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: bhoppe@floridaproton.org

    2013-04-15

    Background: Large prostate size is associated with higher rates of genitourinary and gastrointestinal toxicities after definitive treatment for prostate cancer, and because of this many men will undergo cytoreduction with androgen deprivation therapy (ADT) before definitive therapy, which results in its own unique toxicities and worsens quality of life. This series investigates genitourinary and gastrointestinal toxicity in men with large prostates (> 60 cm{sup 3}) undergoing definitive proton therapy (PT) for prostate cancer. Material and methods: From 2006 to 2010, 186 men with prostates {>=}60 cm{sup 3} were treated with definitive PT (median dose, 78 CGE) for low- (47%), intermediate- (37%) and high-risk (16%) prostate cancer. Median prostate size was 76 cm{sup 3} (range, 60-143 cm{sup 3}) and pretreatment IPSS was > 15 in 27%. At baseline, 51% were managed for obstructive symptoms with transurethral resection of the prostate (TURP) (9.7%) or medical management with {alpha} blockers (32%), 5 {alpha}-reductase inhibitors (15%), and/or saw palmetto (11%). Fourteen men received ADT for cytoreduction. Results: Median follow-up was two years. Grade 3 genitourinary toxicities occurred in 14 men, including temporary catheterization (n = 7), TURP (n = 6), and balloon dilation for urethral stricture (n = 1). Multivariate analysis demonstrated pretreatment medical management (p = 0.0065) and pretreatment TURP (p 0.0002) were significantly associated with grade 3 genitourinary toxicity. One man experienced grade 3 gastrointestinal toxicity and 15 men had grade 2 gastrointestinal toxicities. On multivariate analysis, dose > 78 CGE was associated with increased grade 2 + gastrointestinal toxicity (p = 0.0142). Conclusion: Definitive management of men with large prostates without ADT was associated with low rates of genitourinary and gastrointestinal toxicity.

  16. Outcomes in men with large prostates (≥60 cm3) treated with definitive proton therapy for prostate cancer

    International Nuclear Information System (INIS)

    Mcgee, Lisa; Mendenhall, William M.; Mendenhall, Nancy P.; Morris, Christopher G.; Marcus, Robert J. Jr.; Henderson, Randal H.; Nichols, Romaine C. Jr.; Li, Zuofeng; Williams, Christopher R.; Hoppe, Bradford S.

    2013-01-01

    Background: Large prostate size is associated with higher rates of genitourinary and gastrointestinal toxicities after definitive treatment for prostate cancer, and because of this many men will undergo cytoreduction with androgen deprivation therapy (ADT) before definitive therapy, which results in its own unique toxicities and worsens quality of life. This series investigates genitourinary and gastrointestinal toxicity in men with large prostates (> 60 cm 3 ) undergoing definitive proton therapy (PT) for prostate cancer. Material and methods: From 2006 to 2010, 186 men with prostates ≥60 cm 3 were treated with definitive PT (median dose, 78 CGE) for low- (47%), intermediate- (37%) and high-risk (16%) prostate cancer. Median prostate size was 76 cm 3 (range, 60-143 cm 3 ) and pretreatment IPSS was > 15 in 27%. At baseline, 51% were managed for obstructive symptoms with transurethral resection of the prostate (TURP) (9.7%) or medical management with α blockers (32%), 5 α-reductase inhibitors (15%), and/or saw palmetto (11%). Fourteen men received ADT for cytoreduction. Results: Median follow-up was two years. Grade 3 genitourinary toxicities occurred in 14 men, including temporary catheterization (n = 7), TURP (n = 6), and balloon dilation for urethral stricture (n = 1). Multivariate analysis demonstrated pretreatment medical management (p = 0.0065) and pretreatment TURP (p 0.0002) were significantly associated with grade 3 genitourinary toxicity. One man experienced grade 3 gastrointestinal toxicity and 15 men had grade 2 gastrointestinal toxicities. On multivariate analysis, dose > 78 CGE was associated with increased grade 2 + gastrointestinal toxicity (p = 0.0142). Conclusion: Definitive management of men with large prostates without ADT was associated with low rates of genitourinary and gastrointestinal toxicity

  17. SU-E-T-07: 4DCT Robust Optimization for Esophageal Cancer Using Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liao, L [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Department of Industrial Engineering, University of Houston, Houston, TX (United States); Yu, J; Zhu, X; Li, H; Zhang, X [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Li, Y [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Varian Medical Systems, Houston, TX (United States); Lim, G [Department of Industrial Engineering, University of Houston, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a 4DCT robust optimization method to reduce the dosimetric impact from respiratory motion in intensity modulated proton therapy (IMPT) for esophageal cancer. Methods: Four esophageal cancer patients were selected for this study. The different phases of CT from a set of 4DCT were incorporated into the worst-case dose distribution robust optimization algorithm. 4DCT robust treatment plans were designed and compared with the conventional non-robust plans. Result doses were calculated on the average and maximum inhale/exhale phases of 4DCT. Dose volume histogram (DVH) band graphic and ΔD95%, ΔD98%, ΔD5%, ΔD2% of CTV between different phases were used to evaluate the robustness of the plans. Results: Compare to the IMPT plans optimized using conventional methods, the 4DCT robust IMPT plans can achieve the same quality in nominal cases, while yield a better robustness to breathing motion. The mean ΔD95%, ΔD98%, ΔD5% and ΔD2% of CTV are 6%, 3.2%, 0.9% and 1% for the robustly optimized plans vs. 16.2%, 11.8%, 1.6% and 3.3% from the conventional non-robust plans. Conclusion: A 4DCT robust optimization method was proposed for esophageal cancer using IMPT. We demonstrate that the 4DCT robust optimization can mitigate the dose deviation caused by the diaphragm motion.

  18. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Harada, Hideyuki; Asakura, Hirofumi; Nishimura, Tetsuo; Schneider, Uwe; Ishida, Yuji; Konno, Masahiro; Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki; Onoe, Tsuyoshi; Ogawa, Hirofumi

    2013-01-01

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  19. Potential Benefits of Scanned Intensity-Modulated Proton Therapy Versus Advanced Photon Therapy With Regard to Sparing of the Salivary Glands in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Water, Tara A. van de; Lomax, Antony J.; Bijl, Hendrik P.; Jong, Marije E. de; Schilstra, Cornelis; Hug, Eugen B.; Langendijk, Johannes A.

    2011-01-01

    Purpose: To test the hypothesis that scanned intensity-modulated proton therapy (IMPT) results in a significant dose reduction to the parotid and submandibular glands as compared with intensity-modulated radiotherapy with photons (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for oropharyngeal cancer. In addition, we investigated whether the achieved dose reductions would theoretically translate into a reduction of salivary dysfunction and xerostomia. Methods and Materials: Ten patients with N0 oropharyngeal carcinoma were used. The intensity-modulated plans delivered simultaneously 70 Gy to the boost planning target volume (PTV2) and 54 Gy to the elective nodal areas (PTV1). The 3D-CRT technique delivered sequentially 70 Gy and 46 Gy to PTV2 and PTV1, respectively. Normal tissue complication probabilities were calculated for salivary dysfunction and xerostomia. Results: Planning target volume coverage results were similar for IMPT and IMRT. Intensity-modulated proton therapy clearly improved the conformity. The 3D-CRT results were inferior to these results. The mean dose to the parotid glands by 3D-CRT (50.8 Gy), IMRT (25.5 Gy), and IMPT (16.8 Gy) differed significantly. For the submandibular glands no significant differences between IMRT and IMPT were found. The dose reductions obtained with IMPT theoretically translated into a significant reduction in normal tissue complication probability. Conclusion: Compared with IMRT and 3D-CRT, IMPT improved sparing of the organs at risk, while keeping similar target coverage results. The dose reductions obtained with IMPT vs. IMRT and 3D-CRT varied widely per individual patient. Intensity-modulated proton therapy theoretically translated into a clinical benefit for most cases, but this requires clinical validation.

  20. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, N. Patrik (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark); Niels Bohr Inst., Faculty of Sciences, Univ. of Copenhagen (Denmark)), e-mail: brodin.patrik@gmail.com; Munck af Rosenschoeld, Per; Aznar, Marianne C.; Vogelius, Ivan R. (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark)); Kiil-Berthelsen, Anne (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark); Dept. of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Investigations, Rigshospitalet, Univ. of Copenhagen (Denmark)); Nilsson, Per; Bjoerk-Eriksson, Thomas (Dept. of Oncology, Skaane Univ. Hospital and Lund Univ., Lund (Sweden)); Lannering, Birgitta (Dept. of Paediatric Oncology, The Queen Silvia Children' s Hospital, Gothenburg (Sweden))

    2011-08-15

    Introduction. The aim of this model study was to estimate and compare the risk of radiation-induced adverse late effects in pediatric patients with medulloblastoma (MB) treated with either three-dimensional conformal radiotherapy (3D CRT), inversely-optimized arc therapy (RapidArc (RA)) or spot-scanned intensity-modulated proton therapy (IMPT). The aim was also to find dose-volume toxicity parameters relevant to children undergoing RT to be used in the inverse planning of RA and IMPT, and to use in the risk estimations. Material and methods. Treatment plans were created for all three techniques on 10 pediatric patients that have been treated with craniospinal irradiation (CSI) at our institution in 2007-2009. Plans were generated for two prescription CSI doses, 23.4 Gy and 36 Gy. Risk estimates were based on childhood cancer survivor data when available and secondary cancer (SC) risks were estimated as a function of age at exposure and attained age according to the organ-equivalent dose (OED) concept. Results. Estimates of SC risk was higher for the RA plans and differentiable from the estimates for 3D CRT at attained ages above 40 years. The risk of developing heart failure, hearing loss, hypothyroidism and xerostomia was highest for the 3D CRT plans. The risks of all adverse effects were estimated as lowest for the IMPT plans, even when including secondary neutron (SN) irradiation with high values of the neutron radiation weighting factors (WR{sub neutron}). Conclusions. When comparing RA and 3D CRT treatment for pediatric MB it is a matter of comparing higher SC risk against higher risks of non-cancer adverse events. Considering time until onset of the different complications is necessary to fully assess patient benefit in such a comparison. The IMPT plans, including SN dose contribution, compared favorably to the photon techniques in terms of all radiobiological risk estimates

  1. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma

    International Nuclear Information System (INIS)

    Brodin, N. Patrik; Munck af Rosenschoeld, Per; Aznar, Marianne C.; Vogelius, Ivan R.; Kiil-Berthelsen, Anne; Nilsson, Per; Bjoerk-Eriksson, Thomas; Lannering, Birgitta

    2011-01-01

    Introduction. The aim of this model study was to estimate and compare the risk of radiation-induced adverse late effects in pediatric patients with medulloblastoma (MB) treated with either three-dimensional conformal radiotherapy (3D CRT), inversely-optimized arc therapy (RapidArc (RA)) or spot-scanned intensity-modulated proton therapy (IMPT). The aim was also to find dose-volume toxicity parameters relevant to children undergoing RT to be used in the inverse planning of RA and IMPT, and to use in the risk estimations. Material and methods. Treatment plans were created for all three techniques on 10 pediatric patients that have been treated with craniospinal irradiation (CSI) at our institution in 2007-2009. Plans were generated for two prescription CSI doses, 23.4 Gy and 36 Gy. Risk estimates were based on childhood cancer survivor data when available and secondary cancer (SC) risks were estimated as a function of age at exposure and attained age according to the organ-equivalent dose (OED) concept. Results. Estimates of SC risk was higher for the RA plans and differentiable from the estimates for 3D CRT at attained ages above 40 years. The risk of developing heart failure, hearing loss, hypothyroidism and xerostomia was highest for the 3D CRT plans. The risks of all adverse effects were estimated as lowest for the IMPT plans, even when including secondary neutron (SN) irradiation with high values of the neutron radiation weighting factors (WR neutron ). Conclusions. When comparing RA and 3D CRT treatment for pediatric MB it is a matter of comparing higher SC risk against higher risks of non-cancer adverse events. Considering time until onset of the different complications is necessary to fully assess patient benefit in such a comparison. The IMPT plans, including SN dose contribution, compared favorably to the photon techniques in terms of all radiobiological risk estimates

  2. SU-F-J-122: Rectal Sparing Reproducibility in Prostate Cancer Patients Treated with Hydrogel Spacer and Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, S; Robison, B; Blakey, M; Artz, M; Renegar, J; Schreuder, A; Fagundes, M [Provision Center for Proton Therapy, Knoxville, TN (United States); Case, S [Vanderbilt University, Nashville, TN (United States)

    2016-06-15

    Purpose: Rectal hydrogel spacer has been shown to improve rectal sparing in prostate radiotherapy. The purpose of this study was to determine the reproducibility of rectal sparing throughout treatment in patients undergoing proton therapy. Methods: At our facility, prostate cancer patients are treated with pencil beam scanning proton therapy, utilizing an endorectal balloon (ERB) or rectal spacer hydrogel (Gel) “SpaceOAR” implant. All patients were treated with a full bladder and empty rectum (low residue diet and stool softeners). A quality assurance CT (QACT) was performed periodically throughout treatment to ensure rectal filling consistency and sparing in 41 patients treated with Gel. The treatment planning (TP) dose was calculated on each QACT and the rectum V90%, V75%, V65%, V50%, and V40% were recorded. QACT scans were acquired on day 0, week 1, week 3, and week 5. Results: 144 QACT scans were analyzed, each patient receiving 3–4 QACTs. Rectum V90% was within +/−1% of the TP dose in 70% of the QACTs and within +/−5% in 95% of scans. From previous data analyses, our ERB rectum V90% average is 6%. This value was used as an upper threshold for the Gel QACT analysis. 5 of the 41 patients (12%), corresponding to 7 QACTs, had a rectum V90% that exceeded 6% on one or more QACTs. However, the average rectal V90% measured over multiple QACTs never exceeded 6%. 55% of the QACTs had a rectum volume within 5cc of the TPCT volume, 68% were within 10cc. Conclusion: In this study, we have shown that a majority of our prostate patients can maintain consistent rectal sparing when treated with a hydrogel spacer. QACT rectal V90% exceeding our threshold was most often related to increased rectal filling and gas, which was addressed with improved dietary compliance and the intensification of stool softeners or laxatives.

  3. SU-F-J-122: Rectal Sparing Reproducibility in Prostate Cancer Patients Treated with Hydrogel Spacer and Proton Therapy

    International Nuclear Information System (INIS)

    Hedrick, S; Robison, B; Blakey, M; Artz, M; Renegar, J; Schreuder, A; Fagundes, M; Case, S

    2016-01-01

    Purpose: Rectal hydrogel spacer has been shown to improve rectal sparing in prostate radiotherapy. The purpose of this study was to determine the reproducibility of rectal sparing throughout treatment in patients undergoing proton therapy. Methods: At our facility, prostate cancer patients are treated with pencil beam scanning proton therapy, utilizing an endorectal balloon (ERB) or rectal spacer hydrogel (Gel) “SpaceOAR” implant. All patients were treated with a full bladder and empty rectum (low residue diet and stool softeners). A quality assurance CT (QACT) was performed periodically throughout treatment to ensure rectal filling consistency and sparing in 41 patients treated with Gel. The treatment planning (TP) dose was calculated on each QACT and the rectum V90%, V75%, V65%, V50%, and V40% were recorded. QACT scans were acquired on day 0, week 1, week 3, and week 5. Results: 144 QACT scans were analyzed, each patient receiving 3–4 QACTs. Rectum V90% was within +/−1% of the TP dose in 70% of the QACTs and within +/−5% in 95% of scans. From previous data analyses, our ERB rectum V90% average is 6%. This value was used as an upper threshold for the Gel QACT analysis. 5 of the 41 patients (12%), corresponding to 7 QACTs, had a rectum V90% that exceeded 6% on one or more QACTs. However, the average rectal V90% measured over multiple QACTs never exceeded 6%. 55% of the QACTs had a rectum volume within 5cc of the TPCT volume, 68% were within 10cc. Conclusion: In this study, we have shown that a majority of our prostate patients can maintain consistent rectal sparing when treated with a hydrogel spacer. QACT rectal V90% exceeding our threshold was most often related to increased rectal filling and gas, which was addressed with improved dietary compliance and the intensification of stool softeners or laxatives.

  4. Proton therapy of hypophyseal adenomas

    International Nuclear Information System (INIS)

    Mirakova, E.I.; Kirpatovskaya, L.E.; Lyass, F.M.; Snigireva, R.Ya.; Krymskij, V.A.; Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Ehksperimental'noj Ehndokrinologii i Khimii Gormonov)

    1983-01-01

    The authors present the results of proton therapy in 59 patients with different hypophyseal adenomas. The period of observation lasted from 6 mos. to 5 yrs. Irradiation was done using a multifield-convergent method and a proton beam of the ITEF synchrotron. The beam energy was 200 MeV, the beam diameter 7-15 mm. Radiation response and immediate results were evaluated for all the patients. The least favorable results were noted in the patients with prolactinomas, for which, in addition to irradiation, parlodel therapy is needed. No marked radiation reactions, neurological complications and manifestations of hypopituitarism were observed with the chosen doses and schemes of irradiation

  5. Proton Therapy at the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    1996-03-01

    The brochure deals with the following topics: radiation therapy and its significance, proton therapy - worldwide and at PSI, advantages of the protons, the new proton therapy facility at PSI, therapy at PSI using the spot-scan technique. figs., tabs., refs

  6. Proton therapy project at PSI

    International Nuclear Information System (INIS)

    Nakagawa, K.; Akanuma, A.; Karasawa, K.

    1990-01-01

    Particle radiation which might present steeper dose distribution has received much attention as the third particle facility at the Paul Scherrer Institute (PSI), Switzerland. Proton conformation with sharp fall-off is considered to be the radiation beam suitable for confining high doses to a target volume without complications and for verifying which factor out of high RBE or physical dose distribution is more essential for local control in malignant tumors. This paper discusses the current status of the spot scanning method, which allows three dimensional conformation radiotherapy, and preliminary results. Preliminary dose distribution with proton conformation technique was acquired by modifying a computer program for treatment planning in pion treatment. In a patient with prostate carcinoma receiving both proton and pion radiation therapy, proton conformation was found to confine high doses to the target area and spare both the bladder and rectum well; and pion therapy was found to deliver non-homogeneous radiation to these organs. Although there are some obstacles in the proton project at PSI, experimental investigations are encouraging. The dynamic spot scanning method with combination of the kicker magnet, wobbler magnet, range shifter, patient transporter, and position sensitive monitor provides highly confined dose distribution, making it possible to increase total doses and thus to improve local control rate. Proton confirmation is considered to be useful for verifying possible biological effectiveness of negative pion treatment of PSI as well. (N.K.)

  7. Dosimetric rationale and early experience at UFPTI of thoracic proton therapy and chemotherapy in limited-stage small cell lung cancer

    International Nuclear Information System (INIS)

    Colaco, Rovel J.; Huh, Soon; Nichols, Romaine; Morris, Christopher G.; Flampouri, Stella; Li, Zuofeng; Hoppe, Bradford S.; D'Agostino, Harry; Pham, Dat C.; Bajwa, Abubakr A.

    2013-01-01

    Background: Concurrent chemoradiotherapy (CRT) is the standard of care in patients with limited-stage small cell lung cancer (SCLC). Treatment with conventional x-ray therapy (XRT) is associated with high toxicity rates, particularly acute grade 3+ esophagitis and pneumonitis. We present outcomes for the first known series of limited-stage SCLC patients treated with proton therapy and a dosimetric comparison of lung and esophageal doses with intensity-modulated radiation therapy (IMRT). Material and methods: Six patients were treated; five concurrently and one sequentially. Five patients received 60-66 CGE in 30-34 fractions once daily and one patient received 45 CGE in 30 fractions twice daily. All six patients received prophylactic cranial irradiation. Common Terminology Criteria for Adverse Events, v3.0, was used to grade toxicity. IMRT plans were also generated and compared with proton plans. Results: The median follow-up was 12.0 months. The one-year overall and progression-free survival rates were 83% and 66%, respectively. There were no cases of acute grade 3+ esophagitis or acute grade 2+ pneumonitis, and no other acute grade 3+ non-hematological toxicities were seen. One patient with a history of pulmonary fibrosis and atrial fibrillation developed worsening symptoms four months after treatment requiring oxygen. Three patients died; two of progressive disease and one after a fall. The latter patient was disease-free at 36 months after treatment. Another patient recurred and is alive, while two patients remain disease-free at 12 months of follow-up. Proton therapy proved superior to IMRT across all esophageal and lung dose volume points. Conclusion. In this small series of SCLC patients treated with proton therapy with radical intent, treatment was well tolerated with no cases of acute grade 3+ esophagitis or acute grade 2+ pneumonitis. Dosimetric comparison showed better sparing of lung and esophagus with proton therapy. Proton therapy merits further

  8. Dosimetric rationale and early experience at UFPTI of thoracic proton therapy and chemotherapy in limited-stage small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Colaco, Rovel J.; Huh, Soon; Nichols, Romaine; Morris, Christopher G.; Flampouri, Stella; Li, Zuofeng; Hoppe, Bradford S. [Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: bhoppe@floridaproton.org; D' Agostino, Harry [Dept. of Thoracic Surgery, Univ. of Florida Coll. of Medicine, Gainesville (United States); Pham, Dat C. [Dept. of Hematology and Medical Oncology, Univ. of Florida Coll. of Medicine, Gainesville (United States); Bajwa, Abubakr A. [Dept. of Medicine, Univ. of Florida Coll. of Medicine, Gainesville (United States)

    2013-04-15

    Background: Concurrent chemoradiotherapy (CRT) is the standard of care in patients with limited-stage small cell lung cancer (SCLC). Treatment with conventional x-ray therapy (XRT) is associated with high toxicity rates, particularly acute grade 3+ esophagitis and pneumonitis. We present outcomes for the first known series of limited-stage SCLC patients treated with proton therapy and a dosimetric comparison of lung and esophageal doses with intensity-modulated radiation therapy (IMRT). Material and methods: Six patients were treated; five concurrently and one sequentially. Five patients received 60-66 CGE in 30-34 fractions once daily and one patient received 45 CGE in 30 fractions twice daily. All six patients received prophylactic cranial irradiation. Common Terminology Criteria for Adverse Events, v3.0, was used to grade toxicity. IMRT plans were also generated and compared with proton plans. Results: The median follow-up was 12.0 months. The one-year overall and progression-free survival rates were 83% and 66%, respectively. There were no cases of acute grade 3+ esophagitis or acute grade 2+ pneumonitis, and no other acute grade 3+ non-hematological toxicities were seen. One patient with a history of pulmonary fibrosis and atrial fibrillation developed worsening symptoms four months after treatment requiring oxygen. Three patients died; two of progressive disease and one after a fall. The latter patient was disease-free at 36 months after treatment. Another patient recurred and is alive, while two patients remain disease-free at 12 months of follow-up. Proton therapy proved superior to IMRT across all esophageal and lung dose volume points. Conclusion. In this small series of SCLC patients treated with proton therapy with radical intent, treatment was well tolerated with no cases of acute grade 3+ esophagitis or acute grade 2+ pneumonitis. Dosimetric comparison showed better sparing of lung and esophagus with proton therapy. Proton therapy merits further

  9. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  10. Proton Therapy for Thoracoabdominal Tumors

    Science.gov (United States)

    Sakurai, Hideyuki; Okumura, Toshiyuki; Sugahara, Shinji; Nakayama, Hidetsugu; Tokuuye, Koichi

    In advanced-stage disease of certain thoracoabdominal tumors, proton therapy (PT) with concurrent chemotherapy may be an option to reduce side effects. Several technological developments, including a respiratory gating system and implantation of fiducial markers for image guided radiation therapy (IGRT), are necessary for the treatment in thoracoabdominal tumors. In this chapter, the role of PT for tumors of the lung, the esophagus, and liver are discussed.

  11. Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer. Clinical outcome, dosimetry, and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yue-Can [Shengjing Hospital of China Medical University, Department of Medical Oncology, Cancer Center, Shenyang (China); University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Vyas, Shilpa; Apisarnthanarax, Smith; Zeng, Jing [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Dang, Quang; Schultz, Lindsay [Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA (United States); Bowen, Stephen R. [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); University of Washington Medical Center, Department of Radiology, Seattle, WA (United States); Shankaran, Veena [University of Washington Medical Center, Department of Medical Oncology, Seattle, WA (United States); Farjah, Farhood [University of Washington Medical Center, Department of Surgery, Division of Cardiothoracic Surgery, Seattle, WA (United States); University of Washington Medical Center, Department of Surgery, Surgical Outcomes Research Center, Seattle, WA (United States); Oelschlager, Brant K. [University of Washington Medical Center, Department of Surgery, Seattle, WA (United States)

    2016-12-15

    The aim of this study is to present the dosimetry, feasibility, and preliminary clinical results of a novel pencil beam scanning (PBS) posterior beam technique of proton treatment for esophageal cancer in the setting of trimodality therapy. From February 2014 to June 2015, 13 patients with locally advanced esophageal cancer (T3-4N0-2M0; 11 adenocarcinoma, 2 squamous cell carcinoma) were treated with trimodality therapy (neoadjuvant chemoradiation followed by esophagectomy). Eight patients were treated with uniform scanning (US) and 5 patients were treated with a single posterior-anterior (PA) beam PBS technique with volumetric rescanning for motion mitigation. Comparison planning with PBS was performed using three plans: AP/PA beam arrangement; PA plus left posterior oblique (LPO) beams, and a single PA beam. Patient outcomes, including pathologic response and toxicity, were evaluated. All 13 patients completed chemoradiation to 50.4 Gy (relative biological effectiveness, RBE) and 12 patients underwent surgery. All 12 surgical patients had an R0 resection and pathologic complete response was seen in 25 %. Compared with AP/PA plans, PA plans have a lower mean heart (14.10 vs. 24.49 Gy, P < 0.01), mean stomach (22.95 vs. 31.33 Gy, P = 0.038), and mean liver dose (3.79 vs. 5.75 Gy, P = 0.004). Compared to the PA/LPO plan, the PA plan reduced the lung dose: mean lung dose (4.96 vs. 7.15 Gy, P = 0.020) and percentage volume of lung receiving 20 Gy (V{sub 20}; 10 vs. 17 %, P < 0.01). Proton therapy with a single PA beam PBS technique for preoperative treatment of esophageal cancer appears safe and feasible. (orig.) [German] Wir stellen die Vergleichsdosimetrie, Realisierbarkeit und die vorlaeufigen klinischen Ergebnisse einer neuen Pencil-Beam-Scanning(-PBS)/Posterior-Beam-Methode innerhalb der Protonentherapie fuer Speiseroehrenkrebs im Setting einer trimodalen Therapie vor. Von Februar 2014 bis Juni 2015 erhielten 13 Patienten mit lokal fortgeschrittenem

  12. Beam configuration selection for robust intensity-modulated proton therapy in cervical cancer using Pareto front comparison.

    Science.gov (United States)

    van de Schoot, A J A J; Visser, J; van Kesteren, Z; Janssen, T M; Rasch, C R N; Bel, A

    2016-02-21

    The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D(99%)) and OAR doses (rectum V30Gy; bladder V40Gy). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D(99%), rectum V(30Gy) and bladder V(40Gy) to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D(99%) on average by 0.2 Gy and decreased the median rectum V(30Gy) and median bladder V(40Gy) on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal

  13. Beam configuration selection for robust intensity-modulated proton therapy in cervical cancer using Pareto front comparison

    International Nuclear Information System (INIS)

    Van de Schoot, A J A J; Visser, J; Van Kesteren, Z; Rasch, C R N; Bel, A; Janssen, T M

    2016-01-01

    The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D 99% ) and OAR doses (rectum V 30Gy ; bladder V 40Gy ). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D 99% , rectum V 30Gy and bladder V 40Gy to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D 99% on average by 0.2 Gy and decreased the median rectum V 30Gy and median bladder V 40Gy on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal in

  14. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina [Proton and Advanced RadioTherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London (United Kingdom); Janssens, Guillaume [Ion Beam Applications SA, Louvain-la-Neuve (Belgium); Teng, Ching-Ling [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Baudier, Thomas; Hotoiu, Lucian [iMagX Project, ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve (Belgium); McClelland, Jamie R. [Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London (United Kingdom); Royle, Gary [Proton and Advanced RadioTherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London (United Kingdom); Lin, Liyong; Yin, Lingshu; Metz, James; Solberg, Timothy D.; Tochner, Zelig; Simone, Charles B.; McDonough, James [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Kevin Teo, Boon-Keng, E-mail: teok@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-05-01

    Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account for anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.

  15. SU-F-T-196: Hypo-Fractionation with Intensity Modulated Proton Therapy for Unilateral Metallic Prosthesis Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Rana, S; Park, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States); Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States); Zhang, Y [University of Cincinnati Medical Center, Liberty Township, OH (United States); Pokharel [21st Century Oncology, Estero, FL (United States); Cheng, C [Vantage Oncology, West Hills, CA (United States)

    2016-06-15

    Purpose: The purpose of this study is to investigate the dosimetric feasibility of hypo-fractionated intensity modulated proton therapy (IMPT) for unilateral metallic prosthesis prostate cancer patients based on proton collaborative group (PCG)-GU002-10 (NCT01230866) protocol criteria. Methods: A total of five unilateral metallic prosthesis prostate cancer cases were included in this retrospective study. For each case, IMPT plans were generated for treatment to be delivered with 7.6 Gy[RBE] per fraction in 5 fractions per week for a total dose of 38 Gy(RBE). Each plan was generated using two anterior-oblique beams and one lateral beam. Treatment plans were optimized with an objective meeting PCG-GU002-10 (NCT01230866) protocol criteria: (i) planning target volume (PTV): D99.5% > 36.1 Gy[RBE], (ii) rectum: V24 < 35%, V33.6 < 10%, (iii) bladder: V39 < 8 cc, and (iv) femoral head: V23 < 1cc. Results: All five cases satisfied PTV D99.5% (average=36.82 Gy[RBE]; range, 36.36–37.13 Gy[RBE]). PTV D95% ranged from 36.66 Gy[RBE] to 38.65 Gy[RBE] and PTV V100 ranged from 95.47% to 97.95%. For the rectum, V24 was less than 35% (average=14.07 Gy[RBE]; range, 6.22–18.42%, whereas V33.6 Gy[RBE] was less than 10% (average=6.83; range, 3.06 – 9.15%). Rectal mean dose ranged from 4.22 Gy[RBE] to 9.97 Gy[RBE]. For the bladder, V39 was found to be less than 8 cc (average=3.69 cc; range, 0.19–7.68 cc). Bladder mean dose ranged from 4.22 Gy[RBE] to 18.83 Gy[RBE]. For the femoral head, V23 was 0 in all five cases. Conclusion: All five unilateral metallic prosthesis prostate cancer IMPT plans generated with one lateral and two anterior-oblique beams satisfied the dosimetric criteria of PCG-GU002-10 (NCT01230866) protocol.

  16. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  17. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-01-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V 18 Gy ), stomach (mean and V 20 Gy ), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V 18 Gy ), liver (mean dose), total bowel (V 20 Gy and mean dose), and small bowel (V 15 Gy absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing

  18. Proton channels and exchangers in cancer.

    Science.gov (United States)

    Spugnini, Enrico Pierluigi; Sonveaux, Pierre; Stock, Christian; Perez-Sayans, Mario; De Milito, Angelo; Avnet, Sofia; Garcìa, Abel Garcìa; Harguindey, Salvador; Fais, Stefano

    2015-10-01

    Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers, cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate, thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Sio, Terence T. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Lin, Huei-Kai; Shi, Qiuling [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cleeland, Charles S. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, J. Jack; Hernandez, Mike [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mendoza, Tito R. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Xin Shelley [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-07-15

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  20. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    International Nuclear Information System (INIS)

    Sio, Terence T.; Lin, Huei-Kai; Shi, Qiuling; Gunn, G. Brandon; Cleeland, Charles S.; Lee, J. Jack; Hernandez, Mike; Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David; Mendoza, Tito R.; Mohan, Radhe; Wang, Xin Shelley; Frank, Steven J.

    2016-01-01

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  1. Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II–III inoperable non-small cell lung cancer

    International Nuclear Information System (INIS)

    Nguyen, Quynh-Nhu; Ly, Ngoc Bui; Komaki, Ritsuko; Levy, Lawrence B.; Gomez, Daniel R.; Chang, Joe Y.; Allen, Pamela K.; Mehran, Reza J.; Lu, Charles; Gillin, Michael; Liao, Zhongxing; Cox, James D.

    2015-01-01

    Purpose: We report long-term disease control, survival, and toxicity for patients with locally advanced non-small cell lung cancer prospectively treated with concurrent proton therapy and chemotherapy on a nonrandomized case-only observational study. Methods: All patients received passive-scatter proton therapy, planned with 4D-CT–based simulation; all received proton therapy concurrent with weekly chemotherapy. Endpoints were local and distant control, disease-free survival (DFS), and overall survival (OS). Results: The 134 patients (21 stage II, 113 stage III; median age 69 years) had a median gross tumor volume (GTV) of 70 cm 3 (range, 5–753 cm 3 ); 77 patients (57%) received 74 Gy(RBE), and 57 (42%) received 60–72 Gy(RBE) (range, 60–74.1 Gy(RBE)). At a median follow-up time of 4.7 years, median OS times were 40.4 months (stage II) and 30.4 months (stage III). Five-year DFS rates were 17.3% (stage II) and 18.0% (stage III). OS, DFS, and local and distant control rates at 5 years did not differ by disease stage. Age and GTV were related to OS and DFS. Toxicity was tolerable, with 1 grade 4 esophagitis and 16 grade 3 events (2 pneumonitis, 6 esophagitis, 8 dermatitis). Conclusion: This report of outcomes after proton therapy for 134 patients indicated that this regimen produced excellent OS with tolerable toxicity

  2. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    International Nuclear Information System (INIS)

    Holtzman, Adam L.; Hoppe, Bradford S.; Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G.; Williams, Christopher R.; Li, Zuofeng; Mendenhall, Nancy P.

    2016-01-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  3. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, Adam L. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Hoppe, Bradford S., E-mail: bhoppe@floridaproton.org [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Williams, Christopher R. [Department of Surgery, University of Florida College of Medicine, Jacksonville, Florida (United States); Li, Zuofeng; Mendenhall, Nancy P. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States)

    2016-05-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  4. Evaluation and mitigation of the interplay effects for intensity modulated proton therapy for lung cancer in a clinical setting

    Science.gov (United States)

    Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y.; Liao, Li; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.; Lim, Gino; Zhang, Xiaodong

    2015-01-01

    Purpose The primary aim of this study was to evaluate the impact of interplay effects for intensity-modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of iso-layered re-scanning for mitigating these interplay effects. Methods and Materials Single-fraction 4D dynamic dose without considering re-scanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on moving patient described by 4D computed tomography (4DCT) during the IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase corresponding to the life span of that spot, and the final dose was accumulated to a reference CT phase by using deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected. Results The CTV prescription coverage for the 7 patients were 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53%, calculated with use of the 4D composite dose, and were 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% with use of the 1FX dynamic dose. For the 7 patients, the CTV coverage, calculated by using single-fraction dynamic dose, were 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, using maximum MU limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. Conclusions Single-fraction 4D dynamic dose without re-scanning was validated as a surrogate to evaluate the interplay effects for IMPT for lung cancer in the clinical setting. The interplay effects can be potentially mitigated by increasing the number of iso-layered re-scanning in each fraction delivery. PMID:25407877

  5. Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting.

    Science.gov (United States)

    Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong

    2014-01-01

    The primary aim of this study was to evaluate the impact of the interplay effects of intensity modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of isolayered rescanning to mitigate these interplay effects. A single-fraction 4-dimensional (4D) dynamic dose without considering rescanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on a moving patient, described by 4D computed tomography during IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase that corresponded to the life span of that spot, and the final dose was accumulated to a reference computed tomography phase by use of deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected for study. The clinical target volume (CTV) prescription coverage for the 7 patients was 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53% when calculated with the 4D composite dose and 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% when calculated with the 1FX dynamic dose. For these 7 patients, the CTV coverage calculated by use of a single-fraction dynamic dose was 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, with a maximum monitor unit limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. A single-fraction 4D dynamic dose without rescanning was validated as a surrogate to evaluate the interplay effects of IMPT for lung cancer in the clinical setting. The interplay effects potentially can be mitigated by increasing the amount of isolayered rescanning in each fraction delivery.

  6. WE-E-BRB-03: Implementation of PBS Proton Therapy Treatment for Free Breathing Lung Cancer Patients

    International Nuclear Information System (INIS)

    Li, H.

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  7. WE-E-BRB-03: Implementation of PBS Proton Therapy Treatment for Free Breathing Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  8. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    Science.gov (United States)

    Brodin, N P; Björk-Eriksson, T; Birk Christensen, C; Kiil-Berthelsen, A; Aznar, M C; Hollensen, C; Markova, E; Munck af Rosenschöld, P

    2015-01-01

    Objective: To investigate the impact of including fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). Methods: Target volumes were first delineated without and subsequently re-delineated with access to 18F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). Results: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. Conclusion: Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. Advances in knowledge: 18F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT. PMID:25494657

  9. Phase 1 Study of Dose Escalation in Hypofractionated Proton Beam Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Steven H.; Swanick, Cameron; Alvarado, Tina; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-15

    Background: Many patients with locally advanced non-small cell lung cancer (NSCLC) cannot undergo concurrent chemotherapy because of comorbidities or poor performance status. Hypofractionated radiation regimens, if tolerable, may provide an option to these patients for effective local control. Methods and Materials: Twenty-five patients were enrolled in a phase 1 dose-escalation trial of proton beam therapy (PBT) from September 2010 through July 2012. Eligible patients had histologically documented lung cancer, thymic tumors, carcinoid tumors, or metastatic thyroid tumors. Concurrent chemotherapy was not allowed, but concurrent treatment with biologic agents was. The dose-escalation schema comprised 15 fractions of 3 Gy(relative biological effectiveness [RBE])/fraction, 3.5 Gy(RBE)/fraction, or 4 Gy(RBE)/fraction. Dose constraints were derived from biologically equivalent doses of standard fractionated treatment. Results: The median follow-up time for patients alive at the time of analysis was 13 months (range, 8-28 months). Fifteen patients received treatment to hilar or mediastinal lymph nodes. Two patients experienced dose-limiting toxicity possibly related to treatment; 1 received 3.5-Gy(RBE) fractions and experienced an in-field tracheoesophageal fistula 9 months after PBT and 1 month after bevacizumab. The other patient received 4-Gy(RBE) fractions and was hospitalized for bacterial pneumonia/radiation pneumonitis 4 months after PBT. Conclusion: Hypofractionated PBT to the thorax delivered over 3 weeks was well tolerated even with significant doses to the lungs and mediastinal structures. Phase 2/3 trials are needed to compare the efficacy of this technique with standard treatment for locally advanced NSCLC.

  10. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In Vivo Imaging Biomarkers.

    Science.gov (United States)

    Niedzielski, Joshua S; Yang, Jinzhong; Mohan, Radhe; Titt, Uwe; Mirkovic, Dragan; Stingo, Francesco; Liao, Zhongxing; Gomez, Daniel R; Martel, Mary K; Briere, Tina M; Court, Laurence E

    2017-11-15

    To determine whether there exists any significant difference in normal tissue toxicity between intensity modulated radiation therapy (IMRT) or proton therapy for the treatment of non-small cell lung cancer. A total of 134 study patients (n=49 treated with proton therapy, n=85 with IMRT) treated in a randomized trial had a previously validated esophageal toxicity imaging biomarker, esophageal expansion, quantified during radiation therapy, as well as esophagitis grade (Common Terminology Criteria for Adverse Events version 3.0), on a weekly basis during treatment. Differences between the 2 modalities were statically analyzed using the imaging biomarker metric value (Kruskal-Wallis analysis of variance), as well as the incidence and severity of esophagitis grade (χ 2 and Fisher exact tests, respectively). The dose-response of the imaging biomarker was also compared between modalities using esophageal equivalent uniform dose, as well as delivered dose to an isotropic esophageal subvolume. No statistically significant difference in the distribution of esophagitis grade, the incidence of grade ≥3 esophagitis (15 and 11 patients treated with IMRT and proton therapy, respectively), or the esophageal expansion imaging biomarker between cohorts (P>.05) was found. The distribution of imaging biomarker metric values had similar distributions between treatment arms, despite a slightly higher dose volume in the proton arm (P>.05). Imaging biomarker dose-response was similar between modalities for dose quantified as esophageal equivalent uniform dose and delivered esophageal subvolume dose. Regardless of treatment modality, there was high variability in imaging biomarker response, as well as esophagitis grade, for similar esophageal doses between patients. There was no significant difference in esophageal toxicity from either proton- or photon-based radiation therapy as quantified by esophagitis grade or the esophageal expansion imaging biomarker. Copyright © 2017 Elsevier

  11. Sociodemographic disparities in the utilization of proton therapy for prostate cancer at an urban academic center

    Directory of Open Access Journals (Sweden)

    Kristina D. Woodhouse, MD

    2017-04-01

    Conclusion: Sociodemographic disparities exist in PT use for prostate cancer at an urban academic institution. Further investigation of potential barriers to access is warranted to ensure equitable distribution across all demographic groups.

  12. Hypofractionated High-Dose Proton Beam Therapy for Stage I Non-Small-Cell Lung Cancer: Preliminary Results of A Phase I/II Clinical Study

    International Nuclear Information System (INIS)

    Hata, Masaharu; Tokuuye, Koichi; Kagei, Kenji; Sugahara, Shinji; Nakayama, Hidetsugu; Fukumitsu, Nobuyoshi; Hashimoto, Takayuki; Mizumoto, Masashi; Ohara, Kiyoshi; Akine, Yasuyuki

    2007-01-01

    Purpose: To present treatment outcomes of hypofractionated high-dose proton beam therapy for Stage I non-small-cell lung cancer (NSCLC). Methods and Materials: Twenty-one patients with Stage I NSCLC (11 with Stage IA and 10 with Stage IB) underwent hypofractionated high-dose proton beam therapy. At the time of irradiation, patient age ranged from 51 to 85 years (median, 74 years). Nine patients were medically inoperable because of comorbidities, and 12 patients refused surgical resection. Histology was squamous cell carcinoma in 6 patients, adenocarcinoma in 14, and large cell carcinoma in 1. Tumor size ranged from 10 to 42 mm (median, 25 mm) in maximum diameter. Three and 18 patients received proton beam irradiation with total doses of 50 Gy and 60 Gy in 10 fractions, respectively, to primary tumor sites. Results: Of 21 patients, 2 died of cancer and 2 died of pneumonia at a median follow-up period of 25 months. The 2-year overall and cause-specific survival rates were 74% and 86%, respectively. All but one of the irradiated tumors were controlled during the follow-up period. Five patients showed recurrences 6-29 months after treatment, including local progression and new lung lesions outside of the irradiated volume in 1 and 4 patients, respectively. The local progression-free and disease-free rates were 95% and 79% at 2 years, respectively. No therapy-related toxicity of Grade ≥3 was observed. Conclusions: Hypofractionated high-dose proton beam therapy seems feasible and effective for Stage I NSCLC. Proton beams may contribute to enhanced efficacy and lower toxicity in the treatment of patients with Stage I NSCLC

  13. Comparative Cost-Effectiveness of Stereotactic Body Radiation Therapy Versus Intensity-Modulated and Proton Radiation Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Parthan, Anju; Pruttivarasin, Narin; Davies, Diane; Taylor, Douglas C. A.; Pawar, Vivek; Bijlani, Akash; Lich, Kristen Hassmiller; Chen, Ronald C.

    2012-01-01

    Objective: To determine the cost-effectiveness of several external beam radiation treatment modalities for the treatment of patients with localized prostate cancer. Methods: A lifetime Markov model incorporated the probabilities of experiencing treatment-related long-term toxicity or death. Toxicity probabilities were derived from published sources using meta-analytical techniques. Utilities and costs in the model were obtained from publicly available secondary sources. The model calculated quality-adjusted life expectancy and expected lifetime cost per patient, and derived ratios of incremental cost per quality-adjusted life year (QALY) gained between treatments. Analyses were conducted from both payer and societal perspectives. One-way and probabilistic sensitivity analyses were performed. Results: Compared to intensity-modulated radiation therapy (IMRT) and proton beam therapy (PT), stereotactic body radiation therapy (SBRT) was less costly and resulted in more QALYs. Sensitivity analyses showed that the conclusions in the base-case scenario were robust with respect to variations in toxicity and cost parameters consistent with available evidence. At a threshold of $50,000/QALY, SBRT was cost-effective in 75% and 94% of probabilistic simulations compared to IMRT and PT, respectively, from a payer perspective. From a societal perspective, SBRT was cost-effective in 75% and 96% of simulations compared to IMRT and PT, respectively, at a threshold of $50,000/QALY. In threshold analyses, SBRT was less expensive with better outcomes compared to IMRT at toxicity rates 23% greater than the SBRT base-case rates. Conclusion: Based on the assumption that each treatment modality results in equivalent long-term efficacy, SBRT is a cost-effective strategy resulting in improved quality-adjusted survival compared to IMRT and PT for the treatment of localized prostate cancer.

  14. Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer.

    Directory of Open Access Journals (Sweden)

    Anju eParthan

    2012-08-01

    Full Text Available Objective. To determine the cost-effectiveness of several external beam radiation treatment modalities for the treatment of patients with localized prostate cancer.Methods. A lifetime Markov model incorporated the probabilities of experiencing treatment-related long-term toxicity or death. Toxicity probabilities were derived from published sources using meta-analytical techniques. Utilities and costs in the model were obtained from publically available secondary sources. The model calculated quality-adjusted life expectancy and expected lifetime cost per patient, and derived ratios of incremental cost per quality-adjusted life year (QALY gained between treatments. Analyses were conducted from both a payer and societal perspectives. One-way and probabilistic sensitivity analyses were performed.Results. Compared to intensity modulated radiation therapy (IMRT and proton beam therapy (PT, stereotactic body radiation therapy (SBRT was less costly and resulted in more QALYs. Sensitivity analyses showed that the conclusions in the base-case scenario were robust with respect to variations in toxicity and cost parameters consistent with available evidence. At a threshold of $50,000/QALY, SBRT was cost effective in 75%, and 94% of probabilistic simulations compared to IMRT and PT, respectively, from a payer perspective. From a societal perspective, SBRT was cost-effective in 75%, and 96% of simulations compared to IMRT and PT, respectively, at a threshold of $50,000/QALY. In threshold analyses, SBRT was less expensive with better outcomes compared to IMRT at toxicity rates 23% greater than the SBRT base-case rates. Conclusions. Based on the assumption that each treatment modality results in equivalent long-term efficacy, SBRT is a cost-effective strategy resulting in improved quality-adjusted survival compared to IMRT and PT for the treatment of localized prostate cancer.

  15. Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Liu, Yuan; Moore, Michael G.; Johnstone, Peter A. S.

    2016-01-01

    To evaluate acute toxicity endpoints in a cohort of patients receiving head and neck radiation with proton therapy or intensity modulated radiation therapy (IMRT). Forty patients received comprehensive head and neck radiation including bilateral cervical nodal radiation, given with or without chemotherapy, for tumors of the nasopharynx, nasal cavity or paranasal sinuses, any T stage, N0-2. Fourteen received comprehensive treatment with proton therapy, and 26 were treated with IMRT, either comprehensively or matched to proton therapy delivered to the primary tumor site. Toxicity endpoints assessed included g-tube dependence at the completion of radiation and at 3 months after radiation, opioid pain medication requirement compared to pretreatment normalized as equivalent morphine dose (EMD) at completion of treatment, and at 1 and 3 months after radiation. In a multivariable model including confounding variables of concurrent chemotherapy and involved nodal disease, comprehensive head and neck radiation therapy using proton therapy was associated with a lower opioid pain requirement at the completion of radiation and a lower rate of gastrostomy tube dependence by the completion of radiation therapy and at 3 months after radiation compared to IMRT. Proton therapy was associated with statistically significant lower mean doses to the oral cavity, esophagus, larynx, and parotid glands. In subgroup analysis of 32 patients receiving concurrent chemotherapy, there was a statistically significant correlation with a greater opioid pain medication requirement at the completion of radiation and both increasing mean dose to the oral cavity and to the esophagus. Proton therapy was associated with significantly reduced radiation dose to assessed non-target normal tissues and a reduced rate of gastrostomy tube dependence and opioid pain medication requirements. This warrants further evaluation in larger studies, ideally with patient-reported toxicity outcomes and quality of life

  16. Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field

    Science.gov (United States)

    Paganetti, Harald; Athar, Basit S.; Moteabbed, Maryam; Adams, Judith A.; Schneider, Uwe; Yock, Torunn I.

    2012-10-01

    There is clinical evidence that second malignancies in radiation therapy occur mainly within the beam path, i.e. in the medium or high-dose region. The purpose of this study was to assess the risk for developing a radiation-induced tumor within the treated volume and to compare this risk for proton therapy and intensity-modulated photon therapy (IMRT). Instead of using data for specific patients we have created a representative scenario. Fully contoured age- and gender-specific whole body phantoms (4 year and 14 year old) were uploaded into a treatment planning system and tumor volumes were contoured based on patients treated for optic glioma and vertebral body Ewing's sarcoma. Treatment plans for IMRT and proton therapy treatments were generated. Lifetime attributable risks (LARs) for developing a second malignancy were calculated using a risk model considering cell kill, mutation, repopulation, as well as inhomogeneous organ doses. For standard fractionation schemes, the LAR for developing a second malignancy from radiation therapy alone was found to be up to 2.7% for a 4 year old optic glioma patient treated with IMRT considering a soft-tissue carcinoma risk model only. Sarcoma risks were found to be below 1% in all cases. For a 14 year old, risks were found to be about a factor of 2 lower. For Ewing's sarcoma cases the risks based on a sarcoma model were typically higher than the carcinoma risks, i.e. LAR up to 1.3% for soft-tissue sarcoma. In all cases, the risk from proton therapy turned out to be lower by at least a factor of 2 and up to a factor of 10. This is mainly due to lower total energy deposited in the patient when using proton beams. However, the comparison of a three-field and four-field proton plan also shows that the distribution of the dose, i.e. the particular treatment plan, plays a role. When using different fractionation schemes, the estimated risks roughly scale with the total dose difference in%. In conclusion, proton therapy can

  17. SU-E-T-628: Predicted Risk of Post-Irradiation Cerebral Necrosis in Pediatric Brain Cancer Patients: A Treatment Planning Comparison of Proton Vs. Photon Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, D [Willis Knighton Cancer Center, Shreveport, LA (United States); Zhang, R; Sanders, M [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Newhauser, W [Louisiana State University, Baton Rouge, LA (United States)

    2015-06-15

    Purpose: Post-irradiation cerebral necrosis (PICN) is a severe late effect that can Result from brain cancers treatment using radiation therapy. The purpose of this study was to compare the treatment plans and predicted risk of PICN after volumetric modulated arc therapy (VMAT) to the risk after passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT) in a cohort of pediatric patients. Methods: Thirteen pediatric patients with varying age and sex were selected for this study. A clinical treatment volume (CTV) was constructed for 8 glioma patients and 5 ependymoma patients. Prescribed dose was 54 Gy over 30 fractions to the planning volume. Dosimetric endpoints were compared between VMAT and proton plans. The normal tissue complication probability (NTCP) following VMAT and proton therapy planning was also calculated using PICN as the biological endpoint. Sensitivity tests were performed to determine if predicted risk of PICN was sensitive to positional errors, proton range errors and selection of risk models. Results: Both PSPT and IMPT plans resulted in a significant increase in the maximum dose and reduction in the total brain volume irradiated to low doses compared with the VMAT plans. The average ratios of NTCP between PSPT and VMAT were 0.56 and 0.38 for glioma and ependymoma patients respectively and the average ratios of NTCP between IMPT and VMAT were 0.67 and 0.68 for glioma and ependymoma plans respectively. Sensitivity test revealed that predicted ratios of risk were insensitive to range and positional errors but varied with risk model selection. Conclusion: Both PSPT and IMPT plans resulted in a decrease in the predictive risk of necrosis for the pediatric plans studied in this work. Sensitivity analysis upheld the qualitative findings of the risk models used in this study, however more accurate models that take into account dose and volume are needed.

  18. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  19. The clinical case for proton beam therapy

    International Nuclear Information System (INIS)

    Foote, Robert L; Haddock, Michael G; Yan, Elizabeth; Laack, Nadia N; Arndt, Carola A S

    2012-01-01

    Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Proton beam therapy is a technically advanced and promising form of radiation therapy

  20. PROTON RADIATION THERAPY: CLINICAL APPLICATION OPPORTUNITIES AND RESEARCH PROSPECTS

    Directory of Open Access Journals (Sweden)

    M. V. Zabelin

    2018-01-01

    Full Text Available This article is the review of literature concerning use of proton beam therapy in treatment of oncology. The staticized data on comparison of effi ciency of this method at an eye melanoma are lit. Advantages of proton therapy on the level of local control and depression of frequency of development of the radio induced cataract are refl ected in the provided data. In evident material the technology of preparation and carrying out radiation of an eye is shortly covered with a fascicle of protons. The experience of use of proton therapy of tumors of a skull base got for the last several decades, showed good results. Physical properties of a fascicle of protons allow to achieve the maximum dose conformality, having lowered, thereby, a radial load on the next crucial anatomical structures. The presented material on an oncopediatrics shows insuffi cient knowledge of scientists concerning advantage of a fascicle of protons over modern methods of photon radiation. There are only preliminary clinical results concerning generally of treatment of cranyopharyngiomas. At cancer therapy of a mammary gland, proton therapy showed the best local control of postoperative recurrent tumors, and also depression of a dose load on the contralateral party. The available results of the retrospective analysis of clinical data in the University medical center of Lome Linda, testify to advantages of proton therapy of the localized prostate cancer. The lack of a biochemical recurrence and a local tumoral progression within 5 years after radiation was shown. The data obtained from experience of use of proton radiation therapy with passively scattered fascicle for cancer therapy of a prostate at an early stage showed the admixed results in comparison with modern methods of radiation therapy with the modulated intensity. In treatment of non-small cell cancer of mild advantage of proton therapy aren’t absolutely proved yet. There are data on extreme toxicity of a combination

  1. Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer.

    Science.gov (United States)

    Liu, Chenbin; Schild, Steven E; Chang, Joe Y; Liao, Zhongxing; Korte, Shawn; Shen, Jiajian; Ding, Xiaoning; Hu, Yanle; Kang, Yixiu; Keole, Sameer R; Sio, Terence T; Wong, William W; Sahoo, Narayan; Bues, Martin; Liu, Wei

    2018-06-01

    To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large

  2. Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei, E-mail: Liu.Wei@mayo.edu [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States); Schild, Steven E. [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States); Chang, Joe Y.; Liao, Zhongxing [Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Yu-Hui [Division of Health Sciences Research, Mayo Clinic Arizona, Phoenix, Arizona (United States); Wen, Zhifei [Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shen, Jiajian; Stoker, Joshua B.; Ding, Xiaoning; Hu, Yanle [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States); Sahoo, Narayan [Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Herman, Michael G. [Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota (United States); Vargas, Carlos; Keole, Sameer; Wong, William; Bues, Martin [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States)

    2016-05-01

    Purpose: The purpose of this study was to compare the impact of uncertainties and interplay on 3-dimensional (3D) and 4D robustly optimized intensity modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods and Materials: IMPT plans were created for 11 nonrandomly selected non-small cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D computed tomography (CT) to irradiate clinical target volume (CTV). Regular fractionation (66 Gy [relative biological effectiveness; RBE] in 33 fractions) was considered. In 4D optimization, the CTV of individual phases received nonuniform doses to achieve a uniform cumulative dose. The root-mean-square dose-volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram (DVH) indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed rank test. Results: 4D robust optimization plans led to smaller AUC for CTV (14.26 vs 18.61, respectively; P=.001), better CTV coverage (Gy [RBE]) (D{sub 95%} CTV: 60.6 vs 55.2, respectively; P=.001), and better CTV homogeneity (D{sub 5%}-D{sub 95%} CTV: 10.3 vs 17.7, resspectively; P=.002) in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage (D{sub 95%} CTV: 64.5 vs 63.8, respectively; P=.0068), comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions: Our exploratory methodology study showed

  3. Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. A comparison of benefits

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Peter de; Westerveld, Henrike; Smit, Mark; Bel, Arjan; Rasch, Coen R.N.; Stalpers, Lukas J.A. [Academic Medical Center, University of Amsterdam, Department of Radiation Oncology, Amsterdam (Netherlands); Schoot, Agustinus J.A.J. van de [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Radiation Oncology, Amsterdam (Netherlands); Buist, Marrije R. [Academic Medical Center, University of Amsterdam, Department of Gynaecology and Obstetrics, Amsterdam (Netherlands)

    2018-03-15

    The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V{sub 15Gy}, V{sub 30Gy}, V{sub 45Gy} and D{sub mean} for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. Both IMPT and MRI-based target tailoring resulted in significant reductions in V{sub 15Gy}, V{sub 30Gy}, V{sub 45Gy} and D{sub mean} for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V{sub 45Gy} for bowel bag was >275 cm{sup 3} and >200 cm{sup 3}, respectively, during standard IGART alone. In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. (orig.) [German] In der vorliegenden Studie wurden die moeglichen klinischen Vorteile einer Zielvolumenpraezisierung durch Ausschluss des tumorfreien proximalen Gebaermutteranteils bei der ''image-guided adaptive radiotherapy

  4. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Water, Tara A. van de, E-mail: t.a.van.de.water@rt.umcg.nl [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Lomax, Antony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Bijl, Hendrik P.; Schilstra, Cornelis [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Hug, Eugen B. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Langendijk, Johannes A. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2012-02-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements. In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose-volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves quality

  5. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A [Riverside, CA; Beloussov, Alexandre V [Bernardino, CA; Bakir, Julide [Alta Loma, CA; Armon, Deganit [Redlands, CA; Olsen, Howard B [Colton, CA; Salem, Dana [Riverside, CA

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  6. SU-E-T-14: A Feasibility Study of Using Modified AP Proton Beam for Post-Operative Pancreatic Cancer Therapy

    International Nuclear Information System (INIS)

    Ding, X; Witztum, A; Kenton, O; Younan, F; Dormer, J; Kremmel, E; Lin, H; Liu, H; Tang, S; Both, S; Kassaee, A; Avery, S

    2014-01-01

    Purpose: Due to the unpredictability of bowel gas movement, the PA beam direction is always favored for robust proton therapy in post-operative pancreatic cancer treatment. We investigate the feasibility of replacing PA beam with a modified AP beam to take the bowel gas uncertainty into account. Methods: Nine post-operative pancreatic cancer patients treated with proton therapy (5040cGy, 28 fractions) in our institution were randomly selected. The original plan uses PA and lateral direction passive-scattering proton beams. Beam weighting is about 1:1. All patients received weekly verification CTs to assess the daily variations(total 17 verification CTs). The PA direction beam was replaced by two other groups of AP direction beam. Group AP: takes 3.5% range uncertainty into account. Group APmod: compensates the bowel gas uncertainty by expanding the proximal margin to 2cm more. The 2cm margin was acquired from the average bowel diameter in from 100 adult abdominal CT scans near pancreatic region (+/- 5cm superiorly and inferiorly). Dose Volume Histograms(DVHs) of the verification CTs were acquired for robustness study. Results: Without the lateral beam, Group APmod is as robust as Group PA. In Group AP, more than 10% of iCTV D98/D95 were reduced by 4–8%. LT kidney and Liver dose robustness are not affected by the AP/PA beam direction. There is 10% of chance that RT kidney and cord will be hit by AP proton beam due to the bowel gas. Compared to Group PA, APmod plan reduced the dose to kidneys and cord max significantly, while there is no statistical significant increase in bowel mean dose. Conclusion: APmod proton beam for the target coverage could be as robust as the PA direction without sacrificing too much of bowel dose. When the AP direction beam has to be selected, a 2cm proximal margin should be considered

  7. Hadron Therapy for Cancer Treatment

    International Nuclear Information System (INIS)

    Lennox, Arlene

    2003-01-01

    The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.

  8. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  9. Proton Beam Therapy for Patients With Medically Inoperable Stage I Non-Small-Cell Lung Cancer at the University of Tsukuba

    International Nuclear Information System (INIS)

    Nakayama, Hidetsugu; Sugahara, Shinji; Tokita, Mari; Satoh, Hiroaki; Tsuboi, Koji; Ishikawa, Shigemi; Tokuuye, Koichi

    2010-01-01

    Purpose: To evaluate in a retrospective review the role of proton beam therapy for patients with medically inoperable Stage I non-small-cell lung cancer (NSCLC). Patients and Methods: From November 2001 to July 2008, 55 medically inoperable patients with Stage I NSCLC were treated with proton beam therapy. A total of 58 (T1/T2, 30/28) tumors were treated. The median age of study participants was 77 years (range, 52-86 years). A total dose of 66 GyE in 10 fractions was given to peripherally located tumors and 72.6 GyE in 22 fractions to centrally located tumors. Results: The rates (95% confidence interval) of overall and progression-free survival of all patients and of local control of all tumors at 2 years were 97.8% (93.6-102.0%), 88.7% (77.9-99.5%), and 97.0% (91.1-102.8%), respectively. There was no statistically significant difference in progression-free rate between T1 and T2 tumors (p = 0.87). Two patients (3.6%) had deterioration in pulmonary function, and 2 patients (3.6%) had Grade 3 pneumonitis. Conclusion: Proton beam therapy was effective and well tolerated in medically inoperable patients with Stage I NSCLC.

  10. Journal of Proton Therapy: Call for Papers

    Directory of Open Access Journals (Sweden)

    Journal of Proton Therapy

    2015-03-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comFor more information, please visit www. protonjournal.comwww. protonjournal.org **************************************Journal of Proton Therapy Welcomes Editorial Board Members Chee-Wai Cheng, PhD Dr. Cheng is the Director of Proton Medical Physics at the University Hospitals as well as Professor of Clinical Radiation Oncology at the Case Western Reserve University, Cleveland, Ohio, USA.Carlos Vargas, MDDr. Vargas is a Radiation Oncologist at the Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona. Luca Cozzi, PhD Dr. Cozzi is a Clinical Research Scientist at the Department of Radiotherapy and Radiosurgery at Humanitas Cancer Center, Milan, Italy.Ted Ling, MD Dr. Ling is a Resident Physician at the Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California, USA.Haibo Lin, PhD Dr. Lin is a Medical Physicist at the Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.Xiaodong Zhang, PhD Dr. Zhang is an Associate Professor at the Department of Radiation Physics

  11. Planning comparison between intensity modulated radiation therapy and intensity modulated proton therapy in a case of head and neck cancer

    Science.gov (United States)

    Nguyen, T. T. C.; Nguyen, B. T.; Mai, N. V.

    2018-03-01

    In this work, we made the comparison between IMRT plan and IMPT plan for a head and neck case. We used Prowess Panther to perform IMRT plan and LAP- CERR for IMPT plan. The result showed that IMPT plan had better coverage than IMRT plan. In the IMRT plan, normal structures received higher dose with higher volume. Especially, the maximum dose of spinal cord is 31.5 Gy (RBE) using IMRT technique compared to 13.5 Gy (RBE) using IMPT technique. These results showed that IMPT is beneficial for head and neck cancer compared to IMRT technique.

  12. A feasibility study of a hybrid breast-immobilization system for early breast cancer in proton beam therapy.

    Science.gov (United States)

    Arimura, Takeshi; Ogino, Takashi; Yoshiura, Takashi; Matsuyama, Mitsugi; Kondo, Naoaki; Miyazaki, Hideki; Sakuragi, Akari; Ohara, Takayuki; Ogo, Etsuyo; Hishikawa, Yoshio

    2017-04-01

    We aimed to develop a new breast-immobilizing system for proton beam therapy (PBT) of early breast cancer (EBC) that would provide the optimum breast shape during the treatment as well as increased fixation reliability by reducing the influence of respiratory movement. The breast-immobilizing system (HyBIS; hybrid breast-immobilizing system) consists of a whole body immobilization system (WBIS), position-converting device (to change patient position), photo-scanning system, breast cup (made using a three-dimensional printer), breast cup-fitting apparatus, breast cup-holding device (to ensure the breast remains lifted in the supine position), and dedicated stretcher fixed to the WBIS (to carry the patient). We conducted a phantom experiment to evaluate the effect of the HyBIS on breast immobilization during the respiratory cycle. Thirteen markers were embedded in the right breast of a female phantom that simulated respiratory thoracic movement at an amplitude of 15 mm, and their displacements on four-dimensional computed tomography were compared between conditions with and without immobilization by HyBIS. When immobilization was applied with the HyBIS, breast protrusion was maintained in the phantom in the supine treatment position. The mean values of the anteroposterior, superoinferior, lateral, and three-dimensional (3D) displacement of the markers were 2.7 ± 1.7, 0.3 ± 0.5, 0.9 ± 0.8, and 3.1 ± 1.6 mm with HyBIS, and 5.5 ± 2.9, 0.6 ± 0.8, 0.5 ± 0.4, and 5.6 ± 2.9 mm without HyBIS, respectively; thus, the anteroposterior (P = 0.014) and 3D (P = 0.007) displacements significantly improved with HyBIS. We demonstrated that the HyBIS can help retain the protruded breast shape in the supine position during treatment and can reduce the influence of respiratory movement. Thus, the HyBIS can help to reliably and precisely perform PBT for EBC. © 2017 American Association of Physicists in Medicine.

  13. Proton-Beam Therapy for Olfactory Neuroblastoma

    International Nuclear Information System (INIS)

    Nishimura, Hideki; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-01-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy E ), with 2.5-Gy E once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study

  14. Power of protons in the fight against cancer

    International Nuclear Information System (INIS)

    Hansen, W.

    2011-01-01

    a large percentage of patients with cancer are receiving radiotherapy as part of their treatment. At present it is possible to plan with precision these treatments, reducing the risk of side effects and increasing therapeutic efficiency. Proton therapy (also known as particle therapy) is a form external radiotherapy that uses beams of energized protons to treat cancer. The main advantage of proton therapy is its ability to accurately manage an optimal dose of radiation to the tumor, without damaging surrounding healthy tissues and significantly reducing the likelihood and/or severity of side effects. (Author)

  15. Australian proton therapy facilities - status report

    International Nuclear Information System (INIS)

    Bleasel, S.; Jackson, M.

    2000-01-01

    may be funded by a combination of Private Enterprise and Government. This presentation describes the steps taken to date and the proposed 'road map' for the future. Physicists are invited to consider how they would use such a facility. In partnership with Mitsubishi and Toshiba, Hitachi built the rotating gantries for the proton facility at the National Cancer Centre in Kashiwa, Japan. Subsequently, they built the scientific/medical proton facility at Wakasa Bay in Japan. In March 2000 Hitachi will commission a facility at Tsukuba University Hospital dedicated to proton therapy and related basic research

  16. Proton Therapy Research and Treatment Center

    Energy Technology Data Exchange (ETDEWEB)

    Goodnight, J.E. Jr. (University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center); Alonso, J.R. (Lawrence Berkeley Lab., CA (United States))

    1992-05-01

    This Grant proposal outlines the steps that will be undertaken to bring the UC Davis Proton Therapy Research and Treatment, known locally as the Proton Therapy Facility (PTF), through its design and construction phases. This application concentrates on the design phase of the PTF project.

  17. Accelerators for cancer therapy

    International Nuclear Information System (INIS)

    Lennox, Arlene J.

    2000-01-01

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy

  18. Quality verification for respiratory gated proton therapy

    International Nuclear Information System (INIS)

    Kim, Eun Sook; Jang, Yo Jong; Park, Ji Yeon; Kang, Dong Yun; Yeom, Doo Seok

    2013-01-01

    To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 g/cm 2 and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 g/cm 2 . And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 g/cm 2 , that of SOBP were 0.010, -0.016, -0.004 g/cm 2 and that of output factor were 0.001, -0.001, 0.002 cGy/MU. It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this

  19. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    Science.gov (United States)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423

  20. A method for selection of beam angles robust to intra-fractional motion in proton therapy of lung cancer

    DEFF Research Database (Denmark)

    Casares-Magaz, Oscar; Toftegaard, Jakob; Muren, Ludvig P.

    2014-01-01

    that are robust to patient-specific patterns of intra-fractional motion. Material and methods. Using four-dimensional computed tomography (4DCT) images of three lung cancer patients we evaluated the impact of the WEPL changes on target dose coverage for a series of coplanar single-beam plans. The plans were...... reduction was associated with the mean difference between the WEPL and the phase-averaged WEPL computed for all beam rays across all possible gantry-couch angle combinations. Results. The gantry-couch angle maps showed areas of both high and low WEPL variation, with overall quite similar patterns yet...... presented a 4DCT-based method to quantify WEPL changes during the breathing cycle. The method identified proton field gantry-couch angle combinations that were either sensitive or robust to WEPL changes. WEPL variations along the beam path were associated with target under-dosage....

  1. Axillary irradiation omitting axillary dissection in breast cancer: is there a role for shoulder-sparing proton therapy?

    Science.gov (United States)

    Farace, P; Deidda, M A; Amichetti, M

    2015-10-01

    The recent EORTC 10981-22023 AMAROS trial showed that axillary radiotherapy and axillary lymph node dissection provide comparable local control and reduced lymphoedema in the irradiated group. However, no significant differences between the two groups in range of motion and quality of life were reported. It has been acknowledged that axillary irradiation could have induced some toxicity, particularly shoulder function impairment. In fact, conventional breast irradiation by tangential beams has to be modified to achieve full-dose coverage of the axillary nodes, including in the treatment field a larger portion of the shoulder structures. In this scenario, alternative irradiation techniques were discussed. Compared with modern photon techniques, axillary irradiation by proton therapy has the potential for sparing the shoulder without detrimental increase of the medium-to-low doses to the other normal tissues.

  2. SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, J [Paul Scherrer Institut, Villigen PSI (Switzerland); Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Perrin, R [Paul Scherrer Institut, Villigen PSI (Switzerland); Persson, G F; Engelholm, S A [Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Lomax, A [Paul Scherrer Institut, Villigen PSI (Switzerland); Department of Physics, ETH, Zürich (Switzerland); Josipovic, M; Rosenschöld, AF [Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Weber, D C [Paul Scherrer Institut, Villigen PSI (Switzerland); University of Zürich, Zürich (Switzerland); Munck, P

    2016-06-15

    Purpose: The breath-hold (BH) technique has been suggested to mitigate motion and reduce target coverage degradation due to motion effects. The aim of this study was to investigate the effect of inter-BH residual motion on the dose distribution for pencil beam scanned (PBS) proton therapy of locally-advanced lung cancer patients. Methods: A dataset of visually-guided BH CT scans was acquired (10 scans per patient) taken from five lung cancer patients: three intra-fractionally repeated CT scans on treatment days 2,16 and 31, in addition to the day 0 planning CT scan. Three field intensity-modulated proton therapy (IMPT) plans were constructed on the planning CT scan. Dose delivery on fraction 2, 16 and 31 were simulated on the three consecutive CT scans, assuming BH duration of 20s and soft tissue match. The dose was accumulated in the planning CT using deformable image registration, and scaled to simulate the full treatment of 66Gy(RBE) in 33 fractions. Results: The mean dose to the lungs and heart, and maximum dose to the spinal cord and esophagus were within 1% of the planned dose. The CTV V95% decreased and the inhomogeneity (D5%–D95%) increased on average 4.1% (0.4–12.2%) and 5.8% (2.2–13.4%), respectively, over the five patient cases. Conclusion: The results showed that the BH technique seems to spare the OARs in spite of inter-BH residual motion. However, small degradation of target coverage occurred for all patients, with 3/5 patients having a decrease in V95% ≤1%. For the remaining two patients, where V95% decreased up to 12%, the cause could be related to treatment related anatomical changes and, as in photon therapy, plan adaptation may be necessary to ensure target coverage. This study showed that BH could be a potential treatment option to reliably mitigate motion for the treatment of locally-advanced lung cancer using PBS proton therapy.

  3. SU-F-BRD-12: When Does Pencil Beam Scanning Become Superior to Passive Scattered Proton Therapy for Pediatric Head and Neck Cancers?

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M; Depauw, N; Kooy, H; Yock, T; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To investigate the dosimetric benefits of pencil beam scanning (PBS) compared with passive scattered (PS) proton therapy for treatment of pediatric head&neck patients as a function of the PBS spot size and explore the advantages of using apertures in PBS. Methods: Ten pediatric patients with head&neck cancers treated by PS proton therapy at our institution were retrospectively selected. The histologies included rhabdomyosarcoma, ependymoma, astrocytoma, craniopharyngioma and germinoma. The prescribed dose ranged from 36 to 54 Gy(RBE). Five PBS plans were created for each patient using variable spot size (average sigma at isocenter) and choice of beam specific apertures: (1) 10mm spots, (2) 10mm spots with apertures, (3) 6mm spots, (4) 6mm spots with apertures, and (5) 3mm spots. The plans were optimized for intensity modulated proton therapy (IMPT) with no single beam uniformity constraints. Dose volume indices as well as equivalent uniform dose (EUD) were compared between PS and PBS plans. Results: Although target coverage was clinically adequate for all cases, the plans with largest (10mm) spots provide inferior quality compared with PS in terms of dose to organs-at-risk (OAR). However, adding apertures to these plans ensured lower OAR dose than PS. The average EUD difference between PBS and PS plans over all patients and organs at risk were (1) 2.5%, (2) −5.1%, (3) -5%, (4) −7.8%, and (5) −9.5%. As the spot size decreased, more conformal plans were achieved that offered similar target coverage but lower dose to the neighboring healthy organs, while alleviating the need for using apertures. Conclusion: The application of PBS does not always translate to better plan qualities compared to PS depending on the available beam spot size. We recommend that institutions with spot size larger than ∼6mm at isocenter consider using apertures to guarantee clinically comparable or superior dosimetric efficacy to PS treatments.

  4. Evaluation of the breath-hold approach in proton therapy of lung tumors

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny

    Proton therapy has the potential to improve the treatment effect as compared to conventional radiation therapy for lung cancer patients. However, the proton therapy delivery is prone to uncertainties caused by anatomical changes and motion during the treatment and between the treatment fractions ...

  5. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  6. Multiple field optimisation for proton therapy

    International Nuclear Information System (INIS)

    Lomax, A.

    1997-01-01

    Intensity modulation in radiation treatment planning for photons has great potential for tailoring dose distributions in particularly challenging cases. Here we describe some preliminary work into the application of such methods to proton therapy. (author) 4 refs

  7. Practical Radiobiology for Proton Therapy Planning

    Science.gov (United States)

    Jones, Bleddyn

    2017-12-01

    Practical Radiobiology for Proton Therapy Planning covers the principles, advantages and potential pitfalls that occur in proton therapy, especially its radiobiological modelling applications. This book is intended to educate, inform and to stimulate further research questions. Additionally, it will help proton therapy centres when designing new treatments or when unintended errors or delays occur. The clear descriptions of useful equations for high LET particle beam applications, worked examples of many important clinical situations, and discussion of how proton therapy may be optimized are all important features of the text. This important book blends the relevant physics, biology and medical aspects of this multidisciplinary subject. Part of Series in Physics and Engineering in Medicine and Biology.

  8. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images

    International Nuclear Information System (INIS)

    Koivula, Lauri

    2016-01-01

    Purpose: Magnetic resonance imaging (MRI) is increasingly used for radiotherapy target delineation, image guidance, and treatment response monitoring. Recent studies have shown that an entire external x-ray radiotherapy treatment planning (RTP) workflow for brain tumor or prostate cancer patients based only on MRI reference images is feasible. This study aims to show that a MRI-only based RTP workflow is also feasible for proton beam therapy plans generated in MRI-based substitute computed tomography (sCT) images of the head and the pelvis. Methods: The sCTs were constructed for ten prostate cancer and ten brain tumor patients primarily by transforming the intensity values of in-phase MR images to Hounsfield units (HUs) with a dual model HU conversion technique to enable heterogeneous tissue representation. HU conversion models for the pelvis were adopted from previous studies, further extended in this study also for head MRI by generating anatomical site-specific conversion models (a new training data set of ten other brain patients). This study also evaluated two other types of simplified sCT: dual bulk density (for bone and water) and homogeneous (water only). For every clinical case, intensity modulated proton therapy (IMPT) plans robustly optimized in standard planning CTs were calculated in sCT for evaluation, and vice versa. Overall dose agreement was evaluated using dose–volume histogram parameters and 3D gamma criteria. Results: In heterogeneous sCTs, the mean absolute errors in HUs were 34 (soft tissues: 13, bones: 92) and 42 (soft tissues: 9, bones: 97) in the head and in the pelvis, respectively. The maximum absolute dose differences relative to CT in the brain tumor clinical target volume (CTV) were 1.4% for heterogeneous sCT, 1.8% for dual bulk sCT, and 8.9% for homogenous sCT. The corresponding maximum differences in the prostate CTV were 0.6%, 1.2%, and 3.6%, respectively. The percentages of dose points in the head and pelvis passing 1% and 1 mm

  9. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, Lauri [Department of Radiation Oncology, Comprehensive Cancer Center, Helsinki University Central Hospital, P.O. Box 180, Helsinki 00029 HUS (Finland)

    2016-08-15

    Purpose: Magnetic resonance imaging (MRI) is increasingly used for radiotherapy target delineation, image guidance, and treatment response monitoring. Recent studies have shown that an entire external x-ray radiotherapy treatment planning (RTP) workflow for brain tumor or prostate cancer patients based only on MRI reference images is feasible. This study aims to show that a MRI-only based RTP workflow is also feasible for proton beam therapy plans generated in MRI-based substitute computed tomography (sCT) images of the head and the pelvis. Methods: The sCTs were constructed for ten prostate cancer and ten brain tumor patients primarily by transforming the intensity values of in-phase MR images to Hounsfield units (HUs) with a dual model HU conversion technique to enable heterogeneous tissue representation. HU conversion models for the pelvis were adopted from previous studies, further extended in this study also for head MRI by generating anatomical site-specific conversion models (a new training data set of ten other brain patients). This study also evaluated two other types of simplified sCT: dual bulk density (for bone and water) and homogeneous (water only). For every clinical case, intensity modulated proton therapy (IMPT) plans robustly optimized in standard planning CTs were calculated in sCT for evaluation, and vice versa. Overall dose agreement was evaluated using dose–volume histogram parameters and 3D gamma criteria. Results: In heterogeneous sCTs, the mean absolute errors in HUs were 34 (soft tissues: 13, bones: 92) and 42 (soft tissues: 9, bones: 97) in the head and in the pelvis, respectively. The maximum absolute dose differences relative to CT in the brain tumor clinical target volume (CTV) were 1.4% for heterogeneous sCT, 1.8% for dual bulk sCT, and 8.9% for homogenous sCT. The corresponding maximum differences in the prostate CTV were 0.6%, 1.2%, and 3.6%, respectively. The percentages of dose points in the head and pelvis passing 1% and 1 mm

  10. Estimation dose of secondary neutrons in proton therapy

    International Nuclear Information System (INIS)

    Urban, T.

    2014-01-01

    Most of proton therapy centers for cancer treatment are still based on the passive scattering, in some of them there is system of the active scanning installed as well. The aim of this study is to compare secondary neutron doses in and around target volumes in proton therapy for both treatment techniques and for different energies and profile of incident proton beam. The proton induced neutrons have been simulated in the very simple geometry of tissue equivalent phantom (imitate the patient) and scattering and scanning nozzle, respectively. In simulations of the scattering nozzle, different types of scattering filters and brass collimators have been used as well. 3D map of neutron doses in and around the chosen/potential target volume in the phantom/patient have been evaluated and compared in the context of the dose deposited in the target volume. Finally, the simulation results have been compared with published data. (author)

  11. A Phase 2 Trial of Concurrent Chemotherapy and Proton Therapy for Stage III Non-Small Cell Lung Cancer: Results and Reflections Following Early Closure of a Single-Institution Study

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Bradford S., E-mail: bhoppe@floridaproton.org [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States); Henderson, Randal [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States); Pham, Dat; Cury, James D.; Bajwa, Abubakr [Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida (United States); Morris, Christopher G. [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States); D' Agostino, Harry [Department of Surgery, University of Florida College of Medicine, Jacksonville, Florida (United States); Flampouri, Stella; Huh, Soon; Li, Zuofeng [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States); McCook, Barry [Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida (United States); Nichols, Romaine C. [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States)

    2016-05-01

    Purpose: Proton therapy has been shown to reduce radiation dose to organs at risk (OAR) and could be used to safely escalate the radiation dose. We analyzed outcomes in a group of phase 2 study patients treated with dose-escalated proton therapy with concurrent chemotherapy for stage 3 non-small cell lung cancer (NSCLC). Methods and Materials: From 2009 through 2013, LU02, a phase 2 trial of proton therapy delivering 74 to 80 Gy at 2 Gy/fraction with concurrent chemotherapy for stage 3 NSCLC, was opened to accrual at our institution. Due to slow accrual and competing trials, the study was closed after just 14 patients (stage IIIA, 9 patients; stage IIIB, 5 patients) were accrued over 4 years. During that same time period, 55 additional stage III patients were treated with high-dose proton therapy, including 7 in multi-institutional proton clinical trials, 4 not enrolled due to physician preference, and 44 who were ineligible based on strict entry criteria. An unknown number of patients were ineligible for enrollment due to insurance coverage issues and thus were treated with photon radiation. Median follow-up of surviving patients was 52 months. Results: Two-year overall survival and progression-free survival rates were 57% and 25%, respectively. Median lengths of overall survival and progression-free survival were 33 months and 14 months, respectively. There were no acute grade 3 toxicities related to proton therapy. Late grade 3 gastrointestinal toxicity and pulmonary toxicity each occurred in 1 patient. Conclusions: Dose-escalated proton therapy with concurrent chemotherapy was well tolerated with encouraging results among a small cohort of patients. Unfortunately, single-institution proton studies may be difficult to accrue and consideration for pragmatic and/or multicenter trial design should be considered when developing future proton clinical trials.

  12. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose: To quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials: Four-dimensional Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3 cc) and motion amplitudes (3-30 mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity, and 2-year local control rate (2y-LC). Results: Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ ≈ 3 mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor 2.8 compared with a larger spot size (σ ≈ 13 mm). Using a smaller spot size to treat a tumor with 30-mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V 20 are <0.6 Gy(RBE) and <1.7%, respectively. Conclusions: For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments using smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the

  13. Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer

    International Nuclear Information System (INIS)

    Hsi, Wen C.; Fagundes, Marcio; Zeidan, Omar; Hug, Eugen; Schreuder, Niek

    2013-01-01

    Purpose: To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. Methods: TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markers were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. Results: A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and −10% of the planning dose with a mean of −2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between −10% and −20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10–20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Conclusions: Our results show that image-guided TLD

  14. TH-CD-209-05: Impact of Spot Size and Spacing On the Quality of Robustly-Optimized Intensity-Modulated Proton Therapy Plans for Lung Cancer

    International Nuclear Information System (INIS)

    Liu, W; Ding, X; Hu, Y; Shen, J; Korte, S; Bues, M; Schild, S; Wong, W; Chang, J; Liao, Z; Sahoo, N; Herman, M

    2016-01-01

    Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan

  15. TH-CD-209-05: Impact of Spot Size and Spacing On the Quality of Robustly-Optimized Intensity-Modulated Proton Therapy Plans for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W; Ding, X; Hu, Y; Shen, J; Korte, S; Bues, M [Mayo Clinic Arizona, Phoenix, AZ (United States); Schild, S; Wong, W [Mayo Clinic AZ, Phoenix, AZ (United States); Chang, J [MD Anderson Cancer Center, Houston, TX (United States); Liao, Z; Sahoo, N [UT MD Anderson Cancer Center, Houston, TX (United States); Herman, M [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan

  16. SU-G-JeP4-09: Impact of Interfractional Motion On Hypofractionated Pencil Beam Scanning Proton Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M; Trofimov, A; Sharp, G; Wang, Y; Zietman, A; Efstathiou, J; Lu, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To investigate the impact of anatomy/setup variations on standard vs. hypofractionated anterolateral pencil beam scanning (PBS) proton therapy for prostate cancer. Methods: Six prostate cancer patients treated with double-scattering proton therapy, who underwent weekly verification CT scans were selected. Implanted fiducials were used for localization, and endorectal balloons for immobilization. New PBS plans using combination of lateral and anterior-oblique (AO) (±35 deg) beams were created. AO beams were added to spare the femoral heads during hypofractionation. Lateral beams delivered 50.4 Gy(RBE) to prostate plus 5-15mm of seminal vesicles and AO beams 28.8 Gy(RBE) to prostate, in 44 fractions. PTV was laterally expanded by 2.5% to account for range uncertainty. No range margins were applied for AO beams, assuming delivery with in-vivo range verification. Field-specific apertures with 1.2cm margin were used. Spot size was ∼9.5mm sigma for 172MeV @isocenter in air. Plans were optimized as single-field-uniform-dose with ∼5% maximum non-uniformity. The planned dose was recomputed on each weekly CT after aligning the fiducials with the simulation CT, scaled and accumulated via deformable image registration. Hypofractionated treatments with 12 and 5 fractions were considered. Equivalent doses were calculated for prostate (α/β= 1.5Gy), bladder and rectum (α/β= 3Gy). Results: The biological equivalent prostate dose was 86.2 and 92.9 Gyeq for the hypofractionation scenarios at 4.32 and 7.35 Gy/fx, respectively. The equivalent prostate D98 was degraded by on average 2.7 Gyeq for standard, and 3.1 and 4.0 Gyeq for the hypofractionated plans after accumulation. Differences between accumulated and planned Dmean/D2/EUD were generally reduced when reducing the number of fractions for bladder and rectum. The average Dmean/D2/EUD differences over all patients and organs-at-risk were 0.74/4.0/9.23, 0.49/3.64/5.51, 0.37/3.21/3.49 Gyeq for 44, 12 and 5 fractions

  17. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-01-01

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  18. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  19. IBA's state of art Proton Therapy System

    International Nuclear Information System (INIS)

    Ternier, Sonja

    2001-01-01

    Full text: In recent years, IBA has developed a state-of-the-art Proton Therapy System that is currently being implemented at the Northeast Proton Therapy Center in Boston. First patient treatment is predicted for the fourth quarter of 2001. The IBA Proton Therapy System consists of a 230 MeV accelerator (a fixed energy isochronous cyclotron), an Energy Selection System that can decrease the energy down to 70 MeV and up to five treatment rooms. There are two types of treatment rooms. A gantry treatment room in which a patient can be treated from virtually any angle or a fixed horizontal beam line aimed at treatments of the of the head and neck. The system is equipped with a Therapy Control System and a Global Safety Management System. The Integrated Therapy Control System is an integrated system ensuring the control of the treatment sessions through independent but networked therapy control units and, therefore, the control of each equipment subsystem. The integrated safety management system, independent of the Therapy Control System, includes a set of hard-wired safety devices, ensuring the safety of the patient and personnel. The system will be capable of delivering proton treatments in four-treatment modes: Double Scattering, Single Scattering, Wobbling and Pencil Beam Scanning. The presentation will show the most important subsystems and treatment modes capabilities as well as the most recent advances in the technology. (author)

  20. Biological Considerations When Comparing Proton Therapy. With Photon Therapy

    NARCIS (Netherlands)

    Paganetti, Harald; van Luijk, Peter

    Owing to the limited availability of data on the outcome of proton therapy, treatments are generally optimized based on broadly available data on photon-based treatments. However, the microscopic pattern of energy deposition of protons differs from that of photons, leading to a different biological

  1. Proton-beam radiation therapy dosimetry standardization

    International Nuclear Information System (INIS)

    Gall, K.P.

    1995-01-01

    Beams of protons have been used for radiation therapy applications for over 40 years. In the last decade the number of facilities treating patients and the total number of patients being treated has begun go grow rapidly. Due to the limited and experimental nature of the early programs, dosimetry protocols tended to be locally defined. With the publication of the AAPM Task Group 20 report open-quotes Protocol for Dosimetry of Heavy Charged Particlesclose quotes and the open-quotes European Code of Practice for Proton-Beam Dosimetryclose quotes the practice of determining dose in proton-beam therapy was somewhat unified. The ICRU has also recently commissioned a report on recommendations for proton-beam dosimetry. There have been three main methods of determining proton dose; the Faraday cup technique, the ionization chamber technique, and the calorimeter technique. For practical reasons the ionization chamber technique has become the most widely used. However, due to large errors in basic parameters (e.g., W-value) is also has a large uncertainty for absolute dose. It has been proposed that the development of water calorimeter absorbed dose standards would reduce the uncertainty in absolute proton dose as well as the relative dose between megavoltage X-ray beams and proton beams. The advantages and disadvantages are discussed

  2. Hadrons accelerators in the cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1998-01-01

    The use of hadrons accelerators ( protons and light ions) in the cancer therapy is tackled. After shorts introductory words about the medical reasons in favour of using charged heavy particles radiotherapy, an overall idea is given on the accelerators technology and on the guiding and focusing systems. The Italian project of hadron-therapy (the most important project of this kind in Europe) is introduced, with in reference the National Oncological Center of Hadron-therapy and the plans of two kinds of compact protons accelerators in order to introduce the therapy with protons in a great number of hospitals. Finally, the needs in radiation protection are discussed. (N.C.)

  3. Laryngeal adenocystic carcinoma treated by proton therapy

    International Nuclear Information System (INIS)

    Sugiyama, Tomonori; Araki, Mamika; Fukukita, Kouhei; Yamada, Hiroyuki

    2013-01-01

    Adenocystic carcinoma most commonly develops in the major salivary glands, on the other hand it is rare for adenocystic carcinoma to develop in the larynx. We report a case of adenocystic carcinoma in the larynx. A 54-year-old male was hospitalized with symptoms of hoarseness and dyspnea on exertion. He presented a tumor that developed at the base of the right arytenoid, and covered over the glottis. It was confirmed to be adenocystic carcinoma (solid type) by biopsy. Positron emission tomography (PET)-CT also revealed a left cervical lymph node metastasis and multiple pulmonary metastases (T1N2cM1). He was treated with proton therapy to the larynx to prevent airway obstruction by growth of the tumor and to preserve the larynx because he had uncontrollable pulmonary metastasis. Although the tumor vanished after the treatment, one month later he had halitosis, dyspnea and bilateral vocal cord palsy. Despite administration of an antibacterial drug and steroid, there was no improvement to the narrowness of the glottis. A tracheotomy was therefore performed three months after the proton therapy. PET-CT, which was performed after the tracheotomy, suggested growth of the residual tumor or laryngeal radionecrosis. This study confirmed that proton therapy is effective for adenocystic carcinoma in the larynx. However, proton therapy also was found to cause laryngeal radionecrosis. These results indicate the importance of evaluating the side effects of radiation therapy and providing that information to the patient. (author)

  4. WE-D-BRB-01: Basic Physics of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arjomandy, B. [McLaren Cancer Institute (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  5. WE-D-BRB-00: Basics of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  6. WE-D-BRB-00: Basics of Proton Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  7. WE-D-BRB-01: Basic Physics of Proton Therapy

    International Nuclear Information System (INIS)

    Arjomandy, B.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  8. MSPT: Motion Simulator for Proton Therapy

    International Nuclear Information System (INIS)

    Morel, Paul

    2014-01-01

    In proton therapy, the delivery method named spot scanning, can provide a particularly efficient treatment in terms of tumor coverage and healthy tissues protection. The dosimetric benefits of proton therapy may be greatly degraded due to intra-fraction motions. Hence, the study of mitigation or adaptive methods is necessary. For this purpose, we developed an open-source 4D dose computation and evaluation software, MSPT (Motion Simulator for Proton Therapy), for the spot-scanning delivery technique. It aims at highlighting the impact of intra-fraction motions during a treatment delivery by computing the dose distribution in the moving patient. In addition, the use of MSPT allowed us to develop and propose a new motion mitigation strategy based on the adjustment of the beam's weight when the proton beam is scanning across the tumor. In photon therapy, a main concern for deliveries using a multi-leaf collimator (MLC) relies on finding a series of MLC configurations to deliver properly the treatment. The efficiency of such series is measured by the total beam-on time and the total setup time. In our work, we study the minimization of these efficiency criteria from an algorithmic point of view, for new variants of MLCs: the rotating MLC and the dual-layer MLC. In addition, we propose an approximation algorithm to find a series of configurations that minimizes the total beam-on time for the rotating MLC. (author) [fr

  9. Joint Estimation of Cardiac Toxicity and Recurrence Risks After Comprehensive Nodal Photon Versus Proton Therapy for Breast Cancer

    DEFF Research Database (Denmark)

    Stick, Line B; Yu, Jen; Maraldo, Maja V

    2017-01-01

    PURPOSE: The study aims to perform joint estimation of the risk of recurrence caused by inadequate radiation dose coverage of lymph node targets and the risk of cardiac toxicity caused by radiation exposure to the heart. Delivered photon plans are compared with realistic proton plans, thereby pro...

  10. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  11. Five-Year Biochemical Results, Toxicity, and Patient-Reported Quality of Life After Delivery of Dose-Escalated Image Guided Proton Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Curtis, E-mail: cbryant@floridaproton.org [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States); Smith, Tamara L.; Henderson, Randal H.; Hoppe, Bradford S.; Mendenhall, William M.; Nichols, R. Charles; Morris, Christopher G. [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States); Williams, Christopher R. [Department of Urology, University of Florida College of Medicine, Jacksonville, Florida (United States); Su, Zhong; Li, Zuofeng; Lee, Derek; Mendenhall, Nancy P. [University of Florida Health Proton Therapy Institute, Jacksonville, Florida (United States)

    2016-05-01

    Purpose: To report clinical outcomes in patients treated with image guided proton therapy (PT) for localized prostate cancer. Methods and Materials: The medical records of 1327 men were reviewed. Each man was enrolled on an outcomes tracking study. Dual enrollment on a prospective clinical trial was allowed. Each patient was treated for localized prostate cancer with PT at our institution between 2006 and 2010. Ninety-eight percent of patients received 78 Gy (radiobiological equivalent [RBE]) or higher; 18% received androgen deprivation therapy (ADT). The 5-year freedom from biochemical progression (FFBP), distant metastasis-free survival, and cause-specific survival rates are reported for each risk group. Data on patient-reported quality of life and high-grade toxicities were prospectively collected and reported. A multivariate analysis was performed to identify clinical predictors of biochemical failure and urologic toxicity. Results: The median follow-up time was 5.5 years. The 5-year FFBP rates were 99%, 94%, and 74% in low-risk, intermediate-risk, and high-risk patients, respectively. The actuarial 5-year rates of late grade 3+ Common Terminology Criteria for Adverse Events, version 4.0, gastrointestinal (GI) and genitourinary (GU) toxicity were 0.6% and 2.9%, respectively. Multivariate analysis showed a significant correlation between grade 3+ GU toxicity and pretreatment prostate reductive procedures (P<.0001), prostate volume (P=.0085), pretreatment α-blockers (P=.0067), diabetes (P=.0195), and dose–volume histogram parameters (P=.0208). The median International Prostate Symptom Scores pretreatment scores and scores at 5 years after treatment were 7 and 7, respectively. The mean Expanded Prostate Cancer Index Composite (EPIC) scores significantly declined for sexual summary for patients not receiving ADT (from 67 to 53) between baseline and 5 years. Conclusions: Image guided PT provided excellent biochemical control rates for patients with

  12. Five-Year Biochemical Results, Toxicity, and Patient-Reported Quality of Life After Delivery of Dose-Escalated Image Guided Proton Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Bryant, Curtis; Smith, Tamara L.; Henderson, Randal H.; Hoppe, Bradford S.; Mendenhall, William M.; Nichols, R. Charles; Morris, Christopher G.; Williams, Christopher R.; Su, Zhong; Li, Zuofeng; Lee, Derek; Mendenhall, Nancy P.

    2016-01-01

    Purpose: To report clinical outcomes in patients treated with image guided proton therapy (PT) for localized prostate cancer. Methods and Materials: The medical records of 1327 men were reviewed. Each man was enrolled on an outcomes tracking study. Dual enrollment on a prospective clinical trial was allowed. Each patient was treated for localized prostate cancer with PT at our institution between 2006 and 2010. Ninety-eight percent of patients received 78 Gy (radiobiological equivalent [RBE]) or higher; 18% received androgen deprivation therapy (ADT). The 5-year freedom from biochemical progression (FFBP), distant metastasis-free survival, and cause-specific survival rates are reported for each risk group. Data on patient-reported quality of life and high-grade toxicities were prospectively collected and reported. A multivariate analysis was performed to identify clinical predictors of biochemical failure and urologic toxicity. Results: The median follow-up time was 5.5 years. The 5-year FFBP rates were 99%, 94%, and 74% in low-risk, intermediate-risk, and high-risk patients, respectively. The actuarial 5-year rates of late grade 3+ Common Terminology Criteria for Adverse Events, version 4.0, gastrointestinal (GI) and genitourinary (GU) toxicity were 0.6% and 2.9%, respectively. Multivariate analysis showed a significant correlation between grade 3+ GU toxicity and pretreatment prostate reductive procedures (P<.0001), prostate volume (P=.0085), pretreatment α-blockers (P=.0067), diabetes (P=.0195), and dose–volume histogram parameters (P=.0208). The median International Prostate Symptom Scores pretreatment scores and scores at 5 years after treatment were 7 and 7, respectively. The mean Expanded Prostate Cancer Index Composite (EPIC) scores significantly declined for sexual summary for patients not receiving ADT (from 67 to 53) between baseline and 5 years. Conclusions: Image guided PT provided excellent biochemical control rates for patients with

  13. Technology for bolus verification in proton therapy

    Science.gov (United States)

    Shipulin, K. N.; Mytsin, G. V.; Agapov, A. V.

    2015-01-01

    To ensure the conformal depth-dose distribution of a proton beam within a target volume, complex shaped range shifters (so-called boluses), which account for the heterogeneous structure of patient tissue and organs in the beam path, were calculated and manufactured. The precise manufacturing of proton compensators used for patient treatment is a vital step in quality assurance in proton therapy. In this work a software-hardware complex that verifies the quality and precision of bolus manufacturing at the Medico-Technical Complex (MTC) was developed. The boluses consisted of a positioning system with two photoelectric biosensors. We evaluated 20 boluses used in proton therapy of five patients. A total number of 2562 experimental points were measured, of which only two points had values that differed from the calculated value by more than 0.5 mm. The other data points displayed a deviation within ±0.5 mm from the calculated value. The technology for bolus verification developed in this work can be used for the high precision testing of geometrical parameters of proton compensators in radiotherapy.

  14. A critical appraisal of the clinical utility of proton therapy in oncology

    Science.gov (United States)

    Wang, Dongxu

    2015-01-01

    Proton therapy is an emerging technology for providing radiation therapy to cancer patients. The depth dose distribution of a proton beam makes it a preferable radiation modality as it reduces radiation to the healthy tissue outside the tumor, compared with conventional photon therapy. While theoretically beneficial, its clinical values are still being demonstrated from the increasing number of patients treated with proton therapy, from several dozen proton therapy centers around the world. High equipment and facility costs are often the major obstacle for its wider adoption. Because of the high cost and lack of definite clinical evidence of its superiority, proton therapy treatment faces criticism on its cost-effectiveness. Technological development is causing a gradual lowering of costs, and research and clinical studies are providing further evidence on its clinical utility. PMID:26604838

  15. Project of compact accelerator for cancer proton therapy; Progetto di acceleratore compatto per terapia oncologica con protoni (TOP)

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Cntro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1995-04-01

    The status of the sub-project `Compact Accelerator` in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated `Compact Accelerator` and to the scenario of the fonts of financial resources.

  16. In honour of N. Yngve Öhrn: surveying proton cancer therapy reactions with Öhrn's electron nuclear dynamics method. Aqueous clusters radiolysis and DNA-base damage by proton collisions

    Science.gov (United States)

    Mclaurin, Patrick M.; Privett, Austin J.; Stopera, Christopher; Grimes, Thomas V.; Perera, Ajith; Morales, Jorge A.

    2015-02-01

    Proton cancer therapy (PCT) utilises high-energy H+ projectiles to cure cancer. PCT healing arises from its DNA damage in cancerous cells, which is mostly inflicted by the products from PCT water radiolysis reactions. While clinically established, a complete microscopic understanding of PCT remains elusive. To help in the microscopic elucidation of PCT, Professor Öhrn's simplest-level electron nuclear dynamics (SLEND) method is herein applied to H+ + (H2O)3-4 and H+ + DNA-bases at ELab = 1.0 keV. These are two types of computationally feasible prototypes to study water radiolysis reactions and H+-induced DNA damage, respectively. SLEND is a time-dependent, variational, non-adiabatic and direct-dynamics method that adopts a nuclear classical-mechanics description and an electronic single-determinantal wavefunction. Additionally, our SLEND + effective-core-potential method is herein employed to simulate some computationally demanding PCT reactions. Due to these attributes, SLEND proves appropriate for the simulation of various types of PCT reactions accurately and feasibly. H+ + (H2O)3-4 simulations reveal two main processes: H+ projectile scattering and the simultaneous formation of H and OH fragments; the latter process is quantified through total integrals cross sections. H+ + DNA-base simulations reveal atoms and groups displacements, ring openings and base-to-proton electron transfers as predominant damage processes. The authors warmly dedicate this SLEND investigation in honour of Professor N. Yngve Öhrn on the occasion of his 80th birthday celebration during the 54th Sanibel Symposium in St. Simons' Island, Georgia, on February 16-21, 2014. Associate Professor Jorge A. Morales was a former chemistry PhD student under the mentorship of Professor Öhrn and Dr Ajith Perera took various quantum chemistry courses taught by Professor Öhrn during his chemistry PhD studies. Both Jorge and Ajith look back to those great times of their scientific formation under

  17. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Shah, Anand; Efstathiou, Jason A.; Paly, Jonathan J.; Halpern, Scott D.; Bruner, Deborah W.; Christodouleas, John P.; Coen, John J.; Deville, Curtiland; Vapiwala, Neha; Shipley, William U.; Zietman, Anthony L.; Hahn, Stephen M.; Bekelman, Justin E.

    2012-01-01

    Purpose: To investigate patients’ willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients’ stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients’ WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either “definitely” or “probably” participate. Seventeen percent (8 of 46) stated they would “definitely not” or “probably not” enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  18. Dosimetric intercomparison between protons and electrons therapies applied to retinoblastoma

    International Nuclear Information System (INIS)

    Braga, Flavia Vieira

    2008-01-01

    In this work we propose a construction of a simple human eye model in order to simulate the dosimetric response for a treatment with protons and electrons in a retinoblastoma cancer. The computational tool used in this simulation was the Geant4 code, in the version 4.9.1, all these package are free and permit simulate the interaction of radiation with matter. In our simulation we use a box with 4 cm side, with water, for represent the human eye. The simulation was performed considering mono energetics beams of protons and electrons with energy range between 50 and 70 MeV for protons and 2 and 10 MeV for electrons. The simulation was based on the advanced hadron therapy example of the Geant 4 code. In these example the phantom is divided in voxels with 0.2 mm side and it is generated the energy deposited in each voxel. The simulation results show the energy deliver in each voxel, with these energie we can calculate the dose deposited in that region. We can see the dose profile of, proton and electron, and we can see in both cases that for protons the position of delivered dose is well know, that happen in the position where the proton stop, for electrons the energies is delivered along the way and pass the desired position for high dose deposition. (author)

  19. A critical appraisal of the clinical utility of proton therapy in oncology

    OpenAIRE

    Wang, Dongxu

    2015-01-01

    Dongxu WangDepartment of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USAAbstract: Proton therapy is an emerging technology for providing radiation therapy to cancer patients. The depth dose distribution of a proton beam makes it a preferable radiation modality as it reduces radiation to the healthy tissue outside the tumor, compared with conventional photon therapy. While theoretically beneficial, its clinical values are still being demonstrated from the incre...

  20. Laser therapy for cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000905.htm Laser therapy for cancer To use the sharing features ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used ...

  1. Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    McAvoy, Sarah; Ciura, Katherine; Wei, Caimiao; Rineer, Justin; Liao, Zhongxing; Chang, Joe Y.; Palmer, Matthew B.; Cox, James D.; Komaki, Ritsuko; Gomez, Daniel R., E-mail: DGomez@mdanderson.org

    2014-11-15

    Purpose: Intrathoracic recurrence of non-small cell lung cancer (NSCLC) after initial treatment remains a dominant cause of death. We report our experience using proton beam therapy and intensity modulated radiation therapy for reirradiation in such cases, focusing on patterns of failure, criteria for patient selection, and predictors of toxicity. Methods and Materials: A total of 102 patients underwent reirradiation for intrathoracic recurrent NSCLC at a single institution. All doses were recalculated to an equivalent dose in 2-Gy fractions (EQD2). All patients had received radiation therapy for NSCLC (median initial dose of 70 EQD2 Gy), with median interval to reirradiation of 17 months and median reirradiation dose of 60.48 EQD2 Gy. Median follow-up time was 6.5 months (range, 0-72 months). Results: Ninety-nine patients (97%) completed reirradiation. Median local failure-free survival, distant metastasis-free survival (DMFS), and overall survival times were 11.43 months (range, 8.6-22.66 months), 11.43 months (range, 6.83-23.84 months), and 14.71 (range, 10.34-20.56 months), respectively. Toxicity was acceptable, with rates of grade ≥3 esophageal toxicity of 7% and grade ≥3 pulmonary toxicity of 10%. Of the patients who developed local failure after reirradiation, 88% had failure in either the original or the reirradiation field. Poor local control was associated with T4 disease, squamous histology, and Eastern Cooperative Oncology Group performance status score >1. Concurrent chemotherapy improved DMFS, but T4 disease was associated with poor DMFS. Higher T status, Eastern Cooperative Oncology Group performance status ≥1, squamous histology, and larger reirradiation target volumes led to worse overall survival; receipt of concurrent chemotherapy and higher EQD2 were associated with improved OS. Conclusions: Intensity modulated radiation therapy and proton beam therapy are options for treating recurrent non-small cell lung cancer. However, rates of

  2. Proton radiation therapy for clivus chordoma

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Tsunoda, Takashi; Hyodo, Akio; Nose, Tadao; Tsujii, Hirohiko; Tsuji, Hiroshi; Inada, Tetsuo; Maruhashi, Akira; Hayakawa, Yoshinori.

    1993-01-01

    A 57-year-old male with clival chordoma developed severe hoarseness, dysphagia, and dysphonia 1 month after a second removal of the tumor. Magnetic resonance imaging demonstrated a mass 10 cm in diameter in the region of the middle clivus enhanced inhomogeneously by gadolinium-diethylenetriaminepenta-acetic acid, and a defect in the skull base. There was evidence of compression of the anterior surface of the pons. He received proton irradiation employing a pair of parallel opposed lateral proton beams. The dose aimed at the tumor mass was 75.5 Gy, to the pharyngeal wall less than 38 Gy, and to the anterior portion of the pons less than 30 Gy. Time dose and fractionation factor was calculated at 148. Thirty-one months following treatment, he was free of clinical neurological sequelae. Proton therapy should be considered in treatment planning following initial surgical removal or for inoperable clivus chordoma. (author)

  3. SU-F-T-197: Investigating Optimal Oblique-Beam Arrangement for Bilateral Metallic Prosthesis Prostate Cancer in Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rana, S; Tesfamicael, B; Park, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States); Zheng, Y; Singh, H; Twyford, T [Procure Proton Therapy Center, Oklahoma City, OK (United States); Cheng, C [Vantage Oncology, West Hills, CA (United States)

    2016-06-15

    Purpose: The main purpose of this study is to investigate the optimum oblique-beam arrangement for bilateral metallic prosthesis prostate cancer treatment in pencil beam scanning (PBS) proton therapy. Methods: A computed tomography dataset of bilateral metallic prosthesis prostate cancer case was selected for this retrospective study. A total of four beams (rightanterior- oblique [RAO], left-anterior-oblique [LAO], left-posterior-oblique [LPO], and right-posterior-oblique [RPO]) were selected for treatment planning. PBS plans were generated using multi-field-optimization technique for a total dose of 79.2 Gy[RBE] to be delivered in 44 fractions. Specifically, five different PBS plans were generated based on 2.5% ± 2 mm range uncertainty using five different beam arrangements (i)LAO+RAO+LPO+RPO, (ii)LAO+RAO, (iii)LPO+RPO, (iv)RAO+LPO, and (v)LAO+RPO. Each PBS plan was optimized by applying identical dose-volume constraints to the PTV, rectum, and bladder. Treatment plans were then compared based on the dose-volume histograms results. Results: The PTV coverage was found to be greater than 99% in all five plans. The homogeneity index (HI) was found to be almost identical (range, 0.03–0.04). The PTV mean dose was found to be comparable (range, 81.0–81.1 Gy[RBE]). For the rectum, the lowest mean dose (8.0 Gy[RBE]) and highest mean dose (31.1 Gy[RBE]) were found in RAO+LAO plan and LPO+RPO plan, respectively. LAO+RAO plan produced the most favorable dosimetric results of the rectum in the medium-dose region (V50) and high-dose region (V70). For the bladder, the lowest (5.0 Gy[RBE]) and highest mean dose (10.3 Gy[RBE]) were found in LPO+RPO plan and RAO+LAO plan, respectively. Other dosimetric results (V50 and V70) of the bladder were slightly better in LPO+RPO plan than in other plans. Conclusion: Dosimetric findings from this study suggest that two anterior-oblique proton beams arrangement (LAO+RAO) is a more favorable option with the possibility of reducing rectal

  4. SU-E-T-452: Impact of Respiratory Motion On Robustly-Optimized Intensity-Modulated Proton Therapy to Treat Lung Cancers

    International Nuclear Information System (INIS)

    Liu, W; Schild, S; Bues, M; Liao, Z; Sahoo, N; Park, P; Li, H; Li, Y; Li, X; Shen, J; Anand, A; Dong, L; Zhu, X; Mohan, R

    2014-01-01

    Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from the internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly

  5. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  6. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaodong; Wang Xiaochun; Kang Yixiu; Riley, Beverly C.; Bilton, Stephen C.; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.

    2006-01-01

    Purpose: To compare dose-volume histograms (DVH) in patients with non-small-cell lung cancer (NSCLC) treated by photon or proton radiotherapy. Methods and Materials: Dose-volume histograms were compared between photon, including three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and proton plans at doses of 66 Gy, 87.5 Gy in Stage I (n = 10) and 60-63 Gy, and 74 Gy in Stage III (n 15). Results: For Stage I, the mean total lung V5, V10, and V20 were 31.8%, 24.6%, and 15.8%, respectively, for photon 3D-CRT with 66 Gy, whereas they were 13.4%, 12.3%, and 10.9%, respectively, with proton with dose escalation to 87.5 cobalt Gray equivalents (CGE) (p = 0.002). For Stage III, the mean total lung V5, V10, and V20 were 54.1%, 46.9%, and 34.8%, respectively, for photon 3D-CRT with 63 Gy, whereas they were 39.7%, 36.6%, and 31.6%, respectively, for proton with dose escalation to 74 CGE (p = 0.002). In all cases, the doses to lung, spinal cord, heart, esophagus, and integral dose were lower with proton therapy even compared with IMRT. Conclusions: Proton treatment appears to reduce dose to normal tissues significantly, even with dose escalation, compared with standard-dose photon therapy, either 3D-CRT or IMRT

  7. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Liu, W; Shen, J; Stoker, J; Bues, M; Schild, S; Wong, W; Chang, J; Liao, Z; Wen, Z; Sahoo, N; Herman, M; Mohan, R

    2015-01-01

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses to achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest

  8. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W; Shen, J; Stoker, J; Bues, M [Mayo Clinic Arizona, Phoenix, AZ (United States); Schild, S; Wong, W [Mayo Clinic, Phoenix, Arizona (United States); Chang, J; Liao, Z; Wen, Z; Sahoo, N [MD Anderson Cancer Center, Houston, TX (United States); Herman, M [Mayo Clinic, Rochester, MN (United States); Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses to achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest

  9. Proton-therapy and hadron-therapy ionization chambers

    International Nuclear Information System (INIS)

    Boissonnat, Guillaume

    2015-01-01

    In the framework of the ARCHADE project (Advanced Resource Center for Hadron-therapy in Europe), a research project in Carbone ion beam therapy and clinical Proton-therapy, this work investigates the beam monitoring and dosimetry aspects of ion beam therapy. The main goal, here, is to understand the operating mode of air ionization chambers, the detectors used for such applications. This study starts at a very fundamental level as the involved physical and chemical parameters of air were measured in various electric field conditions with dedicated setups and used to produce a simulation tools aiming at reproducing the operating response in high intensity PBS (Pencil Beam Scanning) coming from IBA's (Ion Beam Applications) next generation of proton beam accelerators. In addition, an ionization chamber-based dosimetry equipment was developed, DOSION III, for radiobiology studies conducted at GANIL under the supervision of the CIMAP laboratory. (author)

  10. Repeated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hashimoto, Takayuki; Tokuuye, Koichi; Fukumitsu, Nobuyoshi; Igaki, Hiroshi; Hata, Masaharu; Kagei, Kenji; Sugahara, Shinji; Ohara, Kiyoshi; Matsuzaki, Yasushi; Akine, Yasuyuki

    2006-01-01

    Purpose: To retrospectively evaluate the safety and effectiveness of repeated proton beam therapy for newly developed or recurrent hepatocellular carcinoma (HCC). Methods and Materials: From June 1989 through July 2000, 225 patients with HCC underwent their first course of proton beam therapy at University of Tsukuba. Of them, 27 with 68 lesions who had undergone two or more courses were retrospectively reviewed in this study. Median interval between the first and second course was 24.5 months (range 3.3-79.8 months). Median total dose of 72 Gy in 16 fractions and 66 Gy in 16 fractions were given for the first course and the rest of the courses, respectively. Results: The 5-year survival rate and median survival period from the beginning of the first course for the 27 patients were 55.6% and 62.2 months, respectively. Five-year local control rate for the 68 lesions was 87.8%. Of the patients, 1 with Child-Pugh class B and another with class C before the last course suffered from acute hepatic failure. Conclusions: Repeated proton beam therapy for HCC is safe when the patient has a target in the peripheral region of the liver and liver function is Child-Pugh class A

  11. Evaluating the influence of organ motion during photon vs. proton therapy for locally advanced prostate cancer using biological models

    DEFF Research Database (Denmark)

    Busch, Kia; G Andersen, Andreas; Casares-Magaz, Oscar

    2017-01-01

    beam angles for pelvic irradiation, we aimed to evaluate the influence of organ motion for PT using biological models, and to compare this with contemporary photon-based RT. MATERIAL AND METHODS: Eight locally advanced prostate cancer patients with a planning CT (pCT) and 8-9 repeated CT scans (r...

  12. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma

    DEFF Research Database (Denmark)

    Brodin, N Patrik; Munck af Rosenschöld, Per Martin; Aznar, Marianne C

    2011-01-01

    The aim of this model study was to estimate and compare the risk of radiation-induced adverse late effects in pediatric patients with medulloblastoma (MB) treated with either three-dimensional conformal radiotherapy (3D CRT), inversely-optimized arc therapy (RapidArc(®) (RA)) or spot...

  13. Intensity Modulated Proton and Photon Therapy for Early Prostate Cancer With or Without Transperineal Injection of a Polyethylen Glycol Spacer: A Treatment Planning Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Damien C., E-mail: damien.weber@unige.ch [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Zilli, Thomas [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Vallee, Jean Paul [Department of Diagnostic Radiology, Geneva University Hospital, Geneva (Switzerland); Rouzaud, Michel; Miralbell, Raymond [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Cozzi, Luca [Oncology Institute of Southern Switzerland, Medical Physics Unit, Bellinzona (Switzerland)

    2012-11-01

    Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipse treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no

  14. The current status of proton therapy in the world, the European Union and Slovakia

    International Nuclear Information System (INIS)

    Ruzicka, J.

    2011-01-01

    Proton therapy is considered to be very promising cancer treatment modality, and therefore many countries of the world are trying to (regardless of the high investment costs) to build their own atomic centre (or other proton centres if they operate already some). Proton therapy allows better control of therapeutic doses of radiation to which the patient is exposed. Proton irradiation of the tumor can kill more cancer cells while minimizing damage of healthy tissue. Currently there is about 33 facilities in operation in the world where proton therapy can be carried out. Proton therapy complex with new, highly sophisticated equipment is also being constructed in Slovakia - in The Central Military Hospital in Ruzomberok. The project is in its final stage of implementation. The paper describes the current status of proton therapy in the world, the European Union (EU) and Slovakia. In conclusion principally new Proton therapy unit complex built in Slovakia with similar facilities currently existing in EU countries (old 15 member states) is compared (especially from technical and medical aspects). (author)

  15. Nanomedicine and cancer therapies

    CERN Document Server

    Sebastian, Mathew; Ninan, Neethu

    2012-01-01

    Nanotechnology has the power to radically change the way cancer is diagnosed, imaged, and treated. The holistic approach to cancer involves noninvasive procedures that emphasize restoring the health of human energy fields. Presenting a wealth of information and research about the most potent cancer healing therapies, this forward-thinking book explores how nanomedicine, holistic medicine, and other cancer therapies play important roles in treatment of this disease. Topics include nanobiotechnology for antibacterial therapy and diagnosis, mitochondrial dysfunction and cancer, antioxidants and combinatorial therapies, and optical and mechanical investigations of nanostructures for biomolecular detection.

  16. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    DEFF Research Database (Denmark)

    Kornerup, Josefine S.; Brodin, N. P.; Bjork-Eriksson, T.

    2015-01-01

    ) and estimated risk of secondary cancer (SC). RESULTS: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target...... or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. ADVANCES IN KNOWLEDGE: (18)F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11...... patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT....

  17. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  18. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  19. Is There an Advantage in Designing Adapted, Patient-Specific PTV Margins in Intensity Modulated Proton Beam Therapy for Prostate Cancer?

    International Nuclear Information System (INIS)

    Góra, Joanna; Stock, Markus; Lütgendorf-Caucig, Carola; Georg, Dietmar

    2013-01-01

    Purpose: To investigate robust margin strategies in intensity modulated proton therapy to account for interfractional organ motion in prostate cancer. Methods and Materials: For 9 patients, one planning computed tomography (CT) scan and daily and weekly cone beam CTs (CBCTs) were acquired and coregistered. The following planning target volume (PTV) approaches were investigated: a clinical target volume (CTV) delineated on the planning CT (CTV ct ) plus 10-mm margin (PTV 10mm ); a reduced PTV (PTV Red ): CTV ct plus 5 mm in the left-right (LR) and anterior-posterior (AP) directions and 8 mm in the inferior-superior (IS) directions; and a PTV Hull method: the sum of CTV ct and CTVs from 5 CBCTs from the first week plus 3 mm in the LR and IS directions and 5 mm in the AP direction. For each approach, separate plans were calculated using a spot-scanning technique with 2 lateral fields. Results: Each approach achieved excellent target coverage. Differences were observed in volume receiving 98% of the prescribed dose (V 98% ) where PTV Hull and PTV Red results were superior to the PTV 10mm concept. The PTV Hull approach was more robust to organ motion. The V 98% for CTVs was 99.7%, whereas for PTV Red and PTV 10mm plans, V 98% was 98% and 96.1%, respectively. Doses to organs at risk were higher for PTV Hull and PTV 10mm plans than for PTV Red , but only differences between PTV 10mm and PTV Red were significant. Conclusions: In terms of organ sparing, the PTV 10mm method was inferior but not significantly different from the PTV Red and PTV Hull approaches. PTV Hull was most insensitive to target motion

  20. SU-F-T-205: Effectiveness of Robust Treatment Planning to Account for Inter- Fractional Variation in Intensity Modulated Proton Therapy for Head Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Zhang, J; Qin, A; Liang, J; Zhou, J; Yan, D; Chen, P; Krauss, D; Ding, X [Beaumont Health Systeml, Royal Oak, Michigan (United States)

    2016-06-15

    Purpose: To evaluate the potential benefits of robust optimization in intensity modulated proton therapy(IMPT) treatment planning to account for inter-fractional variation for Head Neck Cancer(HNC). Methods: One patient with bilateral HNC previous treated at our institution was used in this study. Ten daily CBCTs were selected. The CT numbers of the CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration. The planning target volumes(PTVs) were defined by a 3mm expansion from clinical target volumes(CTVs). The prescription was 70Gy, 54Gy to CTV1, CTV2, and PTV1, PTV2 for robust optimized(RO) and conventionally optimized(CO) plans respectively. Both techniques were generated by RayStation with the same beam angles: two anterior oblique and two posterior oblique angles. The similar dose constraints were used to achieve 99% of CTV1 received 100% prescription dose while kept the hotspots less than 110% of the prescription. In order to evaluate the dosimetric result through the course of treatment, the contours were deformed from simulation CT to daily CBCTs, modified, and approved by a radiation oncologist. The initial plan on the simulation CT was re-replayed on the daily CBCTs followed the bony alignment. The target coverage was evaluated using the daily doses and the cumulative dose. Results: Eight of 10 daily deliveries with using RO plan achieved at least 95% prescription dose to CTV1 and CTV2, while still kept maximum hotspot less than 112% of prescription compared with only one of 10 for the CO plan to achieve the same standards. For the cumulative doses, the target coverage for both RO and CO plans was quite similar, which was due to the compensation of cold and hot spots. Conclusion: Robust optimization can be effectively applied to compensate for target dose deficit caused by inter-fractional target geometric variation in IMPT treatment planning.

  1. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anand [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Efstathiou, Jason A.; Paly, Jonathan J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Halpern, Scott D. [Department of Medicine, University of Pennsylvania, Philadelphia, PA (United States); Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Center for Bioethics, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States); Bruner, Deborah W. [Winship Cancer Institute, Emory University, Atlanta, GA (United States); Christodouleas, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Coen, John J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Deville, Curtiland; Vapiwala, Neha [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Shipley, William U.; Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States)

    2012-05-01

    Purpose: To investigate patients' willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients' stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients' WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either 'definitely' or 'probably' participate. Seventeen percent (8 of 46) stated they would 'definitely not' or 'probably not' enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  2. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  3. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  4. Single-energy intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-01-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. (note)

  5. Dosimetric uncertainty in prostate cancer proton radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Liyong; Vargas, Carlos; Hsi Wen; Indelicato, Daniel; Slopsema, Roelf; Li Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder [University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2008-11-15

    Purpose: The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Methods and Materials: Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. Results: For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V{sub 70}) was 37.9% (5.0% absolute change in 13.2% of a mean V{sub 70}). The relative change in the BW volume receiving 70 CGE dose (V{sub 70}) was 20.9% (4.3% absolute change in 20.6% of a mean V{sub 70}) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V{sub 70} of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting

  6. Dosimetric uncertainty in prostate cancer proton radiotherapy.

    Science.gov (United States)

    Lin, Liyong; Vargas, Carlos; Hsi, Wen; Indelicato, Daniel; Slopsema, Roelf; Li, Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder

    2008-11-01

    The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V70) was 37.9% (5.0% absolute change in 13.2% of a mean V70). The relative change in the BW volume receiving 70 CGE dose (V70) was 20.9% (4.3% absolute change in 20.6% of a mean V70) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V70 of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option producing a 2 mm sharper penumbra at the isocenter can reduce the

  7. High gradient linac for proton therapy

    Directory of Open Access Journals (Sweden)

    S. Benedetti

    2017-04-01

    Full Text Available Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  8. Radiation Therapy for Cancer

    Science.gov (United States)

    Radiation therapy is a type of cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Learn about the types of radiation, why side effects happen, which ones you might have, and more.

  9. Cost of New Technologies in Prostate Cancer Treatment: Systematic Review of Costs and Cost Effectiveness of Robotic-assisted Laparoscopic Prostatectomy, Intensity-modulated Radiotherapy, and Proton Beam Therapy.

    Science.gov (United States)

    Schroeck, Florian Rudolf; Jacobs, Bruce L; Bhayani, Sam B; Nguyen, Paul L; Penson, David; Hu, Jim

    2017-11-01

    Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can consistently achieve better outcomes, then they may be cost effective. We review the cost and cost effectiveness of robot-assisted radical prostatectomy, intensity-modulated radiotherapy, and proton beam therapy in prostate cancer treatment. These technologies are costlier than their traditional counterparts. It remains unclear whether their use is associated

  10. MO-A-201-01: A Cliff’s Notes Version of Proton Therapy

    International Nuclear Information System (INIS)

    Kruse, J.

    2016-01-01

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  11. MO-A-201-00: A Cliff’s Notes Version of Proton Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  12. MO-A-201-00: A Cliff’s Notes Version of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  13. MO-A-201-01: A Cliff’s Notes Version of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, J. [Mayo Clinic (United States)

    2016-06-15

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  14. Unilateral and bilateral neck SIB for head and neck cancer patients. Intensity-modulated proton therapy, tomotherapy, and RapidArc

    Energy Technology Data Exchange (ETDEWEB)

    Stromberger, Carmen; Budach, Volker; Ghadjar, Pirus; Wlodarczyk, Waldemar; Marnitz, Simone [Charite - Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany); Cozzi, Luca; Fogliata, Antonella [Humanitas Cancer Center Milan, Radiotherapy and Radiosurgery Department, Milan (Italy); Jamil, Basil [Klinikum Frankfurt Oder, Praxis fuer Strahlentherapie, Frankfurt Oder (Germany); Raguse, Jan D. [Clinic for Oral and Maxillofacial Surgery, Berlin (Germany); Boettcher, Arne [Charite - Universitaetsmedizin Berlin, Department of Otorhinolaryngology, Berlin (Germany)

    2016-04-15

    To compare simultaneous integrated boost plans for intensity-modulated proton therapy (IMPT), helical tomotherapy (HT), and RapidArc therapy (RA) for patients with head and neck cancer. A total of 20 patients with squamous cell carcinoma of the head and neck received definitive chemoradiation with bilateral (n = 14) or unilateral (n = 6) neck irradiation and were planned using IMPT, HT, and RA with 54.4, 60.8, and 70.4 GyE/Gy in 32 fractions. Dose distributions, coverage, conformity, homogeneity to planning target volumes (PTV)s and sparing of organs at risk and normal tissue were compared. All unilateral and bilateral plans showed excellent PTV coverage and acceptable dose conformity. For unilateral treatment, IMPT delivered substantially lower mean doses to contralateral salivary glands (< 0.001-1.1 Gy) than both rotational techniques did (parotid gland: 6-10 Gy; submandibular gland: 15-20 Gy). Regarding the sparing of classical organs at risk for bilateral treatment, IMPT and HT were similarly excellent and RA was satisfactory. For unilateral neck irradiation, IMPT may minimize the dry mouth risk in this subgroup but showed no advantage over HT for bilateral neck treatment regarding classical organ-at-risk sparing. All methods satisfied modern standards regarding toxicity and excellent target coverage for unilateral and bilateral treatment of head and neck cancer at the planning level. (orig.) [German] Planvergleich von intensitaetsmodulierter Protonentherapie (IMPT), Tomotherapie (HT) und RapidArc-Therapie (RA) fuer Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region unter Anwendung des simultan integrierten Boost-Konzepts (SIB). Fuer 20 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region und bilateraler (n = 14) oder unilateraler (n = 6) zervikaler primaerer Radiochemotherapie erfolgte eine IMPT-, HT- und RA-Planung mit 54,4, 60,8 und 70,4 GyE/Gy in 32 Fraktionen. Die Dosisverteilung, Abdeckung, Konformitaet und Homogenitaet der PTVs sowie die

  15. From 2D to 3D: Proton Radiography and Proton CT in proton therapy: A simulation study

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E.R.; van Goethem, M.-J.; Brandenburg, S.; Biegun, Aleksandra

    (1) Purpose In order to reduce the uncertainty in translation of the X-ray Computed Tomography (CT) image into a map of proton stopping powers (3-4% and even up to 10% in regions containing bones [1-8]), proton radiography is being studied as an alternative imaging technique in proton therapy. We

  16. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... is almost always due to smoking. TREATING LUNG CANCER Lung cancer treatment depends on several factors, including the ... org TARGETING CANCER CARE Radiation Therapy for Lung Cancer Lung cancer is the second most common cancer in ...

  17. Principles and Reality of Proton Therapy Treatment Allocation

    Energy Technology Data Exchange (ETDEWEB)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Asch, David A. [Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States); The Wharton School and Penn Medicine Center for Health Care Innovation, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Tochner, Zelig [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Friedberg, Joseph [Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Vaughn, David J. [Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Rash, Ellen [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Raksowski, Kevin [Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania (United States); Hahn, Stephen M. [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-07-01

    Purpose: To present the principles and rationale of the Proton Priority System (PROPS), a priority points framework that assigns higher scores to patients thought to more likely benefit from proton therapy, and the distribution of PROPS scores by patient characteristics Methods and Materials: We performed multivariable logistic regression to evaluate the association between PROPS scores and receipt of proton therapy, adjusted for insurance status, gender, race, geography, and the domains that inform the PROPS score. Results: Among 1529 adult patients considered for proton therapy prioritization during our Center's ramp-up phase of treatment availability, PROPS scores varied by age, diagnosis, site, and other PROPS domains. In adjusted analyses, receipt of proton therapy was lower for patients with non-Medicare relative to Medicare health insurance (commercial vs Medicare: adjusted odds ratio [OR] 0.47, 95% confidence interval [CI] 0.34-0.64; managed care vs Medicare: OR 0.40, 95% CI 0.28-0.56; Medicaid vs Medicare: OR 0.24, 95% CI 0.13-0.44). Proton Priority System score and age were not significantly associated with receipt of proton therapy. Conclusions: The Proton Priority System is a rationally designed and transparent system for allocation of proton therapy slots based on the best available evidence and expert opinion. Because the actual allocation of treatment slots depends mostly on insurance status, payers may consider incorporating PROPS, or its underlying principles, into proton therapy coverage policies.

  18. Principles and Reality of Proton Therapy Treatment Allocation

    International Nuclear Information System (INIS)

    Bekelman, Justin E.; Asch, David A.; Tochner, Zelig; Friedberg, Joseph; Vaughn, David J.; Rash, Ellen; Raksowski, Kevin; Hahn, Stephen M.

    2014-01-01

    Purpose: To present the principles and rationale of the Proton Priority System (PROPS), a priority points framework that assigns higher scores to patients thought to more likely benefit from proton therapy, and the distribution of PROPS scores by patient characteristics Methods and Materials: We performed multivariable logistic regression to evaluate the association between PROPS scores and receipt of proton therapy, adjusted for insurance status, gender, race, geography, and the domains that inform the PROPS score. Results: Among 1529 adult patients considered for proton therapy prioritization during our Center's ramp-up phase of treatment availability, PROPS scores varied by age, diagnosis, site, and other PROPS domains. In adjusted analyses, receipt of proton therapy was lower for patients with non-Medicare relative to Medicare health insurance (commercial vs Medicare: adjusted odds ratio [OR] 0.47, 95% confidence interval [CI] 0.34-0.64; managed care vs Medicare: OR 0.40, 95% CI 0.28-0.56; Medicaid vs Medicare: OR 0.24, 95% CI 0.13-0.44). Proton Priority System score and age were not significantly associated with receipt of proton therapy. Conclusions: The Proton Priority System is a rationally designed and transparent system for allocation of proton therapy slots based on the best available evidence and expert opinion. Because the actual allocation of treatment slots depends mostly on insurance status, payers may consider incorporating PROPS, or its underlying principles, into proton therapy coverage policies

  19. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  20. SU-F-J-64: Comparison of Dosimetric Robustness Between Proton Therapy and IMRT Plans Following Tumor Regression for Locally Advanced Non-Small Cell Lung Cancer (NSCLC)

    Energy Technology Data Exchange (ETDEWEB)

    Teng, C; Ainsley, C; Teo, B; Burgdorf, B; Berman, A; Levin, W; Xiao, Y; Lin, L; Simone, C; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States); Janssens, G [IBA, Louvain-la-Neuve (Belgium)

    2016-06-15

    Purpose: In the light of tumor regression and normal tissue changes, dose distributions can deviate undesirably from what was planned. As a consequence, replanning is sometimes necessary during treatment to ensure continued tumor coverage or to avoid overdosing organs at risk (OARs). Proton plans are generally thought to be less robust than photon plans because of the proton beam’s higher sensitivity to changes in tissue composition, suggesting also a higher likely replanning rate due to tumor regression. The purpose of this study is to compare dosimetric deviations between forward-calculated double scattering (DS) proton plans with IMRT plans upon tumor regression, and assesses their impact on clinical replanning decisions. Methods: Ten consecutive locally advanced NSCLC patients whose tumors shrank > 50% in volume and who received four or more CT scans during radiotherapy were analyzed. All the patients received proton radiotherapy (6660 cGy, 180 cGy/fx). Dosimetric robustness during therapy was characterized by changes in the planning objective metrics as well as by point-by-point root-mean-squared differences for the entire PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs) DVHs. Results: Sixty-four pairs of DVHs were reviewed by three clinicians, who requested a replanning rate of 16.7% and 18.6% for DS and IMRT plans, respectively, with a high agreement between providers. Robustness of clinical indicators was found to depend on the beam orientation and dose level on the DVH curve. Proton dose increased most in OARs distal to the PTV along the beam path, but these changes were primarily in the mid to low dose levels. In contrast, the variation in IMRT plans occurred primarily in the high dose region. Conclusion: Robustness of clinical indicators depends where on the DVH curves comparisons are made. Similar replanning rates were observed for DS and IMRT plans upon large tumor regression.

  1. Properties of the proton therapy. A high precision radiotherapy

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    The proton therapy is a radiotherapy using protons beams. The protons present interesting characteristics but they need heavy technologies to be used, such particles accelerators, radiation protection wall and sophisticated technologies to reach the high precision allowed by their ballistic qualities (planning of treatment, beam conformation and patient positioning). (N.C.)

  2. The proton therapy system for Massachusetts General Hospital's Northeast Proton Therapy Center

    International Nuclear Information System (INIS)

    Jongen, Y.

    1996-01-01

    In 1989, two companies, Ion Beam Applications in Belgium (IBA) and Sumitomo Heavy Industries in Japan (SHI) started to design proton therapy equipments based on cyclotrons. In 1991, SHI and IBA decided to join their development efforts in this field. In 1993, the Massachusetts General Hospital (MGH), pioneer in the field of proton therapy, launched an international request for proposals for the procurement of an in-hospital proton therapy facility. The 18 may 1994, the contract was signed with a team of industries led by IBA, including also SHI and General Atomics (GA) of California. The proposed system is based on a fixed energy, isochronous cyclotron, followed by an energy degrader and an energy selection system. The variable energy beam can be rapidly switched in any one of three treatment rooms. Two rooms are equipped with large isocentric gantries and robotic patient positioners allowing to direct the proton beam within the patient from any direction. The third room is equipped with fixed horizontal beam. The complete system is computer controlled by a distributed network of computers, programmable logic controllers and workstations. This computer control allows to change the energy in one treatment room is less than two second, a performance matching or exceeding the flexibility offered by synchrotrons. The system is now built and undergoing factory tests. The beam has been accelerated to full energy in the cyclotron, and beam extraction tests are underway. Installation in the hospital building will take place in 1997. (author)

  3. Identification of Patient Benefit From Proton Therapy for Advanced Head and Neck Cancer Patients Based on Individual and Subgroup Normal Tissue Complication Probability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jakobi, Annika, E-mail: Annika.Jakobi@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Bandurska-Luque, Anna [OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Stützer, Kristin; Haase, Robert; Löck, Steffen [OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Wack, Linda-Jacqueline [Section for Biomedical Physics, University Hospital for Radiation Oncology, Eberhard Karls Universät Tübingen (Germany); Mönnich, David [Section for Biomedical Physics, University Hospital for Radiation Oncology, Eberhard Karls Universät Tübingen (Germany); German Cancer Research Center, Heidelberg (Germany); German Cancer Consortium, Tübingen (Germany); Thorwarth, Daniela [Section for Biomedical Physics, University Hospital for Radiation Oncology, Eberhard Karls Universät Tübingen (Germany); and others

    2015-08-01

    Purpose: The purpose of this study was to determine, by treatment plan comparison along with normal tissue complication probability (NTCP) modeling, whether a subpopulation of patients with head and neck squamous cell carcinoma (HNSCC) could be identified that would gain substantial benefit from proton therapy in terms of NTCP. Methods and Materials: For 45 HNSCC patients, intensity modulated radiation therapy (IMRT) was compared to intensity modulated proton therapy (IMPT). Physical dose distributions were evaluated as well as the resulting NTCP values, using modern models for acute mucositis, xerostomia, aspiration, dysphagia, laryngeal edema, and trismus. Patient subgroups were defined based on primary tumor location. Results: Generally, IMPT reduced the NTCP values while keeping similar target coverage for all patients. Subgroup analyses revealed a higher individual reduction of swallowing-related side effects by IMPT for patients with tumors in the upper head and neck area, whereas the risk reduction of acute mucositis was more pronounced in patients with tumors in the larynx region. More patients with tumors in the upper head and neck area had a reduction in NTCP of more than 10%. Conclusions: Subgrouping can help to identify patients who may benefit more than others from the use of IMPT and, thus, can be a useful tool for a preselection of patients in the clinic where there are limited PT resources. Because the individual benefit differs within a subgroup, the relative merits should additionally be evaluated by individual treatment plan comparisons.

  4. Identification of Patient Benefit From Proton Therapy for Advanced Head and Neck Cancer Patients Based on Individual and Subgroup Normal Tissue Complication Probability Analysis

    International Nuclear Information System (INIS)

    Jakobi, Annika; Bandurska-Luque, Anna; Stützer, Kristin; Haase, Robert; Löck, Steffen; Wack, Linda-Jacqueline; Mönnich, David; Thorwarth, Daniela

    2015-01-01

    Purpose: The purpose of this study was to determine, by treatment plan comparison along with normal tissue complication probability (NTCP) modeling, whether a subpopulation of patients with head and neck squamous cell carcinoma (HNSCC) could be identified that would gain substantial benefit from proton therapy in terms of NTCP. Methods and Materials: For 45 HNSCC patients, intensity modulated radiation therapy (IMRT) was compared to intensity modulated proton therapy (IMPT). Physical dose distributions were evaluated as well as the resulting NTCP values, using modern models for acute mucositis, xerostomia, aspiration, dysphagia, laryngeal edema, and trismus. Patient subgroups were defined based on primary tumor location. Results: Generally, IMPT reduced the NTCP values while keeping similar target coverage for all patients. Subgroup analyses revealed a higher individual reduction of swallowing-related side effects by IMPT for patients with tumors in the upper head and neck area, whereas the risk reduction of acute mucositis was more pronounced in patients with tumors in the larynx region. More patients with tumors in the upper head and neck area had a reduction in NTCP of more than 10%. Conclusions: Subgrouping can help to identify patients who may benefit more than others from the use of IMPT and, thus, can be a useful tool for a preselection of patients in the clinic where there are limited PT resources. Because the individual benefit differs within a subgroup, the relative merits should additionally be evaluated by individual treatment plan comparisons

  5. Monte Carlo characterisation of the Dose Magnifying Glass for proton therapy quality assurance

    Science.gov (United States)

    Merchant, A. H.; Guatelli, S.; Petesecca, M.; Jackson, M.; Rozenfeld, A. B.

    2017-01-01

    A Geant4 Monte Carlo simulation study was carried out to characterise a novel silicon strip detector, the Dose Magnifying Glass (DMG), for use in proton therapy Quality Assurance. We investigated the possibility to use DMG to determine the energy of the incident proton beam. The advantages of DMG are quick response, easy operation and high spatial resolution. In this work we theoretically proved that DMG can be used for QA in the determination of the energy of the incident proton beam, for ocular and prostate cancer therapy. The study was performed by means of Monte Carlo simulations Experimental measurements are currently on their way to confirm the results of this simulation study.

  6. Research advances in proton beam therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    DAI Shuyang

    2013-10-01

    Full Text Available Hepatocellular carcinoma (HCC, one of the most common malignancies with high prevalence and mortality rate, usually results in poor prognosis and limited survival. A comprehensive analysis on the number and location of tumors, Child-Pugh grade, and Barcelona Clinic Liver Cancer stage will help the development of suitable treatment programs and improve prediction of prognosis. A majority of patients are complicated by cirrhosis, enlarged tumor, multiple lesions, vascular invasion, and even cancer embolus in the portal vein. With the growth of knowledge about the radiation tolerance of normal tissue and the advances in radiotherapy techniques, radiotherapy has become an important tool for step-down therapy and adjuvant therapy for liver cancer. Proton beam therapy (PBT is emerging as a novel radiotherapy for the management of HCC, which, benefiting from the effect of Bragg Peak from PBT, effectively decreases the toxicity of traditional radiotherapies to the liver and does little harm to the uninvolved liver tissue or the surrounding structures while intensifying the destruction in targeted malignant lesions. Furthermore, several previous studies on the treatment of HCC with PBT revealed excellent local control. The distinctive biophysical attributes of PBT in the treatment of HCC, as well as the available literature regarding clinical outcomes and toxicity of using PBT for HCC, are reviewed. Current evidence provides limited indications for PBT, which suggests that further study on the relationship between liver function and PBT is required to gain further insight into its indication and standardization.

  7. Report on proton therapy according to good clinical practice at Hyogo Ion Beam Medical Center

    International Nuclear Information System (INIS)

    Murakami, Masao; Kagawa, Kazufumi; Hishikawa, Yoshio; Abe, Mitsuyuki

    2002-01-01

    The Hyogo Ion Beam Medical Center (HIBMC) is a hospital-based charged particle treatment facility. Having two treatment ion beams (proton and carbon) and five treatment rooms, it is a pioneer among particle institutes worldwide. In May 2001, proton therapy was started as a clinical study for patients with localized cancer originating in the head and neck, lung, liver, and prostate. The aim of this study was to investigate the safety, effectiveness, and stability of the treatment units and systems based on the evaluation of acute toxicity, tumor response, and working ratio of the machine, respectively. Six patients, including liver cancer in three, prostate cancer in two, and lung cancer in one, were treated. There was no cessation of therapy owing to machine malfunction. Full courses of proton therapy consisting of 154 portals in all six patients were given exactly as scheduled. None of the patients experienced severe acute reactions of more than grade 3 according to NCI-CTC criteria. Tumor response one month post-treatment was evaluable in five of the six patients, and was CR in 1 (prostate cancer), PR in 2 (lung cancer: 1, liver cancer: 1), and NC in 2 (liver cancer: 2). These results indicate that our treatment units and systems are safe and reliable enough for proton irradiation to be used for several malignant tumors localized in the body. (author)

  8. Urethral dose sparing in squamous cell carcinoma of anal canal using proton therapy matching electrons with prior brachytherapy for prostate cancer: A case study.

    Science.gov (United States)

    Apinorasethkul, Ontida; Lenards, Nishele; Hunzeker, Ashley

    2016-01-01

    The purpose of this case study is to communicate a technique on treating the re-irradiation of squamous cell carcinoma (SCC) of anal canal with proton fields matched with electron fields to spare prostatic urethra. A 76-year old male presented with a secondary radiation-induced malignancy as a result of prostate brachytherapy seeds irradiation 10 years prior. A rectal examination revealed a bulky tumor at the top of the anal canal involving the left superior-most aspect of the anal canal extending superiorly into the rectum. The inferior extent was palpable approximately 3cm from the anal verge and the superior extent of the mass measured greater than 5cm in the superior-inferior dimension. Chemoradiation was suggested since the patient was opposed to abdominoperineal resection (APR) and colostomy. The use of proton therapy matching with electron fields in the re-irradiation setting could help reduce the complications. A 2 lateral proton beams were designed to treat the bulky tumor volume with 2 electron beams treating the nodal volumes. This complication of treatment fields helped spare the prostatic urethra and reduced the risk of urinary obstruction in the future. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. Urethral dose sparing in squamous cell carcinoma of anal canal using proton therapy matching electrons with prior brachytherapy for prostate cancer: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Apinorasethkul, Ontida, E-mail: ontida.a@gmail.com [Medical Dosimetry Graduate Program, University of Wisconsin, La Crosse, WI (United States); Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA (United States); Lenards, Nishele; Hunzeker, Ashley [Medical Dosimetry Graduate Program, University of Wisconsin, La Crosse, WI (United States)

    2016-10-01

    The purpose of this case study is to communicate a technique on treating the re-irradiation of squamous cell carcinoma (SCC) of anal canal with proton fields matched with electron fields to spare prostatic urethra. A 76-year old male presented with a secondary radiation-induced malignancy as a result of prostate brachytherapy seeds irradiation 10 years prior. A rectal examination revealed a bulky tumor at the top of the anal canal involving the left superior-most aspect of the anal canal extending superiorly into the rectum. The inferior extent was palpable approximately 3 cm from the anal verge and the superior extent of the mass measured greater than 5 cm in the superior-inferior dimension. Chemoradiation was suggested since the patient was opposed to abdominoperineal resection (APR) and colostomy. The use of proton therapy matching with electron fields in the re-irradiation setting could help reduce the complications. A 2 lateral proton beams were designed to treat the bulky tumor volume with 2 electron beams treating the nodal volumes. This complication of treatment fields helped spare the prostatic urethra and reduced the risk of urinary obstruction in the future.

  10. SU-E-T-529: Is MFO-IMPT Robust Enough for the Treatment of Head and Neck Tumors? A 2-Year Outcome Analysis Following Proton Therapy On the First 50 Oropharynx Patients at the MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Frank, S; Garden, A; Anderson, M; Rosenthal, D; Morrison, W; Gunn, B; Fuller, C; Phan, J; Zhang, X; Poenisch, F; Wu, R; Li, H; Gautam, A; Sahoo, N; Gillin, M; Zhu, X [MD Anderson Cancer Ctr., Houston, TX (United States)

    2015-06-15

    Purpose: Multi-field optimization intensity modulated proton therapy (MFO-IMPT) for oropharyngeal tumors has been established using robust planning, robust analysis, and robust optimization techniques. While there are inherent uncertainties in proton therapy treatment planning and delivery, outcome reporting are important to validate the proton treatment process. The purpose of this study is to report the first 50 oropharyngeal tumor patients treated de-novo at a single institution with MFO-IMPT. Methods: The data from the first 50 patients with squamous cell carcinoma of the oropharynx treated at MD Anderson Cancer Center from January 2011 to December 2014 on a prospective IRB approved protocol were analyzed. Outcomes were analyzed to include local, regional, and distant treatment failures. Acute and late toxicities were analyzed by CTCAE v4.0. Results: All patients were treated with definitive intent. The median follow-up time of the 50 patients was 25 months. Patients by gender were male (84%) and female (16%). The average age was 61 years. 50% of patients were never smokers and 4% were current smokers. Presentation by stage; I–1, II–0, III– 9, IVA–37 (74%), IVB–3. 88% of patients were HPV/p16+. Patients were treated to 66–70 CGE. One local failure was reported at 13 months following treatment. One neck failure was reported at 12 months. 94% of patients were alive with no evidence of disease. One patient died without evidence of disease. There were no Grade 4 or Grade 5 toxicities. Conclusion: MFO-IMPT for oropharyngeal tumors is robust and provides excellent outcomes 2 years after treatment. A randomized trial is underway to determine if proton therapy will reduce chronic late toxicities of IMRT.

  11. Intensity-modulated proton therapy for elective nodal irradiation and involved-field radiation in the definitive treatment of locally advanced non-small-cell lung cancer: a dosimetric study.

    Science.gov (United States)

    Kesarwala, Aparna H; Ko, Christine J; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E; O'Meara, William P; Simone, Charles B; Rengan, Ramesh

    2015-05-01

    Photon involved-field (IF) radiation therapy (IFRT), the standard for locally advanced (LA) non-small cell lung cancer (NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Because of the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. IMPT IFRT plans were generated to the same total dose of 66.6-72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 cobalt Gray equivalent (CGE) to elective nodal planning treatment volumes (PTV) plus 24 CGE to IF-PTVs. Proton IFRT and ENI improved the IF-PTV percentage of volume receiving 95% of the prescribed dose (D95) by 4% (P ENI. The mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all P ENI. Potential decreased toxicity indicates that IMPT could allow ENI while maintaining a favorable therapeutic ratio compared with photon IFRT. Published by Elsevier Inc.

  12. Intensity-Modulated Proton Therapy for Elective Nodal Irradiation and Involved-Field Radiation in the Definitive Treatment of Locally Advanced Non-Small Cell Lung Cancer: A Dosimetric Study

    Science.gov (United States)

    Kesarwala, Aparna H.; Ko, Christine J.; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E.; O’Meara, William P.; Simone, Charles B.; Rengan, Ramesh

    2015-01-01

    Background Photon involved-field radiation therapy (IFRT), the standard for locally advanced non-small cell lung cancer (LA-NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Given the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. Materials and Methods IMPT IFRT plans were generated to the same total dose of 66.6–72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 CGE to elective nodal (EN) planning treatment volumes (PTV) plus 24 CGE to involved field (IF)-PTVs. Results Proton IFRT and ENI both improved D95 involved field (IF)-PTV coverage by 4% (pENI. Mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all pENI. Potential decreased toxicity indicates IMPT could allow ENI while maintaining a favorable therapeutic ratio compared to photon IFRT. PMID:25604729

  13. Inverse planning of intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Nill, S.; Oelfke, U.; Bortfeld, T.

    2004-01-01

    A common requirement of radiation therapy is that treatment planning for different radiation modalities is devised on the basis of the same treatment planning system (TPS). The present study presents a novel multi-modal TPS with separate modules for the dose calculation, the optimization engine and the graphical user interface, which allows to integrate different treatment modalities. For heavy-charged particles, both most promising techniques, the distal edge tracking (DET) and the 3-dimensional scanning (3D) technique can be optimized. As a first application, the quality of optimized intensity-modulated treatment plans for photons (IMXT) and protons (IMPT) was analyzed in one clinical case on the basis of the achieved physical dose distributions. A comparison of the proton plans with the photon plans showed no significant improvement in terms of target volume dose, however there was an improvement in terms of organs at risk as well as a clear reduction of the total integral dose. For the DET technique, it is possible to create a treatment plan with almost the same quality of the 3D technique, however with a clearly reduced number (factor of 5) of beam spots as well as a reduced optimization time. Due to its modular design, the system can be easily expanded to more sophisticated dose-calculation algorithms or to modeling of biological effects. (orig.) [de

  14. The Indiana University proton radiation therapy project

    International Nuclear Information System (INIS)

    Bloch, C.; Derenchuk, V.; Cameron, J.; Fasano, M.; Gilmore, J.; Hashemian, R.; Hornback, N.; Low, D.A.; Morphis, J.; Peterson, C.; Rosselot, D.; Sandison, G.; Shen, R.N.; Shidnia, H.

    1993-01-01

    A fixed horizontal beam line at the Indiana University cyclotron facility (IUCF) has been equipped for proton radiation therapy treatment of head, neck, and brain tumors. The complete system will be commissioned and ready to treat patients early in 1993. IUCF can produce external proton beams from 45 to 200 MeV in energy, which corresponds to a maximum range in water of 26 cm. Beam currents over 100 nA are easily attained, allowing dose rates in excess of 200 cGy/min, even for large fields. Beam spreading systems have been tested which provide uniform fields up to 20 cm in diameter. Range modulation is accomplished with a rotating acrylic device, which provides uniform depth dose distributions from 3 to 18 cm in extent. Tests have been conducted on detectors which monitor the beam position and current, and the dose symmetry. This report discusses those devices, as well as the cyclotron characteristics, measured beam properties, safety interlocks, computerized dose delivery/monitoring system, and future plans. (orig.)

  15. Acromegaly said to respond to proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, C.A.

    1988-02-12

    A news article is presented which discusses a new use for proton therapy. As physicians and physicists continue to refine the clinical applications for charged particles, they can point to at least one notable success story: the treatment of acromegaly, a disorder that afflicts an estimated 250 persons in the United States each year. Bernard Kliman, MD, reported at the annual Endocrine Society meeting in Indianapolis that his group at Harvard Medical School, Boston, and the Harvard cyclotron has cured 479 (85.5%) of 560 patients with acromegaly or gigantism. Cure is defined as reducing growth hormone level to less than 5 ..mu..g/L and shrinking the soft tissue growth characteristic of the disease.

  16. Acromegaly said to respond to proton therapy

    International Nuclear Information System (INIS)

    Raymond, C.A.

    1988-01-01

    A news article is presented which discusses a new use for proton therapy. As physicians and physicists continue to refine the clinical applications for charged particles, they can point to at least one notable success story: the treatment of acromegaly, a disorder that afflicts an estimated 250 persons in the United States each year. Bernard Kliman, MD, reported at the annual Endocrine Society meeting in Indianapolis that his group at Harvard Medical School, Boston, and the Harvard cyclotron has cured 479 (85.5%) of 560 patients with acromegaly or gigantism. Cure is defined as reducing growth hormone level to less than 5 μg/L and shrinking the soft tissue growth characteristic of the disease

  17. SU-F-T-202: An Evaluation Method of Lifetime Attributable Risk for Comparing Between Proton Beam Therapy and Intensity Modulated X-Ray Therapy for Pediatric Cancer Patients by Averaging Four Dose-Response Models for Carcinoma Induction

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, M; Shirato, H [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Ito, Y [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Sakurai, H; Mizumoto, M; Kamizawa, S [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Murayama, S; Yamashita, H [Proton Therapy Division, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka (Japan); Takao, S; Suzuki, R [Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To examine how much lifetime attributable risk (LAR) as an in silico surrogate marker of radiation-induced secondary cancer would be lowered by using proton beam therapy (PBT) in place of intensity modulated x-ray therapy (IMXT) in pediatric patients. Methods: From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: a) brain, head, and neck, b) thoracic, c) abdominal, and d) whole craniospinal (WCNS) irradiation. IMXT was re-planned using the same computed tomography and region of interest. Using dose volume histogram (DVH) of PBT and IMXT, the LAR of Schneider et al. was calculated for the same patient. The published four dose-response models for carcinoma induction: i) full model, ii) bell-shaped model, iii) plateau model, and ix) linear model were tested for organs at risk. In the case that more than one dose-response model was available, the LAR for this patient was calculated by averaging LAR for each dose-response model. Results: Calculation of the LARs of PBT and IMXT based on DVH was feasible for all patients. The mean±standard deviation of the cumulative LAR difference between PBT and IMXT for the four categories was a) 0.77±0.44% (n=7, p=0.0037), b) 23.1±17.2%,(n=8, p=0.0067), c) 16.4±19.8% (n=8, p=0.0525), and d) 49.9±21.2% (n=3, p=0.0275, one tailed t-test), respectively. The LAR was significantly lower by PBT than IMXT for the the brain, head, and neck region, thoracic region, and whole craniospinal irradiation. Conclusion: In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. This method was suggested to be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques. This research was supported by the Translational Research Network Program, JSPS KAKENHI Grant No. 15H04768 and the Global Institution for

  18. SU-F-T-202: An Evaluation Method of Lifetime Attributable Risk for Comparing Between Proton Beam Therapy and Intensity Modulated X-Ray Therapy for Pediatric Cancer Patients by Averaging Four Dose-Response Models for Carcinoma Induction

    International Nuclear Information System (INIS)

    Tamura, M; Shirato, H; Ito, Y; Sakurai, H; Mizumoto, M; Kamizawa, S; Murayama, S; Yamashita, H; Takao, S; Suzuki, R

    2016-01-01

    Purpose: To examine how much lifetime attributable risk (LAR) as an in silico surrogate marker of radiation-induced secondary cancer would be lowered by using proton beam therapy (PBT) in place of intensity modulated x-ray therapy (IMXT) in pediatric patients. Methods: From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: a) brain, head, and neck, b) thoracic, c) abdominal, and d) whole craniospinal (WCNS) irradiation. IMXT was re-planned using the same computed tomography and region of interest. Using dose volume histogram (DVH) of PBT and IMXT, the LAR of Schneider et al. was calculated for the same patient. The published four dose-response models for carcinoma induction: i) full model, ii) bell-shaped model, iii) plateau model, and ix) linear model were tested for organs at risk. In the case that more than one dose-response model was available, the LAR for this patient was calculated by averaging LAR for each dose-response model. Results: Calculation of the LARs of PBT and IMXT based on DVH was feasible for all patients. The mean±standard deviation of the cumulative LAR difference between PBT and IMXT for the four categories was a) 0.77±0.44% (n=7, p=0.0037), b) 23.1±17.2%,(n=8, p=0.0067), c) 16.4±19.8% (n=8, p=0.0525), and d) 49.9±21.2% (n=3, p=0.0275, one tailed t-test), respectively. The LAR was significantly lower by PBT than IMXT for the the brain, head, and neck region, thoracic region, and whole craniospinal irradiation. Conclusion: In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. This method was suggested to be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques. This research was supported by the Translational Research Network Program, JSPS KAKENHI Grant No. 15H04768 and the Global Institution for

  19. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-01-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc_m_u_l_t_i_-_f_i_e_l_d) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc_m_u_l_t_i_-_f_i_e_l_d plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be

  20. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-12-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented

  1. Proton Therapy for Skull Base Chordomas: An Outcome Study from the University of Florida Proton Therapy Institute

    OpenAIRE

    Deraniyagala, Rohan L.; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng; Morris, Christopher G.; Mendenhall, Nancy P.; Okunieff, Paul; Malyapa, Robert S.

    2013-01-01

    Objectives Skull base chordoma is a rare, locally aggressive tumor located adjacent to critical structures. Gross total resection is difficult to achieve, and proton therapy has the conformal advantage of delivering a high postoperative dose to the tumor bed. We present our experience using proton therapy to treat 33 patients with skull base chordomas.

  2. Radiobiology of Proton Therapy - Results of an international expert workshop

    DEFF Research Database (Denmark)

    Lühr, Armin; von Neubeck, Cläre; Pawelke, Jörg

    2018-01-01

    The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full...... in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness...... of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data...

  3. Proton and heavy ion beam (charged particle therapy)

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    2003-01-01

    There are distinguished therapeutic irradiation facilities of proton and heavy ion beam in Japan. The beam, due to its physical properties, is advantageous for focusing on the lesion in the body and for reducing the exposure dose to normal tissues, relative to X-ray. This makes it possible to irradiate the target lesion with the higher dose. The present review describes physical properties of the beam, equipments for the therapeutic irradiation, the respiratory-gated irradiation system, the layer-stacking irradiation system, therapy planning, and future prospect of the therapy. More than 1,400 patients have received the therapy in National Institute of Radiological Sciences (NIRS) and given a good clinical outcome. The targets are cancers of the head and neck, lung, liver, uterine and prostate, and osteosarcoma. The therapy of osteosarcoma is particularly important, which bringing about the high cure rate. Severe adverse effects are not seen with exception for the digestive tract ulcer. Many attempts like the respiratory-gated and layer-stacking systems and to shorten the therapy period to within 1 week are in progress. (N.I.)

  4. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  5. Cryogen therapy of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular cryogen therapy of skin cancer. They noted that cryogen therapy of skin cancer carried new possibilities and improved results of neoplasms treatment

  6. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  7. Clinically Applicable Monte Carlo–based Biological Dose Optimization for the Treatment of Head and Neck Cancers With Spot-Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wan Chan Tseung, Hok Seum, E-mail: wanchantseung.hok@mayo.edu; Ma, Jiasen; Kreofsky, Cole R.; Ma, Daniel J.; Beltran, Chris

    2016-08-01

    Purpose: Our aim is to demonstrate the feasibility of fast Monte Carlo (MC)–based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods and Materials: Recently, a fast and accurate graphics processor unit (GPU)–based MC simulation of proton transport was developed and used as the dose-calculation engine in a GPU-accelerated intensity modulated proton therapy (IMPT) optimizer. Besides dose, the MC can simultaneously score the dose-averaged linear energy transfer (LET{sub d}), which makes biological dose (BD) optimization possible. To convert from LET{sub d} to BD, a simple linear relation was assumed. By use of this novel optimizer, inverse biological planning was applied to 4 patients, including 2 small and 1 large thyroid tumor targets, as well as 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional intensity modulated radiation therapy (IMRT) and IMPT plans were also created using Eclipse (Varian Medical Systems) in each case. The same critical-structure PD constraints were used for the IMRT, IMPT, and biologically optimized plans. The BD distributions for the IMPT plans were obtained through MC recalculations. Results: Compared with standard IMPT, the biologically optimal plans for patients with small tumor targets displayed a BD escalation that was around twice the PD increase. Dose sparing to critical structures was improved compared with both IMRT and IMPT. No significant BD increase could be achieved for the large thyroid tumor case and when the presence of critical structures mitigated the contribution of additional fields. The calculation of the biologically optimized plans can be completed in a clinically viable time (<30 minutes) on a small 24-GPU system. Conclusions: By exploiting GPU acceleration, MC-based, biologically optimized plans were created for

  8. Fertility and cancer therapy

    International Nuclear Information System (INIS)

    Maguire, L.C.

    1979-01-01

    With increased survival of increasing numbers of cancer patients as a result of therapy, the consequences, early and late, of the therapies must be realized. It is the treating physician's duty to preserve as much reproductive potential as possible for patients, consistent with adequate care. With radiotherapy this means shielding the gonads as much as possible, optimal but not excessive doses and fields, oophoropexy, or sperm collection and storage prior to irradiation. With chemotherapy it means the shortest exposure to drugs consistent with best treatment and prior to therapy the collection and storage of sperm where facilities are available. At present this is still an experimental procedure. Artificial insemination for a couple when the male has received cancer therapy is another alternative. Finally, it is the responsibility of physicians caring for patients with neoplasms to be knowledgeable about these and all other effects of therapy so that patients may be counseled appropriately and understand the implications of therapy for their life

  9. Photodynamic Therapy for Cancer

    Science.gov (United States)

    ... et al. Photodynamic therapy. Journal of the National Cancer Institute 1998; 90(12):889–905. [PubMed Abstract] Gudgin Dickson EF, Goyan RL, Pottier RH. New directions in photodynamic therapy. Cellular and Molecular Biology 2002; 48(8):939–954. [PubMed Abstract] Capella ...

  10. SU-E-J-201: Investigation of MRI Guided Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, JS [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Image-guided radiation therapy has been employed for cancer treatment to improve the tumor localization accuracy. Radiation therapy with proton beams requires more on this accuracy because the proton beam has larger uncertainty and dramatic dose variation along the beam direction. Among all the image modalities, magnetic-resonance image (MRI) is the best for soft tissue delineation and real time motion monitoring. In this work, we investigated the behavior of the proton beam in magnetic field with Monte Carlo simulations. Methods: A proton Monte Carlo platform, TOPAS, was used for this investigation. Dose calculations were performed with this platform in a 30cmx30cmx30cm water phantom for both pencil and broad proton beams with different energies (120, 150 and 180MeV) in different magnetic fields (0.5T, 1T and 3T). The isodose distributions, dose profiles in lateral and beam direction were evaluated. The shifts of the Bragg peak in different magnetic fields for different proton energies were compared and the magnetic field effects on the characters of the dose distribution were analyzed. Results: Significant effects of magnetic field have been observed on the proton beam dose distributions, especially for magnetic field of 1T and up. The effects are more significant for higher energy proton beam because higher energy protons travel longer distance in the magnetic field. The Bragg peak shift in the lateral direction is about 38mm for 180MeV and 11mm for 120MeV proton beams in 3T magnetic field. The peak positions are retracted back for 6mm and 2mm, respectively. The effect on the beam penumbra and dose falloff at the distal edge of the Bragg peak is negligible. Conclusion: Though significant magnetic effects on dose distribution have been observed for proton beams, MRI guided proton therapy is feasible because the magnetic effects on dose is predictable and can be considered in patient dose calculation.

  11. Proton-minibeam radiation therapy: A proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y. [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Fois, G. R. [Dipartimento di Fisica, Universita degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042 (Italy)

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  12. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kocak-Uzel, Esengul [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Therapy, Beykent University, Istanbul (Turkey); Feng, Lei [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Thaker, Nikhil G.; Blanchard, Pierre; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-10-01

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012. Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting–associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison to

  13. A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma.

    Science.gov (United States)

    Bodine, Erin N; Monia, K Lars

    2017-08-01

    Proton therapy is a type of radiation therapy used to treat cancer. It provides more localized particle exposure than other types of radiotherapy (e.g., x-ray and electron) thus reducing damage to tissue surrounding a tumor and reducing unwanted side effects. We have developed a novel discrete difference equation model of the spatial and temporal dynamics of cancer and healthy cells before, during, and after the application of a proton therapy treatment course. Specifically, the model simulates the growth and diffusion of the cancer and healthy cells in and surrounding a tumor over one spatial dimension (tissue depth) and the treatment of the tumor with discrete bursts of proton radiation. We demonstrate how to use data from in vitro and clinical studies to parameterize the model. Specifically, we use data from studies of Hepatocellular carcinoma, a common form of liver cancer. Using the parameterized model we compare the ability of different clinically used treatment courses to control the tumor. Our results show that treatment courses which use conformal proton therapy (targeting the tumor from multiple angles) provides better control of the tumor while using lower treatment doses than a non-conformal treatment course, and thus should be recommend for use when feasible.

  14. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Georg, Dietmar; Hopfgartner, Johannes; Gòra, Joanna; Kuess, Peter; Kragl, Gabriele; Berger, Daniel; Hegazy, Neamat; Goldner, Gregor; Georg, Petra

    2014-01-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ( 192 Ir) and LDR-BT ( 125 I) were D 90% ≥34 Gy in 8.5 Gy per fraction and D 90% ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D mean around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques were clearly superior in

  15. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Georg, Dietmar, E-mail: Dietmar.Georg@akhwien.at [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hopfgartner, Johannes [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Gòra, Joanna [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kuess, Peter [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kragl, Gabriele [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Berger, Daniel [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hegazy, Neamat [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Goldner, Gregor; Georg, Petra [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria)

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  16. Proton and neutron radiation in cancer treatment: clinical and economic outcomes

    International Nuclear Information System (INIS)

    Fleurette, F.; Charvet-Protat, S.

    1996-01-01

    The French National Agency for Medical Evaluation (ANDEM) was requested to assess the effectiveness of proton and neutron beam therapy in cancer treatment compared to conventional radiotherapy. This task was accomplished by a critical appraisal of the clinical and economic literature. According to the published economic literature and the capital and staffing cost analysis, it appears that the costs of proton therapy are likely to be two or three times greater than those conformal therapy. According to the published clinical literature, proton beam therapy should be proposed as a routine treatment only for uveal melanoma and skull base cancers. Neutron beam therapy should be proposed as a routine treatment for inoperable salivary gland tumors; its use may be also discussed in cases of stage C-D1 prostate cancers and soft tissue sarcomas. Based on the current scientific evidence and given the incidence rate of these tumors, the time and material requirements, the current French proton/neutron beam facilities are able to meet the current demand. FOr other cancers the medical and economic potential of proton therapy is still an open question. (author)

  17. Proton therapy of tumours and possibilities of its implementation in the Slovak Republic

    International Nuclear Information System (INIS)

    Hanula, M.; Ruzicka, J.; Combor, I.; Cesakova, H.

    2008-01-01

    Besides other modalities irradiation of tumours with a beam of ionizing particles is applied in the treatment of cancer. Currently treatment with photon and electron beams is a standard worldwide and in Slovakia as well. These particles exhibit exponential fall off in tissues. This results in the irradiation of large volume of healthy tissues, which are located in the beam's path. Radiotoxicity of normal tissues is the limiting factor in radiotherapy. Protons are characterized by loosing the most of their energy at the end of their path. The range of protons can be controlled by the proper selection of their initial energy. These properties of protons make it possible to achieve lower doses to the healthy tissues thereby allowing escalation of dose to the tumour. Higher doses to the tumour result in higher efficiency of the treatment. Proton therapy represents a modern and highly effective tool in the struggle against cancer. The present clinical outcomes have proved the benefit of the proton therapy for the improvement of the treatment success-fullness. Slovakia has created conditions allowing implementation of the depth proton therapy within the frame of the Cyclotron centre of the SR project in a relatively short period of time. (author)

  18. Optimizing proton therapy at the LBL medical accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  19. Optimizing proton therapy at the LBL medical accelerator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  20. The first private-hospital based proton therapy center in Korea; Status of the proton therapy center at Samsung Medical Center

    International Nuclear Information System (INIS)

    Chung, Kwang Zoo; Han, Young Yih; Kim, Jin Sung

    2015-01-01

    The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015

  1. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center.

    Science.gov (United States)

    Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young; Lee, Boram; Shibagaki, Gantaro; Nonaka, Hideki; Sasai, Kenzo; Koyabu, Yukio; Choi, Changhoon; Huh, Seung Jae; Ahn, Yong Chan; Pyo, Hong Ryull; Lim, Do Hoon; Park, Hee Chul; Park, Won; Oh, Dong Ryul; Noh, Jae Myung; Yu, Jeong Il; Song, Sanghyuk; Lee, Ji Eun; Lee, Bomi; Choi, Doo Ho

    2015-12-01

    The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

  2. Future of medical physics: Real-time MRI-guided proton therapy.

    Science.gov (United States)

    Oborn, Bradley M; Dowdell, Stephen; Metcalfe, Peter E; Crozier, Stuart; Mohan, Radhe; Keall, Paul J

    2017-08-01

    With the recent clinical implementation of real-time MRI-guided x-ray beam therapy (MRXT), attention is turning to the concept of combining real-time MRI guidance with proton beam therapy; MRI-guided proton beam therapy (MRPT). MRI guidance for proton beam therapy is expected to offer a compelling improvement to the current treatment workflow which is warranted arguably more than for x-ray beam therapy. This argument is born out of the fact that proton therapy toxicity outcomes are similar to that of the most advanced IMRT treatments, despite being a fundamentally superior particle for cancer treatment. In this Future of Medical Physics article, we describe the various software and hardware aspects of potential MRPT systems and the corresponding treatment workflow. Significant software developments, particularly focused around adaptive MRI-based planning will be required. The magnetic interaction between the MRI and the proton beamline components will be a key area of focus. For example, the modeling and potential redesign of a magnetically compatible gantry to allow for beam delivery from multiple angles towards a patient located within the bore of an MRI scanner. Further to this, the accuracy of pencil beam scanning and beam monitoring in the presence of an MRI fringe field will require modeling, testing, and potential further development to ensure that the highly targeted radiotherapy is maintained. Looking forward we envisage a clear and accelerated path for hardware development, leveraging from lessons learnt from MRXT development. Within few years, simple prototype systems will likely exist, and in a decade, we could envisage coupled systems with integrated gantries. Such milestones will be key in the development of a more efficient, more accurate, and more successful form of proton beam therapy for many common cancer sites. © 2017 American Association of Physicists in Medicine.

  3. Therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Takeda, Yutaka; Kitagawa, Toru; Nakamori, Shoji

    2009-01-01

    Pancreatic cancer remains one of the most difficult diseases to cure. Japan pancreas society guidelines for management of pancreatic cancer indicate therapeutic algorithm according to the clinical stage. For locally limited pancreatic cancer (cStage I, II, III in Japanese classification system), surgical resection is recommended, however prognosis is still poor. Major randomized controlled trials of resected pancreatic cancer indicates that adjuvant chemotherapy is superior to observation and gemcitabine is superior to 5-fluorouracil (FU). For locally advanced resectable pancreatic cancer (cStage IVa in Japanese classification system (JCS)), we perform neoadjuvant chemoradiotherapy. Phase I study established a recommended dose of 800 mg gemcitabine and radiation dose of 36 Gy. For locally advanced nonresectable pancreatic cancer (cStage IVa in JCS), chemoradiotherapy followed by chemotherapy is recommended. Although pancreatic cancer is chemotherapy resistant tumor, systemic chemotherapy is recommended for metastatic pancreatic cancer (cStage IVb in JCS). Single-agent gemcitabine is the standard first line agent for the treatment of advanced pancreatic cancer. Meta-analysis of chemotherapy showed possibility of survival benefit of gemcitabine combination chemotherapy over gemcitabine alone. We hope gemcitabine combination chemotherapy or molecular targeted therapy will improve prognosis of pancreatic cancer in the future. (author)

  4. Predicted Rates of Secondary Malignancies From Proton Versus Photon Radiation Therapy for Stage I Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Charles B., E-mail: csimone@alumni.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Kramer, Kevin [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); O' Meara, William P. [Division of Radiation Oncology, National Naval Medical Center, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Belard, Arnaud [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); McDonough, James [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); O' Connell, John [Radiation Oncology Service, Walter Reed Army Medical Center, Washington, DC (United States)

    2012-01-01

    Purpose: Photon radiotherapy has been the standard adjuvant treatment for stage I seminoma. Single-dose carboplatin therapy and observation have emerged as alternative options due to concerns for acute toxicities and secondary malignancies from radiation. In this institutional review board-approved study, we compared photon and proton radiotherapy for stage I seminoma and the predicted rates of excess secondary malignancies for both treatment modalities. Methods and Material: Computed tomography images from 10 consecutive patients with stage I seminoma were used to quantify dosimetric differences between photon and proton therapies. Structures reported to be at increased risk for secondary malignancies and in-field critical structures were contoured. Reported models of organ-specific radiation-induced cancer incidence rates based on organ equivalent dose were used to determine the excess absolute risk of secondary malignancies. Calculated values were compared with tumor registry reports of excess secondary malignancies among testicular cancer survivors. Results: Photon and proton plans provided comparable target volume coverage. Proton plans delivered significantly lower mean doses to all examined normal tissues, except for the kidneys. The greatest absolute reduction in mean dose was observed for the stomach (119 cGy for proton plans vs. 768 cGy for photon plans; p < 0.0001). Significantly more excess secondary cancers per 10,000 patients/year were predicted for photon radiation than for proton radiation to the stomach (4.11; 95% confidence interval [CI], 3.22-5.01), large bowel (0.81; 95% CI, 0.39-1.01), and bladder (0.03; 95% CI, 0.01-0.58), while no difference was demonstrated for radiation to the pancreas (0.02; 95% CI, -0.01-0.06). Conclusions: For patients with stage I seminoma, proton radiation therapy reduced the predicted secondary cancer risk compared with photon therapy. We predict a reduction of one additional secondary cancer for every 50 patients

  5. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.

    Directory of Open Access Journals (Sweden)

    Chaeyeong Lee

    Full Text Available Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1 was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators.

  6. Variable-Energy Cyclotron for Proton Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  7. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    Science.gov (United States)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  8. Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy

    Directory of Open Access Journals (Sweden)

    Annika eJakobi

    2015-11-01

    Full Text Available Introduction:Presently used radio-chemotherapy regimens result in moderate local control rates for patients with advanced head and neck squamous cell carcinoma (HNSCC. Dose escalation (DE may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT or proton therapy (IMPT.Materials and Methods:For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 Gy and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP and normal tissue complication probabilities (NTCP.Results:An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences < 2% in all models, except for the risk of aspiration, which increased on average by 8% and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusions:Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose response description, e.g., ulcers.

  9. A Web application for the management of clinical workflow in image-guided and adaptive proton therapy for prostate cancer treatments.

    Science.gov (United States)

    Yeung, Daniel; Boes, Peter; Ho, Meng Wei; Li, Zuofeng

    2015-05-08

    Image-guided radiotherapy (IGRT), based on radiopaque markers placed in the prostate gland, was used for proton therapy of prostate patients. Orthogonal X-rays and the IBA Digital Image Positioning System (DIPS) were used for setup correction prior to treatment and were repeated after treatment delivery. Following a rationale for margin estimates similar to that of van Herk,(1) the daily post-treatment DIPS data were analyzed to determine if an adaptive radiotherapy plan was necessary. A Web application using ASP.NET MVC5, Entity Framework, and an SQL database was designed to automate this process. The designed features included state-of-the-art Web technologies, a domain model closely matching the workflow, a database-supporting concurrency and data mining, access to the DIPS database, secured user access and roles management, and graphing and analysis tools. The Model-View-Controller (MVC) paradigm allowed clean domain logic, unit testing, and extensibility. Client-side technologies, such as jQuery, jQuery Plug-ins, and Ajax, were adopted to achieve a rich user environment and fast response. Data models included patients, staff, treatment fields and records, correction vectors, DIPS images, and association logics. Data entry, analysis, workflow logics, and notifications were implemented. The system effectively modeled the clinical workflow and IGRT process.

  10. Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient

    Science.gov (United States)

    Zhang, Rui; Howell, Rebecca M.; Giebeler, Annelise; Taddei, Phillip J.; Mahajan, Anita; Newhauser, Wayne D.

    2013-02-01

    Pediatric patients who received radiation therapy are at risk of developing side effects such as radiogenic second cancer. We compared proton and photon therapies in terms of the predicted risk of second cancers for a 4 year old medulloblastoma patient receiving craniospinal irradiation (CSI). Two CSI treatment plans with 23.4 Gy or Gy (RBE) prescribed dose were computed: a three-field 6 MV photon therapy plan and a four-field proton therapy plan. The primary doses for both plans were determined using a commercial treatment planning system. Stray radiation doses for proton therapy were determined from Monte Carlo simulations, and stray radiation doses for photon therapy were determined from measured data. Dose-risk models based on the Biological Effects of Ionization Radiation VII report were used to estimate the risk of second cancer in eight tissues/organs. Baseline predictions of the relative risk for each organ were always less for proton CSI than for photon CSI at all attained ages. The total lifetime attributable risk of the incidence of second cancer considered after proton CSI was much lower than that after photon CSI, and the ratio of lifetime risk was 0.18. Uncertainty analysis revealed that the qualitative findings of this study were insensitive to any plausible changes of dose-risk models and mean radiation weighting factor for neutrons. Proton therapy confers lower predicted risk of second cancer than photon therapy for the pediatric medulloblastoma patient.

  11. Registration and planning of radiotherapy and proton therapy treatment

    International Nuclear Information System (INIS)

    Bausse, Jerome

    2010-01-01

    Within the frame of an update and renewal project, the Orsay Proton Therapy Centre of the Curie Institute (IPCO) renews its software used for the treatment of patients by proton therapy, a radiotherapy technique which uses proton beams. High energies used in these treatments and the precision provided by proton particle characteristics require a more precise patient positioning than conventional radiotherapy: proton therapy requires a precision of about a millimetre. Thus, markers are placed on the skull which are generally well accepted by patients, but are a problem in the case of paediatric treatment, notably for the youngest children whose skull is still growing. The first objective of this research is thus to use only intrinsic information from X-ray images used when positioning the patient. A second objective is to make the new software (TPS Isogray) perfectly compatible with IPCO requirements by maintaining the strengths of the previous TPS (Treatment Planning System) and being prepared to the implementation of a new installation. After a presentation of the context and state of the art in radiotherapy and patient positioning, the author proposes an overview of 2D registration methods, presents a new method for 2x2D registration, and addresses the problem of 3D registration. Then, after a presentation of proton therapy, the author addresses different specific issues and aspects: the compensator (simulation, calculation, and tests), dose calculation, the 'Pencil-Beam' algorithm, tests, and introduced improvements [fr

  12. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  13. Interactive X-ray and proton therapy training and simulation.

    Science.gov (United States)

    Hamza-Lup, Felix G; Farrar, Shane; Leon, Erik

    2015-10-01

    External beam X-ray therapy (XRT) and proton therapy (PT) are effective and widely accepted forms of treatment for many types of cancer. However, the procedures require extensive computerized planning. Current planning systems for both XRT and PT have insufficient visual aid to combine real patient data with the treatment device geometry to account for unforeseen collisions among system components and the patient. The 3D surface representation (S-rep) is a widely used scheme to create 3D models of physical objects. 3D S-reps have been successfully used in CAD/CAM and, in conjunction with texture mapping, in the modern gaming industry to customize avatars and improve the gaming realism and sense of presence. We are proposing a cost-effective method to extract patient-specific S-reps in real time and combine them with the treatment system geometry to provide a comprehensive simulation of the XRT/PT treatment room. The X3D standard is used to implement and deploy the simulator on the web, enabling its use not only for remote specialists' collaboration, simulation, and training, but also for patient education. An objective assessment of the accuracy of the S-reps obtained proves the potential of the simulator for clinical use.

  14. Using a knowledge-based planning solution to select patients for proton therapy.

    Science.gov (United States)

    Delaney, Alexander R; Dahele, Max; Tol, Jim P; Kuijper, Ingrid T; Slotman, Ben J; Verbakel, Wilko F A R

    2017-08-01

    Patient selection for proton therapy by comparing proton/photon treatment plans is time-consuming and prone to bias. RapidPlan™, a knowledge-based-planning solution, uses plan-libraries to model and predict organ-at-risk (OAR) dose-volume-histograms (DVHs). We investigated whether RapidPlan, utilizing an algorithm based only on photon beam characteristics, could generate proton DVH-predictions and whether these could correctly identify patients for proton therapy. Model PROT and Model PHOT comprised 30 head-and-neck cancer proton and photon plans, respectively. Proton and photon knowledge-based-plans (KBPs) were made for ten evaluation-patients. DVH-prediction accuracy was analyzed by comparing predicted-vs-achieved mean OAR doses. KBPs and manual plans were compared using salivary gland and swallowing muscle mean doses. For illustration, patients were selected for protons if predicted Model PHOT mean dose minus predicted Model PROT mean dose (ΔPrediction) for combined OARs was ≥6Gy, and benchmarked using achieved KBP doses. Achieved and predicted Model PROT /Model PHOT mean dose R 2 was 0.95/0.98. Generally, achieved mean dose for Model PHOT /Model PROT KBPs was respectively lower/higher than predicted. Comparing Model PROT /Model PHOT KBPs with manual plans, salivary and swallowing mean doses increased/decreased by <2Gy, on average. ΔPrediction≥6Gy correctly selected 4 of 5 patients for protons. Knowledge-based DVH-predictions can provide efficient, patient-specific selection for protons. A proton-specific RapidPlan-solution could improve results. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of dosimetry tools for proton therapy research

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Kim, Dogyun

    2010-01-01

    Dosimetry tools for proton therapy research have been developed to measure the properties of a therapeutic proton beam. A CCD camera-scintillation screen system, which can verify the 2D dose distribution of a scanning beam and can be used for proton radiography, was developed. Also developed were a large area parallel-plate ionization chamber and a multi-layer Faraday cup to monitor the beam current and to measure the beam energy, respectively. To investigate the feasibility of locating the distal dose falloff in real time during patient treatment, a prompt gamma measuring system composed of multi-layer shielding structures was then devised. The system worked well for a pristine proton beam. However, correlation between the distal dose falloff and the prompt gamma distribution was blurred by neutron background for a therapy beam formed by scattering method. We have also worked on the design of a Compton camera to image the 2D distribution of prompt gamma rays.

  16. Fixed Field Alternating Gradient (FFAG)accelerators and their medical application in proton therapy

    International Nuclear Information System (INIS)

    Fourrier, J.

    2008-10-01

    Radiotherapy uses particle beams to irradiate and kill cancer tumors while sparing healthy tissues. Bragg peak shape of the proton energy loss in matter allows a ballistic improvement of the dose deposition compared with X rays. Thus, the irradiated volume can be precisely adjusted to the tumour. This thesis, in the frame of the RACCAM project, aims to the study and the design of a proton therapy installation based on a fixed field alternating gradient (FFAG) accelerator in order to build a spiral sector FFAG magnet for validation. First, we present proton therapy to define medical specifications leading to the technical specifications of a proton therapy installation. Secondly, we introduce FFAG accelerators through their past and on-going projects which are on their way around the world before developing the beam dynamic theories in the case of invariant focusing optics (scaling FFAG). We describe modelling and simulation tools developed to study the dynamics in a spiral scaling FFAG accelerator. Then we explain the spiral optic parameter search which has leaded to the construction of a magnet prototype. Finally, we describe the RACCAM project proton therapy installation starting from the injector cyclotron and ending with the extraction system. (author)

  17. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    International Nuclear Information System (INIS)

    Poludniowski, G; Esposito, M; Evans, P M; Allinson, N M; Anaxagoras, T; Green, S; Parker, D J; Price, T; Manolopoulos, S; Nieto-Camero, J

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. (paper)

  18. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology.

    Science.gov (United States)

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-06-07

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.

  19. Proton therapy analysis using the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, Houshyar [Center for Theoretical Physics and Mathematics, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]. E-mail: hnoshad@aeoi.org.ir; Givechi, Nasim [Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2005-10-01

    The range and straggling data obtained from the transport of ions in matter (TRIM) computer program were used to determine the trajectories of monoenergetic 60 MeV protons in muscle tissue by using the Monte Carlo technique. The appropriate profile for the shape of a proton pencil beam in proton therapy as well as the dose deposited in the tissue were computed. The good agreements between our results as compared with the corresponding experimental values are presented here to show the reliability of our Monte Carlo method.

  20. Monte Carlo characterisation of the Dose Magnifying Glass for proton therapy quality assurance

    International Nuclear Information System (INIS)

    Merchant, A H; Guatelli, S; Petesecca, M; Jackson, M; Rozenfeld, A B

    2017-01-01

    A Geant4 Monte Carlo simulation study was carried out to characterise a novel silicon strip detector, the Dose Magnifying Glass (DMG), for use in proton therapy Quality Assurance. We investigated the possibility to use DMG to determine the energy of the incident proton beam. The advantages of DMG are quick response, easy operation and high spatial resolution. In this work we theoretically proved that DMG can be used for QA in the determination of the energy of the incident proton beam, for ocular and prostate cancer therapy. The study was performed by means of Monte Carlo simulations Experimental measurements are currently on their way to confirm the results of this simulation study. (paper)

  1. Online advertising and marketing claims by providers of proton beam therapy: are they guideline-based?

    Science.gov (United States)

    Corkum, Mark T; Liu, Wei; Palma, David A; Bauman, Glenn S; Dinniwell, Robert E; Warner, Andrew; Mishra, Mark V; Louie, Alexander V

    2018-03-15

    Cancer patients frequently search the Internet for treatment options, and hospital websites are seen as reliable sources of knowledge. Guidelines support the use of proton radiotherapy in specific disease sites or on clinical trials. This study aims to evaluate direct-to-consumer advertising content and claims made by proton therapy centre (PTC) websites worldwide. Operational PTC websites in English were identified through the Particle Therapy Co-Operative Group website. Data abstraction of website content was performed independently by two investigators. Eight international guidelines were consulted to determine guideline-based indications for proton radiotherapy. Univariate and multivariate logistic regression models were used to determine the characteristics of PTC websites that indicated proton radiotherapy offered greater disease control or cure rates. Forty-eight PTCs with 46 English websites were identified. 60·9% of PTC websites claimed proton therapy provided improved disease control or cure. U.S. websites listed more indications than international websites (15·5 ± 5·4 vs. 10·4 ± 5·8, p = 0·004). The most common disease sites advertised were prostate (87·0%), head and neck (87·0%) and pediatrics (82·6%), all of which were indicated in least one international guideline. Several disease sites advertised were not present in any consensus guidelines, including pancreatobiliary (52·2%), breast (50·0%), and esophageal (43·5%) cancers. Multivariate analysis found increasing number of disease sites and claiming their centre was a local or regional leader in proton radiotherapy was associated with indicating proton radiotherapy offers greater disease control or cure. Information from PTC websites often differs from recommendations found in international consensus guidelines. As online marketing information may have significant influence on patient decision-making, alignment of such information with accepted guidelines and consensus

  2. Proton Therapy for Spinal Ependymomas: Planning, Acute Toxicities, and Preliminary Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Amsbaugh, Mark J. [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); McAleer, Mary Frances; Zhu, Ron; Wages, Cody; Crawford, Cody N.; Palmer, Matthew; De Gracia, Beth; Woo Shiao; Mahajan, Anita [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-08-01

    Purpose: To report acute toxicities and preliminary outcomes for pediatric patients with ependymomas of the spine treated with proton beam therapy at the MD Anderson Cancer Center. Methods and Materials: Eight pediatric patients received proton beam irradiation between October 2006 and September 2010 for spinal ependymomas. Toxicity data were collected weekly during radiation therapy and all follow-up visits. Toxicities were graded according to the Common Terminology Criteria for Adverse Events version 3.0. Results: All patients had surgical resection of the tumor before irradiation (7 subtotal resection and 1 gross total resection). Six patients had World Health Organization Grade I ependymomas, and two had World Health Organization Grade II ependymomas. Patients had up to 3 surgical interventions before radiation therapy (range, 1-3; median, 1). Three patients received proton therapy after recurrence and five as part of their primary management. The entire vertebral body was treated in all but 2 patients. The mean radiation dose was 51.1 cobalt gray equivalents (range, 45 to 54 cobalt gray equivalents). With a mean follow-up of 26 months from the radiation therapy start date (range, 7-51 months), local control, event-free survival, and overall survival rates were all 100%. The most common toxicities during treatment were Grade 1 or 2 erythema (75%) and Grade 1 fatigue (38%). No patients had a Grade 3 or higher adverse event. Proton therapy dramatically reduced dose to all normal tissues anterior to the vertebral bodies in comparison to photon therapy. Conclusion: Preliminary outcomes show the expected control rates with favorable acute toxicity profiles. Proton beam therapy offers a powerful treatment option in the pediatric population, where adverse events related to radiation exposure are of concern. Extended follow-up will be required to assess for late recurrences and long-term adverse effects.

  3. Carbon/proton therapy: A novel gantry design

    Directory of Open Access Journals (Sweden)

    D. Trbojevic

    2007-05-01

    Full Text Available A major expense and design challenge in carbon/proton cancer therapy machines are the isocentric gantries. The transport elements of the carbon/proton gantry are presently made of standard conducting dipoles. Because of their large weight, of the order of ∼100   tons, the total weight of the gantry with support structure is ∼600   tons. The novel gantry design that is described here is made of fixed field superconducting magnets, thus dramatically reducing magnet size and weight compared to conventional magnets. In addition, the magnetic field is constant throughout the whole energy region required for tumor treatment. Particles make very small orbit offsets, passing through the beam line. The beam line is built of combined-function dipoles such as a nonscaling fixed field alternating gradient (NS-FFAG structure. The very large momentum acceptance NS-FFAG comes from very strong focusing and very small dispersion. The NS-FFAG small magnets almost completely filled the beam line. They first make a quarter (or close to a quarter of an arc bending upward and an additional half of a circle beam line finishing so that the beam is pointed towards the patient. At the end of the gantry, additional magnets with a fast response are required to allow radial scanning and to provide the required position and spot size. The fixed field combined-function magnets for the carbon gantry could be made of superconducting magnets by using low temperature superconducting cable or by using high temperature superconductors.

  4. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Directory of Open Access Journals (Sweden)

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  5. Comparisons of dose-volume histograms for proton-beam versus 3-D conformal X-ray therapy in patients with stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Wang, Changlu; Nakayama, Hidetsugu; Sugahara, Shinji; Sakae, Takeji; Tokuuye, Koichi

    2009-01-01

    Dose-volume histograms (DVHs) were reviewed to determine if there is an advantage of the two modalities when treating patients with non-small cell lung cancer (NSCLC). 24 stage I NSCLC patients who underwent proton-beam therapy (PBT) from June 2003 to May 2007 were included in this study. Based on the same clinical target volumes (CTVs), treatment planning was made to cover CTV within 90% isodose lines. Each patient was evaluated by two sets of DVHs, one for PBT and the other for three-dimensional conformal X-ray therapy (3D-CRT). For all patients, the 95% isodose line covered 86.4% of the CTV for PBT, and 43.2% for 3D-CRT. PBT was associated with significantly lower mean doses to the ipsilateral lung, total lung, heart, esophagus, and spinal cord than 3D-CRT. PBT offered reduced radiation doses to the lung when evaluated in terms of percentage lung volumes receiving ≥ 5 Gy (V 5 ), ≥ 10 Gy (V 10 ), and ≥ 20 Gy (V 20 ) when compared to 3D-CRT. PBT is advantageous over 3D-CRT in reducing doses to the lung, heart, esophagus, and spinal cord in treating stage I NSCLC. (orig.)

  6. TU-G-BRCD-01: Will the High Cost of Proton Therapy Facilities Limit the Availability of Proton Therapy Treatment?

    Science.gov (United States)

    Maughan, R

    2012-06-01

    The potential dose distribution advantages associated with proton therapy, and particularly with pencil beam scanning (PBS) techniques, have lead to considerable interest in this modality in recent years. However, the large capital expenditure necessary for such a project requires careful financial consideration and business planning. The complexity of the beam delivery systems impacts the capital expenditure and the PBS only systems presently being advocated can reduce these costs. Also several manufacturers are considering "one-room" facilities as less expensive alternatives to multi-room facilities. This presentation includes a brief introduction to beam delivery options (passive scattering, uniform and modulated scanning) and some of the new technologies proposed for providing less expensive proton therapy systems. Based on current experience, data on proton therapy center start-up costs, running costs and the financial challenges associated with making this highly conformal therapy more widely available will be discussed. Issues associated with proton therapy implementation that are key to project success include strong project management, vendor cooperation and collaboration, staff recruitment and training. Time management during facility start up is a major concern, particularly in multi-room systems, where time must be shared between continuing vendor system validation, verification and acceptance testing, and user commissioning and patient treatments. The challenges associated with facility operation during this period and beyond are discussed, focusing on how standardization of process, downtime and smart scheduling can influence operational efficiency. 1. To understand the available choices for proton therapy facilities, the different beam delivery systems and the financial implications associated with these choices. 2. To understand the key elements necessary for successfully implementing a proton therapy program. 3. To understand the challenges

  7. Proton therapy with spot scanning: the Rinecker Proton Therapy Center in Munich. Part 2: Technical and physical aspects

    International Nuclear Information System (INIS)

    Borchert, H. J.; Mayr, M.; Schneider, R. A.; Arnold, M. R.; Geismar, D. E.; Wilms, M.; Wisser, L.; Herbst, M.

    2008-01-01

    The Rinecker Proton Therapy Center (RPTC) in Munich is about to introduce into clinical radiation therapy, a 2D scanning technique (spot scanning) of a single proton pencil beam. It will be available at four gantries and a fifth treatment room allocates a fixed beam unit for a scattering technique. A superconducting cyclotron extracts protons with a constant energy of 250 MeV. Far upstream of the patient follows modulation of the energy with a degrader according to the prescription of the patients treatment planning. A 10 mm pencil beam at full width of half maximum (FWHM) will enable scanning of individual tumour volumes at any depth i.e. 1 minute for a target volume of 1 litre and a dose of 2 Gy. Innovative solutions will be established for other important issues such as dosimetric monitoring, safety concepts and positioning of the patient. The physical characteristics of proton beam spot scanning offer exceptional possibilities in conformal radiation therapy. Together with intensity modulated proton therapy (IMPT) it significantly improves the sparing of organs at risk and of healthy tissues. (author)

  8. Margins for treatment planning of proton therapy

    International Nuclear Information System (INIS)

    Thomas, Simon J

    2006-01-01

    For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning

  9. WE-D-BRB-04: Clinical Applications of CBCT for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Teo, B. [University of Pennsylvania (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  10. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  11. WE-D-BRB-04: Clinical Applications of CBCT for Proton Therapy

    International Nuclear Information System (INIS)

    Teo, B.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  12. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  13. Radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Nakamura, Katsumasa

    2001-01-01

    In Japan, where the mortality rate of prostate cancer is lower than in Western countries, radical prostatectomy or hormonal therapy has been applied more frequently than radiation therapy. However, the number of patients with prostate cancer has been increasing recently and the importance of radiation therapy has rapidly been recognized. Although there have been no randomized trials, results from several institutions in Western countries suggest that similar results of cancer control are achieved with either radiation therapy or radical prostatectomy. For higher-risk cases, conformal high-dose therapy or adjuvant hormonal therapy is more appropriate. In this article, the results of radiation therapy for prostate cancer were reviewed, with a view to the appropriate choice of therapy in Japan. (author)

  14. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  15. SU-E-T-210: Comparison of Proton with Electron Boost in Breast Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y; Chang, A [Procure Proton Therapy Center, Oklahoma City, OK (United States); Liu, Y [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: Electron beams are commonly used for boost radiation following whole breast irradiation (WBI) to improve the in-breast local control. Proton beams have a finite range and a sharper distal dose falloff compared to electron beams, thus potentially sparing more heart and lung in breast treatment. The purpose of the study is to compare protons with electrons for boost breast treatment in terms of target coverage and normal tissue sparing. Methods: Six breast cancer patients were included in this study. All women received WBI to 45–50 Gy, followed by a 10–16.2 Gy boost with standard fractionation. If proton beams were used for the boost treatment, an electron plan was retrospectively generated for comparison using the same CT set and structures, and vice versa if electron beams were used for treatment. Proton plans were generated using the treatment planning system (TPS) with two to three uniform scanning proton beams. Electron plans were generated using the Pinnacle TPS with one single en face beam. Dose-volume histograms (DVH) were calculated and compared between proton and electron boost plans. Results: Proton plans show a similar boost target coverage, similar skin dose, and much better heart and lung sparing. For an example patient, V95% for PTV was 99.98% and skin (5 mm shell) received a max dose close to the prescription dose for both protons and electrons; however, V2 and V5 for the ipsilateral lung and heart were 37.5%, 17.9% and 19.9%, 4.9% respectively for electrons, but were essentially 0 for protons. Conclusions: This dosimetric comparison demonstrates that while both proton therapy and electron therapy provided similar coverage and skin dose, proton therapy could largely reduce the dose to lung and heart, thus leading to potential less side effects.

  16. Preparations for the next generation of clinical trials with proton therapy

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Smith, A.R.; Fitzek, M.; Ibbott, G.; Munzenrider, J.

    2002-01-01

    Full text: As proton radiation therapy centers become more widely available, we anticipate an increase in clinical proton therapy research, e.g. clinical trials to compare the efficacy of proton therapy with that of conformal photon therapy. In this presentation, we explore some of the quality assurance (QA) work that will be necessary to support multi-institution clinical trials to include facilities in Europe, Asia and the United States. Specifically, we shall concentrate on three areas pertaining to practical clinical proton dosimetry for which clear, concise, and coherent guidance is needed. First, the existing proton therapy dosimetry protocols (e.g. ICRU Report 59, IAEA TRS-398) provide general methods that are well suited for adoption in proton therapy. Many additional techniques are required in order to implement dosimetry in a contemporary proton clinic. For example, special situations arise for small fields including those for radiosurgery and ocular treatments, and for rotational therapy. Fortunately, this additional information is emerging from various proton therapy centers. For example, Vatnitsky et al. described the dosimetry of small beams, Newhauser et al. described absolute proton dosimetry techniques for radiosurgery and for ocular beams. Newhauser et al. also reported on a general formalism and practical methods for dosimetry measurements in a rotational proton gantry. Our aim is to discuss some specific needs for the standardization of these tasks, which will be essential in achieving adequate uniformity in multi-institution clinical trials. Second, we will discuss means to standardize of writing the physics QA portion of protocols for multi-institution clinical trials, through which a statistically significant number of patient outcomes may be obtained more rapidly. Surprisingly, only two multi-institution proton clinical trials have been undertaken (a skull base sarcoma trial and a prostate cancer trial, both shared between MGH and Loma Linda

  17. Beam Phase Detection for Proton Therapy Accelerators

    CERN Document Server

    Aminov, Bachtior; Getta, Markus; Kolesov, Sergej; Pupeter, Nico; Stephani, Thomas; Timmer, J

    2005-01-01

    The industrial application of proton cyclotrons for medical applications has become one of the important contributions of accelerator physics during the last years. This paper describes an advanced vector demodulating technique used for non-destructive measurements of beam intensity and beam phase over 360°. A computer controlled I/Q-based phase detector with a very large dynamic range of 70 dB permits the monitoring of beam intensity, phase and eventually energy for wide range of beam currents down to -130 dBm. In order to avoid interference from the fundamental cyclotron frequency the phase detection is performed at the second harmonic frequency. A digital low pass filter with adjustable bandwidth and steepness is implemented to improve accuracy. With a sensitivity of the capacitive pickup in the beam line of 30 nV per nA of proton beam current at 250 MeV, accurate phase and intensity measurements can be performed with beam currents down to 3.3 nA.

  18. Non-invasive anesthesia for children undergoing proton radiation therapy

    International Nuclear Information System (INIS)

    Owusu-Agyemang, Pascal; Grosshans, David; Arunkumar, Radha; Rebello, Elizabeth; Popovich, Shannon; Zavala, Acsa; Williams, Cynthia; Ruiz, Javier; Hernandez, Mike; Mahajan, Anita; Porche, Vivian

    2014-01-01

    Background: Proton therapy is a newer modality of radiotherapy during which anesthesiologists face specific challenges related to the setup and duration of treatment sessions. Purpose: Describe our anesthesia practice for children treated in a standalone proton therapy center, and report on complications encountered during anesthesia. Materials and methods: A retrospective review of anesthetic records for patients ⩽18 years of age treated with proton therapy at our institution between January 2006 and April 2013 was performed. Results: A total of 9328 anesthetics were administered to 340 children with a median age of 3.6 years (range, 0.4–14.2). The median daily anesthesia time was 47 min (range, 15–79). The average time between start of anesthesia to the start of radiotherapy was 7.2 min (range, 1–83 min). All patients received Total Intravenous Anesthesia (TIVA) with spontaneous ventilation, with 96.7% receiving supplemental oxygen by non-invasive methods. None required daily endotracheal intubation. Two episodes of bradycardia, and one episode each of; seizure, laryngospasm and bronchospasm were identified for a cumulative incidence of 0.05%. Conclusions: In this large series of children undergoing proton therapy at a freestanding center, TIVA without daily endotracheal intubation provided a safe, efficient, and less invasive option of anesthetic care

  19. Proton therapy of hormone-secreting hypophyseal adenomas: gluconeogenesis assessment

    International Nuclear Information System (INIS)

    Konnova, L.A.; Konnov, B.A.; Mel'nikov, L.A.; Lebedeva, N.A.

    1993-01-01

    Analysis of blood plasma aminograms of patients with hormone secreting hypophyseal adenomas (somatotropinomas and prolactinomas), that were obtained before and after a course of proton therapy, has confirmed the gluconeogenic effect of hypophyseal hormones and evidenced the relationship between this effect and dismetabolism of some amino acids

  20. Clinical results of proton beam therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Igaki, Hiroshi; Tokuuye, Koichi; Okumura, Toshiyuki; Sugahara, Shinji; Kagei, Kenji; Hata, Masaharu; Ohara, Kiyoshi; Hashimoto, Takayuki; Tsuboi, Koji; Takano, Shingo; Matsumura, Akira; Akine, Yasuyuki

    2004-01-01

    Purpose: To evaluate clinical results of proton beam therapy for patients with skull base chordoma. Methods and materials: Thirteen patients with skull base chordoma who were treated with proton beams with or without X-rays at the University of Tsukuba between 1989 and 2000 were retrospectively reviewed. A median total tumor dose of 72.0 Gy (range, 63.0-95.0 Gy) was delivered. The patients were followed for a median period of 69.3 months (range, 14.6-123.4 months). Results: The 5-year local control rate was 46.0%. Cause-specific, overall, and disease-free survival rates at 5 years were 72.2%, 66.7%, and 42.2%, respectively. The local control rate was higher, without statistical significance, for those with preoperative tumors <30 mL. Partial or subtotal tumor removal did not yield better local control rates than for patients who underwent biopsy only as the latest surgery. Conclusion: Proton beam therapy is effective for patients with skull base chordoma, especially for those with small tumors. For a patient with a tumor of <30 mL with no prior treatment, biopsy without tumor removal seems to be appropriate before proton beam therapy

  1. Electromagnetic design of a pos-accelerator of protons for ocular neoplasm therapy

    International Nuclear Information System (INIS)

    Rabelo, Luísa de Araújo

    2016-01-01

    Proton therapy is an effective technique in the treatment and control of cancer, which is not available in most countries. The low number of specialized centers for this type of treatment is because of the high cost of implementing and maintaining the accelerators. This study presents a model for the Electromagnetic (EM) acceleration of protons to sufficient energies for the treatment of ocular tumors. This is the scientific possibility of a compact technology that uses cyclotrons to produce radioisotopes (present in various countries) as accelerator guns via an analytical assessment of the physical parameters of the beam and a simulation of the electromagnetic equipment structures, acceleration, and movement of the proton beam using CST STUDIO® 3D 2015 (Computer Simulation Technology) software. In addition, the geometry required to provide synchronization between the acceleration and beam path was analyzed using the motion equations of the protons. The simulations show a final model that is compact and simplified as compared with the isochronic cyclotron and synchrotron (used for proton therapy). The synchronism requirements of a circular accelerator are fulfilled in this model so that in all orbits the beam has the same movement time. The extraction energy of the presented model is sufficient for the treatment of ocular tumors. This is an alternative method that could improve the quality of life for patients with ocular tumors in developing countries. Future studies will be conducted to complete the technical design presentation and evaluate the accelerated beam's interaction with neoplastic tissues. (author)

  2. High energy protons application for radiotherapy of the esophagus affected with cancer

    International Nuclear Information System (INIS)

    Ruderman, A.I.; Astrakhan, B.V.; Kulakov, G.A.; Makarova, G.V.; Zhuravleva, N.T.

    1975-01-01

    As in radiation therapy of tumours located elsewhere, local radiation treatment of an esophagus tumour is often aggravated by the development, after some time, of a trophic ulcer as a result of decreased regenerative ability of the irradiated sound tissues and also of newly formed hystostructures which have replaced the destroyed tumorous tissue. It has been established that the number of complications increases with the total focal dose, but at the same time (up to a certain point) the number of local curings increases as well. Some promise was shown by high-energy protons with their physical advantages unique for radiation therapy, such as the strictly controlled free path length of particles in the tissues, the presence of the Bragg peak, the absence of lateral scattering, i.e. features which permit of a high dose in the target with a minimum injury to the sound tissues surrounding the tumour. Proton therapy of esophagus cancer was carried out by two techniques, static and shuttle-rotary. The results of proton therapy of esophagus cancer indicate that the use of high-energy protons for treating esophagus cancer holds promise

  3. Establishing Cost-Effective Allocation of Proton Therapy for Breast Irradiation

    International Nuclear Information System (INIS)

    Mailhot Vega, Raymond B.; Ishaq, Omar; Raldow, Ann; Perez, Carmen A.; Jimenez, Rachel; Scherrer-Crosbie, Marielle; Bussiere, Marc; Taghian, Alphonse; Sher, David J.; MacDonald, Shannon M.

    2016-01-01

    Purpose: Cardiac toxicity due to conventional breast radiation therapy (RT) has been extensively reported, and it affects both the life expectancy and quality of life of affected women. Given the favorable oncologic outcomes in most women irradiated for breast cancer, it is increasingly paramount to minimize treatment side effects and improve survivorship for these patients. Proton RT offers promise in limiting heart dose, but the modality is costly and access is limited. Using cost-effectiveness analysis, we provide a decision-making tool to help determine which breast cancer patients may benefit from proton RT referral. Methods and Materials: A Markov cohort model was constructed to compare the cost-effectiveness of proton versus photon RT for breast cancer management. The model was analyzed for different strata of women based on age (40 years, 50 years, and 60 years) and the presence or lack of cardiac risk factors (CRFs). Model entrants could have 1 of 3 health states: healthy, alive with coronary heart disease (CHD), or dead. Base-case analysis assumed CHD was managed medically. No difference in tumor control was assumed between arms. Probabilistic sensitivity analysis was performed to test model robustness and the influence of including catheterization as a downstream possibility within the health state of CHD. Results: Proton RT was not cost-effective in women without CRFs or a mean heart dose (MHD) <5 Gy. Base-case analysis noted cost-effectiveness for proton RT in women with ≥1 CRF at an approximate minimum MHD of 6 Gy with a willingness-to-pay threshold of $100,000/quality-adjusted life-year. For women with ≥1 CRF, probabilistic sensitivity analysis noted the preference of proton RT for an MHD ≥5 Gy with a similar willingness-to-pay threshold. Conclusions: Despite the cost of treatment, scenarios do exist whereby proton therapy is cost-effective. Referral for proton therapy may be cost-effective for patients with ≥1 CRF in cases for which

  4. Establishing Cost-Effective Allocation of Proton Therapy for Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mailhot Vega, Raymond B.; Ishaq, Omar [Department of Radiation Oncology, NYU School of Medicine, New York, New York (United States); Raldow, Ann [Radiation Oncology Program, Harvard University, Boston, Massachusetts (United States); Perez, Carmen A. [Department of Radiation Oncology, NYU School of Medicine, New York, New York (United States); Jimenez, Rachel [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Scherrer-Crosbie, Marielle [Cardiovascular Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Bussiere, Marc; Taghian, Alphonse [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Sher, David J. [Department of Radiation Oncology, University of Texas Southwestern Medical Center, San Antonio, Texas (United States); MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: Cardiac toxicity due to conventional breast radiation therapy (RT) has been extensively reported, and it affects both the life expectancy and quality of life of affected women. Given the favorable oncologic outcomes in most women irradiated for breast cancer, it is increasingly paramount to minimize treatment side effects and improve survivorship for these patients. Proton RT offers promise in limiting heart dose, but the modality is costly and access is limited. Using cost-effectiveness analysis, we provide a decision-making tool to help determine which breast cancer patients may benefit from proton RT referral. Methods and Materials: A Markov cohort model was constructed to compare the cost-effectiveness of proton versus photon RT for breast cancer management. The model was analyzed for different strata of women based on age (40 years, 50 years, and 60 years) and the presence or lack of cardiac risk factors (CRFs). Model entrants could have 1 of 3 health states: healthy, alive with coronary heart disease (CHD), or dead. Base-case analysis assumed CHD was managed medically. No difference in tumor control was assumed between arms. Probabilistic sensitivity analysis was performed to test model robustness and the influence of including catheterization as a downstream possibility within the health state of CHD. Results: Proton RT was not cost-effective in women without CRFs or a mean heart dose (MHD) <5 Gy. Base-case analysis noted cost-effectiveness for proton RT in women with ≥1 CRF at an approximate minimum MHD of 6 Gy with a willingness-to-pay threshold of $100,000/quality-adjusted life-year. For women with ≥1 CRF, probabilistic sensitivity analysis noted the preference of proton RT for an MHD ≥5 Gy with a similar willingness-to-pay threshold. Conclusions: Despite the cost of treatment, scenarios do exist whereby proton therapy is cost-effective. Referral for proton therapy may be cost-effective for patients with ≥1 CRF in cases for which

  5. Protective effect of transparent film dressing on proton therapy induced skin reactions

    International Nuclear Information System (INIS)

    Whaley, Jonathan T; Kirk, Maura; Cengel, Keith; McDonough, James; Bekelman, Justin; Christodouleas, John P

    2013-01-01

    Proton therapy can result in clinically significant radiation dermatitis. In some clinical scenarios, such as lung or breast cancer, the risk of severe radiation dermatitis may limit beam arrangement and prescription doses. Patients undergoing proton therapy for prostate cancer commonly develop mild radiation dermatitis. Herein, we report the outcomes of two prostate cancer patients whose radiation dermatitis appears to have been substantially diminished by transparent film dressings (Beekley stickers). This is a descriptive report of the skin toxicity observed in two patients undergoing proton therapy for prostate cancer at a single institution in 2011. A phantom dosimetric study was performed to evaluate the impact of a transparent film dressing on a beam’s spread out Bragg peak (SOBP). Two patients with low risk prostate cancer were treated with proton therapy to a total dose of 79.2Gy (RBE) in 1.8 Gy (RBE) fractions using two opposed lateral beams daily. Both patients had small circular (2.5 cm diameter) transparent adhesive markers placed on their skin to assist with daily alignment. Patient 1 had markers in place bilaterally for the entirety of treatment. Patient 2 had a marker in place for three weeks on one side and six weeks on the other. Over the course of therapy, both men developed typical Grade 1 radiation dermatitis (asymptomatic erythema) on their hips; however, in both patients, the erythema was substantially decreased beneath the markers. Patient 2 demonstrated less attenuation and thus greater erythema in the skin covered for three weeks compared to the skin covered for six weeks. The difference in skin changes between the covered and uncovered skin persisted for at least 1 month. A phantom study of double scattered beam SOBP with and without the marker in the beam path showed no gross dosimetric effect. Transparent adhesive markers appear to have attenuated radiation dermatitis in these two patients without affecting the SOBP. One patient may

  6. Assessment of doses due to secondary neutrons received by patient treated by proton therapy

    International Nuclear Information System (INIS)

    Sayah, R.; Martinetti, F.; Donadille, L.; Clairand, I.; Delacroix, S.; De Oliveira, A.; Herault, J.

    2010-01-01

    Proton therapy is a specific technique of radiotherapy which aims at destroying cancerous cells by irradiating them with a proton beam. Nuclear reactions in the device and in the patient himself induce secondary radiations involving mainly neutrons which contribute to an additional dose for the patient. The author reports a study aimed at the assessment of these doses due to secondary neutrons in the case of ophthalmological and intra-cranial treatments. He presents a Monte Carlo simulation of the room and of the apparatus, reports the experimental validation of the model (dose deposited by protons in a water phantom, ambient dose equivalent due to neutrons in the treatment room, absorbed dose due to secondary particles in an anthropomorphic phantom), and the assessment with a mathematical phantom of doses dues to secondary neutrons received by organs during an ophthalmological treatment. He finally evokes current works of calculation of doses due to secondary neutrons in the case of intra-cranial treatments

  7. Cancer therapy with particle accelerators

    CERN Document Server

    Amaldi, Ugo

    1999-01-01

    This review paper is devoted to conventional radiotherapy and to hadron therapy. In this therapeutical modality, proposed by R. R. Wilson in 1946, the physical selectivity of proton and light ion beams is used to irradiate tissues very close to organs at risk, which cannot be irradiated (the brain and the spinal cord for instance). Also fast neutrons are employed, but they are not suitable for a truly conformal irradiation. Carbon ions have the added advantage, with respect to protons, of the high density of ionization at the end of the range in matter. This property is very valuable for the control of tumours which are radioresistant to both X-rays and protons. After clarifying the general principles, a review is presented of the world hadron therapy centres which are running or are in the design and construction stage. (33 refs).

  8. Proton radiation therapy for clivus chordoma; Case report

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Yoshihiko; Tsunoda, Takashi; Hyodo, Akio; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Tsujii, Hirohiko; Tsuji, Hiroshi; Inada, Tetsuo; Maruhashi, Akira; Hayakawa, Yoshinori

    1993-03-01

    A 57-year-old male with clival chordoma developed severe hoarseness, dysphagia, and dysphonia 1 month after a second removal of the tumor. Magnetic resonance imaging demonstrated a mass 10 cm in diameter in the region of the middle clivus enhanced inhomogeneously by gadolinium-diethylenetriaminepenta-acetic acid, and a defect in the skull base. There was evidence of compression of the anterior surface of the pons. He received proton irradiation employing a pair of parallel opposed lateral proton beams. The dose aimed at the tumor mass was 75.5 Gy, to the pharyngeal wall less than 38 Gy, and to the anterior portion of the pons less than 30 Gy. Time dose and fractionation factor was calculated at 148. Thirty-one months following treatment, he was free of clinical neurological sequelae. Proton therapy should be considered in treatment planning following initial surgical removal or for inoperable clivus chordoma. (author).

  9. Outcomes of Proton Therapy for the Treatment of Uveal Metastases

    International Nuclear Information System (INIS)

    Kamran, Sophia C.; Collier, John M.; Lane, Anne Marie; Kim, Ivana; Niemierko, Andrzej; Chen, Yen-Lin E.; MacDonald, Shannon M.; Munzenrider, John E.; Gragoudas, Evangelos; Shih, Helen A.

    2014-01-01

    Purpose/Objective(s): Radiation therapy can be used to treat uveal metastases with the goal of local control and improvement of quality of life. Proton therapy can be used to treat uveal tumors efficiently and with expectant minimization of normal tissue injury. Here, we report the use of proton beam therapy for the management of uveal metastases. Methods and Materials: A retrospective chart review was made of all patients with uveal metastases treated at our institution with proton therapy between June 2002 and June 2012. Patient and tumor characteristics, fractionation and dose schemes, local control, and toxicities are reported. Results: Ninety patients were identified. Of those, 13 were excluded because of missing information. We report on 77 patients with 99 affected eyes with available data. Patients were 68% female, and the most common primary tumor was breast carcinoma (49%). The median age at diagnosis of uveal metastasis was 57.9 years. Serous retinal detachment was seen in 38% of treated eyes. The median follow-up time was 7.7 months. The median dose delivered to either eye was 20 Gy(relative biological effectiveness [RBE]) in 2 fractions. Local control was 94%. The median survival after diagnosis of uveal metastases was 12.3 months (95% confidence interval, 7.7-16.8). Death in all cases was secondary to systemic disease. Radiation vasculopathy, measured decreased visual acuity, or both was observed in 50% of evaluable treated eyes. The actuarial rate of radiation vasculopathy, measured decreased visual acuity, or both was 46% at 6 months and 73% at 1 year. The 6 eyes with documented local failure were successfully salvaged with retreatment. Conclusions: Proton therapy is an effective and efficient means of treating uveal metastases. Acutely, the majority of patients experience minor adverse effects. For longer-term survivors, the risk of retinal injury with vision loss increases significantly over the first year

  10. Outcomes of Proton Therapy for the Treatment of Uveal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, Sophia C. [Harvard Medical School, Boston, Massachusetts (United States); Collier, John M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lane, Anne Marie; Kim, Ivana [Retina Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Niemierko, Andrzej [Division of Biostatistics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Chen, Yen-Lin E.; MacDonald, Shannon M.; Munzenrider, John E. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gragoudas, Evangelos [Retina Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-12-01

    Purpose/Objective(s): Radiation therapy can be used to treat uveal metastases with the goal of local control and improvement of quality of life. Proton therapy can be used to treat uveal tumors efficiently and with expectant minimization of normal tissue injury. Here, we report the use of proton beam therapy for the management of uveal metastases. Methods and Materials: A retrospective chart review was made of all patients with uveal metastases treated at our institution with proton therapy between June 2002 and June 2012. Patient and tumor characteristics, fractionation and dose schemes, local control, and toxicities are reported. Results: Ninety patients were identified. Of those, 13 were excluded because of missing information. We report on 77 patients with 99 affected eyes with available data. Patients were 68% female, and the most common primary tumor was breast carcinoma (49%). The median age at diagnosis of uveal metastasis was 57.9 years. Serous retinal detachment was seen in 38% of treated eyes. The median follow-up time was 7.7 months. The median dose delivered to either eye was 20 Gy(relative biological effectiveness [RBE]) in 2 fractions. Local control was 94%. The median survival after diagnosis of uveal metastases was 12.3 months (95% confidence interval, 7.7-16.8). Death in all cases was secondary to systemic disease. Radiation vasculopathy, measured decreased visual acuity, or both was observed in 50% of evaluable treated eyes. The actuarial rate of radiation vasculopathy, measured decreased visual acuity, or both was 46% at 6 months and 73% at 1 year. The 6 eyes with documented local failure were successfully salvaged with retreatment. Conclusions: Proton therapy is an effective and efficient means of treating uveal metastases. Acutely, the majority of patients experience minor adverse effects. For longer-term survivors, the risk of retinal injury with vision loss increases significantly over the first year.

  11. Calculation of primary and secondary dose in proton therapy of brain tumors using Monte Carlo method

    International Nuclear Information System (INIS)

    Moghbel Esfahani, F.; Alamatsaz, M.; Karimian, A.

    2012-01-01

    High-energy beams of protons offer significant advantages for the treatment of deep-seated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum - Bragg peak - near the end of range with a sharp falloff at the distal edge. Therefore, research must be done to investigate the possible negative and positive effects of using proton therapy as a treatment modality. In proton therapy, protons do account for the vast majority of dose. However, when protons travel through matter, secondary particles are created by the interactions of protons and matter en route to and within the patient. It is believed that secondary dose can lead to secondary cancer, especially in pediatric cases. Therefore, the focus of this work is determining both primary and secondary dose. Dose calculations were performed by MCNPX in tumoral and healthy parts of brain. The brain tumor has a 10 mm diameter and is located 16 cm under the skin surface. The brain was simulated by a cylindrical water phantom with the dimensions of 19 x 19cm 2 (length x diameter), with 0.5 cm thickness of plexiglass (C 4 H 6 O 2 ). Then beam characteristics were investigated to ensure the accuracy of the model. Simulations were initially validated with against packages such as SRIM/TRIM. Dose calculations were performed using different configurations to evaluate depth-dose profiles and dose 2D distributions.The results of the simulation show that the best proton energy interval, to cover completely the brain tumor, is from 152 to 154 MeV. (authors)

  12. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    International Nuclear Information System (INIS)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia

    2016-01-01

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  13. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia [University of British Columbia, University of Victoria, University of British Columbia, University of British Columbia, University of British Columbia, TRIUMF (Canada)

    2016-08-15

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  14. Proton Therapy Expansion Under Current United States Reimbursement Models

    Energy Technology Data Exchange (ETDEWEB)

    Kerstiens, John [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Johnstone, Peter A.S., E-mail: pajohnst@iupui.edu [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2014-06-01

    Purpose: To determine whether all the existing and planned proton beam therapy (PBT) centers in the United States can survive on a local patient mix that is dictated by insurers, not by number of patients. Methods and Materials: We determined current and projected cancer rates for 10 major US metropolitan areas. Using published utilization rates, we calculated patient percentages who are candidates for PBT. Then, on the basis of current published insurer coverage policies, we applied our experience of what would be covered to determine the net number of patients for whom reimbursement is expected. Having determined the net number of covered patients, we applied our average beam delivery times to determine the total number of minutes needed to treat that patient over the course of their treatment. We then calculated our expected annual patient capacity per treatment room to determine the appropriate number of treatment rooms for the area. Results: The population of patients who will be both PBT candidates and will have treatments reimbursed by insurance is significantly smaller than the population who should receive PBT. Coverage decisions made by insurers reduce the number of PBT rooms that are economically viable. Conclusions: The expansion of PBT centers in the US is not sustainable under the current reimbursement model. Viability of new centers will be limited to those operating in larger regional metropolitan areas, and few metropolitan areas in the US can support multiple centers. In general, 1-room centers require captive (non–PBT-served) populations of approximately 1,000,000 lives to be economically viable, and a large center will require a population of >4,000,000 lives. In areas with smaller populations or where or a PBT center already exists, new centers require subsidy.

  15. Feasibility of using laser ion accelerators in proton therapy

    CERN Document Server

    Bulanov, S V

    2002-01-01

    The feasibility of using the laser plasma as a source of the high-energy ions for the proton radiation therapy is discussed. The proposal is based on the recent inventions of the effective ions acceleration in the experiments and through numerical modeling of the powerful laser radiation interaction with the gaseous and solid state targets. The principal peculiarity of the dependence of the protons energy losses in the tissues (the Bragg peak of losses) facilities the solution of one of the most important problems of the radiation therapy, which consists in realizing the tumor irradiation by sufficiently high and homogeneous dose with simultaneous minimization of the irradiation level, relative to the healthy and neighbouring tissues and organs

  16. Proton therapy in ophthalmology: status report and problems encountered

    International Nuclear Information System (INIS)

    Chauvel, P.; Iborra-Brassart, N.; Courdi, A.; Herault, J.; Teissier, E.; Pignol, J.P.; Bondiau, P.Y.

    1996-01-01

    The proton therapy facility of the Centre Antoine-Lacassagne in Nice began of ocular tumors in June 1991. Up to October 1995, a total number of 600 patients were treated. An overview of the cases treated during the first 4 years of activity is given and the main problems encountered in the field, possibly interacting with the accuracy and reliability of the dose distribution, are listed. (author)

  17. Radiation therapy of gynecological cancer

    International Nuclear Information System (INIS)

    Nori, D.; Hilaris, B.S.

    1987-01-01

    This book consists of three parts: General Principles; Clinical Applications; and Special Topics. Some of the papers are: Introduction to Basic Radiobiology; Staging and Work-up Procedures for Patients with Gynecological Cancers; Radiation Therapy in the Treatment of Cancer of the Cervix; Role of Interstitial Implantation in Gynecological Cancer; Role of Radiocolloids in Gynecological Cancer; Radiosensitizers and Protectors; and Management of Lymphoma Associated with Pregnancy

  18. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Adam, D; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  19. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Hur, T. R.; Lee, Y. M.; Park, J. W.; Sohn, E. J.

    2006-05-01

    The physical properties of charged particles such as protons are uniquely suited to target the radiation dose precisely in the tumor. In proton therapy, the Bragg peak is spread out by modulating or degrading the energy of the particles to cover a well defined target volume at a given depth. Due to heterogeneity in the various tumors and end-points as well as in the physical properties of the beams considered, it is difficult to fit the various results into a clear general description of the biological effect of proton in tumor therapy. Tumor hypoxia is a main obstacle to radiotherapy, including gamma-ray. Survived tumor cells under hypoxic region are resistant to radiation and more aggressive to be metastasized. To investigate the dose of proton beam to induce cell death of various tumor cells and hypoxic tumor cells at the Bragg peak in vitro, we used 3 kinds of tumor cells, lung cancer, leukemia and hepatoma cells. Proton beam induces apoptosis in Lewis lung carcinoma cells dose dependently and, slightly in leukemia but not in hepatoma cells at all. Above 1000 gray of proton beam, 60% of cells died even the hypoxic cells in Lewis lung carcinoma cells. But the Molt-4 leukemia cells showed milder effect, 20% cell death by the above 1000 Gray of proton beam and typical resistant pattern (5-10%) of hypoxia in desferrioxamine treated cells. Hepatoma cells (HepG2) were not responsive to proton beam even in rather higher dose (4000G). However, by the gamma-irradiation, Molt-4 was more sensitive than hepatoma or lung cancer cells, but still showed hypoxic resistance. The cell death by proton beam in Lewis lung carcinoma cells was confirmed by PARP cleavage and may be mediated by increased p53. Pro-caspases were also activated and cleaved by the proton beam irradiations for lung cancer cell death. In conclusion, high dose of proton beam (above 1000 gray) may be a good therapeutic radiation even in hypoxic region at the Bragg peak, but further investigations about the

  20. WE-FG-BRB-01: Clinical Significance of RBE Variations in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Paganetti, H. [Massachusetts General Hospital (United States)

    2016-06-15

    The physical pattern of energy deposition and the enhanced relative biological effectiveness (RBE) of protons and carbon ions compared to photons offer unique and not fully understood or exploited opportunities to improve the efficacy of radiation therapy. Variations in RBE within a pristine or spread out Bragg peak and between particle types may be exploited to enhance cell killing in target regions without a corresponding increase in damage to normal tissue structures. In addition, the decreased sensitivity of hypoxic tumors to photon-based therapies may be partially overcome through the use of more densely ionizing radiations. These and other differences between particle and photon beams may be used to generate biologically optimized treatments that reduce normal tissue complications. In this symposium, speakers will examine the impact of the RBE of charged particles on measurable biological endpoints, treatment plan optimization, and the prediction or retrospective assessment of treatment outcomes. In particular, an AAPM task group was formed to critically examine the evidence for a spatially-variant RBE in proton therapy. Current knowledge of proton RBE variation with respect to dose, biological endpoint, and physics parameters will be reviewed. Further, the clinical relevance of these variations will be discussed. Recent work focused on improving simulations of radiation physics and biological response in proton and carbon ion therapy will also be presented. Finally, relevant biology research and areas of research needs will be highlighted, including the dependence of RBE on genetic factors including status of DNA repair pathways, the sensitivity of cancer stem-like cells to charged particles, the role of charged particles in hypoxic tumors, and the importance of fractionation effects. In addition to the physical advantages of protons and more massive ions over photons, the future application of biologically optimized treatment plans and their potential to

  1. Effect of Proton Beam on Cancer Progressive and Metastatic Enzymes

    International Nuclear Information System (INIS)

    Sohn, Y. H.; Nam, K. S.; Oh, Y. H.; Kim, M. K.; Kim, M. Y.; Jang, J. S.

    2008-04-01

    The purpose of this study was to investigate the effect of proton beam on enzymes for promotion/progression of carcinogenesis and metastasis of malignant tumor cells to clarify proton beam-specific biological effects. The changes of cancer chemopreventive enzymes in human colorectal adenocarcinoma HT-29 cells irradiated with proton beams were tested by measuring the activities of quinine reductase (QR), glutathione S-transferase (GST), and ornithine decarboxylase (ODC), glutathione (GSH) levels, and expression of cyclooxygenase-2 (COX-2). We also examined the effect of proton beam on the ODC activity and expression of COX-2 in human breast cancer cell. We then assessed the metastatic capabilities of HT-29 and MDA-MB-231 cells irradiated with proton beam by measuring the invasiveness of cells through Matrigel-coated membrane and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP activity in MDA-MB-231 and HT-29 cells. QR activity of irradiated HT-29 cells was slightly increased. Proton irradiation at dose of 32 Gy in HT-29 cells increased GST activity by 1.23-fold. In addition GSH levels in HT-29 cells was significantly increased 1.23- (p<0.05), 1.32- (p<0.01) and 1.34-fold (p<0.01) with the proton irradiation at doses of 8, 16 and 32 Gy, respectively. These results suggest that colon cancer chemopreventive activity was increased with the proton irradiation by increasing QR and GST activities and GSH levels and inhibiting ODC activity. Proton ion irradiation decreased the invasiveness of TPA-treated HT-29 cells and MDA-MB-231 cells through Matrigel-coated membrane. Proton ion irradiation pretreatment decreased TPA-induced MMP activity in MDA-MB-231 and HT-29 cells. Further studies are necessary to investigate if these findings could be translated to in vivo situations

  2. Five years of proton therapy of tumours of the eye at Hahn-Meitner Institute, Berlin

    International Nuclear Information System (INIS)

    Heufelder, J.; Cordini, D.; Heese, J.; Homeyer, H.; Kluge, H.; Morgenstern, H.; Fuchs, H.; Hoecht, S.; Nausner, M.; Hinkelbein, W.; Bechrakis, N.E.; Foerster, M.H.

    2004-01-01

    Eye tumors (choroidal melanomas, iris melanomas, and choroidal hemangiomas) are being treated with 68 MeV protons since 1998 at the Ion Beam Laboratory of the Hahn-Meitner Institute of Berlin (Germany's first proton therapy center), in cooperation with the Charite University Hospital in Berlin, Campus Benjamin Franklin. The proton beam, generated via a combination of Van de Graaff accelerator and cyclotron, is prepared by passive shaping for conformal tumor irradiation. A digital X-ray verification of the tumor location with the patient in sitting position limits the position uncertainties to a maximum of 0,3 mm. The treatment planning is performed using the program EYEPLAN. OCTOPUS, a CT-based planning program developed in cooperation with the German Cancer Research Center of Heidelberg, is under pre-clinical testing. Thus far, more than 400 patients have been irradiated. The first results are comparable to those obtained in other proton therapy centers. At the end of 2002, the University Hospital of Essen has also become a cooperation partner of the Hahn-Meitner Institute. (orig.) [de

  3. Comparison of surface doses from spot scanning and passively scattered proton therapy beams

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Gillin, Michael; Cox, James; Lee, Andrew

    2009-01-01

    Proton therapy for the treatment of cancer is delivered using either passively scattered or scanning beams. Each technique delivers a different amount of dose to the skin, because of the specific feature of their delivery system. The amount of dose delivered to the skin can play an important role in choosing the delivery technique for a specific site. To assess the differences in skin doses, we measured the surface doses associated with these two techniques. For the purpose of this investigation, the surface doses in a phantom were measured for ten prostate treatment fields planned with passively scattered proton beams and ten patients planned with spot scanning proton beams. The measured doses were compared to evaluate the differences in the amount of skin dose delivered by using these techniques. The results indicate that, on average, the patients treated with spot scanning proton beams received lower skin doses by an amount of 11.8% ± 0.3% than did the patients treated with passively scattered proton beams. That difference could amount to 4 CGE per field for a prescribed dose of 76 CGE in 38 fractions treated with two equally weighted parallel opposed fields. (note)

  4. Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators

    International Nuclear Information System (INIS)

    Sheu, Rong-Jiun; Chen, Yen-Fu; Lin, Uei-Tyng; Jiang, Shiang-Huei

    2012-01-01

    Proton accelerators in the energy range of approximately 200 MeV have become increasingly popular for cancer treatment in recent years. These proton therapy facilities usually involve bulky concrete or iron in their shielding design or accelerator structure. Simple shielding data, such as source terms or attenuation lengths for various proton energies and materials are useful in designing accelerator shielding. Understanding the appropriateness or uncertainties associated with these data, which are largely generated from Monte Carlo simulations, is critical to the quality of a shielding design. This study demonstrated and investigated the problems of deep-penetration calculations on the estimation of shielding parameters through an extensive comparison between the FLUKA and MCNPX calculations for shielding against a 200-MeV proton beam hitting an iron target. Simulations of double-differential neutron production from proton bombardment were validated by comparison with experimental data. For the concrete shielding, the FLUKA calculated depth–dose distributions were consistent with the MCNPX results, except for some discrepancies in backward directions. However, for the iron shielding, if FLUKA is used inappropriately then overestimation of neutron attenuation can be expected as shown by this work because of the multigroup treatment for low-energy neutrons in FLUKA. Two neutron energy group structures, three degrees of self-shielding correction, and two iron compositions were considered in this study. Significant variation of the resulting attenuation lengths indicated the importance of problem-dependent multigroup cross sections and proper modeling of iron composition in deep-penetration calculations.

  5. Hospital-based proton linear accelerator for particle therapy and radioisotope production

    Science.gov (United States)

    Lennox, Arlene J.

    1991-05-01

    Taking advantage of recent advances in linear accelerator technology, it is possible for a hospital to use a 70 MeV proton linac for fast neutron therapy, boron neutron capture therapy, proton therapy for ocular melanomas, and production of radiopharmaceuticals. The linac can also inject protons into a synchrotron for proton therapy of deep-seated tumors. With 180 μA average current, a single linac can support all these applications. This paper presents a conceptual design for a medical proton linac, switchyard, treatment rooms, and isotope production rooms. Special requirements for each application are outlined and a layout for sharing beam among the applications is suggested.

  6. TU-G-BRB-00: Clinical Trials in Proton and Particle Therapy

    International Nuclear Information System (INIS)

    2015-01-01

    Proton therapy, in particular, and ion therapy, just beginning, are becoming an increasing focus of attention in clinical radiation oncology and medical physics. Both modalities have been criticized of lacking convincing evidence from randomized trials proving their efficacy, justifying the higher costs involved in these therapies. This session will provide an overview of the current status of clinical trials in proton therapy, including recent developments in ion therapy. As alluded to in the introductory talk by Dr. Schulte, opinions are diverging widely as to the usefulness and need for clinical trials in particle therapy and the challenge of equipoise. The lectures will highlight some of the challenges that surround clinical trials in particle therapy. One, presented by Dr. Choy from UT Southwestern, is that new technology and even different types of particles such as helium and carbon ions are introduced into this environment, increasing the phase space of clinical variables. The other is the issue of medical physics quality assurance with physical phantoms, presented by Mrs. Taylor from IROC Houston, which is more challenging because 3D and 4D image guidance and active delivery techniques are in relatively early stages of development. The role of digital phantoms in developing clinical treatment planning protocols and as a QA tool will also be highlighted by Dr. Lee from NCI. The symposium will be rounded off by a panel discussion among the Symposium speakers, arguing pro or con the need and readiness for clinical trials in proton and ion therapy. Learning Objectives: To get an update on the current status of clinical trials allowing or mandating proton therapy. Learn about the status of planned clinical trials in the U.S. and worldwide involving ion therapy. Discuss the challenges in the design and QA of clinical trials in particle therapy. Learn about existing and future physical and computational anthropomorphic phantoms for charged particle clinical trial

  7. Antimetabolites: Established cancer therapy

    Directory of Open Access Journals (Sweden)

    Manjul Tiwari

    2012-01-01

    Full Text Available Cell death has been divided into two main types: programmed cell death, in which the cell plays an active role, and passive (necrotic cell death. Senescence arrest, accelerated senescence and differentiation are also responses that can be induced in response to DNA-damaging agents. Apoptosis may occur as a primary event following chemotherapy, in which genes that regulate apoptosis will influence the outcome of therapy or, alternatively, as an event secondary to the induction of lethal damage that involves the subsequent processing of cellular damage. The particular type of response induced is highly dependent on the agent and dose employed, the type of DNA damage induced as well as the genetic and cellular phenotypes. It has been proposed that apoptosis may play a lesser role in tumor response to radiation in comparison with the induction of cell death through mitotic catastrophe or a senescence-like irreversible growth arrest. However, in comparison with the induction of apoptosis, there is a lack of as much definitive information on other cell death processes that occur in cancer cells in response to chemotherapeutic agents, including antimetabolites. This article reviews what is known about these processes at the present time in response to experimental or clinically used agents that are analogs of 5-fluorouracil, cytidine or purines, hydroxyurea, or that belong to the family of folate antagonists.

  8. Chemosensory alterations and cancer therapies

    International Nuclear Information System (INIS)

    Bartoshuk, L.M.

    1990-01-01

    Taste and olfaction provide sensory information and sensory pleasure. Cancer therapies affect both. Chemotherapy has not been shown to produce dramatic losses of taste or smell, but systematic studies on various chemotherapeutic agents and types of cancer are lacking. Radiation therapy does produce clear losses of both taste and smell. Both chemotherapy and radiation therapy alter the pleasure produced by taste and smell through the formation of conditioned aversions. That is, foods consumed in proximity with the nausea of therapy come to be unpleasant. The impact of conditioned aversions can be diminished by providing a scapegoat food just before therapy. Alterations in foods may be beneficial to the cancer patient. Increasing the concentrations of flavor ingredients can compensate for sensory losses, and providing pureed foods that retain the cognitive integrity of a meal can benefit the patient who has chewing or swallowing problems

  9. SU-F-T-666: Molecular-Targeted Gold Nanorods Enhances the RBE of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, A; Sahoo, N; Krishnan, S; Diagaradjane, P [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: In recent years, proton beam radiation therapy (PBRT) has gained significant attention in the treatment of tumors in anatomically complex locations. However, the therapeutic benefit of PBRT is limited by a relative biological effectiveness (RBE) of just 1.1. The purpose of this study is to evaluate whether this limitation can be overcome by artificially enhancing the RBE using molecular-targeted gold nanorods (GNRs). Methods: Molecular-targeting of GNRs was accomplished using Cetuximab (antibody specific to epidermal growth factor receptor that is over-expressed in tumors) conjugated GNRs (cGNRs) and their binding affinity to Head and Neck cancer cells was confirmed using dark field microscopy and Transmission Electron Microscopy (TEM). The radiosensitization potential of cGNRs when irradiated with photon (6MV) and proton (100 and 160 MeV) beams was determined using clonogenic assays. The RBE at 10% surviving fraction (RBE{sub 10}) for proton therapies at central and distal locations of SOBP was calculated with respect to 6 MV photons. IgGconjugated GNRs (iGNRs) were used as controls in all experiments. Results: cGNRs demonstrated significant radiosensitization when compared to iGNRs for 6MV photons (1.14 vs 1.04), 100 MeV protons (1.19 vs 1.04), and 160 MeV protons (1.17 vs 1.04). While RBE10 for proton beams at the center of SOBP revealed similar effects for both 100 and 160 MeV (RBE{sup 10}=1.39 vs 1.38; p>0.05), enhanced radiosensitization was observed at the distal SOBP with 100 MeV beams demonstrating greater effect than 160 MeV beams (RBE{sup 10}=1.79 vs 1.6; p<0.05). Conclusion: EGFR-targeting GNRs significantly enhance the RBE of protons well above the accepted 1.1 value. The enhanced RBE observed for lower energy protons (100 MeV) and at the distal SOBP suggests that low energy components may play a role in the observed radiosensitization effect. This strategy holds promise for clinical translation and could evolve as a paradigm-changing approach

  10. Monitoring proton radiation therapy with in-room PET imaging

    International Nuclear Information System (INIS)

    Zhu Xuping; Ouyang Jinsong; El Fakhri, Georges; Espana, Samuel; Daartz, Juliane; Liebsch, Norbert; Paganetti, Harald; Bortfeld, Thomas R

    2011-01-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to 15 O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  11. Focal therapy in prostate cancer

    NARCIS (Netherlands)

    van den Bos, W.

    2016-01-01

    Interesting developments took place in the treatment of prostate cancer including focal therapy for less aggressive organ-confined prostate cancer. Fortunately, curative treatment is often still an option for patients suffering from the lower staged tumors. In carefully selected patients, the

  12. Internal Radiation Therapy for Cancer

    Science.gov (United States)

    When getting internal radiation therapy, a source of radiation is put inside your body, in either liquid or solid form. It can be used treat different kinds of cancer, including thyroid, head and neck, breast, cervix, prostate, and eye. Learn more about how what to expect when getting internal radiation therapy.

  13. Proton therapy for uveal melanomas and other eye lesions

    International Nuclear Information System (INIS)

    Munzenrider, J.E.

    1999-01-01

    Charged particle beams are ideal for treating intra-ocular lesions, since they can be made to deposit their dose in the target, while significantly limiting dose received by non-involved ocular and orbital structures. Proton beam treatment of large numbers of uveal melanoma patients consistently achieves local control rates in excess of 95%, and eye retention rates of approximately 90%. Visual preservation is related to initial visual acuity, tumor size and location, and dose received by the macula, disc, and lens. The probability of distant metastasis is increased by larger tumor diameter, more anterior tumor location, and older patient age. Proton therapy is also effective treatment for patients with ocular angiomas, hemangiomas, metastatic tumors, and retinoblastomas, and may be beneficial for patients with exudative ('wet') age-related macular degeneration. (orig.)

  14. Proton therapy for uveal melanomas and other eye lesions

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J.E. [Dept. of Radiation Oncology, Harvard Univ. Medical School, Boston, MA (United States)

    1999-06-01

    Charged particle beams are ideal for treating intra-ocular lesions, since they can be made to deposit their dose in the target, while significantly limiting dose received by non-involved ocular and orbital structures. Proton beam treatment of large numbers of uveal melanoma patients consistently achieves local control rates in excess of 95%, and eye retention rates of approximately 90%. Visual preservation is related to initial visual acuity, tumor size and location, and dose received by the macula, disc, and lens. The probability of distant metastasis is increased by larger tumor diameter, more anterior tumor location, and older patient age. Proton therapy is also effective treatment for patients with ocular angiomas, hemangiomas, metastatic tumors, and retinoblastomas, and may be beneficial for patients with exudative (`wet`) age-related macular degeneration. (orig.)

  15. Cancer Alternative Therapies

    Science.gov (United States)

    You have many choices to make about your cancer treatment. One choice you might be thinking about ... are acupuncture, chiropractic, and herbal medicines. People with cancer may use CAM to Help cope with the ...

  16. Biological Therapies for Cancer

    Science.gov (United States)

    ... LS, Li QQ, et al. Epidermal growth factor receptor (EGFR)-targeted photoimmunotherapy (PIT) for the treatment of EGFR-expressing bladder cancer. Molecular Cancer Therapeutics 2017; 16(10):2201-2214. [ ...

  17. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles, E-mail: rnichols@floridaproton.org [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Williams, Christopher R.; Costa, Joseph A. [Division of Urology, University of Florida Shands Hospital, Jacksonville, FL (United States); Mendenhall, Nancy P. [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2012-03-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  18. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    International Nuclear Information System (INIS)

    Nichols, R. Charles; Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng; Williams, Christopher R.; Costa, Joseph A.; Mendenhall, Nancy P.

    2012-01-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  19. Outcomes of Proton Therapy for Patients With Functional Pituitary Adenomas

    International Nuclear Information System (INIS)

    Wattson, Daniel A.; Tanguturi, Shyam K.; Spiegel, Daphna Y.; Niemierko, Andrzej; Biller, Beverly M.K.; Nachtigall, Lisa B.; Bussière, Marc R.; Swearingen, Brooke; Chapman, Paul H.; Loeffler, Jay S.; Shih, Helen A.

    2014-01-01

    Purpose/Objective(s): This study evaluated the efficacy and toxicity of proton therapy for functional pituitary adenomas (FPAs). Methods and Materials: We analyzed 165 patients with FPAs who were treated at a single institution with proton therapy between 1992 and 2012 and had at least 6 months of follow-up. All but 3 patients underwent prior resection, and 14 received prior photon irradiation. Proton stereotactic radiosurgery was used for 92% of patients, with a median dose of 20 Gy(RBE). The remainder received fractionated stereotactic proton therapy. Time to biochemical complete response (CR, defined as ≥3 months of normal laboratory values with no medical treatment), local control, and adverse effects are reported. Results: With a median follow-up time of 4.3 years (range, 0.5-20.6 years) for 144 evaluable patients, the actuarial 3-year CR rate and the median time to CR were 54% and 32 months among 74 patients with Cushing disease (CD), 63% and 27 months among 8 patients with Nelson syndrome (NS), 26% and 62 months among 50 patients with acromegaly, and 22% and 60 months among 9 patients with prolactinomas, respectively. One of 3 patients with thyroid stimulating hormone—secreting tumors achieved CR. Actuarial time to CR was significantly shorter for corticotroph FPAs (CD/NS) compared with other subtypes (P=.001). At a median imaging follow-up time of 43 months, tumor control was 98% among 140 patients. The actuarial 3-year and 5-year rates of development of new hypopituitarism were 45% and 62%, and the median time to deficiency was 40 months. Larger radiosurgery target volume as a continuous variable was a significant predictor of hypopituitarism (adjusted hazard ratio 1.3, P=.004). Four patients had new-onset postradiosurgery seizures suspected to be related to generously defined target volumes. There were no radiation-induced tumors. Conclusions: Proton irradiation is an effective treatment for FPAs, and hypopituitarism remains the primary

  20. Outcomes of Proton Therapy for Patients With Functional Pituitary Adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Wattson, Daniel A.; Tanguturi, Shyam K. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Spiegel, Daphna Y. [Tufts University School of Medicine, Boston, Massachusetts (United States); Niemierko, Andrzej [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Biller, Beverly M.K.; Nachtigall, Lisa B. [Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (United States); Bussière, Marc R. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Swearingen, Brooke; Chapman, Paul H. [Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Loeffler, Jay S. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose/Objective(s): This study evaluated the efficacy and toxicity of proton therapy for functional pituitary adenomas (FPAs). Methods and Materials: We analyzed 165 patients with FPAs who were treated at a single institution with proton therapy between 1992 and 2012 and had at least 6 months of follow-up. All but 3 patients underwent prior resection, and 14 received prior photon irradiation. Proton stereotactic radiosurgery was used for 92% of patients, with a median dose of 20 Gy(RBE). The remainder received fractionated stereotactic proton therapy. Time to biochemical complete response (CR, defined as ≥3 months of normal laboratory values with no medical treatment), local control, and adverse effects are reported. Results: With a median follow-up time of 4.3 years (range, 0.5-20.6 years) for 144 evaluable patients, the actuarial 3-year CR rate and the median time to CR were 54% and 32 months among 74 patients with Cushing disease (CD), 63% and 27 months among 8 patients with Nelson syndrome (NS), 26% and 62 months among 50 patients with acromegaly, and 22% and 60 months among 9 patients with prolactinomas, respectively. One of 3 patients with thyroid stimulating hormone—secreting tumors achieved CR. Actuarial time to CR was significantly shorter for corticotroph FPAs (CD/NS) compared with other subtypes (P=.001). At a median imaging follow-up time of 43 months, tumor control was 98% among 140 patients. The actuarial 3-year and 5-year rates of development of new hypopituitarism were 45% and 62%, and the median time to deficiency was 40 months. Larger radiosurgery target volume as a continuous variable was a significant predictor of hypopituitarism (adjusted hazard ratio 1.3, P=.004). Four patients had new-onset postradiosurgery seizures suspected to be related to generously defined target volumes. There were no radiation-induced tumors. Conclusions: Proton irradiation is an effective treatment for FPAs, and hypopituitarism remains the primary

  1. Preliminary design of a technologically advanced and compact synchrotron for proton therapy

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.; Bartolini, R.

    1994-11-01

    This paper describes the activity on optimising the parameters of a compact protosynchrotron in the energy range of 80-200 MeV. Based on the 200-MeV protosynchrotron under development at the Budker Institute for Nuclear Physics at Novosibirsk, the work was stimulated by the Italian 'Progetto Adroterapia' whose aim is to diffuse cancer therapy with protons and ions. The innovative aspect of the project is the use of 4-Tesla warm pulsed dipole magnets that allow an accelerator diameter of the order of 2 meters, thus permitting the machine to be transported pre-assembled

  2. Mapping {sup 15}O Production Rate for Proton Therapy Verification

    Energy Technology Data Exchange (ETDEWEB)

    Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Min, Chul Hee [Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Kangwon (Korea, Republic of); Testa, Mauro; Winey, Brian [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Normandin, Marc D. [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Shih, Helen A.; Paganetti, Harald; Bortfeld, Thomas [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); El Fakhri, Georges, E-mail: elfakhri@pet.mgh.harvard.edu [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-06-01

    Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates for the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.

  3. Proton Therapy for Malignant Pleural Mesothelioma After Extrapleural Pleuropneumonectomy

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Hartmann, Matthias; Lomax, Anthony J.

    2010-01-01

    Purpose: To perform comparative planning for intensity-modulated radiotherapy (IMRT) and proton therapy (PT) for malignant pleural mesothelioma after radical surgery. Methods and Materials: Eight patients treated with IMRT after extrapleural pleuropneumonectomy (EPP) were replanned for PT, comparing dose homogeneity, target volume coverage, and mean and maximal dose to organs at risk. Feasibility of PT was evaluated regarding the dose distribution with respect to air cavities after EPP. Results: Dose coverage and dose homogeneity of the planning target volume (PTV) were significantly better for PT than for IMRT regarding the volume covered by >95% (V95) for the high-dose PTV. The mean dose to the contralateral kidney, ipsilateral kidney, contralateral lung, liver, and heart and spinal cord dose were significantly reduced with PT compared with IMRT. After EPP, air cavities were common (range, 0-850 cm 3 ), decreasing from 0 to 18.5 cm 3 /day. In 2 patients, air cavity changes during RT decreased the generalized equivalent uniform dose (gEUD) in the case of using an a value of < - 10 to the PTV2 to <2 Gy in the presence of changing cavities for PT, and to 40 Gy for IMRT. Small changes were observed for gEUD of PTV1 because PTV1 was reached by the beams before air. Conclusion: Both PT and IMRT achieved good target coverage and dose homogeneity. Proton therapy accomplished additional dose sparing of most organs at risk compared with IMRT. Proton therapy dose distributions were more susceptible to changing air cavities, emphasizing the need for adaptive RT and replanning.

  4. Alanine EPR dosimeter response in proton therapy beams

    International Nuclear Information System (INIS)

    Gall, K.; Serago, C.; Desrosiers, M.; Bensen, D.

    1997-01-01

    We report a series of measurements directed to assess the suitability of alanine as a mailable dosimeter for dosimetry quality assurance of proton radiation therapy beams. These measurements include dose-response of alanine at 140 MeV, and comparison of response vs energy with a parallel plate ionization chamber. All irradiations were made at the Harvard Cyclotron Laboratory, and the dosimeters were read at NIST. The results encourage us that alanine could be expected to serve as a mailable dosimeter with systematic error due to differential energy response no greater than 3% when doses of 25 Gy are used. (Author)

  5. Patterns of Failure in Pediatric Rhabdomyosarcoma After Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vern-Gross, Tamara Z.; Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org; Bradley, Julie A.; Rotondo, Ronny L.

    2016-12-01

    Purpose: To report on the patterns of failure in children with rhabdomyosarcoma treated with proton therapy. Patients and Methods: Between February 2007 and November 2013, 66 children with a median age of 4.1 years (range, 0.6-15.3 years) diagnosed with nonmetastatic rhabdomyosarcoma were treated with proton therapy. Clinical target volume 1 was defined as the prechemotherapy tumor plus a 1-cm anatomically constrained margin. Clinical target volume 2 was defined as the postchemotherapy tumor (or tumor bed) plus a 0.5-cm anatomically constrained margin, further expanded to encompass potential pathways of spread, including soft tissue infiltrated with tumor at diagnosis. Results: Of the 66 children, 11 developed locally progressive disease at a median of 16 months (range, 14-32 months), for an actuarial 2-year local control rate of 88%. Among the children who progressed, median age and tumor size at diagnosis were 6.7 years (range, 0.6-16 years) and 6 cm (range, 2-8 cm), respectively. Of the recurrences, 64% and 36% were embryonal and alveolar, respectively. Disease progression was observed in 7 (64%) parameningeal, 2 (18%) head and neck (other), and 2 (18%) bladder/prostate subsites. At diagnosis, 8 of 11 patients who developed a recurrence were Intergroup Rhabdomyosarcoma Study stage 3, and all 11 were group III. Of the relapses, 100% (11 of 11) were confirmed as in-field within the composite 95% isodose line. One of the 11 patients (9%) developed a new simultaneous regional nodal recurrence outside of the previously treated radiation field. Conclusion: Early data suggest that the sharp dosimetric gradient associated with proton therapy is not associated with an increased risk of marginal failure. Routine use of a 0.5- to 1-cm clinical target volume 1/2 margin with highly conformal proton therapy does not compromise local control in children diagnosed with rhabdomyosarcoma with unfavorable risk features.

  6. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    International Nuclear Information System (INIS)

    Hug, E.B.; Loma Linda Univ. Medical Center, Loma Linda, CA; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D.; Liwnicz, B.

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  7. Dosimetric intercomparison between protons and electrons therapies applied to retinoblastoma; Intercomparacao dosimetrica entre terapias de protons e eletrons aplicada ao retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Flavia Vieira

    2008-07-01

    In this work we propose a construction of a simple human eye model in order to simulate the dosimetric response for a treatment with protons and electrons in a retinoblastoma cancer. The computational tool used in this simulation was the Geant4 code, in the version 4.9.1, all these package are free and permit simulate the interaction of radiation with matter. In our simulation we use a box with 4 cm side, with water, for represent the human eye. The simulation was performed considering mono energetics beams of protons and electrons with energy range between 50 and 70 MeV for protons and 2 and 10 MeV for electrons. The simulation was based on the advanced hadron therapy example of the Geant 4 code. In these example the phantom is divided in voxels with 0.2 mm side and it is generated the energy deposited in each voxel. The simulation results show the energy deliver in each voxel, with these energie we can calculate the dose deposited in that region. We can see the dose profile of, proton and electron, and we can see in both cases that for protons the position of delivered dose is well know, that happen in the position where the proton stop, for electrons the energies is delivered along the way and pass the desired position for high dose deposition. (author)

  8. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons

    International Nuclear Information System (INIS)

    Peterson, S W; Polf, J; Archambault, L; Beddar, S; Bues, M; Ciangaru, G; Smith, A

    2009-01-01

    The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.

  9. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  10. Cancer therapy with ions

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1993-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the accelerators and the beam delivery systems needed are presented in this paper. (orig.)

  11. Real-time beam monitoring in scanned proton therapy

    Science.gov (United States)

    Klimpki, G.; Eichin, M.; Bula, C.; Rechsteiner, U.; Psoroulas, S.; Weber, D. C.; Lomax, A.; Meer, D.

    2018-05-01

    When treating cancerous tissues with protons beams, many centers make use of a step-and-shoot irradiation technique, in which the beam is steered to discrete grid points in the tumor volume. For safety reasons, the irradiation is supervised by an independent monitoring system validating cyclically that the correct amount of protons has been delivered to the correct position in the patient. Whenever unacceptable inaccuracies are detected, the irradiation can be interrupted to reinforce a high degree of radiation protection. At the Paul Scherrer Institute, we plan to irradiate tumors continuously. By giving up the idea of discrete grid points, we aim to be faster and more flexible in the irradiation. But the increase in speed and dynamics necessitates a highly responsive monitoring system to guarantee the same level of patient safety as for conventional step-and-shoot irradiations. Hence, we developed and implemented real-time monitoring of the proton beam current and position. As such, we read out diagnostic devices with 100 kHz and compare their signals against safety tolerances in an FPGA. In this paper, we report on necessary software and firmware enhancements of our control system and test their functionality based on three exemplary error scenarios. We demonstrate successful implementation of real-time beam monitoring and, consequently, compliance with international patient safety regulations.

  12. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project

    International Nuclear Information System (INIS)

    Schillo, M.; Geisler, A.; Hobl, A.; Klein, H.U.; Krischel, D.; Meyer-Reumers, M.; Piel, C.; Blosser, H.; Kim, J.-W.; Marti, F.; Vincent, J.; Brandenburg, S.; Beijers, J.P.M.

    2001-01-01

    A cyclotron for proton therapy has to fulfill many requirements set by the specific operational and safety needs of a medical facility and the medical environment. These are for instance high extraction efficiency, high availability and reliability, simple and robust operation. ACCEL Instruments GmbH has refined the design concept of a medical cyclotron for the PSI PROSCAN project with the objective to use this cyclotron as the standard accelerator in complete proton therapy facilities, which ACCEL intends to market. Starting from the design, we have carried out further detail clarifications, optimizations and adaptations to the needs of PSI. The work was performed in a collaboration between ACCEL, NSCL and KVI in view of the requirements from the PSI PROSCAN project. An overview on the design will be given touching on subjects such as the 3D structural analysis of the coil, detailed magnetic modeling for optimization of the inner region and the spiral, optimization of the RF power, optimization of the cryogenic design based on available cryocoolers instead of a liquefaction plant and Monte Carlo simulations to estimate the heat balance produced by neutrons at 4K components

  13. A Prospective Study of Proton Beam Reirradiation for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Annemarie, E-mail: Annemarie.fernandes@gmail.com [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Berman, Abigail T. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mick, Rosemarie [Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Both, Stefan; Lelionis, Kristi; Lukens, John N.; Ben-Josef, Edgar; Metz, James M.; Plastaras, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-05-01

    Purpose: Reirradiation to the esophagus carries a significant risk of complications. Proton therapy may offer an advantage in the reirradiation setting due to the lack of exit dose and potential sparing of previously radiated normal tissues. Methods and Materials: Between June 2010 and February 2014, 14 patients with a history of thoracic radiation and newly diagnosed or locally recurrent esophageal cancer began proton beam reirradiation on a prospective trial. Primary endpoints were feasibility and acute toxicity. Toxicity was graded according Common Toxicity Criteria version 4.0. Results: The median follow-up was 10 months (2-25 months) from the start of reirradiation. Eleven patients received concurrent chemotherapy. The median interval between radiation courses was 32 months (10-307 months). The median reirradiation prescription dose was 54.0 Gy (relative biological effectiveness [RBE]) (50.4-61.2 Gy[RBE]), and the median cumulative prescription dose was 109.8 Gy (76-129.4 Gy). Of the 10 patients who presented with symptomatic disease, 4 patients had complete resolution of symptoms, and 4 had diminished or stable symptoms. Two patients had progressive symptoms. The median time to symptom recurrence was 10 months. Maximum acute nonhematologic toxicity attributable to radiation was grade 2 (64%, N=9), 3 (29%, N=4), 4 (0%), and 5 (7%, N=1). The acute grade 5 toxicity was an esophagopleural fistula more likely related to tumor progression than radiation. Grade 3 nonhematologic acute toxicities included dysphagia, dehydration, and pneumonia. There was 1 late grade 5 esophageal ulcer more likely related to tumor progression than radiation. There were 4 late grade 3 toxicities: heart failure, esophageal stenosis requiring dilation, esophageal ulceration from tumor, and percutaneous endoscopic gastrostomy tube dependence. The median time to local failure was 10 months, and the median overall survival was 14 months. Conclusions: Our data demonstrate that

  14. Hadrontherapy - macrobenefit in cancer therapy?

    Science.gov (United States)

    Habrand, J. L.; Baron, E.; Bourhis, J.; Datchary, J.; Mazal, A.; Meflah, K.

    2012-07-01

    Hadrontherapy is one of the most promising radiotherapeutical innovations that deal with accelerated heavy charged particles, mainly proton and carbon ions. Their salient features include an original dose-distribution, based on the Bragg curve, and in some of them an increased RBE at the range-end. Approximately 100 000 patients have been treated so far in approximately 40 centers worldwide. Outstanding outcomes have been substantiated in rare neoplasms using protons, such as ocular melanomas, skull base sarcomas, and pediatric malignancies, while only promising evidences have emerged using carbons. Assessing their place in more common tumor-sites, such as lung, pancreas, prostate, esophagus remains to be determined, and justifies the expansion of future particle therapy programs.

  15. Art therapy in cancer fight

    Directory of Open Access Journals (Sweden)

    Érica Rodrigues D'Alencar

    2014-01-01

    Full Text Available Art therapy is the therapeutic use of artistic activity in the context of the professional relationship with people affected by disease, injury or by seeking personal development. This study aims to report the experience of art therapy activities with a group of patients and their caregivers in a university hospital. This is an experience report, in Fortaleza - CE, during September 2010 to February 2011. In the meetings, participated 49 people, who performed activities, using the methods of art therapy, like painting, cutting, drawing, collage, creative visualization and color therapy. In the assessments, after the groups, the participants demonstrated the effects of art therapy, which described that the intervention allowed speak from the process of facing life to cancer fight. It is concluded that the techniques of art therapy provided self-knowledge, self-esteem and redemption sense of well-being with relaxation, and promote happiness and reduce stress.

  16. Complications of cancer therapy

    International Nuclear Information System (INIS)

    Moskowitz, P.S.; Parker, B.R.

    1985-01-01

    The purpose of this chapter is to review systematically the toxicity of contemporary chemotherapy and irradiation on normal tissues of growing children. Whenever possible, the separate toxicity of chemotherapy, irradiation,